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Abstract 

This paper presents a novel multimodal approach to 
automatically detect learner uncertainty through the 
integration of multiple sensors. An acquisition protocol was 
established for the recording of learner electrical brain 
activity and physiological signals while interacting with a 
problem solving system specifically designed for 
uncertainty elicitation. Data were collected from 38 subjects 
using 8 sensors and two video feeds. Results from machine 
learning classifiers support the feasibility of our approach. 
81% of accuracy was reached using Support Vector 
Machine (SVM) algorithm. 

Keywords: uncertainty modeling, EEG, mental 
engagement, physiological sensors, intelligent systems, 
machine learning 

Introduction 

Endowing intelligent systems with abilities to assess users’ 
cognitive and affective state is one of the most promising 
challenges to improve interaction methods, provide 
accurate support and enhance user performance 
(DuRousseau, Mannucci, and Stanley 2005). In this 
context, computer-based educational systems are focusing 
on identifying learner uncertainty as it is one of the most 
recurrently observed states during computer tutoring 
(Forbes-Riley, Rotaru, and Litman 2008) and due to its 
theorized relationship to learning (Craig et al. 2004). 
(VanLehn et al. 2003) have shown that student uncertainty 
might warn learning impasses and thus cognitive 
difficulties but also signal predispositions to get more 
involved and engaged in learning. How can then a system 
automatically monitor user uncertainty? In most work so 
far, uncertainty modeling relies on acoustic-prosodic, 
lexical or discourse features extracted from 
utterance/dialogue based system interactions (D’Mello et 
al. 2008; Liscombe, Hirschberg, and Venditti 2005; Pon-
Barry et al. 2006). However, we believe that such features 
could be insufficient, as they cannot always reflect user 
uncertainty. Besides, we believe that uncertainty 
encompasses cognitive factors as well as mental and 

emotional manifestations and is specific to each individual 
and context.  
 Nowadays intelligent systems integrate various gauges 
of cerebral and affective state through the use of 
nonintrusive electrophysiological sensors to accurately 
monitor user mental engagement and emotions (Picard 
1997). In this paper we propose a multimodal approach to 
automatically assess user uncertainty. This involves 
training machine learning techniques to model student 
uncertainty from electrophysiological parameters as well as 
cognitive and personal criteria. The hypothesis we 
establish is that these features can effectively predict 
learner uncertainty. An experimental study was conducted 
to validate our hypothesis. Our research questions were the 
followings: can we predict learner uncertainty state? If so, 
can we model granularity levels of uncertainty?  
 The organization of this paper is as follows: In the first 
section, we present previous work done in fields similar to 
our own. In the second section, we detail our experimental 
methodology. In the third section we describe the features 
extracted for this study. In the fourth section, we present 
the obtained results and discuss them, in the last section, as 
well as present future work.  

Previous Work 

Significant research has been engaged in automatically 
recognizing uncertainty (D’Mello et al. 2008; Liscombe et 
al. 2005; Pon-Barry et al. 2006) and showing that adapting 
and responding to user uncertainty can greatly improve 
learning (Forbes-Riley, and Litman 2011; Pon-Barry et al. 
2006). (Pon-Barry et al. 2006) for example use linguistic 
cues (such as hedges, response latencies or filled-pause 
signals) extracted from human tutoring corpus through a 
frequency analysis to detect user uncertainty in a 
computer-based tutoring system. (Liscombe et al. 2005) 
used acoustic-prosodic features to classify student 
certainness in a corpus collected from a speech-enabled 
intelligent tutorial system. (Carberry, and Schroeder 2002) 
proposed an algorithm to recognize doubt by examining 



linguistic and contextual features of dialogue in 
conjunction with world knowledge. However in most of 
these studies, uncertainty modeling has been addressed 
without considering the arising mental state or affective 
reactions and that could be relevant in its assessment. 
 On the other side, the integration of neuro-physiological 
data in intelligent systems proved their effectiveness in 
assessing user state. Indeed, research in artificial 
intelligence is now accurately identifying user affective 
state through the use of non-intrusive sensors, analyzing 
signals like heart rate skin conductivity or speech (Picard 
1997). Besides, with the advent of portable and consumer 
oriented electroencephalogram (EEG) it is now possible to 
measure user mental state with a high time resolution and 
precision and develop systems that directly modulate their 
tasks to neural indexes of cognition. EEG engagement 
index developed at NASA (Pope, Bogart, and Bartolome 
1995), is one of the most effective brainpower based 
mental indicators. It was used in a closed-loop system to 
modulate task allocation. Results have demonstrated that 
performance was improved when this index was used as a 
criterion for switching between manual and automated 
piloting mode (Pope et al. 1995). This index was also 
related to learner emotions as well as their performance in 
an educational context (Chaouachi et al. 2010). In this 
research we propose to integrate this indicator as 
engagement state is theoretically related to uncertainty 
(VanLehn et al. 2003). Our approach will also use affective 
indicators from physiological sensors as well as cognitive 
and personal criteria. 

