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Abstract. Endowing systems with abilities to assess a user’s mental state in an 

operational environment could be useful to improve communication and 

interaction methods. In this work we seek to model user mental workload using 

spectral features extracted from electroencephalography (EEG) data. In 

particular, data were gathered from 17 participants who performed different 

cognitive tasks. We also explore the application of our model in a non 

laboratory context by analyzing the behavior of our model in an educational 

context. Our findings have implications for intelligent tutoring systems seeking 

to continuously assess and adapt to a learner’s state. 
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1   Introduction 

Modeling and developing systems able to assess and monitor users’ cognitive states 

using physiological sensors has been an important research thrust over few past 

decades [1-5]. These physio-cognitive systems aim to improve technology’s 

adaptability and have shown a significant impact on enhancing users’ overall 

performance, skill acquisition and productivity [6]. Various models tracking shifts in 

users’ alertness, engagement and workload have been successfully used in closed-

loop systems or simulation environment [7-9]. By assessing users’ internal state, these 

systems were able to adapt to users’ information processing capacity and then to 

respond accurately to their needs. 

Mental workload is of primary interest as it has a direct impact on users’ 

performance in executing tasks [10]. Even though there is no agreement upon its 

definition, mental workload can be seen in terms of resources or mental energy 

expended, including memory effort, decision making or alertness. It gives an 

indication about the amount of effort invested as well as users’ involvement level. 

Hence, endowing systems with workload assessment models can provide intelligent 

assistance, efficient adaptation and more realistic social communication in the scope 

of reaching optimal interaction conditions. 

Nevertheless, scarce and scattered research has explored these faculties to refine 

the learning process within educational settings. Intelligent tutoring systems (ITS) are 

still mainly based on learners’ performance in analyzing learners’ skill acquisition 



process or evaluating their current engagement level and the quality of learning [11-

14]. Even though the integration of affective models in ITS added an empathic and 

social dimension into tutors’ behaviors [15-17] there is still a lack of methods helping 

tutors to drive the learning process and evaluate learners’ behavior according to their 

mental effort. The limited action range offered to learners (menu choice, help, or 

answers) restricts the ability of forecasting learners’ memory capacity and objectively 

assessing their efforts and implication level [18]. EEG techniques for workload 

assessment can represent, then, a real opportunity to address these issues. The 

growing progress in developing non intrusive, convenient and low cost EEG headsets 

and devices are very promising enabling their use in operational educational 

environments. 

In this paper we model users’ workload in a learning environment by developing 

an EEG workload index and we analyze its behavior in different phases across the 

learning process. In particular, we performed an experiment with two phases: (1) A 

cognitive phase, in which users performed different cognitive tasks, was used to 

derive the workload index. (2) A learning phase during which the developed index 

was validated and analyzed. We performed data analysis using machine learning 

techniques and showed that there are identifiable trends in the behavior of the 

developed index. 

The rest of this paper is structured as follows. Section 2 presents previous work on 

EEG based workload detection approaches. Section 3 presents our experimental 

methodology. Section 4 discusses our approach and its implications. We conclude in 

Section 5. 

2   Previous Work 

Developing EEG indexes for workload assessment is a well developed field especially 

in laboratory contexts. A variety of linear and non-linear classification and regression 

methods were used to determine mental workload in different kinds of cognitive tasks 

such as memorization, language processing, visual, or auditory tasks. These methods 

use mainly EEG Power Spectral Density (PSD) bands or Event Related Potential 

(ERP) techniques to extract relevant EEG features [7-9]. 

Wilson [19] used an Artificial Neural Network (ANN) to classify operators’ 

workload level by taking EEG as well as physiological features as an input. Reported 

results showed up to 90% of classification accuracy. Gevins and Smith [20] used 

spectral features to feed neural networks classifying workload of users while 

performing various memory tasks. In a car driving simulation environment, 

Kohlmorgen et al. [21] used Linear Discriminant Analysis (LDA) on EEG-features 

extracted and optimized for each user for workload assessment. Authors showed that 

decreasing driver workload (induced by a secondary auditory task) improves reaction 

time. Support Vector Machine (SVM) and ANN were also used to analyze task 

demand recorded in lecture and meeting scenario as well as in others cognitive tasks 

(Flanker paradigm and Switching paradigm) using EEG features. Results reached 

92% of accuracy in discriminating between high and low workload levels [22, 23]. 



