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Abstract sentation has the potential to better exploit the train-

ing corpus and to nicely handle differences such as

In this article, we present a translation

system which builds translations by glu-

ing together Tree-Phrases, i.e. associ-
ations between simple syntactic depen-
dency treelets in a source language and
their corresponding phrases in a target
language. The Tree-Phrases we use in
this study are syntactically informed and

present the advantage of gathering source
and target material whose words do not
have to be adjacent. We show that the
phrase-based translation engine we imple-
mented benefits from Tree-Phrases.

negations in French and English that are poorly han-
dled by standard phrase-based models.

Others are considering translation as a syn-
chronous parsing process e.g. (Melamed, 2004;
Ding and Palmer, 2005)) and several algorithms
have been proposed to learn the underlying produc-
tion rule probabilities (Graehl and Knight, 2004;
Ding and Palmer, 2004). (Chiang, 2005) proposes
an heuristic way of acquiring context free transfer
rules that significantly improves upon a standard
phrase-based model.

As mentioned in (Ding and Palmer, 2005), most
of these approaches require some assumptions on

the level of isomorphism (lexical and/or structural)
between two languages. In this work, we consider
a simple kind of unit: a Tree-Phrase (TP), a com-

Phrase-based machine translation is now a popul@ination of a fully lexicalized treelet (TL) and an
paradigm. It has the advantage of naturally captlastic phrase (EP), the tokens of which may be in
turing local reorderings and is shown to outperhon-contiguous positions. TPs capture some syntac-
form word-based machine translation (Koehn et altic information between two languages and can eas-
2003). The underlying unit (a pair of phrases), howlly be merged with standard phrase-based engines.
ever, does not handle well languages with very dif- A TP can be seen as a simplification of the treelet
ferent word orders and fails to derive generalizationgairs manipulated in (Quirk et al., 2005). In particu-
from the training corpus. lar, we do not address the issue of projecting a source
Several alternatives have been recently proposéeelet into a target one, but take the bet that collect-
to tackle some of these weaknesses. (Matusov &g (without structure) the target words associated
al., 2005) propose to reorder the source text in owith the words encoded in the nodes of a treelet will
der to mimic the target word order, and then let uffice to allow translation. This set of target words
phrase-based model do what it is good at. (Simarg what we call an elastic phrase.
et al., 2005) detail an approach where the standardWe show that these units lead to (modest) im-
phrases are extended to account for “gaps” either ggrovements in translation quality as measured by au-
the target or source side. They show that this repréematic metrics. We conducted all our experiments

1 Introduction



on an in-house version of the French-English Cana- a_demande

dian Hansards. SUB 0BJ
This paper is organized as follows. We first define L
. . o . on cr edits
a Tree-Phrase in Section 2, the unit with which we DET ADJ
built our system. Then, we describe in Section 3
the phrase-based MT decoder that we designed to des f ederaux

handle TPs. We report in Section 4 the experiments

we conducted combining standard phrase pairs afggure 1: Parse of the sentence “on a dengades
TPs. We discuss this work in Section 5 and thegredits £deraux” (request for federal funding). Note

conclude in Section 6. that the 2 words “a” and “demagd (literally “have”
and “asked”) from the original sentence have been
2 Tree-Phrases merged together by¥&TEX to form a single token.

We calltree-phrasgTP) a bilingual unit consisting These tokens are the ones we use in this study.

of a source, fully-lexicalizedreelet(TL) and a tar-

getphrase(EP), that is, the target words associatedith the first pair of structures listed in the example.
with the nodes of the treelet, in order. A treelet can

be an arbitrary, fully-lexicalized subtree of the pars@ The Translation Engine

tree associlated with a source sentence. A phrase A8 built a translation engine very similar to the sta-
be an arbitrary sequence of words. This |nclude§StiCal phrase-based engineARAoH described in

the standard notion of phrase, popular with phrased-
Koehn, 2004) that tended t tree-ph .
based SMT (Koehn et al., 2003; Vogel et al., 2003 oehn ) that we extended to use tree-phrases

: ot only does our decoder differ frorHRRAOH by
as well as sequences of words that contain gaps (pos-. . . .

