
How Good is your Comment?
A study of Comments in Java Programs

Dorsaf Haouari, Houari Sahraoui, Philippe Langlais
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, Canada

Email: {haouarid, sahraouh, felipe}@iro.umontreal.ca

Abstract—Comments are very useful to developers during
maintenance tasks and are useful as well to help structuring
a code at development time. They convey useful information
about the system functionalities as well as the state of mind
of a developer. Comments in code have been the focus of
several studies, but none of them was targeted at analyzing
commenting habits precisely. In this paper, we present an
empirical study which analyzes existing comments in different
open source Java projects. We study comments from both
a quantitative and a qualitative point of view. We propose
a taxonomy of comments that we used for conducting our
analysis.

I. INTRODUCTION

Software maintenance is performed through complex
tasks which consume the majority of software development
resources [11]. Among the activities involved in these tasks,
program understanding represents certainly the most central
and crucial one. Indeed, many studies showed that due to
lack of up-to-date documentation, more or less half of the
effort of maintenance is dedicated to software analysis and
understanding (see for example, the studies reported in [9]
and [8]).

In order to understand a program, developers usually read
existing comments in the source code. These comments
are very important artefacts used during development and
maintenance tasks [2]. They explain the used code structures
and express developers’ thoughts and notes in (more or
less) natural language. Therefore, they have the potential
of increasing the understandability of a program.

Much work targeted comments from, among others, the
perspectives of program comprehension, maintenance, and
reliability. These studies generally do not consider the com-
ment content. The very few that analyze the content typically
target specific software and very specific tasks. For example,
the study presented in [7] focuses on operating system code
in order to identify reliability problems that could be solved
by existing tools.

We believe that studying comment content for program
comprehension and documentation would bring useful in-
formation on how to benefit from these comments. Conse-
quently, we propose to empirically analyze comment content

in samples of programs to understand the kind of informa-
tion conveyed by comments. More precisely, we are first
interested in knowing which program construct types are
documented more often than others. This allows to derive
general trends on commenting habits that could be exploited
in program documentation.

The second aspect that interests us is the nature and
the relevance of the comments. As comments are used for
different purposes (documentation, communication, personal
notes, etc.), it is important to know how often comments are
written for a particular purpose. Moreover, the presence of
a comment does not necessarily mean that this comment is
useful and could be used for documentation or comprehen-
sion purpose.

In this context, we conducted an empirical study in order
to analyze existing comments in Java programs. Our study
involved 49 programmer subjects (after the data validation,
the data of 39 of them were studied) and three open source
projects. Subjects analyzed the content of a random sample
of comments. To this end, we defined a taxonomy of
comments to guide this analysis. Our study showed that
programmers comment some constructs more often than
others. In the majority of cases, comments are intended to
explain the code that follows them. The second more widely
used category of comments are dedicated to communication
between programmers and personal notes (we call them
working comments).

The rest of this paper is structured as follows. Section II
summarizes the related work on comment analysis. Our first
study is concerned with the quantitative aspects of comments
and is described in Section III. The results and discussion
of the qualitative aspects are presented in Section IV. The
obtained results are compared in Section V to the subjective
evaluation results provided by the subjects. In Section VI,
we highlight the possible threats to the validity of our study.
Finally, Section VII gives conclusive remarks.

II. RELATED WORK

Several studies targeted comments in code. Some of
them investigated the usefulness of comments for program
understanding. For instance, Souza and al. [2] conducted a

survey in order to know which artifacts are the most useful
during maintenance tasks. They found for two different
programming paradigms, that after the source code, the com-
ments are the most important artifacts used to understand a
system; more important than design documents for example.

Other works studied the evolution of comments and
source code [5] [3]. Malik and al. [5], for example, were
interested in understanding the rationale for updating a
function’s comment. They found that the characteristic of
the change is the most influential dimension in explaining
the comment update phenomenon.

Another category of contributions exploited the contained
information in comments for various maintenance tasks. For
example, Tan and al. [13] studied the consistency between
comments and code. When an inconsistency is found, it is
classified as a bug (the code is wrong) or as a bad comment
(the comment is wrong).

The previous categories of studies were not concerned
with the content and relevance of comments. To understand
what the issues mentioned in comments are, Padioleau and
al. [7] studied comments in operating system code. They
found that many of the problems mentioned in comments
could be easily solved by existing (or easy to develop) tools.
Ying and al. [15] focused particularly on categorizing task
comment contents.

