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Abstract

We propose to estimate the probability that
a target word appears in the translation of a
given source sentence using a multilayer per-
ceptron. At the expense of ignoring word
order and repetition, our model does not as-
sume word alignments and consider all source
words jointly when evaluating the probability
of a target word.

We compared our model against IBM1 which
does not consider word order either. Our
model was comparable with IBM1 when pre-
dicting the target words that should appear in
the translation of a source sentence. When our
model was extended to include alignment in-
formation, it surpassed IBM1 on all the metrics
we used.

1 Introduction

When translating a sentence, a phrase-based
model (Koehn et al., 2003) divides it in phrases that
are translated individually and then reunited using a
language model (usually a trigram) and a reordering
model. A side effect of this strategy is that the de-
pendencies between a target phrase and the words
outside of its aligned source phrase are only cap-
tured by the language model.

For example, such a system could be asked to
translate plant in French knowing only that the last
two words produced are de cette (of this). It is easy
to imagine a sentence where the translation should
be plante the botanical term (“The leaves of this
plant are red.”) and another where it should be usine
the building (“The walls of this plant are red.”).

To overcome this limitation, Vickrey et al. (2005)
proposed to condition the alignment score on fea-

tures observed outside of the alignment. This tech-
nique has improved word alignments (Zhao and
Xing, 2006), phrase-based translation (Carpuat and
Wu, 2007; Stroppa et al., 2007) and hierarchical
translation (Chan et al., 2007).

Another alternative explored is to select (Hilde-
brand et al., 2005) or weight (Lü et al., 2007) the
training material according to the source sentence.
In this setting, the context of an alignment is cap-
tured by giving a greater importance to translations
occurring in similar contexts.

Finally, Bangalore et al. (2007) presented a global
lexical selection model that gets rid of alignments al-
together and conditions the probability of each target
word on the whole source sentence. They used logis-
tic regression models representing a source sentence
with a set of ngrams and classifying each target word
as present or absent in the translation. The selected
words are then passed to a second module, which
searches for their best ordering.

This work is in line with their idea and introduces
a global lexical selection model which uses a mul-
tilayer perceptron taking as input a bag-of-words.
The differences between the two approaches are dis-
cussed in sections 3.2 and 5.

Because our model does not consider word or-
der, we compared it against IBM1 which does not
consider it either. When they were asked to pre-
dict the target words that should translate a source
sentence, both IBM1 and multilayer perceptron were
comparable. We also evaluated an extension to our
model, which includes information on word align-
ments. This extension fared better than IBM1 for all
metrics we used.

We describe the mathematical foundation of our
work in section 2 and multilayer perceptrons in sec-



tion 3. We present and discuss empirical results in
section 4 and 5 and then conclude in section 6.

2 Mathematical Model

Statistical machine translation models estimate the
probability of a target sentence given a source sen-
tence from a bitext. As bitexts are very small com-
pared to the number of possible translations, inde-
pendence assumptions are needed to obtain a model
that will adapt to new source sentences. Most trans-
lation models assume sentences can be broken in in-
dependent alignments (words, phrases or trees) and
then compute statistics on these alignments. Be-
cause we want to capture information outside of the
alignments, we put forward different hypotheses:

1. Word ordering and repetitions are insignificant.

2. Target words are independent of each other.

These assumptions, which are obviously dubious,
allow us to model the sentences as bags-of-words
and to split the target sentence prediction into inde-
pendent word predictions:

Pr(t|s) =
∏
t∈t

Pr(t|s)
∏

t∈VT \t

Pr(t̄|s)

Pr(t̄|s) = 1− Pr(t|s)
(1)

where s and t are source and target bag-of-words
and VT is the set of all target words. The two prod-
ucts compute respectively the probability that se-
lected and unselected words translate s.

We are now left with the evaluation of Pr(t|s), the
probability of t being in the translation of s. This
probability can be approximated by any binary clas-
sifier, in our case we chose a multilayer perceptron.

