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Abstract. Analogical learning is a lazy learning mechanism which maps
input forms (e.g. strings) to output ones, thanks to analogies identified in
a training material. It has proven e↵ective in a number of Natural Lan-
guage Processing (NLP) tasks such as machine translation. One challenge
with this approach is the solving of so-called analogical equations. In this
paper, we investigate how structured learning can be used for learning
to solve formal analogical equations. We evaluate our learning procedure
on several test sets and show that we can improve upon fair baselines.

Keywords: Natural Language Processing, Formal Analogy, Solving Ana-
logical Equation

1 Introduction

A proportional analogy (or analogy for short) — noted [x : y :: z : t] — is a 4-uple
of entities which reads “x is to y as z is to t”, as in [Paris : France :: Roma : Italy ].
In this work, we concentrate on formal analogies, that is, analogies at the formal
or graphemic level, such as [weak : weaker :: clean : cleaner].

Identifying proportional analogies is one core element of analogical learning, a
learning strategy that can be explained as follows. Given a training set of pairs of
input and output forms D ⌘ {(x, x0)}, and an unknown input form u, analogical
learning produces output entities u0 by searching input elements in D that define
with u an analogy [x : y :: z : u]. Those analogies are assumed to carry over the
output space; that is, u0 should be a solution of a so-called analogical equation
[x0 : y0 :: z0 :?], where x0, y0, z0 are output forms corresponding in the training
material to x, y and z respectively.

Let us illustrate those concepts by an example taken from [11] where the
authors applied analogical learning to translate terms of the medical domain.
Assume we have a training set of terms in Finnish along with their translation
into English: D = {(beeta-agonistit, adrenergic beta-agonists), (beetasalpaa-

jat, adrenergic beta-antagonists), (alfa-agonistit, adrenergic alpha-agonists)}.
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2 Rhouma, Rafik and Langlais, Philippe

We might translate the (unseen at training time) Finnish term alfasalpaajat

into English by:

1. identifying the input analogy:
[beeta-agonistit : beetasalpaajat :: alfa-agonistit : alfasalpaajat]

2. projecting it into the equation:
[ adrenergic beta-agonists : adrenergic beta-antagonists ::
adrenergic alpha-agonists : ? ]

3. and solving it: adrenergic alpha-antagonists is one solution.

This learning paradigm has been tested in a number of NLP tasks, including
grapheme-to-phoneme conversion [21], machine translation [13, 10, 15], translit-
eration [5, 9], unsupervised morphology acquisition [19], as well as parsing [14,
2]. It has also been used with some success to inflate training material, in tasks
where we lack training data, as in [1] for hand-written character recognition and
in machine translation [20].

One essential component of an analogical device is an algorithm for solving
analogical equations. In [18], the authors observed that learning embeddings of
words on large quantities of texts captures analogical regularities (both semantic
and formal) that can be used for solving an analogical equation. One distinctive
characteristic of the solvers we consider in this study is that they can produce
forms never seen at training time, while the approach of [18] can only propose
forms for which an embedding has been trained (by exploiting huge quantities
of data). On the other hand, our solvers can only deal with formal analogies,
which is a limitation.

There are several operational analogical solvers on forms. Notably, in [12],
Lepage proposes an algorithm which aligns two by two (like an edit-distance
alignment) the forms of an equation. Those alignments are in turn used to guide
the production of a solution. In [19], the authors propose a definition of formal
analogy which lends itself to a solver that may be implemented by a finite-state
automaton. Both solvers have the advantage that no training is required for the
solver to be deployed. On the other hand, they both produce several solutions,
among which typically only one is valid.

In this paper, we study the averaged structured perceptron algorithm [3] for
learning to solve analogical equations on forms. We present in Section 2, two very
di↵erent state-of-the-art solvers we compare against. We describe in Section 3 the
structured learning framework we deployed. We present in Section 4 two datasets
we used for training and testing solvers. We report our results in Section 5 and
conclude in Section 6.

