
European Journal of Operational Research 199 (2009) 46–54
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization

Activity list representation for a generalization of the resource-constrained
project scheduling problem q

Khaled Moumene, Jacques A. Ferland *

Dept. Informatique et Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 July 2006
Accepted 28 October 2008
Available online 8 November 2008

Keywords:
Project scheduling
Resource-constrained project scheduling
Generalized resource-constrained project
scheduling
Activity list
Activity set list
0377-2217/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.ejor.2008.10.030

q This research was supported by NSERC grant (OGP
* Corresponding author. Tel.: +1 514 343 5687; fax

E-mail addresses: khaled_moumene_75@yahoo.com
umontreal.ca (J.A. Ferland).
Most of the real life scheduling problems include several constraints in addition to the precedence and
resource constraints considered in the resource-constrained project scheduling problem (RCPSP). In this
paper, we define a generalization of the ðRCPSPÞwith a wide class of additional constraints, including (but
not limited to): a pair of activities must be separated by at least a given duration; a subset of activities
cannot be processed simultaneously; an activity cannot start before a particular period; an activity can-
not be scheduled in a particular time window; there are resource constraints with varying required and
available quantities. We show that for this generalization the activity list and the activity set list repre-
sentations can be used as efficiently as in the ðRCPSPÞ and that by using these representations the optimal
solution can always be reached.

This allows most of the known solution procedures for ðRCPSPÞ based on these representations to be
extended for the generalized ðRCPSPÞ by simply replacing the classical decoding procedure used for the
ðRCPSPÞ with the generalized version introduced here.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The resource-constrained project scheduling problem (RCPSP)
has been studied by several authors. It can be summarized as fol-
lows. A project including N activities has to be completed in order
to minimize some objective function. The makespan is the most
commonly used objective function. Each activity i has a duration
specified in terms of a number of periods, and two kinds of con-
straints are considered. The precedence constraints require each
activity i to be scheduled after the completion of all its immediate
predecessors included in the set Pi. Furthermore, each activity i re-
quires rik units of resources k 2 R ¼ f1;2; . . . ;Kg during each period
of its completion. The resource constraints limit the number of
units of resources k 2 R ¼ f1;2; . . . ;Kg available during each period
of the horizon.

The ðRCPSPÞ is known to be NP-Hard (Blazewicz et al., 1983),
which implies that the resolution of large instances with an exact
method is very time consuming. Several solution procedures have
been proposed in the literature. They can be classified into three
categories: exact methods (Demeulemeester and Herroelen,
1992; Mingozi etal., 1998; Patterson et al., 1989) using mainly var-
ious branch-and-bound procedures; heuristic methods based on
the serial and the parallel schedule generation schemes (Boctor,
ll rights reserved.

0008312).
: +1 514 343 5834.

(K. Moumene), ferland@iro.
1990; Demeulemeester and Harroelen, 1995; Kolisch and Drexl,
1996; Kolisch, 1996b); finally, metaheuristic methods based on
tabu search (Baar et al., 1998; Nonobe and Ibaraki, 2002; Pinson
et al., 1994), simulated annealing (Boctor, 1996; Bouleimen and Le-
cocq, 2003; Cho and Kim, 1997) and genetic algorithms (Alcaraz
and Maroto, 2001; Alcaraz et al., 2004; Hartmann, 1998; Kohlmor-
gen et al., 1999; Mendes et al., 2009; Valls et al., 2003, 2008). Sur-
veys on several solution procedures can be found in Brucker et al.
(1999), Demeulemeester and Herroelen (2002), Hartmann and Kol-
isch (2000), Herroelen et al. (1998), Kolisch and Hartmann (2006),
Kolisch and Hartmann (1999) and Kolisch and Padman (2001).

The ðRCPSPÞ underlies several applications, but in general their
models also include additional constraints. Brucker and Knust
(2001) mentioned three different timetabling problems that can
be formulated as ðRCPSPÞ with additional constraints. In high-
school timetabling (Schaerf, 1999b), the lectures are the activities
to be scheduled and the teachers, the student groups and the class-
rooms are the resources. The objective is to specify a feasible sche-
dule using a specified number of periods. University course
timetabling (Schaerf, 1999a) is quite similar, except that individual
student registrations are taken into account. In these problems, we
may have additional constraints requiring that some pairs of lec-
tures be scheduled simultaneously, or we may formulate the prob-
lems as ðRCPSPÞwith multiple modes to account for the fact that the
lectures can take place in different types of classrooms. The third
timetabling problem mentioned in Brucker and Knust (2001) is
the audit-scheduling problem (Brucker and Schumacher, 1999)
where the jobs to be audited are the activities and the auditors

mailto:khaled_moumene_75@yahoo.com
mailto:ferland@iro. umontreal.ca
mailto:ferland@iro. umontreal.ca
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

K. Moumene, J.A. Ferland / European Journal of Operational Research 199 (2009) 46–54 47
are the resources. In this problem, each job has a release time and a
due date, the execution of the jobs can be pre-empted, and the audi-
tors are available in disjoint time intervals. Finally, there may be a
mismatching cost cij if job i is audited by auditor j. The objective
function is to minimize the sum of the mismatching costs and the
tardiness of the job auditing completions. The problem of training
a group of persons to perform a set of tasks in an enterprise can also
be formulated as a ðRCPSPÞwith additional constraints. Indeed, each
person may have to be trained in a specified order for the different
tasks, leading to precedence constraints. The limited number of
teachers and pieces of equipment for training induces resource con-
straints. Furthermore, there may exist additional constraints to lim-
it the time delay between the training for some pairs of tasks, or to
account for the fact that the training is individual for some tasks
and a group session for other tasks. In Cesta and Oddi (2002) and
De Reyck and Herroelen (1998) the authors introduce a generaliza-
tion of the precedence constraints (referred to as (GPR)) where min-
imal time lags between the ending period and the starting period of
different pairs of activities are specified.

