(S

GAMBIT
REPL

Gambit REPL

Universite f”\

de Montreéal

Overview

Scheme

Gambit

Gambit REPL app
User interface
Development

Implementation

-l Carrier = 6:18 PM

Welcome to Gambit REPL, a Scheme
development environment based on the
Gambit Scheme programming system.

® |earn the Scheme language,
¢ debug Scheme code on the go,
¢ number crunch exactly!

In the REPL view, enter your command after
the > prompt, then tap return to display the
result. Here 1s a sample interaction:

> (+# 1 (/ (* 2 2) (sqrt 9)))

7/3

> (expt 2 100)
1267650600228229401496703205376

> (reverse (string->list "hello"))
(#\o #\1 #\1 #\e #\h)

> \for (int i=1;i<=3;i++) pp(i*i);
1

<
9

Thursday, November 24, 2011

~

- el : »
S S A

Thursday, November 24, 2011

Scheme

1975: Sussman & Steele design Scheme at MIT
Few but powerful building blocks
simple uniform syntax (parenthesized prefix)
dynamically typed
functional and imperative programming

macros, closures, first-class continuations,
tail-calls, garbage collection, ...

Used by many institutions to teach CS

Scheme Example

(define (join words separator)
(apply string-append
(map (lambda (str) ;; a closure
(string-append separator str))
words)))

(define (path . parts) ;; a variadic function
(join parts "/"))

(path "usr" "local" "bin") = "/usr/local/bin"

(define-macro (push val var) ;; a procedural macro
" (set! ,var (cons ,val ,var)))

(define stack '())

(push 11 stack)
(push 22 stack)

stack = (22 11)

Thursday, November 24, 2011

Evolution of Standards

“Academic era”: concerns for purity

Evolution by unanimous consent:
R1RS (1978), R2RS (1985), R3RS (1986),
R4RS (1991), R5RS (1998) => 50 page spec

“Real-world era”: practical concerns

Scheme Request for Implementation (SRFI),
over 100 documents, ongoing since 1998

Evolution by revolution: R6RS (2007)
=> 160 page spec, controversial, R7RS (soon!)

Scheme Systems

Over 50 implementations of Scheme, many
toys and over 15 mature systems!

Diverse implementation approaches:
Interpreters and VMs — Guile, Kawa, ...
JIT compilers — Racket, Larceny, Chez, ...

Compilers to C — Gambit, Bigloo, Chicken, ...

~

- el : »
S S A

Thursday, November 24, 2011

Gambit System Evolution

1989: Compiler to M68K, no interpreter, no GC
1991: MacGambit — compiler/interpreter/IDE

1993: Message passing implementation of
futures on 90 processor BBN Butterfly

1994: C back-end, first commercial use
2004: Gambit v4, threads, I/ O, LGPL/ Apache
2011: Gambit REPL - interpreter for iOS

Gambit Goals

A Scheme system that is
conformant to R5RS and robust (no bugs)
portable
efficient (i.e. fast)
embeddable

Provide simple building blocks for
developing practical applications
building more complex languages

Avoid “being in the programmer’s way”

GSI and GSC

On workstations, Gambit has 2 main programs:
gsi: interpreter (best for debugging but not fast)
gsc: compiler (which includes interpreter)

Interpreted and compiled code can be freely mixed

5 gsi 5 gsi fib.scm
Gambit v4.6.0 515

%5 gsc fib.scm
> (load "fib") 5 gsi fib.ol
59 55
"/Users/feeley/fib.scm" % gsc —-exe fib.scm
> (£ib 20) 5 ./fib
6765 55
> (exit) 5 gsc —-c fib.scm

Thursday, November 24, 2011

Portability

Scheme gSC C

gsc generates C code that is independent of the
target processor, C compiler and OS

Compilable by any C, C++, or ObjC compiler,
on 32 /64 bit processors, any endianness

Trampolines are used for supporting tail calls
(Scheme stack managed separately from C’s)

Gambit Virtual Machine

GVM is the compiler’s intermediate language
Register based VM (nb of regs depends on BE)
First few parameters in registers, rest on stack
Stack is allocated implicitly (no push/pop)
No call instruction, only jump

jump/poll instruction indicates safe points
where interrupts are allowed and where stack
and heap overflows are checked

