

1

CHAPTER NUMBER

Corpus-Based Terminology
Extraction

ALEXANDRE PATRY AND PHILIPPE LANGLAIS

Terminology management is a key component of many natural language
processing activities such as machine translation (Langlais and Carl,
2004), text summarization and text indexation. With the rapid
development of science and technology continuously increasing the
number of technical terms, terminology management is certain to
become of the utmost importance in more and more content-based
applications.

While the automatic identification of terms from texts has been the
focus of past studies (Jacquemin, 2001) (Castellví et al, 2001), the
current trend in Terminology Management (TM) has shifted to the issue
of term networking (Kageura et al, 2004). A possible explanation of
this shifting may lie in the fact that Terminology Extraction (TE),
although being a noisy activity, encompasses well established
techniques that seem difficult to improve significantly upon.

Despite this shift, we do believe that better extraction of terms could
carry over subsequent steps of TM. A traditional TE system usually
involves a subtle mixture of linguistic rules and statistical metrics in
order to identify a list of candidate terms where it is hoped that terms
are ranked first.

We distinguish our approach to TE from traditional ones in two
different ways. First, we give back to the user an active role in the
extraction process. That is, instead of encoding a static definition of
what might or might not be a term, we let the user specify his own. We
do so by asking him to set up a training corpus (a corpus where the
terms have been identified by a human) from which our extractor will
learn how to define a term. Second, our approach is completely
automatic and is readily adapted to the tools (part-of-speech tagger,

Alexandre Patry and Philippe Langlais

2

lemmatizer) and metrics of the user.
One might object that requiring a training corpus is asking the user to

do a part of the job the machine is supposed to do, but we see it in a
different way. We consider that a little help from the user could pay
back in flexibility.

The structure of our paper outlines the three steps involved in our
approach. In the following section, we describe our algorithm to
identify candidate terms. In the third section, we introduce the different
metrics we compute to score them. The fourth section explains how we
applied AdaBoost (Freund and Schapire, 1999), a machine learning
algorithm, to rank and identify a list of terms. We then evaluate our
approach on a corpus which was set up by the Office québécois de la
langue française to evaluate commercially available term extractors.
We show that our classifier outperforms the individual metrics used in
this study. Finally, we discuss some limitations of our approach and
propose future works to be done.

Extraction of candidate terms

It is a common practice to extract candidate terms using a part-of-speech
(POS) tagger and an automaton (a program extracting word sequences
corresponding to predefined POS patterns). Usually, those patterns are
manually handcrafted and target noun phrases, since most of the terms
of interest are noun phrases (Justeson and Katz, 1995). Typical
examples of such patterns can be found in (Jacquemin, 2001).

As pointed out in (Justeson and Katz, 1995), relying on a POS tagger
and legitimate pattern recognition is error prone, since taggers are not
perfect. This might be especially true for very domain specific texts
where a tagger is likely to be more erratic. To overcome this problem
without giving up the use of POS patterns (since they are easy to design
and to use), we propose a way to use a training corpus in order to
automate the creation of an automaton.

There are many potential advantages with this approach. First, the
POS tagger and the tagging errors, to the extent that they are consistent,
will be automatically assimilated by the automaton. Second, this gives
to the user the opportunity to specify the terms that are of interest for
him. If many terms involving verbs are found in the training corpus, the
automaton will reflect that interest as well. We also observed in
informal experiments that wide spread patterns often fails to extract
many terms found in our training corpus.

Several approaches can be applied when generating an automaton
from sequences of POS encountered in a training corpus. A

Corpus-Based Terminology Extraction

3

straightforward approach is to memorize all the sequences seen in the
training corpus. A sequence of words is thus a candidate term only if its
sequence of POS tags has been seen before. This approach is simple but
naive. It cannot generate new patterns that are slight variations of the
ones seen at training time, and an isolated tagging error can lead to a
bad pattern.