The ðPRCPSPÞ has been also considered by several authors. In
this problem, preemption of the processing of the activities is al-
lowed. See Herroelen et al. (1998) for more details. Other variants
of the ðRCPSPÞ are summarized in Brucker et al. (1999) and Herroe-
len et al. (1998).

The purpose of this paper is to see how the activity list repre-
sentation AL can be used for a very large class of generalizations
of the ðRCPSPÞ since most real scheduling problems are much more
complex requiring additional constraints. To the best of our knowl-
edge, no such work has been done in the literature for the ðRCPSPÞ.
Our motivation is prompted by the number of successful use of AL
to solve the ðRCPSPÞ and its various interesting properties. For the
ðRCPSPÞ, an AL is quickly decoded into a feasible schedule, its list
form allows various operators to be applied, and the set of all
schedules induced by AL always contains the optimal solution (Kol-
isch, 1996a; Sprecher et al., 1995).

The paper is organized as follows. In Section 2, we define a gen-
eralized version of the ðRCPSPÞ. We introduce the conditions under
which an AL representation can be used for the problem according
to both the forward and the backward scheduling mode in Section
3. In Section 4 we give a necessary condition for the existence of an
AL inducing an optimal schedule and we introduce many examples
of instances verifying this condition. Furthermore, we indicate
several other extensions of techniques based on AL and developed
initially for the ðRCPSPÞ. Finally, an extension of another represen-
tation (activity set list) reducing the search space of all the AL is
made in Section 6.
2. Generalized ðRCPSPÞ

In this paper we propose a generalized ðRCPSPÞ problem de-
noted ðORDÞ þ ðCÞ. The ðORDÞ block includes an objective function
to be minimized and the set of all the precedence constraints be-
tween activities, which can be empty. The ðCÞ block is a set of addi-
tional arbitrary constraints. This set can also be empty.

Accordingly, the ðRCPSPÞ is an ðORDÞ þ ðCÞ problem where the
objective function of ðORDÞ is the total makespan and ðCÞ includes
the resource constraints. Also, the classical scheduling problem
which can be solved optimally with the CPM method is an
ðORDÞ þ ðCÞ problem where the objective function of ðORDÞ is the
total makespan and where ðCÞ is empty.
3. Activity list representation for the generalized ðRCPSPÞ

The activity list representation (AL) of a solution (schedule) for
the ðRCPSPÞ is a permutation vector of the activities satisfying the
precedence constraints. Hence, each activity is positioned in the
list after all its predecessors. To obtain the corresponding schedule,
the AL is decoded with the serial SGS method proposed by Kelley
(1963) where the activities are selected according to their order
in the list and scheduled at their earliest start period. See also Kol-
isch (1996a) for more details.

The AL representation is used extensively to solve the ðRCPSPÞ
(Alcaraz and Maroto, 2001; Bouleimen and Lecocq, 2003; Fleszar
and Hindi, 2004; Hartmann, 1998; Hindi et al., 2002; Nonobe
and Ibaraki, 2002) because it is easily and rapidly decoded, it al-
ways induces a feasible solution, its list form is easily manipulated,
and there always exists an AL inducing an optimal schedule (Kol-
isch, 1996a; Sprecher et al., 1995). We propose to extend the use
of AL to ðORDÞ þ ðCÞ problems. But first we have to specify condi-
tions allowing a feasible schedule to be constructed for any AL
and conditions that guarantee the existence of an AL generating
the optimal solution.

For the ðORDÞ þ ðCÞ problem, if there are precedence constraints
between activities in the ðORDÞ block, then only these constraints
are accounted for in the AL representation since each activity is
positioned after all predecessors. Such an AL is said to be a valid AL.

To decode a valid AL, a method similar to the serial SGS is used.
The activities are selected in their order in AL, and they are sched-
uled at their earliest starting period after the completion of all its
predecessors such that all the constraints defined in ðORDÞ þ ðCÞ
are satisfied.

Now additional conditions need to be imposed on the ðCÞ block
constraints in order to make sure that the decoding scheme is
working. To illustrate that, consider this simple example where
two activities, 1 and 2, of duration 2 have to be scheduled. Further-
more, additional constraints require that these activities cannot be
scheduled at the same time and activity 1 cannot start after period
2. This is an ðORDÞ þ ðCÞ problem where there are no precedence
constraints and where the ðCÞ block constraints are specified as
above. For this instance, there are only two valid AL: a1 ¼ ½1;2�
and a2 ¼ ½2;1�. On one hand, a1 can be decoded into a schedule
where activities 1 and 2 start at periods 1 and 3, respectively. On
the other hand, a2 cannot be decoded. Indeed, once activity 2 is
first scheduled to start in period 1, then the first additional con-
straint would induce activity 1 to start in period 3, contradicting
the second additional constraint.

Next, we introduce a simple condition on ðCÞ to avoid such a
situation.

3.1. Flexible constraints

Definition 1. Let a be any valid AL for an ðORDÞ þ ðCÞ problem. A
specific constraint c 2 ðCÞ is flexible if for any activity i and any
partial schedule of the activities positioned before i in a, i can be
scheduled, accounting only for constraint c, at some period DiðcÞ or
any period later.

Such a constraint is denoted cf .

Definition 2. The ðCÞ block is flexible if all c 2 ðCÞ block are cf .
Such a block is denoted a ðCf Þ block.

It follows that for any valid AL for an ðORDÞ þ ðCf Þ problem, any
activity i in AL can be scheduled at some period DiðCÞ ¼
Maxc2ðCÞfDiðcÞg or at any period later. It is easy to verify that any va-
lid AL for an ðORDÞ þ ðCf Þ problem can be decoded into a feasible
schedule using the serial SGS described before. Note also that the
resource constraints in the ðRCPSPÞ are flexible, and hence, it is
an ðORDÞ þ ðCf Þ problem.

Furthermore, it follows from Definition 2, that adding any num-
ber of flexible constraints to any ðRCPSPÞ generates an ðORDÞ þ ðCf Þ
problem. Here are examples of flexible constraints:

Fig. 2. Schedule associated with AL1.