3 Multilayer Perceptron

A perceptron is a linear classifier whose output is a
function applied on the weighted average of its in-
puts:

y = fo(b +
∑

s

wsxs) (2)

where xs is an input, ws its weight, b a constant bias
and fo : R→ R the output function.

A perceptron whose input is the output of other
perceptrons is called a multilayer perceptron (MLP):

y = fo(b +
∑

j

wjhj)

hj = fa(bj +
∑

s

wjsxs)
(3)

where hj is an hidden unit and fa is called the acti-
vation function.

According to Equation 1, one classifier is needed
for each target word. Instead of having many inde-
pendent MLP with a single output unit, we opted for
a single MLP with many output units:

yt|s = sigm(bt +
∑

j

wtjhj)

hj = tanh(bj +
∑

s

wjsxs)

sigm(z) = (1 + e−z)−1

xs =

{
1 if s ∈ s,
0 otherwise.

(4)

When the weights are optimized correctly, yt|s ap-
proximates Pr(t|s).

3.1 Training

Because we want the outputs of our MLP to model
posterior class probability, we optimize it to mini-
mize negative log-likelihood of the training bitext:

E = − log
n∏

i=1

p(ti|si)

= −
n∑

i=1

∑
t∈ti

log p(t|si) +
∑
t/∈ti

log p(t̄|si)

(5)

where si and ti are the sentence pairs in the training
bitext.

The partial derivative for the weights of this MLP

for the sentence pair (si, ti) encoded in binary vec-



tors (xi, τ i) are (Bishop, 1995):

∂E

∂wtj
= hj(yi

t − τ i
t )

∂E

∂hj
=
∑

t

(yi
t|s − τ i

t )wtj

∂hj

∂wjs
= xi

s(1− tan2(
∑

s

wjsx
i
s))

∂E

∂wjs
=

∂E

∂hj

∂hj

∂wjs

(6)

Once these derivatives are known, the weights can
be optimized using any gradient-based algorithm.
Section 4.4 describes the training algorithm we used
in our experiments.

3.2 Motivations for MLP

Bangalore et al. (2007) modeled Equation 1 using
logistic regression, which is equivalent to a percep-
tron (Equation 2) with a sigmoid output function.
Compared to perceptrons, MLPs are more complex
to train and are not convex but they scale better to
the size of the vocabularies, they model problem that
are not linearly separable and they can assign non-
zero probabilities to words that never co-occurred in
the training corpus.

The number of weights of a logistic regression
model is in O(|VS | · |VT |) where VS and VT are re-
spectively the set of source and target words known
to the system. Because of its hidden layer, the num-
ber of weights in our MLP is in O(|VS |h + h|VT |)
where h is the number of hidden units, which was
always smaller than the vocabulary sizes in our ex-
periments.

The hidden layer of our MLPs acts as a continuous
space where the source words are projected. Even
though this is not obvious to control, we hope the
hidden units will capture concepts or topics. Trans-
lating a source bag-of-words is thus a two-step op-
eration. It is first projected in a concept space that
is then projected in the space of target words. This
way, the probability of a target word can be in-
creased by source words that never co-occurred with
it as long as they express common concepts.

4 Experiments

4.1 Data

We evaluated our system on a subset of the English
and French parts of EUROPARL (Koehn, 2005), a
corpus extracted from the proceedings of the Euro-
pean Parliament.

We used 100, 000 sentence pairs to train our mod-
els (TRAIN), 10, 000 to compare them at different
training stages (DEV) and 2, 000 other sentence pairs
(TEST) to evaluate the models that performed best on
DEV.

4.2 Baselines

The first baseline against which we compared our
model is an IBM1 model computed by GIZA++ (Och
and Ney, 2003) with its default configuration1, the
only alignment model presented by Brown et al.
(1993) which does not account for the order of
source words. We evaluated IBM1 as:

Pr(t|s) =
1

1 + |s|

(
Pr(t|ε) +

∑
s∈s

Pr(t|s)

)
(7)

where ε is a special null word.2 When Och et al.
(2004) evaluated different rescoring features to en-
hance statistical machine translation, they got one of
their best improvement with IBM1.

