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Terminology management is a key component of many natural language 
processing activities such as machine translation (Langlais and Carl, 
2004), text summarization and text indexation.  With the rapid 
development of science and technology continuously increasing the 
number of technical terms, terminology management is certain to 
become of the utmost importance in more and more content-based 
applications. 

While the automatic identification of terms from texts has been the 
focus of past studies (Jacquemin, 2001) (Castellví et al, 2001), the 
current trend in Terminology Management (TM) has shifted to the issue 
of term networking (Kageura et al, 2004).   A possible explanation of 
this shifting may lie in the fact that Terminology Extraction (TE), 
although being a noisy activity, encompasses well established 
techniques that seem difficult to improve significantly upon.  

Despite this shift, we do believe that better extraction of terms could 
carry over subsequent steps of TM.  A traditional TE system usually 
involves a subtle mixture of linguistic rules and statistical metrics in 
order to identify a list of candidate terms where it is hoped that terms 
are ranked first. 

We distinguish our approach to TE from traditional ones in two 
different ways.  First, we give back to the user an active role in the 
extraction process.  That is, instead of encoding a static definition of 
what might or might not be a term, we let the user specify his own.  We 
do so by asking him to set up a training corpus (a corpus where the 
terms have been identified by a human) from which our extractor will 
learn how to define a term.  Second, our approach is completely 
automatic and is readily adapted to the tools (part-of-speech tagger, 
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lemmatizer) and metrics of the user.
One might object that requiring a training corpus is asking the user to 

do a part of the job the machine is supposed to do, but we see it in a 
different way.  We consider that a little help from the user could pay 
back in flexibility. 

The structure of our paper outlines the three steps involved in our 
approach.  In the following section, we describe our algorithm to 
identify candidate terms.  In the third section, we introduce the different 
metrics we compute to score them.  The fourth section explains how we 
applied AdaBoost (Freund and Schapire, 1999), a machine learning 
algorithm, to rank and identify a list of terms.  We then evaluate our 
approach on a corpus which was set up by the Office québécois de la 
langue française to evaluate commercially available term extractors.  
We show that our classifier outperforms the individual metrics used in 
this study.  Finally, we discuss some limitations of our approach and 
propose future works to be done. 
 
Extraction of candidate terms 

 
It is a common practice to extract candidate terms using a part-of-speech 
(POS) tagger and an automaton (a program extracting word sequences 
corresponding to predefined POS patterns).  Usually, those patterns are 
manually handcrafted and target noun phrases, since most of the terms 
of interest are noun phrases (Justeson and Katz, 1995).  Typical 
examples of such patterns can be found in (Jacquemin, 2001). 

As pointed out in (Justeson and Katz, 1995), relying on a POS tagger 
and legitimate pattern recognition is error prone, since taggers are not 
perfect.  This might be especially true for very domain specific texts 
where a tagger is likely to be more erratic.  To overcome this problem 
without giving up the use of POS patterns (since they are easy to design 
and to use), we propose a way to use a training corpus in order to 
automate the creation of an automaton. 

There are many potential advantages with this approach.  First, the 
POS tagger and the tagging errors, to the extent that they are consistent, 
will be automatically assimilated by the automaton.  Second, this gives 
to the user the opportunity to specify the terms that are of interest for 
him.  If many terms involving verbs are found in the training corpus, the 
automaton will reflect that interest as well.  We also observed in 
informal experiments that wide spread patterns often fails to extract 
many terms found in our training corpus. 

Several approaches can be applied when generating an automaton 
from sequences of POS encountered in a training corpus.  A 
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straightforward approach is to memorize all the sequences seen in the 
training corpus.  A sequence of words is thus a candidate term only if its 
sequence of POS tags has been seen before.  This approach is simple but 
naive.  It cannot generate new patterns that are slight variations of the 
ones seen at training time, and an isolated tagging error can lead to a 
bad pattern. 

To avoid those problems, we propose to generate the patterns using a 
language model trained on the POS tags of the terms found in the 
training corpus.  A language model is a function computing the 
probability that a sequence of words has been generated by a certain 
language.  In our case, the words are POS tags and the language is the 
one recognizing the sequences of tags corresponding to terms. Our 
language model can be described as follow: 

where n
w
1

 is a sequence of POS tags and 
i

H  is called the history which 
summarizes the information of the 1!i  previous tags.  To build an 
automaton, we only have to set a threshold and generate all the patterns 
whose probability is higher than it.  An excerpt of such an automaton is 
given in Figure 1. 
 

Probability Pattern 
0.538 NomC AdjQ 
0.293 NomC Prep NomC 
0.032 NomC Dete-dart-ddef NomC 
0.0311 NomC Verb-ParPas 
0.0311 NomC Prep Dete-dart-ddef NomC 
…  

Figure 1  Excerpt of an automatically generated automaton. 
 