To avoid those problems, we propose to generate the patterns using a
language model trained on the POS tags of the terms found in the
training corpus. A language model is a function computing the
probability that a sequence of words has been generated by a certain
language. In our case, the words are POS tags and the language is the
one recognizing the sequences of tags corresponding to terms. Our
language model can be described as follow:

where n
w
1

 is a sequence of POS tags and
i

H is called the history which
summarizes the information of the 1!i previous tags. To build an
automaton, we only have to set a threshold and generate all the patterns
whose probability is higher than it. An excerpt of such an automaton is
given in Figure 1.

Probability Pattern
0.538 NomC AdjQ
0.293 NomC Prep NomC
0.032 NomC Dete-dart-ddef NomC
0.0311 NomC Verb-ParPas
0.0311 NomC Prep Dete-dart-ddef NomC
…

Figure 1 Excerpt of an automatically generated automaton.

Another advantage of such an automaton is that all patterns are
associated with a probability, giving more information than a binary
value (legitimate or not). Indeed, the POS pattern probability is one of
the numerous metrics that we feed our classifier with.

Scoring the candidate terms

In the previous section, we showed a way to generate an automaton that
extracts a set of candidate terms that we now want to rank and/or filter.
Following many other works on term extraction, we score each

!
=

=
n

i

ii

n
HwPwP

1

1)|()(

Alexandre Patry and Philippe Langlais

4

candidate using various metrics. Many different ones have been
identified in (Daille, 1994) and (Castellví et al, 2001). We do not
believe that a single metric is sufficient, but instead think that it is more
fruitful to use several of them and train a classifier to learn how to take
benefit of each of them.

Because we think they are interesting for the task, we retained the
following metrics: the frequency, the length, the log-likelyhood, the
entropy, tf·idf and the POS pattern probabilities discussed in the
previous section. Recall however that our approach is not restricted to
these metrics, but instead can benefit from any other one that can be
computed automatically.

Alone, the frequency is not a robust metric to assess the
terminological property of a candidate, but it does carry useful
information, as does also the length of terms.

In (Dunning, 1993), Dunning advocates the use of log-likelyhood to
measure whether two events that occur together do so as a coincidence
or not. In our case, we want to measure the cohesion of a complex
candidate term (a candidate term composed of two words or more) by
verifying if its words occur together as a coincidence or not. The log-
likelyhood ratio of two adjacent words (

!

u and

!

v) can be computed with
the following formula (Daille, 1994):

where

!

a is the number of times

!

uv appears in the document,

!

b the
number of times

!

u appears not followed by

!

v ,

!

c the number of times

!

v
appears not preceded by

!

u ,

!

N the corpus size and

!

d the number of
candidate terms that does not involve

!

u or

!

v . Following (Russell,
1998), to compute log-likelyhood on candidate terms involving more
than two words, we keep the minimum value among the log-likelyhood
of each possible split in the candidate term.

With the intuition that terms are coherent units that can appear
surrounded by various different words, we use as well the entropy to
rate a candidate term. The entropy of a candidate is computed by
averaging its left and right entropy:

)log()()log()(

)log()()log()(

loglogloglogloglog

bdbddcdc

babacaca

NNddccbbaauv

++!++!

++!++!

++++=!

()
{ }
!
"

=

+
=

Cusu
s

us

left

n

right

n

leftn

hse

wewe
we

:

11

1

)(

2

)()(
)(

Corpus-Based Terminology Extraction

5

where

!

w
1

n is the candidate term and

!

C is the corpus from which we are
extracting the terms.

Finally, to weight the salience of a candidate term, we also use tf·idf.
This metric is based on the idea that terms describing a document
should appear often in it but should not appear in many other
documents. It is computed by dividing the frequency of a candidate
term by the number of documents in an out-of-domain corpus that
contains it. Because tf·idf is usually computed on one word, when we
evaluated complex candidate terms, we computed tf·idf on each of its
words and kept five values: the first, the last, the minimum, the
maximum and the average. In our experiments, the out-of-domain
corpus was composed of texts taken from the French Canadian
parliamentary debates (the so-called Hansard), totalizing 1.4 million
sentences.