Experimental Methodology 

The experiment was thoroughly established to assess a 
multidimensional aspect of uncertainty by integrating 
multiple data sources. Experimental setup consisted of a 
computer-based problem solving system, a 6-channel EEG 
system, physiological sensors and two video feeds. All the 
data were synchronized using necessary time markers. This 
setup is important for our investigation to integrate the 
recorded signals with the rest of instrumental setup under 
specific (un)certainty states. Once learners were equipped 
with the material, a 5-minute baseline was recorded during 
which learners were instructed to relax, to establish a 
neutral state for the electrophysiological parameters.  
 The problem solving system developed for this study 
consists of a series of logical tasks that do not require 
particular perquisites but involve high level of mental 
engagement and concentration. These tasks imply 
inferential skill on information series and are typically 
found in brain training exercises or in tests of reasoning. 
The system is composed of 3 modules. Each module is 
concerned with specific forms of data: the first module 
deals with geometrical shapes, the second module with 
numbers and the third module with letters. Each module 
starts with a tutorial explaining the task and giving 
examples to get user accustomed with the types of 
problems. Then learners have to answer to 5 multiple-

choice questions. Learners are asked to respond as quickly 
and efficiently as possible. They were informed that a 
correct answer is rewarded 4 points, -1 point is given for a 
bad answer, whereas 0 point is given for a no-answer. A 
fixed time limit of 80 seconds for each question was 
imposed. Failing to give an answer within the allowed time 
was considered as a no-answer. 
 One of the most important points in this research is to 
elicit uncertainty states to obtain an accurate mapping of 
the recorded parameters. Thus problem tasks were selected 
in a way that potentially can cause uncertainty. To choose 
the right answer learners needed to perceive a logical rule. 
Without this rule, learner is not able to be sure of his 
answer. Moreover, problems may have different difficulty 
levels and some of them can involve a second rule to 
decide between two answers that both match the first rule. 
For instance in the geometrical module, three shapes are 
successively presented in the interface. The first shape 
represents a black triangle, the second a white rectangle 
and the third a black pentagon. Learner is then asked to 
deduce the fourth element by choosing one answer among 
five possibilities. In this example the rule that one should 
deduce is to add a side in each shape and the correct 
answer would be a hexagon. Two hexagons (black and 
white) were included among the propositions and only one 
matches to the second rule that one should also deduce (i.e. 
alternating between the two colors) and the correct answer 
would be the white hexagon. Other questions were 
designed to systematically mislead learners. For instance in 
the number-based module, two perpendicular data series 
were presented. In the vertical series all the numbers are 
multiples of seven and in the horizontal series all the 
numbers are multiples of five. In this task one should 
deduce the missing intersection data element of both series 
and that should be multiple of both five and seven. But no 
such data is given among propositions. Hence while 
resolving a problem, learner can be either certain or 
uncertain about the accuracy of his reasoning and therefore 
his response can proceed from both states.  
 After each given answer, system interacted with learners 
and prompted them to report how they answered each 
question by choosing between the following: “I was certain 
about may response” or “I was uncertain about my 
response”. Furthermore to assess uncertainty granularity 
levels, learners are prompted to choose between the 
following: “I was certain at 50% or more” or “I was certain 
at less than 50%” whenever an uncertain response is 
reported. Hence three possibilities can be registered for 
each question: certain (Cert), uncertain (Uncert) and no-
answer (No_Resp) with two possible granularity levels for 
Uncert namely certain at 50% or more (Low_Uncert) or at 
less than 50% (High_Uncert).  
 Further cognitive parameters were recorded during the 
task such as response time, and scores. Learners were also 
asked to fill in widely used information about their skill 
level on logical based problem solving. Non-cognitive 
personal variables were also measured. These included 
gender and scales on a personality test namely the Big Five 



Inventory (BFI) (John, Naumann, and Soto 2008)
scales personality traits according to five dimensions 
namely openness, conscientiousness, extraversion, 
agreeableness, and neuroticism (OCEAN). 