) : . using TPs, it also uses direct translation models. We
sibly of arbitrary size).

n thi q I q _ ¢ know from (Och and Ney, 2002) that not using the
n tnis st.u y, we collecte a repository o tree'noisy-channel approach does not impact the quality
phrases using a robust syntactic parser calted-S

) i .~ of the translation produced.
TEX (Bourigault and Fabre, 2000).Y&TEX identi-
fies syntactic dependency relations between words,1 The maximization setting
It takes as input a text processed by tHREETAG-

For a source sentengg our engine incrementall
GER part-of-speech taggérAn example of the out- o d 4

generates a set of translation hypothekdsy com-

put S(,[\'TEX produs:es for,thg source (F”rench) Senl':)ining tree-phrase (TP) units and phrase-phrase (PP)
tence “on a demareddes cedits Bderaux” (request units?> We define a hypothesis in this set as=

for federal funding) is presented in Figure 1. (U = (Fi, B)}icra)» @ Set ofu pairs of source

We parsed with 8NTEX the source (French) part (F)) and target sequences;j of n; andm; words
of our training bitext (see Section 4.1). From thisrespectively'

material, we extracted all dependency subtrees of
depth 1 from the complete dependency trees found F,
by SYNTEX. An elastic phrase is simply the list of E;
tokens aligned with the words of the corresponding
treelet as well as the respective offsets at which they ynder the constraints that for alle [1,u], ji <
were found in the target sentence (the first token %H ,¥n € [1,n,] for a sourcereelet(similar con-
an elastic phrase always has an offset of 0). straints apply on the target side), aml = i +

For instance, the two treelets in Figure 2 will bel | vn € [1,n,[ for a sourcephrase The way the
collected out of the parse tree in Figure 1, yieldinghypotheses are built imposes additional constraints
2 tree-phrases. Note that the TLs as well as the EBgtween units that will be described in Section 3.3.
might not be contiguous as is for instance the casgote that, at decoding timé;|, the number of words

{f]}l ]711 € [17 ‘f‘]}ne[l,nl]

{ew, 1 € (L ]el] Fmetmi]

Lwww.ims.uni-stuttgart.de/projekte/ 2What we call here a phrase-phrase unit is simply a pair of
corplex/ . source/target sequences of words.



alignment: better understood as the numerator of a maximum
entropy model popular in several statistical MT sys-
tems (Och and Ney, 2002; Bertoldi et al., 2004; Zens
and Ney, 2004; Simard et al., 2005; Quirk et al.,

a.demané = request for, &deraux= federal,
credits= funding

treelets: 2005). The components are the so-called feature
_ functions (described below) and the weighting co-
a_demande cr edits efficients (\) are the parameters of the model:
/\,. /\ s(h) = App,.s Ingppr(h) + Aplh[+
on cr edits des f ederaux Atp, ; 108 pip, ; (h) + Ae|h|+
. Appism 108 P (R)+
tree-phrases: Atpson 108 Dipy (R)+
, o Atm 108 pim (proje(h))+
TL* {{on@-1} a_demand e {cr edits@2}} Aad(h) + Ay |proje(h)]

EP* Irequest@0|ffor@1{[funding @3 3.2 The components of the scoring function

TL {{des@-1} cr edits {f ederaux@1)} We briefly enumerate the features used in this study.