2 Reference Solvers

2.1 Mikolov et al. (word2vec)

In [18], the authors discovered that the vector space induced by word2vec, a
popular toolkit for computing word embeddings, has the interesting property of
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preserving analogies, that is, the di↵erence of the vector representation of two
words x and y in an analogy [x : y :: z : t] is a vector which is close to the
di↵erence of the vectors associated to the other two words z and t. Therefore,
their approach to solve an analogical equation consists in computing:

t̂ = argmax
t2V

cos(t, z � x+ y) (1)

While this solver can handle both semantic and formal analogies, it can only
produce solutions that have been seen at training time, which is of low interest in
our case. It is also very slow to run since it requires to go over the full vocabulary
of the application V in order to find the word with the best match. This would
for instance hardly scale to a vocabulary composed of word sequences in a given
language. Nevertheless, the ability of embedding methods to capture analogies,
has received a lot of traction recently, leading to performances we can reproduce
and compare against. We implemented Equation 1, making use of embeddings
trained by the authors1. See Figure 1 for solutions produced by this solver.

word2vec (d = 300) unreadable 0.574 , illegible 0.496 , scrawled 0.496 , scrib-
bled 0.496 , executor 0.475

alea (⇢ = 10) undabloe 4 , undableo 3 , unabldoe 2 , undoeabl 2 , un-
odable 2

alea (⇢ = 50) undoable 63 undabloe 45 , undaoble 27 , dunoable 27 ,
unadoble 22

early (beam = 100) undoable 510.9 , undaoble 488.9 , undabole 488.9 ,
undabloe 488.9 , unadbloe 488.94

Fig. 1. 5-first solutions produced by di↵erent solvers to the equation [reader :
unreadable :: doer : ? ]. See the text for the details about the configurations. Note
that word2vec ranks words in the vocabulary, while other solvers generate their solu-
tions.

2.2 Langlais et al. (alea)

In [22], the authors proposed a very di↵erent solver which relies on the following
theorem:

Theorem 1 t is a solution to [x : y :: z :?] i↵ t 2 {y � z} \ x

where:

1 Over 3 million vectors of dimension 300 for words seen at least 5 times; trained with
the skip-gram model on the large Google news corpus.
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w � v the shu✏e of w and v , is the regular language of the forms obtained by
selecting (without replacement) alternatively in w and v , sequences of char-
acters in a left-to-right manner. For instance, both strings unreadodableer
and dunoreaderable belong to unreadable � doer.

w\v the complementary set of w with respect to v , is the set of strings formed
by removing from w, in a left-to-right manner, the symbols in v. For instance,
unodable and undoable both belong to unreadodableer \ reader.

This theorem states that we can built a finite-state machine that recognizes
the set of all the solutions of an analogical equation. However, building such an
automaton may face combinatorial issues, which makes this approach practical
for analogies involving short enough forms. The algorithm described in [11] that
we implemented in this work consists in sampling randomly ⇢ elements of the
shu✏e language, then computing the complementary operation. This way, the
automaton is never constructed, leading to a very time e�cient algorithm. On
the other hand, the solver may fail to deliver the correct solution if the number
of shu✏es considered (⇢) is to small. Since several combinations of shu✏ing and
complementing operations may lead to the same solution, we can rank solutions
in decreasing order of their frequency. See Figure 1 for the solutions produced
by two configurations of this solver.

3 Structured Learning

Given a function g : I ⇥O ! R which evaluates a fit between an object i in an
input domain I, to an object in a structured output domain O, we seek to find:

t̂ = argmax
t2O

g(i, t) (2)

In this work, input objects are triplets of strings i ⌘ (x, y, z) over an alphabet
A and output objects are strings over this alphabet. We assume a linear model
for g = hw,�(i, t)i parametrized by a feature vector w in RK and a feature map
�(i, t) decomposed into K binary feature fonctions �k : (i, t) ! {0, 1} controlled
by the scalar wk. The vector w defines the parameters of the model we seek
to adjust in order to maximise the quality of predictions made over a training
set D = {((x, y, z), t)}. In this work, we use variants of the averaged structured
perceptron algorithm [3] for doing so, that we sketch hereafter.