Our second baseline is a perceptron (Equation 2)
where each source word is linked to its 10 best trans-
lations according to IBM1.3

4.3 Multilayer Perceptrons

The results reported in this section were obtained
from a MLP with 500 hidden units (henceforth MLP).
MLP has no links between units representing source
and target words, thus no notion of word alignment.
Since word alignments are a reality in high-quality
parallel texts, we evaluated a second model (MLP+)
which contains 500 hidden units to which we added
the direct connections that are found in our baseline
perceptron.

1Five EM iterations and only lexicon entries with a proba-
bility higher than 1−7 were considered.

2We abuse the notation and allow word repetition in s and t
for IBM1.

3Our implementation was too slow to contain all the IBM1
connections.



Each training iteration lasted approximately 12
hours on computers equipped with two Intel Xeon
Quadcore processors; each model fitted in one giga-
byte of RAM.

4.4 Training

We optimized the weights of our MLP using a conju-
gate gradient method (CG). As in gradient descent,
at each iteration, CG selects a step direction, a step
size and then update the weights. While gradient
descents step in the gradient direction, CG steps in
a modified gradient direction such that each step is
orthogonal to that of preceding iterations. We se-
lected the step size using BRENT line search algo-
rithm (Press et al., 1992, Chapter 10.2).

We sped up training by ignoring all words occur-
ring less than five times in TRAIN. The French vo-
cabulary was reduced from 40, 383 to 15, 314 words
and English vocabulary from 30, 155 to 11, 970
words. The sentential ratio of target vocabulary
words that could not be predicted by the different
models is presented in Table 1. Even though MLP

and MLP+ ignored all words appearing less than five
times in TRAIN, they still obtained a better cover-
age than PERCEPTRON and IBM1 thanks to the layer
of hidden units which allows the models to assign
probabilities to target words that never co-occurred
with any of the words in the source sentence.

We also mini-batched the sentence pairs in groups
of 100 and updated the weights for each of them.
Gradients computed for such mini-batches are noisy,
we thus reset the memory of previous directions be-
fore processing each mini-batch with a probability
of 5%.

We regularized our models with a L1 penalty that
was used only when computing the step size. Had
we applied the penalty on updates, weights associ-
ated with rare source words would have always been
pushed toward zero. We set the penalty weight to
0.1.

Finally, weights were initialized with random val-
ues following a uniform distribution between −0.1
and 0.1. Because we expected an empty target bag-
of-words given an empty source bag-of-words, we
fixed biases to 0 and did not update them.4

4Since sigm−1(0) → −∞, we fixed output biases to
sigm−1(0.01) ≈ −4.595.

Figure 1: Negative log-likelihood of the TRAIN corpus
decreased with successive training iterations.

Figure 2: Negative log-likelihood of the DEV corpus de-
creased with successive training iterations; no overfitting
was observed.

4.5 Negative Log-Likelihood

To make sure that our models were learning as
we expected them to, we evaluated their nega-
tive log-likelihood at each training iteration (Fig-
ures 1 and 2). This was the case for our three
perceptron-based models, which saw their negative
log-likelihood decrease over iterations on TRAIN

without overfitting on DEV.
Regarding the different model architectures, hid-

den units brought a large decrease in negative log-
likelihood, but the best results were obtained with
MLP+ which have both hidden units and direct con-
nections.

Negative log-likelihood helps to see how each



Model Target OOV (%)

TRAIN DEV TEST

MLP and MLP+ 1.9 2.5 2.4
PERCEPTRON 12.8 22.4 21.2
IBM1 0.002 4.0 3.9

Table 1: Percentage of target words to which no proba-
bility was assigned by the different models averaged over
sentences.

Figure 3: Average precision of words predicted by our
models.

model improves during training but is difficult to in-
terpret, especially when comparing models with dif-
ferent architectures. The figures of IBM1 should thus
be seen as a sanity check. The following sections
looks at how the models compare in different situa-
tions.

