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Abstract

Multi-task learning (MTL) has been studied
recently for sequence labeling. Typically, aux-
iliary tasks are selected specifically in order
to improve the performance of a target task.
Jointly learning multiple tasks in a way that
benefit all of them simultaneously can in-
crease the utility of MTL. In order to do so,
we propose a new LSTM cell which con-
tains both shared parameters that can learn
from all tasks, and task-specific parameters
that can learn task specific information. We
name it a Shared-Cell Long-Short Term Mem-
ory (SC-LSTM). Experimental results on three
sequence labeling benchmarks (named-entity
recognition, text chunking, and part-of-speech
tagging) demonstrate the effectiveness of our
SC-LSTM cell.

1 Introduction

As one of the fundamental tasks in NLP, se-
quence labeling has been studied for years. Before
the blooming of neural network methods, hand-
crafted features were widely used in traditional
approaches like CRFs, HMMs, and maximum en-
tropy classifiers (Lafferty et al., 2001; McCallum
et al., 2000; McCallum and Li, 2003; Florian et al.,
2003). However, applying them to different tasks
or domains is hard. Recently, instead of using
handcrafted features, end-to-end neural network
based systems have been developed for sequence
labeling tasks, such as LSTM-CNN (Chiu and
Nichols, 2015), LSTM-CRF (Huang et al., 2015;
Lample et al., 2016), and LSTM-CNN-CRF (Ma
and Hovy, 2016). These models utilize LSTM to
encode the global information of a sentence into
a word-level representation of its tokens, which
avoids manual feature engineering. Moreover, by
incorporating a character-level representation of
tokens, these models further improve.

˚ Co-first author.

In many such studies, though, neural network
models are trained toward a single task in a super-
vised way by making use of relatively small anno-
tated training material. Jointly learning multiple
tasks can reduce the risk of over-fitting to one task,
and many attempts have been made at doing so for
sequence labeling tasks (Caruana, 1997; Collobert
and Weston, 2008; Collobert et al., 2011). Results
so far are not conclusive.

Some works have reported negative results
overall. For instance in their pioneering work,
Collobert et al. (2011) observed that training their
model on NER, POS tagging and chunking alto-
gether led to slight decrease in performance com-
pared to a similar model trained on each task sepa-
rately. Søgaard and Goldberg (2016) study chunk-
ing and CCG super tagging, coupled with an ad-
ditional POS tagging task. They do report gains
on both target tasks over single task models, but
results varied depending where the additional task
was taken care of in their architecture. The au-
thors actually reported a failure to leverage other
labelling tasks, and concluded that combined tasks
should be sufficiently similar to the target one,
for significant gains to be observed. Similarly,
Alonso and Plank (2017) achieved significant im-
provements for only 1 out of 5 tasks considered.
Also of interest is the work of (Changpinyo et al.,
2018) where the authors investigate the classical
shared encoder-based MTL framework (Collobert
et al., 2011; Collobert and Weston, 2008) on 11 se-
quence labeling datasets including POS, NER, and
chunking. They report that chunking is beneficial
to NER, while POS tagging can be harmful.

We present in Section 2 the two major ap-
proaches proposed for multi-task learning and dis-
cuss their limitations. We describe our approach
in Section 3, and present our experimental settings
and results in Section 4 and 5 respectively. We
further analyze our approach in Section 6, discuss
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related works in Section 7 and conclude in Sec-
tion 8.

2 Multi-task Learning

2.1 Problem Statement

We are given a set of K tasks (in our case
named-entity recognition, text chunking and part
of speech tagging) that we want to train jointly in
an end-to-end fashion. Each task k has an asso-
ciated training set Sk “ tpxki , y

k
i qi P r1,nks

u of nk
examples, where xki and yki are sequences of size
mi of tokens and tags respectively. We wish to
learn a single function F which maps any token
input sequence xi to its task-specific labels, where
the mapping defines a probabilistic distribution for
each involved task: ppy1i , . . . , y

K
i q “ Fpxiq.

2.2 Existing Shared Encoder Methods

There are two kinds of neural-based MTL meth-
ods. The first one — LSTM-s hereafter — uses an
identical representation for all tasks, as proposed
in (Collobert et al., 2011). This is illustrated in
Figure 1 (left), where 3 layers of LSTMs are being
stacked.1 While different tasks directly interact
with all parameters of the model, this increases the
risk of optimization conflicts when gold-standard
labels from different tasks have no significant cor-
relation.