Another advantage of such an automaton is that all patterns are 
associated with a probability, giving more information than a binary 
value (legitimate or not).  Indeed, the POS pattern probability is one of 
the numerous metrics that we feed our classifier with. 

 
Scoring the candidate terms 

 
In the previous section, we showed a way to generate an automaton that 
extracts a set of candidate terms that we now want to rank and/or filter.  
Following many other works on term extraction, we score each 
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candidate using various metrics.  Many different ones have been 
identified in (Daille, 1994) and (Castellví et al, 2001).  We do not 
believe that a single metric is sufficient, but instead think that it is more 
fruitful to use several of them and train a classifier to learn how to take 
benefit of each of them. 

Because we think they are interesting for the task, we retained the 
following metrics: the frequency, the length, the log-likelyhood, the 
entropy, tf·idf and the POS pattern probabilities discussed in the 
previous section.  Recall however that our approach is not restricted to 
these metrics, but instead can benefit from any other one that can be 
computed automatically. 

Alone, the frequency is not a robust metric to assess the 
terminological property of a candidate, but it does carry useful 
information, as does also the length of terms. 

In (Dunning, 1993), Dunning advocates the use of log-likelyhood to 
measure whether two events that occur together do so as a coincidence 
or not.  In our case, we want to measure the cohesion of a complex 
candidate term (a candidate term composed of two words or more) by 
verifying if its words occur together as a coincidence or not.  The log-
likelyhood ratio of two adjacent words (

! 

u  and 

! 

v) can be computed with 
the following formula (Daille, 1994): 

where 

! 

a  is the number of times 

! 

uv  appears in the document, 

! 

b the 
number of times 

! 

u  appears not followed by 

! 

v , 

! 

c  the number of times 

! 

v  
appears not preceded by 

! 

u , 

! 

N  the corpus size and 

! 

d  the number of 
candidate terms that does not involve 

! 

u  or 

! 

v .  Following (Russell, 
1998), to compute log-likelyhood on candidate terms involving more 
than two words, we keep the minimum value among the log-likelyhood 
of each possible split in the candidate term. 

With the intuition that terms are coherent units that can appear 
surrounded by various different words, we use as well the entropy to 
rate a candidate term.  The entropy of a candidate is computed by 
averaging its left and right entropy: 
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where 

! 

w
1

n  is the candidate term and 

! 

C  is the corpus from which we are 
extracting the terms. 

Finally, to weight the salience of a candidate term, we also use tf·idf.  
This metric is based on the idea that terms describing a document 
should appear often in it but should not appear in many other 
documents.  It is computed by dividing the frequency of a candidate 
term by the number of documents in an out-of-domain corpus that 
contains it.  Because tf·idf is usually computed on one word, when we 
evaluated complex candidate terms, we computed tf·idf on each of its 
words and kept five values: the first, the last, the minimum, the 
maximum and the average.  In our experiments, the out-of-domain 
corpus was composed of texts taken from the French Canadian 
parliamentary debates (the so-called Hansard), totalizing 1.4 million 
sentences. 

 
Identifying terms among candidates 

 
Once each candidate terms is scored, we must decide which ones should 
finally be elected a term.  To accomplish this task, we train a binary 
classifier (a function which qualifies a candidate as a term or not) on the 
face of the scores we computed for a candidate.  

We use the AdaBoost learning algorithm (Freund and Schapire, 1999) 
to build this classifier.  AdaBoost is a simple but efficient learning 
technique that combines many weak classifiers (a weak classifier must 
be right more than half of the time) into a stronger one.  To achieve this, 
it trains them successively, each time focusing on examples that have 
been hard to classify correctly by the previous weak classifiers.  In our 
experiments, the weak classifiers were binary stumps (binary classifiers 
that compare one of the score to a given threshold to classify a candidate 
term) and we limited their number to 50.  An example of such a 
classifier is presented in Figure 2. 

 
Experiments 

 
Our community lacks a common benchmark on which we could 
compare our result with others.  In this work, we applied our approach 
to a corpus called EAU.  It is composed of six texts dealing with water 
supply.  Its complex terms have been listed by some members or the 
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Office québécois de la langue française for a project called ATTRAIT 
(Atelier de Travail Informatisé du Terminologue) whose main objective 
was to evaluate existing software solutions for the terminologist1. 
 
Input: A scored candidate term c 

 

! 

"  = 0 
 if entropy(c) > 1.6 then 

! 

"  = 

! 

"  + 0.26 else 

! 

"  = 

! 

"  - 0.26 
 if length(c) > 1.6 then 

! 

"  = 

! 

"  + 0.08 else 

! 

"  = 

! 

"  - 0.08 
 … 
 if 

! 

"  > 0 then return term else return not-term  

Figure 2  An excert from a classifier generated by the Adaboost 
learning algorithm. 