48 K. Moumene, J.A. Ferland / European Journal of Operational Research 199 (2009) 46–54
1. An activity cannot start before a particular period.
2. A pair of activities must be separated by at least a duration DR.
3. An activity cannot be scheduled in a particular time window.

But the following constraints are non-flexible:

1. An activity i cannot start after a particular period.
2. Some activities must be scheduled at the same time.
3. An activity must be scheduled in a particular time window.

To illustrate these notions, we consider the following
ðORDÞ þ ðCf Þ problem where flexible constraints are added to
ðRCPSPÞ. The problem is illustrated in Fig. 1. One and ten are dum-
my activities representing the start and end of the schedule,
respectively. Six units of a unique resource are available at each
period. The additional flexible constraints are the following:

1. The activities 2, 4 and 8 cannot start before periods 2, 7 and 9,
respectively.

2. Activities 7 and 8 cannot be processed simultaneously.

The schedule associated with

AL1 ¼ ½1;2;3;4;5;6;7;8;9;10�

is in Fig. 2.

� Activity 2 is scheduled at period 2 because it cannot start before
this period.

� Activity 4 is scheduled at period 7 because:

– it has activity 2 as a predecessor (cannot be scheduled
before period 6).

– it cannot start before period 7.

� Activity 6 is scheduled at period 8 because:

– it has activities 2 and 3 as predecessors (cannot be sched-
uled before period 6).
– resources are insufficient until period 8.

� Activity 8 is scheduled at period 13 because:

– it has activity 6 as a predecessor (cannot be scheduled
before period 11).
– it cannot start before period 9.
– resources are insufficient until period 11.
– it cannot be processed simultaneously with activity 7 (can-
not be processed in periods 9, 10, 11 and 12).

3.2. The backward mode

So far, we have generalized the use of AL for the ðORDÞ þ ðCf Þ
problem with respect to the forward decoding mode where the
activities are scheduled sequentially from the first activity to the
last in the AL at their earliest starting period after the completion
of their predecessors. But activities can also be scheduled using
Fig. 1. Example of an ðO
the backward mode. This idea was introduced by Li and Willis
(1992) and Ozdamar and Ulusoy (1996). Activities are scheduled
sequentially from the last activity to the first in the AL at their lat-
est starting period in order to be completed before their successors.

Activities can be scheduled starting from an upper bound T. The
dummy end activity is scheduled first to end at period T and the
other activities are scheduled as late as possible without violating
the precedence and the resource constraints. The starting times of
the activities are then reduced by the same duration such that the
dummy start activity starts at the first period (Klein, 2000).

Various promising heuristics have been proposed for the
ðRCPSPÞ using both modes (Alcaraz and Maroto, 2001; Alcaraz et
al., 2004; Klein, 2000). In this section we discuss the conditions
allowing any valid AL for the ðORDÞ þ ðCÞ problem to be decoded
with the backward mode.

Definitions 1 and 2 can be adapted for the backward mode as
follows.

Definition 3. Let a be any valid AL for a ðORDÞ þ ðCÞ problem. A
specific constraint c 2 ðCÞ is backward flexible if for any activity i
and any partial schedule of the activities positioned after i in a, i
can be scheduled, accounting only for constraint c, at some period
DB

i ðcÞ or any period sooner.
Such a constraint is denoted cbf .

Definition 4. The ðCÞ block is backward flexible if all c 2 ðCÞ block
are cbf .

Such a block is denoted a ðCbf Þ block.

The following result shows that flexibility and backward flexi-
bility are equivalent.

Theorem 1. The ðCÞ block is flexible if and only if it is backward
flexible.

Proof 1. First, we show that if the ðCÞ block is flexible then it is
backward flexible. For the sake of contradiction, suppose that the
ðCÞ block is flexible but not backward flexible. Hence, there is an
AL a and a first activity i in a that cannot be scheduled with the
backward mode at a period DB

i or at any period sooner. Let:
RDÞ þ ðCf Þ problem.

K. Moumene, J.A. Ferland / European Journal of Operational Research 199 (2009) 46–54 49
� Ai
bf , Ai

af : the sets of activities positioned in a before and after i,
respectively.

� PB
Ai

af
: the partial schedule obtained by scheduling the activities

Ai
af with the backward mode.

� PF: the schedule obtained by decoding a with the forward mode.
� DRB

j : the duration between the starting period of an activity
j 2 Ai

af and the starting period of the activity that starts first in
PB

Ai
af

.

Now, add new flexible constraints ðCÞ to the problem
ðORDÞ þ ðCÞ, and denote ðORDÞ þ ðCÞ þ ðCÞ the resulting problem.
To specify the constraints ðCÞ, recall that DjðCÞ denote the period
where activity j can be scheduled or any subsequent period
according to the forward mode. Now, for each activity j 2 Ai

af , there
is a constraint in ðCÞ requiring that the activities i and j must be at
least Dmax þ DRB

j periods apart (i.e., the number of periods between
the ending period of i and the starting period of j is at least equal to
Dmax þ DRB

j). Furthermore, Dmax is selected large enough such that
when decoding the AL a with the forward mode for the problem
ðORDÞ þ ðCÞ þ ðCÞ, each activity j 2 Ai

af is scheduled at period DjðCÞ
or later.

