
Gambit REPL
Marc Feeley

November 24, 2011

1
Thursday, November 24, 2011

Overview

Scheme

Gambit

Gambit REPL app

User interface

Development

Implementation
2

Thursday, November 24, 2011

Scheme

3
Thursday, November 24, 2011

Scheme
1975: Sussman & Steele design Scheme at MIT

Few but powerful building blocks

simple uniform syntax (parenthesized prefix)

dynamically typed

functional and imperative programming

macros, closures, first-class continuations,
tail-calls, garbage collection, ...

Used by many institutions to teach CS
4

Thursday, November 24, 2011

Scheme Example
(define (join words separator)
 (apply string-append
 (map (lambda (str) ;; a closure
 (string-append separator str))
 words)))

 (define (path . parts) ;; a variadic function
 (join parts "/"))

 (path "usr" "local" "bin") ⇒ "/usr/local/bin"

 (define-macro (push val var) ;; a procedural macro
 `(set! ,var (cons ,val ,var)))

 (define stack '())

 (push 11 stack)
 (push 22 stack)

 stack ⇒ (22 11)

5
Thursday, November 24, 2011

Evolution of Standards
“Academic era”: concerns for purity

Evolution by unanimous consent:
R1RS (1978), R2RS (1985), R3RS (1986),
R4RS (1991), R5RS (1998) => 50 page spec

“Real-world era”: practical concerns

Scheme Request for Implementation (SRFI),
over 100 documents, ongoing since 1998

Evolution by revolution: R6RS (2007)
=> 160 page spec, controversial, R7RS (soon!)

6
Thursday, November 24, 2011

Scheme Systems

Over 50 implementations of Scheme, many
toys and over 15 mature systems!

Diverse implementation approaches:

Interpreters and VMs – Guile, Kawa, ...

JIT compilers – Racket, Larceny, Chez, ...

Compilers to C – Gambit, Bigloo, Chicken, ...

7
Thursday, November 24, 2011

Gambit

8
Thursday, November 24, 2011

Gambit System Evolution

1989: Compiler to M68K, no interpreter, no GC

1991: MacGambit – compiler/interpreter/IDE

1993: Message passing implementation of
futures on 90 processor BBN Butterfly

1994: C back-end, first commercial use

2004: Gambit v4, threads, I/O, LGPL/Apache

2011: Gambit REPL - interpreter for iOS
9

Thursday, November 24, 2011

Gambit Goals
A Scheme system that is

conformant to R5RS and robust (no bugs)
portable
efficient (i.e. fast)
embeddable

Provide simple building blocks for
developing practical applications
building more complex languages

Avoid “being in the programmer’s way”
10

Thursday, November 24, 2011

GSI and GSC
On workstations, Gambit has 2 main programs:
gsi: interpreter (best for debugging but not fast)
gsc: compiler (which includes interpreter)

Interpreted and compiled code can be freely mixed

Gambit v4.6.0
% gsi

> (load "fib")
55
"/Users/feeley/fib.scm"
> (fib 20)
6765
> (exit)

% gsi fib.scm
55
% gsc fib.scm
% gsi fib.o1
55
% gsc -exe fib.scm
% ./fib
55
% gsc -c fib.scm11

Thursday, November 24, 2011

Portability

gsc generates C code that is independent of the
target processor, C compiler and OS

Compilable by any C, C++, or ObjC compiler,
on 32/64 bit processors, any endianness

Trampolines are used for supporting tail calls
(Scheme stack managed separately from C’s)

gsc CScheme

12
Thursday, November 24, 2011

Gambit Virtual Machine
GVM is the compiler’s intermediate language

Register based VM (nb of regs depends on BE)

First few parameters in registers, rest on stack

Stack is allocated implicitly (no push/pop)

No call instruction, only jump

jump/poll instruction indicates safe points
where interrupts are allowed and where stack
and heap overflows are checked

13
Thursday, November 24, 2011

C Back-End

(print
 (max 11 22))

mod1.scm

#1 fs=0 entry-point 0 ()
 STK1 = R0
 R2 = ’22
 R1 = ’11
 R0 = #2
 jump/poll fs=4 max 2

#2 fs=4 return-point
 R0 = STK1
 jump/poll fs=0 print 1

mod1.gvm

gsc

C back-endFront-end GVM CScheme

#include "gambit.h"