Schreck and al. [10] defined several metrics to assess com-
ment quality features. The metrics proposed cannot evaluate
the semantic consistency between code and comments.

We are concerned with the ability of comments to docu-
ment the code. In this context, many tools were designed to
facilitate the generation of documentation accompanying a
code. Tools like javadoc 1 and Doxygen 2 are among
popular ones. This kind of tools which deals with the
extraction of comments from existing programs can be seen
as posterior approaches [6] to code understanding. Other
tools are dedicated to prevenient [6] scenarios, where a de-
veloper documents the program before, or side by side with
coding. Tools such as “Verbal source code descriptor” [14]
or “Commenting by voice” [1] help developers to comment
their code by voice, at the same time as they write it.

In a different but related context, Sridhara and al. [12]
proposed an automatic approach for generating comments
from source code for Java methods. They identify the
important code statements in a method to be commented
and transform them into natural language by applying a
text generation technique. Similarly, Haiduc and al. [4]
summarize source code and generate, mainly, extractive
summaries for source code constructs. They extract lexical
information from identifiers in code and comments, then,
apply text retrieval techniques in order to determine the most
relevant terms which will form the summary.

1http://www.oracle.com/technetwork/java/javase/documentation/index-
jsp-135444.html

2http://www.stack.nl/ dimitri/doxygen/

Table I
MAIN CHARACTERISTICS OF THE PROJECTS USED IN THIS STUDY.

DrJava SHome3D jPlayMan

|packages| 14 9 9
|classes + interfaces| 591 180 40

|methods| 9 200 3 600 664

|lines of codes (LOC)| 145 511 66 484 20 869
|lines of comments (CLOC)| 50 666 16 509 5 814
|nb of comments (NCOM)| 14 954 5 636 1 357

comment density
CLOC / LOC 34.8% 24.8% 27.9%
NCOM / LOC 10.3% 8.5% 6.5%

All these studies contribute to show the importance of
comments in code, and the diversity of information they
convey. Paradoxically, we are not aware of a study which
analyses comments at large and by themselves, both from
a quantitative and a qualitative perspective. This work is an
attempt to fill this gap.

III. STUDY 1: COMMENT DISTRIBUTION AND
FREQUENCIES

A. Setting

Our goal is to study how comments are distributed among
the code constructs, and what the most often commented
constructs are.

Our study of comments harvested three open source
projects written in Java by more than 50 developers. These
projects are:

• DrJava3, a lightweight development environment for
writing Java programs.

• SweetHome3D4, an interior design application.
• jPlayMan5, an application for the creation and man-

agement of music playlists.
We selected these projects with the goal of having differ-

ent projects and development team sizes. The size metrics
of the projects we studied are reported in Table I.

The size of projects varies from 40 to 591 for classes
and from 20 to 145 KLOC. For the three projects, more
or less 30% of lines of code are comments, which clearly
indicates that commenting is not anecdotal in those projects.
The largest program, i.e., DrJava, is the most commented
with one comment for ten lines of code (NCOM/LOC =
10.3%). This is not surprising considering the large number
of developers involved in the project. The other two projects
have slightly fewer comments per line of code.

To determine the distribution and the frequencies of the
comments with respect to the Java construct types, we
parsed the projects’ Java code using a parser generated
from sableCC 6. From the strict location standpoint, each

3http://www.drjava.org/
4http://www.sweethome3d.com/
5http://jplayman.sourceforge.net/
6http://sablecc.org/

comment was associated to the construct type contained in
the line that follows it. As this analysis is fully automated,
we did not need to work on a limited sample and considered
all the comments in the three projects.

B. Results and Discussion

Table II reports the distribution of comments represented
by the ratio between comments preceding a given construct
(we considered many of them) and the total number of
comments observed. It is important to note that it is not
because a comment precedes a construct (such as a method)
that it does concern this construct. In this first study, we
made this reasonable assumption. We will come back to this
point in our second study.

