
Gambit-C v4.2.2
A portable implementation of Scheme

Edition v4.2.2, February 11, 2008

Marc Feeley

Copyright c© 1994-2008 Marc Feeley.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the copyright holder.

Chapter 1: The Gambit-C system 1

1 The Gambit-C system

The Gambit programming system is a full implementation of the Scheme language which
conforms to the R4RS, R5RS and IEEE Scheme standards. It consists of two main programs:
gsi, the Gambit Scheme interpreter, and gsc, the Gambit Scheme compiler.

Gambit-C is a version of the Gambit programming system in which the compiler gen-
erates portable C code, making the whole Gambit-C system and the programs compiled
with it easily portable to many computer architectures for which a C compiler is available.
With appropriate declarations in the source code the executable programs generated by the
compiler run roughly as fast as equivalent C programs.

For the most up to date information on Gambit and add-on packages please check the
Gambit web page at http://www.iro.umontreal.ca/˜gambit or the mailing list
at http://mailman.iro.umontreal.ca/mailman/listinfo/gambit-list. Bug
reports and inquiries should be sent to gambit@iro.umontreal.ca.

1.1 Accessing the system files

The Gambit installation directory is where all system files are installed. This directory
is prefix/version, where version is the system version number (e.g. v4.2.2 for Gambit
v4.2.2) and prefix is /usr/local/Gambit-C under UNIX, /Library/Gambit-C
under Mac OS X and C:/Program Files/Gambit-C under Microsoft Win-
dows. The prefix can be overridden when the system is built with the command
‘configure --prefix=/my/own/Gambit-C’. Moreover, under UNIX and MacOS X,
prefix/current is a symbolic link which points to the installation directory.

Executable programs such as the interpreter gsi and compiler gsc can be found in
the bin subdirectory of the installation directory. Adding this directory to the PATH
environment variable allows these programs to be started by simply entering their name.
This is done automatically by the MacOS X and Microsoft Windows installers.

The runtime library is located in the lib subdirectory. When the system’s runtime
library is built as a shared-library (with the command ‘configure --enable-shared’)
all programs built with Gambit-C, including the interpreter and compiler, need to find
this library when they are executed and consequently this directory must be in the path
searched by the system for shared-libraries. This path is normally specified through an
environment variable which is LD_LIBRARY_PATH on most versions of UNIX, LIBPATH
on AIX, SHLIB_PATH on HPUX, DYLD_LIBRARY_PATH on Mac OS X, and PATH on
Microsoft Windows. If the shell is sh, the setting of the path can be made for a single
execution by prefixing the program name with the environment variable assignment, as in:

$ LD_LIBRARY_PATH=/usr/local/Gambit-C/current/lib gsi

A similar problem exists with the Gambit header file gambit.h, located in the include
subdirectory. This header file is needed for compiling Scheme programs with the Gambit-
C compiler. When the C compiler is being called explicitly it may be necessary to use
a -I<dir> command line option to indicate where to find header files and a -L<dir>
command line option to indicate where to find libraries. Access to both of these files can be
simplified by creating a link to them in the appropriate system directories (special privileges
may however be required):

http://www.iro.umontreal.ca/~gambit
http://mailman.iro.umontreal.ca/mailman/listinfo/gambit-list

Chapter 1: The Gambit-C system 2

$ ln -s /usr/local/Gambit-C/current/lib/libgambc.a /usr/lib # name may vary
$ ln -s /usr/local/Gambit-C/current/include/gambit.h /usr/include

This is not done by the installation process. Alternatively these files can also be copied or
linked in the directory where the C compiler is invoked (this requires no special privileges).

Chapter 2: The Gambit Scheme interpreter 3

2 The Gambit Scheme interpreter

Synopsis:
gsi [-:runtimeoption,...] [-i] [-f] [-v] [[-] [-e expressions] [file]]...

The interpreter is executed in interactive mode when no file or ‘-’ or ‘-e’ option is given
on the command line. Otherwise the interpreter is executed in batch mode. The ‘-i’ option
is ignored by the interpreter. The initialization file will be examined unless the ‘-f’ option
is present (see Section 2.3 [GSI customization], page 4). The ‘-v’ option prints the system
version string on standard output and exits (e.g. v4.2.2 for Gambit v4.2.2). Runtime
options are explained in Chapter 4 [Runtime options], page 21.

2.1 Interactive mode

In interactive mode a read-eval-print loop (REPL) is started for the user to interact with
the interpreter. At each iteration of this loop the interpreter displays a prompt, reads a
command and executes it. The commands can be expressions to evaluate (the typical case)
or special commands related to debugging, for example ‘,q’ to terminate the process (for a
complete list of commands see Chapter 5 [Debugging], page 24). Most commands produce
some output, such as the value or error message resulting from an evaluation.

The input and output of the interaction is done on the interaction channel. The
interaction channel can be specified through the runtime options but if none is specified
the system uses a reasonable default that depends on the system’s configuration.
When the system’s runtime library was built with support for GUIDE, the Gambit
Universal IDE (with the command ‘configure --enable-guide’) the interaction
channel corresponds to the console window of the primordial thread (for details see
Section 5.7 [GUIDE], page 35), otherwise the interaction channel is the user’s console,
also known as the controlling terminal in the UNIX world. When the REPL starts, the
ports associated with ‘(current-input-port)’, ‘(current-output-port)’ and
‘(current-error-port)’ all refer to the interaction channel.

Expressions are evaluated in the global interaction environment. The interpreter adds
to this environment any definition entered using the define and define-macro special
forms. Once the evaluation of an expression is completed, the value or values resulting
from the evaluation are output to the interaction channel by the pretty printer. The special
“void” object is not output. This object is returned by most procedures and special forms
which the Scheme standard defines as returning an unspecified value (e.g. write, set!,
define).

Here is a sample interaction with gsi:
$ gsi
Gambit v4.2.2

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (map fact ’(1 2 3 4 5 6))
(1 2 6 24 120 720)
> (values (fact 10) (fact 40))
3628800
815915283247897734345611269596115894272000000000
> ,q

What happens when errors occur is explained in Chapter 5 [Debugging], page 24.

Chapter 2: The Gambit Scheme interpreter 4

2.2 Batch mode

In batch mode the command line arguments denote files to be loaded, REPL interactions
to start (‘-’ option), and expressions to be evaluated (‘-e’ option). Note that the ‘-’ and
‘-e’ options can be interspersed with the files on the command line and can occur multiple
times. The interpreter processes the command line arguments from left to right, loading
files with the load procedure and evaluating expressions with the eval procedure in the
global interaction environment. After this processing the interpreter exits.

When the file name has no extension the load procedure first attempts to load the file
with no extension as a Scheme source file. If that file doesn’t exist it completes the file
name with a ‘.on’ extension with the highest consecutive version number starting with
1, and loads that file as an object file. If that file doesn’t exist the file extensions ‘.scm’
and ‘.six’ will be tried in that order. When the file name has an extension, the load
procedure will only attempt to load the file with that specific name.

When the extension of the file loaded is ‘.scm’ the content of the file will be parsed
using the normal Scheme prefix syntax. When the extension of the file loaded is ‘.six’ the
content of the file will be parsed using the Scheme infix syntax extension (see Section 18.12
[Scheme infix syntax extension], page 165). Otherwise, gsi will parse the file using the
normal Scheme prefix syntax.

The ports associated with ‘(current-input-port)’, ‘(current-output-port)’
and ‘(current-error-port)’ initially refer respectively to the standard input
(‘stdin’), standard output (‘stdout’) and the standard error (‘stderr’) of the
interpreter. This is true even in REPLs started with the ‘-’ option. The usual interaction
channel (console or IDE’s console window) is still used to read expressions and commands
and to display results. This makes it possible to use REPLs to debug programs which
read the standard input and write to the standard output, even when these have been
redirected.

Here is a sample use of the interpreter in batch mode, under UNIX:
$ cat h.scm
(display "hello") (newline)
$ cat w.six
display("world"); newline();
$ gsi h.scm - w.six -e "(pretty-print 1)(pretty-print 2)"
hello
> (define (display x) (write (reverse (string->list x))))
> ,(c 0)
(#\d #\l #\r #\o #\w)
1
2

2.3 Customization

There are two ways to customize the interpreter. When the interpreter starts off it tries to
execute a ‘(load "˜˜/gambcext")’ (for an explanation of how file names are interpreted
see Chapter 16 [Host environment], page 116). An error is not signaled when the file does
not exist. Interpreter extensions and patches that are meant to apply to all users and all
modes should go in that file.

Extensions which are meant to apply to a single user or to a specific working directory
are best placed in the initialization file, which is a file containing Scheme code. In all modes,

Chapter 2: The Gambit Scheme interpreter 5

the interpreter first tries to locate the initialization file by searching the following locations:
‘.gambcini’ and ‘˜/.gambcini’ (with no extension, a ‘.scm’ extension, and a ‘.six’
extension in that order). The first file that is found is examined as though the expression
(include initialization-file) had been entered at the read-eval-print loop where
initialization-file is the file that was found. Note that by using an include the macros
defined in the initialization file will be visible from the read-eval-print loop (this would not
have been the case if load had been used). The initialization file is not searched for or
examined when the ‘-f’ option is specified.

2.4 Process exit status

The status is zero when the interpreter exits normally and is nonzero when the interpreter
exits due to an error. Here is the meaning of the exit statuses:

0 The execution of the primordial thread (i.e. the main thread) did not
encounter any error. It is however possible that other threads termi-
nated abnormally (by default threads other than the primordial thread
terminate silently when they raise an exception that is not handled).

64 The runtime options or the environment variable ‘GAMBCOPT’ contained
a syntax error or were invalid.

70 This normally indicates that an exception was raised in the primordial
thread and the exception was not handled.

71 There was a problem initializing the runtime system, for example insuf-
ficient memory to allocate critical tables.

For example, if the shell is sh:
$ gsi -:d0 -e "(pretty-print (expt 2 100))"
1267650600228229401496703205376
$ echo $?
0
$ gsi -:d0,unknown # try to use an unknown runtime option
$ echo $?
64
$ gsi -:d0 nonexistent.scm # try to load a file that does not exist
$ echo $?
70
$ gsi nonexistent.scm
*** ERROR IN ##main -- No such file or directory
(load "nonexistent.scm")
$ echo $?
70

$ gsi -:m4000000 # ask for a 4 gigabyte heap
*** malloc: vm_allocate(size=528384) failed (error code=3)
*** malloc[15068]: error: Can’t allocate region
$ echo $?
71

Note the use of the runtime option ‘-:d0’ that prevents error messages from being
output, and the runtime option ‘-:m4000000’ which sets the minimum heap size to 4
gigabytes.

Chapter 2: The Gambit Scheme interpreter 6

2.5 Scheme scripts

The load procedure treats specially files that begin with the two characters ‘#!’ and ‘@;’.
Such files are called script files. In addition to indicating that the file is a script, the first
line provides information about the source code language to be used by the load procedure.
After the two characters ‘#!’ and ‘@;’ the system will search for the first substring matching
one of the following language specifying tokens:

scheme-r4rs R4RS language with prefix syntax, case-insensitivity, keyword syntax
not supported

scheme-r5rs R5RS language with prefix syntax, case-insensitivity, keyword syntax
not supported

scheme-ieee-1178-1990
IEEE 1178-1990 language with prefix syntax, case-insensitivity, keyword
syntax not supported

scheme-srfi-0 R5RS language with prefix syntax and SRFI 0 support (i.e. cond-
expand special form), case-insensitivity, keyword syntax not supported

gsi-script Full Gambit Scheme language with prefix syntax, case-sensitivity, key-
word syntax supported

gsc-script Full Gambit Scheme language with prefix syntax, case-sensitivity, key-
word syntax supported

six-script Full Gambit Scheme language with infix syntax, case-sensitivity, key-
word syntax supported

If a language specifying token is not found, load will use the same language as a
nonscript file (i.e. it uses the file extension and runtime system options to determine the
language).

After processing the first line, load will parse the rest of the file (using the syntax of
the language indicated) and then execute it. When the file is being loaded because it is an
argument on the interpreter’s command line, the interpreter will:
• Setup the command-line procedure so that it returns a list containing the expanded

file name of the script file and the arguments following the script file on the command
line. This is done before the script is executed. The expanded file name of the script
file can be used to determine the directory that contains the script (i.e. (path-
directory (car (command-line)))).

• After the script is loaded the procedure main is called with the command-line argu-
ments. The way this is done depends on the language specifying token. For scheme-
r4rs, scheme-r5rs, scheme-ieee-1178-1990, and scheme-srfi-0, the main
procedure is called with the equivalent of (main (cdr (command-line))) and
main is expected to return a process exit status code in the range 0 to 255. This con-
forms to the “Running Scheme Scripts on Unix SRFI” (SRFI 22). For gsi-script
and six-script the main procedure is called with the equivalent of (apply main
(cdr (command-line))) and the process exit status code is 0 (main’s result is ig-
nored). The Gambit-C system has a predefined main procedure which accepts any
number of arguments and returns 0, so it is perfectly valid for a script to not define

Chapter 2: The Gambit Scheme interpreter 7

main and to do all its processing with top-level expressions (examples are given in the
next section).

• When main returns, the interpreter exits. The command-line arguments after a script
file are consequently not processed (however they do appear in the list returned by the
command-line procedure, after the script file’s expanded file name, so it is up to the
script to process them).

2.5.1 Scripts under UNIX and Mac OS X

Under UNIX and Mac OS X, the Gambit-C installation process creates the executable
‘gsi’ and also the executables ‘six’, ‘gsi-script’, ‘six-script’, ‘scheme-r5rs’,
‘scheme-srfi-0’, etc as links to ‘gsi’. A Scheme script need only start with the name
of the desired Scheme language variant prefixed with ‘#!’ and the directory where the
Gambit-C executables are stored. This script should be made executable by setting the
execute permission bits (with a ‘chmod +x script’). Here is an example of a script which
lists on standard output the files in the current directory:

#!/usr/local/Gambit-C/current/bin/gsi-script
(for-each pretty-print (directory-files))

Here is another UNIX script, using the Scheme infix syntax extension, which takes a
single integer argument and prints on standard output the numbers from 1 to that integer:

#!/usr/local/Gambit-C/current/bin/six-script

void main (obj n_str)
{

int n = \string->number(n_str);
for (int i=1; i<=n; i++)

\pretty-print(i);
}

For maximal portability it is a good idea to start scripts indirectly through the
‘/usr/bin/env’ program, so that the executable of the interpreter will be searched in
the user’s ‘PATH’. This is what SRFI 22 recommends. For example here is a script that
mimics the UNIX ‘cat’ utility for text files:

#!/usr/bin/env gsi-script

(define (display-file filename)
(display (call-with-input-file filename

(lambda (port)
(read-line port #f)))))

(for-each display-file (cdr (command-line)))

2.5.2 Scripts under Microsoft Windows

Under Microsoft Windows, the Gambit-C installation process creates the exe-
cutable ‘gsi.exe’ and ‘six.exe’ and also the batch files ‘gsi-script.bat’,
‘six-script.bat’, ‘scheme-r5rs.bat’, ‘scheme-srfi-0.bat’, etc which simply
invoke ‘gsi.exe’ with the same command line arguments. A Scheme script need only
start with the name of the desired Scheme language variant prefixed with ‘@;’. A UNIX
script can be converted to a Microsoft Windows script simply by changing the first line
and storing the script in a file whose name has a ‘.bat’ or ‘.cmd’ extension:

@;gsi-script %˜f0 %*

Chapter 2: The Gambit Scheme interpreter 8

(display "files:\n")
(pretty-print (directory-files))

Note that Microsoft Windows always searches executables in the user’s ‘PATH’, so there
is no need for an indirection such as the UNIX ‘/usr/bin/env’. However the first line
must end with ‘%˜f0 %*’ to pass the expanded filename of the script and command line
arguments to the interpreter.

2.5.3 Compiling scripts

A script file can be compiled using the Gambit Scheme compiler (see Chapter 3 [GSC],
page 9) into a dynamically loadable object file or into a standalone executable. The first
line of the script will provide information to the compiler on which language to use. The
first line also provides information on which runtime options to use when executing the
script. The compiled script will be executed similarly to an interpreted script (i.e. the list
of command line arguments returned by the command-line procedure and the invocation
of the main procedure).

For example:
$ cat square.scm
#!/usr/local/Gambit-C/current/bin/gsi-script
(define (main arg)

(pretty-print (expt (string->number arg) 2)))
$ gsi square 30 # will load square.scm
900
$ gsc square
$ gsi square 30 # will load square.o1
900

Chapter 3: The Gambit Scheme compiler 9

3 The Gambit Scheme compiler

Synopsis:
gsc [-:runtimeoption,...] [-i] [-f] [-v]

[-prelude expressions] [-postlude expressions]
[-dynamic] [-cc-options options]
[-ld-options-prelude options] [-ld-options options]
[-warnings] [-verbose] [-report] [-expansion] [-gvm]
[-debug] [-debug-source] [-debug-environments] [-track-scheme]
[-o output] [-c] [-keep-c] [-link] [-flat] [-l base]
[[-] [-e expressions] [file]]...

3.1 Interactive mode

When no command line argument is present other than options the compiler behaves like
the interpreter in interactive mode. The only difference with the interpreter is that the
compilation related procedures listed in this chapter are also available (i.e. compile-
file, compile-file-to-c, etc).

3.2 Customization

Like the interpreter, the compiler will examine the initialization file unless the ‘-f’ option
is specified.

3.3 Batch mode

In batch mode gsc takes a set of file names (with either no extension, or a ‘.c’ extension,
or some other extension) on the command line and compiles each Scheme file into a C
file. The extension can be omitted from file when the Scheme file has a ‘.scm’ or ‘.six’
extension. When the extension of the Scheme file is ‘.six’ the content of the file will
be parsed using the Scheme infix syntax extension (see Section 18.12 [Scheme infix syntax
extension], page 165). Otherwise, gsc will parse the Scheme file using the normal Scheme
prefix syntax. Files with a ‘.c’ extension must have been previously produced by gsc and
are used by Gambit’s linker.

For each Scheme file a C file ‘file.c’ will be produced. The C file’s name is the same
as the Scheme file, but the extension is changed to ‘.c’. By default the C file is created in
the same directory as the Scheme file. This default can be overridden with the compiler’s
‘-o’ option.

The C files produced by the compiler serve two purposes. They will be processed by a C
compiler to generate object files, and they also contain information to be read by Gambit’s
linker to generate a link file. The link file is a C file that collects various linking information
for a group of modules, such as the set of all symbols and global variables used by the
modules. The linker is only invoked when the ‘-link’ option appears on the command
line.

Compiler options must be specified before the first file name and after the ‘-:’ runtime
option (see Chapter 4 [Runtime options], page 21). If present, the ‘-i’, ‘-f’, and ‘-v’
compiler options must come first. The available options are:

Chapter 3: The Gambit Scheme compiler 10

-i Force interpreter mode.

-f Do not examine the initialization file.

-v Print the system version number on standard output and exit.

-prelude expressions
Add expressions to the top of the source code being compiled.

-postlude expressions
Add expressions to the bottom of the source code being compiled.

-cc-options options
Add options to the command that invokes the C compiler.

-ld-options-prelude options
Add options to the command that invokes the C linker.

-ld-options options
Add options to the command that invokes the C linker.

-warnings Display warnings.

-verbose Display a trace of the compiler’s activity.

-report Display a global variable usage report.

-expansion Display the source code after expansion.

-gvm Generate a listing of the GVM code.

-debug Include all debugging information in the code generated.

-debug-source Include source code debugging information in the code generated.

-debug-environments
Include environment debugging information in the code generated.

-track-scheme Generate ‘#line’ directives referring back to the Scheme code.

-o output Set name of output file or directory where output file(s) are written.

-dynamic Compile Scheme source files to dynamically loadable object files (this is
the default).

-keep-c Keep the intermediate ‘.c’ file that is generated when compiling to a
dynamically loadable object file.

-c Compile Scheme source files to C without generating link file.

-link Compile Scheme source files to C and generate a link file.

-flat Generate a flat link file instead of the default incremental link file.

-l base Specify the link file of the base library to use for the link.

- Start REPL interaction.

-e expressions
Evaluate expressions in the interaction environment.

Chapter 3: The Gambit Scheme compiler 11

The ‘-i’ option forces the compiler to process the remaining command line arguments
like the interpreter.

The ‘-prelude’ option adds the specified expressions to the top of the source code
being compiled. The main use of this option is to supply declarations on the command line.
For example the following invocation of the compiler will compile the file ‘bench.scm’ in
unsafe mode:

$ gsc -prelude "(declare (not safe))" bench.scm

The ‘-postlude’ option adds the specified expressions to the bottom of the source code
being compiled. The main use of this option is to supply the expression that will start the
execution of the program. For example:

$ gsc -postlude "(start-bench)" bench.scm

The ‘-cc-options’ option is only meaningful when a dynamically loadable object file
is being generated (neither the ‘-c’ or ‘-link’ options are used). The ‘-cc-options’
option adds the specified options to the command that invokes the C compiler. The main
use of this option is to specify the include path, some symbols to define or undefine, the
optimization level, or any C compiler option that is different from the default. For example:

$ gsc -cc-options "-U___SINGLE_HOST -O2 -I../include" bench.scm

The ‘-ld-options-prelude’ and ‘-ld-options’ options are only meaningful when
a dynamically loadable object file is being generated (neither the ‘-c’ or ‘-link’ options
are used). The ‘-ld-options-prelude’ and ‘-ld-options’ options add the specified
options to the command that invokes the C linker (the options in ld-options-prelude are
passed to the C linker before the input file and the options in ld-options are passed after).
The main use of this option is to specify additional object files or libraries that need to be
linked, or any C linker option that is different from the default (such as the library search
path and flags to select between static and dynamic linking). For example:

$ gsc -ld-options "-L/usr/X11R6/lib -lX11 -dynamic" bench.scm

The ‘-warnings’ option displays on standard output all warnings that the compiler
may have.

The ‘-verbose’ option displays on standard output a trace of the compiler’s activity.
The ‘-report’ option displays on standard output a global variable usage report. Each

global variable used in the program is listed with 4 flags that indicate whether the global
variable is defined, referenced, mutated and called.

The ‘-expansion’ option displays on standard output the source code after expansion
and inlining by the front end.

The ‘-gvm’ option generates a listing of the intermediate code for the “Gambit Virtual
Machine” (GVM) of each Scheme file on ‘file.gvm’.

The ‘-debug’ option causes debugging information to be saved in the code
generated. It is equivalent to the combination of the ‘-debug-source’ option and the
‘-debug-environments’ option. Note that the debugging information will substantially
increase the size of the generated code (the size of the object file is typically 2 to 4 times
bigger).

The ‘-debug-source’ option causes source code debugging information to be saved in
the code generated. With this option run time error messages indicate the source code and
its location, the backtraces are more precise, and the pp procedure will display the source
code of compiled procedures.

Chapter 3: The Gambit Scheme compiler 12

The ‘-debug-environments’ option causes environment debugging information to
be saved in the code generated. With this option the debugger will have access to the
environments of the continuations. In other words the local variables defined in compiled
procedures (and not optimized away by the compiler) will be shown by the ‘,e’ REPL
command.

The ‘-track-scheme’ options causes the generation of ‘#line’ directives that refer
back to the Scheme source code. This allows the use of a C debugger or profiler to debug
Scheme code.

The ‘-o’ option sets the filename of the output file, or the directory in which the output
file(s) generated by the compiler are written.

If the ‘-link’ option appears on the command line, the Gambit linker is invoked to
generate the link file from the set of C files specified on the command line or produced by
the Gambit compiler. By default the link file is ‘last_.c’, where ‘last.c’ is the last file
in the set of C files. When the ‘-c’ option is specified, the Scheme source files are compiled
to C files. If neither the ‘-link’ or ‘-c’ options appear on the command line, the Scheme
source files are compiled to dynamically loadable object files (‘.on’ extension). When a
dynamically loadable object file is generated the ‘-keep-c’ option will prevent the deletion
of the intermediate ‘.c’ file that is generated. Note that in this case the intermediate ‘.c’
file will be generated in the same directory as the Scheme source file even if the ‘-o’ option
is used.

The ‘-flat’ option is only meaningful when a link file is being generated (i.e. the
‘-link’ option also appears on the command line). The ‘-flat’ option directs the Gambit
linker to generate a flat link file. By default, the linker generates an incremental link file
(see the next section for a description of the two types of link files).

The ‘-l’ option is only meaningful when an incremental link file is being generated (i.e.
the ‘-link’ option appears on the command line and the ‘-flat’ option is absent). The
‘-l’ option specifies the link file (without the ‘.c’ extension) of the base library to use for
the incremental link. By default the link file of the Gambit runtime library is used (i.e.
‘˜˜/lib/_gambc.c’).

The ‘-’ option starts a REPL interaction.
The ‘-e’ option evaluates the specified expressions in the interaction environment.

3.4 Link files

Gambit can be used to create programs and libraries of Scheme modules. This section
explains the steps required to do so and the role played by the link files.

In general, a program is composed of a set of Scheme modules and C modules. Some
of the modules are part of the Gambit runtime library and the other modules are supplied
by the user. When the program is started it must setup various global tables (including
the symbol table and the global variable table) and then sequentially execute the Scheme
modules (more or less as though they were being loaded one after another). The information
required for this is contained in one or more link files generated by the Gambit linker from
the C files produced by the Gambit compiler.

The order of execution of the Scheme modules corresponds to the order of the modules
on the command line which produced the link file. The order is usually important because

Chapter 3: The Gambit Scheme compiler 13

most modules define variables and procedures which are used by other modules (for this
reason the program’s main computation is normally started by the last module).

When a single link file is used to contain the linking information of all the Scheme
modules it is called a flat link file. Thus a program built with a flat link file contains in
its link file both information on the user modules and on the runtime library. This is fine
if the program is to be statically linked but is wasteful in a shared-library context because
the linking information of the runtime library can’t be shared and will be duplicated in all
programs (this linking information typically takes hundreds of kilobytes).

Flat link files are mainly useful to bundle multiple Scheme modules to make a runtime
library (such as the Gambit runtime library) or to make a single file that can be loaded
with the load procedure.

An incremental link file contains only the linking information that is not already con-
tained in a second link file (the “base” link file). Assuming that a flat link file was produced
when the runtime library was linked, a program can be built by linking the user modules
with the runtime library’s link file, producing an incremental link file. This allows the cre-
ation of a shared-library which contains the modules of the runtime library and its flat link
file. The program is dynamically linked with this shared-library and only contains the user
modules and the incremental link file. For small programs this approach greatly reduces the
size of the program because the incremental link file is small. A “hello world” program built
this way can be as small as 5 Kbytes. Note that it is perfectly fine to use an incremental
link file for statically linked programs (there is very little loss compared to a single flat link
file).

Incremental link files may be built from other incremental link files. This allows the
creation of shared-libraries which extend the functionality of the Gambit runtime library.

3.4.1 Building an executable program

The simplest way to create an executable program is to call up gsc to compile each Scheme
module into a C file and create an incremental link file. The C files and the link file must
then be compiled with a C compiler and linked (at the object file level) with the Gambit
runtime library and possibly other libraries (such as the math library and the dynamic
loading library).

Here is for example how a program with three modules (one in C and two in Scheme)
can be built. The content of the three source files (‘m1.c’, ‘m2.scm’ and ‘m3.scm’) is:

/* File: "m1.c" */
int power_of_2 (int x) { return 1<<x; }

; File: "m2.scm"
(c-declare "extern int power_of_2 ();")
(define pow2 (c-lambda (int) int "power_of_2"))
(define (twice x) (cons x x))

; File: "m3.scm"
(write (map twice (map pow2 ’(1 2 3 4)))) (newline)

The compilation of the two Scheme source files can be done with three invocations of
gsc:

$ gsc -c m2.scm # create m2.c (note: .scm is optional)
$ gsc -c m3.scm # create m3.c (note: .scm is optional)

Chapter 3: The Gambit Scheme compiler 14

$ gsc -link m2.c m3.c # create the incremental link file m3 .c

Alternatively, the three invocations of gsc can be replaced by a single invocation:
$ gsc -link m2 m3
m2:
m3:

At this point there will be 4 C files: ‘m1.c’, ‘m2.c’, ‘m3.c’, and ‘m3_.c’. To
produce an executable program these files must be compiled with a C compiler
and linked with the Gambit-C runtime library. The C compiler options needed
will depend on the C compiler and the operating system (in particular it may be
necessary to add the options ‘-I/usr/local/Gambit-C/current/include
-L/usr/local/Gambit-C/current/lib’ to access the ‘gambit.h’ header file and
the Gambit-C runtime library).

Here is an example under Mac OS X:
$ uname -srmp
Darwin 8.1.0 Power Macintosh powerpc
$ gcc m1.c m2.c m3.c m3_.c -lgambc
$./a.out
((2 . 2) (4 . 4) (8 . 8) (16 . 16))

Here is an example under Linux:
$ uname -srmp
Linux 2.6.8-1.521 i686 athlon
$ gcc m1.c m2.c m3.c m3_.c -lgambc -lm -ldl -lutil
$./a.out
((2 . 2) (4 . 4) (8 . 8) (16 . 16))

3.4.2 Building a loadable library

To bundle multiple modules into a single object file that can be dynamically loaded with
the load procedure, a flat link file is needed. The compiler’s ‘-o’ option must be used
to name the C file generated as follows. If the dynamically loadable object file is to be
named ‘myfile.on’ then the ‘-o’ option must set the name of the link file generated
to ‘myfile.on.c’ (note that the ‘.c’ extension could also be ‘.cc’, ‘.cpp’ or whatever
extension is appropriate for C/C++ source files). The three modules of the previous example
can be bundled by generating a link file in this way:

$ gsc -link -flat -o foo.o1.c m2 m3
m2:
m3:
*** WARNING -- "cons" is not defined,
*** referenced in: ("m2.c")
*** WARNING -- "map" is not defined,
*** referenced in: ("m3.c")
*** WARNING -- "newline" is not defined,
*** referenced in: ("m3.c")
*** WARNING -- "write" is not defined,
*** referenced in: ("m3.c")

The warnings indicate that there are no definitions (defines or set!s) of the variables
cons, map, newline and write in the set of modules being linked. Before ‘foo.o1’ is
loaded, these variables will have to be bound; either implicitly (by the runtime library) or
explicitly.

Chapter 3: The Gambit Scheme compiler 15

When compiling the C files and link file generated, the flag ‘-D___DYNAMIC’ must
be passed to the C compiler and the C compiler and linker must be told to generate a
dynamically loadable shared library.

Here is an example under Mac OS X:
$ uname -srmp
Darwin 8.1.0 Power Macintosh powerpc
$ gsc -link -flat -o foo.o1.c m2 m3 > /dev/null
m2:
m3:
$ gcc -bundle -D___DYNAMIC m1.c m2.c m3.c foo.o1.c -o foo.o1
$ gsi foo.o1
((2 . 2) (4 . 4) (8 . 8) (16 . 16))

Here is an example under Linux:
$ uname -srmp
Linux 2.6.8-1.521 i686 athlon
$ gsc -link -flat -o foo.o1.c m2 m3 > /dev/null
m2:
m3:
$ gcc -shared -D___DYNAMIC m1.c m2.c m3.c foo.o1.c -o foo.o1
$ gsi foo.o1
((2 . 2) (4 . 4) (8 . 8) (16 . 16))

Here is a more complex example, under Solaris, which shows how to build a loadable
library ‘mymod.o1’ composed of the files ‘m4.scm’, ‘m5.scm’ and ‘x.c’ that links to
system shared libraries (for X-windows):

$ uname -srmp
SunOS ungava 5.6 Generic_105181-05 sun4m sparc SUNW,SPARCstation-20
$ gsc -link -flat -o mymod.o1.c m4 m5
m4:
m5:
*** WARNING -- "*" is not defined,
*** referenced in: ("m4.c")
*** WARNING -- "+" is not defined,
*** referenced in: ("m5.c")
*** WARNING -- "display" is not defined,
*** referenced in: ("m5.c" "m4.c")
*** WARNING -- "newline" is not defined,
*** referenced in: ("m5.c" "m4.c")
*** WARNING -- "write" is not defined,
*** referenced in: ("m5.c")
$ gcc -fPIC -c -D___DYNAMIC mymod.o1.c m4.c m5.c x.c
$ /usr/ccs/bin/ld -G -o mymod.o1 mymod.o1.o m4.o m5.o x.o -lX11 -lsocket
$ gsi mymod.o1
hello from m4
hello from m5
(f1 10) = 22
$ cat m4.scm
(define (f1 x) (* 2 (f2 x)))
(display "hello from m4")
(newline)

(c-declare #<<c-declare-end
#include "x.h"
c-declare-end
)
(define x-initialize (c-lambda (char-string) bool "x_initialize"))

Chapter 3: The Gambit Scheme compiler 16

(define x-display-name (c-lambda () char-string "x_display_name"))
(define x-bell (c-lambda (int) void "x_bell"))
$ cat m5.scm
(define (f2 x) (+ x 1))
(display "hello from m5")
(newline)

(display "(f1 10) = ")
(write (f1 10))
(newline)

(x-initialize (x-display-name))
(x-bell 50) ; sound the bell at 50%
$ cat x.c
#include <X11/Xlib.h>

static Display *display;

int x_initialize (char *display_name)
{

display = XOpenDisplay (display_name);
return display != NULL;

}

char *x_display_name (void)
{

return XDisplayName (NULL);
}

void x_bell (int volume)
{

XBell (display, volume);
XFlush (display);

}
$ cat x.h
int x_initialize (char *display_name);
char *x_display_name (void);
void x_bell (int);

3.4.3 Building a shared-library

A shared-library can be built using an incremental link file or a flat link file. An incre-
mental link file is normally used when the Gambit runtime library (or some other library)
is to be extended with new procedures. A flat link file is mainly useful when building
a “primal” runtime library, which is a library (such as the Gambit runtime library) that
does not extend another library. When compiling the C files and link file generated, the
flags ‘-D___LIBRARY’ and ‘-D___SHARED’ must be passed to the C compiler. The flag
‘-D___PRIMAL’ must also be passed to the C compiler when a primal library is being built.

