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Abstract

In this article, we present a translation
system which builds translations by glu-
ing together Tree-Phrases, i.e. associ-
ations between simple syntactic depen-
dency treelets in a source language and
their corresponding phrases in a target
language. The Tree-Phrases we use in
this study are syntactically informed and
present the advantage of gathering source
and target material whose words do not
have to be adjacent. We show that the
phrase-based translation engine we imple-
mented benefits from Tree-Phrases.

1 Introduction

Phrase-based machine translation is now a popular
paradigm. It has the advantage of naturally cap-
turing local reorderings and is shown to outper-
form word-based machine translation (Koehn et al.,
2003). The underlying unit (a pair of phrases), how-
ever, does not handle well languages with very dif-
ferent word orders and fails to derive generalizations
from the training corpus.

Several alternatives have been recently proposed
to tackle some of these weaknesses. (Matusov et
al., 2005) propose to reorder the source text in or-
der to mimic the target word order, and then let a
phrase-based model do what it is good at. (Simard
et al., 2005) detail an approach where the standard
phrases are extended to account for “gaps” either on
the target or source side. They show that this repre-

sentation has the potential to better exploit the train-
ing corpus and to nicely handle differences such as
negations in French and English that are poorly han-
dled by standard phrase-based models.

Others are considering translation as a syn-
chronous parsing process e.g. (Melamed, 2004;
Ding and Palmer, 2005)) and several algorithms
have been proposed to learn the underlying produc-
tion rule probabilities (Graehl and Knight, 2004;
Ding and Palmer, 2004). (Chiang, 2005) proposes
an heuristic way of acquiring context free transfer
rules that significantly improves upon a standard
phrase-based model.

As mentioned in (Ding and Palmer, 2005), most
of these approaches require some assumptions on
the level of isomorphism (lexical and/or structural)
between two languages. In this work, we consider
a simple kind of unit: a Tree-Phrase (TP), a com-
bination of a fully lexicalized treelet (TL) and an
elastic phrase (EP), the tokens of which may be in
non-contiguous positions. TPs capture some syntac-
tic information between two languages and can eas-
ily be merged with standard phrase-based engines.

A TP can be seen as a simplification of the treelet
pairs manipulated in (Quirk et al., 2005). In particu-
lar, we do not address the issue of projecting a source
treelet into a target one, but take the bet that collect-
ing (without structure) the target words associated
with the words encoded in the nodes of a treelet will
suffice to allow translation. This set of target words
is what we call an elastic phrase.

We show that these units lead to (modest) im-
provements in translation quality as measured by au-
tomatic metrics. We conducted all our experiments



on an in-house version of the French-English Cana-
dian Hansards.

This paper is organized as follows. We first define
a Tree-Phrase in Section 2, the unit with which we
built our system. Then, we describe in Section 3
the phrase-based MT decoder that we designed to
handle TPs. We report in Section 4 the experiments
we conducted combining standard phrase pairs and
TPs. We discuss this work in Section 5 and then
conclude in Section 6.

2 Tree-Phrases

We call tree-phrase(TP) a bilingual unit consisting
of a source, fully-lexicalizedtreelet(TL) and a tar-
getphrase(EP), that is, the target words associated
with the nodes of the treelet, in order. A treelet can
be an arbitrary, fully-lexicalized subtree of the parse
tree associated with a source sentence. A phrase can
be an arbitrary sequence of words. This includes
the standard notion of phrase, popular with phrased-
based SMT (Koehn et al., 2003; Vogel et al., 2003)
as well as sequences of words that contain gaps (pos-
sibly of arbitrary size).

In this study, we collected a repository of tree-
phrases using a robust syntactic parser called SYN-
TEX (Bourigault and Fabre, 2000). SYNTEX identi-
fies syntactic dependency relations between words.
It takes as input a text processed by the TREETAG-
GER part-of-speech tagger.1 An example of the out-
put SYNTEX produces for the source (French) sen-
tence “on a demandé des cŕedits f́ed́eraux” (request
for federal funding) is presented in Figure 1.

