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Abstract. This study investigated learners’ attention during interaction with a 

serious game. We used Keller’s ARCS theoretical model and physiological 

sensors (heart rate, skin conductance, and electroencephalogram) to record 

learners’ reactions throughout the game. This paper focused on assessing 

learners’ attention in situations relevant to learning, namely overcoming errors 

and obstacles. Statistical analysis has been used for the investigation of 

relationships between theoretical and empirical variables. Results from non-

parametric tests and linear regression supported the hypothesis that 

physiological patterns and their evolution are suitable tools to directly and 

reliably assess learners’ attention. Intelligent learning systems can greatly 

benefit from using these results to enhance and adapt their interventions. 
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1 Introduction 

The increased use of Computer-Based Education over the last decades encourages the 
investigation of new and engaging learning environments. Currently, serious games are 
used to train or educate learners while giving them an enjoyable experience. They have 
been considered as the next wave of technology-mediated learning. Several studies 
have assessed their potential as learning tools [1-3]. They have concluded that the 
integration of games into learning systems have enhanced the desired learning 
outcomes. Amory and colleagues have identified game elements that learners found 
interesting or useful within different game types such as in-game rules, immersive 
graphical environment and interactivity just to name a few [4]. Beside these distinctive 
design elements that seem necessary to stimulate learners’ motivation,  other 
researchers however have reported that consequences of different game elements, such 
as risks, errors, and obstacles, seem to be more relevantly correlated with learners’ 
motivation and attention [5]. Indeed, computer games typically put traps and obstacles 
in the way of the player thus requiring more attention while overcoming them in order 
to properly progress through the rest of the game. In contrast to the significant amount 
of research effort in the area of serious games, less has been done however regarding 
the assessment of learners’ attention while overcoming errors and obstacles. These 
situations are therefore the specific area of interaction that our research focuses on to 
assess learners’ attention. 



 

 

Traditional assessment usually involves measuring performance, time spent, and 
response time as main indicators of learners’ attention. However, researchers have 
recently used psychological motivational models, physical sensors, and a combination 
of both to assess complex learners’ states such as motivation, attention and 
engagement during serious game play [2, 6, 7]. Nevertheless, further studies are 
required to possibly identify learners’ physiological evolution while overcoming errors 
and obstacles. Consequently, a learning system can customize its learning process by 
adapting learning strategies in order to respond intelligently to learners’ needs, 
objectives and interests. The present paper aims at highlighting some of the relevant 
physiological patterns that occur in learners and correlating them with learners’ 
attention while overcoming errors and obstacles in a serious game. We have therefore 
carried out an empirical study to assess learners’ attention using Keller’s ARCS 
psychological model combined with physiological recordings, namely heart rate (HR), 
skin conductance (SC) and brainwaves (EEG). We ask in this paper the two following 
research questions: can we identify relevant physiological manifestations in learners’ 
attention while overcoming errors and obstacles? If so, can we reliably predict 
learners’ attention by establishing a reliable AI model? 

The organization of this paper is as follows: in the next section, we present 
previous work related to our research. In the third section, we explain our empirical 
approach in assessing learners’ attention. In the fourth section, we detail our 
experimental methodology. In the fifth section, we present the obtained results and 
discuss them, in the last section, as well as present future work. 

2 Related Work 

Assessing learners’ states is of particular importance in establishing proper strategies 
and understanding the processes that might explain differences between learners’ 
knowledge acquisition. Unlike human tutors, intelligent systems cannot exclusively 
rely on observational cues, such as posture and gesture, to infer emotional and 
cognitive states, such as motivation and engagement. Several studies have been 
therefore proposed to intelligently identify these states through the use of physical 
sensors. One of those studies used biometric sensors (HR, SC, electromyography and 
respiration) and facial expression analysis to develop a probabilistic model of detecting 
students’ affective states within an educational game [8]. Another study used four 
different sensors (camera, mouse, chair, and wrist) in a multimedia adaptive tutoring 
system to recognize students' affective states and embedded emotional support [9].  