A shared-library ‘mylib.so’ containing the two first modules of the previous example
can be built this way:

$ uname -srmp
Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
$ gsc -link -o mylib.c m2
$ gcc -shared -fPIC -D___LIBRARY -D___SHARED m1.c m2.c mylib.c -o mylib.so

Chapter 3: The Gambit Scheme compiler 17

Note that this shared-library is built using an incremental link file (it extends the Gambit
runtime library with the procedures pow2 and twice). This shared-library can in turn be
used to build an executable program from the third module of the previous example:

$ gsc -link -l mylib m3
$ gcc m3.c m3_.c mylib.so -lgambc
$ LD_LIBRARY_PATH=.:/usr/local/lib ./a.out
((2 . 2) (4 . 4) (8 . 8) (16 . 16))

3.4.4 Other compilation options

The performance of the code can be increased by passing the ‘-D___SINGLE_HOST’ flag
to the C compiler. This will merge all the procedures of a module into a single C procedure,
which reduces the cost of intra-module procedure calls. In addition the ‘-O’ option can be
passed to the C compiler. For large modules, it will not be practical to specify both ‘-O’
and ‘-D___SINGLE_HOST’ for typical C compilers because the compile time will be high
and the C compiler might even fail to compile the program for lack of memory. It has been
observed that lower levels of optimization (e.g. ‘-O1’) often give faster compilation and
also generate faster code. It is a good idea to experiment.

Normally C compilers will not automatically search ‘/usr/local/Gambit-C/current/include’
for header files so the flag ‘-I/usr/local/Gambit-C/current/include’ should
be passed to the C compiler. Similarly, C compilers/linkers will not automati-
cally search ‘/usr/local/Gambit-C/current/lib’ for libraries so the flag
‘-L/usr/local/Gambit-C/current/lib’ should be passed to the C compiler/linker.
Alternatives are given in Section 1.1 [Accessing the system files], page 1.

A variety of flags are needed by some C compilers when compiling a shared-library or
a dynamically loadable library. Some of these flags are: ‘-shared’, ‘-call_shared’,
‘-rdynamic’, ‘-fpic’, ‘-fPIC’, ‘-Kpic’, ‘-KPIC’, ‘-pic’, ‘+z’, ‘-G’. Check your com-
piler’s documentation to see which flag you need.

3.5 Procedures specific to compiler

The Gambit Scheme compiler features the following procedures that are not available in
the Gambit Scheme interpreter.

[procedure](compile-file-to-c file [options: options] [output:
output])

The file argument must be a string naming an existing file containing Scheme source
code. The extension can be omitted from file when the Scheme file has a ‘.scm’ or
‘.six’ extension. This procedure compiles the source file into a file containing C
code. By default, this file is named after file with the extension replaced with ‘.c’.
The name of the generated file can be specified with the output argument. If output
is a string naming a directory then the C file is created in that directory. Otherwise
the name of the C file is output.

Compilation options are specified through the options argument which must be a
list of symbols. Any combination of the following options can be used: ‘verbose’,
‘report’, ‘expansion’, ‘gvm’, and ‘debug’.

Chapter 3: The Gambit Scheme compiler 18

[procedure](compile-file file [options: options] [output: output]
[cc-options: cc-options] [ld-options-prelude:
ld-options-prelude] [ld-options: ld-options])

The file, options, and output arguments have the same meaning as for the compile-
file-to-c procedure. The cc-options argument is a string containing the options
to pass to the C compiler and the ld-options-prelude and ld-options arguments are
strings containing the options to pass to the C linker (the options in ld-options-prelude
are passed to the C linker before the input file and the options in ld-options are passed
after).
The compile-file procedure compiles the source file into an object file by first
generating a C file and then compiling it with the C compiler. The C file is always
generated in the same directory as file.
By default the object file is named after file with the extension replaced with ‘.on’,
where n is a positive integer that acts as a version number. The next available version
number is generated automatically by compile-file. The name of the generated
object file can be specified with the output argument. If output is a string naming a
directory then the object file is created in that directory. Otherwise the name of the
object file is output.
Object files can be loaded dynamically by using the load procedure. The ‘.on’
extension can be specified (to select a particular version) or omitted (to load the
highest numbered version). When older versions are no longer needed, all versions
must be deleted and the compilation must be repeated (this is necessary because the
file name, including the extension, is used to name some of the exported symbols of
the object file).
Note that this procedure is only available on host operating systems that support
dynamic loading.

[procedure](link-incremental module-list [output: output] [base:
base])

The first argument must be a non empty list of strings naming Scheme modules to link
(extensions must be omitted). An incremental link file is generated for the modules
specified in module-list. By default the link file generated is named ‘last_.c’, where
last is the name of the last module. The name of the generated link file can be specified
with the output argument. If output is a string naming a directory then the link file
is created in that directory. Otherwise the name of the link file is output.
The base link file is specified by the base parameter, which must be a string. By
default the base link file is the Gambit runtime library link file ‘˜˜/lib/_gambc.c’.
However, when base is supplied the base link file is named ‘base.c’.
The following example shows how to build the executable program ‘hello’ which
contains the two Scheme modules ‘h.scm’ and ‘w.six’.

$ uname -srmp
Darwin 8.1.0 Power Macintosh powerpc
$ cat h.scm
(display "hello") (newline)
$ cat w.six
display("world"); newline();
$ gsc

Chapter 3: The Gambit Scheme compiler 19

Gambit v4.2.2

> (compile-file-to-c "h")
#t
> (compile-file-to-c "w")
#t
> (link-incremental ’("h" "w") "hello.c")
> ,q
$ gcc h.c w.c hello.c -lgambc -o hello
$./hello
hello
world

[procedure](link-flat module-list [output: output])
The first argument must be a non empty list of strings naming Scheme modules to
link. The first string must be the name of a Scheme module or the name of a link file
and the remaining strings must name Scheme modules (in all cases extensions must
be omitted). A flat link file is generated for the modules specified in module-list. By
default the link file generated is named ‘last_.c’, where last is the name of the
last module. The name of the generated link file can be specified with the output
argument. If output is a string naming a directory then the link file is created in that
directory. Otherwise the name of the link file is output. If a dynamically loadable
object file is produced from the link file ‘output’, then the name of the dynamically
loadable object file must be ‘output’ stripped of its file extension.
The following example shows how to build the dynamically loadable object file
‘lib.o1’ which contains the two Scheme modules ‘m6.scm’ and ‘m7.scm’.

$ uname -srmp
Darwin 8.1.0 Power Macintosh powerpc
$ cat m6.scm
(define (f x) (g (* x x)))
$ cat m7.scm
(define (g y) (+ n y))
$ gsc
Gambit v4.2.2

> (compile-file-to-c "m6")
#t
> (compile-file-to-c "m7")
#t
> (link-flat ’("m6" "m7") "lib.o1.c")
*** WARNING -- "*" is not defined,
*** referenced in: ("m6.c")
*** WARNING -- "+" is not defined,
*** referenced in: ("m7.c")
*** WARNING -- "n" is not defined,
*** referenced in: ("m7.c")
> ,q
$ gcc -bundle -D___DYNAMIC m6.c m7.c lib.o1.c -o lib.o1
$ gsc
Gambit v4.2.2

> (load "lib")
*** WARNING -- Variable "n" used in module "m7" is undefined
"/Users/feeley/gambit/doc/lib.o1"
> (define n 10)

Chapter 3: The Gambit Scheme compiler 20

> (f 5)
35
> ,q

The warnings indicate that there are no definitions (defines or set!s) of the vari-
ables *, + and n in the modules contained in the library. Before the library is used,
these variables will have to be bound; either implicitly (by the runtime library) or
explicitly.

Chapter 4: Runtime options for all programs 21

4 Runtime options for all programs

Both gsi and gsc as well as executable programs compiled and linked using gsc take a
‘-:’ option which supplies parameters to the runtime system. This option must appear first
on the command line. The colon is followed by a comma separated list of options with no
intervening spaces. The available options are:

mHEAPSIZE Set minimum heap size in kilobytes.

hHEAPSIZE Set maximum heap size in kilobytes.

lLIVEPERCENT Set heap occupation after garbage collection.

s Select standard Scheme mode.

S Select Gambit Scheme mode.

d[OPT...] Set debugging options.

=DIRECTORY Override the Gambit installation directory.

+ARGUMENT Add ARGUMENT to the command line before other arguments.

f[OPT...] Set file options.

t[OPT...] Set terminal options.

-[OPT...] Set standard input and output options.

The ‘m’ option specifies the minimum size of the heap. The ‘m’ is immediately followed
by an integer indicating the number of kilobytes of memory. The heap will not shrink lower
than this size. By default, the minimum size is 0.

The ‘h’ option specifies the maximum size of the heap. The ‘h’ is immediately followed
by an integer indicating the number of kilobytes of memory. The heap will not grow larger
than this size. By default, there is no limit (i.e. the heap will grow until the virtual memory
is exhausted).

The ‘l’ option specifies the percentage of the heap that will be occupied with live objects
after the heap is resized at the end of a garbage collection. The ‘l’ is immediately followed
by an integer between 1 and 100 inclusively indicating the desired percentage. The garbage
collector resizes the heap to reach this percentage occupation. By default, the percentage
is 50.

The ‘s’ option selects standard Scheme mode. In this mode the reader is case-insensitive
and keywords are not recognized. The ‘S’ option selects Gambit Scheme mode (the reader is
case-sensitive and recognizes keywords which end with a colon). By default Gambit Scheme
mode is used.

The ‘d’ option sets various debugging options. The letter ‘d’ is followed by a sequence
of letters indicating suboptions.

p Uncaught exceptions will be treated as “errors” in the primordial thread
only.

a Uncaught exceptions will be treated as “errors” in all threads.

r When an “error” occurs a new REPL will be started.

Chapter 4: Runtime options for all programs 22

s When an “error” occurs a new REPL will be started. Moreover the
program starts in single-stepping mode.

q When an “error” occurs the program will terminate with a nonzero exit
status.

i The REPL interaction channel will be the IDE REPL window (if the
IDE is available).

c The REPL interaction channel will be the console.

- The REPL interaction channel will be standard input and standard
output.

LEVEL The verbosity level is set to LEVEL (a digit from 0 to 9). At level 0 the
runtime system will not display error messages and warnings.

The default debugging options are equivalent to -:dpqi1 (i.e. an uncaught exception
in the primordial thread terminates the program after displaying an error message). When
the letter ‘d’ is not followed by suboptions, it is equivalent to -:dpri1 (i.e. a new REPL
is started only when an uncaught exception occurs in the primordial thread).

The ‘=’ option overrides the setting of the Gambit installation directory.

The ‘+’ option adds the text that follows to the command line before other arguments.

The ‘f’, ‘t’ and ‘-’ options specify the default settings of the ports created for files,
terminals and standard input and output respectively. The default character encoding,
end-of-line encoding and buffering can be set. Moreover, for terminals the line-editing
feature can be enabled or disabled. The ‘f’, ‘t’ and ‘-’ must be followed by a sequence of
these options:

A ASCII character encoding.

1 ISO-8859-1 character encoding.

2 UCS-2 character encoding.

4 UCS-4 character encoding.

6 UTF-16 character encoding.

8 UTF-8 character encoding.

c End-of-line is encoded as CR (carriage-return).

l End-of-line is encoded as LF (linefeed)

cl End-of-line is encoded as CR-LF.

u Unbuffered I/O.

n Line buffered I/O (‘n’ for “newline”).

f Fully buffered I/O.

e Enable line-editing (applies to terminals only).

E Disable line-editing (applies to terminals only).

Chapter 4: Runtime options for all programs 23

When the environment variable ‘GAMBCOPT’ is defined, the runtime system will take its
options from that environment variable. A ‘-:’ option can be used to override some or all
of the runtime system options. For example:

$ GAMBCOPT=d0,=˜/my-gambit2
$ export GAMBCOPT
$ gsi -e ’(pretty-print (path-expand "˜˜")) (/ 1 0)’
"/Users/feeley/my-gambit2/"
$ echo $?
70
$ gsi -:d1 -e ’(pretty-print (path-expand "˜˜")) (/ 1 0)’
"/Users/feeley/my-gambit2/"
*** ERROR IN (string)@1.3 -- Divide by zero
(/ 1 0)

Chapter 5: Debugging 24

5 Debugging

5.1 Debugging model

The evaluation of an expression may stop before it is completed for the following reasons:
a. An evaluation error has occured, such as attempting to divide by zero.
b. The user has interrupted the evaluation (usually by typing 〈̂ C〉).
c. A breakpoint has been reached or (step) was evaluated.
d. Single-stepping mode is enabled.

When an evaluation stops, a message is displayed indicating the reason and location
where the evaluation was stopped. The location information includes, if known, the name
of the procedure where the evaluation was stopped and the source code location in the
format ‘stream@line.column’, where stream is either a string naming a file or a symbol
within parentheses, such as ‘(console)’.

A nested REPL is then initiated in the context of the point of execution where the
evaluation was stopped. The nested REPL’s continuation and evaluation environment are
the same as the point where the evaluation was stopped. For example when evaluating the
expression ‘(let ((y (- 1 1))) (* (/ x y) 2))’, a “divide by zero” error is reported
and the nested REPL’s continuation is the one that takes the result and multiplies it
by two. The REPL’s lexical environment includes the lexical variable ‘y’. This allows
the inspection of the evaluation context (i.e. the lexical and dynamic environments and
continuation), which is particularly useful to determine the exact location and cause of an
error.

The prompt of nested REPLs includes the nesting level; ‘1>’ is the prompt at the first
nesting level, ‘2>’ at the second nesting level, and so on. An end of file (usually 〈̂ D〉) will
cause the current REPL to be terminated and the enclosing REPL (one nesting level less)
to be resumed.

At any time the user can examine the frames in the REPL’s continuation, which is
useful to determine which chain of procedure calls lead to an error. A backtrace that lists
the chain of active continuation frames in the REPL’s continuation can be obtained with
the ‘,b’ command. The frames are numbered from 0, that is frame 0 is the most recent
frame of the continuation where execution stopped, frame 1 is the parent frame of frame
0, and so on. It is also possible to move the REPL to a specific parent continuation (i.e.
a specific frame of the continuation where execution stopped) with the ‘,+’, ‘,-’ and ‘,n’
commands (where n is the frame number). When the frame number of the frame being
examined is not zero, it is shown in the prompt after the nesting level, for example ‘1\5>’
is the prompt when the REPL nesting level is 1 and the frame number is 5.

Expressions entered at a nested REPL are evaluated in the environment (both lexical
and dynamic) of the continuation frame currently being examined if that frame was created
by interpreted Scheme code. If the frame was created by compiled Scheme code then
expressions get evaluated in the global interaction environment. This feature may be used
in interpreted code to fetch the value of a variable in the current frame or to change its value
with set!. Note that some special forms (define in particular) can only be evaluated in
the global interaction environment.

Chapter 5: Debugging 25

5.2 Debugging commands

In addition to expressions, the REPL accepts the following special “comma” commands:

,? Give a summary of the REPL commands.

,q Terminate the process with exit status 0. This is equivalent to calling
(exit 0).

,qt Terminate the current thread (note that terminating the primordial
thread terminates the process).

,t Return to the outermost REPL, also known as the “top-level REPL”.

,d Leave the current REPL and resume the enclosing REPL. This com-
mand does nothing in the top-level REPL.

,(c expr) Leave the current REPL and continue the computation that initiated
the REPL with a specific value. This command can only be used to
continue a computation that signaled an error. The expression expr is
evaluated in the current context and the resulting value is returned as
the value of the expression which signaled the error. For example, if the
evaluation of the expression ‘(* (/ x y) 2)’ signaled an error because
‘y’ is zero, then in the nested REPL a ‘,(c (+ 4 y))’ will resume the
computation of ‘(* (/ x y) 2)’ as though the value of ‘(/ x y)’ was
4. This command must be used carefully because the context where
the error occured may rely on the result being of a particular type. For
instance a ‘,(c #f)’ in the previous example will cause ‘*’ to signal
a type error (this problem is the most troublesome when debugging
Scheme code that was compiled with type checking turned off so be
careful).

,c Leave the current REPL and continue the computation that initiated
the REPL. This command can only be used to continue a computation
that was stopped due to a user interrupt, breakpoint or a single-step.

,s Leave the current REPL and continue the computation that initiated
the REPL in single-stepping mode. The computation will perform an
evaluation step (as defined by step-level-set!) and then stop, caus-
ing a nested REPL to be entered. Just before the evaluation step is
performed, a line is displayed (in the same format as trace) which
indicates the expression that is being evaluated. If the evaluation step
produces a result, the result is also displayed on another line. A nested
REPL is then entered after displaying a message which describes the
next step of the computation. This command can only be used to con-
tinue a computation that was stopped due to a user interrupt, break-
point or a single-step.

,l This command is similar to ‘,s’ except that it “leaps” over procedure
calls, that is procedure calls are treated like a single step. Single-
stepping mode will resume when the procedure call returns, or if and
when the execution of the called procedure encounters a breakpoint.

Chapter 5: Debugging 26

,n Move to frame number n of the continuation. After changing the cur-
rent frame, a one-line summary of the frame is displayed as if the ‘,y’
command was entered.

,+ Move to the next frame in the chain of continuation frames (i.e. towards
older continuation frames). After changing the current frame, a one-line
summary of the frame is displayed as if the ‘,y’ command was entered.

,- Move to the previous frame in the chain of continuation frames (i.e.
towards more recently created continuation frames). After changing
the current frame, a one-line summary of the frame is displayed as if
the ‘,y’ command was entered.

,y Display a one-line summary of the current frame. The information is
displayed in four fields. The first field is the frame number. The second
field is the procedure that created the frame or ‘(interaction)’ if the
frame was created by an expression entered at the REPL. The remaining
fields describe the subproblem associated with the frame, that is the
expression whose value is being computed. The third field is the location
of the subproblem’s source code and the fourth field is a reproduction of
the source code, possibly truncated to fit on the line. The last two fields
may be missing if that information is not available. In particular, the
third field is missing when the frame was created by a user call to the
‘eval’ procedure, and the last two fields are missing when the frame
was created by a compiled procedure not compiled with the ‘-debug’
or ‘-debug-source’ options.

,b Display a backtrace summarizing each frame in the chain of continua-
tion frames starting with the current frame. For each frame, the same
information as for the ‘,y’ command is displayed (except that location
information is displayed in the format ‘stream@line:column’). If
there are more that 15 frames in the chain of continuation frames, some
of the middle frames will be omitted.

,i Pretty print the procedure that created the current frame or
‘(interaction)’ if the frame was created by an expression entered
at the REPL. Compiled procedures will only be pretty printed when
they are compiled with the ‘-debug’ or ‘-debug-source’ options.

,e Display the environment which is accessible from the current frame. The
lexical environment is displayed, followed by the dynamic environment
if the parameter object repl-display-dynamic-environment? is
not false. Global lexical variables are not displayed. Moreover the frame
must have been created by interpreted code or code compiled with the
‘-debug’ or ‘-debug-environments’ options. Due to space safety
considerations and compiler optimizations, some of the lexical variable
bindings may be missing. Lexical variable bindings are displayed us-
ing the format ‘variable = expression’ and dynamically-bound pa-
rameter bindings are displayed using the format ‘(parameter) = ex-
pression’. Note that expression can be a self-evaluating expression

Chapter 5: Debugging 27

(number, string, boolean, character, ...), a quoted expression, a lambda
expression or a global variable (the last two cases, which are only used
when the value of the variable or parameter is a procedure, simplifies the
debugging of higher-order procedures). A parameter can be a quoted
expression or a global variable. Lexical bindings are displayed in in-
verse binding order (most deeply nested first) and shadowed variables
are included in the list.

,(e expr) Display the environment of expr’s value, X, which is obtained by evalu-
ating expr in the current frame. X must be a continuation, a procedure,
or a non-negative integer. When X is a continuation, the environment
at that point in the code is displayed. When X is a procedure, the
lexical environment where X was created is combined with the current
continuation and this combined environment is displayed. When X is
an integer, the environment at frame number X of the continuation is
displayed.

,(v expr) Start a new REPL visiting expr’s value, X, which is obtained by evalu-
ating expr in the current frame. X must be a continuation, a procedure,
or a non-negative integer. When X is a continuation, the new REPL’s
continuation is X and evaluations are done in the environment at that
point in the code. When X is a procedure, the lexical environment where
X was created is combined with the current continuation and evalua-
tions are done in this combined environment. When X is an integer,
the REPL is started in frame number X of the continuation.

5.3 Debugging example

Here is a sample interaction with gsi:
$ gsi
Gambit v4.2.2

> (define (invsqr x) (/ 1 (expt x 2)))
> (define (mymap fn lst)

(define (mm in)
(if (null? in)

’()
(cons (fn (car in)) (mm (cdr in)))))

(mm lst))
> (mymap invsqr ’(5 2 hello 9 1))
*** ERROR IN invsqr, (console)@1.25 -- (Argument 1) NUMBER expected
(expt ’hello 2)
1> ,i
#<procedure #2 invsqr> =
(lambda (x) (/ 1 (expt x 2)))
1> ,e
x = ’hello
1> ,b
0 invsqr (console)@1:25 (expt x 2)
1 #<procedure #4> (console)@6:17 (fn (car in))
2 #<procedure #4> (console)@6:31 (mm (cdr in))
3 #<procedure #4> (console)@6:31 (mm (cdr in))
4 (interaction) (console)@8:1 (mymap invsqr ’(5 2 hel...

Chapter 5: Debugging 28

1> ,+
1 #<procedure #4> (console)@6.17 (fn (car in))
1\1> (pp #4)
(lambda (in) (if (null? in) ’() (cons (fn (car in)) (mm (cdr in)))))
1\1> ,e
in = ’(hello 9 1)
mm = (lambda (in) (if (null? in) ’() (cons (fn (car in)) (mm (cdr in)))))
fn = invsqr
lst = ’(5 2 hello 9 1)
1\1> ,(e mm)
mm = (lambda (in) (if (null? in) ’() (cons (fn (car in)) (mm (cdr in)))))
fn = invsqr
lst = ’(5 2 hello 9 1)
1\1> fn
#<procedure #2 invsqr>
1\1> (pp fn)
(lambda (x) (/ 1 (expt x 2)))
1\1> ,+
2 #<procedure #4> (console)@6.31 (mm (cdr in))
1\2> ,e
in = ’(2 hello 9 1)
mm = (lambda (in) (if (null? in) ’() (cons (fn (car in)) (mm (cdr in)))))
fn = invsqr
lst = ’(5 2 hello 9 1)
1\2> ,(c (list 3 4 5))
(1/25 1/4 3 4 5)
> ,q

5.4 Procedures related to debugging

[procedure](repl-result-history-ref i)
[procedure](repl-result-history-max-length-set! n)

The REPL keeps a history of the last few results printed by the REPL. The call
(repl-result-history-ref i) returns the ith previous result (the last for i=0,
the next to last for i=1, etc). By default the REPL result history remembers up to
3 results. The maximal length of the history can be set to n between 0 and 10 by a
call to (repl-result-history-max-length-set! n).
For convenience the reader defines an abbreviation for calling repl-result-
history-ref. Tokens formed by a sequence of one or more hash signs, such as ‘#’,
‘##’, etc, are expanded by the reader into the list (repl-result-history-ref
i), where i is the number of hash signs minus 1. In other words, ‘#’ will return the
last result printed by the REPL, ‘##’ will return the next to last, etc.
For example:

> (map (lambda (x) (* x x)) ’(1 2 3))
(1 4 9)
> (reverse #)
(9 4 1)
> (append # ##)
(9 4 1 1 4 9)
> 1
1
> 1
1
> (+ # ##)

Chapter 5: Debugging 29

2
> (+ # ##)
3
> (+ # ##)
5
> ####
*** ERROR IN (console)@9.1 -- (Argument 1) Out of range
(repl-result-history-ref 3)
1>

[procedure](trace proc. . .)
[procedure](untrace proc. . .)

The trace procedure starts tracing calls to the specified procedures. When a traced
procedure is called, a line containing the procedure and its arguments is displayed
(using the procedure call expression syntax). The line is indented with a sequence of
vertical bars which indicate the nesting depth of the procedure’s continuation. After
the vertical bars is a greater-than sign which indicates that the evaluation of the call
is starting.
When a traced procedure returns a result, it is displayed with the same indentation
as the call but without the greater-than sign. This makes it easy to match calls and
results (the result of a given call is the value at the same indentation as the greater-
than sign). If a traced procedure P1 performs a tail call to a traced procedure P2,
then P2 will use the same indentation as P1. This makes it easy to spot tail calls.
The special handling for tail calls is needed to preserve the space complexity of the
program (i.e. tail calls are implemented as required by Scheme even when they involve
traced procedures).
The untrace procedure stops tracing calls to the specified procedures. When no
arguments is passed to the trace procedure, the list of procedures currently being
traced is returned. The void object is returned by the trace procedure when it
is passed one or more arguments. When no argument is passed to the untrace
procedure stops all tracing and returns the void object. A compiled procedure may
be traced but only if it is bound to a global variable.
For example:

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (trace fact)
> (fact 5)
| > (fact 5)
| | > (fact 4)
| | | > (fact 3)
| | | | > (fact 2)
| | | | | > (fact 1)
| | | | | 1
| | | | 2
| | | 6
| | 24
| 120
120
> (trace -)
*** WARNING -- Rebinding global variable "-" to an interpreted procedure
> (define (fact-iter n r) (if (< n 2) r (fact-iter (- n 1) (* n r))))
> (trace fact-iter)
> (fact-iter 5 1)

Chapter 5: Debugging 30

| > (fact-iter 5 1)
| | > (- 5 1)
| | 4
| > (fact-iter 4 5)
| | > (- 4 1)
| | 3
| > (fact-iter 3 20)
| | > (- 3 1)
| | 2
| > (fact-iter 2 60)
| | > (- 2 1)
| | 1
| > (fact-iter 1 120)
| 120
120
> (trace)
(#<procedure #2 fact-iter> #<procedure #3 -> #<procedure #4 fact>)
> (untrace)
> (fact 5)
120

[procedure](step)
[procedure](step-level-set! level)

The step procedure enables single-stepping mode. After the call to step the com-
putation will stop just before the interpreter executes the next evaluation step (as
defined by step-level-set!). A nested REPL is then started. Note that because
single-stepping is stopped by the REPL whenever the prompt is displayed it is point-
less to enter (step) by itself. On the other hand entering (begin (step) expr)
will evaluate expr in single-stepping mode.
The procedure step-level-set! sets the stepping level which determines the gran-
ularity of the evaluation steps when single-stepping is enabled. The stepping level
level must be an exact integer in the range 0 to 7. At a level of 0, the interpreter
ignores single-stepping mode. At higher levels the interpreter stops the computation
just before it performs the following operations, depending on the stepping level:
1. procedure call
2. delay special form and operations at lower levels
3. lambda special form and operations at lower levels
4. define special form and operations at lower levels
5. set! special form and operations at lower levels
6. variable reference and operations at lower levels
7. constant reference and operations at lower levels

The default stepping level is 7.
For example:

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (step-level-set! 1)
> (begin (step) (fact 5))
*** STOPPED IN (console)@3.15
1> ,s
| > (fact 5)
*** STOPPED IN fact, (console)@1.22

Chapter 5: Debugging 31

1> ,s
| | > (< n 2)
| | #f
*** STOPPED IN fact, (console)@1.43
1> ,s
| | > (- n 1)
| | 4
*** STOPPED IN fact, (console)@1.37
1> ,s
| | > (fact (- n 1))
*** STOPPED IN fact, (console)@1.22
1> ,s
| | | > (< n 2)
| | | #f
*** STOPPED IN fact, (console)@1.43
1> ,s
| | | > (- n 1)
| | | 3
*** STOPPED IN fact, (console)@1.37
1> ,l
| | | > (fact (- n 1))
*** STOPPED IN fact, (console)@1.22
1> ,l
| | > (* n (fact (- n 1)))
| | 24
*** STOPPED IN fact, (console)@1.32
1> ,l
| > (* n (fact (- n 1)))
| 120
120

[procedure](break proc. . .)
[procedure](unbreak proc. . .)

The break procedure places a breakpoint on each of the specified procedures. When
a procedure is called that has a breakpoint, the interpreter will enable single-stepping
mode (as if step had been called). This typically causes the computation to stop
soon inside the procedure if the stepping level is high enough.
The unbreak procedure removes the breakpoints on the specified procedures. With
no argument, break returns the list of procedures currently containing breakpoints.
The void object is returned by break if it is passed one or more arguments. With
no argument unbreak removes all the breakpoints and returns the void object. A
breakpoint can be placed on a compiled procedure but only if it is bound to a global
variable.
For example:

> (define (double x) (+ x x))
> (define (triple y) (- (double (double y)) y))
> (define (f z) (* (triple z) 10))
> (break double)
> (break -)
*** WARNING -- Rebinding global variable "-" to an interpreted procedure
> (f 5)
*** STOPPED IN double, (console)@1.21
1> ,b
0 double (console)@1:21 +
1 triple (console)@2:31 (double y)

Chapter 5: Debugging 32

2 f (console)@3:18 (triple z)
3 (interaction) (console)@6:1 (f 5)
1> ,e
x = 5
1> ,c
*** STOPPED IN double, (console)@1.21
1> ,c
*** STOPPED IN f, (console)@3.29
1> ,c
150
> (break)
(#<procedure #3 -> #<procedure #4 double>)
> (unbreak)
> (f 5)
150

[procedure](generate-proper-tail-calls [new-value])
The parameter object generate-proper-tail-calls is bound to a boolean value
controlling how the interpreter handles tail calls. When it is bound to #f the inter-
preter will treat tail calls like nontail calls, that is a new continuation will be created
for the call. This setting is useful for debugging, because when a primitive signals an
error the location information will point to the call site of the primitive even if this
primitive was called with a tail call. The initial value of this parameter object is #t,
which means that a tail call will reuse the continuation of the calling function.

This parameter object only affects code that is subsequently processed by load or
eval, or entered at the REPL.

For example:

> (generate-proper-tail-calls)
#t
> (let loop ((i 1)) (if (< i 10) (loop (* i 2)) oops))
*** ERROR IN #<procedure #2>, (console)@2.47 -- Unbound variable: oops
1> ,b
0 #<procedure #2> (console)@2:47 oops
1 (interaction) (console)@2:1 ((letrec ((loop (lambda...
1> ,t
> (generate-proper-tail-calls #f)
> (let loop ((i 1)) (if (< i 10) (loop (* i 2)) oops))
*** ERROR IN #<procedure #3>, (console)@6.47 -- Unbound variable: oops
1> ,b
0 #<procedure #3> (console)@6:47 oops
1 #<procedure #3> (console)@6:32 (loop (* i 2))
2 #<procedure #3> (console)@6:32 (loop (* i 2))
3 #<procedure #3> (console)@6:32 (loop (* i 2))
4 #<procedure #3> (console)@6:32 (loop (* i 2))
5 (interaction) (console)@6:1 ((letrec ((loop (lambda...

[procedure](display-environment-set! display?)
This procedure sets a flag that controls the automatic display of the environment by
the REPL. If display? is true, the environment is displayed by the REPL before the
prompt. The default setting is not to display the environment.

Chapter 5: Debugging 33

[procedure](pretty-print obj [port])
This procedure pretty-prints obj on the port port. If it is not specified, port defaults
to the current output-port.

For example:
> (pretty-print

(let* ((x ’(1 2 3 4)) (y (list x x x))) (list y y y)))
(((1 2 3 4) (1 2 3 4) (1 2 3 4))
((1 2 3 4) (1 2 3 4) (1 2 3 4))
((1 2 3 4) (1 2 3 4) (1 2 3 4)))

[procedure](pp obj [port])
This procedure pretty-prints obj on the port port. When obj is a procedure created
by the interpreter or a procedure created by code compiled with the ‘-debug’ or
‘-debug-source’ options, the procedure’s source code is displayed. If it is not
specified, port defaults to the interaction channel (i.e. the output will appear at the
REPL).

For example:
> (define (f g) (+ (time (g 100)) (time (g 1000))))
> (pp f)
(lambda (g)

(+ (##time (lambda () (g 100)) ’(g 100))
(##time (lambda () (g 1000)) ’(g 1000))))

[procedure](gc-report-set! report?)
This procedure controls the generation of reports during garbage collections. If the
argument is true, a brief report of memory usage is generated after every garbage
collection. It contains: the time taken for this garbage collection, the amount of
memory allocated in megabytes since the program was started, the size of the heap
in megabytes, the heap memory in megabytes occupied by live data, the proportion
of the heap occupied by live data, and the number of bytes occupied by movable and
nonmovable objects.

5.5 Console line-editing

The console implements a simple Scheme-friendly line-editing user-interface that is enabled
by default. It offers parentheses balancing, a history of previous commands, and several
emacs-compatible keyboard commands. The user’s input is displayed in a bold font and
the output produced by the system is in a plain font. The history of previous commands is
saved in the file ‘˜/.gambc_history’. It is restored when a REPL is started.

Here are the keyboard commands available (where the ‘M-’ prefix means the escape key
is typed and the ‘C-’ prefix means the control key is pressed):

C-d Generate an end-of-file when the line is empty, otherwise delete charac-
ter at cursor.

C-a Move cursor to beginning of line.

C-e Move cursor to end of line.

C-b or left-arrow Move cursor left one character.

Chapter 5: Debugging 34

M-C-b or M-left-arrow
Move cursor left one S-expression.

C-f or right-arrow
Move cursor right one character.

M-C-f or M-right-arrow
Move cursor right one S-expression.

C-p or up-arrow Move to previous line in history.

C-n or down-arrow
Move to next line in history.

C-t Transpose character at cursor with previous character.

M-C-t Transpose S-expression at cursor with previous S-expression.

C-l Clear console and redraw line being edited.

C-nul Set the mark to the cursor.

C-w Delete the text between the cursor and the mark and keep a copy of
this text on the clipboard.

C-k Delete the text from the cursor to the end of the line and keep a copy
of this text on the clipboard.

C-y Paste the text that is on the clipboard.

F8 Same as typing ‘#||#,c;’ (REPL command to continue the computa-
tion).

F9 Same as typing ‘#||#,-;’ (REPL command to move to newer frame).

F10 Same as typing ‘#||#,+;’ (REPL command to move to older frame).

F11 Same as typing ‘#||#,s;’ (REPL command to step the computation).