We parsed with SYNTEX the source (French) part
of our training bitext (see Section 4.1). From this
material, we extracted all dependency subtrees of
depth 1 from the complete dependency trees found
by SYNTEX. An elastic phrase is simply the list of
tokens aligned with the words of the corresponding
treelet as well as the respective offsets at which they
were found in the target sentence (the first token of
an elastic phrase always has an offset of 0).

For instance, the two treelets in Figure 2 will be
collected out of the parse tree in Figure 1, yielding
2 tree-phrases. Note that the TLs as well as the EPs
might not be contiguous as is for instance the case

1www.ims.uni-stuttgart.de/projekte/
corplex/ .

a demandé
SUB

llllllllll OBJ

YYYYYYYYYYYYYYYYYY

on cr édits
DET

llllllllll ADJ
RRRRRRRRRR

des f édéraux

Figure 1: Parse of the sentence “on a demandé des
crédits f́ed́eraux” (request for federal funding). Note
that the 2 words “a” and “demandé” (literally “have”
and “asked”) from the original sentence have been
merged together by SYNTEX to form a single token.
These tokens are the ones we use in this study.

with the first pair of structures listed in the example.

3 The Translation Engine

We built a translation engine very similar to the sta-
tistical phrase-based engine PHARAOH described in
(Koehn, 2004) that we extended to use tree-phrases.
Not only does our decoder differ from PHARAOH by
using TPs, it also uses direct translation models. We
know from (Och and Ney, 2002) that not using the
noisy-channel approach does not impact the quality
of the translation produced.

3.1 The maximization setting

For a source sentencef , our engine incrementally
generates a set of translation hypothesesH by com-
bining tree-phrase (TP) units and phrase-phrase (PP)
units.2 We define a hypothesis in this set ash =
{Ui ≡ (Fi, Ei)}i∈[1,u], a set ofu pairs of source
(Fi) and target sequences (Ei) of ni andmi words
respectively:

Fi ≡ {fji
n

: ji
n ∈ [1, |f |]}n∈[1,ni]

Ei ≡ {elim
: lim ∈ [1, |e|]}m∈[1,mi]

under the constraints that for alli ∈ [1, u], ji
n <

ji
n+1 ,∀n ∈ [1, ni[ for a sourcetreelet(similar con-

straints apply on the target side), andji
n+1 = ji

n +
1 ,∀n ∈ [1, ni[ for a sourcephrase. The way the
hypotheses are built imposes additional constraints
between units that will be described in Section 3.3.
Note that, at decoding time,|e|, the number of words

2What we call here a phrase-phrase unit is simply a pair of
source/target sequences of words.



alignment:

a demand́e≡ request for, f́ed́eraux≡ federal,
crédits≡ funding

treelets:

a demandé

qqqqqqq
MMMMMMM

on cr édits

cr édits

qqqqqqq
MMMMMMM

des f édéraux

tree-phrases:

TL? {{on@-1} a_demand é {cr édits@2}}
EP? |request@0||for@1||funding@3|

TL {{des@-1} cr édits {f édéraux@1}}
EP |federal@0||funding@1|

Figure 2: The Tree-Phrases collected out of the
SYNTEX parse for the sentence pair of Figure 1.
Non-contiguous structures are marked with a star.
Each dependent node of a given governor token is
displayed as a list surrounding the governor node,
e.g. {governor{right-dependent}}. Along with the
tokens of each node, we present their respective off-
set (the governor/root node has the offset 0 by defi-
nition). The format we use to represent the treelets
is similar to the one proposed in (Quirk et al., 2005).

of the translation is unknown, but is bounded accord-
ing to |f | (in our case,|e|max = 2× |f |+ 5).

We define the source and target projection of a
hypothesish by theproj operator which collectsin
order the words of a hypothesis along one language:

projF (h) =
{
fp : p ∈

⋃u
i=1{ji

n}n∈[1,ni]

}
projE(h) =

{
ep : p ∈

⋃u
i=1{lim}m∈[1,mi]

}
If we denote byHf the set of hypotheses that

havef as a source projection (that is,Hf = {h :
projF (h) ≡ f}), then our translation engine seeks
ê = projE(ĥ) where:

ĥ = argmax
h∈Hf

s(h)