Identifying terms among candidates

Once each candidate terms is scored, we must decide which ones should
finally be elected a term. To accomplish this task, we train a binary
classifier (a function which qualifies a candidate as a term or not) on the
face of the scores we computed for a candidate.

We use the AdaBoost learning algorithm (Freund and Schapire, 1999)
to build this classifier. AdaBoost is a simple but efficient learning
technique that combines many weak classifiers (a weak classifier must
be right more than half of the time) into a stronger one. To achieve this,
it trains them successively, each time focusing on examples that have
been hard to classify correctly by the previous weak classifiers. In our
experiments, the weak classifiers were binary stumps (binary classifiers
that compare one of the score to a given threshold to classify a candidate
term) and we limited their number to 50. An example of such a
classifier is presented in Figure 2.

Experiments

Our community lacks a common benchmark on which we could
compare our result with others. In this work, we applied our approach
to a corpus called EAU. It is composed of six texts dealing with water
supply. Its complex terms have been listed by some members or the

()
{ }

xxxh

hse
Csuu

s

su

right

log)(

)(
:

=

= !
"

Alexandre Patry and Philippe Langlais

6

Office québécois de la langue française for a project called ATTRAIT
(Atelier de Travail Informatisé du Terminologue) whose main objective
was to evaluate existing software solutions for the terminologist1.

Input: A scored candidate term c

!

" = 0
 if entropy(c) > 1.6 then

!

" =

!

" + 0.26 else

!

" =

!

" - 0.26
 if length(c) > 1.6 then

!

" =

!

" + 0.08 else

!

" =

!

" - 0.08
 …
 if

!

" > 0 then return term else return not-term

Figure 2 An excert from a classifier generated by the Adaboost
learning algorithm.

In our experiments, we kept the preprocessing stage as simple as
possible. The corpus and the list of terms were automatically tokenized,
lemmatized and had their POS tagged with an in-house package (Foster,
1991). Once preprocessed, the EAU corpus is composed 12 492 words
and 208 terms. Of these 208 terms, 186 appear without syntactic
variation (as they were listed) a total of 400 times.

Since the terms of our evaluation corpus are already identified, it is
straightforward to compute the precision and the recall of our system.
Precision (resp. recall) is the ratio of terms correctly identified by the
system over the total number of terms identified as such (resp. over the
total number of terms manually identified in the list).

We evaluated our system using five fold cross-validation. This
means that the corpus was partitioned into five subsets and that five
experiments were run each time testing with a different subset and
training the automaton and the classifier with the four others. Each
training set (resp. testing set) was composed of about 12 000 (resp.
3000) words containing an average of about 150 (resp. 50) terms.

Because only complex terms are listed and because we do not
consider term variations, our results only consider complex terms that
appear without variation. Also, after informal experiments, we set the
minimum probability of a pattern to be accepted by our automaton to
0.005. The performance of our system, averaged on the five fold of the
cross-validation, can be found in Table 1.

From the results, we can see that the automaton has a high recall but a
low precision, which was to be expected. Indeed, the automaton is only

1. See http://www.rint.org for more details on this project.

Corpus-Based Terminology Extraction

7

a rough filter that eliminates easy to eliminate word sequences, but keep
as much terms as possible. On the other hand, the selection did not
perform as well as we expected. Its low recall and precision could be
explained by the metrics that are not as expressive as we though and by
the fact that 75% of the terms in our test corpora appears only one time.
When a term appears only one time, its frequency and entropy become
useless. The results presented in Table 2 seem to confirm our
hypothesis.

Part µ !

Precision 0.14 0.05 Extraction
Recall 0.94 0.03

Precision 0.45 0.19 Identification
Recall 0.41 0.20

Precision 0.43 0.18 Overall system
Recall 0.38 0.18

Table 1 Mean (µ) and standard deviation (!) of the precision and
recall of the different parts of our system.

Because we wanted to compare our system with the individual metrics
that it uses, we had to modify it such that it ranks the candidate terms
instead of simply accepting or rejecting them. To do so, we made our
system return

!

" instead of term or not term (see Figure 2). We then
sorted the candidate terms in decreasing order of their

!