Berka and colleagues [1, 24] developed a workload index using Discriminant 

Function Analysis (DFA) for monitoring alertness and cognitive workload in different 

environments. Several cognitive tasks such as grid location task, arithmetic 

computing, and image memorization were analyzed to validate the proposed index. 

The same index was used in an educational context to analyze students’ behavior 

while acquiring skills in a problem solving context [18, 25, 26].  

In this paper, we propose to model users’ workload from EEG extracted features 

through a cognitive task activity. The major contribution of this study is to validate 

the model within a learning activity as opposed to the work of Berka and colleagues 

[1, 24] where the proposed index was validated only according to purely cognitive 

tasks. Our study uses Gaussian Process Regression to train workload models in a first 

phase especially designed to elicit different levels of workload and applied in a 

second phase, within a learning environment to detect different trends in learners’ 

mental workload behavior. We will now describe our experiment. 

3   Methodology 

The aim of this study was to model and evaluate mental workload induced during 

human-computer interaction using features extracted from EEG signals. The 

experimental process was divided into two phases: a cognitive activity phase 

including three cognitive tasks designed with incrementally increasing levels of 

difficulty to elicit increasing levels of required mental workload and a learning 

activity phase about trigonometry consisting of three main steps. Data gathered from 

the first phase were used to thoroughly derive a workload index whereas data from 

the second phase were used to validate the computed index in a “non-laboratory” 

context. Our experimental setup consists of a 6-channel EEG sensor headset and two 

video feeds. All recorded sessions were replayed and analyzed to accurately 

synchronize the data using necessary time markers.  

17 participants were recruited for this research. All participants were briefed about 

the experimental process and objectives and signed a consent form. Participation was 

compensated with 20 dollars. Upon their arrivals, participants were equipped with the 

EEG-cap and familiarized with the materials and the environment. All subjects 

completed a five minutes eyes open baseline followed by another five minutes eyes 

closed baseline. During this period, participants were instructed neither to be active 

nor to be relaxed. This widely used technique enabled us to establish a neutral 

reference for the workload assessment. Then, participants completed the cognitive 

activity phase. This phase consists of three successive tasks: (1) Forward Digit Span 

(FDS) (2) Backward Digit Span (BDS) and (3) Logical Tasks (LT). Each task has 

between three and six difficulty levels. All participants performed these tasks in the 

same order and were allowed to self-pace with respect to the time required to 

complete each task. 

 

Forward Digit Span (FDS). This test involves attention and working memory 

abilities. In this task, a series of single digits were successively presented on the 

screen. Participants were asked to memorize the whole sequence, then prompted to 



enter the digits in the presented order. This task included 6 difficulty levels 

incrementally increasing by increasing the length of the sequence that participants 

have to retain. Level one consisted of a series of 20 sets of 3 digits, level two: 12 sets 

of 4 digits, level three: 8 sets of 5 digits, level four: 6 digits and 6 sets, level five: 7 

digits and 4 sets and level six: 4 sets of 8 digits.  

 
Backward Digit Span (BDS). The principle of this test is similar to the FDS task. 

Participants had to memorize a sequence of single digits presented on the screen. The 

difference was that they were instructed to enter digits in the reverse order from the 

one presented. Five levels of difficulty were considered by increasing the number of 

digits in the sequence. The first level consisted of a series of 12 sets of 3 digits; the 

second level: 12 sets of 4 digits, the third level: 5 digits and 8 series, the fourth level: 

6 sets of 6 digits and the fifth level: 4 sets of 8 digits. No time limit was fixed for FDS 

and BDS tasks. 

 

Logical Tasks (LT). These tasks require inferential skills on information series and 

are typically used in brain training exercises or in tests of reasoning. In these tasks, 

participants were instructed to deduce a missing number according to a logical rule 

that they had to infer from a series of numbers displayed on the screen, within a fixed 

time limit of 30 seconds. An example of such series is “38 - 2 - 19 - 9 - 3 - 3 - 40 - 4 - 

?” and one should deduce that the missing element (“?”) would be “10”. That is, the 

logical rule that one should guess is that for each group of three numbers the last 

number is the result of the division of the first by the second. The logical tasks 

involved three difficulty levels. Each level consisted of a series of 5 questions and the 

difficulty level was manipulated by enhancing the difficulty of the logical rule 

between the data. 