Electrophysiological Recordings  

Signals recorded from electroencephalogram
conductance (SC) and blood volume pulse (BVP) sensors
were digitized using the ProComp Infinity 
data acquisition system. 
EEG recordings. EEG is a measurement of electrical 
brain activity produced by synaptic excitations of neurons. 
During the session, learners wore a stretch electro
EEG was recorded from sites P3, C3, Pz and Fz as defined 
by the International 10-20 Electrode Placement System 
(Jasper 1958). Each site was referenced to Cz and 
grounded at Fpz. Two more active sites were used namely 
A1 and A2 typically known respectively as the left and 
right earlobe. This setup is known as “referential linked ear 
montage” and is depicted in figure 1. Roughly speaking, in 
this montage the EEG signal is equally amplified 
throughout both hemispheres. Moreover, the “linked
setup yields a more precise and cleaner EEG signal by 
calibrating each scalp signal to the average of left and right 
earlobe sites (A1 and A2). For example, the calibrated C3 
signal is given by (C3-(A1+A2)/2). 
 Each scalp site was filled with a non-sticky
gel from Electro-Cap and impedance was maintained 
below 5 kilo Ohms. Any impedance problems were 
corrected by rotating a blunted needle gently inside the 
electrode until an adequate signal was obtained. The 
recorded sampling rate was at 256 Hz. Due to its weakness 
(in the order of micro volts: 10-6 volts), the EEG signal 
needs to be amplified and filtered. The electrical b
activity signal is usually contaminated by external noise 
such as environmental interference caused by surrounding 
devices. Such artifacts alter clearly the quality of the 
signal. Thus a 60-Hz notch filter was applied during data 
acquisition to remove these artifacts. In addition, the 
acquired EEG signal is easily suffering from noise caused 
by user body movements or frequent eye blinks. Thus a 48
Hz high pass and 1-Hz low pass de-noising filters were 
applied. 

 

 

 

 

 

  

 
 

Figure 1: EEG Channel electrode placement

Physiological recordings. BVP and SC sensors were 
placed in the resting left hand fingers. Data were recorded 
at a sampling rate of 1024 Hz. SC measures changes in the 
resistance of the skin produced by sweat gland activity. A 
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electrode placement 

BVP and SC sensors were 
placed in the resting left hand fingers. Data were recorded 

1024 Hz. SC measures changes in the 
resistance of the skin produced by sweat gland activity. A 

tiny voltage is applied through two electrodes strapped to 
the first and middle finger on the palm side. This 
establishes an electric circuit and allows us to quantify the 
skin's ability to conduct electricity. BVP sensor was placed 
on the tip of the ring finger. It emits an infrared light and 
measures the amount of light reflected by the surface of the 
skin. This amount varies with the amount of blood present 
in the skin and thus with each heartbeat.

Participants 

Thirty-eight learners (14 women) with a mean age of 27.31 
± 6.87 years, ranging from 19 to 47 years, were recruited 
for the experiment. Participation was compensated with10 
dollars. All participants were briefed
objectives and procedure and asked to sign a consent form.

Feature Extraction

A total of eleven features were extracted from the collected 
data to automatically learn uncertainty models
mental features, five physiological 
cognitive and personal features. 

EEG features. The engagement index was computed 
EEG raw signal. As previously mentioned this index 
reflects mental engagement level on a task
1995). The engagement index is 
following ratio: (Beta / (Alpha + Theta)). An EEG power 
spectrum was calculated for each electrode site using a 
Fast Fourier Transformation and the needed frequency 
bands were extracted namely Theta (4
Hz) and Beta (13-22 Hz). EEG band
summed from the electrode sites 
compute the global ratio. The EEG engagement index at 
instant T was computed by averaging eac
ratio within a 40s sliding window preceding instant T. This 
procedure was repeated every 2s and a new 40s sliding 
window was used to update the index.
used from this index namely the mean engagement 
measured for each question and the 
computed by subtracting the actual 
values from the mean baseline. 

Physiological features. SC signals were used to derive 
galvanic skin response (GSR) widely known to linearly 
vary with arousal ratings (Lang 1995)
person becomes more stressed. The 
each question was then calculated. Also the 
was recorded by subtracting the current GSR values from 
the baseline.  
 From the BVP signal, heart rate (HR) was calculated by 
measuring the inverse of the inter
between successive pulse peaks). HR is extensively applied 
to understand the autonomic nervous system function and 
has shown a close correlation to valence 
Mean HR and HR variation were recorded for each entry.
 HR and GSR are jointly used to measure specific 
emotional activations and are widely used 
detection as emotions are characterized in terms of judged 
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valence (negative to positive) and arousal (low to high). 
Physiological signals were thus analyzed according to the 
arousal/valence emotional space within the widely used 
Russell’s circumplex model of emotions (Russell 1980). 
Two strategic emotional regions are defined during 
learning as depicted in figure 2 (Kaiser 2006). The first 
region involves negative emotions like frustration, 
boredom or angriness (negative region I and II) and should 
be avoided. The second region is the target emotional 
region specified by a slight positive valence and neutral 
arousal. This region is known to provide a maximum of 
efficiency and productivity (Kaiser 2006). We then 
extracted the proportion of positive emotions in the target 
region for each entry.  
 