Now, consider the feasible schedule for the problem
ðORDÞ þ ðCÞ þ ðCÞ obtained by decoding a using the forward mode.
Activity i and each activity j0 2 Ai

bf are scheduled to start at the
same period as in PF . Each activity j 2 Ai

af is then selected to start at
period Dmax þ DRB

j since Dmax is selected such that
MaxfDjðCÞ;Dmax þ DRB

j g ¼ Dmax þ DRB
j . Furthermore, these starting

periods for the activities j 2 Ai
af verify the precedence constraints

since they are obtained by shifting those in PB
Ai

af
by Dmax periods

(see Fig. 3 for an illustrative example).
Next, consider AL a for the problem ðORDÞ þ ðCÞ þ ðCÞ to be

decoded using the backward mode. Then activities in AL are
scheduled as in PB

Ai
af

since the constraints in ðCÞ are not relevant in
scheduling these activities. Furthermore, since these activities can
be scheduled Dmax þ DRB

j periods after activity i when AL a is
Fig. 3. Illustrativ
decoded with the forward mode, it follows that i can be scheduled
at least Dmax þ DRB

j periods before any activity j 2 Ai
af using the

backward mode. Hence there exists a period DB
i such that activity i

can be scheduled at this period or sooner (using a value of Dmax

large enough). Since the problem ðORDÞ þ ðCÞ þ ðCÞ has more
constraints, it follows that the same result is true for the problem
ðORDÞ þ ðCÞ. Thus, the ðCÞ block is backward flexible.

A similar argument can be used to show that if the ðCÞ block is
backward flexible, then it is flexible. �

The following result follows immediately.

Corollary 1. All valid AL can be decoded into feasible schedules for the
ðORDÞ þ ðCf Þ problem using the forward or the backward mode.

To illustrate the backward scheduling mode, we can use the
example in Fig. 1. The schedule associated with
AL1 ¼ ½1;2;3;4;5;6;7;8;9;10� obtained with the backward mode
is illustrated in Fig. 4.

In the rest of the paper we use only the notion of flexibility since
the results are also valid for backward flexibility.

4. Optimal activity list for ðORDÞ þ ðCf Þ

As mentioned before, if the ðRCPSPÞ has an optimal schedule,
there always exists a valid AL associated with an optimal schedule
(Kolisch, 1996a; Sprecher et al., 1995). Next, we discuss this issue
for the ðORDÞ þ ðCf Þ problem.

First, we need to introduce some useful definitions. Some of
these definitions were introduced by Backer (1974) for the job
shop problem and then extended and formalized by Sprecher
et al. (1995) for the ðRCPSPÞ. Now, we extend these to the
ðORDÞ þ ðCf Þ problem.

Definition 5. A left shift of activity j in a feasible schedule consists
in scheduling j sooner without changing the scheduling period of
the other activities. The resulting schedule must be feasible.
e example.

Fig. 4. Schedule example obtained with the backward mode.

Fig. 5. Example of an ðORDrÞ þ ðCf Þ problem.

50 K. Moumene, J.A. Ferland / European Journal of Operational Research 199 (2009) 46–54
Definition 6. A one-period left shift of an activity j is a left shift of j
where j is scheduled one period sooner.

Definition 7. A local left shift of activity j is a left shift of j obtained
by applying successively one or more one-period left shifts.

Definition 8. A global left shift of activity j is a left shift of j that
cannot be obtained only by applying successively one or more
one-period left shifts.

Definition 9. A semi-active schedule is a feasible schedule where
each activity cannot be locally left shifted.

Definition 10. An active schedule is a feasible schedule where each
activity cannot be locally or globally left shifted.

It is easy to verify that any valid AL induces an active schedule for
ðORDÞ þ ðCf Þ since each activity is scheduled at its earliest start
period, hence it cannot be scheduled sooner without rescheduling
other activities.

Definition 11. For a minimization scheduling problem, the objec-
tive function is regular if it is non-decreasing with the completion
times of the activities.

Note that the makespan, a frequently used objective function for
scheduling problems like ðRCPSPÞ, is a regular objective function.
Many other regular objective functions can be found in Patterson
et al. (1990) and Slowinski (1989) for scheduling problems.

Definition 12. Let P be a feasible schedule, i an activity, and APi the
set of activities starting at the same period as i or later. A partial
schedule Pi of P is the schedule for the activities APi [fig. These
activities are scheduled at the same periods as in P.

Definition 13. Let i be an activity, Pi a partial schedule of P, and Psi

the other activities than APi scheduled at the same period as in P.

� �CONi is a subset of the constraints of ðORDÞ þ ðCf Þ. Activities con-
cerned by each of these constraints are in Psi only.

� CONi is a subset of the constraints of ðORDÞ þ ðCf Þ. At least one
activity in Pi is concerned by each of these constraints.
Fig. 6. Schedule resulting from a1 and a2.

Fig. 7. Example of a better schedule.
Definition 14. Let i be an activity and di its starting period in the
partial schedule Pi. Pi is locally extensible if a local left shift of i in
Pi of ðdi � 1Þ periods is possible considering only constraints CONi.

According to Definition 14, Pi is locally extensible if activity i
can be left shifted to any period before di when only constraints
CONi apply.

Definition 15. A feasible schedule P is globally extensible if, for each
activity i, the partial schedule Pi of P is locally extensible.

In the following sections, we discuss the existence of an optimal
AL for the problem ðORDÞ þ ðCf Þ having a regular objective function.
This problem is denoted ðORDrÞ þ ðCf Þ.
4.1. The flexibility condition

Relying on the results in Section 3, the flexibility condition al-
lows any valid AL to be decoded into a feasible schedule for the
problem ðORDÞ þ ðCf Þ. Here, we illustrate that this condition is
not sufficient in general for the existence of an optimal valid AL.

Consider the following simple ðORDrÞ þ ðCf Þ example. It is an
ðRCPSPÞ where other flexible constraints are added. Fig. 5 shows
the principal data of the ðRCPSPÞ. Only one resource is used, and
4 units are available during each period.

The additional flexible constraints are:

1. Activities 1 and 2 cannot be separated by exactly 2 periods.
2. Activities 2 and 3 cannot be separated by exactly 2 periods.
3. Activity 3 cannot start before period 7.

For this example, there exist only 2 valid AL, a1 ¼ ½1;2;3;4� and
a2 ¼ ½1;2;4;3�. a1 and a2 induce the same schedule illustrated in
Fig. 6 when they are decoded using the forward scheduling mode.
This schedule has a duration of 9 periods.

Now, consider the following feasible schedule in Fig. 7. This
schedule has a duration 8, which is a better makespan then the
one induced by a1 and a2.