F12 Same as typing ‘#||#,l;’ (REPL command to leap the computation).

On Mac OS X, depending on your configuration, you may have to press the fn key to
access the function key F12 and the option key to access the other function keys.

On Microsoft Windows the clipboard is the system clipboard. This allows text to be
copied and pasted between the program and other applications. On other operating systems
the clipboard is internal to the program (it not integrated with the operating system).

5.6 Emacs interface

Gambit comes with the Emacs package ‘gambit.el’ which provides a nice environment
for running Gambit from within the Emacs editor. This package filters the standard out-
put of the Gambit process and when it intercepts a location information (in the format
‘stream@line.column’ where stream is either ‘(stdin)’ when the expression was ob-
tained from standard input, ‘(console)’ when the expression was obtained from the con-
sole, or a string naming a file) it opens a window to highlight the corresponding expression.

To use this package, make sure the file ‘gambit.el’ is accessible from your load-path
and that the following lines are in your ‘.emacs’ file:

Chapter 5: Debugging 35

(autoload ’gambit-inferior-mode "gambit" "Hook Gambit mode into cmuscheme.")
(autoload ’gambit-mode "gambit" "Hook Gambit mode into scheme.")
(add-hook ’inferior-scheme-mode-hook (function gambit-inferior-mode))
(add-hook ’scheme-mode-hook (function gambit-mode))
(setq scheme-program-name "gsi -:d-")

Alternatively, if you don’t mind always loading this package, you can simply add this
line to your ‘.emacs’ file:

(require ’gambit)

You can then start an inferior Gambit process by typing ‘M-x run-scheme’. The
commands provided in ‘cmuscheme’ mode will be available in the Gambit interaction
buffer (i.e. ‘*scheme*’) and in buffers attached to Scheme source files. Here is a list of the
most useful commands (for a complete list type ‘C-h m’ in the Gambit interaction buffer):

C-x C-e Evaluate the expression which is before the cursor (the expression will
be copied to the Gambit interaction buffer).

C-c C-z Switch to Gambit interaction buffer.

C-c C-l Load a file (file attached to current buffer is default) using (load
file).

C-c C-k Compile a file (file attached to current buffer is default) using
(compile-file file).

The file ‘gambit.el’ provides these additional commands:

F8 or C-c c Continue the computation (same as typing ‘#||#,c;’ to the REPL).

F9 or C-c] Move to newer frame (same as typing ‘#||#,-;’ to the REPL).

F10 or C-c [Move to older frame (same as typing ‘#||#,+;’ to the REPL).

F11 or C-c s Step the computation (same as typing ‘#||#,s;’ to the REPL).

F12 or C-c l Leap the computation (same as typing ‘#||#,l;’ to the REPL).

C-c _ Removes the last window that was opened to highlight an expression.

The two keystroke version of these commands can be shortened to ‘M-c’, ‘M-[’, ‘M-]’,
‘M-s’, ‘M-l’, and ‘M-_’ respectively by adding this line to your ‘.emacs’ file:

(setq gambit-repl-command-prefix "\e")

This is more convenient to type than the two keystroke ‘C-c’ based sequences but the
purist may not like this because it does not follow normal Emacs conventions.

Here is what a typical ‘.emacs’ file will look like:
(setq load-path ; add directory containing gambit.el

(cons "/usr/local/Gambit-C/current/share/emacs/site-lisp"
load-path))

(setq scheme-program-name "/tmp/gsi -:d-") ; if gsi not in executable path
(setq gambit-highlight-color "gray") ; if you don’t like the default
(setq gambit-repl-command-prefix "\e") ; if you want M-c, M-s, etc
(require ’gambit)

5.7 GUIDE

The implementation and documentation for GUIDE, the Gambit Universal IDE, are not
yet complete.

Chapter 6: Scheme extensions 36

6 Scheme extensions

6.1 Extensions to standard procedures

[procedure](transcript-on file)
[procedure](transcript-off)

These procedures do nothing.

[procedure](call-with-current-continuation proc)
[procedure](call/cc proc)

The procedure call-with-current-continuation is bound to the global vari-
ables call-with-current-continuation and call/cc.

6.2 Extensions to standard special forms

[special form](lambda lambda-formals body)
[special form](define (variable define-formals) body)

lambda-formals = (formal-argument-list) | r4rs-lambda-formals
define-formals = formal-argument-list | r4rs-define-formals
formal-argument-list = dsssl-formal-argument-list | rest-at-end-formal-
argument-list
dsssl-formal-argument-list = reqs opts rest keys
rest-at-end-formal-argument-list = reqs opts keys rest | reqs opts keys . rest-
formal-argument
reqs = required-formal-argument*
required-formal-argument = variable
opts = #!optional optional-formal-argument* | empty
optional-formal-argument = variable | (variable initializer)

rest = #!rest rest-formal-argument | empty
rest-formal-argument = variable
keys = #!key keyword-formal-argument* | empty
keyword-formal-argument = variable | (variable initializer)

initializer = expression
r4rs-lambda-formals = (variable*) | (variable+ . variable) | variable
r4rs-define-formals = variable* | variable* . variable

These forms are extended versions of the lambda and define special forms of stan-
dard Scheme. They allow the use of optional formal arguments, either positional or
named, and support the syntax and semantics of the DSSSL standard.
When the procedure introduced by a lambda (or define) is applied to a list of
actual arguments, the formal and actual arguments are processed as specified in the
R4RS if the lambda-formals (or define-formals) is a r4rs-lambda-formals (or r4rs-
define-formals).
If the formal-argument-list matches dsssl-formal-argument-list or extended-formal-
argument-list they are processed as follows:

Chapter 6: Scheme extensions 37

a. Variables in required-formal-arguments are bound to successive actual arguments
starting with the first actual argument. It shall be an error if there are fewer
actual arguments than required-formal-arguments.

b. Next variables in optional-formal-arguments are bound to remaining actual ar-
guments. If there are fewer remaining actual arguments than optional-formal-
arguments, then the variables are bound to the result of evaluating initializer,
if one was specified, and otherwise to #f. The initializer is evaluated in an
environment in which all previous formal arguments have been bound.

c. If #!key does not appear in the formal-argument-list and there is no rest-formal-
argument then it shall be an error if there are any remaining actual arguments.

d. If #!key does not appear in the formal-argument-list and there is a rest-formal-
argument then the rest-formal-argument is bound to a list of all remaining actual
arguments.

e. If #!key appears in the formal-argument-list and there is no rest-formal-
argument then there shall be an even number of remaining actual arguments.
These are interpreted as a series of pairs, where the first member of each pair is
a keyword specifying the argument name, and the second is the corresponding
value. It shall be an error if the first member of a pair is not a keyword. It
shall be an error if the argument name is not the same as a variable in a
keyword-formal-argument. If the same argument name occurs more than once
in the list of actual arguments, then the first value is used. If there is no actual
argument for a particular keyword-formal-argument, then the variable is bound
to the result of evaluating initializer if one was specified, and otherwise to #f.
The initializer is evaluated in an environment in which all previous formal
arguments have been bound.

f. If #!key appears in the formal-argument-list and there is a rest-formal-argument
before the #!key then there may be an even or odd number of remaining actual
arguments and the rest-formal-argument is bound to a list of all remaining actual
arguments. Then, these remaining actual arguments are scanned from left to
right in pairs, stopping at the first pair whose first element is not a keyword.
Each pair whose first element is a keyword matching the name of a keyword-
formal-argument gives the value (i.e. the second element of the pair) of the
corresponding formal argument. If the same argument name occurs more than
once in the list of actual arguments, then the first value is used. If there is no
actual argument for a particular keyword-formal-argument, then the variable is
bound to the result of evaluating initializer if one was specified, and otherwise to
#f. The initializer is evaluated in an environment in which all previous formal
arguments have been bound.

g. If #!key appears in the formal-argument-list and there is a rest-formal-argument
after the #!key then there may be an even or odd number of remaining actual
arguments. The remaining actual arguments are scanned from left to right in
pairs, stopping at the first pair whose first element is not a keyword. Each
pair shall have as its first element a keyword matching the name of a keyword-
formal-argument ; the second element gives the value of the corresponding formal
argument. If the same argument name occurs more than once in the list of
actual arguments, then the first value is used. If there is no actual argument for

Chapter 6: Scheme extensions 38

a particular keyword-formal-argument, then the variable is bound to the result
of evaluating initializer if one was specified, and otherwise to #f. The initializer
is evaluated in an environment in which all previous formal arguments have
been bound. Finally, the rest-formal-argument is bound to the list of the actual
arguments that were not scanned (i.e. after the last keyword/value pair).

In all cases it is an error for a variable to appear more than once in a formal-argument-
list.
Note that this specification is compatible with the DSSSL language standard (i.e. a
correct DSSSL program will have the same semantics when run with Gambit).
It is unspecified whether variables receive their value by binding or by assignment.
Currently the compiler and interpreter use different methods, which can lead to dif-
ferent semantics if call-with-current-continuation is used in an initializer.
Note that this is irrelevant for DSSSL programs because call-with-current-
continuation does not exist in DSSSL.
For example:

> ((lambda (#!rest x) x) 1 2 3)
(1 2 3)
> (define (f a #!optional b) (list a b))
> (define (g a #!optional (b a) #!key (k (* a b))) (list a b k))
> (define (h1 a #!rest r #!key k) (list a k r))
> (define (h2 a #!key k #!rest r) (list a k r))
> (f 1)
(1 #f)
> (f 1 2)
(1 2)
> (g 3)
(3 3 9)
> (g 3 4)
(3 4 12)
> (g 3 4 k: 5)
(3 4 5)
> (g 3 4 k: 5 k: 6)
(3 4 5)
> (h1 7)
(7 #f ())
> (h1 7 k: 8 9)
(7 8 (k: 8 9))
> (h1 7 k: 8 z: 9)
(7 8 (k: 8 z: 9))
> (h2 7)
(7 #f ())
> (h2 7 k: 8 9)
(7 8 (9))
> (h2 7 k: 8 z: 9)
*** ERROR IN (console)@17.1 -- Unknown keyword argument passed to procedure
(h2 7 k: 8 z: 9)

6.3 Miscellaneous extensions

[procedure](vector-copy vector)
This procedure returns a newly allocated vector with the same content as the vector
vector. Note that the elements are not recursively copied.

Chapter 6: Scheme extensions 39

[procedure](vector-append vector . . .)
This procedure is the vector analog of the string-append procedure. It returns a
newly allocated vector whose elements form the concatenation of the given vectors.

[procedure](subvector vector start end)
This procedure is the vector analog of the substring procedure. It returns a newly
allocated vector formed from the elements of the vector vector beginning with index
start (inclusive) and ending with index end (exclusive).

[procedure](box obj)
[procedure](box? obj)
[procedure](unbox box)
[procedure](set-box! box obj)

These procedures implement the box data type. A box is a cell containing a single
mutable field. The lexical syntax of a box containing the object obj is #&obj (see
Section 18.7 [Box syntax], page 164).
The procedure box returns a new box object whose content is initialized to obj. The
procedure box? returns #t if obj is a box, and otherwise returns #f. The procedure
unbox returns the content of the box box. The procedure set-box! changes the
content of the box box to obj. The procedure set-box! returns an unspecified
value.
For example:

> (define b (box 0))
> b
#&0
> (define (inc!) (set-box! b (+ (unbox b) 1)))
> (inc!)
> b
#&1
> (unbox b)
1

[procedure](keyword? obj)
[procedure](keyword->string keyword)
[procedure](string->keyword string)

These procedures implement the keyword data type. Keywords are similar to symbols
but are self evaluating and distinct from the symbol data type. The lexical syntax of
keywords is specified in Section 18.6 [Keyword syntax], page 164.
The procedure keyword? returns #t if obj is a keyword, and otherwise returns #f.
The procedure keyword->string returns the name of keyword as a string. The
procedure string->keyword returns the keyword whose name is string.
For example:

> (keyword? ’color)
#f
> (keyword? color:)
#t
> (keyword->string color:)
"color"
> (string->keyword "color")
color:

Chapter 6: Scheme extensions 40

[procedure](gensym [prefix])
This procedure returns a new uninterned symbol. Uninterned symbols are guaranteed
to be distinct from the symbols generated by the procedures read and string-
>symbol. The symbol prefix is the prefix used to generate the new symbol’s name.
If it is not specified, the prefix defaults to ‘g’.
For example:

> (gensym)
#:g0
> (gensym)
#:g1
> (gensym ’star-trek-)
#:star-trek-2

[procedure](make-uninterned-symbol name [hash])
[procedure](uninterned-symbol? obj)

The procedure make-uninterned-symbol returns a new uninterned symbol whose
name is name and hash is hash. The name must be a string and the hash must be a
nonnegative fixnum.
The procedure uninterned-symbol? returns #t when obj is a symbol that is
uninterned and #f otherwise.
For example:

> (uninterned-symbol? (gensym))
#t
> (make-uninterned-symbol "foo")
#:foo:
> (uninterned-symbol? (make-uninterned-symbol "foo"))
#t
> (uninterned-symbol? ’hello)
#f
> (uninterned-symbol? 123)
#f

[procedure](make-uninterned-keyword name [hash])
[procedure](uninterned-keyword? obj)

The procedure make-uninterned-keyword returns a new uninterned keyword
whose name is name and hash is hash. The name must be a string and the hash must
be a nonnegative fixnum.
The procedure uninterned-keyword? returns #t when obj is a keyword that is
uninterned and #f otherwise.
For example:

> (make-uninterned-keyword "foo")
#:foo:
> (uninterned-keyword? (make-uninterned-keyword "foo"))
#t
> (uninterned-keyword? hello:)
#f
> (uninterned-keyword? 123)
#f

[procedure](void)
This procedure returns the void object. The read-eval-print loop prints nothing when
the result is the void object.

Chapter 6: Scheme extensions 41

[procedure](eval expr [env])
The first argument is a datum representing an expression. The eval procedure
evaluates this expression in the global interaction environment and returns the result.
If present, the second argument is ignored (it is provided for compatibility with R5RS).
For example:

> (eval ’(+ 1 2))
3
> ((eval ’car) ’(1 2))
1
> (eval ’(define x 5))
> x
5

[special form](include file)
The file argument must be a string naming an existing file containing Scheme source
code. The include special form splices the content of the specified source file. This
form can only appear where a define form is acceptable.
For example:

(include "macros.scm")

(define (f lst)
(include "sort.scm")
(map sqrt (sort lst)))

[special form](define-macro (name define-formals) body)
Define name as a macro special form which expands into body. This form can only
appear where a define form is acceptable. Macros are lexically scoped. The scope
of a local macro definition extends from the definition to the end of the body of the
surrounding binding construct. Macros defined at the top level of a Scheme module
are only visible in that module. To have access to the macro definitions contained in
a file, that file must be included using the include special form. Macros which are
visible from the REPL are also visible during the compilation of Scheme source files.
For example:

(define-macro (unless test . body)
‘(if ,test #f (begin ,@body)))

(define-macro (push var #!optional val)
‘(set! ,var (cons ,val ,var)))

To examine the code into which a macro expands you can use the compiler’s
‘-expansion’ option or the pp procedure. For example:

> (define-macro (push var #!optional val)
‘(set! ,var (cons ,val ,var)))

> (pp (lambda () (push stack 1) (push stack) (push stack 3)))
(lambda ()

(set! stack (cons 1 stack))
(set! stack (cons #f stack))
(set! stack (cons 3 stack)))

[special form](define-syntax name expander)
Define name as a macro special form whose expansion is specified by expander. This
form is available only after evaluating (load "˜˜/syntax-case"), which can be

Chapter 6: Scheme extensions 42

done at the REPL or in the initialization file. This file contains Hieb and Dyb-
vig’s portable syntax-case implementation that has been ported to the Gambit
interpreter and compiler. Note that this implementation of syntax-case does not
correctly track source code location information, so the error messages will be much
less precise.

For example:
> (load "˜˜/syntax-case")
"/usr/local/Gambit-C/4.0b22/syntax-case.scm"
> (define-syntax unless

(syntax-rules ()
((unless test body ...)
(if test #f (begin body ...)))))

> (let ((test 111)) (unless (= 1 2) (list test test)))
(111 111)
> (pp (lambda () (let ((test 111)) (unless (= 1 2) (list test test)))))
(lambda () ((lambda (%%test14) (if (= 1 2) #f (list %%test14 %%test14))) 111))
> (unless #f (pp xxx))
*** ERROR IN (console)@8.16 -- Unbound variable: xxx

[special form](declare declaration . . .)
This form introduces declarations to be used by the compiler (currently the inter-
preter ignores the declarations). This form can only appear where a define form
is acceptable. Declarations are lexically scoped in the same way as macros. The
following declarations are accepted by the compiler:

(dialect) Use the given dialect’s semantics. dialect can be: ‘ieee-scheme’
or ‘r4rs-scheme’.

(strategy) Select block compilation or separate compilation. In block com-
pilation, the compiler assumes that global variables defined in the
current file that are not mutated in the file will never be mutated.
strategy can be: ‘block’ or ‘separate’.

([not] inline) Allow (or disallow) inlining of user procedures.

([not] inline-primitives primitive...)
The given primitives should (or should not) be inlined if possible
(all primitives if none specified).

(inlining-limit n)
Select the degree to which the compiler inlines user procedures. n
is the upper-bound, in percent, on code expansion that will result
from inlining. Thus, a value of 300 indicates that the size of the
program will not grow by more than 300 percent (i.e. it will be
at most 4 times the size of the original). A value of 0 disables
inlining. The size of a program is the total number of subexpres-
sions it contains (i.e. the size of an expression is one plus the size
of its immediate subexpressions). The following conditions must
hold for a procedure to be inlined: inlining the procedure must
not cause the size of the call site to grow more than specified by
the inlining limit, the site of definition (the define or lambda)

Chapter 6: Scheme extensions 43

and the call site must be declared as (inline), and the com-
piler must be able to find the definition of the procedure referred
to at the call site (if the procedure is bound to a global variable,
the definition site must have a (block) declaration). Note that
inlining usually causes much less code expansion than specified
by the inlining limit (an expansion around 10% is common for
n=350).

([not] lambda-lift)
Lambda-lift (or don’t lambda-lift) locally defined procedures.

([not] constant-fold)
Allow (or disallow) constant-folding of primitive procedures.

([not] standard-bindings var...)
The given global variables are known (or not known) to be equal
to the value defined for them in the dialect (all variables defined
in the standard if none specified).

([not] extended-bindings var...)
The given global variables are known (or not known) to be equal
to the value defined for them in the runtime system (all variables
defined in the runtime if none specified).

([not] run-time-bindings var...)
The given global variables will be tested at run time to see if they
are equal to the value defined for them in the runtime system (all
variables defined in the runtime if none specified).

([not] safe) Generate (or don’t generate) code that will prevent fatal errors at
run time. Note that in ‘safe’ mode certain semantic errors will
not be checked as long as they can’t crash the system. For example
the primitive char=? may disregard the type of its arguments in
‘safe’ as well as ‘not safe’ mode.

([not] interrupts-enabled)
Generate (or don’t generate) interrupt checks. Interrupt checks
are used to detect user interrupts and also to check for stack
overflows. Interrupt checking should not be turned off casually.

(number-type primitive...)
Numeric arguments and result of the specified primitives are
known to be of the given type (all primitives if none specified).
number-type can be: ‘generic’, ‘fixnum’, or ‘flonum’.

(mostly-number-type primitive...)
Numeric arguments and result of the specified primi-
tives are expected to be most often of the given type
(all primitives if none specified). mostly-number-type
can be: ‘mostly-generic’, ‘mostly-fixnum’,
‘mostly-fixnum-flonum’, ‘mostly-flonum’, or
‘mostly-flonum-fixnum’.

Chapter 6: Scheme extensions 44

The default declarations used by the compiler are equivalent to:
(declare

(ieee-scheme)
(separate)
(inline)
(inline-primitives)
(inlining-limit 350)
(constant-fold)
(lambda-lift)
(not standard-bindings)
(not extended-bindings)
(run-time-bindings)
(safe)
(interrupts-enabled)
(generic)
(mostly-fixnum-flonum)

)

These declarations are compatible with the semantics of R5RS Scheme. Typically
used declarations that enhance performance, at the cost of violating the R5RS Scheme
semantics, are: (standard-bindings), (block), (not safe) and (fixnum).

6.4 Undocumented extensions

The procedures in this section are not yet documented.

[procedure](continuation-capture proc)
[procedure](continuation-graft cont proc obj. . .)
[procedure](continuation-return cont obj. . .)

[procedure](display-exception exc [port])
[procedure](display-exception-in-context exc cont [port])
[procedure](display-procedure-environment proc [port])
[procedure](display-continuation-environment cont [port])
[procedure](display-continuation-dynamic-environment cont

[port])

[procedure](print [port: port] obj. . .)
[procedure](println [port: port] obj. . .)

[procedure](make-thread-group [name [thread-group]])
[procedure](thread-group? obj)
[procedure](thread-group-name thread-group)
[procedure](thread-group-parent thread-group)
[procedure](thread-group-resume! thread-group)
[procedure](thread-group-suspend! thread-group)
[procedure](thread-group-terminate! thread-group)

[procedure](thread-suspend! thread)
[procedure](thread-resume! thread)

[procedure](thread-thread-group thread)

[special form](define-type-of-thread name field . . .)

[procedure](thread-init! thread thunk [name [thread-group]])

Chapter 6: Scheme extensions 45

[procedure](initialized-thread-exception? obj)
[procedure](initialized-thread-exception-procedure exc)
[procedure](initialized-thread-exception-arguments exc)

[procedure](uninitialized-thread-exception? obj)
[procedure](uninitialized-thread-exception-procedure exc)
[procedure](uninitialized-thread-exception-arguments exc)

[procedure](process-pid process-port)

[procedure](process-status process-port [timeout [timeout-val]])

[procedure](unterminated-process-exception? obj)
[procedure](unterminated-process-exception-procedure exc)
[procedure](unterminated-process-exception-arguments exc)

[procedure](timeout->time timeout)

[procedure](open-dummy)

[procedure](port-settings-set! port settings)

[procedure](input-port-bytes-buffered port)

[procedure](input-port-characters-buffered port)

[procedure](nonempty-input-port-character-buffer-exception?
obj)

[procedure](nonempty-input-port-character-buffer-exception-arguments
exc)

[procedure](nonempty-input-port-character-buffer-exception-procedure
exc)

[procedure](repl-input-port)
[procedure](repl-output-port)
[procedure](console-port)

[procedure](current-user-interrupt-handler [handler])

[procedure](primordial-exception-handler exc)

[procedure](err-code->string code)

[procedure](foreign? obj)
[procedure](foreign-tags foreign)
[procedure](foreign-address foreign)
[procedure](foreign-release! foreign)
[procedure](foreign-released? foreign)

[procedure](invalid-hash-number-exception? obj)
[procedure](invalid-hash-number-exception-procedure exc)
[procedure](invalid-hash-number-exception-arguments exc)

[procedure](network-info network)
[procedure](network-info? obj)
[procedure](network-info-name network-info)

Chapter 6: Scheme extensions 46

[procedure](network-info-net network-info)
[procedure](network-info-aliases network-info)

[procedure](protocol-info protocol)
[procedure](protocol-info? obj)
[procedure](protocol-info-name protocol-info)
[procedure](protocol-info-number protocol-info)
[procedure](protocol-info-aliases protocol-info)

[procedure](service-info service [protocol])
[procedure](service-info? obj)
[procedure](service-info-name service-info)
[procedure](service-info-port service-info)
[procedure](service-info-protocol service-info)
[procedure](service-info-aliases service-info)

[procedure](tcp-client-peer-socket-info tcp-client-port)
[procedure](tcp-client-self-socket-info tcp-client-port)

[procedure](socket-info? obj)
[procedure](socket-info-address socket-info)
[procedure](socket-info-family socket-info)
[procedure](socket-info-port-number socket-info)

[procedure](six.make-array . . .)

[procedure](system-version)
[procedure](system-version-string)

[procedure](system-type)
[procedure](system-type-string)

[procedure](system-stamp)

[procedure](touch obj)

[procedure](tty? obj)
[procedure](tty-history tty)
[procedure](tty-history-set! tty history)
[procedure](tty-history-max-length-set! tty n)
[procedure](tty-paren-balance-duration-set! tty duration)
[procedure](tty-text-attributes-set! tty attributes)
[procedure](tty-mode-set! tty mode)
[procedure](tty-type-set! tty type)

[procedure](with-input-from-port port thunk)
[procedure](with-output-to-port port thunk)

[procedure](input-port-char-position port)
[procedure](output-port-char-position port)

[procedure](open-event-queue n)

[procedure](main . . .)

Chapter 7: Namespaces 47

7 Namespaces

TO DO!

Chapter 8: Characters and strings 48

8 Characters and strings

Gambit supports the Unicode character encoding standard (ISO/IEC-10646-1). Scheme
characters can be any of the characters in the 16 bit subset of Unicode known as UCS-
2. Scheme strings can contain any character in UCS-2. Source code can also contain any
character in UCS-2. However, to read such source code properly gsi and gsc must be
told which character encoding to use for reading the source code (i.e. UTF-8, UCS-2, or
UCS-4). This can be done by specifying the runtime option ‘-:f’ when gsi and gsc are
started.

8.1 Extensions to character procedures

[procedure](char->integer char)
[procedure](integer->char n)

The procedure char->integer returns the Unicode encoding of the character char.
The procedure integer->char returns the character whose Unicode encoding is
the exact integer n.
For example:

> (char->integer #\!)
33
> (integer->char 65)
#\A
> (integer->char (char->integer #\u1234))
#\u1234

[procedure](char=? char1. . .)
[procedure](char<? char1. . .)
[procedure](char>? char1. . .)
[procedure](char<=? char1. . .)
[procedure](char>=? char1. . .)
[procedure](char-ci=? char1. . .)
[procedure](char-ci<? char1. . .)
[procedure](char-ci>? char1. . .)
[procedure](char-ci<=? char1. . .)
[procedure](char-ci>=? char1. . .)

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of characters lst is sorted in nondecreasing order can be done
with the call (apply char<? lst).

8.2 Extensions to string procedures

[procedure](string=? string1. . .)
[procedure](string<? string1. . .)
[procedure](string>? string1. . .)
[procedure](string<=? string1. . .)
[procedure](string>=? string1. . .)
[procedure](string-ci=? string1. . .)

Chapter 8: Characters and strings 49

[procedure](string-ci<? string1. . .)
[procedure](string-ci>? string1. . .)
[procedure](string-ci<=? string1. . .)
[procedure](string-ci>=? string1. . .)

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of strings lst is sorted in nondecreasing order can be done with
the call (apply string<? lst).

Chapter 9: Numbers 50

9 Numbers

9.1 Extensions to numeric procedures

[procedure](= z1. . .)
[procedure](< x1. . .)
[procedure](> x1. . .)
[procedure](<= x1. . .)
[procedure](>= x1. . .)

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of numbers lst is sorted in nondecreasing order can be done
with the call (apply < lst).

9.2 IEEE floating point arithmetic

To better conform to IEEE floating point arithmetic the standard numeric tower is extended
with these special inexact reals:

+inf.0 positive infinity

-inf.0 negative infinity

+nan.0 “not a number”

-0. negative zero (‘0.’ is the positive zero)

The infinities and “not a number” are reals (i.e. (real? +inf.0) is #t) but are not
rational (i.e. (rational? +inf.0) is #f).

Both zeros are numerically equal (i.e. (= -0. 0.) is #t) but are not equivalent (i.e.
(eqv? -0. 0.) and (equal? -0. 0.) are #f). All numerical comparisons with “not a
number”, including (= +nan.0 +nan.0), are #f.

9.3 Integer square root and nth root

[procedure](integer-sqrt n)
This procedure returns the integer part of the square root of the nonnegative exact
integer n.

For example:
> (integer-sqrt 123)
11

[procedure](integer-nth-root n1 n2)
This procedure returns the integer part of n1 raised to the power 1/n2, where n1 is
a nonnegative exact integer and n2 is a positive exact integer.

For example:
> (integer-nth-root 100 3)
4

Chapter 9: Numbers 51

9.4 Bitwise-operations on exact integers

The procedures defined in this section are compatible with the withdrawn “Integer Bitwise-
operation Library SRFI” (SRFI 33). Note that some of the procedures specified in SRFI
33 are not provided.

Most procedures in this section are specified in terms of the binary representation of exact
integers. The two’s complement representation is assumed where an integer is composed
of an infinite number of bits. The upper section of an integer (the most significant bits)
are either an infinite sequence of ones when the integer is negative, or they are an infinite
sequence of zeros when the integer is nonnegative.

[procedure](arithmetic-shift n1 n2)
This procedure returns n1 shifted to the left by n2 bits, that is (floor (* n1 (expt
2 n2))). Both n1 and n2 must be exact integers.

For example:
> (arithmetic-shift 1000 7) ; n1=...0000001111101000
128000
> (arithmetic-shift 1000 -6) ; n1=...0000001111101000
15
> (arithmetic-shift -23 -3) ; n1=...1111111111101001
-3

[procedure](bitwise-merge n1 n2 n3)
This procedure returns an exact integer whose bits combine the bits from n2 and n3
depending on n1. The bit at index i of the result depends only on the bits at index i
in n1, n2 and n3: it is equal to the bit in n2 when the bit in n1 is 0 and it is equal
to the bit in n3 when the bit in n1 is 1. All arguments must be exact integers.

For example:
> (bitwise-merge -4 -11 10) ; ...11111100 ...11110101 ...00001010
9
> (bitwise-merge 12 -11 10) ; ...00001100 ...11110101 ...00001010
-7

[procedure](bitwise-and n. . .)
This procedure returns the bitwise “and” of the exact integers n. . . . The value -1 is
returned when there are no arguments.

For example:
> (bitwise-and 6 12) ; ...00000110 ...00001100
4
> (bitwise-and 6 -4) ; ...00000110 ...11111100
4
> (bitwise-and -6 -4) ; ...11111010 ...11111100
-8
> (bitwise-and)
-1

[procedure](bitwise-ior n. . .)
This procedure returns the bitwise “inclusive-or” of the exact integers n. . . . The
value 0 is returned when there are no arguments.

For example:

Chapter 9: Numbers 52

> (bitwise-ior 6 12) ; ...00000110 ...00001100
14
> (bitwise-ior 6 -4) ; ...00000110 ...11111100
-2
> (bitwise-ior -6 -4) ; ...11111010 ...11111100
-2
> (bitwise-ior)
0

[procedure](bitwise-xor n. . .)
This procedure returns the bitwise “exclusive-or” of the exact integers n. . . . The
value 0 is returned when there are no arguments.
For example:

> (bitwise-xor 6 12) ; ...00000110 ...00001100
10
> (bitwise-xor 6 -4) ; ...00000110 ...11111100
-6
> (bitwise-xor -6 -4) ; ...11111010 ...11111100
6
> (bitwise-xor)
0

[procedure](bitwise-not n)
This procedure returns the bitwise complement of the exact integer n.
For example:

> (bitwise-not 3) ; ...00000011
-4
> (bitwise-not -1) ; ...11111111
0

[procedure](bit-count n)
This procedure returns the bit count of the exact integer n. If n is nonnegative, the
bit count is the number of 1 bits in the two’s complement representation of n. If n is
negative, the bit count is the number of 0 bits in the two’s complement representation
of n.
For example:

> (bit-count 0) ; ...00000000
0
> (bit-count 1) ; ...00000001
1
> (bit-count 2) ; ...00000010
1
> (bit-count 3) ; ...00000011
2
> (bit-count 4) ; ...00000100
1
> (bit-count -23) ; ...11101001
3

[procedure](integer-length n)
This procedure returns the bit length of the exact integer n. If n is a positive integer
the bit length is one more than the index of the highest 1 bit (the least significant bit
is at index 0). If n is a negative integer the bit length is one more than the index of
the highest 0 bit. If n is zero, the bit length is 0.

Chapter 9: Numbers 53

For example:
> (integer-length 0) ; ...00000000
0
> (integer-length 1) ; ...00000001
1
> (integer-length 2) ; ...00000010
2
> (integer-length 3) ; ...00000011
2
> (integer-length 4) ; ...00000100
3
> (integer-length -23) ; ...11101001
5

[procedure](bit-set? n1 n2)
This procedure returns a boolean indicating if the bit at index n1 of n2 is set (i.e.
equal to 1) or not. Both n1 and n2 must be exact integers, and n1 must be nonneg-
ative.
For example:

> (map (lambda (i) (bit-set? i -23)) ; ...11101001
’(7 6 5 4 3 2 1 0))

(#t #t #t #f #t #f #f #t)

[procedure](any-bits-set? n1 n2)
This procedure returns a boolean indicating if the bitwise and of n1 and n2 is different
from zero or not. This procedure is implemented more efficiently than the naive
definition:

(define (any-bits-set? n1 n2) (not (zero? (bitwise-and n1 n2))))

For example:
> (any-bits-set? 5 10) ; ...00000101 ...00001010
#f
> (any-bits-set? -23 32) ; ...11101001 ...00100000
#t

[procedure](all-bits-set? n1 n2)
This procedure returns a boolean indicating if the bitwise and of n1 and n2 is equal to
n1 or not. This procedure is implemented more efficiently than the naive definition:

(define (all-bits-set? n1 n2) (= n1 (bitwise-and n1 n2)))

For example:
> (all-bits-set? 1 3) ; ...00000001 ...00000011
#t
> (all-bits-set? 7 3) ; ...00000111 ...00000011
#f

[procedure](first-bit-set n)
This procedure returns the bit index of the least significant bit of n equal to 1 (which
is also the number of 0 bits that are below the least significant 1 bit). This procedure
returns -1 when n is zero.
For example:

> (first-bit-set 24) ; ...00011000
3
> (first-bit-set 0) ; ...00000000
-1

Chapter 9: Numbers 54

[procedure](extract-bit-field n1 n2 n3)
[procedure](test-bit-field? n1 n2 n3)
[procedure](clear-bit-field n1 n2 n3)
[procedure](replace-bit-field n1 n2 n3 n4)
[procedure](copy-bit-field n1 n2 n3 n4)

These procedures operate on a bit-field which is n1 bits wide starting at bit index n2.
All arguments must be exact integers and n1 and n2 must be nonnegative.