Table II
DISTRIBUTION OF COMMENTS OVER THE CONSTRUCT TYPES FOR THE

THREE STUDIED PROJECTS.

construct type DrJava SHome3D jPlayMan avg.

package declaration 3.9 3.2 3 3.4
import declaration 0.1 0 0 0.03
class declaration 4.6 5.2 5.2 5

interface declaration 0.6 0.4 0.2 0.4
field declaration 10.3 1.1 3.5 5

constant declaration 2.2 0 0 0.7
method 27.2 36.3 36.6 33.4

abstract method 4.7 2.2 0.7 2.5
constructor 3.1 3.3 4.7 3.7

local variable 8.8 13.8 14.9 12.5
assignment 3.4 4.4 4.6 4.1

method invocation 17.5 19.5 10.1 15.7
for 0.6 1.7 1.4 1.2

while 0.4 0 0.2 0.2
if 3.5 4 6.1 4.5

return 1.3 1 2.2 1.5
tryCatch 0.8 0 0.3 0.4

enum 0.1 1.4 0.8 0.8
other 6.9 2.5 5.5 5

We observe three main trends from Table II.
• The greatest proportion of comments (33.4%) precedes

methods. This was somehow expected since there are
comparatively many more methods than say, classes or
interfaces.

• Comments preceding local variable declarations and
method invocations represent 12.5% and 15.7% of com-
ments respectively. Here again, variable declarations
and method invocations are very frequent constructs in
Java programs, which explains these second and third
positions. Still, the portion of comments dedicated to
method invocations somehow surprised us.

• The forth type of constructs that gathers the most com-
ments is class declaration (5%), although this construct
is less frequent than for example import declarations
that totalize only 0.03% of the comments.

The absolute distribution of comments gives a fast pic-
ture of where the comments are located in the code, but
the figures are clearly biased toward the frequency of the

constructs considered: comments are most likely to precede
frequent constructs. Still, it captures to some extent some
commenting habits. For instance, although methods are less
numerous (12 501) than method invocations (34 365), they
are more often preceded by a comment than the latter. Also,
such a distribution shows which parts of codes are not often
commented.

In order to balance these observations, we computed the
percentage of a given construct, which is preceded by a
comment. We call the resulting frequencies the commenting
rate distribution. It is reported in Table III.

Table III
COMMENTING RATE PER CONSTRUCT TYPE(%).

construct type DrJava SHome3D jPlayM avg.

package declaration 98.8 100 100 99.6
import declaration 0.4 0 0 0.1
class declaration 84.6 98.3 100 94.3

interface declaration 97.9 100 100 99.3
field declaration 54.1 3.5 13.3 23.6

constant declaration 87.2 0 0 29.1
method 48.6 58.9 75.9 61.1

abstract method 85.6 95.4 100 93.7
constructor 61.3 58.8 80 66.7

local variable 18 18 15.4 17.1
assignment 8.3 8.5 9 8.6

method invocation 11.1 12.1 7.6 10.3
for 11.3 16.4 11.4 13

while 21.8 2.3 12 12
if 9.7 6 6.6 7.4

return 4.9 3.3 4.9 4.4
tryCatch 5 0 1.3 2.1

enum 25 14.6 26.2 21.9

As far as comments are concerned, we can distinguish
three kinds of constructs:

• Abstract methods, class declarations, interface decla-
rations and package declarations are almost always
preceded by comments (93.7% to 99.6% of the cases
on average over projects).

• Methods and constructors are preceded by comments in
61.1% and 66.7% of the cases respectively. The fact that
constructors do not get commented much more often
comes somehow at a surprise. A possible explanation
is that developers can consider constructors as self
documented since they perform a very specific task.

• Expectedly, the import declarations are the less com-
mented constructs (0.1%), as are to a lesser degree try-
catch idioms (2.1%).

We also observe in Table III that the commenting rate of
several constructs varies drastically from one project to an-
other. This is, for instance, the case of the field declarations
which are commented half the time in the DrJava project,
but in a very few occasions in the other two. This indicates
that although there is a general consensus on commenting
some constructs, there are some “cultural” differences on the
others.

Figure 1. An Example of the Web Form for a Comment.

If those figures (absolute and relative ones) help to portray
the global commenting habits of programmers, they do not
characterize the quality of the comments, neither do they tell
us if a comment is related to the constructs in its vicinity.
To understand these aspects, we performed a second study,
which is the purpose of the next section.

IV. STUDY 2: COMMENT CONTENT AND RELEVANCE

A. Setting and Methodology

Unlike the distribution and the frequencies, the study
of the comment content and relevance cannot be fully
automated. For this reason, we decided to use programmer
subjects in this study.