After completing the cognitive activity phase, participants took a little break, and 

then were invited to perform the learning phase during which a trigonometry course 

was given. This phase consists of three successive steps (1) a pretest session, (2) a 

learning session and (3) a problem solving session. Before starting these tasks, 

participants were asked to report their self-estimated skill level in trigonometry (low, 

moderate or expert). 

 
Pretest. This task involved 10 (yes/no/no-response) questions that covered some 

basic aspects of trigonometry (for instance: “is the tangent of an angle equal to the 

ratio of the length of the opposite over the length of the adjacent?”). In this part, 

participants had to answer to the questions without any interruption, help or time 

limit. 

 

Learning Session. In this task, participants were instructed to use a learning 

environment covering the theme of trigonometry and specially designed for the 

experiment. Two lessons were developed explaining several fundamental 

trigonometric properties and relationships. The environment provides basic 



definitions as well as their mathematical demonstrations. Schemas and examples are 

also given for each presented concept.1 

 

Problem Solving. Problems presented during this task are based on participants’ 

ability to apply, generalize and reason about the concepts seen during the learning 

session. No further perquisites were required to successfully resolve the problem 

except the lessons’ concepts. However a good level of reasoning and concentration is 

needed to solve the problems. A total of 6 problems with a gradually increasing 

difficulty level were selected and presented in the same order for all the participants. 

Each problem is a multiple-choice question illustrated by a geometrical figure. A 

fixed time limit is imposed for each problem varying according to its difficulty level. 

Each problem requires some intermediate steps to reach the final solution and the 

difficulty level was increased by increasing the number of required intermediate steps. 

For example, to compute the sinus of an angle, learners had first to compute the 

cosines in the first step. Then, they had to square the result and to subtract it from 1 in 

the second step. Finally the third step consisted of computing the square root. 

The problem solving environment provided a limited number of hints for each 

problem as well as a calculator to perform the needed computations. All the problems 

were independent in terms of learned concepts except for problem 4 and 6 that shared 

the same geometrical rule required to solve the problem (i.e. “the sum of the angles of 

a triangle is equal to 180 degrees”). 

3.1 Subjective and Objective Measures of Workload 

After completing each task level, participants were asked to evaluate their mental 

workload both in the cognitive activity phase and the learning activity phase. We used 

the NASA-Task Load Index (NASA-TLX) technique [27]. As for other subjective 

measures of workload, NASA-TLX relies on subjects’ conscious perceived 

experience with regards to the effort produced and the difficulty of task. NASA_TLX 

has the advantage of being quick and simple to administer. 

In addition to the subjective ratings, other objective factors that may be used for 

assessing workload were considered in this study, such as performance (i.e. 

proportion of correct answers in cognitive tasks, pretest and problem solving) and 

response time.  

3.2 EEG Recording 

EEG is a measurement of the brain electrical activity produced by synaptic excitations 

of neurons. In this experiment, EEG was recorded using a stretch electro-cap. EEG 

signals were received from sites P3, C3, Pz and Fz as defined by the international 10-

20 electrode placement system (Jasper 1958). Each site was referenced to Cz and 

grounded at Fpz. Two more active sites were used namely A1 and A2 typically 

known respectively as the left and right earlobe. This setup is known as “referential 

                                                           
1 At the end of the experiment, all participants reported that they were satisfied with the quality 

of the environment as well as the pedagogical strategy used for presenting the materials. 
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4   Results and Discussions 

The experimental results are presented in the following subsections. The first part is 

concerned with the cognitive phase data analysis. The second part describes mental 

workload modeling from the EEG. The third part deals with the validation and 

evaluation of the model within the learning activity. 

4.1 Cognitive Activity Results  

In order to evaluate NASA_TLX subjective estimates of mental workload, 

correlational analysis was performed with regards to the task design and performance 

and response time objective variables.  