The procedure extract-bit-field returns the bit-field of n3 shifted to the right
so that the least significant bit of the bit-field is the least significant bit of the result.

The procedure test-bit-field? returns #t if any bit in the bit-field of n3 is equal
to 1, otherwise #f is returned.

The procedure clear-bit-field returns n3 with all bits in the bit-field replaced
with 0.

The procedure replace-bit-field returns n4 with the bit-field replaced with the
least-significant n1 bits of n3.

The procedure copy-bit-field returns n4 with the bit-field replaced with the
(same index and size) bit-field in n3.

For example:
> (extract-bit-field 5 2 -37) ; ...11011011
22
> (test-bit-field? 5 2 -37) ; ...11011011
#t
> (test-bit-field? 1 2 -37) ; ...11011011
#f
> (clear-bit-field 5 2 -37) ; ...11011011
-125
> (replace-bit-field 5 2 -6 -37) ; ...11111010 ...11011011
-21
> (copy-bit-field 5 2 -6 -37) ; ...11111010 ...11011011
-5

9.5 Fixnum specific operations

[procedure](fixnum? obj)

[procedure](fx* n1. . .)

[procedure](fx+ n1. . .)

[procedure](fx- n1 n2. . .)

[procedure](fx< n1. . .)

[procedure](fx<= n1. . .)

[procedure](fx= n1. . .)

[procedure](fx> n1. . .)

[procedure](fx>= n1. . .)

[procedure](fxand n1. . .)

Chapter 9: Numbers 55

[procedure](fxarithmetic-shift n1 n2)

[procedure](fxarithmetic-shift-left n1 n2)

[procedure](fxarithmetic-shift-right n1 n2)

[procedure](fxbit-count n)

[procedure](fxbit-set? n1 n2)

[procedure](fxeven? n)

[procedure](fxfirst-bit-set n)

[procedure](fxif n1 n2 n3)

[procedure](fxior n1. . .)

[procedure](fxlength n)

[procedure](fxmax n1 n2. . .)

[procedure](fxmin n1 n2. . .)

[procedure](fxmodulo n1 n2)

[procedure](fxnegative? n)

[procedure](fxnot n)

[procedure](fxodd? n)

[procedure](fxpositive? n)

[procedure](fxquotient n1 n2)

[procedure](fxremainder n1 n2)

[procedure](fxwrap* n1. . .)

[procedure](fxwrap+ n1. . .)

[procedure](fxwrap- n1 n2. . .)

[procedure](fxwraparithmetic-shift n1 n2)

[procedure](fxwraparithmetic-shift-left n1 n2)

[procedure](fxwraplogical-shift-right n1 n2)

[procedure](fxwrapquotient n1 n2)

[procedure](fxxor n1. . .)

[procedure](fxzero? n)

[procedure](fixnum-overflow-exception? obj)
[procedure](fixnum-overflow-exception-procedure exc)
[procedure](fixnum-overflow-exception-arguments exc)

Fixnum-overflow-exception objects are raised by some of the fixnum specific proce-
dures when the result is larger than can fit in a fixnum. The parameter exc must be
a fixnum-overflow-exception object.

Chapter 9: Numbers 56

The procedure fixnum-overflow-exception? returns #t when obj is a fixnum-
overflow-exception object and #f otherwise.

The procedure fixnum-overflow-exception-procedure returns the proce-
dure that raised exc.

The procedure fixnum-overflow-exception-arguments returns the list of ar-
guments of the procedure that raised exc.

For example:

> (define (handler exc)
(if (fixnum-overflow-exception? exc)

(list (fixnum-overflow-exception-procedure exc)
(fixnum-overflow-exception-arguments exc))

’not-fixnum-overflow-exception))
> (with-exception-catcher

handler
(lambda () (fx* 100000 100000)))

(#<procedure #2 fx*> (100000 100000))

9.6 Flonum specific operations

[procedure](flonum? obj)

[procedure](fixnum->flonum n)

[procedure](fl* x1. . .)

[procedure](fl+ x1. . .)

[procedure](fl- x1 x2. . .)

[procedure](fl/ x1 x2)

[procedure](fl< x1. . .)

[procedure](fl<= x1. . .)

[procedure](fl= x1. . .)

[procedure](fl> x1. . .)

[procedure](fl>= x1. . .)

[procedure](flabs x)

[procedure](flacos x)

[procedure](flasin x)

[procedure](flatan x)

Chapter 9: Numbers 57

[procedure](flatan y x)

[procedure](flceiling x)

[procedure](flcos x)

[procedure](fldenominator x)

[procedure](fleven? x)

[procedure](flexp x)

[procedure](flexpt x y)

[procedure](flfinite? x)

[procedure](flfloor x)

[procedure](flinfinite? x)

[procedure](flinteger? x)

[procedure](fllog x)

[procedure](flmax x1 x2. . .)

[procedure](flmin x1 x2. . .)

[procedure](flnan? x)

[procedure](flnegative? x)

[procedure](flnumerator x)

[procedure](flodd? x)

[procedure](flpositive? x)

[procedure](flround x)

[procedure](flsin x)

[procedure](flsqrt x)

[procedure](fltan x)

[procedure](fltruncate x)

[procedure](flzero? x)

9.7 Pseudo random numbers

The procedures and variables defined in this section are compatible with the “Sources
of Random Bits SRFI” (SRFI 27). The implementation is based on Pierre L’Ecuyer’s
MRG32k3a pseudo random number generator. At the heart of SRFI 27’s interface is the
random source type which encapsulates the state of a pseudo random number generator.
The state of a random source object changes every time a pseudo random number is gen-
erated from this random source object.

[variable]default-random-source
The global variable default-random-source is bound to the random source ob-
ject which is used by the random-integer and random-real procedures.

Chapter 9: Numbers 58

[procedure](random-integer n)
This procedure returns a pseudo random exact integer in the range 0 to n-1. The
random source object in the global variable default-random-source is used to
generate this number. The parameter n must be a positive exact integer.
For example:

> (random-integer 100)
24
> (random-integer 100)
2
> (random-integer 100)
6143360270902284438072426748425263488507

[procedure](random-real)
This procedure returns a pseudo random inexact real between, but not including, 0
and 1. The random source object in the global variable default-random-source
is used to generate this number.
For example:

> (random-real)
.24230672079133753
> (random-real)
.02317001922506932

[procedure](make-random-source)
This procedure returns a new random source object initialized to a predetermined
state (to initialize to a pseudo random state the procedure random-source-
randomize! should be called).
For example:

> (define rs (make-random-source))
> ((random-source-make-integers rs) 10000000)
8583952

[procedure](random-source? obj)
This procedure returns #t when obj is a random source object and #f otherwise.
For example:

> (random-source? default-random-source)
#t
> (random-source? 123)
#f

[procedure](random-source-state-ref random-source)
[procedure](random-source-state-set! random-source state)

The procedure random-source-state-ref extracts the state of the random
source object random-source and returns a vector containing the state.
The procedure random-source-state-set! restores the state of the random
source object random-source to state which must be a vector returned from a call to
the procedure random-source-state-ref.
For example:

> (define s (random-source-state-ref default-random-source))
> (random-integer 100)
7583880188903074396261960585615270693321

Chapter 9: Numbers 59

> (random-source-state-set! default-random-source s)
> (random-integer 100)
7583880188903074396261960585615270693321

[procedure](random-source-randomize! random-source)
[procedure](random-source-pseudo-randomize! random-source i j)

These procedures change the state of the random source object random-source. The
procedure random-source-randomize! sets the random source object to a state
that depends on the current time (which for typical uses can be considered to ran-
domly initialize the state). The procedure random-source-pseudo-randomize!
sets the random source object to a state that is determined only by the current state
and the nonnegative exact integers i and j. For both procedures the value returned
is unspecified.
For example:

> (define s (random-source-state-ref default-random-source))
> (random-source-pseudo-randomize! default-random-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767
> (random-source-state-set! default-random-source s)
> (random-source-pseudo-randomize! default-random-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767
> (random-source-pseudo-randomize! default-random-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767
> (random-source-state-set! default-random-source s)
> (random-source-randomize! default-random-source)
> (random-integer 100)
2271441220851914333384493143687768110622
> (random-source-state-set! default-random-source s)
> (random-source-randomize! default-random-source)
> (random-integer 100)
6247966138948323029033944059178072366895

[procedure](random-source-make-integers random-source)
This procedure returns a procedure for generating pseudo random exact integers using
the random source object random-source. The returned procedure accepts a single
parameter n, a positive exact integer, and returns a pseudo random exact integer in
the range 0 to n-1.
For example:

> (define rs (make-random-source))
> (define ri (random-source-make-integers rs))
> (ri 10000000)
8583952
> (ri 10000000)
2879793

[procedure](random-source-make-reals random-source)
This procedure returns a procedure for generating pseudo random inexact reals using
the random source object random-source. The returned procedure accepts no param-
eters and returns a pseudo random inexact real between, but not including, 0 and
1.
For example:

Chapter 9: Numbers 60

> (define rs (make-random-source))
> (define rr (random-source-make-reals rs))
> (rr)
.857402537562821
> (rr)
.2876463473845367

Chapter 10: Homogeneous vectors 61

10 Homogeneous vectors

Homogeneous vectors are vectors containing raw numbers of the same type (signed or
unsigned exact integers or inexact reals). There are 10 types of homogeneous vectors:
‘s8vector’ (vector of exact integers in the range -2ˆ7 to 2ˆ7-1), ‘u8vector’ (vector
of exact integers in the range 0 to 2ˆ8-1), ‘s16vector’ (vector of exact integers in the
range -2ˆ15 to 2ˆ15-1), ‘u16vector’ (vector of exact integers in the range 0 to 2ˆ16-1),
‘s32vector’ (vector of exact integers in the range -2ˆ31 to 2ˆ31-1), ‘u32vector’ (vector
of exact integers in the range 0 to 2ˆ32-1), ‘s64vector’ (vector of exact integers in the
range -2ˆ63 to 2ˆ63-1), ‘u64vector’ (vector of exact integers in the range 0 to 2ˆ64-1),
‘f32vector’ (vector of 32 bit floating point numbers), and ‘f64vector’ (vector of 64 bit
floating point numbers).

The lexical syntax of homogeneous vectors is specified in Section 18.9 [Homogeneous
vector syntax], page 164.

The procedures available for homogeneous vectors, listed below, are the analog of the
normal vector/string procedures for each of the homogeneous vector types.

[procedure](s8vector? obj)
[procedure](make-s8vector k [fill])
[procedure](s8vector exact-int8. . .)
[procedure](s8vector-length s8vector)
[procedure](s8vector-ref s8vector k)
[procedure](s8vector-set! s8vector k exact-int8)
[procedure](s8vector->list s8vector)
[procedure](list->s8vector list-of-exact-int8)
[procedure](s8vector-fill! s8vector fill)
[procedure](s8vector-copy s8vector)
[procedure](s8vector-append s8vector . . .)
[procedure](subs8vector s8vector start end)

[procedure](u8vector? obj)
[procedure](make-u8vector k [fill])
[procedure](u8vector exact-int8. . .)
[procedure](u8vector-length u8vector)
[procedure](u8vector-ref u8vector k)
[procedure](u8vector-set! u8vector k exact-int8)
[procedure](u8vector->list u8vector)
[procedure](list->u8vector list-of-exact-int8)
[procedure](u8vector-fill! u8vector fill)
[procedure](u8vector-copy u8vector)
[procedure](u8vector-append u8vector . . .)
[procedure](subu8vector u8vector start end)

[procedure](s16vector? obj)
[procedure](make-s16vector k [fill])
[procedure](s16vector exact-int16 . . .)
[procedure](s16vector-length s16vector)
[procedure](s16vector-ref s16vector k)

Chapter 10: Homogeneous vectors 62

[procedure](s16vector-set! s16vector k exact-int16)
[procedure](s16vector->list s16vector)
[procedure](list->s16vector list-of-exact-int16)
[procedure](s16vector-fill! s16vector fill)
[procedure](s16vector-copy s16vector)
[procedure](s16vector-append s16vector . . .)
[procedure](subs16vector s16vector start end)

[procedure](u16vector? obj)
[procedure](make-u16vector k [fill])
[procedure](u16vector exact-int16 . . .)
[procedure](u16vector-length u16vector)
[procedure](u16vector-ref u16vector k)
[procedure](u16vector-set! u16vector k exact-int16)
[procedure](u16vector->list u16vector)
[procedure](list->u16vector list-of-exact-int16)
[procedure](u16vector-fill! u16vector fill)
[procedure](u16vector-copy u16vector)
[procedure](u16vector-append u16vector . . .)
[procedure](subu16vector u16vector start end)

[procedure](s32vector? obj)
[procedure](make-s32vector k [fill])
[procedure](s32vector exact-int32. . .)
[procedure](s32vector-length s32vector)
[procedure](s32vector-ref s32vector k)
[procedure](s32vector-set! s32vector k exact-int32)
[procedure](s32vector->list s32vector)
[procedure](list->s32vector list-of-exact-int32)
[procedure](s32vector-fill! s32vector fill)
[procedure](s32vector-copy s32vector)
[procedure](s32vector-append s32vector . . .)
[procedure](subs32vector s32vector start end)

[procedure](u32vector? obj)
[procedure](make-u32vector k [fill])
[procedure](u32vector exact-int32. . .)
[procedure](u32vector-length u32vector)
[procedure](u32vector-ref u32vector k)
[procedure](u32vector-set! u32vector k exact-int32)
[procedure](u32vector->list u32vector)
[procedure](list->u32vector list-of-exact-int32)
[procedure](u32vector-fill! u32vector fill)
[procedure](u32vector-copy u32vector)
[procedure](u32vector-append u32vector . . .)
[procedure](subu32vector u32vector start end)

[procedure](s64vector? obj)
[procedure](make-s64vector k [fill])

Chapter 10: Homogeneous vectors 63

[procedure](s64vector exact-int64. . .)
[procedure](s64vector-length s64vector)
[procedure](s64vector-ref s64vector k)
[procedure](s64vector-set! s64vector k exact-int64)
[procedure](s64vector->list s64vector)
[procedure](list->s64vector list-of-exact-int64)
[procedure](s64vector-fill! s64vector fill)
[procedure](s64vector-copy s64vector)
[procedure](s64vector-append s64vector . . .)
[procedure](subs64vector s64vector start end)

[procedure](u64vector? obj)
[procedure](make-u64vector k [fill])
[procedure](u64vector exact-int64. . .)
[procedure](u64vector-length u64vector)
[procedure](u64vector-ref u64vector k)
[procedure](u64vector-set! u64vector k exact-int64)
[procedure](u64vector->list u64vector)
[procedure](list->u64vector list-of-exact-int64)
[procedure](u64vector-fill! u64vector fill)
[procedure](u64vector-copy u64vector)
[procedure](u64vector-append u64vector . . .)
[procedure](subu64vector u64vector start end)

[procedure](f32vector? obj)
[procedure](make-f32vector k [fill])
[procedure](f32vector inexact-real. . .)
[procedure](f32vector-length f32vector)
[procedure](f32vector-ref f32vector k)
[procedure](f32vector-set! f32vector k inexact-real)
[procedure](f32vector->list f32vector)
[procedure](list->f32vector list-of-inexact-real)
[procedure](f32vector-fill! f32vector fill)
[procedure](f32vector-copy f32vector)
[procedure](f32vector-append f32vector . . .)
[procedure](subf32vector f32vector start end)

[procedure](f64vector? obj)
[procedure](make-f64vector k [fill])
[procedure](f64vector inexact-real. . .)
[procedure](f64vector-length f64vector)
[procedure](f64vector-ref f64vector k)
[procedure](f64vector-set! f64vector k inexact-real)
[procedure](f64vector->list f64vector)
[procedure](list->f64vector list-of-inexact-real)
[procedure](f64vector-fill! f64vector fill)
[procedure](f64vector-copy f64vector)
[procedure](f64vector-append f64vector . . .)

Chapter 10: Homogeneous vectors 64

[procedure](subf64vector f64vector start end)
For example:

> (define v (u8vector 10 255 13))
> (u8vector-set! v 2 99)
> v
#u8(10 255 99)
> (u8vector-ref v 1)
255
> (u8vector->list v)
(10 255 99)

[procedure](object->u8vector obj [encoder])
[procedure](u8vector->object u8vector [decoder])

The procedure object->u8vector returns a u8vector that contains the sequence
of bytes that encodes the object obj. The procedure u8vector->object decodes
the sequence of bytes contained in the u8vector u8vector, which was produced by the
procedure object->u8vector, and reconstructs an object structurally equal to the
original object. In other words the procedures object->u8vector and u8vector-
>object respectively perform serialization and deserialization of Scheme objects.
Note that some objects are non-serializable (e.g. threads, wills, some types of ports,
and any object containing a non-serializable object).
The optional encoder and decoder parameters are single parameter procedures which
default to the identity function. The encoder procedure is called during serialization.
As the serializer walks through obj, it calls the encoder procedure on each sub-
object X that is encountered. The encoder transforms the object X into an object Y
that will be serialized instead of X. Similarly the decoder procedure is called during
deserialization. When an object Y is encountered, the decoder procedure is called to
transform it into the object X that is the result of deserialization.
The encoder and decoder procedures are useful to customize the serialized represen-
tation of objects. In particular, it can be used to define the semantics of serializing
objects, such as threads and ports, that would otherwise not be serializable. The
decoder procedure is typically the inverse of the encoder procedure, i.e. (decoder
(encoder X)) = X.
For example:

> (define (make-adder x) (lambda (y) (+ x y)))
> (define f (make-adder 10))
> (define a (object->u8vector f))
> (define b (u8vector->object a))
> (u8vector-length a)
1639
> (f 5)
15
> (b 5)
15
> (pp b)
(lambda (y) (+ x y))

Chapter 11: Hashing and weak references 65

11 Hashing and weak references

11.1 Hashing

[procedure](object->serial-number obj)
[procedure](serial-number->object n [default])

All Scheme objects are uniquely identified with a serial number which is a nonneg-
ative exact integer. The object->serial-number procedure returns the serial
number of object obj. This serial number is only allocated the first time the object-
>serial-number procedure is called on that object. Objects which do not have
an external textual representation that can be read by the read procedure, use
an external textual representation that includes a serial number of the form #n.
Consequently, the procedures write, pretty-print, etc will call the object-
>serial-number procedure to get the serial number, and this may cause the serial
number to be allocated.
The serial-number->object procedure takes an exact integer argument n and
returns the object whose serial number is n. If no object currently exists with that se-
rial number, default is returned if it is specified, otherwise an unbound-serial-number-
exception object is raised. The reader defines the following abbreviation for calling
serial-number->object: the syntax #n, where n is a sequence of decimal digits
and it is not followed by ‘=’ or ‘#’, is equivalent to the list (serial-number-
>object n).
For example:

> (define z (list (lambda (x) (* x x)) (lambda (y) (/ 1 y))))
> z
(#<procedure #2> #<procedure #3>)
> (#3 10)
1/10
> ’(#3 10)
((serial-number->object 3) 10)
> car
#<procedure #4 car>
> (#4 z)
#<procedure #2>

[procedure](unbound-serial-number-exception? obj)
[procedure](unbound-serial-number-exception-procedure exc)
[procedure](unbound-serial-number-exception-arguments exc)

Unbound-serial-number-exception objects are raised by the procedure serial-
number->object when no object currently exists with that serial number. The
parameter exc must be an unbound-serial-number-exception object.
The procedure unbound-serial-number-exception? returns #t when obj is a
unbound-serial-number-exception object and #f otherwise.
The procedure unbound-serial-number-exception-procedure returns the
procedure that raised exc.
The procedure unbound-serial-number-exception-arguments returns the
list of arguments of the procedure that raised exc.
For example:

Chapter 11: Hashing and weak references 66

> (define (handler exc)
(if (unbound-serial-number-exception? exc)

(list (unbound-serial-number-exception-procedure exc)
(unbound-serial-number-exception-arguments exc))

’not-unbound-serial-number-exception))
> (with-exception-catcher

handler
(lambda () (serial-number->object 1000)))

(#<procedure #2 serial-number->object> (1000))

[procedure](symbol-hash symbol)
The symbol-hash procedure returns the hash number of the symbol symbol. The
hash number is a small exact integer (fixnum). When symbol is an interned symbol the
value returned is the same as (string=?-hash (symbol->string symbol)).
For example:

> (symbol-hash ’car)
444471047

[procedure](keyword-hash keyword)
The keyword-hash procedure returns the hash number of the keyword keyword.
The hash number is a small exact integer (fixnum). When keyword is an interned
keyword the value returned is the same as (string=?-hash (keyword->string
keyword)).
For example:

> (keyword-hash car:)
444471047

[procedure](string=?-hash string)
The string=?-hash procedure returns the hash number of the string string. The
hash number is a small exact integer (fixnum). For any two strings s1 and s2,
(string=? s1 s2) implies (= (string=?-hash s1) (string=?-hash s2)).
For example:

> (string=?-hash "car")
444471047

[procedure](string-ci=?-hash string)
The string-ci=?-hash procedure returns the hash number of the string string.
The hash number is a small exact integer (fixnum). For any two strings s1 and s2,
(string-ci=? s1 s2) implies (= (string-ci=?-hash s1) (string-ci=?-
hash s2)).
For example:

> (string-ci=?-hash "CaR")
444471047

[procedure](eq?-hash obj)
The eq?-hash procedure returns the hash number of the object obj. The hash
number is a small exact integer (fixnum). For any two objects o1 and o2, (eq? o1
o2) implies (= (eq?-hash o1) (eq?-hash o2)).
For example:

> (eq?-hash #t)
536870910

Chapter 11: Hashing and weak references 67

[procedure](eqv?-hash obj)
The eqv?-hash procedure returns the hash number of the object obj. The hash
number is a small exact integer (fixnum). For any two objects o1 and o2, (eqv? o1
o2) implies (= (eqv?-hash o1) (eqv?-hash o2)).
For example:

> (eqv?-hash 1.5)
496387656

[procedure](equal?-hash obj)
The equal?-hash procedure returns the hash number of the object obj. The hash
number is a small exact integer (fixnum). For any two objects o1 and o2, (equal?
o1 o2) implies (= (equal?-hash o1) (equal?-hash o2)).
For example:

> (equal?-hash (list 1 2 3))
442438567

11.2 Weak references

The garbage collector is responsible for reclaiming objects that are no longer needed by
the program. This is done by analyzing the reachability graph of all objects from the
roots (i.e. the global variables, the runnable threads, permanently allocated objects such
as procedures defined in a compiled file, nonexecutable wills, etc). If a root or a reachable
object X contains a reference to an object Y then Y is reachable. As a general rule,
unreachable objects are reclaimed by the garbage collector.

There are two types of references: strong references and weak references. Most objects,
including pairs, vectors, records and closures, contain strong references. An object X is
strongly reachable if there is a path from the roots to X that traverses only strong references.
Weak references only occur in wills and tables. There are two types of weak references: will-
weak references and table-weak references. If all paths from the roots to an object Y traverse
at least one table-weak reference, then Y will be reclaimed by the garbage collector. The
will-weak references are used for finalization and are explained in the next section.

11.2.1 Wills

The following procedures implement the will data type. Will objects provide support for
finalization. A will is an object that contains a will-weak reference to a testator object (the
object attached to the will), and a strong reference to an action procedure which is a one
parameter procedure which is called when the will is executed.

[procedure](make-will testator action)
[procedure](will? obj)
[procedure](will-testator will)
[procedure](will-execute! will)

The make-will procedure creates a will object with the given testator object and
action procedure. The will? procedure tests if obj is a will object. The will-
testator procedure gets the testator object attached to the will. The will-
execute! procedure executes will.
A will becomes executable when its testator object is not strongly reachable (i.e. the
testator object is either unreachable or only reachable using paths from the roots that

Chapter 11: Hashing and weak references 68

traverse at least one weak reference). Some objects, including symbols, small exact
integers (fixnums), booleans and characters, are considered to be always strongly
reachable.
When the runtime system detects that a will has become executable the current com-
putation is interrupted, the will’s testator is set to #f and the will’s action procedure
is called with the will’s testator as the sole argument. Currently only the garbage col-
lector detects when wills become executable but this may change in future versions of
Gambit (for example the compiler could perform an analysis to infer will executability
at compile time). The garbage collector builds a list of all executable wills. Shortly
after a garbage collection, the action procedures of these wills will be called. The link
from the will to the action procedure is severed when the action procedure is called.
Note that the testator object will not be reclaimed during the garbage collection that
determined executability of the will. It is only when an object is not reachable from
the roots that it is reclaimed by the garbage collector.
A remarkable feature of wills is that an action procedure can “resurrect” an object.
An action procedure could for example assign the testator object to a global variable
or create a new will with the same testator object.
For example:

> (define a (list 123))
> (set-cdr! a a) ; create a circular list
> (define b (vector a))
> (define c #f)
> (define w

(let ((obj a))
(make-will obj

(lambda (x) ; x will be eq? to obj
(display "executing action procedure")
(newline)
(set! c x)))))

> (will? w)
#t
> (car (will-testator w))
123
> (##gc)
> (set! a #f)
> (##gc)
> (set! b #f)
> (##gc)
executing action procedure
> (will-testator w)
#f
> (car c)
123

11.2.2 Tables

The following procedures implement the table data type. Tables are heterogenous structures
whose elements are indexed by keys which are arbitrary objects. Tables are similar to
association lists but are abstract and the access time for large tables is typically smaller.
Each key contained in the table is bound to a value. The length of the table is the number
of key/value bindings it contains. New key/value bindings can be added to a table, the
value bound to a key can be changed, and existing key/value bindings can be removed.

Chapter 11: Hashing and weak references 69

The references to the keys can either be all strong or all table-weak and the references
to the values can either be all strong or all table-weak. The garbage collector removes
key/value bindings from a table when 1) the key is a table-weak reference and the key is
unreachable or only reachable using paths from the roots that traverse at least one table-
weak reference, or 2) the value is a table-weak reference and the value is unreachable or
only reachable using paths from the roots that traverse at least one table-weak reference.
Key/value bindings that are removed by the garbage collector are reclaimed immediately.

Although there are several possible ways of implementing tables, the current implemen-
tation uses hashing with open-addressing. This is space efficient and provides constant-time
access. Hash tables are automatically resized to maintain the load within specified bounds.
The load is the number of active entries (the length of the table) divided by the total number
of entries in the hash table.

Tables are parameterized with a key comparison procedure. By default the equal?
procedure is used, but eq?, eqv?, string=?, string-ci=?, or a user defined procedure
can also be used. To support arbitrary key comparison procedures, tables are also param-
eterized with a hashing procedure accepting a key as its single parameter and returning a
fixnum result. The hashing procedure hash must be consistent with the key comparison
procedure test, that is, for any two keys k1 and k2 in the table, (test k1 k2) implies (=
(hash k1) (hash k2)). A default hashing procedure consistent with the key comparison
procedure is provided by the system. The default hashing procedure generally gives good
performance when the key comparison procedure is eq?, eqv?, equal?, string=?, and
string-ci=?. However, for user defined key comparison procedures, the default hashing
procedure always returns 0. This degrades the performance of the table to a linear search.

Tables can be compared for equality using the equal? procedure. Two tables X and Y
are considered equal by equal? when they have the same weakness attributes, the same
key comparison procedure, the same hashing procedure, the same length, and for all the
keys k in X, (equal? (table-ref X k) (table-ref Y k)).

[procedure](make-table [size: size] [init: init] [weak-keys:
weak-keys] [weak-values: weak-values] [test: test] [hash:
hash] [min-load: min-load] [max-load: max-load])

The procedure make-table returns a new table. The optional keyword parameters
specify various parameters of the table.
The size parameter is a nonnegative exact integer indicating the expected length of
the table. The system uses size to choose an appropriate initial size of the hash table
so that it does not need to be resized too often.
The init parameter indicates a value that is associated to keys that are not in the
table. When init is not specified, no value is associated to keys that are not in the
table.
The weak-keys and weak-values parameters are extended booleans indicating respec-
tively whether the keys and values are table-weak references (true) or strong references
(false). By default the keys and values are strong references.
The test parameter indicates the key comparison procedure. The default key com-
parison procedure is equal?. The key comparison procedures eq?, eqv?, equal?,
string=?, and string-ci=? are special because the system will use a reasonably
good hash procedure when none is specified.

Chapter 11: Hashing and weak references 70

The hash parameter indicates the hash procedure. This procedure must accept a
single key parameter, return a fixnum, and be consistent with the key comparison
procedure. When hash is not specified, a default hash procedure is used. The default
hash procedure is reasonably good when the key comparison procedure is eq?, eqv?,
equal?, string=?, or string-ci=?.
The min-load and max-load parameters are real numbers that indicate the minimum
and maximum load of the table respectively. The table is resized when adding or
deleting a key/value binding would bring the table’s load outside of this range. The
min-load parameter must be no less than 0.05 and the max-load parameter must
be no greater than 0.95. Moreover the difference between min-load and max-load
must be at least 0.20. When min-load is not specified, the value 0.45 is used. When
max-load is not specified, the value 0.90 is used.
For example:

> (define t (make-table))
> (table? t)
#t
> (table-length t)
0
> (table-set! t (list 1 2) 3)
> (table-set! t (list 4 5) 6)
> (table-ref t (list 1 2))
3
> (table-length t)
2

[procedure](table? obj)
The procedure table? returns #t when obj is a table and #f otherwise.
For example:

> (table? (make-table))
#t
> (table? 123)
#f

[procedure](table-length table)
The procedure table-length returns the number of key/value bindings contained
in the table table.
For example:

> (define t (make-table weak-keys: #t))
> (define x (list 1 2))
> (define y (list 3 4))
> (table-set! t x 111)
> (table-set! t y 222)
> (table-length t)
2
> (table-set! t x)
> (table-length t)
1
> (##gc)
> (table-length t)
1
> (set! y #f)
> (##gc)

Chapter 11: Hashing and weak references 71

> (table-length t)
0

[procedure](table-ref table key [default])
The procedure table-ref returns the value bound to the object key in the table
table. When key is not bound and default is specified, default is returned. When
default is not specified but an init parameter was specified when table was created,
init is returned. Otherwise an unbound-table-key-exception object is raised.

For example:
> (define t1 (make-table init: 999))
> (table-set! t1 (list 1 2) 3)
> (table-ref t1 (list 1 2))
3
> (table-ref t1 (list 4 5))
999
> (table-ref t1 (list 4 5) #f)
#f
> (define t2 (make-table))
> (table-ref t2 (list 4 5))
*** ERROR IN (console)@7.1 -- Unbound table key
(table-ref ’#<table #2> ’(4 5))

[procedure](table-set! table key [value])
The procedure table-set! binds the object key to value in the table table. When
value is not specified, if table contains a binding for key then the binding is removed
from table. The procedure table-set! returns an unspecified value.

For example:
> (define t (make-table))
> (table-set! t (list 1 2) 3)
> (table-set! t (list 4 5) 6)
> (table-set! t (list 4 5))
> (table-set! t (list 7 8))
> (table-ref t (list 1 2))
3
> (table-ref t (list 4 5))
*** ERROR IN (console)@7.1 -- Unbound table key
(table-ref ’#<table #2> ’(4 5))

[procedure](table-search proc table)
The procedure table-search searches the table table for a key/value binding for
which the two argument procedure proc returns a non false result. For each key/value
binding visited by table-search the procedure proc is called with the key as the
first argument and the value as the second argument. The procedure table-search
returns the first non false value returned by proc, or #f if proc returned #f for all
key/value bindings in table.

The order in which the key/value bindings are visited is unspecified and may vary
from one call of table-search to the next. While a call to table-search is
being performed on table, it is an error to call any of the following procedures on
table: table-ref, table-set!, table-search, table-for-each, table-
copy, table-merge, table-merge!, and table->list. It is also an error to
compare with equal? (directly or indirectly with member, assoc, table-ref, etc.)

Chapter 11: Hashing and weak references 72

an object that contains table. All these procedures may cause table to be reordered
and resized. This restriction allows a more efficient iteration over the key/value
bindings.

For example:
> (define square (make-table))
> (table-set! square 2 4)
> (table-set! square 3 9)
> (table-search (lambda (k v) (and (odd? k) v)) square)
9

[procedure](table-for-each proc table)
The procedure table-for-each calls the two argument procedure proc for each
key/value binding in the table table. The procedure proc is called with the key as the
first argument and the value as the second argument. The procedure table-for-
each returns an unspecified value.

The order in which the key/value bindings are visited is unspecified and may vary
from one call of table-for-each to the next. While a call to table-for-each is
being performed on table, it is an error to call any of the following procedures on ta-
ble: table-ref, table-set!, table-search, table-for-each, and table-
>list. It is also an error to compare with equal? (directly or indirectly with
member, assoc, table-ref, etc.) an object that contains table. All these proce-
dures may cause table to be reordered and resized. This restriction allows a more
efficient iteration over the key/value bindings.

For example:
> (define square (make-table))
> (table-set! square 2 4)
> (table-set! square 3 9)
> (table-for-each (lambda (k v) (write (list k v)) (newline)) square)
(2 4)
(3 9)

[procedure](table->list table)
The procedure table->list returns an association list containing the key/value
bindings in the table table. Each key/value binding yields a pair whose car field is
the key and whose cdr field is the value bound to that key. The order of the bindings
in the list is unspecified.

For example:
> (define square (make-table))
> (table-set! square 2 4)
> (table-set! square 3 9)
> (table->list square)
((3 . 9) (2 . 4))

[procedure](list->table list [size: size] [init: init] [weak-keys:
weak-keys] [weak-values: weak-values] [test: test] [hash:
hash] [min-load: min-load] [max-load: max-load])

The procedure list->table returns a new table containing the key/value bindings
in the association list list. The optional keyword parameters specify various parame-
ters of the table and have the same meaning as for the make-table procedure.