We used the stratified sampling technique for gathering a
representative set of code fragments (comments with adja-
cent lines of code). We divided the comments of the three
projects of Section III into subgroups (strata) corresponding
to the constructs types. Then, we randomly selected from
each subgroup a number of comments proportional to the
size of the subgroup according to the empirical distribu-
tion of comments over the different constructs observed
in Section III. Each code fragment was transformed into
a web form where a participant could inspect the code
and fill a form about the content and the relevance of the
comment (see Figure 1). We decided to present for each
code fragment the chosen comment in red together with
the 10 lines that precede it and the 20 lines that follow
it. This choice emerged after examining many comments to
decide what is the appropriate window that is necessary for
the subjects to provide the required information about the
comment. Another motivation is that the size of the code

fragment allows the subjects to perform the annotation task
without having to scroll too much over the code.

For the subject selection, we invited programmers of
various records (academics, industrials, graduate students)
by email to participate to the comment analysis effort.
Among these persons, 49 accepted to participate. All the
subjects are experienced in object-oriented programming and
particularly in Java. To cross-validate the subjects’ answers,
we randomly created groups of three subjects and assigned
to them 30 code fragments to classify. This excluded one of
the participants (16 groups of three subjects). In total, 480
comments were included in the sample.

A session of one hour was scheduled for each group.
Sessions took place in our laboratory. A session typically
started by a mini-tutorial presenting the annotation task
with examples and the web application to use. After this,
the participants were mainly left to themselves until they
completed their tasks. At the end, the subjects filled another
questionnaire in order for us to collect information about
their profiles and commenting habits.

For each code fragment, we collected the information
from the three subjects and used a majority voting system
to decide for the final values. In the very few cases when no
majority was found (three different answers), we excluded
the comment from the sample. We also excluded from our
corpus the annotation produced by subjects who did not
complete their task. After gathering and validating the data,
we obtained complete answers for 407 comments.

Table IV
EXAMPLES OF COMMENTS WITH THEIR CLASSIFICATION

// if the document was an auxiliary file, remove it from the list follow
if (doc.isAuxiliaryFile()) explanation
removeAuxiliaryFile(doc); explicit

fair

/** A state variable indicating whether the class path has changed. follow
Reset to false by resetInteractions. */ explanation
private volatile boolean classPathChanged = false; explicit

fair+

_tokens = new TokenList(); follow
$cursor = _tokens.getIterator(); explanation
// we should be pointing to the head of the list implicit
_cursor.setBlockOffset(0); poor

ServiceManager.setServiceManagerStub(other: precedent
new StandaloneServiceManager(applet.getAppletContext(), codeBase, this.name)); working
// Caution: setting a new service manager stub won’t replace the existing one

// _mainFrame.hourglassOff(); nocode
disableChangeListeners(); code
_mainFrame.toFront();

B. Taxonomy of Comment Content and Relevance

Before running the study, an important issue was to
determine how to characterize the content and the relevance
of the comments in order to guide the subjects in their
classification (form to fill for each code fragment). As,
to our best knowledge, there is no work proposing such
a general characterization, we first designed a taxonomy.
We conducted a careful inspection of a random sample
of comments and found a number of dimensions we feel
are important for analyzing the content and relevance of
comments. The resulting taxonomy is as follows.

• Object of the comment (object). This dimension
characterizes the constructs in a code that are con-
cerned by a comment. Intuitively, developers tend to put
comments before the construct they want to describe.
Therefore, we propose the following categories for
characterizing the object of the comment:

– follow indicates that the comment concerns the
following instruction,

– block stands for cases where the comment con-
cerns the following block of instructions,

– nocode corresponds to cases where a comment
concerns no code in its vicinity, and

– other indicates any other situation such as the
code commented precedes the comment.

• Comment type (type). A comment type can be:
– a code explanation (explanation), if it de-

scribes the functionalities of the related code,
– a working comment (working), if it describes

future tasks to be done (e.g. TODO items) or
eventually some code, but without supplying infor-
mation about its functionalities (e.g. preconditions
in loops),

– a commented code (code); old codes are often
commented instead of being removed, or

– any other type (other) such as licensing and
credit comments.

It has to be noted that a comment can be labeled by
several type categories. It is, for example, the case
where a first part of a comment explains the following
construct (explanation) and the other part describes
an action to perform in the future (working).

• Style (style). This dimension is specific to explica-
tive comments (type≡explanation). We distinguish
two categories explicit and implicit which re-
spectively characterizes situations where the comment
is written in terms of the instruction keywords and
identifiers or in more abstract terms (see examples in
Table IV).

• Quality (quality). This dimension is specific to explica-
tive comments as well, and involves three categories:

– fair+ which designates comments that are pre-
senting the functionalities of the related code, as
well as other information,

– fair which indicates that the functionality of the
code being commented is adequately described,
and

– poor where only a few or none of the function-
alities of the code are described.