The function we seek to maximizes(h) is a log-
linear combination of 9 components, and might be

better understood as the numerator of a maximum
entropy model popular in several statistical MT sys-
tems (Och and Ney, 2002; Bertoldi et al., 2004; Zens
and Ney, 2004; Simard et al., 2005; Quirk et al.,
2005). The components are the so-called feature
functions (described below) and the weighting co-
efficients (λ) are the parameters of the model:

s(h) = λpprf
log ppprf

(h) + λp|h|+
λtprf

log ptprf
(h) + λt|h|+

λppibm
log pppibm

(h)+
λtpibm

log ptpibm
(h)+

λlm log plm(projE(h))+
λd d(h) + λw|projE(h)|

3.2 The components of the scoring function

We briefly enumerate the features used in this study.

Translation models Even if a tree-phrase is a gen-
eralization of a standard phrase-phrase unit, for in-
vestigation purposes, we differentiate in our MT
system between two kinds of models: a TP-based
modelptp and a phrase-phrase modelppp. Both rely
on conditional distributions whose parameters are
learned over a corpus. Thus, each model is assigned
its own weighting coefficient, allowing the tuning
process to bias the engine toward a special kind of
unit (TP or PP).

We have, fork ∈ {rf, ibm}:

pppk
(h) =

∏u
i=1 ppp(Ei|Fi)

ptpk
(h) =

∏u
i=1 ptp(Ei|Fi)

with p•rf
standing for a model trained by rel-

ative frequency, whereasp•ibm
designates a non-

normalized score computed by an IBM model-1
translation modelp, where f0 designates the so-
called NULL word:

p•ibm
(Ei|Fi) =

mi∏
m=1

ni∑
n=1

p(elim
|fji

n
) + p(eki

m
|f0)

Note that by settingλtprf
andλtpibm

to zero, we
revert back to a standard phrase-based translation
engine. This will serve as a reference system in the
experiments reported (see Section 4).

The language model Following a standard prac-
tice, we use a trigram target language model
plm(projE(h)) to control the fluency of the trans-
lation produced. See Section 3.3 for technical sub-
tleties related to their use in our engine.



Distortion model d This feature is very similar to
the one described in (Koehn, 2004) and only de-
pends on the offsets of the source units. The only
difference here arises when TPs are used to build a
translation hypothesis:

d(h) = −
n∑

i=1

abs(1 + F i−1 − F i)

where:

F i =

{ ∑
n∈[1,ni] j

i
n/ni if Fi is a treelet

ji
ni

otherwise
F i = ji

1

This score encourages the decoder to produce a
monotonous translation, unless the language model
strongly privileges the opposite.

Global bias features Finally, three simple fea-
tures help control the translation produced. Each
TP (resp. PP) unit used to produce a hypothesis
receives a fixed weightλt (resp. λp). This allows
the introduction of an artificial bias favoring either
PPs or TPs during decoding. Each target word pro-
duced is furthermore given a so-called word penalty
λw which provides a weak way of controlling the
preference of the decoder for long or short transla-
tions.

3.3 The search procedure

The search procedure is described by the algorithm
in Figure 3. The first stage of the search consists in
collecting all the units (TPs or PPs) whose source
part matches the source sentencef . We callU the
set of those matching units.

In this study, we apply a simple match policy that
we callexact matchpolicy. A TL t matches a source
sentencef if its root matchesf at a source position
denotedr and if all the other wordsw of t satisfy:

fow+r = w

whereow designates the offset ofw in t.
Hypotheses are built synchronously along with

the target side (by appending the target material to
the right of the translation being produced) by pro-
gressively covering the positions of the source sen-
tencef being translated.

Require: a source sentencef
U ← {u : s-match(u, f)}
FUTURECOST(U)
for s← 1 to |f | do

S[s]← ∅

S[0]← {(∅, ε, 0)}
for s← 0 to |f | − 1 do

PRUNE(S[s], β)
for all hypotheses aliveh ∈ S[s] do

for all u ∈ U do
if EXTENDS(u, h) then

h′ ← UPDATE(u, h)
k ← |projF (h′)|
S[k]← S[k] ∪ {h′}

return argmaxh∈S[|f |] ρ : h→ (ps, t, ρ)

Figure 3: The search algorithm. The symbol← is
used in place of assignments, while→ denotes uni-
fication (as in languages such as Prolog).