 
 
 
 
 
 

 

 

 

Figure 2: Russell’s circumplex model of emotions with regions 

Additional features. Further parameters were considered 
namely question response time, as well as three personal 
criteria collected from learner self report: skill level on 
logical based problem solving (low, medium or high), 
gender, and scales on the BFI test. From the five 
personality traits (OCEAN), we have only considered the 
consciousness scale as a significant correlation was found 
between this trait and reported uncertainty levels. More 
precisely, we found that consciousness was positively 
correlated with the number of Cert responses (r = 0.364, p 
< 0.05), negatively correlated with the number of Uncert 
responses (r = -0.399, p < 0.05) and negatively correlated 
with the number of High_Uncert responses (r = -0.501, p < 
0.01). Table 1 summarizes correlational results.  

 Table 1: Bi-variate correlation results 

Correlation between conscientiousness personality trait and 

uncertainty levels (N = 38) 

 r p 

Cert 0.364* 0.0250 

Uncert -0.399* 0.013 

High_Uncert 0.076 0.652 

Low_Uncert -0.501** 0.001 

No_Resp -0.019 0.908 

* Correlation is significant at the 0.05 level (2 tailed). 

** Correlation is significant at the 0.01 level (2 tailed). 

Uncertainty Detection 

Three approaches were considered in this research for 
detecting uncertainty namely: Naïve Bayes classifier, 
Decision Trees, and Support Vector Machines. Extracted 
features were fed as an input into these algorithms to 
automatically learn student uncertainty levels. 

Naïve Bayes classifier 

 The Naïve Bayes classifier is a probabilistic learning 
algorithm that applies the Baye's rule to compute the 
posterior probabilities of the different classes given the 
input attribute values with a ‘naïve’ class independence 
assumption (John, and Langley 1995). Despite this 
inaccurate assumption, it has been found that the Naïve 
Bayes classifier performs well and with comparable 
performance compared to other classification approaches 
(Han, and Kamber 2005). The algorithm assigns a given 
sample to the class having the highest posterior probability 
according to the maximum a posteriori (MAP) decision 
rule. That is if an instance is represented by an n-
dimensional feature vector (x1, x2,…, xn), the MAP rule is 
given as follows: 

classify  (x1, x 2 ,..., x n ) = arg max
c∈C

p(c) p(x i | c)
i=1

n

∏     (1)  

 Where C is the set of possible classes, p(c) is the prior 
probability and p(xi|c) is the independent conditional 
feature probability derived from the training data. 

Decision Tree 

The decision tree classifier is a top-down divide-and-
conquer approach that uses a tree like structure of decision 
to induce interpretable classification rules. Each node tests 
a particular input features, branches emerging from that 
node are possible test outcomes and terminal or leaf nodes 
represent the class value that will be returned. In this work, 
we use the well known C4.5 software, an extension of the 
ID3 decision tree induction algorithm (Quinlan 1986) 
which has been implemented as the J48 algorithm (Witten, 
and Frank 2005). At each node, the algorithm selects the 
attribute that most effectively splits the set of samples by 
maximizing the information gain. The algorithm then 
recurs to a smaller subset of samples to make 
classifications in the node’s sub-tree (Safavian, and 
Landgrebe 1991). Given an unknown sample, the classifier 
routes it down the tree according to its attribute values 
tested in successive nodes tracing a path from the root to 
the leaf which holds the class prediction for that sample.  

Support Vector Machines 

Support vector machine is a linear machine learning 
system working in a high k-dimensional feature space 
formed by an implicit processing of an n-dimensional input 
data X into a k-dimensional space (k>n) through the use of 
a nonlinear mapping φ(X). This allows constructing 
hyperplanes that linearly separate data normally only 



separable with non-linear rules in the input space into 
classes. The algorithm searches for maximal margin 
hyperplanes creating decision boundaries with the highest 
possible margin or separation between classes. In this work 
we use the Sequential Minimal Optimization (SMO) 
algorithm (Platt 1999) for training support vector 
machines. 