" value.
A common practice when comparing ranking algorithms is to build

their ROC (receiving operator curve), which shows the ratio of good
identifications (y axis) against the ratio of bad identification (x axis) for
all the acceptation thresholds. The best curve will augment in y faster
than in x, so will have a greater area under it. We can see in Figure 3
that our system performs better than entropy or log-likelyhood alone.
This leads us to believe that different scores carry different information
and that combining them, as we did it, is fruitful.

Discussion and future works

In this paper, we presented an approach to automatically generate an
end-to-end term extractor from a training corpus. We also proposed a
way to combine many statistical scores in order to extract terms more
efficiently than when each score is used in isolation.

Because of the nature of the training algorithm, we can easily extend

Alexandre Patry and Philippe Langlais

8

the set of metrics we considered here. Even a priori knowledge could
be integrated by specifying keywords before the extraction and setting a
score to one when a candidate term contains a keyword or zero
otherwise. The same flexibility is achieved when the automaton is
created. By generating it directly from the output of the POS tagger, our
solution does not depend of a particular tagger and is tolerant to
consistent tagging errors.

Criteria µ !

Precision 0.39 0.16 Candidates appearing one time
Recall 0.33 0.22

Precision 0.73 0.14 Candidates appearing at least two times
Recall 0.85 0.09

Table 2 Comparison of the performance of the term identification part
for candidates appearing with different frequencies.

Figure 3 The ROC of our system (AdaBoost) against two other score
when we trained our system on one half of our corpus and tested on
the other. A greater area under the curve is better.

A shortcoming of this work is that we did not treat term variations.
Terminology variation is a well-known phenomenon, whose amount is
estimated according to (Kageura et al., 2004) from 15% to 35%. We
think that the best way to deal with them in our framework would be to

Corpus-Based Terminology Extraction

9

introduce a preprocessing stage where variations are normalized to a
canonical form. Term variations have been extensively studied in
(Jacquemin, 2001) and (Daille, 2003).

In our experiments, we focused on complex terms. Because some
scores do not apply to simple terms (e.g. log-likelyhood and length), we
think that the best way to extract simple terms would be to train a
dedicated classifier.

Acknowledgements

We would like to thank Hugo Larochelle who found the corpus we used
in our experiments and Elliott Macklovitch who made some useful
comments on the first draft of this document. This work has been
subsidized by NSERC and FQRNT.

References

Castellví, M. Teresa Cabré; Bagot, Rosa Estopà; Palastresi, Jordi
Vivaldi; Automatic Term Detection: A Review of Current Systems in
Recent advances in computational terminology. John Benjamin, 2001.
Daille, Béatrice; Study and Implementation of Combined Techniques
for Automatic Extraction of Terminology in The Balancing Act:
Combining Symbolic and Statistical Approaches to Language. New
Mexico State University, Las Cruces, 1994.
Daille, Béatrice; Conceptual structuring through term variations in
Proceedings of the ACL Workshop on Multiword Expressions: Analysis,
Acquisition and Treatment. 2003.
Dunning, Ted; Accurate Methods for the Statistics of Surprise and
Coincidence. 1993.
Foster, George; Statistical lexical disambiguation, Master Thesis.
McGill University, Montreal, 1991.
Freund, Y.; Schapire, R.E.; A Short Introduction to Boosting in Journal
of Japanese Society for Artificial Intelligence. 1999.
Jacquemin, Christian; Spotting and Discovering Terms through Natural
Language Processing. MIT Press, 2001.
Justeson, John S.; Katz, Slava M.; Technical Terminology: Some
Linguistic Properties and an Algorithm for Identification in Text in
Natural Language Engineering. 1995.
Kageura, Kyo; Daille, Béatrice; Nakagawa, Hiroshi; Chien, Lee-Feng;
Recent Trends in Computational Terminology in Terminology. John
Benjamin, 2004.

Alexandre Patry and Philippe Langlais

10

Langlais, Philippe; Carl, Michael; General-purpose statistical translation
engine and domain specific texts: Would it work? in Terminology. John
Benjamin, 2004.