EP  |federal@0||funding@1]| Translation models Even if a tree-phrase is a gen-
eralization of a standard phrase-phrase unit, for in-

Figure 2: The Tree-Phrases collected out of th@estigation purposes, we differentiate in our MT
SYNTEX parse for the sentence pair of Figure lgystem between two kinds of models: a TP-based
Non-contiguous structures are marked with a Staﬁ‘]odelptp and a phrase-phrase moge},. Both rely
Each dependent node of a given governor token s, conditional distributions whose parameters are
displayed as a list surrounding the governor nodgearned over a corpus. Thus, each model is assigned
e.g. {governor{right-dependent;. Along with the 5 own weighting coefficient, allowing the tuning

tokens of each node, we present their respective OfES‘rocess to bias the engine toward a special kind of
set (the governor/root node has the offset 0 by defiit (TP or PP).

nition). The format we use to represent the treelets \ye have, fork e {rf, ibm}:
is similar to the one proposed in (Quirk et al., 2005). .
Pppi(h) =TI ppp(Ei| F3)

of the translation is unknown, but is bounded accord- ppe(h) = Tlic Pu(EilF3)
ing to | f| (in our casele|maz = 2 X | f| + 5). with p. . standing for a model trained by rel-
We define the source and target projection of ative frequency, whereas,,,, designates a non-
hypothesigi by theproj operator which collectsn ~Normalized score computed by an IBM model-1
order the words of a hypothesis along one languagdranslation modeb, where f, designates the so-
{ A } called NULL word:
projp(h) =1 fp 1 p € Uisa {Un bneping mi i
proje(h) = {ep pe U?:1{lfn}m€[1,mi]} pea (BilF) = 11 2w, lf5) +lews, 1)

m=1n=1
If we denote byH, the set of hypotheses that NOte that by setting\,, , and\,,,, to zero, we
have f as a source projection (that i&;; = {h : revert back to a standard phrase-based translation

projr(h) = f}), then our translation engine seek$ngine. This will serve as a reference system in the
é = projg(h) where: experiments reported (see Section 4).

. The language model Following a standard prac-
h = ai%r{l?xs(h) tice, we use a trigram target language model
pim(proje(h)) to control the fluency of the trans-
The function we seek to maximizg€h) is a log- lation produced. See Section 3.3 for technical sub-
linear combination of 9 components, and might bdeties related to their use in our engine.



Distortion model d  This feature is very similar to R€quire: a source sentenge
the one described in (Koehn, 2004) and only de- U « {u : s-matcliu, f)}
pends on the offsets of the source units. The only FUTURECOST(U)
difference here arises when TPs are used to build afor s < 1to|f| do

translation hypothesis: Sls] 0
S = S[0] — {(0,¢,0)}
d(h):_zab3<1+Fi—1_Ei) for s—0to|f| —1do

= PRUNE(S(s], )

where: for all hypotheses alivé € S[s| do

_ forall w € U do
F. o— ) Znelin gn/mi if F;is atreelet if EXTENDS(u, ) then
' Jn; otherwise I — UPDATE(u, h)
F, =7 k — |projr ()|

: S[k] — S[kJU{h'}
This score encourages the decoder to produce a
monotonous translation, unless the language model

strongly privileges the opposite.

Global bias features Finally, three simple fea- Figure 3: The search algorithm. The symbelis
tures help control the translation produced. Eachsed in place of assignments, while denotes uni-
TP (resp. PP) unit used to produce a hypothesfiation (as in languages such as Prolog).
receives a fixed weighk; (resp. \,). This allows
the introduction of an artificial bias favoring either The search space is organized into a$eff | f|
PPs or TPs during decoding. Each target word pratacks, where a stacKs| (s € [1,|f]]) contains all
duced is furthermore given a so-called word penaltshe hypotheses covering exactysource words. A
Aw Which provides a weak way of controlling thehypothesish = (ps,t, p) is composed of its target
preference of the decoder for long or short translanaterialt, the source positions coverggas well as
tions. its scorep. The search space is initialized with an
empty hypothesisS[0] = {(0,¢,0)}.

The search procedure consists in extending each
The search procedure is described by the algorithpartial hypothesis: with every unit that can con-
in Figure 3. The first stage of the search consists itnue it. This process ends when all partial hypothe-
collecting all the units (TPs or PPs) whose sourcses have been expanded. The translation returned is
part matches the source senterfceWe callU the the best one contained &| f|]:
set of those matching units.