The second class of multi-task architectures is
depicted in the middle part of Figure 1, and is
named LSTM-d hereafter. In this configuration,
each LSTM layer feeds a task-specific classifier
and serves as input to the next stacked LSTM layer
(Søgaard and Goldberg, 2016). The underlying as-
sumption is that tasks may be ordered in such a
way that easier tasks are learned first, the target
tasks being the latest one considered, thus benefit-
ing the hidden state of the lower layers. One draw-
back, however, is that one must decide which task
to consider first, a decision which may impact the
overall performance. Furthermore, using the hid-
den state of lower layers increases the limitation
of learning representation for that task.

We believe that one reason for the lack of con-
sistent benefits of MTL in the labelling litera-
ture is that the proposed models share all or part
of parameters for extracting hidden states, which
leads to optimization conflicts when different tasks

1This typically delivers better performance than having
just one. In practice also, LSTM layers are replaced by bi-
LSTM ones.

require different features. We believe it would
be helpful if we make the model have ability to
learn a task-specific representation (Ammar et al.,
2016; Östling and Tiedemann, 2016; Kiperwasser
and Ballesteros, 2018) at the same time. This
observation led us to design a new LSTM cell
which allows at almost no additional computa-
tion cost to efficiently train a single RNN-based
model, where task-specific labelers clearly outper-
form their singly-tasked counterparts. Actually, by
training our model on NER, chunking and POS
tagging, we report state-of-the-art (or highly com-
petitive) results on each task, without using exter-
nal knowledge (such as gazetteers that has been
shown to be important for NER), or hand-picking
tasks to combine.

Figure 1: Overview of three shared encoder MTL tag-
ging system: (a) LSTM-s (b) LSTM-d (c) our SC-
LSTM based system.

3 Proposed Method

Our solution is depicted in the right part of Fig-
ure 1 and detailed in the next section. It is ac-
tually very similar to the LSTM-s one, except
that each LSTM layer passes on task-specific hid-
den representations that learn the peculiarities of
individual tasks. In the last layer, each classi-
fier is fed with a concatenation of a global rep-
resentation (as in LSTM-s) and the task-specific
one. By doing so, we keep the advantages of both
aforementioned approaches, where one task can
have its task-specific representation as in LSTM-d,
while not enforcing any task order, further giving
the freedom to the model to learn specificities of
each task. For this architecture to work, we need
to modify the classical LSTM cell, which is de-
scribed in the next section.



2398

3.1 LSTM Cell

An LSTM cell (Hochreiter and Schmidhuber,
1997) is made up of four functional gates which
control the input and output of the memory state
ct: a forget gate ft controls what information
to remove from the memory state of the last
time step, an input gate it controls the informa-
tion to add to the current memory, and an out-
put gate ot controls what information to release
from the current memory state. This mecha-
nism is formalized in Equation 1 where xt, ht is
the input vector and hidden vector at time step
t, σ is the sigmoid function, ĉ is the new can-
didate state, ct is the memory state, which en-
codes information of the current input and his-
tory information, and ˚ indicates the element-wise
product. Wf ,Uf ,Wi,Ui,Wo,Uo,Wc,Uc are
weight matrices that are being learned.

ft “ σpWfht´1 `Ufxtq, (1)

it “ σpWiht´1 `Uixtq,

ot “ σpWoht´1 `Uoxtq,

ĉ “ tanhpWcht´1 `Ucxtq,

ct “ it ˚ ĉ` ft ˚ ct´1,

ht “ ot ˚ tanhpctq,

Figure 2: Structure of an SC-LSTM cell. The dashed
delimited box depicts the task-specific cell. For clarity
reasons, we only show one such cell, while in practice
there is one task-specific cell for each task.