 

 

Figure 2. Mean NASA_TLX workload estimate for each difficulty level for the forward digit 

span, backward digit span and logical tasks 

Repeated measures one-way ANOVA (N =17) was performed in the FDS, LT, and 

BDS cognitive activities across their associated difficulty levels. Degrees of freedom 

were corrected using Greenhouse-Geisser estimates of sphericity for FDS and BDS 

(epsilon = 0.35 and 0.54 respectively) as the assumption of sphericity had been 

violated (chi-square = 60.11 and 54.40 respectively, p <.05) while Mauchly’s test was 

non significant for the LT. Results revealed significant changes between NASA_TLX 

scores with regards to the task demand of each level in the three tasks (F(1.73, 27.65) 

= 25.65, p < 0.001 for FDS , F(2.18, 34.89) = 18.25, p < 0.001 for BDS and F(2, 32) = 

43.51, p < 0.01 for LT), showing a significant linear increase of subjective workload 

estimates as the level of difficulty increased (figure 2). 

Bi-variate correlations between NASA_TLX and objective measures of task 

performance and response time are illustrated in figure 3 (a). Correlations were 

calculated for each individual across the 14 levels (FDS, BDS and LT). The median 

correlation between NASA_TLX and task performance was -0.58 with a range of 

-0.89 to 0.15 and the median correlation between NASA_TLX and response time was 

0.42 with a range of -0.16 to 0.72. Correlations were also computed for each of the 3 

activities across the 17 participants. Performance decreased linearly as the workload 

increased in FDS (r = -0.59, p < 0.001) and LT (r = -0.50, p < 0.001) while the 

relationship was not linearly significant in the BDS (r = -0.19, p = n.s.). Response 



time increased linearly as a function of workload in FDS (r = 0.30 p < 0.05) and LT (r 

= 0.35, p <0.05) and did not linearly correlate in BDS (r = 0.014, p = n.s.) 

To summarize, NASA_TLX workload ratings showed linear relationship with the 

objective measures except for the BDS tasks. Besides, NASA_TLX accurately 

tracked the intended pattern of the task design that used incrementally increasing 

levels of difficulty to elicit increasing levels of mental workload required for the task. 

This manifest trend suggests that NASA_TLX subjective ratings can be a reliable 

indicator of mental workload for training the predictive models.  

 

 
 (a)  (b) 

Figure 3. Bivariate correlations between: (a) NASA_TLX and objective measures (b) 

NASA_TLX and EEG_Workload  

4.2 EEG Mental Workload Index  

Our aim was to quantitatively predict the mental workload using EEG extracted 

features. Specially, we were interested in using workload patterns detected in the 

cognitive activity phase to analyze the learning activity. An individual model was 

developed for each participant by training a Gaussian Process Regression (GPR) 

function [28] with a squared exponential kernel and noise parameter σ
2
 = 0.1. 

NASA_TLX subjective ratings were introduced as a target variable of the training 

data in all models.  

NASA_TLX workload values were classified into three classes namely low, 

medium and high (low < 30, 30 <= medium < 70 and high >=70). The same 

classification was done for the predicted GPR values. A mean accuracy rate of 91% 

across all the participants was reached with models trained on a split of 90% of the 

cognitive task data and tested on the other 10%. The mean EEG_Workload indices 

derived by the model were computed across each task of the learning activity phase. 

4.3 Learning Activity Results  

Our next objective was to validate the computed EEG_Workload model within the 

learning context. The box plot in figure 3 (b) illustrates the results of the bi-variate 



correlations between EEG_Workload and NASA_TLX subjective metrics. 

Correlations were computed across participants in the pretest, the learning session and 

each of the six problems revealing significant relationships in the eight activities. The 

median correlation was 0.72 with a range of 0.52 (p < 0.001) for problem 2 to 0.82, (p 

< 0.05) for problem 1. These results provide confirmation of the validity of the 

computed EEG model of mental workload. 

 

 

Figure 4. Mean EEG_Workload for each activity in the learning environment 

Our next investigation was to evaluate the progression of the workload level across 

the learning tasks. A repeated measures ANOVA revealed that there were significant 

changes in the EEG_Workload between the learning activities F(3.23, 51.61 = 2.76, p 

< 0.05). Degrees of freedom were corrected using the Greenhouse-Geisser estimates 

of sphericity (epsilon = 0.46). Post hoc results showed that the EEG_Workload 

measures significantly increased during the learning session when compared with the 

pretest (p < 0.05). This increase can be explained by the effort produced by learners in 

understanding concepts and acquiring skills in the learning phase compared to the 

pretest session where learners responded to questions that did not require particular 

engagement and concentration levels. In fact, during the pretest no pressure was put 

on learners who had simply to situate their knowledge in trigonometry.  