In this study, we apply a simple match policy that é = projp(argmax p : h — (ps,t, p))
we callexact matclpolicy. A TL ¢t matches a source hesiifl
sentencef if its root matchesf at a source position PRUNE — In order to make the search tractable,

denoted- and if all the other words of ¢ satisfy: ~ each stackS[s] is pruned before being expanded.
Only the hypotheses whose scores are within a frac-

return argmaxc g2 h — (s, t, p)

3.3 The search procedure

Jowir =w tion (controlled by a meta-parametémwhich typi-
cally is 0.0001 in our experiments) of the score of
whereo,, designates the offset af in . the best hypothesis in that stack are considered for

Hypotheses are built synchronously along witlexpansion. We also limit the number of hypotheses
the target side (by appending the target material tmaintained in a given stack to the topaxStack
the right of the translation being produced) by proenes (haxStack is typically set to 500).
gressively covering the positions of the source sen- Because beam-pruning tends to promote in a stack
tencef being translated. partial hypotheses that translate easy parts (i.e. parts



that are highly scored by the translation and lanis the governor of both treelets, even though
guage models), the score considered while prunifdg pr esident suppl eant would be a valid
not only involves the cost of a partial hypothesis sgsource phrase. Note that it might be the case that
far, but also an estimation of the future cost that wilthe treelet{{mr.@-2} {le@-1} pr esident

be incurred by fully expanding it. {suppl eant@1}} has been observed during

FUTURECOST — We followed the heuristic de- tralnlng,. in _Whlch case it will compete with the
treelets in Figure 2.

scribed in (Koehn, 2004), which consists in comput-
ing for each source range, j| the minimum cost

c(i, ) with which we can translate the source se- ~ Pr sident pr ésident
quencef/. This is pre-computed efficiently at an /\
early stage of the decoding (second line of the algo- mr. le suppl eant

rithm in Figure 3) by a bottom-up dynamic program-
ming scheme relying on the following recursion:
Figure 4: Example of two incompatible treelets.
o , mingef; jic(i, k) + c(k, 7) mr. speaker and the acting speaker

c(i,j) = min ) , ; . : .
TN ey _, score(us) are their respective English translations.

whereu, stands for the projection af on the tar- Therefore, extending a hypothesis containing a
get side (s = projg(u)), andscore(u) is com- treelet with a new treelet consists in merging the two
puted by considering the language model and tHeeelets (if they are compatible) and combining the
translation components,,, of the s(h) score. The target material accordingly. This operation is more
future cost ofh is then computed by summing thecomplicated than in a standard phrase-based decoder
costc(i, j) of all its empty source rangés j|. since we allow gaps on the target side as well. More-
over, the target material of two compatible treelets
may intersect. This is for instance the case for the
ttwo TPs in Figure 2 where the worfdnding is
0
common to both phrases.

EXTENDS — When we simply deal with standard
(contiguous) phrases, extending a hypothédiy a
unit  basically requires that the source positions
u be empty inh. Then, the target material of is
appended to the current hypotheksis UpPDATE — Wheneveru extendsh, we add a
Because we work with treelets here, things arsew hypothesish’ in the corresponding stack
a little more intricate. Conceptually, we are con-S[|projr(h’)|]. Its score is computed by adding to
fronted with the construction of a (partial) sourcethat of i the score of each component involved in
dependency tree while collecting the target mates(h). For all but the one language model compo-
rial in order. Therefore, the decoder needs to checlent, this is straightforward. However, care must be
whether a given TL (the source partgfis compati- taken to update the language model score since the
ble with the TLs belonging té. Since we decided in target material of. does not come necessarily right
this study to use depth-one treelets, we consider thafter that ofh as would be the case if we only ma-
two TLs arecompatibleif either they do not share nipulated PP units.
any source word, or, if they do, this shared word Figure 5 illustrates the kind of bookkeeping
must be the governor of one TL and a dependent wequired.  In practice, the target material of
the other TL. a hypothesis is encoded as a vector of triplets
So, for instance, in the case of Figure 2, the(w;,log pu,(wilc:i), i) biel1,je]ma.] Wherew; is the
two treelets are deemed compatible (they obvioushyord at position: in the translationlog p, (w;|c;)
should be since they both belong to the same origs its score as given by the language modglde-
inal parse tree) because edit is the governor notes the largest conditioning context possible, and
in the right-hand treelet while being the depen{; indicates the length (in words) @f (O means a
dent in the left-hand one. On the other hand, thenigram probability, 1 a bigram probability and 2 a
two treelets in Figure 4 are not, sinpeéesident trigram probability). This vector is updated at each