3.2 SC-LSTM Cell

The overall structure of our cell is depicted in Fig-
ure 2. On top of a standard LSTM cell, we add one

cell per task with its own parameters. The stan-
dard LSTM cell is thus shared among the K task-
specific cells, therefore the name we choose for
this new cell, which stands for Shared-Cell LSTM.
Task-specific cells are each parametrized by an
output gate okt which learns to select the useful
information from the shared memory cell ct and
outputs qk

t . This is formally described in Equa-
tion 2, where Wk and Uk are two extra weight
matrices that parametrize the kth task, and qk

t has
to be understood as a task-specific hidden repre-
sentation since parameters of kth task-specific cell
are only updated by supervision from task k.

okt “ σpWkq
k
t´1 `Ukx

k
t q (2)

qk
t “ okt ˚ tanhpctq

In order to make use of both shared and task-
specific information (Kim et al., 2016; Peng et al.,
2017; Hershcovich et al., 2018), for the kth task,
we concatenate the output of the shared cell ht and
of the task-specific one qk

t to generate the final la-
tent representation, as noted in Equation 3, where
‘ is the concatenation operation. In practice, we
stack SC-LSTM layers. The top-most layer uses
skt as a representation of the current input, while
cells in lower layers pass the current shared hidden
state ht to the upper SC-LSTM cell. The use of s
in the topmost layer only is arbitrary and should
be investigated.

skt “ qk
t ‘ ht (3)

3.3 Training procedure

The training material available may be gathered
from different datasets Sk which means that in-
put sequences differ from one task to another.
Therefore in practice, we buildK dataloaders, and
the training is achieved in a stochastic manner by
looping over the tasks at each epoch, as detailed in
Algorithm 1.

The loss function ε we minimize is a linear
combination of task-specific loss functions, where
the weighting coefficients (λk in Equation 4) are
hyper-parameters.

ε “
K
ÿ

k“1

λkLpyk, ŷkq (4)
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Algorithm 1 Stochastic training procedure

1: procedure TRAINING

2: for each epoch do
3: Randomly choose a task k.
4: Randomly choose a training example

not yet considered in the dataset Sk
5: Update the parameters for this task by

taking a gradient step based on this example.
6: Go to step 3 until using all examples.

We seek to minimize cross-entropy of the
predicted and true distributions, therefore task-
specific loss functions are defined according to
Equation 5.

Lpyk, ŷkq “ ´

nk
ÿ

i“1

mi
ÿ

j“1

yk
i,j log ŷk

i,j (5)

where ŷk
i,j is the prediction of the kth softmax

classifier parametrized by a projection matrix Wk

and a bias vector bk:

ŷk
i,j “ softmaxpWkski,j ` bkq (6)

where ski,j stands for jth token of the ith sequence
for task k. In an SC-LSTM cell with k tasks,
we will add k matrices and k bias vectors, com-
pared with a vanilla LSTM cell, which increases
the capacity of the resulting model. This extra cal-
culation is conducted in parallel with the original
LSTM computations.

4 Experimental Setting

4.1 Benchmarks

We test several baseline systems and our SC-
LSTM model on three well-established se-
quence labeling benchmarks: CoNLL2003 (Tjong
Kim Sang and De Meulder, 2003) for named-
entity recognition, CoNLL2000 (Tjong Kim Sang
and Buchholz, 2000) for chunking, and the
more recent Universal Dependency dataset (Nivre
et al., 2016) for part-of-speech tagging,2 and on
which recent MTL investigations have been con-
ducted (Alonso and Plank, 2017; Changpinyo
et al., 2018).

We conformed to the pre-defined splits into
train/dev/test except for chunking that does not
contain a validation set. For this dataset, following

2We used UD English POS v1.3.

recent works (Peters et al., 2017; Liu et al., 2017),
sections 15-18 of the Wall Street Journal are used
for training, and we randomly sampled 1000 sen-
tences in the training set as the development set.
Section 20 is used for tests. Table 1 presents the
main characteristics of the training, development
and test sets we used.

Train Dev Test
NER #tags = 4
#sentences 14,987 3,644 3,486
#tokens 205k 52k 47k
#entities 23,523 5,943 5,654
Chunking #tags = 10
#sentencies 8,936 - 2,012
#tokens 212k - 47k
#chunks 107k - 24k
POS #tags = 17
#sentences 12,543 2,002 2,077
#tokens 204k 25k 25

Table 1: Main characteristics of the datasets used.