The search space is organized into a setS of |f |
stacks, where a stackS[s] (s ∈ [1, |f |]) contains all
the hypotheses covering exactlys source words. A
hypothesish = (ps, t, ρ) is composed of its target
materialt, the source positions coveredps as well as
its scoreρ. The search space is initialized with an
empty hypothesis:S[0] = {(∅, ε, 0)}.

The search procedure consists in extending each
partial hypothesish with every unit that can con-
tinue it. This process ends when all partial hypothe-
ses have been expanded. The translation returned is
the best one contained inS[|f |]:

ê = projE(argmax
h∈S[|f |]

ρ : h→ (ps, t, ρ))

PRUNE — In order to make the search tractable,
each stackS[s] is pruned before being expanded.
Only the hypotheses whose scores are within a frac-
tion (controlled by a meta-parameterβ which typi-
cally is 0.0001 in our experiments) of the score of
the best hypothesis in that stack are considered for
expansion. We also limit the number of hypotheses
maintained in a given stack to the topmaxStack
ones (maxStack is typically set to 500).

Because beam-pruning tends to promote in a stack
partial hypotheses that translate easy parts (i.e. parts



that are highly scored by the translation and lan-
guage models), the score considered while pruning
not only involves the cost of a partial hypothesis so
far, but also an estimation of the future cost that will
be incurred by fully expanding it.

FUTURECOST — We followed the heuristic de-
scribed in (Koehn, 2004), which consists in comput-
ing for each source range[i, j] the minimum cost
c(i, j) with which we can translate the source se-
quencef j

i . This is pre-computed efficiently at an
early stage of the decoding (second line of the algo-
rithm in Figure 3) by a bottom-up dynamic program-
ming scheme relying on the following recursion:

c(i, j) = min

{
mink∈[i,j[c(i, k) + c(k, j)
min

u∈U/us∩fj
i =us

score(us)

whereus stands for the projection ofu on the tar-
get side (us ≡ projE(u)), and score(u) is com-
puted by considering the language model and the
translation componentsppp of the s(h) score. The
future cost ofh is then computed by summing the
costc(i, j) of all its empty source ranges[i, j].

EXTENDS — When we simply deal with standard
(contiguous) phrases, extending a hypothesish by a
unit u basically requires that the source positions of
u be empty inh. Then, the target material ofu is
appended to the current hypothesish.

Because we work with treelets here, things are
a little more intricate. Conceptually, we are con-
fronted with the construction of a (partial) source
dependency tree while collecting the target mate-
rial in order. Therefore, the decoder needs to check
whether a given TL (the source part ofu) is compati-
ble with the TLs belonging toh. Since we decided in
this study to use depth-one treelets, we consider that
two TLs arecompatibleif either they do not share
any source word, or, if they do, this shared word
must be the governor of one TL and a dependent in
the other TL.

So, for instance, in the case of Figure 2, the
two treelets are deemed compatible (they obviously
should be since they both belong to the same orig-
inal parse tree) becausecr édit is the governor
in the right-hand treelet while being the depen-
dent in the left-hand one. On the other hand, the
two treelets in Figure 4 are not, sincepr ésident

is the governor of both treelets, even thoughmr.
le pr ésident suppl éant would be a valid
source phrase. Note that it might be the case that
the treelet{{mr.@-2} {le@-1} pr ésident
{suppl éant@1}} has been observed during
training, in which case it will compete with the
treelets in Figure 2.

pr ésident

mr.

pr ésident

qqqqqqq
MMMMMMM

le suppl éant

Figure 4: Example of two incompatible treelets.
mr. speaker and the acting speaker
are their respective English translations.

Therefore, extending a hypothesis containing a
treelet with a new treelet consists in merging the two
treelets (if they are compatible) and combining the
target material accordingly. This operation is more
complicated than in a standard phrase-based decoder
since we allow gaps on the target side as well. More-
over, the target material of two compatible treelets
may intersect. This is for instance the case for the
two TPs in Figure 2 where the wordfunding is
common to both phrases.