3.1 Average Structured Perceptron

The standard version (standard) of the averaged structured perceptron al-
gorithm is depicted in Figure 2. The algorithm is based on the assumption that
the inference (argmax) can be computed exactly, which is often impractical.
In [6], the authors demonstrate that in cases of inexact search (our case), we
should only make valid updates, that is, updates where the 1-best hypothesis
has a higher model score than the correct sequence. There are several strategies
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w,wa  0
e 0
repeat

e e+ 1
for all example (i, t) 2 D do

t̂ = argmaxy w
T�(i, t)

if t̂ 6= t then
w w + �(i, t)� �(i, t̂)
wa  wa +w

until converged
return wa/e.|D|

Fig. 2. Standard averaged structured perceptron algorithm.

for this. One solution (safe) consists in conducting the update after checking
it is valid. While this variant is guaranteed to converge, it typically throws too
many training examples. Another solution initially suggested in [4] consists in
updating whenever the reference solution is not anymore attainable from the
current search space, in which case the hypothesis with the largest score so far
is being used for the update. This variant known as early update (early), has
the drawback that only a fraction of an example is concerned by the update,
leading to longer training times. Other alternatives are proposed in [6]; notably
a variant (late) which selects the deepest node in the search space which is a
valid update (the hypothesis with the largest prefix p). This way, the update is
conducted on larger strings.

3.2 Search

In what follows, x[i] stands for the ith symbol of string x,2 |x| is the length
(the number of symbols) of x, x[i :] designates the su�x of x starting at the ith
symbol; and x.y designates the concatenation of x with y.

For solving an equation [x : y :: z :?], our structured solver explores a search
space in which a state is represented by a 5-uple < s, i, j, k, p >, meaning that
x[i :], y[j :] and z[k :] are yet to be visited, that p is the current prefix of a
solution, and that s is the sequence of the shu✏e being considered. The initial
state of the search space is < ✏, 0, 0, 0, ✏ > (where ✏ designates the empty string)
and goal states are of the form < ✏, |x|, |y|, |z|, sol >, where sol is a solution
to the equation. There are three actions X, Y, and Z that can be applied to a
given state and which are described in Figure 3. It is worth noting that action
X, the action which implements the complementation operation, is the only one
which contributes to add symbols to the solution being generated. This is rather
di↵erent from typical search spaces, where most actions do impact immediately
the solution produced, as for instance in machine translation.

To further illustrate the singularity of the search procedure, let us consider
nodes n1 = < uu, 0, 1, 1, ✏ > that is generated from the initial one after two

2 The first valid index is 0.
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< s, i, j, k, p >

< s.y[j], i, j + 1, k, p > i↵ j < |y|

< s.z[k], i, j, k + 1, p > i↵ k < |z|

< ✏, i+ 1, j, k, p.ps > i↵ s ⌘ ps.x[i]

Y

Z

X

init: < ✏, 0, 0, 0, ✏ >

goal: < ✏, |x|, |y|, |z|, sol >

Fig. 3. The three operations defining the search space of the structured learning solvers.

consumption operations took place (Y and Z, in whatever order), and node
n2 = < undou, 0, 4, 1, ✏ >, that is reached after four Y and one Z operations.
Three operations may expand n1, that are illustrated in Figure 4 (left part), while
two expansions are possible from n2 (right part). The X and Y operations are
just reading one symbol in either y or z respectively, adding the read symbol to
the shu✏e. Since the y string has been entirely read in the n2 configuration, only
Z is considered. Because in both n1 and n2 the shu✏e ends with u the symbol
in x[0], a complementary operation X is possible from both nodes. In the second
configuration, for instance, the shu✏e is undou, which complementation with u

leads to the sequence undo being generated in the prefix of the resulting node.
Since X is the only operation that generates symbols of the solution, the search
space is populated with a lot of nodes with an empty prefix (5 out of the 7 nodes
in Figure 4).

n1 =< uu, 0, 1, 1, ✏ >

< uun, 0, 1, 2, ✏ >

< uun, 0, 2, 1, ✏ >

< ✏, 1, 1, 1, u >

Y

Z

X

n2 =< undou, 0, 4, 1, ✏ >

< undoun, 0, 4, 2, ✏ >

< ✏, 1, 4, 1, undo >

Z

X

Fig. 4. Expansions of two nodes belonging to the search space built to solve the equa-
tion [unread : undo :: unreadable : ? ].