4.2 Architectural Choices
We used bidirectional LSTM or SC-LSTM as our
encoders for the vector representation of words.
Bidirectional LSTM can capture global informa-
tion of the whole sentence, thanks to the en-
coding of a sequence in a recurrent way. The
vector representation of words consists of three
parts: word embedding, character-level represen-
tation and contextual representation:

• previous works have proven that pre-trained
word embeddings like Word2vec (Mikolov
et al., 2013), SENNA (Collobert et al., 2011),
or Glove (Pennington et al., 2014) have a pos-
itive impact on sequence labeling tasks. We
used Glove embeddings3 of dimension 100,
that are fine-tuned during training;

• character-level information has been proven
useful for three sequence labeling tasks (San-
tos and Zadrozny, 2014; Ma and Hovy, 2016;
Lample et al., 2016) and Some works fur-
ther show its effectiveness (Reimers and
Gurevych, 2017; Yang et al., 2018). In or-
der to encode character sequences, we used
a CNN. The character embedding look-up ta-
ble is initialized by randomly sampling from

3The embedding file glove6B are available https://
nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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the uniform distribution in the range [-0.1,
0.1];

• the third part of the input vector is contextual
embedding. Most of the recent works found
that contextualized features such as ELMo or
BERT (Peters et al., 2018; Devlin et al., 2018)
can greatly boost performance. We incor-
porate ELMo into our input vector by using
the ELMo implementation of Gardner et al.
(2018).

Conditional random field (CRF) classifiers can
consider the dependency of output tags and has
been proven useful for tasks like NER or chunk-
ing. We consider CRF layers in our models.

To compare the effectiveness of three MTL
models, we first test our SC-LSTM and other
vanilla LSTM based models without CNN based
character-level information extractor and contex-
tual embeddings. In this case, the input will be
a concatenation of word embedding and capital-
ization features4. To compare with the state-of-art
models, we further implemented three more vari-
ants: SC-LSTM-CNN-CRF which makes use of
CNN-based character level features with a CRF
layer on top, very similar to (Ma and Hovy, 2016),
and SC-LSTM-LM-CNN, a variant which consid-
ers contextualized word embeddings as in (Peters
et al., 2018).

4.3 Implementation

For SC-LSTM-LM-CNN, we used mainly the
configuration advocated in (Peters et al., 2018) ex-
cept for the hidden size of SC-LSTM, which we
report in Table 2. We further weighted the NER
task in the objective function of Equation 4 to 3
(λNER), the weights of the other tasks where set
to 1.5 We trained this model SC-LSTM-LM-CNN
using the Adam optimizer (Kingma and Ba, 2014)
with default setting. Such a model spends typi-
cally less than 30 epochs to converge. We choose
the mini-batch size of 10 and used the gradient
clipping threshold 5. All models are implemented
using the Pytorch library (Paszke et al., 2017).

Several tagging schemas have been proposed
for conducting chunking and NER tasks. We used
the most common BIO one in this work.

4Eight features encode capitalization patterns, such as
AllUpper, InitialUpper, etc.

5We found the loss of the NER task to be around 1/3 of
the loss of the chunking and POS tasks.

Layers Parameters
Char-level Embedding dimension 16

Character-CNN

kernel size 3
padding 1
stride 1

channel 128
Word Embedding dimension 100

SC-LSTM
hidden size 256˚3

layer 3
ELMo dimension 1024

Dropout rate 0.5

Table 2: Hyper-parameters used for training the SC-
LSTM-LM-CNN model.

5 Experiments

In this section, we start by comparing MTL ap-
proaches based on LSTM and SC-LSTM cells. We
then report the performance of variants of our ap-
proach we implemented and compare it to state-
of-the-art models.

5.1 biLSTM versus biSC-LSTM
We compare bidirectional LSTM (STL), SC-
LSTM, and baseline MTL models. The results are
shown in Table 3. Training Bi-LSTM models on
each task separately (STL) was first conducted as
a point of comparison (line 1).

For LSTM-s and LSTM-d, we regard one task
as the main task and the others as auxiliary tasks;
a setting consistent with Søgaard and Goldberg
(2016). Because LSTM-s and LSTM-d always fail
to achieve stable and competitive results on the
three tasks we considered at the same time, we
report the best performance we could obtain for
each task (line 2 and 3) specifically. On the con-
trary, our SC-LSTM model is trained once jointly
on all tasks, and only one model is being tested in
the end, which is much easier and more realistic of
a real deployment (line 4).

The results show that our SC-LSTM model im-
proves the performance of the three tasks simul-
taneously compared with LSTM (STL), and out-
performs the other two MTL methods. By joint
learning three tasks, both LSTM-s and LSTM-d
can boost the chunking task significantly, but both
fail to improve NER and POS tasks. This is con-
sistent with observations made in (Collobert et al.,
2011; Søgaard and Goldberg, 2016). We also ob-
serve that our SC-LSTM model also benefits the
chunking task the most. We will analyze this fur-
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ther in Section 6.