UPDATE — Wheneveru extendsh, we add a
new hypothesish′ in the corresponding stack
S[|projF (h′)|]. Its score is computed by adding to
that of h the score of each component involved in
s(h). For all but the one language model compo-
nent, this is straightforward. However, care must be
taken to update the language model score since the
target material ofu does not come necessarily right
after that ofh as would be the case if we only ma-
nipulated PP units.

Figure 5 illustrates the kind of bookkeeping
required. In practice, the target material of
a hypothesis is encoded as a vector of triplets
{〈wi, log plm(wi|ci), li〉}i∈[1,|e|max] wherewi is the
word at positioni in the translation,log plm(wi|ci)
is its score as given by the language model,ci de-
notes the largest conditioning context possible, and
li indicates the length (in words) ofci (0 means a
unigram probability, 1 a bigram probability and 2 a
trigram probability). This vector is updated at each



extension.

u

des fédérauxon a_demandé crédits

TL: {on@−1}  a_demandé  {crédits@2}

EP: request@0  for@1  funding@3

U B F U

request for funding
h

S[3]

u

TL: {des@−1}  crédits  {fédéraux@1}

EP: federal@0  funding@1

créditson a_demandé des fédéraux

forrequest funding
U B T T

federal
h’

S[4]

Figure 5: Illustration of the language model up-
dates that must be made when a new target unit
(circles with arrows represent dependency links) ex-
tends an existing hypothesis (rectangles). The tag
inside each occupied target position shows whether
this word has been scored by aUnigram, aBigram
or aTrigram probability.

4 Experimental Setting

4.1 Corpora

We conducted our experiments on an in-house ver-
sion of the Canadian Hansards focussing on the
translation of French into English. The split of this
material into train, development and test corpora is
detailed in Table 1. TheTEST corpus is subdivided
in 16 (disjoints) slices of 500 sentences each that
we translated separately. The vocabulary is atypi-
cally large since some tokens are being merged by
SYNTEX, such aśetaient#financ ées (were
financed in English).

The training corpus has been aligned at the
word level by two Viterbi word-alignments
(French2English and English2French) that we
combined in a heuristic way similar to therefined
method described in (Och and Ney, 2003). The
parameters of the word models (IBM model 2) were
trained with the GIZA ++ package (Och and Ney,
2000).

TRAIN DEV TEST

sentences 1 699 592 500 8000
e-toks 27 717 389 8 160 129 601
f-toks 30 425 066 8 946 143 237
e-toks/sent 16.3(± 9.0) 16.3(± 9.1) 16.2(± 9.1)

f-toks/sent 17.9(± 9.5) 17.9(± 9.5) 17.9(± 9.4)

e-types 164 255 2 224 12 143
f-types 210 085 2 481 14 484
e-hapax 68 506 1 469 6 673
f-hapax 90 747 1 704 8 381

Table 1: Main characteristics of the corpora used in
this study. For each languagel, l-toks is the number
of tokens,l-toks/sent is the average number of to-
kens per sentence (± the standard deviation),l-types
is the number of different token forms andl-hapax
is the number of tokens that appear only once in the
corpus.

4.2 Models

Tree-phrases Out of 1.7 million pairs of sen-
tences, we collected more than 3 million different
kinds of TLs from which we projected 6.5 million
different kinds of EPs. Slightly less than half of
the treelets are contiguous ones (i.e. involving a se-
quence of adjacent words); 40% of the EPs are con-
tiguous. When the respective frequency of each TL
or EP is factored in, we have approximately 11 mil-
lion TLs and 10 million EPs. Roughly half of the
treelets collected have exactly two dependents (three
word long treelets).

Since the word alignment of non-contiguous
phrases is likely to be less accurate than the align-
ment of adjacent word sequences, we further filter
the repository of TPs by keeping the most likely EPs
for each TL according to an estimate ofp(EP |TL)
that do not take into account the offsets of the EP or
the TL.

PP-model We collected the PP parameters by sim-
ply reading the alignment matrices resulting from
the word alignment, in a way similar to the one
described in (Koehn et al., 2003). We use an in-
house tool to collect pairs of phrases of up to 8
words. Freely available packages such as THOT

(Ortiz-Mart́ınez et al., 2005) could be used as well
for that purpose.



Language model We trained a Kneser-Ney tri-
gram language model using the SRILM toolkit (Stol-
cke, 2002).