As often in problems of interest, the search space is too huge for a systematic
exploration, and heuristics have to be applied in practice. First, the search space
is organized as a graph, which avoids developing an hypothesis twice. This safely
reduces the search space, without sacrifying optimality. For instance, the node
resulting from n2 in Figure 4 after an X operation may also be generated from
the initial state by applying in that order the sequence of operations: Z, Y, X,
Y, Y, and Y . Second, we deploy a beam-search strategy to prune less promising
hypotheses. Because of the specificity of the search space, the comparison of
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Structured Learning for Solving Formal Analogies 7

hypotheses that lead to the same prefix p is di�cult, and we had to resort to a
sophisticated beam policy (controlled by a metaparameter beam) which details
are beyond the scope of this paper. But su�ces it to say that in order to avoid
filtering too many hypotheses, we have to resort to a third filtering strategy which
consists in enforcing that at most ⌘ actions Y or Z happen before an action X
occurs. The metaparameter ⌘ controls the number of hypotheses that can grow
without generating a symbol of the solution. We experiment with values of this
metaparameter in Section 5.

3.3 Features

As mentioned earlier, the feature map is defined by a number of binary feature
functions that apply to any information available in a search node < s, i, j, k, p >
created while solving the equation [x : y :: z :?]. In order to guide the search we
rely on 3 families of features:

language model (14 features) because our solver produces a subset of per-
mutations of the same form as a solution, ranking those solutions with a
language model will favor hypotheses with a prefix that is likely in a given
language. We compute the likelihood of a prefix p according to an n-gram
language model trained on a large set of external data. Binary features check
that the likelihood falls into specific predetermined range of probabilities. We
also have features of the form prob(pi|pi�1 . . . pi�n+1) < � that fire whenever
a symbol of p is predicted with less probability than �. We also deploy similar
features for the shu✏e s under consideration.

edit-distance (20 features) A solution to a formal equation [x : y :: z :?]
typically shares sequences of symbols of y and z. For instance in [reader :
unreadable :: doer : ? ], the solution undoable shares with doer the a�x do.
We compute the edit-distance between the prefix p and the forms y and z
with the intuition that solutions that most ressemble one of those strings
are more likely to be good ones. Edit-distances are transformed into binary
fonctions (binning into 10 intervals).

search-based (20k features) We compute features specific to the search space
visited. We measure the percentage of consumption in each form x, y, and
z. We also have features to capture the last operation taken, thus providing
a first-order Markovian information. We also compute the total number of
consecutive shu✏ing actions (Y or Z) taken so far. This feature might help
the learning mechanism to favor a complementarity operation if too many
shu✏ing operations took place. We also have features that record the value
of each index (we have a binary feature for each possible value).
On top of this, we also compute a number of binary features for capturing
whether specific configurations of symbols have been observed in the search
space visited when enforcing the production of the reference solution to an
equation (forced-decoding). We compute the following features:

– a binary feature for each possible 3-tuple (x[i], y[j], z[k]),
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8 Rhouma, Rafik and Langlais, Philippe

– a binary feature for each bigram at the end of the shu✏e s,
– a binary feature for each bigram at the end of the prefix p.

The description of those features is not intended for others to reproduce our
experiments precisely, but instead to provide the intuition behind each feature
family. We have not conducted a systematic analysis of the usefulness of each
feature, but have noticed that removing one family of features leads invariably
to a significant loss in performance.

4 Datasets

4.1 Word Equations

In [17], the authors designed a comprehensive task for evaluating the propension
of word embeddings to preserve analogical relations. It contains 19 544 analogies,
categorized into 14 categories, including capital-world (e.g., [Dublin : Ireland ::
Jakarta : Indonesia]). Roughly 55% of those analogies are actually syntactic
ones that capture various morphological phenomena in English (see Figure 5).
Many of those syntactic analogies, are actually not formal ones. For example,
[rare : rarely :: happy : happily ] is not formal according to the definition of Yvon
et al. [22] we use in this study,3 because of the commutation of y in happy into
i in the adverbial form. Therefore, we removed non formal analogies to build a
corpus of 4977 analogies named google hereafter. We also used the msr dataset
of 8k syntactic analogies4, 3664 of which being formal ones.

Examples of analogies of both datasets are reported in Figure 5. Most analo-
gies involve short word forms (6 to 7 characters on average) and are actually
rather simple to solve (but see Section 5). We strengthen that because we fil-
tered out all non formal analogies, we place ourselves in an optimistic scenario
where the expected solution to an equation is reachable by our solvers, which
only makes senses as a case study. We come back to this point later on.

