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Abstract 
In this paper, we discuss the use of physiological 

data for quasi real-time adaptation in ITS. We present 
preliminary results where we analyze learners’ 
reactions while using a game-like virtual learning 
environment. We also discuss the relevance of adding 
cerebral data to adaptation by the means of an 
electroencephalogram. 

 
1. Introduction 

 
The aim of Intelligent Tutoring Systems (ITS) is to 

properly adapt learning sessions to the user (i.e. the 
learner). Good student modeling techniques appear to 
be the key in reaching such an objective. Profiling the 
learning capabilities of a student have been discussed 
for a long time now in the ITS field. Recent papers 
have argued that affective modeling (i.e. determining a 
learner’s emotional or motivational state [2, 3, 6]) 
should also be considered. Researchers use different 
techniques to detect learners’ affective states.  

The easiest method remains the completion and 
analysis of data collected via questionnaires filled by 
students. This approach raises many problems. First, 
asking learners to fill in questionnaire forms interrupts 
the learning activity, which can disrupt concentration 
towards the learning content. Frequent and repetitive 
interruptions (which should be needed to keep a 
student model up to date) can also affect motivational 
and emotional states. In other words, the evaluation 
itself could create affective noise. A classic solution to 
avoid such a situation is to ask learners to answer 
questionnaires at the end of a learning session and 
adapt the next learning session accordingly. However, 
this raises an obvious problem of synchronicity with 
the affective experience. Second, self reports can 
become unreliable with people not always fully aware 
of their affective state [6]. Third, results obtained from 

this method are naturally subjective: given individual 
differences (culture, age, gender, past experiences…), 
people have personal interpretations of affective 
vocabulary as well as personal scales to evaluate their 
affective reactions. 

Another often used method to supply affective data 
to the student model consists of analyzing learners’ 
interactions with the Graphical User Interface (GUI) 
through the use of sensorial captors (webcam, force 
feedback devices…). Despite the possibility of quasi 
real-time performance (i.e. interpretation can be 
obtained just a short period after the affective 
experience), problems will arise due to individual 
differences in affective manifestations. Indeed, body 
language is culturally sensitive; taciturn or hyperactive 
learners also represent quite a challenge… 

A third method for affective data collection lies in 
the use of physiological signals. As for conventional 
sensorial captors cited before, this approach can also 
be performed in quasi real-time without affecting the 
dynamic of the learning session. Furthermore, it is 
resistant to cultural and personal traits differences.  

The aims of this paper are two-fold. First, we wish 
to verify the relevance of using physiological signals 
for quasi real-time student modeling in ITS learning 
environments in order to possibly establish a link 
between learning-related events and signals. Second, 
we want to inspect the novel use of an 
electroencephalograph within an ITS environment in 
regards to its interest, benefits and drawbacks. 

This paper is organized as follows: section two 
presents a brief description of the most meaningful 
physiological signals related to ITS and Human 
Computer Interaction (HCI) and the kind of 
information that can be deduced from their analysis. 
Section three presents previous related to physiological 
data. Section four depicts our experience to monitor 
physiological signals of learners while using a game-
like learning environment. Section five presents 



preliminary results we obtained. They are discussed in 
a sixth section that led us to propose the idea of 
multimodal active learner modeling. 

 
2. Physiological signals in HCI and ITS 
 

The literature regarding the ITS and HCI commonly 
denotes the use of the following physiological signals: 
skin temperature (ST), respiration (RESP), mainly 
heart rate(HR) and blood volume pressure, (BVP) for 
cardiovascular activity, galvanic skin response (GSR) 
and surface electromyography (SEMG). Few made use 
of an electroencephalograph (EEG). 

Left-out signals. Two signals were not considered 
in this experiment. The BVP signal was recorded but 
not analyzed because of the sensor’s high 
responsiveness to movement thus making the reading 
unreliable as mentioned in [4]. An electrocardiogram 
(EKG) is more resistant to movement and would have 
been preferable to use. However, none was available 
for this experience. SEMG was not used for a similar 
reason. 