Chapter 11: Hashing and weak references 73

Each element of list is a pair whose car field is a key and whose cdr field is the value
bound to that key. If a key appears more than once in list (tested using the table’s
key comparison procedure) it is the first key/value binding in list that has precedence.
For example:

> (define t (list->table ’((b . 2) (a . 1) (c . 3) (a . 4))))
> (table->list t)
((a . 1) (b . 2) (c . 3))

[procedure](unbound-table-key-exception? obj)
[procedure](unbound-table-key-exception-procedure exc)
[procedure](unbound-table-key-exception-arguments exc)

Unbound-table-key-exception objects are raised by the procedure table-ref when
the key does not have a binding in the table. The parameter exc must be an unbound-
table-key-exception object.
The procedure unbound-table-key-exception? returns #t when obj is a
unbound-table-key-exception object and #f otherwise.
The procedure unbound-table-key-exception-procedure returns the proce-
dure that raised exc.
The procedure unbound-table-key-exception-arguments returns the list of
arguments of the procedure that raised exc.
For example:

> (define t (make-table))
> (define (handler exc)

(if (unbound-table-key-exception? exc)
(list (unbound-table-key-exception-procedure exc)

(unbound-table-key-exception-arguments exc))
’not-unbound-table-key-exception))

> (with-exception-catcher
handler
(lambda () (table-ref t ’(1 2))))

(#<procedure #2 table-ref> (#<table #3> (1 2)))

[procedure](table-copy table)
The procedure table-copy returns a new table containing the same key/value bind-
ings as table and the same table parameters (i.e. hash procedure, key comparison
procedure, key and value weakness, etc).
For example:

> (define t (list->table ’((b . 2) (a . 1) (c . 3))))
> (define x (table-copy t))
> (table-set! t ’b 99)
> (table->list t)
((a . 1) (b . 99) (c . 3))
> (table->list x)
((a . 1) (b . 2) (c . 3))

[procedure](table-merge! table1 table2
[table2-takes-precedence?])

The procedure table-merge! returns table1 after the key/value bindings contained
in table2 have been added to it. When a key exists both in table1 and table2, then
the parameter table2-takes-precedence? indicates which binding will be kept (the one

Chapter 11: Hashing and weak references 74

in table1 if table2-takes-precedence? is false, and the one in table2 otherwise). If
table2-takes-precedence? is not specified the binding in table1 is kept.
For example:

> (define t1 (list->table ’((a . 1) (b . 2) (c . 3))))
> (define t2 (list->table ’((a . 4) (b . 5) (z . 6))))
> (table->list (table-merge! t1 t2))
((a . 1) (b . 2) (c . 3) (z . 6))
> (define t1 (list->table ’((a . 1) (b . 2) (c . 3))))
> (define t2 (list->table ’((a . 4) (b . 5) (z . 6))))
> (table->list (table-merge! t1 t2 #t))
((a . 4) (b . 5) (c . 3) (z . 6))

[procedure](table-merge table1 table2
[table2-takes-precedence?])

The procedure table-merge returns a copy of table1 (created with table-copy)
to which the key/value bindings contained in table2 have been added using
table-merge!. When a key exists both in table1 and table2, then the parameter
table2-takes-precedence? indicates which binding will be kept (the one in
table1 if table2-takes-precedence? is false, and the one in table2 otherwise). If
table2-takes-precedence? is not specified the binding in table1 is kept.
For example:

> (define t1 (list->table ’((a . 1) (b . 2) (c . 3))))
> (define t2 (list->table ’((a . 4) (b . 5) (z . 6))))
> (table->list (table-merge t1 t2))
((a . 1) (b . 2) (c . 3) (z . 6))
> (table->list (table-merge t1 t2 #t))
((a . 4) (b . 5) (c . 3) (z . 6))

Chapter 12: Records 75

12 Records

[special form](define-structure name field . . .)
Record data types similar to Pascal records and C struct types can be defined
using the define-structure special form. The identifier name specifies the name
of the new data type. The structure name is followed by k identifiers naming each
field of the record. The define-structure expands into a set of definitions of the
following procedures:
• ‘make-name’ – A k argument procedure which constructs a new record from the

value of its k fields.
• ‘name?’ – A procedure which tests if its single argument is of the given record

type.
• ‘name-field ’ – For each field, a procedure taking as its single argument a value

of the given record type and returning the content of the corresponding field of
the record.

• ‘name-field-set!’ – For each field, a two argument procedure taking as its first
argument a value of the given record type. The second argument gets assigned
to the corresponding field of the record and the void object is returned.

Record data types have a printed representation that includes the name of the type
and the name and value of each field. Record data types can not be read by the read
procedure.
For example:

> (define-structure point x y color)
> (define p (make-point 3 5 ’red))
> p
#<point #2 x: 3 y: 5 color: red>
> (point-x p)
3
> (point-color p)
red
> (point-color-set! p ’black)
> p
#<point #2 x: 3 y: 5 color: black>

Chapter 13: Threads 76

13 Threads

Gambit supports the execution of multiple Scheme threads. These threads are managed
entirely by Gambit’s runtime and are not related to the host operating system’s threads.
Gambit’s runtime does not currently take advantage of multiprocessors (i.e. at most one
thread is running).

13.1 Introduction

Multithreading is a paradigm that is well suited for building complex systems such as:
servers, GUIs, and high-level operating systems. Gambit’s thread system offers mecha-
nisms for creating threads of execution and for synchronizing them. The thread system
also supports features which are useful in a real-time context, such as priorities, priority
inheritance and timeouts.

The thread system provides the following data types:

• Thread (a virtual processor which shares object space with all other threads)

• Mutex (a mutual exclusion device, also known as a lock and binary semaphore)

• Condition variable (a set of blocked threads)

13.2 Thread objects

A running thread is a thread that is currently executing. A runnable thread is a thread
that is ready to execute or running. A thread is blocked if it is waiting for a mutex to
become unlocked, an I/O operation to become possible, the end of a “sleep” period, etc.
A new thread is a thread that has been allocated but has not yet been initialized. An
initialized thread is a thread that can be made runnable. A new thread becomes runnable
when it is started by calling thread-start!. A terminated thread is a thread that can
no longer become runnable (but deadlocked threads are not considered terminated). The
only valid transitions between the thread states are from new to initialized, from initialized
to runnable, between runnable and blocked, and from any state except new to terminated
as indicated in the following diagram:

unblock
start <-------

NEW -------> INITIALIZED -------> RUNNABLE -------> BLOCKED
\ | block /
\ v /
+-----> TERMINATED <----+

Each thread has a base priority, which is a real number (where a higher numerical value
means a higher priority), a priority boost, which is a nonnegative real number represent-
ing the priority increase applied to a thread when it blocks, and a quantum, which is a
nonnegative real number representing a duration in seconds.

Each thread has a specific field which can be used in an application specific way to
associate data with the thread (some thread systems call this “thread local storage”).

Each thread has a mailbox which is used for inter-thread communication.

Chapter 13: Threads 77

13.3 Mutex objects

A mutex can be in one of four states: locked (either owned or not owned) and unlocked
(either abandoned or not abandoned).

An attempt to lock a mutex only succeeds if the mutex is in an unlocked state, otherwise
the current thread will wait. A mutex in the locked/owned state has an associated owner
thread, which by convention is the thread that is responsible for unlocking the mutex (this
case is typical of critical sections implemented as “lock mutex, perform operation, unlock
mutex”). A mutex in the locked/not-owned state is not linked to a particular thread.

A mutex becomes locked when a thread locks it using the ‘mutex-lock!’ primitive.
A mutex becomes unlocked/abandoned when the owner of a locked/owned mutex termi-
nates. A mutex becomes unlocked/not-abandoned when a thread unlocks it using the
‘mutex-unlock!’ primitive.

The mutex primitives do not implement recursive mutex semantics. An attempt to lock
a mutex that is locked implies that the current thread waits even if the mutex is owned by
the current thread (this can lead to a deadlock if no other thread unlocks the mutex).

Each mutex has a specific field which can be used in an application specific way to
associate data with the mutex.

13.4 Condition variable objects

A condition variable represents a set of blocked threads. These blocked threads are waiting
for a certain condition to become true. When a thread modifies some program state that
might make the condition true, the thread unblocks some number of threads (one or all
depending on the primitive used) so they can check if the condition is now true. This allows
complex forms of interthread synchronization to be expressed more conveniently than with
mutexes alone.

Each condition variable has a specific field which can be used in an application specific
way to associate data with the condition variable.

13.5 Fairness

In various situations the scheduler must select one thread from a set of threads (e.g. which
thread to run when a running thread blocks or expires its quantum, which thread to unblock
when a mutex becomes unlocked or a condition variable is signaled). The constraints on
the selection process determine the scheduler’s fairness. The selection depends on the order
in which threads become runnable or blocked and on the priority attached to the threads.

The definition of fairness requires the notion of time ordering, i.e. “event A occured
before event B”. For the purpose of establishing time ordering, the scheduler uses a clock
with a discrete, usually variable, resolution (a “tick”). Events occuring in a given tick can
be considered to be simultaneous (i.e. if event A occured before event B in real time, then
the scheduler will claim that event A occured before event B unless both events fall within
the same tick, in which case the scheduler arbitrarily chooses a time ordering).

Each thread T has three priorities which affect fairness; the base priority, the boosted
priority, and the effective priority.
• The base priority is the value contained in T’s base priority field (which is set with

the ‘thread-base-priority-set!’ primitive).

Chapter 13: Threads 78

• T’s boosted flag field contains a boolean that affects T’s boosted priority. When the
boosted flag field is false, the boosted priority is equal to the base priority, otherwise
the boosted priority is equal to the base priority plus the value contained in T’s priority
boost field (which is set with the ‘thread-priority-boost-set!’ primitive). The
boosted flag field is set to false when a thread is created, when its quantum expires,
and when thread-yield! is called. The boosted flag field is set to true when a thread
blocks. By carefully choosing the base priority and priority boost, relatively to the
other threads, it is possible to set up an interactive thread so that it has good I/O
response time without being a CPU hog when it performs long computations.

• The effective priority is equal to the maximum of T’s boosted priority and the effective
priority of all the threads that are blocked on a mutex owned by T. This priority
inheritance avoids priority inversion problems that would prevent a high priority thread
blocked at the entry of a critical section to progress because a low priority thread inside
the critical section is preempted for an arbitrary long time by a medium priority thread.

Let P(T) be the effective priority of thread T and let R(T) be the most recent time
when one of the following events occurred for thread T, thus making it runnable: T was
started by calling ‘thread-start!’, T called ‘thread-yield!’, T expired its quantum,
or T became unblocked. Let the relation NL(T1,T2), “T1 no later than T2”, be true if
P(T1)<P(T2) or P(T1)=P(T2) and R(T1)>R(T2), and false otherwise. The scheduler
will schedule the execution of threads in such a way that whenever there is at least one
runnable thread, 1) within a finite time at least one thread will be running, and 2) there
is never a pair of runnable threads T1 and T2 for which NL(T1,T2) is true and T1 is not
running and T2 is running.

A thread T expires its quantum when an amount of time equal to T’s quantum
has elapsed since T entered the running state and T did not block, terminate or call
‘thread-yield!’. At that point T exits the running state to allow other threads to run.
A thread’s quantum is thus an indication of the rate of progress of the thread relative to
the other threads of the same priority. Moreover, the resolution of the timer measuring
the running time may cause a certain deviation from the quantum, so a thread’s quantum
should only be viewed as an approximation of the time it can run before yielding to
another thread.

Threads blocked on a given mutex or condition variable will unblock in an order which
is consistent with decreasing priority and increasing blocking time (i.e. the highest priority
thread unblocks first, and among equal priority threads the one that blocked first unblocks
first).

13.6 Memory coherency

Read and write operations on the store (such as reading and writing a variable, an element
of a vector or a string) are not atomic. It is an error for a thread to write a location in the
store while some other thread reads or writes that same location. It is the responsibility of
the application to avoid write/read and write/write races through appropriate uses of the
synchronization primitives.

Concurrent reads and writes to ports are allowed. It is the responsibility of the im-
plementation to serialize accesses to a given port using the appropriate synchronization
primitives.

Chapter 13: Threads 79

13.7 Timeouts

All synchronization primitives which take a timeout parameter accept three types of values
as a timeout, with the following meaning:
• a time object represents an absolute point in time
• an exact or inexact real number represents a relative time in seconds from the moment

the primitive was called
• ‘#f’ means that there is no timeout

When a timeout denotes the current time or a time in the past, the synchronization
primitive claims that the timeout has been reached only after the other synchronization
conditions have been checked. Moreover the thread remains running (it does not enter the
blocked state). For example, (mutex-lock! m 0) will lock mutex m and return ‘#t’ if m
is currently unlocked, otherwise ‘#f’ is returned because the timeout is reached.

13.8 Primordial thread

The execution of a program is initially under the control of a single thread known as the
primordial thread. The primordial thread has an unspecified base priority, priority boost,
boosted flag, quantum, name, specific field, dynamic environment, ‘dynamic-wind’ stack,
and exception-handler. All threads are terminated when the primordial thread terminates
(normally or not).

13.9 Procedures

[procedure](current-thread)
This procedure returns the current thread. For example:

> (current-thread)
#<thread #1 primordial>
> (eq? (current-thread) (current-thread))
#t

[procedure](thread? obj)
This procedure returns #t when obj is a thread object and #f otherwise.
For example:

> (thread? (current-thread))
#t
> (thread? ’foo)
#f

[procedure](make-thread thunk [name [thread-group]])
This procedure creates and returns an initialized thread. This thread is not auto-
matically made runnable (the procedure thread-start! must be used for this). A
thread has the following fields: base priority, priority boost, boosted flag, quantum,
name, specific, end-result, end-exception, and a list of locked/owned mutexes it owns.
The thread’s execution consists of a call to thunk with the initial continuation. This
continuation causes the (then) current thread to store the result in its end-result field,
abandon all mutexes it owns, and finally terminate. The ‘dynamic-wind’ stack of
the initial continuation is empty. The optional name is an arbitrary Scheme object

Chapter 13: Threads 80

which identifies the thread (useful for debugging); it defaults to an unspecified value.
The specific field is set to an unspecified value. The optional thread-group indicates
which thread group this thread belongs to; it defaults to the thread group of the cur-
rent thread. The base priority, priority boost, and quantum of the thread are set to
the same value as the current thread and the boosted flag is set to false. The thread’s
mailbox is initially empty. The thread inherits the dynamic environment from the cur-
rent thread. Moreover, in this dynamic environment the exception-handler is bound
to the initial exception-handler which is a unary procedure which causes the (then)
current thread to store in its end-exception field an uncaught-exception object whose
“reason” is the argument of the handler, abandon all mutexes it owns, and finally
terminate.

For example:
> (make-thread (lambda () (write ’hello)))
#<thread #2>
> (make-thread (lambda () (write ’world)) ’a-name)
#<thread #3 a-name>

[procedure](thread-name thread)
This procedure returns the name of the thread. For example:

> (thread-name (make-thread (lambda () #f) ’foo))
foo

[procedure](thread-specific thread)
[procedure](thread-specific-set! thread obj)

The thread-specific procedure returns the content of the thread’s specific field.

The thread-specific-set! procedure stores obj into the thread’s specific field
and returns an unspecified value.

For example:
> (thread-specific-set! (current-thread) "hello")
> (thread-specific (current-thread))
"hello"

[procedure](thread-base-priority thread)
[procedure](thread-base-priority-set! thread priority)

The procedure thread-base-priority returns a real number which corresponds
to the base priority of the thread.

The procedure thread-base-priority-set! changes the base priority of the
thread to priority and returns an unspecified value. The priority must be a real
number.

For example:
> (thread-base-priority-set! (current-thread) 12.3)
> (thread-base-priority (current-thread))
12.3

[procedure](thread-priority-boost thread)
[procedure](thread-priority-boost-set! thread priority-boost)

The procedure thread-priority-boost returns a real number which corresponds
to the priority boost of the thread.

Chapter 13: Threads 81

The procedure thread-priority-boost-set! changes the priority boost of the
thread to priority-boost and returns an unspecified value. The priority-boost must
be a nonnegative real.
For example:

> (thread-priority-boost-set! (current-thread) 2.5)
> (thread-priority-boost (current-thread))
2.5

[procedure](thread-quantum thread)
[procedure](thread-quantum-set! thread quantum)

The procedure thread-quantum returns a real number which corresponds to the
quantum of the thread.
The procedure thread-quantum-set! changes the quantum of the thread to quan-
tum and returns an unspecified value. The quantum must be a nonnegative real. A
value of zero selects the smallest quantum supported by the implementation.
For example:

> (thread-quantum-set! (current-thread) 1.5)
> (thread-quantum (current-thread))
1.5
> (thread-quantum-set! (current-thread) 0)
> (thread-quantum (current-thread))
0.

[procedure](thread-start! thread)
This procedure makes thread runnable and returns the thread. The thread must be
an initialized thread.
For example:

> (let ((t (thread-start! (make-thread (lambda () (write ’a))))))
(write ’b)
(thread-join! t))

ab> or ba>

NOTE: It is useful to separate thread creation and thread activation to avoid the race
condition that would occur if the created thread tries to examine a table in which
the current thread stores the created thread. See the last example of the thread-
terminate! procedure which contains mutually recursive threads.

[procedure](thread-yield!)
This procedure causes the current thread to exit the running state as if its quantum
had expired and returns an unspecified value.
For example:

; a busy loop that avoids being too wasteful of the CPU

(let loop ()
(if (mutex-lock! m 0) ; try to lock m but don’t block

(begin
(display "locked mutex m")
(mutex-unlock! m))

(begin
(do-something-else)
(thread-yield!) ; relinquish rest of quantum
(loop))))

Chapter 13: Threads 82

[procedure](thread-sleep! timeout)
This procedure causes the current thread to wait until the timeout is reached and
returns an unspecified value. This blocks the thread only if timeout represents a
point in the future. It is an error for timeout to be ‘#f’.
For example:

; a clock with a gradual drift:

(let loop ((x 1))
(thread-sleep! 1)
(write x)
(loop (+ x 1)))

; a clock with no drift:

(let ((start (time->seconds (current-time)))
(let loop ((x 1))

(thread-sleep! (seconds->time (+ x start)))
(write x)
(loop (+ x 1))))

[procedure](thread-terminate! thread)
This procedure causes an abnormal termination of the thread. If the thread is not
already terminated, all mutexes owned by the thread become unlocked/abandoned
and a terminated-thread-exception object is stored in the thread’s end-exception field.
If thread is the current thread, thread-terminate! does not return. Otherwise
thread-terminate! returns an unspecified value; the termination of the thread
will occur at some point between the calling of thread-terminate! and a finite
time in the future (an explicit thread synchronization is needed to detect termination,
see thread-join!).
For example:

(define (amb thunk1 thunk2)
(let ((result #f)

(result-mutex (make-mutex))
(done-mutex (make-mutex)))

(letrec ((child1
(make-thread

(lambda ()
(let ((x (thunk1)))

(mutex-lock! result-mutex #f #f)
(set! result x)
(thread-terminate! child2)
(mutex-unlock! done-mutex)))))

(child2
(make-thread

(lambda ()
(let ((x (thunk2)))

(mutex-lock! result-mutex #f #f)
(set! result x)
(thread-terminate! child1)
(mutex-unlock! done-mutex))))))

(mutex-lock! done-mutex #f #f)
(thread-start! child1)
(thread-start! child2)
(mutex-lock! done-mutex #f #f)

Chapter 13: Threads 83

result)))

NOTE: This operation must be used carefully because it terminates a thread abruptly
and it is impossible for that thread to perform any kind of cleanup. This may be a
problem if the thread is in the middle of a critical section where some structure has
been put in an inconsistent state. However, another thread attempting to enter this
critical section will raise an abandoned-mutex-exception object because the mutex
is unlocked/abandoned. This helps avoid observing an inconsistent state. Clean
termination can be obtained by polling, as shown in the example below.
For example:

(define (spawn thunk)
(let ((t (make-thread thunk)))

(thread-specific-set! t #t)
(thread-start! t)
t))

(define (stop! thread)
(thread-specific-set! thread #f)
(thread-join! thread))

(define (keep-going?)
(thread-specific (current-thread)))

(define count!
(let ((m (make-mutex))

(i 0))
(lambda ()

(mutex-lock! m)
(let ((x (+ i 1)))

(set! i x)
(mutex-unlock! m)
x))))

(define (increment-forever!)
(let loop () (count!) (if (keep-going?) (loop))))

(let ((t1 (spawn increment-forever!))
(t2 (spawn increment-forever!)))

(thread-sleep! 1)
(stop! t1)
(stop! t2)
(count!)) ==> 377290

[procedure](thread-join! thread [timeout [timeout-val]])
This procedure causes the current thread to wait until the thread terminates (normally
or not) or until the timeout is reached if timeout is supplied. If the timeout is reached,
thread-join! returns timeout-val if it is supplied, otherwise a join-timeout-exception
object is raised. If the thread terminated normally, the content of the end-result field
is returned, otherwise the content of the end-exception field is raised.
For example:

(let ((t (thread-start! (make-thread (lambda () (expt 2 100))))))
(do-something-else)
(thread-join! t)) ==> 1267650600228229401496703205376

(let ((t (thread-start! (make-thread (lambda () (raise 123))))))

Chapter 13: Threads 84

(do-something-else)
(with-exception-handler

(lambda (exc)
(if (uncaught-exception? exc)

(* 10 (uncaught-exception-reason exc))
99999))

(lambda ()
(+ 1 (thread-join! t))))) ==> 1231

(define thread-alive?
(let ((unique (list ’unique)))

(lambda (thread)
; Note: this procedure raises an exception if
; the thread terminated abnormally.
(eq? (thread-join! thread 0 unique) unique))))

(define (wait-for-termination! thread)
(let ((eh (current-exception-handler)))

(with-exception-handler
(lambda (exc)

(if (not (or (terminated-thread-exception? exc)
(uncaught-exception? exc)))

(eh exc))) ; unexpected exceptions are handled by eh
(lambda ()

; The following call to thread-join! will wait until the
; thread terminates. If the thread terminated normally
; thread-join! will return normally. If the thread
; terminated abnormally then one of these two exception
; objects is raised by thread-join!:
; - terminated-thread-exception object
; - uncaught-exception object
(thread-join! thread)
#f)))) ; ignore result of thread-join!

[procedure](thread-send thread msg)
Each thread has a mailbox which stores messages delivered to the thread in the order
delivered.

The procedure thread-send adds the message msg at the end of the mailbox of
thread thread and returns an unspecified value.

For example:
> (thread-send (current-thread) 111)
> (thread-send (current-thread) 222)
> (thread-receive)
111
> (thread-receive)
222

[procedure](thread-receive [timeout [default]])
[procedure](thread-mailbox-next [timeout [default]])
[procedure](thread-mailbox-rewind)
[procedure](thread-mailbox-extract-and-rewind)

To allow a thread to examine the messages in its mailbox without removing them
from the mailbox, each thread has a mailbox cursor which normally points to the
last message accessed in the mailbox. When a mailbox cursor is rewound using

Chapter 13: Threads 85

the procedure thread-mailbox-rewind or thread-mailbox-extract-and-
rewind or thread-receive, the cursor does not point to a message, but the next
call to thread-receive and thread-mailbox-next will set the cursor to the
oldest message in the mailbox.

The procedure thread-receive advances the mailbox cursor of the current thread
to the next message, removes that message from the mailbox, rewinds the mailbox
cursor, and returns the message. When timeout is not specified, the current thread
will wait until a message is available in the mailbox. When timeout is specified
and default is not specified, a mailbox-receive-timeout-exception object is raised if
the timeout is reached before a message is available. When timeout is specified and
default is specified, default is returned if the timeout is reached before a message is
available.

The procedure thread-mailbox-next behaves like thread-receive except that
the message remains in the mailbox and the mailbox cursor is not rewound.

The procedures thread-mailbox-rewind or thread-mailbox-extract-
and-rewind rewind the mailbox cursor of the current thread so that the
next call to thread-mailbox-next and thread-receive will access the
oldest message in the mailbox. Additionally the procedure thread-mailbox-
extract-and-rewind will remove from the mailbox the message most recently
accessed by a call to thread-mailbox-next. When thread-mailbox-next
has not been called since the last call to thread-receive or thread-
mailbox-rewind or thread-mailbox-extract-and-rewind, a call to
thread-mailbox-extract-and-rewind only resets the mailbox cursor (no
message is removed).

For example:
> (thread-send (current-thread) 111)
> (thread-receive 1 999)
111
> (thread-send (current-thread) 222)
> (thread-send (current-thread) 333)
> (thread-mailbox-next 1 999)
222
> (thread-mailbox-next 1 999)
333
> (thread-mailbox-next 1 999)
999
> (thread-mailbox-extract-and-rewind)
> (thread-receive 1 999)
222
> (thread-receive 1 999)
999

[procedure](mailbox-receive-timeout-exception? obj)
[procedure](mailbox-receive-timeout-exception-procedure exc)
[procedure](mailbox-receive-timeout-exception-arguments exc)

Mailbox-receive-timeout-exception objects are raised by the procedures thread-
receive and thread-mailbox-next when a timeout expires before a message
is available and no default value is specified. The parameter exc must be a mailbox-
receive-timeout-exception object.

Chapter 13: Threads 86

The procedure mailbox-receive-timeout-exception? returns #t when obj
is a mailbox-receive-timeout-exception object and #f otherwise.
The procedure mailbox-receive-timeout-exception-procedure returns
the procedure that raised exc.
The procedure mailbox-receive-timeout-exception-arguments returns
the list of arguments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (mailbox-receive-timeout-exception? exc)

(list (mailbox-receive-timeout-exception-procedure exc)
(mailbox-receive-timeout-exception-arguments exc))

’not-mailbox-receive-timeout-exception))
> (with-exception-catcher

handler
(lambda () (thread-receive 1)))

(#<procedure #2 thread-receive> (1))

[procedure](mutex? obj)
This procedure returns #t when obj is a mutex object and #f otherwise.
For example:

> (mutex? (make-mutex))
#t
> (mutex? ’foo)
#f

[procedure](make-mutex [name])
This procedure returns a new mutex in the unlocked/not-abandoned state. The op-
tional name is an arbitrary Scheme object which identifies the mutex (useful for
debugging); it defaults to an unspecified value. The mutex’s specific field is set to an
unspecified value.
For example:

> (make-mutex)
#<mutex #2>
> (make-mutex ’foo)
#<mutex #3 foo>

[procedure](mutex-name mutex)
Returns the name of the mutex. For example:

> (mutex-name (make-mutex ’foo))
foo

[procedure](mutex-specific mutex)
[procedure](mutex-specific-set! mutex obj)

The mutex-specific procedure returns the content of the mutex’s specific field.
The mutex-specific-set! procedure stores obj into the mutex’s specific field
and returns an unspecified value.
For example:

> (define m (make-mutex))
> (mutex-specific-set! m "hello")
> (mutex-specific m)

Chapter 13: Threads 87

"hello"
> (define (mutex-lock-recursively! mutex)

(if (eq? (mutex-state mutex) (current-thread))
(let ((n (mutex-specific mutex)))

(mutex-specific-set! mutex (+ n 1)))
(begin

(mutex-lock! mutex)
(mutex-specific-set! mutex 0))))

> (define (mutex-unlock-recursively! mutex)
(let ((n (mutex-specific mutex)))

(if (= n 0)
(mutex-unlock! mutex)
(mutex-specific-set! mutex (- n 1)))))

> (mutex-lock-recursively! m)
> (mutex-lock-recursively! m)
> (mutex-lock-recursively! m)
> (mutex-specific m)
2

[procedure](mutex-state mutex)
Thos procedure returns information about the state of the mutex. The possible results
are:
• thread T: the mutex is in the locked/owned state and thread T is the owner of

the mutex

• symbol not-owned: the mutex is in the locked/not-owned state
• symbol abandoned: the mutex is in the unlocked/abandoned state
• symbol not-abandoned: the mutex is in the unlocked/not-abandoned state

For example:
(mutex-state (make-mutex)) ==> not-abandoned

(define (thread-alive? thread)
(let ((mutex (make-mutex)))

(mutex-lock! mutex #f thread)
(let ((state (mutex-state mutex)))

(mutex-unlock! mutex) ; avoid space leak
(eq? state thread))))

[procedure](mutex-lock! mutex [timeout [thread]])
This procedure locks mutex. If the mutex is currently locked, the current thread waits
until the mutex is unlocked, or until the timeout is reached if timeout is supplied.
If the timeout is reached, mutex-lock! returns ‘#f’. Otherwise, the state of the
mutex is changed as follows:
• if thread is ‘#f’ the mutex becomes locked/not-owned,
• otherwise, let T be thread (or the current thread if thread is not supplied),

• if T is terminated the mutex becomes unlocked/abandoned,
• otherwise mutex becomes locked/owned with T as the owner.

After changing the state of the mutex, an abandoned-mutex-exception object is raised
if the mutex was unlocked/abandoned before the state change, otherwise mutex-
lock! returns ‘#t’. It is not an error if the mutex is owned by the current thread
(but the current thread will have to wait).

Chapter 13: Threads 88

For example:

; an implementation of a mailbox object of depth one; this
; implementation does not behave well in the presence of forced
; thread terminations using thread-terminate! (deadlock can occur
; if a thread is terminated in the middle of a put! or get! operation)

(define (make-empty-mailbox)
(let ((put-mutex (make-mutex)) ; allow put! operation

(get-mutex (make-mutex))
(cell #f))

(define (put! obj)
(mutex-lock! put-mutex #f #f) ; prevent put! operation
(set! cell obj)
(mutex-unlock! get-mutex)) ; allow get! operation

(define (get!)
(mutex-lock! get-mutex #f #f) ; wait until object in mailbox
(let ((result cell))

(set! cell #f) ; prevent space leaks
(mutex-unlock! put-mutex) ; allow put! operation
result))

(mutex-lock! get-mutex #f #f) ; prevent get! operation

(lambda (msg)
(case msg

((put!) put!)
((get!) get!)
(else (error "unknown message"))))))

(define (mailbox-put! m obj) ((m ’put!) obj))
(define (mailbox-get! m) ((m ’get!)))

; an alternate implementation of thread-sleep!

(define (sleep! timeout)
(let ((m (make-mutex)))

(mutex-lock! m #f #f)
(mutex-lock! m timeout #f)))

; a procedure that waits for one of two mutexes to unlock

(define (lock-one-of! mutex1 mutex2)
; this procedure assumes that neither mutex1 or mutex2
; are owned by the current thread
(let ((ct (current-thread))

(done-mutex (make-mutex)))
(mutex-lock! done-mutex #f #f)
(let ((t1 (thread-start!

(make-thread
(lambda ()

(mutex-lock! mutex1 #f ct)
(mutex-unlock! done-mutex)))))

(t2 (thread-start!
(make-thread
(lambda ()

(mutex-lock! mutex2 #f ct)

Chapter 13: Threads 89

(mutex-unlock! done-mutex))))))
(mutex-lock! done-mutex #f #f)
(thread-terminate! t1)
(thread-terminate! t2)
(if (eq? (mutex-state mutex1) ct)

(begin
(if (eq? (mutex-state mutex2) ct)

(mutex-unlock! mutex2)) ; don’t lock both
mutex1)

mutex2))))

[procedure](mutex-unlock! mutex [condition-variable [timeout]])
This procedure unlocks the mutex by making it unlocked/not-abandoned. It is not
an error to unlock an unlocked mutex and a mutex that is owned by any thread.
If condition-variable is supplied, the current thread is blocked and added to the
condition-variable before unlocking mutex; the thread can unblock at any time but
no later than when an appropriate call to condition-variable-signal! or
condition-variable-broadcast! is performed (see below), and no later than
the timeout (if timeout is supplied). If there are threads waiting to lock this mutex,
the scheduler selects a thread, the mutex becomes locked/owned or locked/not-owned,
and the thread is unblocked. mutex-unlock! returns ‘#f’ when the timeout is
reached, otherwise it returns ‘#t’.

NOTE: The reason the thread can unblock at any time (when condition-variable is
supplied) is that the scheduler, when it detects a serious problem such as a deadlock,
must interrupt one of the blocked threads (such as the primordial thread) so that it can
perform some appropriate action. After a thread blocked on a condition-variable has
handled such an interrupt it would be wrong for the scheduler to return the thread
to the blocked state, because any calls to condition-variable-broadcast!
during the interrupt will have gone unnoticed. It is necessary for the thread to
remain runnable and return from the call to mutex-unlock! with a result of ‘#t’.

NOTE: mutex-unlock! is related to the “wait” operation on condition variables
available in other thread systems. The main difference is that “wait” automatically
locks mutex just after the thread is unblocked. This operation is not performed by
mutex-unlock! and so must be done by an explicit call to mutex-lock!. This has
the advantages that a different timeout and exception-handler can be specified on the
mutex-lock! and mutex-unlock! and the location of all the mutex operations is
clearly apparent.

For example:
(let loop ()

(mutex-lock! m)
(if (condition-is-true?)

(begin
(do-something-when-condition-is-true)
(mutex-unlock! m))

(begin
(mutex-unlock! m cv)
(loop))))

[procedure](condition-variable? obj)
This procedure returns #t when obj is a condition-variable object and #f otherwise.

Chapter 13: Threads 90

For example:
> (condition-variable? (make-condition-variable))
#t
> (condition-variable? ’foo)
#f

[procedure](make-condition-variable [name])
This procedure returns a new empty condition variable. The optional name is an
arbitrary Scheme object which identifies the condition variable (useful for debugging);
it defaults to an unspecified value. The condition variable’s specific field is set to an
unspecified value.
For example:

> (make-condition-variable)
#<condition-variable #2>

[procedure](condition-variable-name condition-variable)
This procedure returns the name of the condition-variable. For example:

> (condition-variable-name (make-condition-variable ’foo))
foo

[procedure](condition-variable-specific condition-variable)
[procedure](condition-variable-specific-set!

condition-variable obj)
The condition-variable-specific procedure returns the content of the
condition-variable’s specific field.
The condition-variable-specific-set! procedure stores obj into the
condition-variable’s specific field and returns an unspecified value.
For example:

> (define cv (make-condition-variable))
> (condition-variable-specific-set! cv "hello")
> (condition-variable-specific cv)
"hello"

[procedure](condition-variable-signal! condition-variable)
This procedure unblocks a thread blocked on the condition-variable (if there is at
least one) and returns an unspecified value.
For example:

; an implementation of a mailbox object of depth one; this
; implementation behaves gracefully when threads are forcibly
; terminated using thread-terminate! (an abandoned-mutex-exception
; object will be raised when a put! or get! operation is attempted
; after a thread is terminated in the middle of a put! or get!
; operation)

(define (make-empty-mailbox)
(let ((mutex (make-mutex))

(put-condvar (make-condition-variable))
(get-condvar (make-condition-variable))
(full? #f)
(cell #f))

(define (put! obj)

Chapter 13: Threads 91

(mutex-lock! mutex)
(if full?