Table IV illustrates a few comments and their classifi-
cation using the proposed taxonomy. For instance, the first
example has been labeled as an explanation comment of an
explicit type and which adequately comments the instruction
following it. The fourth example is a working comment
whose object is the code construct preceding it. Finally, the
last example shows a case of commented code.

Table V
DISTRIBUTION OF THE CATEGORIES OF OUR TAXONOMY OVER THE

PROCESSED COMMENTS (%)

object follow 22
block 51
nocode 17
other 10

type explanation 71
working 17.9
code 9.3
other 8.8

style explicit 80
implicit 20

quality fair+ 15
fair 56
poor 29

C. Analysis

Table V reports the frequency of each category of our
taxonomy for the processed comments7. We observe that
73% (22%+51%) of the comments are dedicated to the
following constructs (either a single instruction or a block
of instructions). This confirms the intuition we discussed
earlier. Also, we observe that the majority of comments are
explicative (71%). Slightly less than 20% of them are labeled
as working comments. It is also noticeable that most of the
time, explicative comments are explicit (80%). Finally, more
than two thirds (56%+15%) have a good quality, although
15% of them are too descriptive. All this concurs to indicate
that the comments in the projects we analyzed are indeed
useful comments.

We further analyzed those trends by distinguishing the
nature of the constructs being commented. The distribution
of each category in our taxonomy for all the constructs
we considered are reported in Table VI. Globally, we can
observe that commenting practices varies a lot with the type
of constructs being commented.

1) Objects of Comments: Figure 2 shows a chart that
summarizes the results obtained for the object of com-
ments for each type of constructs. Comments before
classes/interfaces and member declarations concern in gen-
eral the constructs they precede. This is particularly the
case of constructors with 100% of the comment having as
object the following block of instructions. In many cases, a
single comment is written for a set of attributes and constant
declarations rather than one comment per declaration. This
explains the large proportion of following block for these
constructs (34.2%). A good illustration of this phenomenon
is reported in Comment 1 .

Comment 1 (block+explanation+explicit+fair)

7For the type category, the sum of values exceeds 100% because of the
possibility of selecting multiple choices.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

other

nocode

block

follow

Figure 2. Results for Comment Object.

/** Color for highlighting find results. */

public static final ColorOption

FIND_RESULTS_COLOR1 =

new ColorOption("find.results.color1", new

Color(0xFF, 0x99, 0x33));

public static final ColorOption

FIND_RESULTS_COLOR2 =

new ColorOption("find.results.color2", new

Color(0x30, 0xC9, 0x96));

Conversely, comments that precede assignments, method
invocations, and return statements are less related with those
constructs. Many of them are old code transformed into
comments or working comments such as in Comment 2.

Comment 2 (nocode+working)
// TODO, maybe: remove playlist config file

// from file system as well. Maybe provide

// this as a user option (pop-up asking for

// confirmation or something). But for now,

// not.

nonFatalConfigError = true;

2) Types of Comments: The second important aspect that
we studied is the type of comments. The data we collected
from the subjects’ tasks is presented in Figure 3. Unlike
the chart of Figure 2, the cumulative percentages exceed
100% because of possible multiple choices. Explanation
comments are more frequent than working ones for all
but package declarations, imports and assignments. Most
comments before packages are copyright, authorship, and
credit information. Import statements are generally preceded
by working comments, such as in Comment 3.

Comment 3 (nocode+working)
import java.awt.*;

// TODO: Check synchronization.

import java.util.Vector;

Table VI
DISTRIBUTION OF THE CATEGORIES OF COMMENTS OVER THE CONSTRUCTS BEING COMMENTED

object type style quality

f
o
l
l
o
w

b
l
o
c
k

n
o
c
o
d
e

o
t
h
e
r

e
x
p
l
a
n
a
t
i
o
n

w
o
r
k
i
n
g

c
o
d
e

o
t
h
e
r

e
x
p
l
i
c
i
t

i
m
p
l
i
c
i
t

f
a
i
r
+

f
a
i
r

p
o
o
r

packages/import decl. (freq) 0 5.7 83.3 11 0 27.8 5.5 66.7
interfaces/classes decl. (freq) 0 88.9 7.4 3.7 81.5 25.9 3.7 14.8 63.6 36.4 27.3 50 22.7

constants/attributes decl. (freq) 52.6 34.2 7.9 5.3 76.3 21.1 0 5.3 62.1 37.9 6.9 51.7 41.4
abstract/class methods (freq) 16.8 80.5 2.7 0 93.8 8 0 4.4 87.7 12.3 17.9 62.3 19.8