4.3 Protocol

We compared the performances of two versions of
our engine: one which employs TPs ans PPs (TP-
ENGINE hereafter), and one which only uses PPs
(PP-ENGINE). We translated the 16 disjoint sub-
corpora of theTEST corpus with and without TPs.

We measure the quality of the translation pro-
duced with three automatic metrics. Two error
rates: the sentence error rate (SER) and the word
error rate (WER) that we seek to minimize, and
BLEU (Papineni et al., 2002), that we seek to
maximize. This last metric was computed with
the multi-bleu.perl script available atwww.
statmt.org/wmt06/shared-task/ .

We separately tuned both systems on theDEV cor-
pus by applying a brute force strategy, i.e. by sam-
pling uniformly the range of each parameter (λ) and
picking the configuration which led to the best BLEU

score. This strategy is inelegant, but in early experi-
ments we conducted, we found better configurations
this way than by applying the Simplex method with
multiple starting points. The tuning roughly takes
24 hours of computation on a cluster of 16 comput-
ers clocked at 3 GHz, but, in practice, we found that
one hour of computation is sufficient to get a con-
figuration whose performances, while subobptimal,
are close enough to the best one reachable by an ex-
haustive search.

Both configurations were set up to avoid distor-
tions exceeding 3 (maxDist = 3 ). Stacks were
allowed to contain no more than 500 hypotheses
(maxStack = 500 ) and we further restrained the
number of hypotheses considered by keeping for
each matching unit (treelet or phrase) the 5 best
ranked target associations. This setting has been
fixed experimentally on theDEV corpus.

4.4 Results

The scores for the 16 slices of the test corpus are re-
ported in Table 2.TP-ENGINE shows slightly better
figures for all metrics.

For each system and for each metric, we had
16 scores (from each of the 16 slices of the test cor-
pus) and were therefore able to test the statistical sig-

nicance of the difference between theTP-ENGINE

and PP-ENGINE using a Wilcoxon signed-rank test
for paired samples. This test showed that the dif-
ference observed between the two systems is signif-
icant at the 95% probability level for BLEU and sig-
nificant at the 99% level for WER and SER.

Engine WER% SER% BLEU%
PP 52.80± 1.2 94.32± 0.9 29.95± 1.2

TP 51.98± 1.2 92.83± 1.3 30.47± 1.4

Table 2: Median WER, SER and BLEU scores
(± value range) of the translations produced by the
two engines on a test set of 16 disjoint corpora of
500 sentences each. The figures reported are per-
centages.

On theDEV corpus, we measured that, on aver-
age, each source sentence is covered by 39 TPs (their
source part, naturally), yielding a source coverage of
approximately 70%. In contrast, the average number
of covering PPs per sentence is 233.

5 Discussion

On a comparable test set (Canadian Hansard texts),
(Simard et al., 2005) report improvements by adding
non-contiguous bi-phrases to their engine without
requiring a parser at all. At the same time, they also
report negative results when adding non-contiguous
phrases computed from the refined alignment tech-
nique that we used here.

Although the results are not directly comparable,
(Quirk et al., 2005) report much larger improve-
ments over a phrase-based statistical engine with
their translation engine that employs a source parser.
The fact that we consider only depth-one treelets in
this work, coupled with the absence of any particular
treelet projection algorithm (which prevents us from
training a syntactically motivated reordering model
as they do) are other possible explanations for the
modest yet significant improvements we observe in
this study.

6 Conclusion

We presented a pilot study aimed at appreciating the
potential of Tree-Phrases as base units for example-
based machine translation.



We developed a translation engine which makes
use of tree-phrases on top of pairs of source/target
sequences of words. The experiments we conducted
suggest that TPs have the potential to improve trans-
lation quality, although the improvements we mea-
sured are modest, yet statistically significant.

We considered only one simple form of tree in this
study: depth-one subtrees. We plan to test our en-
gine on a repository of treelets of arbitrary depth. In
theory, there is not much to change in our engine
to account for such units and it would offer an al-
ternative to the system proposed recently by (Liu et
al., 2005), which performs translations by recycling
a collection of tree-string-correspondence (TSC) ex-
amples.
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