This example illustrates clearly that the set of schedules induced
by all valid AL does not contain the optimal schedule. Hence, the flex-
ibility condition is not sufficient to guarantee the existence of an
optimal valid AL.

K. Moumene, J.A. Ferland / European Journal of Operational Research 199 (2009) 46–54 51
This example also illustrates that the set of schedules induced
by all the valid AL may not contain all active schedules because the
schedules of Figs. 6 and 7 are both active.
Fig. 8. Example of a schedule with the assumption that i cannot start at period SPi.
4.2. Sufficient conditions

In this section we give a new condition to guarantee the exis-
tence of an optimal valid AL for the ðORDrÞ þ ðCf Þ problem. We
use the following two important results.

Theorem 2. If a ðORDrÞ þ ðCf Þ problem has an optimal schedule then
it has an optimal active schedule.

Proof 2. Let aopt be an optimal schedule. If aopt is active then the
result is true. Otherwise, it is possible to apply a left shift to aopt .
After this operation, the value of the objective function for the
new schedule remains unchanged since it is regular and since
aopt is optimal. Successive left shifts are then applied as long as pos-
sible. The number of left shifts applied is finite because each time a
left shift is applied, an activity is scheduled at least one period ear-
lier and the number of periods is finite. Since a left shift cannot be
applied on the resulting schedule, then it is active. This schedule
has the same objective function value as aopt , and it is an optimal
active schedule. �

Note that the fact that the ðCf Þ block is flexible is not used
explicitly in the proof. However, this condition is required to en-
sure that any valid AL can be decoded into a feasible schedule.

The second result introduces a condition guaranteeing the exis-
tence of a valid AL associated with each active schedule.

Theorem 3. Consider the ðORDÞ þ ðCf Þ problem. If all the feasible
schedules are globally extensible then there exists a valid AL associated
with each active schedule.

Proof 3. Let P be a feasible active schedule, and denote by ap an AL
constructed according to the following process. At step n of the
process, the activity in position n of ap is selected. First we deter-
mine the set of candidate activities having all their predecessors
already selected. An earliest starting period SPj is determined for
each candidate activity j according to the constraints of the prob-
lem and accounting for the subset of activities already selected.
The activity in position n of ap is selected among the candidate
activities having its earliest starting period identical to its starting
period in P.

Clearly, if all the activities are selected sequentially in this
process, then the valid AL constructed is associated with the active
schedule P. To complete the proof, suppose for the sake of
contradiction that at some step n0 of the process, for each
candidate activity j, SPj is different from its starting period SPP

j in P.
For some candidate activity j, suppose that SPP

j < SPj. By the
definition of SPj, activity j cannot be scheduled earlier than period
SPj according to the constraints of the problem. Then activity j
cannot be scheduled at SPP

j ð< SPjÞ in P since P is feasible by
assumption. Hence it is not possible to have SPP

j < SPj, and
therefore SPj < SPP

j for all candidate activities at step n0.
For any candidate activity j, it is clear that the constraints

preventing j from being scheduled at period SPj in P are constraints
concerning j and activities that are not selected yet, since they
force the starting period of j to be SPP

j in P. Now denote by i any of
the earliest starting candidate activities in P (see Fig. 8). Hence,
there are constraints in CONi that are preventing i from being
scheduled at period SPi in P while constraints �CONi allow it.
Furthermore, note that all the activities that are not selected yet
appear in Pi since i is any of the earliest starting candidate activities
in P and the rest of the activities are direct or indirect successors of
the candidate activities.
Now, by assumption, P is globally extensible, Hence, activity i
can be scheduled at an earlier period in Pi using a local left shift of
duration ðSPP

i � 1Þ with regard to the constraints CONi. It follows
that these constraints are not preventing i from being scheduled at
period SPi rather than at period SPP

i (by left shifting i of ðSPP
i � SPiÞ

periods). Thus neither CONi nor �CONi prevent i from being
scheduled at SPi in P. This contradicts the fact that P is an active
schedule.

Hence, it is always possible to construct a valid AL associated
with any active schedule. �

The following important result is a direct consequence of Theo-
rems 2 and 3.

Corollary 2. Consider an ðORDrÞ þ ðCf Þ problem having an optimal
schedule. If all feasible schedules are globally extensible then there
exists a valid AL inducing an optimal schedule.

According to Theorem 2, if the problem has an optimal sche-
dule, then it has an optimal active schedule. Referring to Theorem
3, there exists a valid AL associated with the optimal active
schedule.

Now, consider two problems ðORDrÞ þ ðCf
1Þ and ðORDrÞ þ ðCf

2Þ
having optimal schedules. Assume also that for each of these prob-
lems, each feasible schedule is globally extensible. Let Cf

1;2 denote
the union of the constraint sets ðCf

1Þ and ðCf
2Þ. It is easy to verify

that for the problem ðORDrÞ þ ðCf
1;2Þ, each feasible schedule is glob-

ally extensible. Indeed, if each partial feasible schedule Pi for
ðORDrÞ þ ðCf

1;2Þ is locally extensible considering constraints ðCf
1Þ

(respectively constraints ðCf
2Þ), it is locally extensible considering

constraints ðCf
1;2Þ. This means that if a set is composed of con-

straints having this property individually, this set also has this
property. Since the flexibility is also preserved, the resulting prob-
lem has an optimal valid AL according to Theorem 2.

It is interesting to note that for the particular case of the
ðRCPSPÞ, each partial feasible schedule is globally extensible. Since
the resource constraints are also flexible, then the problem has an
optimal valid AL. This result was already introduced in Kolisch
(1996a) and Sprecher et al. (1995).

For the example of Fig. 2, the flexible constraints ‘‘activities 1
(respectively 2) and 2 (respectively 3) cannot be separated by ex-
actly 2 periods” imply that at least one partial schedule is not lo-
cally extensible. For instance, the partial schedule P2 in Fig. 7 is
not locally extensible.