Significant increases were also registered between the pretest and problems 4, 5 

and 6 with the highest workload level (see figure 4) revealing that mental workload 

significantly increases from the beginning to the end of the learning interaction. A 

significant increase was also found during problem 5 when compared with problems 

1, 3 and 4 suggesting that learning tasks varied in terms of the cognitive workload 

demand required from the participants. 

To summarize, EEG_Workload was validated according to the learners’ subjective 

ratings. The index value increased clearly as learners acquired skills in trigonometry. 

This trend was significant when we compared the pretest with the learning session 

and the problem solving tasks.  

Our next concern was to evaluate the EEG_Workload model with regards to the 

objective metrics in the learning environment. A bi-variate correlation was computed 

between EEG_Workload and response time across participants in the six problems (N 



= 17 x 6) showing a rather small but significant relationship (r = 0.21, p < 0.05). 

Besides, correlational analysis of each problem apart revealed a significant correlation 

only in problem 5 (r = 0.56, p < 0.05). Indeed, unlike pure cognitive tasks with strict 

laboratory conditions and imposed time limits, in a more complex learning 

environment, learners are less restricted and a longer response time does not 

necessarily imply higher mental workload which can also be distilled into other 

mental processes. 

Bi-variate correlations were computed between EEG_Workload and performance 

in the pretest and each problem. Results showed a significant linear relationship 

between EEG_Workload and performance in the pretest (r = -1.88, p < 0.05) while no 

significant correlation was found between EEG_workload and performance in any of 

the problems. Again, these data suggest that changes in workload are not related to 

performance in complex learning tasks and that a more complex relationship may 

exist between mental workload and performance. 

Looking at participants’ self reported skill levels in trigonometry, ANOVA tests 

revealed a reliable effect of the skill level on the mean EEG_Workload in the 

problems (F(2, 14) = 11.93, p < 0.05). We found that participants with a moderate 

skill level have had the highest workload values (M = 68.97; SD = 14.16) as 

compared to participants with low skill level (M = 57.25; SD = 4.06) and to expert 

participants who showed the lowest workload values (M = 41.35, SD = 7.52). One 

can explain this result by the fact that learners with moderate skills tend to produce 

more effort than experts who might be more at ease with trigonometry and do not 

produce a lot of effort. On the other side, learners with the lowest skill level tend to be 

rather disengaged in the task compared to learners with moderate to high skills.  

Our last investigation dealt with the overall impact of learners’ workload, response 

time and skill level on their performance in the problems. A multiple regression 

analysis was conducted to measure the influence of each of these parameters. The 

overall model was significant (F(3, 98) = 8.48, p < 0.01, R = 0.41). Conditional main 

effect analyzes revealed a positive effect of workload (β = 0.24, p < .05) and skill 

level (β = .42, p < .001) and a negative effect of response time (β = -0.27, p < .05) 

suggesting that a combination of these variables can be used to predict learning 

performance. This result suggests that a combination of several variables can improve 

the accuracy of systems in assessing learners’ skill acquisition process. 

5   Conclusion 

In this paper we have presented a workload index based on features extracted from 

EEG signals. 17 participants were recruited for this experiment and were equipped 

with a 6-channel EEG headset. The developed workload index uses a Gaussian 

Process Regression model trained on data gathered from purely cognitive tasks with 

incrementally increasing levels of difficulty to elicit increasing levels of required 

mental workload. Our model was validated in a learning activity during which 

learners interacted with an educational environment about trigonometry including a 

pretest, a learning session and six problem solving tasks and self-reported their 

workload level. Results showed that our index was significantly correlated to 



learners’ subjective ratings and gradually increased from the pretest to the end of the 

session. Correlational analysis showed that mental workload was not necessarily, 

linearly associated to performance and response time objective variables in the 

learning context, as opposed to the strict laboratory conditions of the cognitive task 

activity. 

Future work involves developing a generalized model and incorporating it within a 

real time interaction based tutoring system. Further variables from the learners’ 

profile will be considered in the development of the system that will be centered in 

optimally adapting content, problem level and interactions to learners’ mental states. 
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