In the particular case of learners’ attention, performance and response time have 
been generally used as assessment metrics. Recent studies have reported significant 
results in assessing learners’ attention using others cues. Qu and colleagues for 
example used a Bayesian model to combine evidence from the learner’s eye gaze and 
interface actions to infer the learner’s focus of attention [10]. Kuo-An and Chia-Hao 
applied fuzzy logic analysis of students facial images when participating in class to 
prevent erroneous judgments and help tutors deal with students attentiveness [11]. 
Another multimodal approach by Peters and colleagues investigated a user attention 
model by establishing three core components (gaze detection, neurophysiological 
detection, and a user attention representation module) for human-agent interaction 
[12]. The authors proposed to establish patterns of behavior and attention allocation 
useful for endowing autonomous agents with more natural interaction capabilities. 



Finally, in video games context, commercial helmet-embedded sensors combining 
multiple channels such as EEG and facial EMG,  have been designed to recognize 
game relevant player states, such as engagement, attention, and boredom [13]. 

It is clear that combining physical sensors and theoretical model is best for 
addressing learners’ attention during a specific activity or context. However, this 
combination has been rarely done. For example, [14] used a self-report questionnaire 
(Keller’s ARCS model) and a portable EEG to examine attention and motivation in a 
virtual world. We also aim in this work to examine the attention state but in a 
completely different goal and perspective. Indeed, in contrast to Rebolledo-Mendez 
and colleagues’ work, we have chosen to assess learners’ attention while overcoming 
errors and obstacles during serious game play. We have also chosen to combine the 
ARCS model and different physiological sensors (HR, SC, and EEG) as our 
assessment metrics. We chose serious games for they constitute a powerful learning 
environment to support attention and motivation [2]. They can accelerate learning and 
support the development of various skills, such as cognitive thinking and problem 
solving skills [15]. In fact, many studies have been increasingly trying to define 
specific features of games that enhance learning [1, 2, 16]. They have stated that these 
environments increase attention state through the use of traps and obstacles to allow 
learners for instance to take risks and overcome obstacles. We are interested in 
assessing this specific state in learners and the next section will present the method 
used to assess learners’ attention. 

3 Assessment of Learners’ Attention 

The key issue in this paper is related to the assessment of learners’ attention in serious 
games environment. The Attention category of the ARCS model of motivation [17] has 
been chosen to theoretically assess learners’ attention. Indeed, Keller's model is of 
particular interest in our study since it separately considers the attention dimension and 
it has been used in learning, training and games [18]. Even the use of a theoretical 
model may offer some insight into the learners’ attention directly from the learners but 
it remains insufficient. Several objective measures, however, are not dependent on a 
learners’ perception and generally include independent measures such as performance, 
time spent in a game, response time, and physiological reactions. In our empirical 
assessment approach, we decided to assess learners’ attention by using non-invasive 
physiological sensors (SC and HR). These sensors are typically used to study human 
affective states [19]. Furthermore, we decided to add another interesting and important 
sensor: EEG. Indeed, brainwave patterns have long been known to give valuable 
insight into the human cognitive process and mental state[20] . 

 This paper also explores the intricate relationship between the Attention category 
in the ARCS model and its corresponding EEG fingerprint expressed in the form of a 
ratio known as the attention ratio (Theta/Low-Beta) [21]. Indeed, according to the 
authors, a negative correlation exists between the attention ratio and learners’ attention. 
A high attention ratio is usually correlated with excessive Theta and consequently 
inattentive state. Conversely, a low attention ratio is normally correlated with excessive 
Low-Beta brainwave activity reflecting attentive state in adults. In addition, it is 
common knowledge throughout the neuro-scientific community that investigations of 
cerebral activity limited to one area of the brain may offer misleading information 
regarding complex states such as attention. We have therefore investigated different 



 

 

cerebral areas to study simultaneous brainwave changes. The idea is to analyze, in a 
joint venture, both physiological and cerebral signals to determine, or at least estimate, 
their correlations with learners’ attention while overcoming errors and obstacles during 
serious game play. To that end, prediction models will be constructed using theoretical 
and empirical data. A detailed description of all these possibilities is given in the 
experiment and results sections. 

4 Experiment 

The participants were invited to play the serious game called FoodForce from the 
World Food Program of the United Nations intended to educate players about the 
problem of world hunger. FoodForce is comprised of multiple arcade-type missions, 
each intended at raising players’ awareness towards specific problems regarding 
world-wide food routing and aid. FoodForce also presents players’ objectives in a short 
instructional video before the beginning of each mission. A virtual tutor also 
accompanies the player throughout each mission by offering various tips and lessons 
relative to the obstacles and goals at hand. Following the signature of a written 
informed consent form, each participant was placed in front of the computer monitor to 
play the game. A baseline was also computed before the beginning of the game. A pre-
test and post-test were also administered to compare learners’ performance regarding 
the knowledge presented in the serious game. 