52 K. Moumene, J.A. Ferland / European Journal of Operational Research 199 (2009) 46–54
4.3. Example of constraints inducing an optimal AL

As underlined above, the existence of an optimal valid AL for
ðORDrÞ þ ðCf Þ can be proved by (1) showing that each individual
constraint ðcÞ in ðCf Þ is flexible and (2) for the problem ðORDrÞþ
ðcÞ, each feasible schedule is globally extensible. We give here a
non-exhaustive list of constraints complying with these
conditions.

1. A pair of activities must be separated by at least a duration DR.
2. A subset of activities cannot be processed simultaneously.
3. An activity cannot start before a particular period.
4. An activity cannot be scheduled in a particular time window.
5. Resource constraints similar to those of the ðRCPSPÞ.
6. Resource constraints similar to those of the ðRCPSPÞ but where

quantities of resources are not necessarily identical at each period.
In this case, the availabilities must allow each individual activ-
ity to be scheduled at each period.

7. Resource constraints similar to those of the ðRCPSPÞ but where
the quantities required by an activity change during its duration.
For instance, an activity of duration 2 may require 2 units of
some resource in its first period and 3 units in its second period
of its completion. Also in this case, it is important that each
individual activity can be scheduled at each period.

5. Other ðRCPSPÞ extensions

Many solution procedures developed for the ðRCPSPÞ use sets of
valid AL; for examples, Alcaraz and Maroto (2001), Hartmann
(1998) and Hindi et al. (2002) (genetic algorithm), Bouleimen
and Lecocq (2003) (simulated annealing) and Nonobe and Ibaraki
(2002) (tabu search). Most of these procedures can be easily ex-
tended to solve the ðORDÞ þ ðCf Þ problem by simply adjusting the
way that AL are decoded to account for ðORDÞ þ ðCf Þ constraints.

Valls et al. (2005) introduce the justification operation on a fea-
sible schedule P for the ðRCPSPÞ. Roughly speaking, the right justifi-
cation (respectively left justification) of P consists of ordering the
activities in decreasing (respectively increasing) order by their
end period (respectively start period). Then the new feasible sche-
dule PR (respectively PL) is generated by scheduling the activities in
that order at their earliest ending (respectively latest starting) per-
iod. PR (PL) has at least as good a makespan as P. Generally, a double
justification is applied to a schedule P to obtain the feasible sche-
dule ðPRÞL. Other similar operations are summarized in Tormos
and Lova (2001). These operations can also be easily extended to
the ðORDrÞ þ ðCf Þ problem where the makespan is the objective
function, by considering the constraints of the problem when
activities are rescheduled.

Klein (2000) introduces the bidirectional planning for the
ðRCPSPÞ. This method generates a schedule by using the forward
and the backward modes simultaneously. Each activity is sched-
uled according to one mode and the resulting two partial schedules
are merged to obtain a final feasible schedule. Since the forward
and the backward scheduling mode have been defined for the
ðORDÞ þ ðCf Þ (sections 2 and 3.2) this method can also be extended
to this problem.
Fig. 9. Example of a schedule induced by an ASL and all its corresponding AL.
6. Activity set list for ðORDÞ þ ðCf Þ

The notion of an activity set list ASL was introduced by Moum-
ene and Ferland (2005, 2008) as a representation for schedules of
the ðRCPSPÞ. This representation may considerably reduce the
search in the space of all AL allowing to avoid selecting several dif-
ferent AL corresponding to the same schedule. Indeed, an ASL may
correspond to several different valid AL inducing the same unique
schedule.

An ASL is an ordered list of different subsets of activities corre-
sponding to a partition of the set of activities. For each of these
subsets, there may exist several permutations where each activity
is positioned after its predecessors belonging to the subset. We re-
fer to these permutations as orders of the subset.

Furthermore, an ASL has the permutation property ðPRMTÞ if all
AL obtained by merging orders of the subsets (one for each subset)
are valid and correspond to the same unique schedule.

For instance, consider the ðRCPSPÞ given in Fig. 1 (without the
additional constraints). The schedule corresponding to the
ASL=[{1, 2, 3, 4, 5}{6, 7, 8, 9, 10}] is illustrated in Fig. 9. It is easy
to verify that this ASL is ðPRMTÞ since all the AL constructed by
merging any order of sb1 ¼ f1;2;3;4;5g with one of sb2 ¼
f6;7;8;9;10g are valid and correspond to the schedule of Fig. 9.
For instance, o1 ¼ ½1;2;5;4;3� (respectively o2 ¼ ½6;8;7;9;10�) is
an order of sb1 (respectively sb2). Merging these orders induces
the valid AL

½1;2;5;4;3;6;8;7;9;10�

that corresponds to the schedule of Fig. 9.
Moumene and Ferland (2005, 2008) introduce a polynomial

algorithm (ConstructASLPRMT) to construct an ASL ðPRMTÞ starting
from a valid AL. The constructed ASL induces the same schedule as
the starting AL. The algorithm selects activities according to their
order in the AL. For each selected activity i, two periods are calcu-
lated: TPðiÞ the earliest starting period of i considering only the
precedence constraints, and TPRðiÞ the earliest starting period of i
considering the precedence and the resource constraints. If
TPðiÞ ¼ TPRðiÞ, then i is included in the current subset. Otherwise,
a new subset is initialized with i. Then i is scheduled to start at per-
iod TPRðiÞ and the next activity is selected. The resulting ASL is the
list of these subsets ordered according to the order in which they
are generated.

Now it is easy to see that the notion of ASL ðPRMTÞ can be ex-
tended to the ðORDÞ þ ðCf Þ problem. The algorithm above can be
extended by defining TPRðiÞ as the earliest starting period of i con-
sidering all the constraints of the problem.

As an example, consider the problem ðORDÞ þ ðCf Þ described
in Fig. 1. Applying the algorithm to the valid AL1 ¼
½1;2;3;4;5;6;7;8;9;10� induces the following ASL ðPRMTÞ,

ASL1 ¼ ½f1;2;3gf4;5gf6;7gf8;9;10g�:

Table 1 shows the orders for each of the 4 subsets of ASL1. Hence, it
is possible to construct 2� 2� 2� 1 ¼ 8 different valid AL, all cor-
responding to the same schedule given in Fig. 2.