POS chunking NER
LSTM (STL) 95.46 94.44 89.39

LSTM-s 95.45 95.12 89.35
LSTM-d 95.44 95.24 89.37

SC-LSTM 95.51 96.04 89.96

Table 3: Results of models being trained in STL or
MTL mode. For all MTL models, we report the best
performance via a small grid search over combinations
of the hidden size [100, 200, 300, 400] and the number
of layers [1, 2, 3]. The best performance of each MTL
model was obtained with hidden size 300 and 3 layers.

5.2 SC-LSTM versus state-of-the-art
To further demonstrate the effectiveness of our
SC-LSTM model, we compared different variants
with state-of-the-art approaches, that we classify
into three broad categories:

• Single sequence labeling where models are
trained without the supervision of other tasks.
Specifically, we compare our results to the
LSTM-CRF model of Lample et al. (2016)
and the LSTM-CNN-CRF of Ma and Hovy
(2016), since those are state-of-the-art singly
tasked sequence labelers.

• Multi-tasked sequence labelers where mod-
els leverage the supervision of other tasks.
We compare our model with the representa-
tive approaches of Luo et al. (2015); Søgaard
and Goldberg (2016); Collobert and Weston
(2008); Collobert et al. (2011).

• Models with language model. Recently,
several studies in using contextualized word
embeddings achieved great success in a num-
ber of tasks. Some recent studies (Peters
et al., 2017; Rei, 2017; Peters et al., 2018;
Devlin et al., 2018) are particularly consid-
ered.

It is worth noting that we did not engineer tasks
specific features or integrate external ressources
such as gazetteers in our variants.

5.2.1 NER
Results for the CoNLL 2003 dataset are reported
in Table 4. We observe that our SC-LSTM-LM-
CNN model outperforms all approaches but De-
vlin et al. (2018) and Akbik et al. (2018). The lat-
ter work is using the development set as training

NER F1-score
Collobert et al. (2011) 89.59

Chiu and Nichols (2015) ♣ 91.62
Huang et al. (2015) 88.83

Luo et al. (2015) 91.20
Ma and Hovy (2016) 91.21
Lample et al. (2016) 90.94

Shen et al. (2017) 90.89
Yang et al. (2017) 91.20

Rei (2017) 86.26
Liu et al. (2017) 91.71

Peters et al. (2017) 91.93
Zhang et al. (2018) 91.2

Liu et al. (2018) 91.95
Peters et al. (2018) 92.22
Clark et al. (2018) 92.60

Akbik et al. (2018) ♣ 93.09
Devlin et al. (2018) 92.80

SC-LSTM 89.96
SC-LSTM-CNN-CRF 91.37
SC-LSTM-LM-CNN 92.60

Table 4: F1-score on the CoNLL03 NER dataset. Mod-
els with ♣ use both train and dev splits for training.

material, which avoids a direct comparison. The
former model (BERT) is achieving great success
by leveraging a huge amount of unannotated data
as well as a lot of computation resources we could
not afford in this study. We are however pleased
that our model is leveraging contextual embed-
dings with 0.38 absolute F1 improvement over the
results of Peters et al. (2018). We leave as future
work to investigate whether our MTL model can
leverage BERT embeddings.

5.2.2 Chunking

We compared a number of models on the
CoNLL2000 chunking dataset. A few of them (Ma
and Hovy, 2016; Lample et al., 2016; Peters et al.,
2018) where not tested on this benchmark, and we
reimplemented them. We also trained the compan-
ion toolkits of those models, but (as detailed in the
next section) got slightly lower results for some
reasons. Table 5 reports the performance of the
many approaches we tested.

We observe that our SC-LSTM-LM-CNN ar-
chitecture achieves a new state-of-the-art F1 score,
with over 1 absolute point over the competitive ap-
proach of Peters et al. (2017), and an improvement
of 0.4% over the current state-of-the-art method
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of Clark et al. (2018).