constructors (freq) 0 100 0 0 100 0 0 0 83.3 16.7 16.7 75 8.3
control flow (freq) 22.5 45 15 17.5 67.5 20 15 0 74.1 25.9 11.2 44.4 44.4

local variables (freq) 23.5 55.9 14.7 5.9 76.5 20.6 14.7 2.9 76.9 23.1 3.9 61.5 34.6
assignments (freq) 18.2 18.2 54.5 9.1 18.2 45.4 36.4 0 100 0 0 50 50

method invocation (freq) 32.6 19.6 26.1 21.7 52.2 28.3 21.7 6.5 83.3 16.7 12.5 50 37.5
return (freq) 44.4 0 44.4 11.2 44.4 11.2 33.3 11.1 0.5 0.5 0.25 0.5 0.25

0

20

40

60

80

100

120

140

other

code

working

explanation

Figure 3. Results for Comment Type

There are surprisingly very few explanation comments
before assignments. We found that comments located before
assignments discuss other regions of the code concerned di-
rectly or indirectly by the variable. Conversely, all comments
before constructors are explanation ones. This proportion
should be put into the perspective that our sample includes
only 3.7% of comments linked to constructors. Still, the
dozen of comments considered all in a way or another the
constructors.

Finally, as might be expected, comments containing old
code are essentially in method bodies (control structures
15%, assignments 36%, invocations 22%, etc.). Old class
(3%) and member (0%) declarations that are not used
are usually removed rather than commented when changes
occur.

3) Style of Comments: As mentioned earlier, the subject
analyzed the style (explicit vs. implicit) only for
explanation comments. The results of this analysis are
presented in the chart of Figure 4.

An interesting finding is that method declarations, in-

cluding abstract methods and constructors are generally
explicitly explained. When a method returns a value, the
associated comment often describes this returned value as
in Comment 4.

Comment 4 (block+explanation+explicit+fair)
/** Returns the current build directory in

the project profile. */

private File _getBuildDir() {...}

For void methods, the comment typically explains the task
performed by the method, as in Comment 5.

Comment 5 (follow+explanation+explicit+fair)
/** Displays this panel in a dialog box. */

public void displayView(View parentView)

{...}

There is a large portion of comments before class, at-
tributes, and constant declarations that are implicit (more
than a third). Examples of implicit comments are those that
explain where the attributes are used, but not how, as in
Comment 6.

Comment 6 (follow+explanation+implicit+poor)
// used for playlist searches

ConditionalPlaylist ownerPlaylist = null;

In the other cases however, classes, attributes, and con-
stants are explicitly commented, as for the boolean attribute
in Comment 7.

Comment 7 (follow+explanation+explicit+fair)
/** Edit mode if true. */

protected boolean _editMode = false;

A final finding is that the quarter of control structure
comments are implicit. When examining these comments,

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

implicit

explicit

Figure 4. Results for Comment Style.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

poor

fair

fair+

Figure 5. Results for Comment Quality

we noticed that the test condition is explained, but not the
task performed in the loop or the conditional block. See for
instance Comment 8.

Comment 8 (other+explanation+implicit+poor)
if (im.keys()!=null)//keys() may return null

{...}

4) Quality of Comments: The final aspect that we studied
is the quality of explanation comments. The results are
reported in Figure 5.

The first thing that caught our attention is the assignment
paradox. We previously mentioned that 100% of the assign-
ment comments were explicit. However, a closer inspection
reveals that half of them provide poor explanations. Control
structures have also many poor comments (44%). At the
same time, method and constructor declarations are often
very well explained.

More generally, there are more poor comments in method
bodies than in class/member declarations with the exception
of constants/attributes. In those cases, the comment is very
short and does not bring additional information than the

33%

64%

3%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Always Occasionaly Never

82%

49%

8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Before Same line After

Frequency Location

Figure 6. Frequency and Location of Comments

attribute/constant name. Comments 9 and 10 are interesting
examples of these types of comments.

Comment 9 (follow+explanation+explicit+poor)

/** Extra class path. */
public static final VectorOption<File>
EXTRA_CLASSPATH = new ClassPathOption()

.evaluate("extra.classpath");

Comment 10 (follow+explanation+implicit+poor)
/** Frame state. */

protected FrameState _lastState = null;

The last observation worth mentioning is that a very few
comments are too descriptive. Although it is difficult to put
a clear separation between descriptive and too descriptive
comments, long comments were generally considered by the
subjects as too descriptive. An example of such a comment
is shown in Comment 11.