It follows that the ASL can also be used for ðORDÞ þ ðCf Þ to re-
duce the search in the space of all valid AL by avoiding those that
induce the same schedule. Furthermore, if an optimal valid AL exists
for ðORDrÞ þ ðCf Þ, an optimal ASL ðPRMTÞ also exists for the problem.

Table 1
Orders corresponding to each subset of ASL1.

Subsets Orders

f1;2;3g ½1;2;3�; ½1;3;2�
f4;5g ½4;5�; ½5;4�
f6;7g ½6;7�; ½7;6�
f8;9;10g ½8;9;10�

K. Moumene, J.A. Ferland / European Journal of Operational Research 199 (2009) 46–54 53
In fact, it is easy to verify that applying the modified algorithm to
an optimal AL produces an optimal ASL ðPRMTÞ.

7. Conclusion

We present a wide generalization of the ðRCPSPÞ covering sev-
eral real life applications and an extension of the use of the activity
list representation for this new category of problems. This repre-
sentation has been successfully applied to the ðRCPSPÞwithin many
efficient solution methods due to the fact that an activity list is
quickly decoded into a feasible schedule. This representation also
lends itself to several operators found in various metaheuristic pro-
cedures such as local searches and genetic algorithms.

We extend the decoding procedure of an activity list for our
generalization of the ðRCPSPÞ in the context of both the forward
and the backward modes. Hence, most of the proposed solution
procedures for ðRCPSPÞ based on this representation can be ex-
tended by simply replacing the classic decoding procedure used
for the ðRCPSPÞ by the generalized version introduced here. We also
give sufficient conditions guaranteeing the existence of an optimal
schedule corresponding to some activity list. Thus, small instances
of some generalized problems can even be solved exactly since, un-
der some conditions, enumerating all possible activity lists leads to
some list corresponding to the optimal schedule. Finally, we indi-
cate that the use of the Activity Set List, a recently proposed repre-
sentation for the ðRCPSPÞ, can also reduce the activity list search
space for this generalization of the ðRCPSPÞ. Many illustrative
examples are also given.

References

Alcaraz, J., Maroto, C., 2001. A robust genetic algorithm for resource allocation in
project scheduling. Annals of Operations Research 102, 83–109.

Alcaraz, J., Maroto, C., Ruiz, R., 2004. Improving the performance of genetic
algorithms for RCPS problem. In: Proceedings of the Ninth International
Workshop on Project Management and Scheduling, Nancy 2004, pp. 40–43.

Baar, T., Brucker, P., Knust, S., 1998. Tabu-search algorithms and lower bounds for
resource-constrained scheduling problem. In: Voss, S., Martello, S., Osman, I.,
Roucairol, C. (Eds.), Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization. Kluwer Academic, pp. 1–18.

Backer, K.R., 1974. Introduction to Sequencing and Scheduling. Wiley, New York.
Blazewicz, J., Lenstra, J., Kan, A.R., 1983. Scheduling projects to resource constraints:

Classification and complexity. Discrete Applied Mathematics 5, 11–24.
Boctor, F.F., 1990. Some efficient multi-heuristic procedures for resource-

constrained project scheduling. European Journal of Operational Research 49,
3–13.

Boctor, F.F., 1996. Resource-constrained project scheduling by simulated annealing.
International Journal in Production Research 34, 2335–2351.

Bouleimen, M., Lecocq, H., 2003. A new efficient simulated annealing algorithm for
the resource-constrained project scheduling problem and its multiple version.
European Journal Of Operational Research 149, 268–281.

Brucker, P., Knust, S., 2001. Resource-constrained project scheduling and
timetabling. In: Bruke, E., Erben, W. (Eds.), Lecture Notes in Computer Science
2079 PATAT III. Springer, pp. 277–293.

Brucker, P., Schumacher, D., 1999. A new tabu search procedure for audit-
scheduling problem. Journal of Scheduling 2, 157–173.

Brucker, P., Drexl, A., Mohring, R., Neumann, K., 1999. Resource-constrained project
scheduling: Notation, classification, models and methods. European Journal of
Operational Research 112, 3–41.

Cesta, A., Oddi, A., 2002. A constraint-based method for project scheduling with
time windows. Journal of Heuristics 8, 109–136.

Cho, J.-H., Kim, Y.-D., 1997. A simulated annealing algorithm for resource-
constrained project scheduling problems. Journal of the Operational Research
Society 48, 735–744.
Demeulemeester, E., Harroelen, W., 1995. New benchmarking results for the
resource constrained project scheduling problem. Management Science 43,
1485–1492.

Demeulemeester, E., Herroelen, W., 1992. A branch-and-bound procedure for
multiple resource-constrained project scheduling problem. Management
Science 38, 1803–1818.

Demeulemeester, E., Herroelen, W., 2002. Project Scheduling: A Research
Handbook. Kluwer Academic Publishers, Boston.

De Reyck, B., Herroelen, W., 1998. An optimal procedure for the resource-
constrained project scheduling problem with discounted cash flows and
generalized precedence relations. Computers and Operations Research 25, 1–
17.

Fleszar, K., Hindi, K., 2004. Solving the resource-constrained project scheduling
problem by variable neighbourhood search. European Journal of Operational
Research 155, 402–413.

Hartmann, S., 1998. A competitive genetic algorithm for resource-constrained
project scheduling. Naval Research Logistics 456, 733–750.

Hartmann, S., Kolisch, R., 2000. Experimental evaluation of state-of-the-art
heuristics for the resource-constrained project scheduling problem. European
Journal of Operational Research 127, 394–407.

Herroelen, W., Reyck, B., Demeulemeester, E., 1998. Resource-constrained project
scheduling: A survey of recent developments. Computers and Operations
Research 4, 279–302.

Hindi, K.S., Yang, H., Fleszar, K., 2002. An evolutionary algorithm for resource-
constrained project scheduling. IEEE Transactions on Evolutionary Computation
6, 512–518.