Chunking F1-score
Collobert et al. (2011) 94.32

Huang et al. (2015) 94.13
Ma and Hovy (2016) 94.81:
Lample et al. (2016) 94.68:

Hashimoto et al. (2016) 95.77
Søgaard and Goldberg (2016) 95.56

Shen et al. (2017) 93.88
Yang et al. (2017) 94.66
Liu et al. (2017) 95.96

Peters et al. (2017) 96.37
Liu et al. (2018) 96.13

Peters et al. (2018) 96.92:
Clark et al. (2018) 97.00
Akbik et al. (2018) 96.72

SC-LSTM 96.04
SC-LSTM-CNN-CRF 96.41
SC-LSTM-LM-CNN 97.40

Table 5: F1-score on the CoNLL00 chunking dataset.
Configurations with a : sign are approaches we reim-
plemented.

5.2.3 POS

We conducted experiments on the Universal De-
pendency POS English dataset and present the re-
sults in Table 6. The only study we found that
reports results on the UD v1.3 benchmark we used
here is (Bjerva et al., 2016), and we report the re-
sults they published. For Liu et al. (2017), Pe-
ters et al. (2018) we used the available compan-
ion toolkits6 that we trained ourself with the de-
fault settings. We re-implemented the other ap-
proaches.

Again, we observe that SC-LSTM-LM-CNN
outperforms all other approaches we tested. The
absolute improvement in F1 score over the current
state-of-the-art of Peters et al. (2018) is 0.21%.

In order to further validate our implementations,
we also ran the toolkits of Ma and Hovy (2016)
and Lample et al. (2016) and obtained slightly
lower results7.

6https://github.com/LiyuanLucasLiu/
LM-LSTM-CRF and https://github.com/
allenai/allennlp

7We obtained 95.7% for the toolkit we took from https:
//github.com/XuezheMax/NeuroNLP2 and 95.6%
for the one at https://github.com/glample/
tagger.

POS Accuracy
Collobert et al. (2011) 95.41:

Huang et al. (2015) 95.63:
Ma and Hovy (2016) 95.80:
Lample et al. (2016) 95.78:
Bjerva et al. (2016) 95.67

Liu et al. (2017) 95.95:
Peters et al. (2018) 96.62 :

SC-LSTM 95.51
SC-LSTM-CNN-CRF 95.83
SC-LSTM-LM-CNN 96.83

Table 6: Accuracy on the Universal Dependency En-
glish POS dataset. Configurations with a : sign are ap-
proaches we reproduced.

6 Analysis

We conducted a number of investigations in order
to understand better why our multi-task learning
model is effective.

6.1 Convergence Analysis

We report in Figure 3 the convergence of differ-
ent MTL models on the development set. To ob-
tain those curves, we collected the F1-score on the
NER and chunking tasks as well as the accuracy of
the POS task, and averaged them after each epoch.

Figure 3: The change of F1-score/Accuracy on the
development datasets at different epochs for SC-
LSTM (red solid line), LSTM-s (blue dotted line) and
LSTM-d (green dashed line) baselines. (a) reports re-
sults with NER, chunking and POS; (b) results with
NER and POS; (c) results with chunking and POS; and
(d) results with NER and chunking. All models were
trained using the Adam optimizer with the same set-
ting, and the mini-batch size was set to 10.

We clearly see that the SC-LSTM model con-
verges faster than other ones. It achieves higher

https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
https://github.com/allenai/allennlp
https://github.com/allenai/allennlp
https://github.com/XuezheMax/NeuroNLP2
https://github.com/XuezheMax/NeuroNLP2
https://github.com/glample/tagger
https://github.com/glample/tagger
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performance after the first epoch, and after about
ten epochs, it shows a smooth performance curve,
while LSTM-s and LSTM-d models still fluctuate.
This indicates that our model can learn the hid-
den representation of multiple tasks in a faster and
smoother way than the other two methods.

Besides, we observe in Figure 3c and 3d that
combinations of tasks involving chunking typi-
cally show a smooth training curve, on the con-
trary to Figure 3b where NER and POS tasks
are combined. The fact that the training regi-
men fluctuates in the latter case for both LSTM-s
and LSTM-d suggests that conflicts with those two
tasks happen during optimisation, which we do not
observe for our model. Also, Figure 3a illustrates
that combining the three tasks altogether leads to
comparably better performance of our model over
LSTM-s and LSTM-d.

6.2 Effect of Different Task Combinations

We analyzed which task is benefited or harmed by
others under the three MTL settings we considered
and present results in Figure 4.