4.6 Bag-of-words Predictions
To assess how good the different models were at pre-
dicting target words from a bag of source words, we
computed their average precision and recall. For
each sentence in DEV, we forwarded the source
words to the models and all target words predicted
with a probability higher than 0.5 were retained. We
then computed precision and recall using the target
sentences of DEV as references. Figures 3 and 4
present precision and recall averaged over all the
sentences of DEV.

The increase in recall indicates that as the itera-
tions pass, more and more words are predicted. Pre-
cision tends to stabilize so the ratio of valid words

Figure 4: Average recall of words predicted by our mod-
els.

Figure 5: F-measure obtained by varying the threshold.

stabilizes as well. The precision of MLP dropped
at iteration 9, which is the iteration where we ob-
served the largest increase in negative log-likelihood
on DEV.

All predictions of IBM1 yielded a probability be-
low 0.5 so they were not discussed in this section.

4.7 Truncated Lists of Words

In the previous section, we showed that precision
and recall increase as the negative log-likelihood im-
prove when the threshold is 0.5. For this section,
we selected the models with the best negative log-
likelihood on DEV and evaluated their f-measure as
the threshold varied (Figure 5).

The best f-measure of IBM1 (0.506) is close to
that of PERCEPTRON (0.517) and MLP (0.517), but



Model It. Thres. Prec. Rec.

MLP 19 0.221 0.53 0.50
MLP+ 18 0.214 0.55 0.54
PERCEPTRON 19 0.086 0.54 0.50
IBM1 – 0.009 0.47 0.55

Table 2: Precision (Prec.) and recall (Rec.) at threshold
(Thres.) yielding the best f-measure on TEST for models
computed at iteration (It.) giving the lowest negative log-
likelihood to DEV.

Model Threshold

(0, 10] (10, 20] (20, 30] (30,∞]

MLP 0.215 0.236 0.216 0.225
MLP+ 0.207 0.216 0.233 0.255
PERC. 0.078 0.076 0.054 0.089
IBM1 0.029 0.015 0.009 0.006

Table 3: Thresholds yielding the highest f-measure on
TEST for source sentences of different sizes.

we observed larger values for MLP+ (0.544). De-
tailed results are presented in Table 2 and an exam-
ple of the output of the best configurations is pre-
sented in Figure 6.

Figure 5 shows that good thresholds must be se-
lected in a small range for IBM1 and in a wider range
for the other models. We ran a second set of exper-
iments to see how source sentences lengths affected
this threshold. The results of these experiments are
presented in Table 3 and 4.

The thresholds of all models had variations, but
they are much more important for IBM1. We se-
lected the thresholds obtained from sentences con-
taining one to ten words and used them to ex-

Model F-Measure

(0, 10] (10, 20] (20, 30] (30,∞]

MLP 0.52 0.51 0.52 0.52
MLP+ 0.54 0.53 0.54 0.56
PERC. 0.44 0.48 0.52 0.55
IBM1 0.49 0.50 0.54 0.56

Table 4: Best f-measures obtained on TEST for source
sentences of different sizes.

Figure 7: Precision on ten first target words averaged over
the sentences of DEV.

tract words from sentences containing 30 words and
more. While IBM1 f-measure dropped from 0.56 to
0.15 on long sentences, it dropped by less than 0.01
on the other three models. The probabilities com-
puted by IBM1 could probably be set using a heuris-
tic considering the number of source words, but this
is out of the scope of this paper.

On shorter sentences, MLP+ and MLP had better
f-measures than IBM1, but on longer sentences MLP

is worse than the three other models which connect
source and target words directly.

4.8 Sorted Lists of Words

Bag-of-words prediction can be interpreted as an in-
formation retrieval problem where source sentences
are queries and words in target sentences are rele-
vant documents. Using this formulation, we evalu-
ated the output of the different models as sorted lists
of words using precision at ten (Figure 7) and mean
average precision (Figure 8).