Recorded signals. ST, RESP, GSR and EEG 
signals were recorded. A description of each follows. 

ST changes when the body undergoes a stress 
response. In an unconscious process, blood then flows 
away from the extremities such as hands resulting in a 
decrease in ST, thus colder hands [5].  

RESP is accepted as being an automatic response 
that increases when provoked by physical exercise or 
by the expression of thoughts resulting in an emotional 
reaction, namely fear and sadness [9]. Respiration 
amplitude and frequency are important indicators for 
the presence of anxiety [12].  

GSR is a measure reflecting the electrical resistance 
of the skin. A high GSR signal is often correlated with 
a high stress level [4]. GSR has a direct link with 
arousal [8] and is often used to reflect emotional 
reactions as well as cognitive activities [5].     

EEG signals are a representation of the neural 
electrical activity present in the brain, called brain 
waves. Each wave frequency is measured in terms of 
Hertz (Hz) and microvolts (µV). Frequencies have 
been broken down in discreet groups in regards to the 
common cerebral characteristics they represent: Delta 
(1-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), SMR (12-
16 Hz), Beta (16-32 Hz), divided in four groups 
among which High Beta (20-32 Hz) and Gamma (38-
42 Hz). In this paper, we will particularly focus on 
High Beta (symptomatic of intensity and anxiety) and 
Gamma (symptomatic of cognitive processing and 
learning). 

EEG sensors are placed on the head according to 
the 10-20 international system [7]. We positioned our 
sensor over the Fpz region whose main functions 
include sustained attention, working memory and 
initiative [5].    

 
Figure 1: International 10-20 system [6] 

 
3. Previous works on physiological data  
 

We have identified two ways of using physiological 
data in HCI and ITS. Following are such examples. 

On the one hand, feedback of physiological data 
under different representation is used and integrated to 
interfaces of collaborative learning environments [10] 
or chat systems [17] in order to inform peers or the 
learner of his level of arousal (supposedly related to an 
emotional state). Cerebral activity has also been used 
to control a graphical interface of a videogame [14]. 

On the other, the identification of specific patterns 
in physiological signals, mainly inspired by Picard 
[15], is employed for the future goal of proposing 
adaptive computer environments. Ward and Marsden 
[19] studied physiological responses when using well 
or ill designed websites. Amongst other things, they 
stated that distinguishing the cause of a physiological 
evolution (affective event, cognitive workload…) 
wasn’t a trivial task. Other researches have used 
physiological data in the context of emotional 
detection [3, 12] with an objective of real-time 
adaptation. Bosma and André [2] have merged two 
techniques in order to resolve ambiguities in dialogue 
acts. They used a Bayesian network approach to 
determine an emotional state and a finite state machine 
method to study the meaning of dialogue acts 
according to physiological data.   

All those studies did post-hoc analysis of data. 
Thus, the “predictive model” approach of adaptation 
(adapting according to a model obtained by previously 
analyzed training data) appears to be the norm. 

 
4. Description of our study 

 
We monitored physiological signals of 18 healthy 

volunteers while using our system, MOCAS [1]. The 
sample’s mean age was 27 (SD =3.88) and all 
participants held at least a high school degree. 

Fpz region 



Avatar of a pedagogical 

MOCAS is a game-like learning environment. 
Learning takes place in a virtual 3D world where the 
avatar of the learner can interact with avatars of 
pedagogical agents displaying learning contents 
(Figure 2). 

 
Figure 2: client interface of MOCAS 

Physiological sensors are managed by the ProComp 
Infinity encoder [18]. It has been used by many of the 
previous works we have mentioned. 