BEGIN_SW
DEF_SLBL(0,L0_mod1)
 SET_STK(1,R0)
 SET_R2(FIX(22L))
 SET_R1(FIX(11L))
 SET_R0(LBL(2))
 ADJFP(4)
 POLL(1)
DEF_SLBL(1,L1_mod1)
 JUMPGLO(NARGS(2),
 1,G_max)
DEF_SLBL(2,L2_mod1)
 SET_R0(STK(-3))
 ...

mod1.c

non-tail-call

tail-call

Note: GVM and C code
modified for readability

14
Thursday, November 24, 2011

System Portability
gambit.h allows late binding of GVM implem.

a configure script tunes the gambit.h macro
definitions to take into account:

target OS, C compiler, pointer width, etc

E.g. trampoline operation BEGIN_SW becomes

“switch (pc-start) ...” by default

“goto *(pc->lbl);” if using gcc (faster!)
15

Thursday, November 24, 2011

System Portability
Gambit adopts a Scheme-in-Scheme approach

primitives, interpreter, debugger, bignums, ...

Non-Scheme code (~ 30%) is mainly for OS
interface and is in portable C (no asm code!)

Runtime relies only on standard C libraries

Compiled application can be distributed as the
set of generated “.c” files (Gambit not needed
on the target system, great for embedded sys)

16
Thursday, November 24, 2011

System Portability

main.c
os.c

mem.c

...

_kernel.scm

_io.scm

_num.scm...

app.scm

_kernel.c

_io.c

_num.c...

app.c
app_.c

config.h

gambit.h
configure

gsc

cc app.exe

link file

runtime library

application
17

Thursday, November 24, 2011

System Portability
Compiles “out-of-the box” for Intel, SPARC,
PPC, MIPS, ARM, etc

Porting to a new processor: 0 to 60 minutes

Unusual porting examples:
Nintendo DS (ARM, 4 MB RAM)
Linksys WRT54GL (MIPS, 16 MB RAM)
iPhone/iPad (ARM, 128 MB RAM)
Xilinx FPGA (PPC, few MB RAM, no OS)

18
Thursday, November 24, 2011

Main Extensions

Declarations (to deviate from std semantics)

Namespaces

Green threads, mutex/cond.var., mailbox

I/O – TCP, subprocesses, serialization, ...

Hash tables and wills

Foreign Function Interface (FFI)
19

Thursday, November 24, 2011

Gambit REPL app

20
Thursday, November 24, 2011

Overview

User interface

Development

Implementation

21
Thursday, November 24, 2011

User Interface

22
Thursday, November 24, 2011

Splash Screen
Four views:

REPL
Wiki
Help
Edit

23
Thursday, November 24, 2011

REPL View
Interactive evaluation
Extended keyboard
Command history

24
Thursday, November 24, 2011

Wiki & Help
Access to Gambit Wiki
R5RS document
Gambit User Manual

25
Thursday, November 24, 2011

Edit View
Script editor
Add/Run/Save/Delete
Each script has a name

“main” run at startup
“F1” run on F1 key, ...

Save goes to “Documents”

26
Thursday, November 24, 2011

iPad Version
Larger area is good enough for useful work
Programmable function keys (F1 .. F12)

27
Thursday, November 24, 2011

REPL Server
Allows remote debugging
Telnet to port 7000
Multiple concurrent REPLs

28
Thursday, November 24, 2011

Implementation

34
Thursday, November 24, 2011

Highlights
gsc + XCode 4
Code is Scheme (5 KLOC) and ObjC (1 KLOC)
Main app is in ObjC which calls into compiled
Scheme code for processing UI “events”
Most views are webViews

Dynamic generation of content as HTML
Intercept user “events” using
shouldStartLoadWithRequest

REPL view is a textView
35

Thursday, November 24, 2011

Hardest Parts
Supporting Gambit’s green threads

Main app periodically calls Scheme
heartbeat function to let the Scheme
thread scheduler execute some threads
The heartbeat function returns the
amount of time before the main app needs to
call it again (it depends on the presence of
runnable threads, the next sleep timeout, etc)

Implementation of wiki API to access the script
repository (dealing with response parsing,
timeouts, etc)

36
Thursday, November 24, 2011

Related Apps
iOS:

Pixie Scheme (iPad only, interpreter in C++)
iScheme (buggy, interpreter in JavaScript)
Apps for other languages: Lua (Codify,
iLuaBox), Python (Python Math), Basic (iBasic,
HotPaw Basic), JavaScript (ExecScript, JSInt)

Android:
Gambit for Android (port of Gambit REPL v1)
Scheme Droid, Clojure REPL, Ruboto IRB, ...

37
Thursday, November 24, 2011