Comment 11 (block+explanation+explicit+fair+)
/**

* A Standard Playlist may have multiple

* instances of the same song, and the Wrapper

* class allows these to be placed in the

* model.

* This method locates all of these wrapped

* instances of a particular song

* and returns all of them in a Vector

* @param song

* @return a Vector containing all the wrapped

* instances of the supplied song, sorted in

* order from least to greates index in the

* Playlist

*/

private Vector<Wrapper>

getAllWrappedInstancesOfSong

(AbstractSongInfo song){...}

V. SUBJECTIVE EVALUATION

In addition to their classification tasks the subjects had to
fill a questionnaire. This questionnaire contained three types

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Never

 Rarely

 Often

 Always

Figure 7. Commented Constructs

of questions about the subject: (1) programming skills, (2)
commenting habits, and (3) feedback on their participation.
We will discuss the first type of questions in the study
validity section (Section VI). The third type of questions
was intended to collect comments to improve the design
for replication studies. We will also discuss this issue in
Section VI. In the remainder of this section, we discuss
the data collected for the question of the second type. We
study these data to compare and contrast some of the results
obtained from our comment sample with the commenting
habits as expressed by our subjects.

The two first questions concerned the frequency and the
location of comments in their own code. As shown in
Figure 6-left, only one third of the surveyed subjects claim
that they comment systematically their code. The others
(almost two thirds) do it occasionally. When they write
comments, almost every subject locates them before the
commented construct (82% as indicated in Figure 6-right).
This result confirmed our choice to assign comments to the
following constructs. It is consistent with the results found
in our comment sample (see Table V).

When asking the subjects to give frequencies with which
they comment the different types of constructs, some of the
answers confirmed our finding of Table III, others were
different. Indeed, as shown in Figure 7, we found that
methods (including constructors) are very frequently com-
mented (more than 80% for always+often). This outcome
is consistent with what we found in the studied code.
Similarly, constructs that are the least commented are the
same in the subjective evaluation and the comment sample
(assignments, return, etc.). However, we were surprised by
the low commenting rate for packages and, to a lesser
degree, classes. In our sample, almost all the packages were
commented (99% in average). In the subject evaluation, only
20% of the subjects selected always or often. We conjecture
that since most of the comments analyzed for packages
were not explanation ones, the 20% corresponds to the
cases where the subjects comment the packages in term of

90%

44%

33%
26%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Explanation Pre/post conditions Work Other

Figure 8. Type of Comments

functionalities and not for copyright or ownership.
The last question concerned the content of the comments.

We asked the subjects to give the type of their comments by
selecting one or more of the items: explanation, pre/post-
conditions, work, and others. Here again, the results were
very similar to those presented in Table V and Figure 3. As
we can see from Figure 8, explanation is the most selected
item (90%). Working comments were mentioned by the third
of the subjects. This value is slightly bigger than the one of
Table V, but closer to values obtained for many construct
types in Figure 3.

More globally, the results of the subjective evaluation
confirmed the observations made on the studied sample of
comments.

VI. STUDY VALIDITY

Internal Validity: We identified two possible threats to
internal validity: maturation and diffusion of the treatments.
In the case of maturation, we addressed the learning and
fatigue effects by presenting the comments to subjects in
random and different orders. We tried to reduce the fatigue
effect also by limiting the number of code fragments per sub-
ject to 30. We are aware that this number is still high. Many
subjects mentioned in their answers to the questionnaire that
the task duration was a bit high. To prevent subjects from
learning the treatments before hand, we gave instructions to
subjects not to talk about the experiment before the end of
data collection.

Construct Validity: To ensure the accuracy of com-
ments classification by subjects, we used three opinions per
comment and aggregated them by a voting mechanism. To
avoid non-consensual data, we eliminated code fragments
with three divergent opinions.

External Validity: For external validity threats, the se-
lections of subjects and code fragments are possible threats.
In the case of subjects, some of the subjects are students.
Although they are not professional programmers, most of
them have industrial experience and knowledge comparable
to junior professionals. Indeed, the profile portion of the
questionnaire confirmed that 59% were good programmers,
i.e., an experience of two to five years, and 41% were
experts. Their experience was mostly on Java (69% good

and 31% expert). The selection of code fragments followed
two sampling steps. For the projects selection, we considered
various project sizes (20 KLOC to 145 KLOC), application
domains, and team sizes (one to 55 developers). The second
step concerned the fragment selection. We used a stratified
rather than a pure random sampling to have a sample
more representative of the comment distribution we ob-
served. However, the fact that we eliminated non-consensual
comments and those of subjects who did not finish their
session might compromise the distribution representativity.
We checked the final distribution and we did not find
significant variations with the initial one.