Kelley, J.E., 1963. The critical-path method: Resources planning and scheduling. In:
Muth, J.F., Thompson, G.L. (Eds.), Industrial Planning Scheduling. Prentice-Hall,
pp. 347–365.

Klein, R., 2000. Bidirectional planning: Improving priority rule-based heuristics for
scheduling resource-constrained projects. European Journal of Operational
Research 127, 619–638.

Kohlmorgen, U., Schmeck, H., Haase, K., 1999. Experiences with fine-grained parallel
genetic algorithms. Annals of Operations Research 90, 203–219.

Kolisch, R., 1996a. Serial and parallel resource-constrained project scheduling
methods revisited: Theory and computation. European Journal of Operational
Research 90, 320–333.

Kolisch, R., 1996b. Efficient priority rules for the resource-constrained project
scheduling problem. Journal of Operations Management 14, 179–192.

Kolisch, R., Drexl, A., 1996. Adaptative search for solving hard project scheduling
problems. Naval Research Logistics 43, 23–40.

Kolisch, R., Hartmann, S., 1999. Heuristic algorithms for solving resource-
constrained project scheduling problem: Classification and computation
analysis. In: Weglarz, J. (Ed.), Project Scheduling: Recent Models, Algorithms
and Applications. Kluwer Academic Publisher, Boston, pp. 147–178.

Kolisch, R., Hartmann, S., 2006. Experimental investigation of heuristics for
resource-constrained project scheduling: An update. European Journal of
Operational Research 174, 23–37.

Kolisch, R., Padman, R., 2001. An integrated survey of deterministic project
scheduling. OMEGA International Journal of Management Science 29 (3), 249–
272.

Li, K.Y., Willis, R.J., 1992. An interactive scheduling technique for resource-
constrained project scheduling problem. European Journal of Operational
Research 56, 370–379.

Mendes, J.J.M., Gonćalves, J.F., Resende, M.G.C., 2009. A random key based genetic
algorithm for the resource constrained project scheduling problem. Computers
and Operations Research 36, 92–109.

Mingozi, A., Maniezzo, V., Ricciardelli, S., Bianco, L., 1998. An exact algorithm for
project scheduling with resource constraints based on a new mathematical
formulation. Management Science 44, 714–729.

Moumene, K., Ferland, J.A., 2005. Activity Set List Representation for the Resource-
Constrained Project Scheduling Problem. Département d’Informatique et de
Recherche Opérationnelle, Université de Montréal (Publication No. 1223),
March.

Moumene, K., Ferland, J.A., 2008. New representation to reduce the search space for
the resource-constrained project scheduling problem. RAIRO – Operations
Research 42, 215–228.

Nonobe, K., Ibaraki, T., 2002. Formulation and tabu search algorithm for the
resource constrained project scheduling problem. In: Ribeiro, C.C., Hansen, P.
(Eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, pp.
557–588.

Ozdamar, L., Ulusoy, G., 1996. A note on interactive forward/backward scheduling
technique with a reference to a procedure of Li and Willis. European Journal of
Operational Research 89, 400–407.

Patterson, J.H., Slowinski, R., Talbot, F.B., Weglarz, J., 1989. An algorithm for a
general class of precedence and resource constrained scheduling problems. In:
Sowinski, R., Weglarz, J. (Eds.), Advances in project scheduling. Elsevier,
Amsterdam, pp. 3–28. 17.

Patterson, J.H., Slowinski, R., Talbot, F.B., Weglarz, J., 1990. Computational
experience with a backtracking algorithm for solving a general class of
precedence and resource-constrained scheduling problem. European Journal
of Operational Research 49, 68–79.

Pinson, E., Prins, C., Rullier, F., 1994. Using tabu search for solving the resource-
constrained project scheduling problem. In: Proceedings of the Fourth
International Workshop on Project Management and Scheduling, Leuven,
Belgium, pp. 102–106.

54 K. Moumene, J.A. Ferland / European Journal of Operational Research 199 (2009) 46–54
Schaerf, A., 1999a. A survey of automated timetabling. Artificial Intelligence Review
13, 87–127.

Schaerf, A., 1999b. Local search techniques for large high school timetabling
problems. IEEE Transactions on Systems, Man and Cybernetics, Part A 29, 368–
377.

Slowinski, R., 1989. Multiobjective project scheduling under multiple-category
resource consraints. In: Slowinski, R., Weglarz, J. (Eds.), Advances in Project
Scheduling. Elsevier, Amsterdam, pp. 151–167.

Sprecher, A., Kolisch, R., Drexel, A., 1995. Semi-active, active and non-delay
schedules for resource-constrained project scheduling problem. European
Journal of Operational Research 80, 94–102.
Tormos, S., Lova, A., 2001. A competitive heuristic solution technique for resource-
constrained project scheduling. Annals of Operations Research 102, 65–81.

Valls, V., Ballestin, F., Quintanilla, M.S., 2003. A hybrid genetic algorithm for the
RCPSP. Technical Report, Department of Statistics and Operations Research,
University of Valencia.

Valls, V., Ballestin, F., Quintanilla, S., 2005. Justification and RCPSP: A technique that
pays. European Journal of Operational Research 165, 375–386.

Valls, V., Ballestín, F., Quintanilla, S., 2008. A hybrid genetic algorithm for the
resource-constrained project scheduling problem. European Journal of
Operational Research 185, 495–508.

	Activity List Representation list representation for a Generalization generalization of the Resource-Constrained Project Scheduling Problemresource-constrained project scheduling problem
	Introduction
	Generalized (RCPSP)
	Activity list representation for the generalized (RCPSP)
	Flexible constraints
	The Backward backward mode

	Optimal activity list for (ORD)+({C}^f)
	The flexibility condition
	Sufficient conditions
	Example of constraints inducing an optimal AL

	Other (RCPSP) extensions
	Activity set list for (ORD)+({C}^f)
	Conclusion
	References