C Back-End

gSC

scheme Front-end GVM C back-end C

moel s scm modl .gvm
(print #1 £s=0 entry-point 0 ()
(max 11 22)) STK1 = RO
R2 = 22
Rl = 11
RO = #2

jump/poll fs=4 max 2

#2 f£s=4 return-point
RO = STK1
jump/poll £s=0 print 1

Note: GVM and C code
modified for readability

meellie
#include "gambit.h"

BEGIN SW

DEF SLBL(0,LO modl)
SET STK(1,R0)
SET R2 (FIX(22L))
SET R1 (FIX(11L))
SET RO (LBL(2))
ADJFP (4)
POLL (1)

DEF SLBL(1l,Ll1 modl)
JUMPGLO (NARGS (2) ,

1l,G max)

DEF SILBL(2,L2 modl)

SET RO (STK(-3))

Thursday, November 24, 2011

System Portability

gambit.h allows late binding of GVM implem.

a configure script tunes the gambit.h macro
definitions to take into account:

target OS, C compiler, pointer width, etc
E.g. trampoline operation BEGIN SW becomes

“switch (pc-start) ...” by default
“goto * (pc->1bl) ;” if using gcc (faster!)

System Portability

Gambit adopts a Scheme-in-Scheme approach

primitives, interpreter, debugger, bignums, ...

Non-Scheme code (~ 30%) is mainly for OS
interface and is in portable C (no asm code!)

Runtime relies only on standard C libraries

Compiled application can be distributed as the
set of generated “.c” files (Gambit not needed
on the target system, great for embedded sys)

System Portability

runtime library

kernel.
num.

10.

app .

application

configure

SCm

SCm

SCm

SCm

gsC

config.
gambit.

main.

OS.
meim.

_kernel :
num.

_io 3
app.
app_ .

link file

QNS

0

C

C

C

CC

app . exe

Thursday, November 24, 2011

System Portability

Compiles “out-of-the box” for Intel, SPARC,
PPC, MIPS, ARM, etc

Porting to a new processor: 0 to 60 minutes

Unusual porting examples:
Nintendo DS (ARM, 4 MB RAM)
Linksys WRT54GL (MIPS, 16 MB RAM)
iPhone/iPad (ARM, 128 MB RAM)
Xilinx FPGA (PPC, few MB RAM, no OS)

Main Extensions

Declarations (to deviate from std semantics)
Namespaces

Green threads, mutex/cond.var., mailbox
[/O — TCP, subprocesses, serialization, ...

Hash tables and wills

Foreign Function Interface (FFI)

SN T e
15

20

Thursday, November 24, 2011

Overview

User interface
Development

Implementation

21

Thursday, November 24, 2011

SN T e
15

o

Thursday, November 24, 2011

Splash Screen

Four views:
REPL
Wiki
Help
Edit

-ill Carrier = 6:18 PM

Welcome to Gambit REPL, a Scheme
development environment based on the
Gambit Scheme programming system.

¢ learn the Scheme language,
¢ debug Scheme code on the go,
¢ number crunch exactly!

In the REPL view, enter your command after
the > prompt, then tap return to display the
result. Here i1s a sample interaction:

> (+ 1 {(/ (* 2 2) (sqzt 9)))

7/3

> (expt 2 100)
1267650600228229401496703205376

> (reverse (string->list "hello"))
(#\o #\1 #\1 #\e #\h)

> \for (int i=1;i<=3;i++) pp(i*i);
1

4
9

Thursday, November 24, 2011

REPL View

-ill Carrier =

7:53 PM

Interactive evaluation |
Extended keyboard |

Command history

Gambit v4.6.1

> (expt 2 200)
1606938044258990275541962092341
162602522202993782792835301376

> (help equal?)l

mn

-ill Carrier = 7:54 PM

4]]-1+1c]))

> (expt 2 200)
160693804425899027554196209234116260252220299378
2792835301376

> (help equal?)I

UUUUUUUUU >

QW|E|R|TJ|Y|U

> AOEOOO0 <

QW ER TIY|UII OP

L z|x]cv|B|nmE)