extension. TRAIN DEV TEST
request  for funding S/3] sentences| 1699592 500 8000
h "y B F U e-toks 27717389 8160 129601
f-toks 30425066 8946 143237
e-toks/senf 16.3(x9.0 16.3(x91 16.2(£9.1)
on  a_demandé des  crédits  fédéraux f-toks/sent| 17.9x95 17.9x95 17.9=04)
T fon Ot @ doma e-types 164 255 2224 12143
s on@— a_demandé {crédits
u EP: iequestéo }or@l fumging@.? ! f-types 210 085 2 481 14 484
e-hapax 68506 1469 6673
f-hapax 90747 1704 8381
w request for federal funding S[4]
U B T T . o .
Table 1. Main characteristics of the corpora used in
. this study. For each Ia}nguagd-toks is the number
on a_demandé  des  crédits  fédéraux of tokens,|-toks/sent is the average number of to-
kens per sentence-(the standard deviation}types
u ;{ﬁ;ﬁ;&”;::Z;g{f(;"j"’““x@“ is the number of different token forms ahdapax
' is the number of tokens that appear only once in the

Figure 5: lllustration of the language model up_corpus.

dates that must be made when a new target unit
(circles with arrows represent dependency links) ex4.2 Models

tends an existing hypothesis (rectangles). The tagee phrases Out of 1.7 million pairs of sen-
inside each occupied target position shows whethgl, o5 we collected more than 3 million different
this word has been scored bymigram, aBigram g5 of TLs from which we projected 6.5 million

or aTrigram probability. different kinds of EPs. Slightly less than half of
the treelets are contiguous ones (i.e. involving a se-
guence of adjacent words); 40% of the EPs are con-
tiguous. When the respective frequency of each TL
4.1 Corpora or EP is factored in, we have approximately 11 mil-
lion TLs and 10 million EPs. Roughly half of the

We conducted our (_axperlments onan m-_house V¥reelets collected have exactly two dependents (three
sion of the Canadian Hansards focussing on ”Word long treelets)

translation of French into English. The split of this ;. .o “the word alignment of non-contiguous

matgrial _into train, development a”O! test corpora iBhrases is likely to be less accurate than the align-
fjetalle((jj_m_ Table 1| The'iST Corpus 1S SUbd'V'dhedh ment of adjacent word sequences, we further filter
in 16 (disjoints) slices of 500 sentences eac t ifﬁe repository of TPs by keeping the most likely EPs
we translated separately. The vocabulary is atyplz . oo TL according to an estimate;af2 P|T'L)

cally large since §ome tokens are b,emg merged tﬁ*{at do not take into account the offsets of the EP or
SYNTEX, such asttaient#financ ees (were the TL

financed in English).

The training corpus has been aligned at th®P-model We collected the PP parameters by sim-
word level by two Viterbi word-alignments ply reading the alignment matrices resulting from
(French2English and English2French that we the word alignment, in a way similar to the one
combined in a heuristic way similar to threfined described in (Koehn et al., 2003). We use an in-
method described in (Och and Ney, 2003). Théouse tool to collect pairs of phrases of up to 8
parameters of the word models (IBM model 2) weravords. Freely available packages such asoT
trained with the Gza++ package (Och and Ney, (Ortiz-Martinez et al., 2005) could be used as well
2000). for that purpose.