We find that it leads to better performance for
all MTL models by jointly learning chunking with
NER or POS(see in Figure 4b). This is in particu-
lar the case of our SC-LSTM model which records
the largest gain, especially when all tasks are be-
ing trained on.

Figure 4c shows results obtained on POS. Only
our SC-LSTM model achieves a meaningful im-
provement. We however observe that the NER
task tends to hurt the performance of POS, since
in most cases, the performance of POS+NER is
lower than the one obtained with POS+chunking.

For NER, Figure 4 shows that POS hurts
LSTM-s and LSTM-d models, while the chunking
task is beneficial for all MTL methods.

Clearly, the combination of different tasks has
a different effect on the final performance of each
task. The chunking task seems compatible with
NER and POS tasks, and it boosts the other two
tasks in all three MTL settings, which is consis-
tent with the results of Changpinyo et al. (2018).
Directly jointly training on POS and NER datasets
tends to reduce the performance in LSTM-s and
LSTM-d, which is also consistent with the con-
clusion in (Changpinyo et al., 2018). In conclu-
sion, all of the results show that our SC-LSTM
model is effective at capturing the mutual bene-
fits of all combined tasks. Since it performs con-

sistently better in various settings, we believe our
model to be more robust.

7 Related Work

There are many works that use extra knowledge
to improve the performance of sequence labeling
tasks.

Many works have focussed on jointly learning
two tasks, often with one being considered as the
main task, the other being the auxiliary one (Sø-
gaard and Goldberg, 2016; Bjerva et al., 2016;
Alonso and Plank, 2017). For instance, chunk-
ing, combinatory categorical grammar supertag-
ging, NER, super senses (SemCor), or multiword
expression + supersense will be taken as the main
task, while POS is the auxiliary task in (Søgaard
and Goldberg, 2016). Exceptions to this line of
work include (Collobert et al., 2011) that evaluates
four tasks: POS, chunking, NER and semantic role
labeling; (Kiperwasser and Ballesteros, 2018) that
considers a machine translation task with POS and
dependency parsing. And Niehues and Cho (2017)
considers machine translation with POS and NER
tasks; Zhang and Weiss (2016) show that jointly
learning a POS tagger and a dependency parser is
effective. Miwa and Bansal (2016) jointly trained
models for entity detection and relation extraction
in the field of relation extraction.

Other works are also trying to leverage language
models to empower the performance of sequence
labeling tasks. Notably, Liu et al. (2017) propose
a model which uses a neural language model to
learn character-level knowledge, and conducts se-
quence labeling to guide the language model to-
wards specific tasks. Others (Peters et al., 2017,
2018; Devlin et al., 2018) use neural language
models pre-trained on a large unlabeled corpus to
learn context-sensitive representations of words,
and leverage this representation into the sequence
labeling model.

More related to the present work are studies
that analyze the effectiveness of different combi-
nations of sequence labeling tasks in a multi-task
learning. In particular, Changpinyo et al. (2018)
conduct an investigation on 11 sequence labeling
tasks, while Alonso and Plank (2017) evaluate 5
tasks but report signifiant gains for only one task.

8 Conclusion

In this paper, we propose a simple yet powerful
LSTM cell that leverage both shared and task-
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Figure 4: Results of different task groups on each test set: (a) NER, (b) chunking, and (c) POS. Horizontal lines
show results for single-task models(NER: 89.39, Chunking: 94.44 and POS: 95.46).

specific parameters in a multi-task setting de-
signed for sequence labelling. We conduct ex-
tensive experiments to compare both single-task
learning and multi-task learning models. We an-
alyzed the influence of grouping different tasks
under various multi-task settings. Experiments
demonstrate the effectiveness of our model for se-
quence labeling tasks. We report new state-of-
the-art results on both POS and chunking tasks,
and close to state-of-the-art performance on NER,
without exploiting external ressources, neither
diving into dedicated feature engineering.

Despite those positive outcomes, several issues
with multi-task learning for sequence labeling re-
main open. In particular, we only considered 3
tasks here, and therefore plan to test our approach
on more tasks, perhaps understanding better why
some tasks are less useful to others. Also, there are
several ways we could have used our SC-LSTM
cell into our models which we would like to inves-
tigate further. In particular, in this work, we only
used the specific-task hidden states in the last layer
of the model, which can obviously be revisited.
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