VII. CONCLUSION

In this work, we empirically studied comment location,
content, and relevance. To this end, we proposed a comment
taxonomy to guide the study subjects classifying them.
Our study involved 49 programmer subjects and three open
source projects.

Our study covered three aspects: quantitative, qualitative,
and subjective. In the quantitative step, we were interested
in the distribution of comments over the program constructs
and the frequency of construct commenting. The qualitative
step concerned the comment object (commented constructs),
type (explanation, work, etc.), style (implicit vs explicit),
and quality. Finally, the subjective evaluation concerned the
commenting habits of our subjects.

We found consistent results between quantitative and
qualitative studies on the one hand and the subjective
evaluation on the other hand. Our results showed that some
constructs such as methods are regularly commented for
explanation reasons. We also found that an important portion
of comments is dedicated to the communication between
programmers or to notes for future changes.

This study gives an interesting picture about the location
and content of the comments in the code. Other replications
with larger subject and comment samples are necessary to
confirm and complete this picture. Additionally, our findings
could help to learn how to (automatically) recognize poor
comments in a program, that could be pointed out to the de-
veloper (for instance by coloring them differently). Our main
motivation and future work is to use these findings to build
a program documentation/summary system. Such a system
will extract relevant comments using a statistical model to
document or summarize some constructs. It will complete
the documentation with comment generation techniques for
important, but less documented constructs.

VIII. ACKNOWLEDGMENT

We are grateful to all the programmers who participated
in this study. This work was partially funded by NSERC.

REFERENCES

[1] A. B. Begel. Spoken language support for software devel-
opment. Master’s thesis, University of California, Berkeley,
2005.

[2] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira. Which
documentation for software maintenance? J. Braz. Comp.
Soc., 12(3):31–44, 2006.

[3] B. Fluri, M. Würsch, E. Giger, and H. C. Gall. Analyzing the
co-evolution of comments and source code. Software Quality
Control, 17:367–394, December 2009.

[4] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On the use
of automated text summarization techniques for summarizing
source code. Reverse Engineering, Working Conference on,
0:35–44, 2010.

[5] H. Malik, I. Chowdhury, H.-M. Tsou, Z. M. Jiang, and A. E.
Hassan. Understanding the rationale for updating a function’s
comment. In ICSM, pages 167–176, 2008.

[6] K. Nørmark. Requirements for an elucidative programming
environment. In IWPC, pages 119–, 2000.

[7] Y. Padioleau, L. Tan, and Y. Zhou. Listening to programmers
- taxonomies and characteristics of comments in operating
system code. In ICSE, pages 331–341, 2009.

[8] S. L. Pfleeger. Software Engineering: Theory and Practice.
Prentice Hall PTR, 2nd edition, 2001.

[9] T. M. Pigoski. Practical Software Maintenance: Best Prac-
tices for Managing Your Software Investment. John Wiley &
Sons, Inc., 1996.

[10] D. Schreck, V. Dallmeier, and T. Zimmermann. How doc-
umentation evolves over time. In Proceedings of the 9th
International Workshop on Principles of Software Evolution,
September 2007.

[11] R. C. seacord, D. Plakosh, and G. A. Lewis. Modernizing
Legacy Systems: Software Technologies, Engineering Process
and Business Practices. Addison-Wesley Longman Publish-
ing Co., Inc., 2003.

[12] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker. Towards automatically generating summary com-
ments for java methods. In Proceedings of the IEEE/ACM
international conference on Automated software engineering,
ASE ’10, pages 43–52, New York, NY, USA, 2010. ACM.

[13] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*icomment: bugs
or bad comments?*/. In SOSP, pages 145–158, 2007.

[14] S. S. Tehrani. Verbal source code descriptor. Master’s thesis,
The University of British Columbia, 2003.

[15] A. T. T. Ying, J. L. Wright, and S. Abrams. Source code
that talks: an exploration of eclipse task comments and their
implication to repository mining. In Proceedings of the
2005 international workshop on Mining software repositories,
MSR ’05, pages 1–5, New York, NY, USA, 2005. ACM.