4 Experimental Setting



Language model We trained a Kneser-Ney tri- nicance of the difference between the-ENGINE
gram language model using thei® m toolkit (Stol- and PP-ENGINE using a Wilcoxon signed-rank test

cke, 2002). for paired samples. This test showed that the dif-
ference observed between the two systems is signif-
4.3 Protocol icant at the 95% probability level foriBu and sig-

We compared the performances of two versions dfificant at the 99% level for \&WR and ER.
our engine: one which employs TPs ans PRs (

ENGINE hereafter), and one which only uses PPs Engine WER% SER% BLEU%
(PP-ENGINE). We translated the 16 disjoint sub- PP 52.80+1.2 94.32+09 29.95+12
corpora of theresT corpus with and without TPs. TP 51.98+12 92.83+13 30.47+14

We measure the quality of the translation pro-
duced with three automatic metrics. Two erroifable 2: Median V¥R, SER and BLEU scores
rates: the sentence error ratee@ and the word (4 value range) of the translations produced by the
error rate (VWER) that we seek to minimize, andtwo engines on a test set of 16 disjoint corpora of
BLEU (Papineni et al., 2002), that we seek t®b00 sentences each. The figures reported are per-
maximize. This last metric was computed withcentages.
the multi-bleu.perl script available atvww.
statmt.org/wmt06/shared-task/ : On theDEV corpus, we measured that, on aver-
We separately tuned both systems onith& cor-  age, each source sentence is covered by 39 TPs (their
pus by applying a brute force strategy, i.e. by samsource part, naturally), yielding a source coverage of
pling uniformly the range of each paramet&) &nd  approximately 70%. In contrast, the average number
picking the configuration which led to the bestBB)  of covering PPs per sentence is 233.
score. This strategy is inelegant, but in early experi-
ments we conducted, we found better configuratiorts Discussion
this way than by applying the Simplex method with .
multiple starting points. The tuning roughly takesor.] a comparable test set (_Canadlan Hansard te_xts),
24 hours of computation on a cluster of 16 comput(-SImarOI gt al., 200.5) report |mprov§ment§ by apldmg
ers clocked at 3 GHz, but, in practice, we found thartlon-_cgntlguous bi-phrases to their engine without
requiring a parser at all. At the same time, they also

one hour of computation is sufficient to get a con- . . .
report negative results when adding non-contiguous

figuration whose performances, while subobptimal, : .
g P P )p_rases computed from the refined alignment tech-

are close enough to the best one reachable by an & that dh
haustive search. nique that we used here.

Both configurations were set up to avoid distor- A!though the results are not directly comparable,
tions exceeding 3nfaxDist = 3 ). Stacks were (Quirk et al., 2005) report much. Igrger improve-
allowed to contain no more than 500 hypothese%ems over a phrase-based statistical engine with

t

(maxStack = 500 ) and we further restrained the eir translation engine that employs a source parser.
The fact that we consider only depth-one treelets in

number of hypotheses considered by keeping for . ) )
each matching unit (treelet or phrase) the 5 be is work, goupled Wlth.the absgnce of any particular
ranked target associations. This setting has begr‘? _el_et projection glgorlthm_(whlch preven_t S us from
fixed experimentally on theev corpus. training a syntactically motlyated reorderlng model
as they do) are other possible explanations for the
4.4 Results modest yet significant improvements we observe in

The scores for the 16 slices of the test corpus are rg]-'s study.
ported in Table 2.T.P—ENGINE shows slightly better 6 Conclusion
figures for all metrics.

For each system and for each metric, we had/e presented a pilot study aimed at appreciating the
16 scores (from each of the 16 slices of the test copotential of Tree-Phrases as base units for example-
pus) and were therefore able to test the statistical sigased machine translation.
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