 
In our experiments, we kept the preprocessing stage as simple as 
possible.  The corpus and the list of terms were automatically tokenized, 
lemmatized and had their POS tagged with an in-house package (Foster, 
1991).  Once preprocessed, the EAU corpus is composed 12 492 words 
and 208 terms.  Of these 208 terms, 186 appear without syntactic 
variation (as they were listed) a total of 400 times. 

Since the terms of our evaluation corpus are already identified, it is 
straightforward to compute the precision and the recall of our system.  
Precision (resp. recall) is the ratio of terms correctly identified by the 
system over the total number of terms identified as such (resp. over the 
total number of terms manually identified in the list). 

We evaluated our system using five fold cross-validation.  This 
means that the corpus was partitioned into five subsets and that five 
experiments were run each time testing with a different subset and 
training the automaton and the classifier with the four others.  Each 
training set (resp. testing set) was composed of about 12 000 (resp. 
3000) words containing an average of about 150 (resp. 50) terms. 

Because only complex terms are listed and because we do not 
consider term variations, our results only consider complex terms that 
appear without variation.  Also, after informal experiments, we set the 
minimum probability of a pattern to be accepted by our automaton to 
0.005.  The performance of our system, averaged on the five fold of the 
cross-validation, can be found in Table 1. 

From the results, we can see that the automaton has a high recall but a 
low precision, which was to be expected.  Indeed, the automaton is only 
                                            
1. See http://www.rint.org for more details on this project. 
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a rough filter that eliminates easy to eliminate word sequences, but keep 
as much terms as possible.  On the other hand, the selection did not 
perform as well as we expected.  Its low recall and precision could be 
explained by the metrics that are not as expressive as we though and by 
the fact that 75% of the terms in our test corpora appears only one time.  
When a term appears only one time, its frequency and entropy become 
useless.  The results presented in Table 2 seem to confirm our 
hypothesis. 

 
Part µ  !  

Precision 0.14 0.05 Extraction 
Recall 0.94 0.03 

Precision 0.45 0.19 Identification 
Recall 0.41 0.20 

Precision 0.43 0.18 Overall system 
Recall 0.38 0.18 

Table 1  Mean ( µ ) and standard deviation (! ) of the precision and 
recall of the different parts of our system. 

 
Because we wanted to compare our system with the individual metrics 
that it uses, we had to modify it such that it ranks the candidate terms 
instead of simply accepting or rejecting them.  To do so, we made our 
system return 

! 

"  instead of term or not term (see Figure 2).  We then 
sorted the candidate terms in decreasing order of their 

! 

"  value. 
A common practice when comparing ranking algorithms is to build 

their ROC (receiving operator curve), which shows the ratio of good 
identifications (y axis) against the ratio of bad identification (x axis) for 
all the acceptation thresholds.  The best curve will augment in y faster 
than in x, so will have a greater area under it.  We can see in Figure 3 
that our system performs better than entropy or log-likelyhood alone.  
This leads us to believe that different scores carry different information 
and that combining them, as we did it, is fruitful. 

 
Discussion and future works 

 
In this paper, we presented an approach to automatically generate an 
end-to-end term extractor from a training corpus.  We also proposed a 
way to combine many statistical scores in order to extract terms more 
efficiently than when each score is used in isolation. 

Because of the nature of the training algorithm, we can easily extend 
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the set of metrics we considered here.  Even a priori knowledge could 
be integrated by specifying keywords before the extraction and setting a 
score to one when a candidate term contains a keyword or zero 
otherwise.  The same flexibility is achieved when the automaton is 
created.  By generating it directly from the output of the POS tagger, our 
solution does not depend of a particular tagger and is tolerant to 
consistent tagging errors.  

 
Criteria µ  !  

Precision 0.39 0.16 Candidates appearing one time 
Recall 0.33 0.22 

Precision 0.73 0.14 Candidates appearing at least two times 
Recall 0.85 0.09 

Table 2  Comparison of the performance of the term identification part 
for candidates appearing with different frequencies. 

 

 
Figure 3  The ROC of our system (AdaBoost) against two other score 
when we trained our system on one half of our corpus and tested on 
the other.  A greater area under the curve is better. 

 
A shortcoming of this work is that we did not treat term variations.  
Terminology variation is a well-known phenomenon, whose amount is 
estimated according to (Kageura et al., 2004) from 15% to 35%. We 
think that the best way to deal with them in our framework would be to 
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introduce a preprocessing stage where variations are normalized to a 
canonical form.  Term variations have been extensively studied in 
(Jacquemin, 2001) and (Daille, 2003). 

In our experiments, we focused on complex terms.  Because some 
scores do not apply to simple terms (e.g. log-likelyhood and length), we 
think that the best way to extract simple terms would be to train a 
dedicated classifier. 
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