Literature warned us about taking great care of the 
experimental protocol in order to avoid artifacts. Thus: 
• the RESP sensor extensible belt was put at    

diaphragm level, 
• the EEG sensor was positioned at Fpz.The 

resistance between the electrodes was maintained 
under 5 kΩ while always remaining under 10 kΩ 
for a clear and useable signal,  

• all other sensors were put on the left hand (GSR 
on 1st and 3rd finger, ST on the 3rd, BVP on the 
4th). People were asked to avoid moving as much 
as possible because sensors (especially BVP) 
were movement-sensitive, 

• two webcams were also used. One monitored the 
learner’s facial activity while the other recorded 
the learner’s interactions on the computer screen.  

For each learner, all signals (webcam included) 
were collected in real-time within a single session 
using the Biograph Infiniti Software [18]. The 
organization of the experience is as follows.  

A training exercise aiming at getting accustomed to 
the sensor’s presence preceded all monitored activities. 

Four different MOCAS 3D environments were 
created. In each environment, people had to find their 
way inside a maze. At the beginning and in the middle 
of the maze, they had to read two different texts but 
time of reading for the second one was limited to 30 
seconds (to induce pressure). After that, learners 
periodically met avatars asking questions regarding the 
last text read. Learners responded to the question by 
following a given direction. A wrong answer led them 
to a dead-end whereas a good one allowed them to 
continue in order to reach the next question or text.  

There were rests periods before and after each of 
the four MOCAS environments in order to make 
people start the activity in the lesser aroused state 
possible. An oral debriefing period followed the end of 
each maze. 

The experiment took place in a university office. 
Doors were closed and one researcher was present 
with the learner to place labels in the recording 
software when predetermined events occurred. 

 
5. Results 

 
According to previous works, there were clear 

evidences that many interface or learning activity 
events frequently triggered physiological reactions. For 
instance, text reading periods were frequently preceded 
by a big breath. GSR frequently evolved when the 
learner met a pedagogical agent avatar. GSR was also 
very reactive during oral debriefing periods. The only 
signal that didn’t seem short-term reactive to events 
was ST.  

As expected, individual differences in physiological 
manifestations were noted. Figures 3 and 4 present the 
GSR and ST for two learners according to the time of 
the experience in seconds (which could differ for each 
learner and generally lasted about 50 minutes). Each 
signal was thoroughly double-checked. These learners 
were chosen because they were particularly 
representative of individual variations without being 
considered exceptions. 

In figure 3, the highest change ratio of learner 2 is 
~133% whereas it is ~10% for learner 5. It confirms 
that some people are far more reactive than others [19].  

Figure 3: GSR of learners 2 and 5 
In figure 4, when comparing mean temperatures, 

learner 2 is around 33.5 degrees whereas learner 7 is 
around 24.2 degrees (overall mean ST was between 28 
and 32 degrees). The signals also confirm that 
variations in ST can be significant when observed over 
an entire session rather than in specific time frames. 
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Figure 4: ST of learners 2 and 7 

Relevance of the EEG signal. The EEG signal 
gives precious clues regarding mental activity in a 
session. These clues inform of a significant mental 
activity and can be used to help identify the cause of a 
physiological change.  

Figure 5 shows a 30 second time frame during 
which a learner is reading a text with no time limit 
imposed.  

Figure 5: reading text under no pressure 

We chose to display a graph of the dominant 
cerebral frequency (obtained using Fast Fourier 
Transform methodology: FFT). When reading such 
graph, people have to concentrate on the value of the 
dominant frequency at a given time instead of the 
evolution of the EEG signal. We can clearly see 
Gamma dominance (circled), indicating that learning is 
taking place. Such information could not have 
otherwise been detected.     

Figure 6 shows an interesting case where EEG 
signals provide a crucial clue in opposition to more 
classical physiological signals. The same learner is 
now instructed to read a text as quickly as possible 
within 30 seconds. GSR and RESP show an increase 
before the beginning of the text but tend to decrease 
and stabilize as time progresses. This alone could give 
us the false impression that the learner’s arousal levels 
were high at first but are following a decreasing curve. 
However, EEG signals demonstrate that High Beta 
dominance (circled) is clearly more frequent than in 
figure 5, indicating hyper alertness and anxiety [5].  