The missions we are interested in investigating in this paper are missions 3 and 5. 
Mission 3 instructs players to drop 10 food packets from an airplane to an alley on the 
ground. Before dropping a packet, a player has 5 seconds to calculate the speed and 
strength of the wind before releasing the food ideally as close to the center of the lane 
as possible. Errors in this mission are reflected through the obtained final score. 
Furthermore, the tutor intervened and gives an immediate feedback after each drop. 
Mission 5 is concerned with driving food trucks in dangerous territories and get 
through obstacles such as quickly replacing flat tires and managing diplomatically 
through intimidation attempts by angry locals. Players loose one truck of food for each 
failed attempt to successfully overcome an obstacle in this mission. 

The motivational measurement instrument called Instructional Materials 
Motivation Survey IMMS [17] was used following each mission to assess learners’ 
motivational state. SC and HR sensors were attached to the fingers of participants’ 
non-dominant hands, leaving the other free for the experimental task. An EEG cap was 
also conveniently fitted on learners’ heads and each sensor spot slightly filled with a 
proprietary saline solution. EEG was recorded by using a cap with a linked-mastoid 
reference. The sensors were placed on three selected areas (F3, C3 and Pz) according 
to the international 10-20 system. The EEG was sampled at a rate of 256 Hz. A Power 
Spectral Density (PSD) was computed to divide the EEG raw signal into the two 
following frequencies: Theta (4-8 Hz) and Low-Beta (12-20 Hz) in order to compute 
the attention ratio (Theta/Low-Beta) as described above. To reduce artifacts, 
participants were asked to minimize eye blinks and muscle movements during 
recording. A normalization technique (min-max) was applied to all physiological data.  

We computed an index representing players’ physiological evolution throughout 
the mission with regards to each signal signification. This index, called Percent of 
Time (PoT), represents the amount of time, in percent, that learners’ signal amplitude 
is lower (or higher) than a specific threshold. The threshold considered for each signal 



is the group’s signal average for each mission. The PoT index is a key metric enabling 
us to sum-up learners’ entire signal evolution for a mission. For SC and HR, the PoT 
index will be computed for values above the threshold since we are looking for 
positive evolutions when playing a serious game. Conversely, for EEG attention ratios, 
a PoT index was calculated when learner’s attention was below the threshold as 
explained previously in section 3. Fig. 1 illustrates a learner’s EEG attention ratio 
evolution during 20 seconds one mission. The computed PoT for the selected 5 second 
window in this figure would be 40% (2 values below divided by 5 values) and 80% for 
the entire 20 seconds (16 values below divided by 20 values overall).   

 

 

Figure 1. Learner’s attention ratio evolution 

Thirty three volunteers (11 female) took part in the study in return of a fixed 
compensation. Participant’s mean age was 26.7 ± 4.1 years. Four participants (2 
female) were excluded from the EEG analysis because of technical problems at the 
time of recording. The next section will detail the experimental results and findings. 

5 Results 

Our statistical study relied on non-parametric statistical tools because our sample 
population is small (29 participants) and no justifiable assumptions could be made with 
regards to the normal distribution of the data. Hence, Wilcoxon signed ranks test and 
Spearman’s rho ranks test have been used. Furthermore, reported significant p-values 
were all computed at the .05 significance level (95% confidence). 

First, we report significant positive change regarding learners’ knowledge 
acquisition. Indeed, we administered pre-tests and post-tests questionnaires pertaining 
to the knowledge taught in the serious game and compared results using the Wilcoxon 
signed ranks test (Z = 4.65, p < 0.001). 

Second, we report results of correlation run on data of missions 3 and 5. Analysis 
of mission 3 showed that a significant relationship between reported attention and three 
physiological sensors (PoT-F3 index: spearman's rho=.34, n=29, p<.001; PoT-SC 
index: spearman's rho=.536, n=29, p<.01; PoT-C3 index: spearman's rho=.532, 

n=29, p<.01). Similar results have been found for reported attention regarding mission 
5, except for the PoT-F3 index (PoT-C3 index: spearman's rho=.62, n=29, p<.01; 
PoT-SC index: spearman's rho=.503, n=29, p<.01). These results positively answer 
our first research question (can we identify relevant physiological manifestations in 



 

 

learners’ attention while overcoming errors and obstacles?). Indeed, learners’ attention 
while overcoming errors and obstacles can reliably be monitored and related to 
changes in skin conductance and F3 and C3 EEG sensors.  