4.2 Phrasal Analogies

Identifying formal analogies on phrases is actually not the kind of task a hu-
man would be willing to do extensively and systematically. One might easily
produce analogies such as [She loves Paul : He loves Paul :: She likes Mark :
He likes Mark], but it would rapidly become a daunting task to collect represen-
tative analogies, that is, analogies that capture a rich set of linguistic phenomena
(such as the fact that the 3rd person of a verb at the present tense should end
with a s in the example). Therefore, we resorted to an automatic procedure to
acquire analogies.

3 The definition immediately follows from Theorem 1.
4 http://www.marekrei.com/blog/linguistic-regularities-word-representations/
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msr # of analogies: 3664 word’s avr. length: 6

jj-jjr [high : higher :: wild : wilder]
jjr-jj [greater : greatest :: earlier : earliest]
jjs-jj [low : lowest :: short : shortest]
nn-nnpos [problem : problems :: program : programs]
vb-vbp [take : takes :: run : runs]
vb-vbd [prevent : prevented :: consider : considered]
nnpos-nn [days : day :: citizens : citizen]
vbz-vbd [believes : believed :: likes : liked]

google # of analogies: 4977 word’s avr. length: 7

adjective-adverbe adj-adv [amazing : amazingly :: serious : seriously ]
opposite opp [certain : uncertain :: competitive : uncompetitive]
comparative comp [fast : faster :: bright : brighter]
superlative sup [warm : warmest :: strange : strangest]
present-participle pp [code : coding :: dance : dancing ]
nationality-adverb nat [Australia : Australian :: Croatia : Croatian]
past-tense past [decreasing : decreased :: listening : listened]
plural plur [eye : eyes :: donkey : donkeys]
plural-verbs pl-vb [listen : listens :: eat : eats]

Fig. 5. Main characteristics of the msr and the google datasets, and examples of formal
analogies of each category.

For this, we first trained a phrase-based machine translation (SMT) system
on the English-Spanish Europarl corpus,5 using the Moses toolkit [8]. We col-
lected millions of phrase associations such as those in Figure 6, and filtered
in, those with a good association score (prob � 0.1). A subset of phrase pairs
was elected as a reference R, the remaining pairs being kept as a translation
memory M. Then, we applied an analogical learning translation device very
similar to the one described in [13] for translating Spanish phrases of pairs
(u, u0) 2 R into English. For a given form to translate, u, this system iden-
tifies (x, x0), (y, y0), (z, z0) 2 M such that [x : y :: t : u], and solves equa-
tions [x0 : y0 :: z0 :?]. Whenever a solution to such an equation produces
u0, we consider [x0 : y0 :: z0 : u0] a useful analogie. We could have identified
analogies in the English part directly, but we would have ended up with many
spurious analogies, that is, true formal analogies that are simply fortuitous as
[croyons : crons :: montroyal : montreal]. The assumption here is that while a
spurious source analogy might be identified, it is very unlikely that its projection
into the target language (English) leads to an equation for which the reference
translation is a solution.

5 http://statmt.org
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a actualizar los acuerdos ||| to update the agreements ||| 1 0.00474847
a cambiar la base ||| to change the basis ||| 0.5 0.0035545
basado en el trabajo de ||| based on the efforts of ||| 1 2.02579e-05

Fig. 6. Phrases pairs collected by an SMT engine trained on the Spanish-English Eu-
roparl corpus. The format shows the source phrase (Spanish), the target phrase (En-
glish) and the first two scores estimating their likelihood of being in translation relation.

By applying this procedure, we collected many analogies: 10 000 of them
where elected simple (we kept 1000 for training purposes, and the remaining
ones for testing). For the remaining analogies, we solved with the alea solver the
equations built by removing the forth form. We then split equations according
to the rank of the reference translation (the forth term) among the ranked list of
solutions proposed. We collected 400 analogies ranking in each of the following
intervals : [1-5], [6-10], [11-20], [21-50] and [51-100], leading to a total of 2000
analogies (1000 for training, 1000 for testing). We qualify this dataset as hard
in the sequel. As a matter of fact, 80% of analogies in the simple dataset have
a degree6 of 2 or 3, while this rate is only 20% for the hard dataset.

simple phrase’s avr. length: 16
. [international investigation : international democracy ::
an international investigation : an international democracy ]
. [young girls : training of young girls :: young girls and :
training of young girls and]
. [political situation is viable : political situation is still ::
the political situation is viable : the political situation is still]

hard phrase’s avr. length: 17
. [adopted recently by : recently adopted by :: study published recently by :
study recently published by ]
. [competition and the : competition and against :: competition and of the :
of competition and against]
. [their governments to : their governments are :: their governments and to :
and their governments are]

Fig. 7. Exemples of phrasal analogies automatically identified.