Performance Evaluation 

To evaluate the classifier performance, we use a K-fold 
cross validation technique (Efron, and Tibshirani 1993) 
where the input data set is divided into K subsets. The 
classifier is trained on K-1 subsets and evaluated on the 
remaining subset. This process is repeated K times, 
accuracy estimates are averaged to yield the overall 
classifier accuracy. This study employed the Weka 
software (Witten, and Frank 2005), a collection of machine 
learning algorithms intended for data mining tasks, for the 
three algorithms. 

Experimental Results and Discussion 

Our first objective was to create and train a model to 
predict uncertain state by taking as an input 
electrophysiological data as well as personal and cognitive 
parameters. Thus we first trained a binary classifier to 
predict responses formulated from an uncertain reasoning 
from those resulting from certainness (Uncert, Cert). Then, 
we extended our analysis to predict uncertainty in a more 
detailed granularity level (High_Uncert, Low_Uncert, 
Cert). 

 
Figure 3: Data sample repartition 

 A total of 570 entries (15 questions * 38 participants) 
were collected through this experiment and were classified 
as follows: 323 for Cert responses, 189 for Uncert (103 
High_Uncert and 86 Low_Uncert) and 58 No_Resp. This 
repartition is depicted in figure 3. Although the small 
proportion of the no-answers (10.17%), one question can 
be raised: should these samples be included with uncertain 
responses indicating that the learner was so uncertain about 
his answer that he did not took the risk to respond? Or 
these merely indicate that the learner did not have the time 
to respond even if he knew the correct answer? 
 We hence considered two separate datasets. In the first 
dataset, No_Resp samples were either included with the 
Uncert samples or gathered in a separate class. In the 

second dataset, No_Resp samples were discarded. Results 
of classification accuracies from decision tree, SVM and 
Naïve Bayes classifier are listed in table 2. Prediction 
performance was evaluated using a 20-fold cross 
validation. 

Table 2: Classifier Accuracy results 

1st dataset (No_Resp included) 

Classes DT NB SMO 

Cert, Uncert 77.72% 76.15% 79.13% 

Cert, Uncert, No_Resp 69.65% 69.23% 72.99% 

Cert, Low_Uncert, High_Uncert, 

No_Resp 
63.16% 62.63% 63.34% 

2nd dataset (No_Resp excluded) 

Classes DT NB SMO 

Cert, Uncert 78.71% 78.32% 81.64% 

Cert, Low_Uncert, High_Uncert 73.24% 70.50% 73.44% 

 
 As presented in table 2, the SVM classifier has shown 
the highest prediction rates in all cases with accuracies 
ranging from 63.34 % for the 4-class model (Cert, 
Low_Uncert, High_Uncert, No_Resp) to 81.64% for the 
binary model (Cert,Uncert) excluding the no-answers from 
the training set. Indeed, we noticed that merging the 
No_Resp examples in the Uncert category slightly 
decreases the quality of the model to 79.13 %, which 
suggests that trained models are clearly sensitive to the 
introduced parameters and since the no-answers can 
involve both uncertainty and certainty state, a bias is 
introduced in the model. 
 Kappa statistics for all cases were fair to good. Table 3 
shows the details of classification accuracy for the best 
classifier namely the SVM algorithm (Kappa statistics = 
0.67) among the 2 classes Cert and Uncert for the second 
dataset (No_Resp exluded). 

Table 3: SVM detailed accuracy by class 

Classes Precision Recall F-Measure 

Uncert 0.757 0.741 0.749 

Cert 0.85 0.861 0.855 

Conclusion and Future Works 

We have presented in this paper a multimodal approach to 
automatically assess students’ uncertainty from their 
electrophysiological activity as well as cognitive and 
personal criteria. Our research questions were the 
followings: can these features efficiently predict 
uncertainty state and if so, can we model uncertainty 
granularity levels?  



 An experiment was conducted in which learners 
interacted with a problem solving system and were asked 
to respond to a series of logical tasks. EEG, BVP and SC 
sensors were used to record learner signals. Machine 
learning techniques were used to classify uncertainty: up to 
81% of accuracy was reached. Results suggest that this 
approach can be further extended to handle uncertainty 
levels (73%) reinforcing our belief that 
electrophysiological sensors could be a reliable alternative 
for intelligent systems to assess user state. In our future 
work we are planning to develop an intelligent agent to 
implement appropriate pedagogical strategies according to 
model predictions. This agent will use associations 
between user’s actions and detected uncertainty level to 
thoroughly adapt problem level and support to the learner.  
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