(begin
(mutex-unlock! mutex put-condvar)
(put! obj))

(begin
(set! cell obj)
(set! full? #t)
(condition-variable-signal! get-condvar)
(mutex-unlock! mutex))))

(define (get!)
(mutex-lock! mutex)
(if (not full?)

(begin
(mutex-unlock! mutex get-condvar)
(get!))

(let ((result cell))
(set! cell #f) ; avoid space leaks
(set! full? #f)
(condition-variable-signal! put-condvar)
(mutex-unlock! mutex))))

(lambda (msg)
(case msg

((put!) put!)
((get!) get!)
(else (error "unknown message"))))))

(define (mailbox-put! m obj) ((m ’put!) obj))
(define (mailbox-get! m) ((m ’get!)))

[procedure](condition-variable-broadcast! condition-variable)
This procedure unblocks all the thread blocked on the condition-variable and returns
an unspecified value.
For example:

(define (make-semaphore n)
(vector n (make-mutex) (make-condition-variable)))

(define (semaphore-wait! sema)
(mutex-lock! (vector-ref sema 1))
(let ((n (vector-ref sema 0)))

(if (> n 0)
(begin

(vector-set! sema 0 (- n 1))
(mutex-unlock! (vector-ref sema 1)))

(begin
(mutex-unlock! (vector-ref sema 1) (vector-ref sema 2))
(semaphore-wait! sema))))

(define (semaphore-signal-by! sema increment)
(mutex-lock! (vector-ref sema 1))
(let ((n (+ (vector-ref sema 0) increment)))

(vector-set! sema 0 n)
(if (> n 0)

(condition-variable-broadcast! (vector-ref sema 2)))
(mutex-unlock! (vector-ref sema 1))))

Chapter 14: Dynamic environment 92

14 Dynamic environment

The dynamic environment is the structure which allows the system to find the value returned
by the standard procedures current-input-port and current-output-port. The
standard procedures with-input-from-file and with-output-to-file extend the
dynamic environment to produce a new dynamic environment which is in effect for the
dynamic extent of the call to the thunk passed as their last argument. These procedures are
essentially special purpose dynamic binding operations on hidden dynamic variables (one
for current-input-port and one for current-output-port). Gambit generalizes
this dynamic binding mechanism to allow the user to introduce new dynamic variables,
called parameter objects, and dynamically bind them. The parameter objects implemented
by Gambit are compatible with the specification of the “Parameter objects SRFI” (SRFI
39).

One important issue is the relationship between the dynamic environments of the parent
and child threads when a thread is created. Each thread has its own dynamic environment
that is accessed when looking up the value bound to a parameter object by that thread.
When a thread’s dynamic environment is extended it does not affect the dynamic environ-
ment of other threads. When a thread is created it is given a dynamic environment whose
bindings are inherited from the parent thread. In this inherited dynamic environment the
parameter objects are bound to the same cells as the parent’s dynamic environment (in
other words an assignment of a new value to a parameter object is visible in the other
thread).

Another important issue is the interaction between the dynamic-wind procedure and
dynamic environments. When a thread creates a continuation, the thread’s dynamic envi-
ronment and the ‘dynamic-wind’ stack are saved within the continuation (an alternate
but equivalent point of view is that the ‘dynamic-wind’ stack is part of the dynamic en-
vironment). When this continuation is invoked the required ‘dynamic-wind’ before and
after thunks are called and the saved dynamic environment is reinstated as the dynamic en-
vironment of the current thread. During the call to each required ‘dynamic-wind’ before
and after thunk, the dynamic environment and the ‘dynamic-wind’ stack in effect when
the corresponding ‘dynamic-wind’ was executed are reinstated. Note that this specifica-
tion precisely defines the semantics of calling ‘call-with-current-continuation’ or
invoking a continuation within a before or after thunk. The semantics are well defined even
when a continuation created by another thread is invoked. Below is an example exercising
the subtleties of this semantics.

(with-output-to-file
"foo"
(lambda ()

(let ((k (call-with-current-continuation
(lambda (exit)

(with-output-to-file
"bar"
(lambda ()

(dynamic-wind
(lambda ()

(write ’(b1))
(force-output))

(lambda ()
(let ((x (call-with-current-continuation

Chapter 14: Dynamic environment 93

(lambda (cont) (exit cont)))))
(write ’(t1))
(force-output)
x))

(lambda ()
(write ’(a1))
(force-output)))))))))

(if k
(dynamic-wind
(lambda ()

(write ’(b2))
(force-output))

(lambda ()
(with-output-to-file
"baz"
(lambda ()

(write ’(t2))
(force-output)
; go back inside (with-output-to-file "bar" ...)
(k #f))))

(lambda ()
(write ’(a2))
(force-output)))))))

The following actions will occur when this code is executed: (b1)(a1) is written to
“bar”, (b2) is then written to “foo”, (t2) is then written to “baz”, (a2) is then written
to “foo”, and finally (b1)(t1)(a1) is written to “bar”.

[procedure](make-parameter obj [filter])
The dynamic environment is composed of two parts: the local dynamic environment
and the global dynamic environment. There is a single global dynamic environment,
and it is used to lookup parameter objects that can’t be found in the local dynamic
environment.

The make-parameter procedure returns a new parameter object. The filter argu-
ment is a one argument conversion procedure. If it is not specified, filter defaults to
the identity function.

The global dynamic environment is updated to associate the parameter object to
a new cell. The initial content of the cell is the result of applying the conversion
procedure to obj.

A parameter object is a procedure which accepts zero or one argument. The cell
bound to a particular parameter object in the dynamic environment is accessed by
calling the parameter object. When no argument is passed, the content of the cell is
returned. When one argument is passed the content of the cell is updated with the
result of applying the parameter object’s conversion procedure to the argument. Note
that the conversion procedure can be used for guaranteeing the type of the parameter
object’s binding and/or to perform some conversion of the value.

For example:
> (define radix (make-parameter 10))
> (radix)
10
> (radix 2)
> (radix)

Chapter 14: Dynamic environment 94

2
> (define prompt

(make-parameter
123
(lambda (x)

(if (string? x)
x
(object->string x)))))

> (prompt)
"123"
> (prompt "$")
> (prompt)
"$"
> (define write-shared

(make-parameter
#f
(lambda (x)

(if (boolean? x)
x
(error "only booleans are accepted by write-shared")))))

> (write-shared 123)
*** ERROR IN ##make-parameter -- only booleans are accepted by write-
shared

[special form](parameterize ((procedure value). . .) body)
The parameterize form, evaluates all procedure and value expressions in an un-
specified order. All the procedure expressions must evaluate to procedures, either
parameter objects or procedures accepting zero and one argument. Then, for each
procedure p and in an unspecified order:
• If p is a parameter object a new cell is created, initialized, and bound to the

parameter object in the local dynamic environment. The value contained in
the cell is the result of applying the parameter object’s conversion procedure
to value. The resulting dynamic environment is then used for processing the
remaining bindings (or the evaluation of body if there are no other bindings).

• Otherwise p will be used according to the following protocol: we say that the
call (p) “gets p’s value” and that the call (p x) “sets p’s value to x”. First, the
parameterize form gets p’s value and saves it in a local variable. It then sets
p’s value to value. It then processes the remaining bindings (or evaluates body if
there are no other bindings). Then it sets p’s value to the saved value. These steps
are performed in a dynamic-wind so that it is possible to use continuations to
jump into and out of the body (i.e. the dynamic-wind’s before thunk sets p’s
value to value and the after thunk sets p’s value to the saved value).

The result(s) of the parameterize form are the result(s) of the body.
Note that using procedures instead of parameter objects may lead to unexpected re-
sults in multithreaded programs because the before and after thunks of the dynamic-
wind are not called when control switches between threads.
For example:

> (define radix (make-parameter 2))
> (define prompt

(make-parameter
123

Chapter 14: Dynamic environment 95

(lambda (x)
(if (string? x)

x
(object->string x)))))

> (radix)
2
> (parameterize ((radix 16)) (radix))
16
> (radix)
2
> (define (f n) (number->string n (radix)))
> (f 10)
"1010"
> (parameterize ((radix 8)) (f 10))
"12"
> (parameterize ((radix 8) (prompt (f 10))) (prompt))
"1010"
> (define p

(let ((x 1))
(lambda args

(if (null? args) x (set! x (car args))))))
> (let* ((a (p))

(b (parameterize ((p 2)) (list (p))))
(c (p)))

(list a b c))
(1 (2) 1)

Chapter 15: Exceptions 96

15 Exceptions

15.1 Exception-handling

Gambit’s exception-handling model is inspired from the withdrawn “Exception Handling
SRFI” (SRFI 12), the “Multithreading support SRFI” (SRFI 18), and the “Exception
Handling for Programs SRFI” (SRFI 34). The two fundamental operations are the dynamic
binding of an exception handler (i.e. the procedure with-exception-handler) and the
invocation of the exception handler (i.e. the procedure raise).

All predefined procedures which check for errors (including type errors, memory allo-
cation errors, host operating-system errors, etc) report these errors using the exception-
handling system (i.e. they “raise” an exception that can be handled in a user-defined
exception handler). When an exception is raised and the exception is not handled by a
user-defined exception handler, the predefined exception handler will display an error mes-
sage (if the primordial thread raised the exception) or the thread will silently terminate
with no error message (if it is not the primordial thread that raised the exception). This
default behavior can be changed through the ‘-:d’ runtime option (see Chapter 4 [Runtime
options], page 21).

Predefined procedures normally raise exceptions by performing a tail-call to the exception
handler (the exceptions are “complex” procedures such as eval, compile-file, read,
write, etc). This means that the continuation of the exception handler and of the REPL
that may be started due to this is normally the continuation of the predefined procedure
that raised the exception. By exiting the REPL with the ,(c expression) command
it is thus possible to resume the program as though the call to the predefined procedure
returned the value of expression. For example:

> (define (f x) (+ (car x) 1))
> (f 2) ; typo... we meant to say (f ’(2))
*** ERROR IN f, (console)@1.18 -- (Argument 1) PAIR expected
(car 2)
1> ,(c 2)
3

[procedure](current-exception-handler [new-exception-handler])
The parameter object current-exception-handler is bound to the current
exception-handler. Calling this procedure with no argument returns the current
exception-handler and calling this procedure with one argument sets the current
exception-handler to new-exception-handler.

For example:
> (current-exception-handler)
#<procedure #2 primordial-exception-handler>
> (current-exception-handler (lambda (exc) (pp exc) 999))
> (/ 1 0)
#<divide-by-zero-exception #3>
999

[procedure](with-exception-handler handler thunk)
Returns the result(s) of calling thunk with no arguments. The handler, which must be
a procedure, is installed as the current exception-handler in the dynamic environment

Chapter 15: Exceptions 97

in effect during the call to thunk. Note that the dynamic environment in effect during
the call to handler has handler as the exception-handler. Consequently, an exception
raised during the call to handler may lead to an infinite loop.
For example:

> (with-exception-handler
(lambda (e) (write e) 5)
(lambda () (+ 1 (* 2 3) 4)))

11
> (with-exception-handler

(lambda (e) (write e) 5)
(lambda () (+ 1 (* ’foo 3) 4)))

#<type-exception #2>10
> (with-exception-handler

(lambda (e) (write e 9))
(lambda () (+ 1 (* ’foo 3) 4)))

infinite loop

[procedure](with-exception-catcher handler thunk)
Returns the result(s) of calling thunk with no arguments. A new exception-handler is
installed as the current exception-handler in the dynamic environment in effect during
the call to thunk. This new exception-handler will call the handler, which must be a
procedure, with the exception object as an argument and with the same continuation
as the call to with-exception-catcher. This implies that the dynamic environ-
ment in effect during the call to handler is the same as the one in effect at the call to
with-exception-catcher. Consequently, an exception raised during the call to
handler will not lead to an infinite loop.
For example:

> (with-exception-catcher
(lambda (e) (write e) 5)
(lambda () (+ 1 (* 2 3) 4)))

11
> (with-exception-catcher

(lambda (e) (write e) 5)
(lambda () (+ 1 (* ’foo 3) 4)))

#<type-exception #2>5
> (with-exception-catcher

(lambda (e) (write e 9))
(lambda () (+ 1 (* ’foo 3) 4)))

*** ERROR IN (console)@7.1 -- (Argument 2) OUTPUT PORT expected
(write ’#<type-exception #3> 9)

[procedure](raise obj)
This procedure tail-calls the current exception-handler with obj as the sole argument.
If the exception-handler returns, the continuation of the call to raise is invoked.
For example:

> (with-exception-handler
(lambda (exc)

(pp exc)
100)

(lambda ()
(+ 1 (raise "hello"))))

"hello"
101

Chapter 15: Exceptions 98

[procedure](abort obj)
[procedure](noncontinuable-exception? obj)
[procedure](noncontinuable-exception-reason exc)

The procedure abort calls the current exception-handler with obj as the sole argu-
ment. If the exception-handler returns, the procedure abort will be tail-called with
a noncontinuable-exception object, whose reason field is obj, as sole argument.
Noncontinuable-exception objects are raised by the abort procedure when the
exception-handler returns. The parameter exc must be a noncontinuable-exception
object.
The procedure noncontinuable-exception? returns #t when obj is a
noncontinuable-exception object and #f otherwise.
The procedure noncontinuable-exception-reason returns the argument of
the call to abort that raised exc.
For example:

> (call-with-current-continuation
(lambda (k)

(with-exception-handler
(lambda (exc)

(pp exc)
(if (noncontinuable-exception? exc)

(k (list (noncontinuable-exception-reason exc)))
100))

(lambda ()
(+ 1 (abort "hello"))))))

"hello"
#<noncontinuable-exception #2>
("hello")

15.2 Exception objects related to memory management

[procedure](heap-overflow-exception? obj)
Heap-overflow-exception objects are raised when the allocation of an object would
cause the heap to use more memory space than is available.
The procedure heap-overflow-exception? returns #t when obj is a
heap-overflow-exception object and #f otherwise.
For example:

> (define (handler exc)
(if (heap-overflow-exception? exc)

exc
’not-heap-overflow-exception))

> (with-exception-catcher
handler
(lambda ()

(define (f x) (f (cons 1 x)))
(f ’())))

#<heap-overflow-exception #2>

[procedure](stack-overflow-exception? obj)
Stack-overflow-exception objects are raised when the allocation of a continuation
frame would cause the heap to use more memory space than is available.

Chapter 15: Exceptions 99

The procedure stack-overflow-exception? returns #t when obj is a stack-
overflow-exception object and #f otherwise.
For example:

> (define (handler exc)
(if (stack-overflow-exception? exc)

exc
’not-stack-overflow-exception))

> (with-exception-catcher
handler
(lambda ()

(define (f) (+ 1 (f)))
(f)))

#<stack-overflow-exception #2>

15.3 Exception objects related to the host environment

[procedure](os-exception? obj)
[procedure](os-exception-procedure exc)
[procedure](os-exception-arguments exc)
[procedure](os-exception-code exc)
[procedure](os-exception-message exc)

Os-exception objects are raised by procedures which access the host operating-
system’s services when the requested operation fails. The parameter exc must be a
os-exception object.
The procedure os-exception? returns #t when obj is a os-exception object and
#f otherwise.
The procedure os-exception-procedure returns the procedure that raised exc.
The procedure os-exception-arguments returns the list of arguments of the
procedure that raised exc.
The procedure os-exception-code returns an exact integer error code that can
be converted to a string by the err-code->string procedure. Note that the error
code is operating-system dependent.
The procedure os-exception-message returns #f or a string giving details of the
exception in a human-readable form.
For example:

> (define (handler exc)
(if (os-exception? exc)

(list (os-exception-procedure exc)
(os-exception-arguments exc)
(err-code->string (os-exception-code exc))
(os-exception-message exc))

’not-os-exception))
> (with-exception-catcher

handler
(lambda () (host-info "x.y.z")))

(#<procedure #2 host-info> ("x.y.z") "Unknown host" #f)

[procedure](no-such-file-or-directory-exception? obj)
[procedure](no-such-file-or-directory-exception-procedure

exc)

Chapter 15: Exceptions 100

[procedure](no-such-file-or-directory-exception-arguments
exc)

No-such-file-or-directory-exception objects are raised by procedures which access the
filesystem (such as open-input-file and directory-files) when the path
specified can’t be found on the filesystem. The parameter exc must be a no-such-file-
or-directory-exception object.
The procedure no-such-file-or-directory-exception? returns #t when
obj is a no-such-file-or-directory-exception object and #f otherwise.
The procedure no-such-file-or-directory-exception-procedure returns
the procedure that raised exc.
The procedure no-such-file-or-directory-exception-arguments returns
the list of arguments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (no-such-file-or-directory-exception? exc)

(list (no-such-file-or-directory-exception-procedure exc)
(no-such-file-or-directory-exception-arguments exc))

’not-no-such-file-or-directory-exception))
> (with-exception-catcher

handler
(lambda () (with-input-from-file "nofile" read)))

(#<procedure #2 with-input-from-file> ("nofile" #<procedure #3 read>))

[procedure](unbound-os-environment-variable-exception? obj)
[procedure](unbound-os-environment-variable-exception-procedure

exc)
[procedure](unbound-os-environment-variable-exception-arguments

exc)
Unbound-os-environment-variable-exception objects are raised when an unbound
operating-system environment variable is accessed by the procedures getenv and
setenv. The parameter exc must be an unbound-os-environment-variable-exception
object.
The procedure unbound-os-environment-variable-exception? returns #t
when obj is an unbound-os-environment-variable-exception object and #f otherwise.
The procedure unbound-os-environment-variable-exception-
procedure returns the procedure that raised exc.
The procedure unbound-os-environment-variable-exception-
arguments returns the list of arguments of the procedure that raised
exc.
For example:

> (define (handler exc)
(if (unbound-os-environment-variable-exception? exc)

(list (unbound-os-environment-variable-exception-procedure exc)
(unbound-os-environment-variable-exception-arguments exc))

’not-unbound-os-environment-variable-exception))
> (with-exception-catcher

handler
(lambda () (getenv "DOES_NOT_EXIST")))

(#<procedure #2 getenv> ("DOES_NOT_EXIST"))

Chapter 15: Exceptions 101

15.4 Exception objects related to threads

[procedure](scheduler-exception? obj)
[procedure](scheduler-exception-reason exc)

Scheduler-exception objects are raised by the scheduler when some operation re-
quested from the host operating system failed (e.g. checking the status of the devices
in order to wake up threads waiting to perform I/O on these devices). The parameter
exc must be a scheduler-exception object.

The procedure scheduler-exception? returns #t when obj is a scheduler-
exception object and #f otherwise.

The procedure scheduler-exception-reason returns the os-exception object
that describes the failure detected by the scheduler.

[procedure](deadlock-exception? obj)
Deadlock-exception objects are raised when the scheduler discovers that all threads
are blocked and can make no further progress. In that case the scheduler unblocks
the primordial-thread and forces it to raise a deadlock-exception object.

The procedure deadlock-exception? returns #t when obj is a deadlock-exception
object and #f otherwise.

For example:
> (define (handler exc)

(if (deadlock-exception? exc)
exc
’not-deadlock-exception))

> (with-exception-catcher
handler
(lambda () (read (open-vector))))

#<deadlock-exception #2>

[procedure](abandoned-mutex-exception? obj)
Abandoned-mutex-exception objects are raised when the current thread locks a mutex
that was owned by a thread which terminated (see mutex-lock!).

The procedure abandoned-mutex-exception? returns #t when obj is a
abandoned-mutex-exception object and #f otherwise.

For example:
> (define (handler exc)

(if (abandoned-mutex-exception? exc)
exc
’not-abandoned-mutex-exception))

> (with-exception-catcher
handler
(lambda ()

(let ((m (make-mutex)))
(thread-join!

(thread-start!
(make-thread

(lambda () (mutex-lock! m)))))
(mutex-lock! m))))

#<abandoned-mutex-exception #2>

Chapter 15: Exceptions 102

[procedure](join-timeout-exception? obj)
[procedure](join-timeout-exception-procedure exc)
[procedure](join-timeout-exception-arguments exc)

Join-timeout-exception objects are raised when a call to the thread-join! pro-
cedure reaches its timeout before the target thread terminates and a timeout-value
parameter is not specified. The parameter exc must be a join-timeout-exception
object.
The procedure join-timeout-exception? returns #t when obj is a join-timeout-
exception object and #f otherwise.
The procedure join-timeout-exception-procedure returns the procedure
that raised exc.
The procedure join-timeout-exception-arguments returns the list of argu-
ments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (join-timeout-exception? exc)

(list (join-timeout-exception-procedure exc)
(join-timeout-exception-arguments exc))

’not-join-timeout-exception))
> (with-exception-catcher

handler
(lambda ()

(thread-join!
(thread-start!

(make-thread
(lambda () (thread-sleep! 10))))

5)))
(#<procedure #2 thread-join!> (#<thread #3> 5))

[procedure](started-thread-exception? obj)
[procedure](started-thread-exception-procedure exc)
[procedure](started-thread-exception-arguments exc)

Started-thread-exception objects are raised when the target thread of a call to the
procedure thread-start! is already started. The parameter exc must be a started-
thread-exception object.
The procedure started-thread-exception? returns #t when obj is a started-
thread-exception object and #f otherwise.
The procedure started-thread-exception-procedure returns the procedure
that raised exc.
The procedure started-thread-exception-arguments returns the list of ar-
guments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (started-thread-exception? exc)

(list (started-thread-exception-procedure exc)
(started-thread-exception-arguments exc))

’not-started-thread-exception))
> (with-exception-catcher

handler

Chapter 15: Exceptions 103

(lambda ()
(let ((t (make-thread (lambda () (expt 2 1000)))))

(thread-start! t)
(thread-start! t))))

(#<procedure #2 thread-start!> (#<thread #3>))

[procedure](terminated-thread-exception? obj)
[procedure](terminated-thread-exception-procedure exc)
[procedure](terminated-thread-exception-arguments exc)

Terminated-thread-exception objects are raised when the thread-join! procedure
is called and the target thread has terminated as a result of a call to the thread-
terminate! procedure. The parameter exc must be a terminated-thread-exception
object.
The procedure terminated-thread-exception? returns #t when obj is a
terminated-thread-exception object and #f otherwise.
The procedure terminated-thread-exception-procedure returns the proce-
dure that raised exc.
The procedure terminated-thread-exception-arguments returns the list of
arguments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (terminated-thread-exception? exc)

(list (terminated-thread-exception-procedure exc)
(terminated-thread-exception-arguments exc))

’not-terminated-thread-exception))
> (with-exception-catcher

handler
(lambda ()

(thread-join!
(thread-start!

(make-thread
(lambda () (thread-terminate! (current-thread))))))))

(#<procedure #2 thread-join!> (#<thread #3>))

[procedure](uncaught-exception? obj)
[procedure](uncaught-exception-procedure exc)
[procedure](uncaught-exception-arguments exc)
[procedure](uncaught-exception-reason exc)

Uncaught-exception objects are raised when an object is raised in a thread and that
thread does not handle it (i.e. the thread terminated because it did not catch an
exception it raised). The parameter exc must be an uncaught-exception object.
The procedure uncaught-exception? returns #t when obj is an uncaught-
exception object and #f otherwise.
The procedure uncaught-exception-procedure returns the procedure that
raised exc.
The procedure uncaught-exception-arguments returns the list of arguments
of the procedure that raised exc.
The procedure uncaught-exception-reason returns the object that was raised
by the thread and not handled by that thread.

Chapter 15: Exceptions 104

For example:
> (define (handler exc)

(if (uncaught-exception? exc)
(list (uncaught-exception-procedure exc)

(uncaught-exception-arguments exc)
(uncaught-exception-reason exc))

’not-uncaught-exception))
> (with-exception-catcher

handler
(lambda ()

(thread-join!
(thread-start!

(make-thread
(lambda () (open-input-file "data" 99)))))))

(#<procedure #2 thread-join!>
(#<thread #3>)
#<wrong-number-of-arguments-exception #4>)

15.5 Exception objects related to C-interface

[procedure](cfun-conversion-exception? obj)
[procedure](cfun-conversion-exception-procedure exc)
[procedure](cfun-conversion-exception-arguments exc)
[procedure](cfun-conversion-exception-code exc)
[procedure](cfun-conversion-exception-message exc)

Cfun-conversion-exception objects are raised by the C-interface when converting be-
tween the Scheme representation and the C representation of a value during a call
from Scheme to C. The parameter exc must be a cfun-conversion-exception object.
The procedure cfun-conversion-exception? returns #t when obj is a cfun-
conversion-exception object and #f otherwise.
The procedure cfun-conversion-exception-procedure returns the proce-
dure that raised exc.
The procedure cfun-conversion-exception-arguments returns the list of ar-
guments of the procedure that raised exc.
The procedure cfun-conversion-exception-code returns an exact integer er-
ror code that can be converted to a string by the err-code->string procedure.
The procedure cfun-conversion-exception-message returns #f or a string
giving details of the exception in a human-readable form.
For example:

$ cat test1.scm
(define weird

(c-lambda (char-string) nonnull-char-string
"___result = ___arg1;"))

$ gsc test1.scm
$ gsi
Gambit v4.2.2

> (load "test1")
"/Users/feeley/gambit/doc/test1.o1"
> (weird "hello")
"hello"

Chapter 15: Exceptions 105

> (define (handler exc)
(if (cfun-conversion-exception? exc)

(list (cfun-conversion-exception-procedure exc)
(cfun-conversion-exception-arguments exc)
(err-code->string (cfun-conversion-exception-code exc))
(cfun-conversion-exception-message exc))

’not-cfun-conversion-exception))
> (with-exception-catcher

handler
(lambda () (weird ’not-a-string)))

(#<procedure #2 weird>
(not-a-string)
"(Argument 1) Can’t convert to C char-string"
#f)

> (with-exception-catcher
handler
(lambda () (weird #f)))

(#<procedure #2 weird>
(#f)
"Can’t convert result from C nonnull-char-string"
#f)

[procedure](sfun-conversion-exception? obj)
[procedure](sfun-conversion-exception-procedure exc)
[procedure](sfun-conversion-exception-arguments exc)
[procedure](sfun-conversion-exception-code exc)
[procedure](sfun-conversion-exception-message exc)

Sfun-conversion-exception objects are raised by the C-interface when converting be-
tween the Scheme representation and the C representation of a value during a call
from C to Scheme. The parameter exc must be a sfun-conversion-exception object.
The procedure sfun-conversion-exception? returns #t when obj is a sfun-
conversion-exception object and #f otherwise.
The procedure sfun-conversion-exception-procedure returns the proce-
dure that raised exc.
The procedure sfun-conversion-exception-arguments returns the list of ar-
guments of the procedure that raised exc.
The procedure sfun-conversion-exception-code returns an exact integer er-
ror code that can be converted to a string by the err-code->string procedure.
The procedure sfun-conversion-exception-message returns #f or a string
giving details of the exception in a human-readable form.
For example:

$ cat test2.scm
(c-define (f str) (nonnull-char-string) int "f" ""

(string->number str))
(define t1 (c-lambda () int "___result = f (\"123\");"))
(define t2 (c-lambda () int "___result = f (0);"))
(define t3 (c-lambda () int "___result = f (\"1.5\");"))
$ gsc test2.scm
$ gsi
Gambit v4.2.2

> (load "test2")

Chapter 15: Exceptions 106

"/u/feeley/test2.o1"
> (t1)
123
> (define (handler exc)

(if (sfun-conversion-exception? exc)
(list (sfun-conversion-exception-procedure exc)

(sfun-conversion-exception-arguments exc)
(err-code->string (sfun-conversion-exception-code exc))
(sfun-conversion-exception-message exc))

’not-sfun-conversion-exception))
> (with-exception-catcher handler t2)
(#<procedure #2 f>
()
"(Argument 1) Can’t convert from C nonnull-char-string"
#f)

> (with-exception-catcher handler t3)
(#<procedure #2 f> () "Can’t convert result to C int" #f)

[procedure](multiple-c-return-exception? obj)
Multiple-c-return-exception objects are raised by the C-interface when a C to Scheme
procedure call returns and that call’s stack frame is no longer on the C stack because
the call has already returned, or has been removed from the C stack by a longjump.

The procedure multiple-c-return-exception? returns #t when obj is a
multiple-c-return-exception object and #f otherwise.

For example:
$ cat test3.scm
(c-define (f str) (char-string) scheme-object "f" ""

(pp (list ’entry ’str= str))
(let ((k (call-with-current-continuation (lambda (k) k))))

(pp (list ’exit ’k= k))
k))

(define scheme-to-c-to-scheme-and-back
(c-lambda (char-string) scheme-object

"___result = f (___arg1);"))
$ gsc test3.scm
$ gsi
Gambit v4.2.2

> (load "test3")
"/Users/feeley/gambit/doc/test3.o1"
> (define (handler exc)

(if (multiple-c-return-exception? exc)
exc
’not-multiple-c-return-exception))

> (with-exception-catcher
handler
(lambda ()

(let ((c (scheme-to-c-to-scheme-and-back "hello")))
(pp c)
(c 999))))

(entry str= "hello")
(exit k= #<procedure #2>)
#<procedure #2>
(exit k= 999)
#<multiple-c-return-exception #3>

Chapter 15: Exceptions 107

15.6 Exception objects related to the reader

[procedure](datum-parsing-exception? obj)
[procedure](datum-parsing-exception-kind exc)
[procedure](datum-parsing-exception-parameters exc)
[procedure](datum-parsing-exception-readenv exc)

Datum-parsing-exception objects are raised by the reader (i.e. the read procedure)
when the input does not conform to the grammar for datum. The parameter exc
must be a datum-parsing-exception object.

The procedure datum-parsing-exception? returns #t when obj is a datum-
parsing-exception object and #f otherwise.

The procedure datum-parsing-exception-kind returns a symbol denoting the
kind of parsing error that was encountered by the reader when it raised exc. Here is
a table of the possible return values:

datum-or-eof-expected Datum or EOF expected
datum-expected Datum expected
improperly-placed-dot Improperly placed dot
incomplete-form-eof-reached Incomplete form, EOF reached
incomplete-form Incomplete form
character-out-of-range Character out of range
invalid-character-name Invalid ’#\’ name
illegal-character Illegal character
s8-expected Signed 8 bit exact integer expected
u8-expected Unsigned 8 bit exact integer expected
s16-expected Signed 16 bit exact integer expected
u16-expected Unsigned 16 bit exact integer expected
s32-expected Signed 32 bit exact integer expected
u32-expected Unsigned 32 bit exact integer expected
s64-expected Signed 64 bit exact integer expected
u64-expected Unsigned 64 bit exact integer expected
inexact-real-expected Inexact real expected
invalid-hex-escape Invalid hexadecimal escape
invalid-escaped-character Invalid escaped character
open-paren-expected ’(’ expected
invalid-token Invalid token
invalid-sharp-bang-name Invalid ’#!’ name
duplicate-label-definition Duplicate definition for label
missing-label-definition Missing definition for label
illegal-label-definition Illegal definition of label
invalid-infix-syntax-character Invalid infix syntax character
invalid-infix-syntax-number Invalid infix syntax number
invalid-infix-syntax Invalid infix syntax

Chapter 15: Exceptions 108

The procedure datum-parsing-exception-parameters returns a list of the
parameters associated with the parsing error that was encountered by the reader
when it raised exc.

For example:
> (define (handler exc)

(if (datum-parsing-exception? exc)
(list (datum-parsing-exception-kind exc)

(datum-parsing-exception-parameters exc))
’not-datum-parsing-exception))

> (with-exception-catcher
handler
(lambda ()

(with-input-from-string "(s #\\pace)" read)))
(invalid-character-name ("pace"))

15.7 Exception objects related to evaluation and
compilation

[procedure](expression-parsing-exception? obj)
[procedure](expression-parsing-exception-kind exc)
[procedure](expression-parsing-exception-parameters exc)
[procedure](expression-parsing-exception-source exc)

Expression-parsing-exception objects are raised by the evaluator and compiler (i.e.
the procedures eval, compile-file, etc) when the input does not conform to the
grammar for expression. The parameter exc must be a expression-parsing-exception
object.

The procedure expression-parsing-exception? returns #t when obj is a
expression-parsing-exception object and #f otherwise.

The procedure expression-parsing-exception-kind returns a symbol denot-
ing the kind of parsing error that was encountered by the evaluator or compiler when
it raised exc. Here is a table of the possible return values:

id-expected Identifier expected
ill-formed-namespace Ill-formed namespace
ill-formed-namespace-prefix Ill-formed namespace prefix
namespace-prefix-must-be-string Namespace prefix must be a string
macro-used-as-variable Macro name can’t be used as a variable
ill-formed-macro-transformer Macro transformer must be a lambda

expression
reserved-used-as-variable Reserved identifier can’t be used as a

variable
ill-formed-special-form Ill-formed special form
cannot-open-file Can’t open file
filename-expected Filename expected
ill-placed-define Ill-placed ’define’
ill-placed-**include Ill-placed ’##include’
ill-placed-**define-macro Ill-placed ’##define-macro’
ill-placed-**declare Ill-placed ’##declare’

Chapter 15: Exceptions 109

ill-placed-**namespace Ill-placed ’##namespace’
ill-formed-expression Ill-formed expression
unsupported-special-form Interpreter does not support
ill-placed-unquote Ill-placed ’unquote’
ill-placed-unquote-splicing Ill-placed ’unquote-splicing’
parameter-must-be-id Parameter must be an identifier
parameter-must-be-id-or-default Parameter must be an identifier or default

binding
duplicate-parameter Duplicate parameter in parameter list
ill-placed-dotted-rest-parameter Ill-placed dotted rest parameter
parameter-expected-after-rest #!rest must be followed by a parameter
ill-formed-default Ill-formed default binding
ill-placed-optional Ill-placed #!optional
ill-placed-rest Ill-placed #!rest
ill-placed-key Ill-placed #!key
key-expected-after-rest #!key expected after rest parameter
ill-placed-default Ill-placed default binding
duplicate-variable-definition Duplicate definition of a variable
empty-body Body must contain at least one expression
variable-must-be-id Defined variable must be an identifier
else-clause-not-last Else clause must be last
ill-formed-selector-list Ill-formed selector list
duplicate-variable-binding Duplicate variable in bindings
ill-formed-binding-list Ill-formed binding list
ill-formed-call Ill-formed procedure call
ill-formed-cond-expand Ill-formed ’cond-expand’
unfulfilled-cond-expand Unfulfilled ’cond-expand’

The procedure expression-parsing-exception-parameters returns a list of
the parameters associated with the parsing error that was encountered by the evalu-
ator or compiler when it raised exc.