6 The degree of an analogy roughly correlates with the number of commutations among
strings involved; the higher the degree, the harder it is to solve the analogy.
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Structured Learning for Solving Formal Analogies 11

5 Experiments

5.1 Metrics

Each solver produced solutions to the equations we built by removing the last
form of each analogy in the datasets presented in the previous section. We evalu-
ated their accuracy at identifying this form in first position. Since some variants
may fail to retrieve a solution (search failure), we also report — when pertinent
— silence as the ratio of test equations for which no solution is being generated.

5.2 Word Equations

In this experiment, we take benefits of the analogies of the google and msr
datasets. We trained on one corpus, and tested on the other. Because both alea
and our structured solvers require a metaparameter (⇢ or the beam size), we
report in Figure 8 the performance of di↵erent variants as a function of this
metaparameter (that we varied from 1 to 20). We did not use the ⌘ metaparam-
eter in this experiment, since equations involve short enough forms (6 characters
on average), leading to search spaces manageable to visit entirely.

google msr

40

60

80

100

5         10          15         20 5         10        15          20
beam size

accuracy

alea
late
early
standard
safe
w2v

Fig. 8. Accuracy on google and msr, as a function of the beam size (or ⇢ for alea).

We observe that for both solvers, larger values of the metaparameter are
preferable. For a value of 20, all solvers respond perfectly to all equations. Still,
we observe that learning to solve equations leads to better accuracy overall, es-
pecially for low values of the metaparameter. That formal solvers produce the
expected solution to all (formal) equations in the first place confirms that those
equations are indeed very simple. Actually, most of them involve simple prefixa-
tion/su�xation operations (see Figure 5). It is worth pointing that the word2vec
solver is registering an accuracy of 78% and 71% on msr and google respectively.
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This is not a bad level of performance considering that the embeddings were not
trained to capture such an information. But it also indicates that alea and the
structured solvers are actually doing very well. Recall however, that we only con-
sider formal equations here, which solutions are reachable by our solvers, while
non formal ones are not. Last, we observe that solving the msr equations when
training on the google analogies leads to slightly better results overall.

Figure 9 compares the accuracy of the early and the word2vec solvers on
each category of equations for both datasets. The former solver systematically
outperforms the latter, especially for a few categories such as nn-nnpos in the
msr dataset or adj-adv in the google one. There are mainly two reasons for this.
First, most nouns in English can be verbs as well, but each form of the vocabulary
receives only one embedding, leading to some errors. Second, word2vec very
often outputs terms that are semantically related to the solution expected. For
instance, it produces the form fantastic to the equation [cold : colder :: great : ? ].

Fig. 9. Accuracy of the word2vec and the early solvers on formal analogies in the msr
(left part) and the google (right part) datasets, detailed by categories of equations.

To put those figures in perspective, we report in Table 1 the performance of
a solver that would consider the output of the structured perceptron (the early
variant) whenever we face an equation that has a formal solution, and the output
of word2vec otherwise. Since in practice, we cannot know wether an equation
admits a formal solution, this simulation only provides a point of comparison
with other works that report the performance of embedding-based approaches on
the full data sets. This is for instance the case of the work of [16] where Levy et
al. compare many variants of distributional approaches, the best performing one
recording a slightly better accuracy than our combination (third line of Table 1).
That we compare to state-of-the-art results without much adjustments suggests
that our structured solver is indeed very apt at solving formal equations.