In the two figures, GSR and RESP provide 
misleading interpretation rectified by the EEG. 

Furthermore, EEG signals have also been used to 
confirm, and sometimes infirm, the statements given 
by the learners in the debriefing period following each 
activity. For example, when asked, the learner said that 
he had a high stress level when reading the timed text 
(scored 4 on a 4 points scale). The EEG on figure 6 
confirms the high stress/anxiety levels present during 
this period. 

 
Figure 6: reading text under pressure 

 
6. Discussion of the results 

 
As we said, according to previous findings, we 

noticed clear evidences of many correlations between 
activity-related events and evolution of physiological 
signals (EEG, GSR, RESP). ST appears to be 
significant for long time observation, making it 
inappropriate for quasi real-time adaptation.  

EEG is of particular interest because it greatly helps 
in determining mental states and investigating the 
causation of a physiological change. It also allowed us 
to confirm that a learner was in a given mental state 
(for instance concentrated) when we expected him to 
be. However, the use of EEG sensors is more 
complicated and intrusive than most of the other 
sensors, which currently restricts its use to research 
exploration or industrial usage (military simulators 
could be a good example for instance). 

Our results also lead us to two important points for 
quasi real-time adaptation. 

Necessity of multimodality. In order to be 
designed as relevant for a learning activity, a particular 
pattern detected in a given physiological channel must 
be corroborated with other sources in order to confirm 
or explicit its meaning. Complementary data can come 
from other physiological signals (GSR decrease in 
figures 5 and 6 would have been interpreted differently 
without EEG signals) or from classic channels (the 
webcam sometimes showed us that a detected Gamma 
in the EEG signal occurred during a “moving avatar” 
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period and we thus had great doubts that learning was 
taking place at such a moment). The idea of 
multimodality is also evoked in other studies [2, 3, 12]. 

Doubts about using a predictive model 
approach. Our results also put forward very high 
individual differences between the learners. Literature 
warns us that differences in reactivity can also occur 
within the same individual [19] due to non detectable 
elements (such as the level of physical activity before 
the monitored period). This raises doubts about the 
relevance of using a predictive model approach for 
adaptation. Indeed, with such a level of inter and intra 
individual variability, what could be the significance of 
deductions obtained from data collected at different 
times, on different learners, in different conditions 
when the physiological reference frame is different ?  

The solution for such a problem may come from a 
different learner modeling paradigm called active 
learner modeling [11]. Hence, instead of seeing it as a 
frequently updated data structure, the learner model 
should be computed, when there’s a necessity for it, 
using different channels as entry parameters.  

Figure 7 shows a process of multimodal active 
learner modeling. However, further work is necessary 
to develop student modeling functions that would 
assess multiple entry channels as our human brain does 
(giving more or less weight to each channel according 
to the whole data collected at a given moment). 

 
Figure 7: Multimodal active learner model 

 
7. Conclusion 

 
In this paper, we have discussed the use of 

physiological signals for quasi real-time adaptation in 
HCI and ITS. The fact that such data can be obtained 
during the runtime period without interfering with the 
dynamic of a learning activity makes it very interesting 
to have. Furthermore, personal traits, culture… don’t 
affect its significance. EEG signals appear to be 
particularly interesting because they can help 
distinguish between reactions to affective or cognitive 
events, amongst other things. 

However, in the specific problem of quasi real-time 
adaptation, oversimplifying the usage of physiological 

data may result in great inaccuracy. As many before 
us, we argue, but also demonstrate, the necessity of 
multimodality. Signals are also subject to high inter 
individual variations (and also intra individual 
supposedly), which makes us raise doubts for the use 
of a “predictive model approach” for real-time 
adaptation.  

We consider that multimodal active learner 
modeling is a promising alternative. Further researches 
have to be done in order to make it possible. 
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