For example:
> (define (handler exc)

(if (expression-parsing-exception? exc)
(list (expression-parsing-exception-kind exc)

(expression-parsing-exception-parameters exc))
’not-expression-parsing-exception))

> (with-exception-catcher
handler
(lambda ()

(eval ’(+ do 1))))
(reserved-used-as-variable (do))

[procedure](unbound-global-exception? obj)
[procedure](unbound-global-exception-variable exc)
[procedure](unbound-global-exception-code exc)
[procedure](unbound-global-exception-rte exc)

Unbound-global-exception objects are raised when an unbound global variable is ac-
cessed. The parameter exc must be an unbound-global-exception object.

Chapter 15: Exceptions 110

The procedure unbound-global-exception? returns #t when obj is an
unbound-global-exception object and #f otherwise.
The procedure unbound-global-exception-variable returns a symbol iden-
tifying the unbound global variable.
For example:

> (define (handler exc)
(if (unbound-global-exception? exc)

(list ’variable= (unbound-global-exception-variable exc))
’not-unbound-global-exception))

> (with-exception-catcher
handler
(lambda () foo))

(variable= foo)

15.8 Exception objects related to type checking

[procedure](type-exception? obj)
[procedure](type-exception-procedure exc)
[procedure](type-exception-arguments exc)
[procedure](type-exception-arg-num exc)
[procedure](type-exception-type-id exc)

Type-exception objects are raised when a primitive procedure is called with an argu-
ment of incorrect type (i.e. when a run time type-check fails). The parameter exc
must be a type-exception object.
The procedure type-exception? returns #t when obj is a type-exception object
and #f otherwise.
The procedure type-exception-procedure returns the procedure that raised
exc.
The procedure type-exception-arguments returns the list of arguments of the
procedure that raised exc.
The procedure type-exception-arg-num returns the position of the argument
whose type is incorrect. Position 1 is the first argument.
The procedure type-exception-type-id returns an identifier of the type
expected. The type-id can be a symbol, such as number and string-or-
nonnegative-fixnum, or a record type descriptor.
For example:

> (define (handler exc)
(if (type-exception? exc)

(list (type-exception-procedure exc)
(type-exception-arguments exc)
(type-exception-arg-num exc)
(type-exception-type-id exc))

’not-type-exception))
> (with-exception-catcher

handler
(lambda () (vector-ref ’#(a b c) ’foo)))

(#<procedure #2 vector-ref> (#(a b c) foo) 2 exact-integer)
> (with-exception-catcher

handler

Chapter 15: Exceptions 111

(lambda () (time->seconds ’foo)))
(#<procedure #3 time->seconds> (foo) 1 #<type #4 time>)

[procedure](range-exception? obj)
[procedure](range-exception-procedure exc)
[procedure](range-exception-arguments exc)
[procedure](range-exception-arg-num exc)

Range-exception objects are raised when a numeric parameter is not in the allowed
range. The parameter exc must be a range-exception object.
The procedure range-exception? returns #t when obj is a range-exception object
and #f otherwise.
The procedure range-exception-procedure returns the procedure that raised
exc.
The procedure range-exception-arguments returns the list of arguments of the
procedure that raised exc.
The procedure range-exception-arg-num returns the position of the argument
which is not in the allowed range. Position 1 is the first argument.
For example:

> (define (handler exc)
(if (range-exception? exc)

(list (range-exception-procedure exc)
(range-exception-arguments exc)
(range-exception-arg-num exc))

’not-range-exception))
> (with-exception-catcher

handler
(lambda () (string-ref "abcde" 10)))

(#<procedure #2 string-ref> ("abcde" 10) 2)

[procedure](divide-by-zero-exception? obj)
[procedure](divide-by-zero-exception-procedure exc)
[procedure](divide-by-zero-exception-arguments exc)

Divide-by-zero-exception objects are raised when a division by zero is attempted. The
parameter exc must be a divide-by-zero-exception object.
The procedure divide-by-zero-exception? returns #t when obj is a divide-
by-zero-exception object and #f otherwise.
The procedure divide-by-zero-exception-procedure returns the procedure
that raised exc.
The procedure divide-by-zero-exception-arguments returns the list of ar-
guments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (divide-by-zero-exception? exc)

(list (divide-by-zero-exception-procedure exc)
(divide-by-zero-exception-arguments exc))

’not-divide-by-zero-exception))
> (with-exception-catcher

handler
(lambda () (/ 5 0 7)))

(#<procedure #2 /> (5 0 7))

Chapter 15: Exceptions 112

[procedure](improper-length-list-exception? obj)
[procedure](improper-length-list-exception-procedure exc)
[procedure](improper-length-list-exception-arguments exc)
[procedure](improper-length-list-exception-arg-num exc)

Improper-length-list-exception objects are raised by the map and for-each proce-
dures when they are called with two or more list arguments and the lists are not of the
same length. The parameter exc must be an improper-length-list-exception object.
The procedure improper-length-list-exception? returns #t when obj is an
improper-length-list-exception object and #f otherwise.
The procedure improper-length-list-exception-procedure returns the
procedure that raised exc.
The procedure improper-length-list-exception-arguments returns the
list of arguments of the procedure that raised exc.
The procedure improper-length-list-exception-arg-num returns the posi-
tion of the argument whose length is the shortest. Position 1 is the first argument.
For example:

> (define (handler exc)
(if (improper-length-list-exception? exc)

(list (improper-length-list-exception-procedure exc)
(improper-length-list-exception-arguments exc)
(improper-length-list-exception-arg-num exc))

’not-improper-length-list-exception))
> (with-exception-catcher

handler
(lambda () (map + ’(1 2) ’(3) ’(4 5))))

(#<procedure #2 map> (#<procedure #3 +> (1 2) (3) (4 5)) 3)

15.9 Exception objects related to procedure call

[procedure](wrong-number-of-arguments-exception? obj)
[procedure](wrong-number-of-arguments-exception-procedure

exc)
[procedure](wrong-number-of-arguments-exception-arguments

exc)
Wrong-number-of-arguments-exception objects are raised when a procedure is called
with the wrong number of arguments. The parameter exc must be a wrong-number-
of-arguments-exception object.
The procedure wrong-number-of-arguments-exception? returns #t when
obj is a wrong-number-of-arguments-exception object and #f otherwise.
The procedure wrong-number-of-arguments-exception-procedure returns
the procedure that raised exc.
The procedure wrong-number-of-arguments-exception-arguments returns
the list of arguments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (wrong-number-of-arguments-exception? exc)

(list (wrong-number-of-arguments-exception-procedure exc)

Chapter 15: Exceptions 113

(wrong-number-of-arguments-exception-arguments exc))
’not-wrong-number-of-arguments-exception))

> (with-exception-catcher
handler
(lambda () (open-input-file "data" 99)))

(#<procedure #2 open-input-file> ("data" 99))

[procedure](number-of-arguments-limit-exception? obj)
[procedure](number-of-arguments-limit-exception-procedure

exc)
[procedure](number-of-arguments-limit-exception-arguments

exc)
Number-of-arguments-limit-exception objects are raised by the apply procedure
when the procedure being called is passed more than 8192 arguments. The
parameter exc must be a number-of-arguments-limit-exception object.

The procedure number-of-arguments-limit-exception? returns #t when
obj is a number-of-arguments-limit-exception object and #f otherwise.

The procedure number-of-arguments-limit-exception-procedure returns
the target procedure of the call to apply that raised exc.

The procedure number-of-arguments-limit-exception-arguments returns
the list of arguments of the target procedure of the call to apply that raised exc.

For example:
> (define (iota n) (if (= n 0) ’() (cons n (iota (- n 1)))))
> (define (handler exc)

(if (number-of-arguments-limit-exception? exc)
(list (number-of-arguments-limit-exception-procedure exc)

(length (number-of-arguments-limit-exception-arguments exc)))
’not-number-of-arguments-limit-exception))

> (with-exception-catcher
handler
(lambda () (apply + 1 2 3 (iota 8190))))

(#<procedure #2 +> 8193)

[procedure](nonprocedure-operator-exception? obj)
[procedure](nonprocedure-operator-exception-operator exc)
[procedure](nonprocedure-operator-exception-arguments exc)
[procedure](nonprocedure-operator-exception-code exc)
[procedure](nonprocedure-operator-exception-rte exc)

Nonprocedure-operator-exception objects are raised when a procedure call is exe-
cuted and the operator position is not a procedure. The parameter exc must be an
nonprocedure-operator-exception object.

The procedure nonprocedure-operator-exception? returns #t when obj is
an nonprocedure-operator-exception object and #f otherwise.

The procedure nonprocedure-operator-exception-operator returns the
value in operator position of the procedure call that raised exc.

The procedure nonprocedure-operator-exception-arguments returns the
list of arguments of the procedure call that raised exc.

For example:

Chapter 15: Exceptions 114

> (define (handler exc)
(if (nonprocedure-operator-exception? exc)

(list (nonprocedure-operator-exception-operator exc)
(nonprocedure-operator-exception-arguments exc))

’not-nonprocedure-operator-exception))
> (with-exception-catcher

handler
(lambda () (11 22 33)))

(11 (22 33))

[procedure](unknown-keyword-argument-exception? obj)
[procedure](unknown-keyword-argument-exception-procedure exc)
[procedure](unknown-keyword-argument-exception-arguments exc)

Unknown-keyword-argument-exception objects are raised when a procedure accepting
keyword arguments is called and one of the keywords supplied is not among those that
are expected. The parameter exc must be an unknown-keyword-argument-exception
object.
The procedure unknown-keyword-argument-exception? returns #t when obj
is an unknown-keyword-argument-exception object and #f otherwise.
The procedure unknown-keyword-argument-exception-procedure returns
the procedure that raised exc.
The procedure unknown-keyword-argument-exception-arguments returns
the list of arguments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (unknown-keyword-argument-exception? exc)

(list (unknown-keyword-argument-exception-procedure exc)
(unknown-keyword-argument-exception-arguments exc))

’not-unknown-keyword-argument-exception))
> (with-exception-catcher

handler
(lambda () ((lambda (#!key (foo 5)) foo) bar: 11)))

(#<procedure #2> (bar: 11))

[procedure](keyword-expected-exception? obj)
[procedure](keyword-expected-exception-procedure exc)
[procedure](keyword-expected-exception-arguments exc)

Keyword-expected-exception objects are raised when a procedure accepting keyword
arguments is called and a nonkeyword was supplied where a keyword was expected.
The parameter exc must be an keyword-expected-exception object.
The procedure keyword-expected-exception? returns #t when obj is an
keyword-expected-exception object and #f otherwise.
The procedure keyword-expected-exception-procedure returns the proce-
dure that raised exc.
The procedure keyword-expected-exception-arguments returns the list of
arguments of the procedure that raised exc.
For example:

> (define (handler exc)
(if (keyword-expected-exception? exc)

Chapter 15: Exceptions 115

(list (keyword-expected-exception-procedure exc)
(keyword-expected-exception-arguments exc))

’not-keyword-expected-exception))
> (with-exception-catcher

handler
(lambda () ((lambda (#!key (foo 5)) foo) 11 22)))

(#<procedure #2> (11 22))

15.10 Other exception objects

[procedure](error-exception? obj)
[procedure](error-exception-message exc)
[procedure](error-exception-parameters exc)
[procedure](error message obj. . .)

Error-exception objects are raised when the error procedure is called. The param-
eter exc must be an error-exception object.
The procedure error-exception? returns #t when obj is an error-exception object
and #f otherwise.
The procedure error-exception-message returns the first argument of the call
to error that raised exc.
The procedure error-exception-parameters returns the list of arguments,
starting with the second argument, of the call to error that raised exc.
The error procedure raises an error-exception object whose message field is message
and parameters field is the list of values obj
For example:

> (define (handler exc)
(if (error-exception? exc)

(list (error-exception-message exc)
(error-exception-parameters exc))

’not-error-exception))
> (with-exception-catcher

handler
(lambda () (error "unexpected object:" 123)))

("unexpected object:" (123))

Chapter 16: Host environment 116

16 Host environment

The host environment is the set of resources, such as the filesystem, network and processes,
that are managed by the operating system within which the Scheme program is executing.
This chapter specifies how the host environment can be accessed from within the Scheme
program.

In this chapter we say that the Scheme program being executed is a process, even though
the concept of process does not exist in some operating systems supported by Gambit (e.g.
MSDOS).

16.1 Handling of file names

Gambit uses a naming convention for files that is compatible with the one used by the host
environment but extended to allow referring to the home directory of the current user or
some specific user and the Gambit installation directory.

A path is a string that denotes a file, for example "src/readme.txt". Each compo-
nent of a path is separated by a ‘/’ under UNIX and Mac OS X and by a ‘/’ or ‘\’ under
MSDOS and Microsoft Windows. A leading separator indicates an absolute path under
UNIX, Mac OS X, MSDOS and Microsoft Windows. A path which does not contain a path
separator is relative to the current working directory on all operating systems. A volume
specifier such as ‘C:’ may prefix a file name under MSDOS and Microsoft Windows.

The rest of this section uses ‘/’ to represent the path separator.
A path which starts with the characters ‘˜˜/’ denotes a file in the Gambit installation

directory. This directory is normally ‘/usr/local/Gambit-C/version’ under UNIX
and Mac OS X and ‘C:/Gambit-C/version’ under MSDOS and Microsoft Windows. To
override this binding under UNIX, Mac OS X, MSDOS and Microsoft Windows, use the
‘-:=<dir>’ runtime option or define the ‘GAMBCOPT’ environment variable.

A path which starts with the characters ‘˜/’ denotes a file in the user’s home directory.
The user’s home directory is contained in the ‘HOME’ environment variable under UNIX,
Mac OS X, MSDOS and Microsoft Windows. Under MSDOS and Microsoft Windows, if
the ‘HOME’ environment variable is not defined, the environment variables ‘HOMEDRIVE’
and ‘HOMEPATH’ are concatenated if they are defined. If this fails to yield a home directory,
the Gambit installation directory is used instead.

A path which starts with the characters ‘˜username/’ denotes a file in the home direc-
tory of the given user. Under UNIX and Mac OS X this is found using the password file.
There is no equivalent under MSDOS and Microsoft Windows.

[procedure](current-directory [new-current-directory])
The parameter object current-directory is bound to the current working direc-
tory. Calling this procedure with no argument returns the absolute normalized path of
the directory and calling this procedure with one argument sets the directory to new-
current-directory. The initial binding of this parameter object is the current working
directory of the current process. The path returned by current-directory always
contains a trailing directory separator. Modifications of the parameter object do not
change the current working directory of the current process (i.e. that is accessible with
the UNIX getcwd() function and the Microsoft Windows GetCurrentDirectory
function). It is an error to mutate the string returned by current-directory.

Chapter 16: Host environment 117

For example under UNIX:
> (current-directory)
"/Users/feeley/gambit/doc/"
> (current-directory "..")
> (current-directory)
"/Users/feeley/gambit/"
> (path-expand "foo" "˜˜")
"/usr/local/Gambit-C/4.0b22/foo"
> (parameterize ((current-directory "˜˜")) (path-expand "foo"))
"/usr/local/Gambit-C/4.0b22/foo"

[procedure](path-expand path [origin-directory])
The procedure path-expand takes the path of a file or directory and returns an
expanded path, which is an absolute path when path or origin-directory are absolute
paths. The optional origin-directory parameter, which defaults to the current working
directory, is the directory used to resolve relative paths. Components of the paths
path and origin-directory need not exist.

For example under UNIX:
> (path-expand "foo")
"/Users/feeley/gambit/doc/foo"
> (path-expand "˜/foo")
"/Users/feeley/foo"
> (path-expand "˜˜/foo")
"/usr/local/Gambit-C/4.0b22/foo"
> (path-expand "../foo")
"/Users/feeley/gambit/doc/../foo"
> (path-expand "foo" "")
"foo"
> (path-expand "foo" "/tmp")
"/tmp/foo"
> (path-expand "this/file/does/not/exist")
"/Users/feeley/gambit/doc/this/file/does/not/exist"
> (path-expand "")
"/Users/feeley/gambit/doc/"

[procedure](path-normalize path [allow-relative?
[origin-directory]])

The procedure path-normalize takes a path of a file or directory and returns its
normalized path. The optional origin-directory parameter, which defaults to the cur-
rent working directory, is the directory used to resolve relative paths. All components
of the paths path and origin-directory must exist, except possibly the last component
of path. A normalized path is a path containing no redundant parts and which is con-
sistent with the current structure of the filesystem. A normalized path of a directory
will always end with a path separator (i.e. ‘/’, ‘\’, or ‘:’ depending on the operating
system). The optional allow-relative? parameter, which defaults to #f, indicates
if the path returned can be expressed relatively to origin-directory : a #f requests
an absolute path, the symbol shortest requests the shortest of the absolute and
relative paths, and any other value requests the relative path. The shortest path is
useful for interaction with the user because short relative paths are typically easier
to read than long absolute paths.

For example under UNIX:

Chapter 16: Host environment 118

> (path-expand "../foo")
"/Users/feeley/gambit/doc/../foo"
> (path-normalize "../foo")
"/Users/feeley/gambit/foo"
> (path-normalize "this/file/does/not/exist")
*** ERROR IN (console)@3.1 -- No such file or directory
(path-normalize "this/file/does/not/exist")

[procedure](path-extension path)
[procedure](path-strip-extension path)
[procedure](path-directory path)
[procedure](path-strip-directory path)
[procedure](path-strip-trailing-directory-separator path)
[procedure](path-volume path)
[procedure](path-strip-volume path)

These procedures extract various parts of a path, which need not be a normalized path.
The procedure path-extension returns the file extension (including the period) or
the empty string if there is no extension. The procedure path-strip-extension
returns the path with the extension stripped off. The procedure path-directory
returns the file’s directory (including the last path separator) or the empty string if no
directory is specified in the path. The procedure path-strip-directory returns
the path with the directory stripped off. The procedure path-strip-trailing-
directory-separator returns the path with the directory separator stripped off if
one is at the end of the path. The procedure path-volume returns the file’s volume
(including the last path separator) or the empty string if no volume is specified in
the path. The procedure path-strip-volume returns the path with the volume
stripped off.

For example under UNIX:

> (path-extension "/tmp/foo")
""
> (path-extension "/tmp/foo.txt")
".txt"
> (path-strip-extension "/tmp/foo.txt")
"/tmp/foo"
> (path-directory "/tmp/foo.txt")
"/tmp/"
> (path-strip-directory "/tmp/foo.txt")
"foo.txt"
> (path-strip-trailing-directory-separator "/usr/local/bin/")
"/usr/local/bin"
> (path-strip-trailing-directory-separator "/usr/local/bin")
"/usr/local/bin"
> (path-volume "/tmp/foo.txt")
""
> (path-volume "C:/tmp/foo.txt")
"" ; result is "C:" under Microsoft Windows
> (path-strip-volume "C:/tmp/foo.txt")
"C:/tmp/foo.txt" ; result is "/tmp/foo.txt" under Microsoft Windows

Chapter 16: Host environment 119

16.2 Filesystem operations

[procedure](create-directory path-or-settings)
This procedure creates a directory. The argument path-or-settings is either a string
denoting a filesystem path or a list of port settings which must contain a path:
setting. Here are the settings allowed:
• path: string

This setting indicates the location of the directory to create in the filesystem.
There is no default value for this setting.

• permissions: 12-bit-exact-integer

This setting controls the UNIX permissions that will be attached to the file if it
is created. The default value of this setting is #o777.

For example:
> (create-directory "newdir")
> (create-directory "newdir")
*** ERROR IN (console)@2.1 -- File exists
(create-directory "newdir")

[procedure](create-fifo path-or-settings)
This procedure creates a FIFO. The argument path-or-settings is either a string
denoting a filesystem path or a list of port settings which must contain a path:
setting. Here are the settings allowed:
• path: string

This setting indicates the location of the FIFO to create in the filesystem. There
is no default value for this setting.

• permissions: 12-bit-exact-integer

This setting controls the UNIX permissions that will be attached to the file if it
is created. The default value of this setting is #o666.

For example:
> (create-fifo "fifo")
> (define a (open-input-file "fifo"))
> (define b (open-output-file "fifo"))
> (display "1 22 333" b)
> (force-output b)
> (read a)
1
> (read a)
22

[procedure](create-link source-path destination-path)
This procedure creates a hard link between source-path and destination-path. The
argument source-path must be a string denoting the path of an existing file. The
argument destination-path must be a string denoting the path of the link to create.

[procedure](create-symbolic-link source-path destination-path)
This procedure creates a symbolic link between source-path and destination-path.
The argument source-path must be a string denoting the path of an existing file. The
argument destination-path must be a string denoting the path of the symbolic link
to create.

Chapter 16: Host environment 120

[procedure](rename-file source-path destination-path)
This procedure renames the file source-path to destination-path. The argument
source-path must be a string denoting the path of an existing file. The argument
destination-path must be a string denoting the new path of the file.

[procedure](copy-file source-path destination-path)
This procedure copies the file source-path to destination-path. The argument source-
path must be a string denoting the path of an existing file. The argument destination-
path must be a string denoting the path of the file to create.

[procedure](delete-file path)
This procedure deletes the file path. The argument path must be a string denoting
the path of an existing file.

[procedure](delete-directory path)
This procedure deletes the directory path. The argument path must be a string
denoting the path of an existing directory.

[procedure](directory-files [path-or-settings])
This procedure returns the list of the files in a directory. The argument path-or-
settings is either a string denoting a filesystem path to a directory or a list of settings
which must contain a path: setting. If it is not specified, path-or-settings defaults
to the current directory (the value bound to the current-directory parameter
object). Here are the settings allowed:
• path: string

This setting indicates the location of the directory in the filesystem. There is no
default value for this setting.

• ignore-hidden: (#f | #t | dot-and-dot-dot)
This setting controls whether hidden-files will be returned. Under UNIX and
Mac OS X hidden-files are those that start with a period (such as ‘.’, ‘..’, and
‘.profile’). Under Microsoft Windows hidden files are the ‘.’ and ‘..’ entries
and the files whose “hidden file” attribute is set. A setting of #f will enumerate
all the files. A setting of #t will only enumerate the files that are not hidden. A
setting of dot-and-dot-dot will enumerate all the files except for the ‘.’ and
‘..’ hidden files. The default value of this setting is #t.

For example:
> (directory-files)
("complex" "README" "simple")
> (directory-files "../include")
("config.h" "config.h.in" "gambit.h" "makefile" "makefile.in")
> (directory-files (list path: "../include" ignore-hidden: #f))
("." ".." "config.h" "config.h.in" "gambit.h" "makefile" "makefile.in")

16.3 Shell command execution

[procedure](shell-command command)
The procedure shell-command calls up the shell to execute command which must
be a string. This procedure returns the exit status of the shell in the form that the
C library’s system routine returns.

Chapter 16: Host environment 121

For example under UNIX:
> (shell-command "ls -sk f*.scm")
4 fact.scm 4 fib.scm
0

16.4 Process termination

[procedure](exit [status])
The procedure exit causes the process to terminate with the status status which
must be an exact integer in the range 0 to 255. If it is not specified, status defaults
to 0.
For example under UNIX:

$ gsi
Gambit v4.2.2

> (exit 42)
$ echo $?
42

16.5 Command line arguments

[procedure](command-line)
This procedure returns a list of strings corresponding to the command line arguments,
including the program file name as the first element of the list. When the interpreter
executes a Scheme script, the list returned by command-line contains the script’s
absolute path followed by the remaining command line arguments.
For example under UNIX:

$ gsi -:d -e "(pretty-print (command-line))"
("gsi" "-e" "(pretty-print (command-line))")
$ cat foo
#!/usr/local/Gambit-C/current/bin/gsi-script
(pretty-print (command-line))
$./foo 1 2 "3 4"
("/u/feeley/./foo" "1" "2" "3 4")

16.6 Environment variables

[procedure](getenv name [default])
[procedure](setenv name [new-value])

The procedure getenv returns the value of the environment variable name of the
current process. Variable names are denoted with strings. A string is returned if
the environment variable is bound, otherwise default is returned if it is specified,
otherwise an exception is raised.
The procedure setenv changes the binding of the environment variable name to new-
value which must be a string. If new-value is not specified the binding is removed.
For example under UNIX:

> (getenv "HOME")
"/Users/feeley"
> (getenv "DOES_NOT_EXIST" #f)

Chapter 16: Host environment 122

#f
> (setenv "DOES_NOT_EXIST" "it does now")
> (getenv "DOES_NOT_EXIST" #f)
"it does now"
> (setenv "DOES_NOT_EXIST")
> (getenv "DOES_NOT_EXIST" #f)
#f
> (getenv "DOES_NOT_EXIST")
*** ERROR IN (console)@7.1 -- Unbound OS environment variable
(getenv "DOES_NOT_EXIST")

16.7 Measuring time

Procedures are available for measuring real time (aka “wall” time) and cpu time (the amount
of time the cpu has been executing the process). The resolution of the real time and cpu
time clock is operating system dependent. Typically the resolution of the cpu time clock is
rather coarse (measured in “ticks” of 1/60th or 1/100th of a second). Real time is internally
computed relative to some arbitrary point in time using floating point numbers, which means
that there is a gradual loss of resolution as time elapses. Moreover, some operating systems
report time in number of ticks using a 32 bit integer so the value returned by the time
related procedures may wraparound much before any significant loss of resolution occurs
(for example 2.7 years if ticks are 1/50th of a second).

[procedure](current-time)
[procedure](time? obj)
[procedure](time->seconds time)
[procedure](seconds->time x)

The procedure current-time returns a time object representing the current point
in real time.
The procedure time? returns #t when obj is a time object and #f otherwise.
The procedure time->seconds converts the time object time into an inexact real
number representing the number of seconds elapsed since the “epoch” (which is
00:00:00 Coordinated Universal Time 01-01-1970).
The procedure seconds->time converts the real number x representing the number
of seconds elapsed since the “epoch” into a time object.
For example:

> (current-time)
#<time #2>
> (time? (current-time))
#t
> (time? 123)
#f
> (time->seconds (current-time))
1083118758.63973
> (time->seconds (current-time))
1083118759.909163
> (seconds->time (+ 10 (time->seconds (current-time))
#<time #3> ; a time object representing 10 seconds in the future

[procedure](process-times)
[procedure](cpu-time)

Chapter 16: Host environment 123

[procedure](real-time)
The procedure process-times returns a three element f64vector containing the
cpu time that has been used by the program and the real time that has elapsed since
it was started. The first element corresponds to “user” time in seconds, the second
element corresponds to “system” time in seconds and the third element is the elapsed
real time in seconds. On operating systems that can’t differentiate user and system
time, the system time is zero. On operating systems that can’t measure cpu time,
the user time is equal to the elapsed real time and the system time is zero.
The procedure cpu-time returns the cpu time in seconds that has been used by the
program (user time plus system time).
The procedure real-time returns the real time that has elapsed since the program
was started.
For example:

> (process-times)
#f64(.02794 .021754 .159926176071167)
> (cpu-time)
.051223
> (real-time)
.40660619735717773

[special form](time expr)
The time special form evaluates expr and returns the result. As a side effect it
displays a message on the interaction channel which indicates how long the evaluation
took (in real time and cpu time), how much time was spent in the garbage collector,
how much memory was allocated during the evaluation and how many minor and
major page faults occured (0 is reported if not running under UNIX).
For example:

> (define (f x)
(let loop ((x x) (lst ’()))

(if (= x 0)
lst
(loop (- x 1) (cons x lst)))))

> (length (time (f 100000)))
(time (f 100000))

683 ms real time
558 ms cpu time (535 user, 23 system)
8 collections accounting for 102 ms real time (70 user, 5 system)
6400160 bytes allocated
no minor faults
no major faults

100000

16.8 File information

[procedure](file-exists? path [chase?])
The path argument must be a string. This procedure returns #t when a file by that
name exists, and returns #f otherwise.
When chase? is present and #f, symbolic links will not be chased, in other words
if path refers to a symbolic link, file-exists? will return #t whether or not it
points to an existing file.

Chapter 16: Host environment 124

For example:
> (file-exists? "nofile")
#f

[procedure](file-info path [chase?])
This procedure accesses the filesystem to get information about the file whose location
is given by the string path. A file-information record is returned that contains the
file’s type, the device number, the inode number, the mode (permission bits), the
number of links, the file’s user id, the file’s group id, the file’s size in bytes, the times
of last-access, last-modification and last-change, the attributes, and the creation time.
When chase? is present and #f, symbolic links will not be chased, in other words
if path refers to a symbolic link the file-info procedure will return information
about the link rather than the file it links to.
For example:

> (file-info "/dev/tty")
#<file-info #2

type: character-special
device: 19513156
inode: 20728196
mode: 438
number-of-links: 1
owner: 0
group: 0
size: 0
last-access-time: #<time #3>
last-modification-time: #<time #4>
last-change-time: #<time #5>
attributes: 128
creation-time: #<time #6>>

[procedure](file-info? obj)
This procedure returns #t when obj is a file-information record and #f otherwise.
For example:

> (file-info? (file-info "/dev/tty"))
#t
> (file-info? 123)
#f

[procedure](file-info-type file-info)
Returns the type field of the file-information record file-info. The type is denoted by
a symbol. The following types are possible:

regular Regular file

directory Directory

character-special
Character special device

block-special Block special device

fifo FIFO

symbolic-link Symbolic link

Chapter 16: Host environment 125

socket Socket

unknown File is of an unknown type

For example:
> (file-info-type (file-info "/dev/tty"))
character-special
> (file-info-type (file-info "/dev"))
directory

[procedure](file-info-device file-info)
Returns the device field of the file-information record file-info.
For example:

> (file-info-device (file-info "/dev/tty"))
19513156

[procedure](file-info-inode file-info)
Returns the inode field of the file-information record file-info.
For example:

> (file-info-inode (file-info "/dev/tty"))
20728196

[procedure](file-info-mode file-info)
Returns the mode field of the file-information record file-info.
For example:

> (file-info-mode (file-info "/dev/tty"))
438

[procedure](file-info-number-of-links file-info)
Returns the number-of-links field of the file-information record file-info.
For example:

> (file-info-number-of-links (file-info "/dev/tty"))
1

[procedure](file-info-owner file-info)
Returns the owner field of the file-information record file-info.
For example:

> (file-info-owner (file-info "/dev/tty"))
0

[procedure](file-info-group file-info)
Returns the group field of the file-information record file-info.
For example:

> (file-info-group (file-info "/dev/tty"))
0

[procedure](file-info-size file-info)
Returns the size field of the file-information record file-info.
For example:

> (file-info-size (file-info "/dev/tty"))
0

Chapter 16: Host environment 126

[procedure](file-info-last-access-time file-info)
Returns the last-access-time field of the file-information record file-info.

For example:
> (file-info-last-access-time (file-info "/dev/tty"))
#<time #2>

[procedure](file-info-last-modification-time file-info)
Returns the last-modification-time field of the file-information record file-info.

For example:
> (file-info-last-modification-time (file-info "/dev/tty"))
#<time #2>

[procedure](file-info-last-change-time file-info)
Returns the last-change-time field of the file-information record file-info.

For example:
> (file-info-last-change-time (file-info "/dev/tty"))
#<time #2>

[procedure](file-info-attributes file-info)
Returns the attributes field of the file-information record file-info.

For example:
> (file-info-attributes (file-info "/dev/tty"))
128

[procedure](file-info-creation-time file-info)
Returns the creation-time field of the file-information record file-info.

For example:
> (file-info-creation-time (file-info "/dev/tty"))
#<time #2>

[procedure](file-type path)
[procedure](file-device path)
[procedure](file-inode path)
[procedure](file-mode path)
[procedure](file-number-of-links path)
[procedure](file-owner path)
[procedure](file-group path)
[procedure](file-size path)
[procedure](file-last-access-time path)
[procedure](file-last-modification-time path)
[procedure](file-last-change-time path)
[procedure](file-attributes path)
[procedure](file-creation-time path)

These procedures combine a call to the file-info procedure and a call to a file-
information record field accessor. For instance (file-type path) is equivalent to
(file-info-type (file-info path)).

Chapter 16: Host environment 127

16.9 Group information

[procedure](group-info group-name-or-id)
This procedure accesses the group database to get information about the group iden-
tified by group-name-or-id, which is the group’s symbolic name (string) or the group’s
GID (exact integer). A group-information record is returned that contains the group’s
symbolic name, the group’s id (GID), and the group’s members (list of symbolic user
names).

For example:

> (group-info "staff")
#<group-info #2 name: "staff" gid: 20 members: ("root")>
> (group-info 29)
#<group-info #3

name: "certusers"
gid: 29
members: ("root" "jabber" "postfix" "cyrusimap")>

> (group-info 5000)
*** ERROR IN (console)@3.1 -- Resource temporarily unavailable
(group-info 5000)

[procedure](group-info? obj)
This procedure returns #t when obj is a group-information record and #f otherwise.

For example:

> (group-info? (group-info "daemon"))
#t
> (group-info? 123)
#f

[procedure](group-info-name group-info)
Returns the symbolic name field of the group-information record group-info.

For example:

> (group-info-name (group-info 29))
"certusers"

[procedure](group-info-gid group-info)
Returns the group id field of the group-information record group-info.

For example:

> (group-info-gid (group-info "staff"))
20

[procedure](group-info-members group-info)
Returns the members field of the group-information record group-info.