Third, in order to answer our second research question (can we reliably predict 
learners’ attention by establishing a reliable AI model?), we ran linear regressions to 
predict learners’ reported attention during each mission. Our prediction models used all 
computed PoT indexes and learners’ mission final score as predictor variables (PoT-
SC, PoT-HR, PoT-F3, PoT-C, PoT-Pz and Score) and the stepwise method for variable 
selection. Table 1 reports the results of multiple linear regressions. 
 

Regression model F Sig. Adjusted R2 Significant predictors 

Mission 3  F2,26=18.304 .000 (*) .553 
PoT-F3: Beta=.560 p=.000 

PoT-SC: Beta=.437 p=.002 

Mission 5 F1,27=28.409 .000 (*) .495 PoT-C3: Beta=.716 p=.000 

(*) Significance at the 0.05 level 

Table 1. Results of regression models 
 
In our prediction models, EEG attention ratios are significant predictors for 

attention for the duration of both missions. These results seem to show the relevance 
and importance of adding the EEG in assessing learners’ attention evolution, even 
more so when attention cannot be clearly established by the use of HR and SC alone. 
Furthermore, our AI model is sensitive to the type of mission as well as the time 
window for assessment. Indeed, a described earlier in section 4, mission 3 and mission 
5 involve different skills from a learner that are represented by changes in F3 and C3 
respectively [22]. During mission 3, while trying to avoid errors and mistakes as much 
as possible, learners will tend to rely mostly on the frontal cortex (F3) because it is 
known to be strongly implicated in taking quick decisions under pressure. Conversely, 
during mission 5, while trying to overcome obstacles, a more “generalized” problem-
solving approach is used and thus the central region of the brain (C3) seems to be the 
most solicited. An example of this situation is illustrated in fig. 2. 

 

 
Figure 2. PoT index evolution for missions 3 and 5 



This figure presents PoT index evolutions of 3 learners (TOP, BOTTOM and 
LEARNER 17) in 2 distinct moments: the beginning (Start) and the end (End) of the 
mission. The blue filled bar (Top) represents a learner whose reported attention is 
highest for both missions. Conversely, the brown horizontal sprites (Bottom) represent 
a learner whose reported attention is lowest. Learner 17 (the gray diagonal sprites) has 
reported a very low attention in mission 3 but a very high attention in mission 5. We 
can see by the results that the predictors found in the model for mission 3 (PoT-F3 and 
PoT-SC) can distinguish between learners with high versus low attention. Learner 17 
has the same trends (PoT-F3 and PoT-SC) as the bottom learner. Conversely, the 
predictor found in the model for mission 5 (PoT-C3) is the one to look at in order to 
separate learners’ attention. Again we can clearly see that learner 17’s PoT-C3 trend is 
almost the same at the top learner. 

6 Conclusion and Future Work 

In this paper, we have assessed learners’ attention while overcoming errors and 
obstacles in a serious game using the ARCS theoretical model as well as three 
objective physiological measures: HR, SC and EEG. Results have shown that learners’ 
attention was correlated with specific physiological manifestations, especially 
observable in the evolution of the EEG PoT indexes (C3 and F3). We have also built 
significant regression models that have shown to be valuable tools in predicting 
learners’ attention using physiological patterns’ evolution for each mission. 

The obtained results are very encouraging to their future integration in an adaptive 
real-time attention detection prototype for an intelligent learning system. This 
integration will positively contribute to learning because reliable real-time objective 
assessment of learners’ attention is now possible, since we can rely on this assessment 
as a substitute for self-reports that can disrupt a learning session. Furthermore, it is 
possible to enrich an intelligent system to properly adapt its interventions during a 
specific activity or context based on task type. However, one possible limitation of this 
study is the dependence of all categories of the ARCS model. In further work, we plan 
to address a complementary study in order to highlight other distinctive, or even 
common, physiological patterns related to other ARCS categories (relevance, 
confidence, and satisfaction) and the overall motivational state of the learner.  
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