Als|o|F|afH]y]K]|L

Thursday, November 24, 2011

Wiki & Help

AcceSS tO Gambit Wiki ” (equal? objl obj2) library pmccd

Equal ? recursively compares the contents of

pairs, vectors, and strings, applying eqv? on

RSRS document ” other objects such as numbers and symbols. A

rule of thumb is that objects are generally
equal ? if they print the same. Equal ? may fail

2 to terminate 1f its arguments are circular data
Gambit User Manual

ill Carrier = 7:52 PM —

Gambit REPL - Gambit wiki
. , - ~
{d";‘ﬂd"l‘l[l. ro.umontreal.ca:80/~gambit/... } |
) - - v

page BT Seinn MAGAM S IFTa heoton
Gambit REPL

Gambit REPL is an app based on the Gambit Scheme system which is available
for mobile devices such as the iPhone and iPad. It provides a REPL to interact
Svervina with the interpreter, a script editor, and builtin documentation.

GAMBIT

The documentation for Gambit REPL is available in the Help view of the app. This
——_ page of the Gambit wiki is for user contributed comments and documentation
‘ which are of general interest to the Gambit REPL users. Please contribute by
editing this page and creating other pages!

L 13_:‘_;_;'1 "

documatyicon

Thursday, November 24, 2011

Edit View

-ill Carrier = 8:06 PM

Script editor 'u

’;;; factl00

Add / Run/save / Ddete '” ;; Compute factorial of 100.

(define (fact n)
(1f (€ n 2)
1
(* n (fact (- n 1)))))

Each script has a name

~(repl-—eval "(fact 100)\n")

“run [sove [Dot

“main” run at startup

;:: main

uFl/I run on Fl key, .} splash screem.

Save goes to “Documents”

Thursday, November 24, 2011

IPad Version

Larger area is good enough for useful work

Programmable function keys (F1 .. F12)

Thursday, November 24, 2011

REPL Server

Allows remote debugging
Telnet to port 7000
Multiple concurrent REPLs

’—\ ~ ,q\

X/ emacs@macro.local

File Edit Options Buffers Tools Complete In/0ut Signals Help

DEEHx HRE X \

bash-3.2% telnet 192.168.0.101 7000
Trying 192.168.0.101...
Connected to 192.168.0.101.

Escape character is '71'.

Gambit v4.6.1

> (host—name)
"Marc- Feelegs iPhone”

> (repl-eval "(expt 2 100)\n")

> 1

—1-%%— xshell= All L10 (Shell :run)—-10:44PM 0.55-

N 28 y

Carrier <= 10:39 PM

Gambit v4.6.1

> (expt 2 100)
1267650600228229401496703205376

> |

+ ODEUOND @

Thursday, November 24, 2011

SN T e
15

34

Thursday, November 24, 2011

Highlights

gsc + XCode 4

Code is Scheme (5 KLOC) and ObjC (1 KLOC)

Main app is in ObjC which calls into compiled
Scheme code for processing Ul “events”

Most views are webViews
Dynamic generation of content as HTML

Intercept user “events” using
shouldStartLoadWithRequest

REPL view 1s a textView

Hardest Parts

Supporting Gambit’s green threads

Main app periodically calls Scheme
heartbeat function to let the Scheme
thread scheduler execute some threads

The heartbeat function returns the
amount of time before the main app needs to
call it again (it depends on the presence of
runnable threads, the next sleep timeout, etc)

Implementation of wiki API to access the script
repository (dealing with response parsing,
timeouts, etc)

Thursday, November 24, 2011

Related Apps

105:
Pixie Scheme (iPad only, interpreter in C++)

i1Scheme (buggy, interpreter in JavaScript)

Apps for other languages: Lua (Codify,
iLuaBox), Python (Python Math), Basic (iBasic,
HotPaw Basic), JavaScript (ExecScript, |SInt)

Android:

Gambit for Android (port of Gambit REPL v1)
Scheme Droid, Clojure REPL, Ruboto IRB, ...