5.3 Phrasal Equations

We trained variants of the structured perceptron using a beam size of 100, and a
value of the metaparameter ⌘ of 7. Since a phrase has an average of 16 symbols,

449 7/4

ICCBR 2018



Structured Learning for Solving Formal Analogies 13

Table 1. Accuracy of di↵erent solvers on the full google and msr datasets. The last
line is the best performance reported by the authors of [16].

msr google

word2vec 67% 63%

early+word2vec 72% 71%

Levy et al., 2015 72.9% 75.8%

it roughly means that we enforce the solver to consume no more of 20% of the
shu✏e of y and z before a complementary operation (X) takes place. While
we initially trained our solver on the training set the most similar to the test
material, we also considered variants training of hard and testing on simple, or
the reverse. Of course, we took care at construction time to ensure no overlap
between training and test sets (see Section 4). Those configurations are compared
to the alea solver where ⇢ was set to 1000, a conservative setting that leads the
solver to always propose a solution. Results are presented in Table 2.

Table 2. Accuracy and silence rate (in parenthesis) of di↵erent configurations of struc-
tured solvers (⌘ = 7) compared to the alea solver (⇢ = 1000) on phrasal equations.
Structured solvers have been trained on 10 epochs.

test simple hard

train simple hard simple hard

standard 30.6 (7) 30.1 (10) 19.6 (17) 24.0 (56)

early 38.4 (8) 27.6 (10) 26.0 (6) 22.9 (7)

late 26.9 (9) 20.3 (11) 18.9 (9) 20.1 (6.7)

safe 25.4 (8) 25.6 (13) 14.6 (18.7) 21.0 (56)

alea 33 (0) 18 (0)

On the simple test set, only one configuration managed to outperform alea:
equations are easier to solve than those of the hard test set, and the latter solver
already achieves a decent job. Still the early variant managed to outperform
alea, which is encouraging. It is also clear that it is far much preferable to train
our models on simple. We observe that at best, we could solve correctly at rank 1
only 38% of the equations of the simple test set: obviously, solving equations
on longer sequences is more challenging, than solving equations on words, as
typically done in the literature. This is also consistent with [7] in which the
authors trained a neural network for solving analogies, but reported a failure of
their model to solve analogies involving long forms.
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On the hard test set, the structured solvers deliver a much better accuracy
than the alea solver (⇢ = 1000) which accuracy platoes at 18%. Expectedly, the
accuracy of solvers on hard is much lower than the one measured on simple.
We also observe that it is overall preferable to train our solvers on hard.

That the best configurations overall are recorded when training on data sets
similar (in terms of di�culty) to the test material is disappointing, although
we anticipated it. This means in practice that care must be taken to prepare
an adequate training set. Understanding good practices for doing so is an open
issue.
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Fig. 10. Accuracy on the hard test set of di↵erent solvers after 1 and 10 epochs, and
for 2 values of the metaparameter ⌘.

Figure 10 investigates the impact of the metaparameter ⌘ and the number
of epochs used to train the solver. Four configurations for each variant we con-
sidered are evaluated on the hard test set. Training over 10 epochs (as done for
the results reported in Table 2) is expectedly preferable to training only on one.
Increasing the value of ⌘ seems to impact performance positively, but increases
the size of the search space, leading to higher time response. It seems overall
that early and standard are the best variants of the structured perceptron,
at least on hard. The silence rate of the standard approach is very high and
around 50%. This suggests that our pruning strategy eliminates from the search
space hypotheses that should not, which is a problem. The silence rate of the
easy variant is however much lower: 7% for ⌘ = 7, and 13% for ⌘ = 20. That it is
higher for largest values of ⌘ simply suggests that there is an interplay between
metaparameters that control the search.
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6 Discussion

We have presented experiments for learning to solve an analogical equation
thanks to structured learning. On formal word equations, our trained solvers
achieve perfect performance, as does the alea solver of [11]. On phrase equa-
tions, the performance of our learning mechanism is lower, but still superior to
the alea solver. Our approach requires example analogies for training. There-
fore we proposed a methodology for acquiring those analogies from a parallel
corpus, without supervision, but leveraging a parallel corpus and a statistical
phrase-based translation model.

We are currently investigating the impact of training formal solvers on more
epochs. We also plan to investigate more systematically the interplay between
some metaparameters, as well as the usefulness of the all the features we con-
sidered in this work. Preliminary results indicate that better performance can
be obtained with less features. Last, we must compare our approach to the one
of [7]: while we do report higher results on equations involving long strings, an
end-to-end comparison is required.
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