For each sentence in DEV, we computed the pre-
cision on the ten best target words (Figure 7). While
IBM1 had a precision of 0.62, our best MLP had 0.65
and our best MLP+ 0.67, which means that we ex-
pect MLP+ to get one more word right than IBM1
when two lists of ten words are evaluated.5

We evaluated the complete lists of target words
using mean average precision (MAP), which aver-

5When we take into account the number of sentences con-
taining less than 10 words, the upper bound for this metric
changes from 1 to 0.95



Source particular attention have been paid to the issue of employment
Reference la question de l’ emploi fait l’ objet d’ une attention particulière

MLP attention(0.92), question(0.75), l’(0.71), de(0.65), été(0.47), à(0.46), la(0.46)
MLP+ attention(0.78), l’(0.75), question(0.69), emploi(0.60), de(0.54), la(0.52), particulière(0.50)
PERCEPTRON emploi(0.70) a(0.55) attention(0.52), de(0.38), à(0.36), l’(0.35), question(0.30)
IBM1 de(0.08) emploi(0.06) la(0.05), attention(0.05), a(0.05), question(0.04), été(0.04)

Figure 6: Example outputs where probabilities are specified between parentheses and words that are not in the refer-
ence are italicized.

Figure 8: Mean average precision averaged over the sen-
tences of DEV.

ages the precision computed at all the points in the
list where a valid word is found (Figure 8).6 Even
if MLP and MLP+ predicted 15, 340 words for every
sentence and IBM1 predicted 3239 words on aver-
age, MLP was comparable to IBM1 and MLP+ was
superior by more than 2%.

4.9 Number of Hidden Units

We trained models using 10, 100 and 1000 hidden
units. When no direct connections are included, 10
and 100 units are clearly not enough. For a given
source sentence, the probability of most word tends
to approach zero, so using a multilayer perceptron
containing too few hidden units drives almost all
probabilities to zero. When using 1000 units, the re-
sults were comparable to those obtained when using
500 units and no overfitting was observed either.

Models with 10 or 100 hidden units to which

6For instance, a list containing three valid words at positions
2, 5 and 12 would get a mean average precision of 1

3
( 1
2

+ 2
5

+
3
12

) = 0.38.

we added direct connections outperformed PERCEP-
TRON but were inferior to models with 500 or 1000
hidden units. Results obtained with 500 and 1000
hidden units were still very similar.

5 Discussion

To our knowledge, Bangalore et al. (2007) were the
first to introduce a translation model that was not
explicitly assuming word alignments. To do so,
they used a logistic regression model taking as in-
put ngrams of source words.

Whereas they modeled source words dependen-
cies using ngrams, we captured them automatically
by using a multilayer perceptron. Our input space
is smaller, but it does not contain any information
about relative word positions.

We were very encouraged by MLP, which does not
encode word alignment information in its architec-
ture but had results comparable to IBM1 on a par-
allel text of good quality. The main advantage of
MLP over the other models is that its coverage and
space complexity do not depend directly on word
co-occurrences. Such a model could thus be trained
on complete document pairs whose sentence align-
ments are unknown or undefined, much like compa-
rable corpora.

We intend to use our model as a feature in a sys-
tem designed to rescore the top ranked candidates of
a statistical machine translation system. We expect
the improvement to be at least as good as that possi-
ble with IBM1 models if not better.

6 Conclusion

We proposed to translate bags-of-words using a mul-
tilayer perceptron. While being more difficult to
optimize, multilayer perceptrons offer many advan-
tages over the famous IBM1 model. No assumption



of independence between source words is made, hid-
den units offer a way to customize the model and
prior information can easily be added as direct links
between the input and output units. Our experi-
ments suggest that models without direct connec-
tions are comparable to IBM1 but models including
direct connections surpass it.

The major showstopper for our models is their ex-
orbitant training time. While we selected the num-
ber of hidden units empirically, many algorithms
were proposed to grow a multilayer perceptron as
needed (Bishop, 1995, Chapter 9.5). The train-
ing time could also be reduced using parallelization.
Bengio et al. (2003) propose hints on how to paral-
lelize the training of large multilayer perceptrons.

This work is still preliminary and experiments are
needed to verify if our models can help improving a
statistical machine translation system. As no word
alignment is assumed to optimize our model or en-
sure that its space complexity is reasonable, we plan
to investigate how they could capture information
from comparable corpora where word and sentence
alignments are undefined.
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