For example:

> (group-info-members (group-info "staff"))
("root")

Chapter 16: Host environment 128

16.10 User information

[procedure](user-name)
This procedure returns the user’s name as a string.
For example:

> (user-name)
"feeley"

[procedure](user-info user-name-or-id)
This procedure accesses the user database to get information about the user identified
by user-name-or-id, which is the user’s symbolic name (string) or the user’s UID (exact
integer). A user-information record is returned that contains the user’s symbolic
name, the user’s id (UID), the user’s group id (GID), the path to the user’s home
directory, and the user’s login shell.
For example:

> (user-info "feeley")
#<user-info #2

name: "feeley"
uid: 506
gid: 506
home: "/Users/feeley"
shell: "/bin/bash">

> (user-info 0)
#<user-info #3 name: "root" uid: 0 gid: 0 home: "/var/root" shell: "/bin/sh">
> (user-info 5000)
*** ERROR IN (console)@3.1 -- Resource temporarily unavailable
(user-info 5000)

[procedure](user-info? obj)
This procedure returns #t when obj is a user-information record and #f otherwise.
For example:

> (user-info? (user-info "feeley"))
#t
> (user-info? 123)
#f

[procedure](user-info-name user-info)
Returns the symbolic name field of the user-information record user-info.
For example:

> (user-info-name (user-info 0))
"root"

[procedure](user-info-uid user-info)
Returns the user id field of the user-information record user-info.
For example:

> (user-info-uid (user-info "feeley"))
506

[procedure](user-info-gid user-info)
Returns the group id field of the user-information record user-info.
For example:

Chapter 16: Host environment 129

> (user-info-gid (user-info "feeley"))
506

[procedure](user-info-home user-info)
Returns the home directory field of the user-information record user-info.
For example:

> (user-info-home (user-info 0))
"/var/root"

[procedure](user-info-shell user-info)
Returns the shell field of the user-information record user-info.
For example:

> (user-info-shell (user-info 0))
"/bin/sh"

16.11 Host information

[procedure](host-name)
This procedure returns the machine’s host name as a string.
For example:

> (host-name)
"mega.iro.umontreal.ca"

[procedure](host-info host-name)
This procedure accesses the internet host database to get information about the ma-
chine whose name is denoted by the string host-name. A host-information record is
returned that contains the official name of the machine, a list of aliases (alternative
names), and a non-empty list of IP addresses for this machine. An exception is raised
when host-name does not appear in the database.
For example:

> (host-info "www.google.com")
#<host-info #2

name: "www.l.google.com"
aliases: ("www.google.com")
addresses: (#u8(66 249 85 99) #u8(66 249 85 104))>

> (host-info "unknown.domain")
*** ERROR IN (console)@2.1 -- Unknown host
(host-info "unknown.domain")

[procedure](host-info? obj)
This procedure returns #t when obj is a host-information record and #f otherwise.
For example:

> (host-info? (host-info "www.google.com"))
#t
> (host-info? 123)
#f

[procedure](host-info-name host-info)
Returns the official name field of the host-information record host-info.
For example:

> (host-info-name (host-info "www.google.com"))
"www.l.google.com"

Chapter 16: Host environment 130

[procedure](host-info-aliases host-info)
Returns the aliases field of the host-information record host-info. This field is a
possibly empty list of strings.
For example:

> (host-info-aliases (host-info "www.google.com"))
("www.google.com")

[procedure](host-info-addresses host-info)
Returns the addresses field of the host-information record host-info. This field is a
non-empty list of u8vectors denoting IP addresses.
For example:

> (host-info-addresses (host-info "www.google.com"))
(#u8(66 249 85 99) #u8(66 249 85 104))

16.12 Service information

[procedure](service-info service-name-or-id)
This procedure accesses the service database to get information about the service
identified by service-name-or-id, which is the service’s symbolic name (string) or the
service’s port number (exact integer). A service-information record is returned that
contains the service’s symbolic name, a list of aliases (alternative names), the port
number (exact integer), and the protocol name (string). An exception is raised when
service-name-or-id does not appear in the database.
For example:

> (service-info "http")
#<service-info #2

name: "http"
aliases: ("www" "www-http")
port: 80
protocol: "udp">

> (service-info 80)
#<service-info #3

name: "http"
aliases: ("www" "www-http")
port: 80
protocol: "udp">

[procedure](service-info? obj)
This procedure returns #t when obj is a service-information record and #f otherwise.
For example:

> (service-info? (service-info "http"))
#t
> (service-info? 123)
#f

[procedure](service-info-name service-info)
Returns the symbolic name field of the service-information record service-info.
For example:

> (service-info-name (service-info 80))
"http"

Chapter 16: Host environment 131

[procedure](service-info-aliases service-info)
Returns the aliases field of the service-information record service-info. This field is a
possibly empty list of strings.
For example:

> (service-info-aliases (service-info "http"))
("www" "www-http")

[procedure](service-info-number service-info)
Returns the service number field of the service-information record service-info.
For example:

> (service-info-number (service-info "http"))
80

16.13 Protocol information

[procedure](protocol-info protocol-name-or-id)
This procedure accesses the protocol database to get information about the protocol
identified by protocol-name-or-id, which is the protocol’s symbolic name (string) or
the protocol’s number (exact integer). A protocol-information record is returned
that contains the protocol’s symbolic name, a list of aliases (alternative names), and
the protocol number (32 bit unsigned exact integer). An exception is raised when
protocol-name-or-id does not appear in the database.
For example:

> (protocol-info "tcp")
#<protocol-info #2 name: "tcp" aliases: ("TCP") number: 6>
> (protocol-info 6)
#<protocol-info #2 name: "tcp" aliases: ("TCP") number: 6>

[procedure](protocol-info? obj)
This procedure returns #t when obj is a protocol-information record and #f other-
wise.
For example:

> (protocol-info? (protocol-info "tcp"))
#t
> (protocol-info? 123)
#f

[procedure](protocol-info-name protocol-info)
Returns the symbolic name field of the protocol-information record protocol-info.
For example:

> (protocol-info-name (protocol-info 6))
"tcp"

[procedure](protocol-info-aliases protocol-info)
Returns the aliases field of the protocol-information record protocol-info. This field
is a possibly empty list of strings.
For example:

> (protocol-info-aliases (protocol-info "tcp"))
("TCP")

Chapter 16: Host environment 132

[procedure](protocol-info-number protocol-info)
Returns the protocol number field of the protocol-information record protocol-info.

For example:
> (protocol-info-number (protocol-info "tcp"))
6

16.14 Network information

[procedure](network-info network-name-or-id)
This procedure accesses the network database to get information about the network
identified by network-name-or-id, which is the network’s symbolic name (string) or
the network’s number (exact integer). A network-information record is returned that
contains the network’s symbolic name, a list of aliases (alternative names), and the
network number (32 bit unsigned exact integer). An exception is raised when network-
name-or-id does not appear in the database.

For example:
> (network-info "loopback")
#<network-info #2

name: "loopback"
aliases: ("loopback-net")
number: 127>

> (network-info 127)
#<network-info #3

name: "loopback"
aliases: ("loopback-net")
number: 127>

[procedure](network-info? obj)
This procedure returns #t when obj is a network-information record and #f other-
wise.

For example:
> (network-info? (network-info "loopback"))
#t
> (network-info? 123)
#f

[procedure](network-info-name network-info)
Returns the symbolic name field of the network-information record network-info.

For example:
> (network-info-name (network-info 127))
"loopback"

[procedure](network-info-aliases network-info)
Returns the aliases field of the network-information record network-info. This field is
a possibly empty list of strings.

For example:
> (network-info-aliases (network-info "loopback"))
("loopback-net")

Chapter 16: Host environment 133

[procedure](network-info-number network-info)
Returns the network number field of the network-information record network-info.
For example:

> (network-info-number (network-info "loopback"))
127

Chapter 17: I/O and ports 134

17 I/O and ports

17.1 Unidirectional and bidirectional ports

Unidirectional ports allow communication between a producer of information and a con-
sumer. An input-port’s producer is typically a resource managed by the operating system
(such as a file, a process or a network connection) and the consumer is the Scheme program.
The roles are reversed for an output-port.

Associated with each port are settings that affect I/O operations on that port (encod-
ing of characters to bytes, end-of-line encoding, type of buffering, etc). Port settings are
specified when the port is created. Some port settings can be changed after a port is created.

Bidirectional ports, also called input-output-ports, allow communication in both direc-
tions. They are best viewed as an object that groups two separate unidirectional ports (one
in each direction). Each direction has its own port settings and can be closed independently
from the other direction.

17.2 Port classes

The four classes of ports listed below form an inheritance hierarchy. Operations possible for
a certain class of port are also possible for the subclasses. Only device-ports are connected
to a device managed by the operating system. For instance it is possible to create ports
that behave as a FIFO where the Scheme program is both the producer and consumer of
information (possibly one thread is the producer and another thread is the consumer).

1. An object-port (or simply a port) provides operations to read and write Scheme data
(i.e. any Scheme object) to/from the port. It also provides operations to force output
to occur, to change the way threads block on the port, and to close the port. Note
that the class of objects for which write/read invariance is guaranteed depends on the
particular class of port.

2. A character-port provides all the operations of an object-port, and also operations to
read and write individual characters to/from the port. When a Scheme object is written
to a character-port, it is converted into the sequence of characters that corresponds
to its external-representation. When reading a Scheme object, an inverse conversion
occurs. Note that some Scheme objects do not have an external textual representation
that can be read back.

3. A byte-port provides all the operations of a character-port, and also operations to read
and write individual bytes to/from the port. When a character is written to a byte-
port, some encoding of that character into a sequence of bytes will occur (for example,
#\newline will be encoded as the 2 bytes CR-LF when using ISO-8859-1 character
encoding and cr-lf end-of-line encoding, and a non-ASCII character will generate
more than 1 byte when using UTF-8 character encoding). When reading a character,
a similar decoding occurs.

4. A device-port provides all the operations of a byte-port, and also operations to control
the operating system managed device (file, network connection, terminal, etc) that is
connected to the port.

Chapter 17: I/O and ports 135

17.3 Port settings

Some port settings are only valid for specific port classes whereas some others are valid
for all ports. Port settings are specified when a port is created. The settings that are not
specified will default to some reasonable values. Keyword objects are used to name the
settings to be set. As a simple example, a device-port connected to the file "foo" can be
created using the call

(open-input-file "foo")

This will use default settings for the character encoding, buffering, etc. If the UTF-8
character encoding is desired, then the port could be opened using the call

(open-input-file (list path: "foo" char-encoding: ’UTF-8))

Here the argument of the procedure open-input-file has been replaced by a port
settings list which specifies the value of each port setting that should not be set to the default
value. Note that some port settings have no useful default and it is therefore required to
specify a value for them, such as the path: in the case of the file opening procedures. All
port creation procedures (i.e. named open-...) take a single argument that can either be
a port settings list or a value of a type that depends on the kind of port being created (a
path string for files, an IP port number for socket servers, etc).

17.4 Object-ports

17.4.1 Object-port settings

The following is a list of port settings that are valid for all types of ports.
• direction: (input | output | input-output)

This setting controls the direction of the port. The symbol input indicates a unidi-
rectional input-port, the symbol output indicates a unidirectional output-port, and
the symbol input-output indicates a bidirectional port. The default value of this
setting depends on the port creation procedure.

• buffering: (#f | #t | line)
This setting controls the buffering of the port. To set each direction separately the
keywords input-buffering: and output-buffering: must be used instead of
buffering:. The value #f selects unbuffered I/O, the value #t selects fully buffered
I/O, and the symbol line selects line buffered I/O (the output buffer is drained when
a #\newline character is written). Line buffered I/O only applies to character-ports.
The default value of this setting is operating system dependent except consoles which
are unbuffered.

17.4.2 Object-port operations

[procedure](input-port? obj)
[procedure](output-port? obj)
[procedure](port? obj)

The procedure input-port? returns #t when obj is a unidirectional input-port or
a bidirectional port and #f otherwise.
The procedure output-port? returns #t when obj is a unidirectional output-port
or a bidirectional port and #f otherwise.

Chapter 17: I/O and ports 136

The procedure port? returns #t when obj is a port (either unidirectional or bidi-
rectional) and #f otherwise.
For example:

> (input-port? (current-input-port))
#t
> (call-with-input-string "some text" output-port?)
#f
> (port? (current-output-port))
#t

[procedure](read [port])
This procedure reads and returns the next Scheme datum from the input-port port.
The end-of-file object is returned when the end of the stream is reached. If it is not
specified, port defaults to the current input-port.
For example:

> (call-with-input-string "some text" read)
some
> (call-with-input-string "" read)
#!eof

[procedure](read-all [port [reader]])
This procedure repeatedly calls the procedure reader with port as the sole argument
and accumulates a list of each value returned up to the end-of-file object. The pro-
cedure read-all returns the accumulated list without the end-of-file object. If it
is not specified, port defaults to the current input-port. If it is not specified, reader
defaults to the procedure read.
For example:

> (call-with-input-string "3,2,1\ngo!" read-all)
(3 ,2 ,1 go!)
> (call-with-input-string "3,2,1\ngo!"

(lambda (p) (read-all p read-char)))
(#\3 #\, #\2 #\, #\1 #\newline #\g #\o #\!)
> (call-with-input-string "3,2,1\ngo!"

(lambda (p) (read-all p read-line)))
("3,2,1" "go!")

[procedure](write obj [port])
This procedure writes the Scheme datum obj to the output-port port and the value
returned is unspecified. If it is not specified, port defaults to the current output-port.
For example:

> (write (list ’compare (list ’quote ’@x) ’and (list ’unquote ’@x)))
(compare ’@x and , @x)>

[procedure](newline [port])
This procedure writes an “object separator” to the output-port port and the value
returned is unspecified. The separator ensures that the next Scheme datum written
with the write procedure will not be confused with the latest datum that was writ-
ten. On character-ports this is done by writing the character #\newline. On ports
where successive objects are implicitly distinct (such as “vector ports”) this procedure
does nothing.

Chapter 17: I/O and ports 137

Regardless of the class of a port p and assuming that the external textual represen-
tation of the object x is readable, the expression (begin (write x p) (newline
p)) will write to p a representation of x that can be read back with the procedure
read. If it is not specified, port defaults to the current output-port.
For example:

> (begin (write 123) (newline) (write 456) (newline))
123
456

[procedure](force-output [port])
The procedure force-output causes the output buffers of the output-port port to
be drained (i.e. the data is sent to its destination). If port is not specified, the current
output-port is used.
For example:

> (define p (open-tcp-client
(list server-address: "www.iro.umontreal.ca"

port-number: 80)))
> (display "GET /\n" p)
> (force-output p)
> (read-line p)
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\""

[procedure](close-input-port port)
[procedure](close-output-port port)
[procedure](close-port port)

The port argument of these procedures must be a unidirectional or a bidirectional
port. For all three procedures the value returned is unspecified.
The procedure close-input-port closes the input-port side of port, which must
not be a unidirectional output-port.
The procedure close-output-port closes the output-port side of port, which must
not be a unidirectional input-port. The ouput buffers are drained before port is closed.
The procedure close-port closes all sides of the port. Unless port is a unidirectional
input-port, the output buffers are drained before port is closed.
For example:

> (define p (open-tcp-client
(list server-address: "www.iro.umontreal.ca"

port-number: 80)))
> (display "GET /\n" p)
> (close-output-port p)
> (read-line p)
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\""

[procedure](input-port-timeout-set! port timeout [thunk])
[procedure](output-port-timeout-set! port timeout [thunk])

When a thread tries to perform an I/O operation on a port, the requested operation
may not be immediately possible and the thread must wait. For example, the thread
may be trying to read a line of text from the console and the user has not typed
anything yet, or the thread may be trying to write to a network connection faster
than the network can handle. In such situations the thread normally blocks until the
operation becomes possible.

Chapter 17: I/O and ports 138

It is sometimes necessary to guarantee that the thread will not block too long. For
this purpose, to each input-port and output-port is attached a timeout and timeout-
thunk. The timeout indicates the point in time beyond which the thread should
stop waiting on an input and output operation respectively. When the timeout is
reached, the thread calls the port’s timeout-thunk. If the timeout-thunk returns #f
the thread abandons trying to perform the operation (in the case of an input operation
an end-of-file is read and in the case of an output operation an exception is raised).
Otherwise, the thread will block again waiting for the operation to become possible
(note that if the port’s timeout has not changed the thread will immediately call the
timeout-thunk again).

The procedure input-port-timeout-set! sets the timeout of the input-port
port to timeout and the timeout-thunk to thunk. The procedure output-port-
timeout-set! sets the timeout of the output-port port to timeout and the timeout-
thunk to thunk. If it is not specified, the thunk defaults to a thunk that returns #f.
The timeout is either a time object indicating an absolute point in time, or it is a real
number which indicates the number of seconds relative to the moment the procedure
is called. For both procedures the value returned is unspecified.

When a port is created the timeout is set to infinity (+inf.0). This causes the thread
to wait as long as needed for the operation to become possible. Setting the timeout
to a point in the past (-inf.0) will cause the thread to attempt the I/O operation
and never block (i.e. the timeout-thunk is called if the operation is not immediately
possible).

The following example shows how to cause the REPL to terminate when the user
does not enter an expression within the next 60 seconds.

> (input-port-timeout-set! (repl-input-port) 60)
>
*** EOF again to exit

17.5 Character-ports

17.5.1 Character-port settings

The following is a list of port settings that are valid for character-ports.

• readtable: readtable

This setting determines the readtable attached to the character-port. To set each direc-
tion separately the keywords input-readtable: and output-readtable: must
be used instead of readtable:. Readtables control the external textual representa-
tion of Scheme objects, that is the encoding of Scheme objects using characters. The
behavior of the read procedure depends on the port’s input-readtable and the behav-
ior of the procedures write, pretty-print, and related procedures is affected by
the port’s output-readtable. The default value of this setting is the value bound to the
parameter object current-readtable.

• output-width: positive-integer

This setting indicates the width of the character output-port in number of characters.
This information is used by the pretty-printer. The default value of this setting is 80.

Chapter 17: I/O and ports 139

17.5.2 Character-port operations

[procedure](input-port-line port)
[procedure](input-port-column port)
[procedure](output-port-line port)
[procedure](output-port-column port)

The current character location of a character input-port is the location of the next
character to read. The current character location of a character output-port is the
location of the next character to write. Location is denoted by a line number (the
first line is line 1) and a column number, that is the location on the current line (the
first column is column 1). The procedures input-port-line and input-port-
column return the line location and the column location respectively of the character
input-port port. The procedures output-port-line and output-port-column
return the line location and the column location respectively of the character output-
port port.
For example:

> (call-with-output-string
’()
(lambda (p)

(display "abc\n123def" p)
(write (list (output-port-line p) (output-port-column p))

p)))
"abc\n123def(2 7)"

[procedure](output-port-width port)
This procedure returns the width, in characters, of the character output-port port.
The value returned is the port’s output-width setting.
For example:

> (output-port-width (repl-output-port))
80

[procedure](read-char [port])
This procedure reads the character input-port port and returns the character at the
current character location and advances the current character location to the next
character, unless the port is already at end-of-file in which case read-char returns
the end-of-file object. If it is not specified, port defaults to the current input-port.
For example:

> (call-with-input-string
"some text"
(lambda (p)

(let ((a (read-char p))) (list a (read-char p)))))
(#\s #\o)
> (call-with-input-string "" read-char)
#!eof

[procedure](peek-char [port])
This procedure returns the same result as read-char but it does not advance the
current character location of the input-port port. If it is not specified, port defaults
to the current input-port.
For example:

Chapter 17: I/O and ports 140

> (call-with-input-string
"some text"
(lambda (p)

(let ((a (peek-char p))) (list a (read-char p)))))
(#\s #\s)
> (call-with-input-string "" peek-char)
#!eof

[procedure](write-char char [port])
This procedure writes the character char to the character output-port port and ad-
vances the current character location of that output-port. The value returned is
unspecified. If it is not specified, port defaults to the current output-port.

For example:
> (write-char #\=)
=>

[procedure](read-line [port [separator [include-separator?]]])
This procedure reads characters from the character input-port port until a specific
separator or the end-of-file is encountered and returns a string containing the sequence
of characters read. The separator is included at the end of the string only if it was
the last character read and include-separator? is not #f. The separator must be a
character or #f (in which case all the characters until the end-of-file are read). If it is
not specified, port defaults to the current input-port. If it is not specified, separator
defaults to #\newline. If it is not specified, include-separator? defaults to #f.

For example:
> (define (split sep)

(lambda (str)
(call-with-input-string

str
(lambda (p)

(read-all p (lambda (p) (read-line p sep)))))))
> ((split #\,) "a,b,c")
("a" "b" "c")
> (map (split #\,)

(call-with-input-string "1,2,3\n4,5"
(lambda (p) (read-all p read-line))))

(("1" "2" "3") ("4" "5"))

[procedure](read-substring string start end [port])
[procedure](write-substring string start end [port])

These procedures support bulk character I/O. The part of the string string starting
at index start and ending just before index end is used as a character buffer that
will be the target of read-substring or the source of the write-substring.
Up to end-start characters will be transferred. The number of characters trans-
ferred, possibly zero, is returned by these procedures. Fewer characters will be read
by read-substring if an end-of-file is read, or a timeout occurs before all the
requested characters are transferred and the timeout thunk returns #f (see the pro-
cedure input-port-timeout-set!). Fewer characters will be written by write-
substring if a timeout occurs before all the requested characters are transferred and
the timeout thunk returns #f (see the procedure output-port-timeout-set!).

Chapter 17: I/O and ports 141

If it is not specified, port defaults to the current input-port and current output-port
respectively.

For example:
> (define s (make-string 10 #\x))
> (read-substring s 2 5)123456789
3
> 456789
> s
"xx123xxxxx"

[procedure](input-port-readtable port)
[procedure](output-port-readtable port)

These procedures return the readtable attached to the character-port port. The port
parameter of input-port-readtable must be an input-port. The port parameter
of output-port-readtable must be an output-port.

[procedure](input-port-readtable-set! port readtable)
[procedure](output-port-readtable-set! port readtable)

These procedures change the readtable attached to the character-port port to the
readtable readtable. The port parameter of input-port-readtable-set! must
be an input-port. The port parameter of output-port-readtable-set! must
be an output-port. The value returned is unspecified.

17.6 Byte-ports

17.6.1 Byte-port settings

The following is a list of port settings that are valid for byte-ports.

• char-encoding: encoding

This setting controls the character encoding of the byte-port. For bidirectional byte-
ports, the character encoding for input and output is set. To set each direction sepa-
rately the keywords input-char-encoding: and output-char-encoding:must
be used instead of char-encoding:. The default value of this setting is operating
system dependent, but this can be overridden through the runtime options (see Chap-
ter 4 [Runtime options], page 21). The following encodings are supported:

ISO-8859-1 ISO-8859-1 character encoding. Each character is encoded by a
single byte. Only Unicode characters with a code in the range 0 to
255 are allowed.

ASCII ASCII character encoding. Each character is encoded by a single
byte. In principle only Unicode characters with a code in the range
0 to 127 are allowed but most types of ports treat this exactly like
ISO-8859-1.

UTF-8 UTF-8 character encoding. Each character is encoded by a se-
quence of one to four bytes. The minimum length UTF-8 encoding
is used. If a BOM is needed at the beginning of the stream then it
must be explicitly written.

Chapter 17: I/O and ports 142

UTF-16 UTF-16 character encoding. Each character is encoded by one or
two 16 bit integers (2 or 4 bytes). The 16 bit integers may be
encoded using little-endian encoding or big-endian encoding. If the
port is an input-port and the first two bytes read are a BOM (“Byte
Order Mark” character with hexadecimal code FEFF) then the
BOM will be discarded and the endianness will be set accordingly,
otherwise the endianness depends on the operating system and how
the Gambit runtime was compiled. If the port is an output-port
then a BOM will be output at the beginning of the stream and the
endianness depends on the operating system and how the Gambit
runtime was compiled.

UTF-16LE UTF-16 character encoding with little-endian endianness. It is like
UTF-16 except the endianness is set to little-endian and there is
no BOM processing. If a BOM is needed at the beginning of the
stream then it must be explicitly written.

UTF-16BE UTF-16 character encoding with big-endian endianness. It is like
UTF-16LE except the endianness is set to big-endian.

UCS-2 UCS-2 character encoding. Each character is encoded by a 16 bit
integer (2 bytes). The 16 bit integers may be encoded using little-
endian encoding or big-endian encoding. If the port is an input-
port and the first two bytes read are a BOM (“Byte Order Mark”
character with hexadecimal code FEFF) then the BOM will be
discarded and the endianness will be set accordingly, otherwise the
endianness depends on the operating system and how the Gambit
runtime was compiled. If the port is an output-port then a BOM
will be output at the beginning of the stream and the endianness
depends on the operating system and how the Gambit runtime was
compiled.

UCS-2LE UCS-2 character encoding with little-endian endianness. It is like
UCS-2 except the endianness is set to little-endian and there is
no BOM processing. If a BOM is needed at the beginning of the
stream then it must be explicitly written.

UCS-2BE UCS-2 character encoding with big-endian endianness. It is like
UCS-2LE except the endianness is set to big-endian.

UCS-4 UCS-4 character encoding. Each character is encoded by a 32 in-
teger (4 bytes). The 32 bit integers may be encoded using little-
endian encoding or big-endian encoding. If the port is an input-port
and the first four bytes read are a BOM (“Byte Order Mark” char-
acter with hexadecimal code 0000FEFF) then the BOM will be
discarded and the endianness will be set accordingly, otherwise the
endianness depends on the operating system and how the Gambit
runtime was compiled. If the port is an output-port then a BOM
will be output at the beginning of the stream and the endianness
depends on the operating system and how the Gambit runtime was
compiled.

Chapter 17: I/O and ports 143

UCS-4LE UCS-4 character encoding with little-endian endianness. It is like
UCS-4 except the endianness is set to little-endian and there is
no BOM processing. If a BOM is needed at the beginning of the
stream then it must be explicitly written.

UCS-4BE UCS-4 character encoding with big-endian endianness. It is like
UCS-4LE except the endianness is set to big-endian.

• eol-encoding: encoding

This setting controls the end-of-line encoding of the byte-port. To set each direction
separately the keywords input-eol-encoding: and output-eol-encoding:
must be used instead of eol-encoding:. The default value of this setting is
operating system dependent, but this can be overridden through the runtime options
(see Chapter 4 [Runtime options], page 21). Note that for output-ports the end-of-line
encoding is applied before the character encoding, and for input-ports it is applied
after. The following encodings are supported:

lf For an output-port, writing a #\newline character outputs a
#\linefeed character to the stream (Unicode character code
10). For an input-port, a #\newline character is read when
a #\linefeed character is encountered on the stream. Note
that #\linefeed and #\newline are two names for the same
character, so this end-of-line encoding is actually the identity
function. Text files created by UNIX applications typically use
this end-of-line encoding.

cr For an output-port, writing a #\newline character outputs
a #\return character to the stream (Unicode character code
10). For an input-port, a #\newline character is read when a
#\linefeed character or a #\return character is encountered
on the stream. Text files created by Classic Mac OS applications
typically use this end-of-line encoding.

cr-lf For an output-port, writing a #\newline character outputs to the
stream a #\return character followed by a #\linefeed charac-
ter. For an input-port, a #\newline character is read when a
#\linefeed character or a #\return character is encountered
on the stream. Moreover, if this character is immediately followed
by the opposite character (#\linefeed followed by #\return or
#\return followed by #\linefeed) then the second character is
ignored. In other words, all four possible end-of-line encodings are
read as a single #\newline character. Text files created by DOS
and Microsoft Windows applications typically use this end-of-line
encoding.

17.6.2 Byte-port operations

[procedure](read-u8 [port])
This procedure reads the byte input-port port and returns the byte at the current
byte location and advances the current byte location to the next byte, unless the port

Chapter 17: I/O and ports 144

is already at end-of-file in which case read-u8 returns the end-of-file object. If it is
not specified, port defaults to the current input-port.
This procedure must be called when the port’s input character buffer is empty other-
wise the character-stream and byte-stream may be out of sync due to buffering. The
input character buffer is used for bulk decoding of encoded characters (i.e. to trans-
late the byte-stream into a character-stream). The input character buffer is initially
empty. It is only when characters are read that it is filled with characters obtained
by decoding the byte-stream.
One way to ensure that the port’s input character buffer is empty is to call read-
u8 strictly before any use of the port in a character input operation (i.e. a call to
the procedures read, read-char, peek-char, etc). Alternatively input-port-
characters-buffered can be used to get the number of characters in the port’s
input character buffer, and to empty the buffer with calls to read-char or read-
substring.
For example:

> (call-with-input-u8vector
’#u8(11 22 33 44)
(lambda (p)

(let ((a (read-u8 p))) (list a (read-u8 p)))))
(11 22)
> (call-with-input-u8vector ’#u8() read-u8)
#!eof

[procedure](write-u8 n [port])
This procedure writes the byte n to the byte output-port port and advances the
current byte location of that output-port. The value returned is unspecified. If it is
not specified, port defaults to the current output-port.
For example:

> (call-with-output-u8vector ’() (lambda (p) (write-u8 33 p)))
#u8(33)

[procedure](read-subu8vector u8vector start end [port])
[procedure](write-subu8vector u8vector start end [port])

These procedures support bulk byte I/O. The part of the u8vector u8vector starting
at index start and ending just before index end is used as a byte buffer that will be
the target of read-subu8vector or the source of the write-subu8vector. Up
to end-start bytes will be transferred. The number of bytes transferred, possibly zero,
is returned by these procedures. Fewer bytes will be read by read-subu8vector
if an end-of-file is read, or a timeout occurs before all the requested bytes are trans-
ferred and the timeout thunk returns #f (see the procedure input-port-timeout-
set!). Fewer bytes will be written by write-subu8vector if a timeout occurs
before all the requested bytes are transferred and the timeout thunk returns #f (see
the procedure output-port-timeout-set!). If it is not specified, port defaults
to the current input-port and current output-port respectively.
The procedure read-subu8vector must be called before any use of the port in a
character input operation (i.e. a call to the procedures read, read-char, peek-
char, etc) because otherwise the character-stream and byte-stream may be out of
sync due to the port buffering.

Chapter 17: I/O and ports 145

For example:
> (define v (make-u8vector 10))
> (read-subu8vector v 2 5)123456789
3
> 456789
> v
#u8(0 0 49 50 51 0 0 0 0 0)

17.7 Device-ports

17.7.1 Filesystem devices

[procedure](open-file path-or-settings)
[procedure](open-input-file path-or-settings)
[procedure](open-output-file path-or-settings)
[procedure](call-with-input-file path-or-settings proc)
[procedure](call-with-output-file path-or-settings proc)
[procedure](with-input-from-file path-or-settings thunk)
[procedure](with-output-to-file path-or-settings thunk)

All of these procedures create a port to interface to a byte-stream device (such as
a file, console, serial port, named pipe, etc) whose name is given by a path of the
filesystem. The direction: setting will default to the value input for the pro-
cedures open-input-file, call-with-input-file and with-input-from-
file, to the value output for the procedures open-output-file, call-with-
output-file and with-output-to-file, and to the value input-output for
the procedure open-file. The procedures open-file, open-input-file and
open-output-file return the port that is created. The procedures call-with-
input-file and call-with-output-file call the procedure proc with the port
as single argument, and then return the value(s) of this call after closing the port.
The procedures with-input-from-file and with-output-to-file dynami-
cally bind the current input-port and current output-port respectively to the port
created for the duration of a call to the procedure thunk with no argument. The
value(s) of the call to thunk are returned after closing the port.

The first argument of these procedures is either a string denoting a filesystem path
or a list of port settings which must contain a path: setting. Here are the settings
allowed in addition to the generic settings of byte-ports:

• path: string

This setting indicates the location of the file in the filesystem. There is no default
value for this setting.

• append: (#f | #t)
This setting controls whether output will be added to the end of the file. This is
useful for writing to log files that might be open by more than one process. The
default value of this setting is #f.

• create: (#f | #t | maybe)
This setting controls whether the file will be created when it is opened. A setting
of #f requires that the file exist (otherwise an exception is raised). A setting

Chapter 17: I/O and ports 146

of #t requires that the file does not exist (otherwise an exception is raised). A
setting of maybe will create the file if it does not exist. The default value of this
setting is maybe for output-ports and #f for input-ports and bidirectional ports.

• permissions: 12-bit-exact-integer

This setting controls the UNIX permissions that will be attached to the file if it
is created. The default value of this setting is #o666.

• truncate: (#f | #t)
This setting controls whether the file will be truncated when it is opened. For
input-ports, the default value of this setting is #f. For output-ports, the default
value of this setting is #t when the append: setting is #f, and #f otherwise.

For example:
> (with-output-to-file

(list path: "nofile"
create: #f)

(lambda ()
(display "hello world!\n")))

*** ERROR IN (console)@1.1 -- No such file or directory
(with-output-to-file ’(path: "nofile" create: #f) ’#<procedure #2>)

[procedure](input-port-byte-position port [position [whence]])
[procedure](output-port-byte-position port [position [whence]])

When called with a single argument these procedures return the byte position where
the next I/O operation would take place in the file attached to the given port (relative
to the beginning of the file). When called with two or three arguments, the byte
position for subsequent I/O operations on the given port is changed to position,
which must be an exact integer. When whence is omitted or is 0, the position is
relative to the beginning of the file. When whence is 1, the position is relative to the
current byte position of the file. When whence is 2, the position is relative to the end
of the file. The return value is the new byte position. On most operating systems the
byte position for reading and writing of a given bidirectional port are the same.
When input-port-byte-position is called to change the byte position of an
input-port, all input buffers will be flushed so that the next byte read will be the one
at the given position.
When output-port-byte-position is called to change the byte position of
an output-port, there is an implicit call to force-output before the position is
changed.
For example:

> (define p ; p is an input-output-port
(open-file ’(path: "test" char-encoding: ISO-8859-1 create: maybe)))

> (list (input-port-byte-position p) (output-port-byte-position p))
(0 0)
> (display "abcdefghij\n" p)
> (list (input-port-byte-position p) (output-port-byte-position p))
(0 0)
> (force-output p)
> (list (input-port-byte-position p) (output-port-byte-position p))
(11 11)
> (input-port-byte-position p 2)
2

Chapter 17: I/O and ports 147

> (list (input-port-byte-position p) (output-port-byte-position p))
(2 2)
> (peek-char p)
#\c
> (list (input-port-byte-position p) (output-port-byte-position p))
(11 11)
> (output-port-byte-position p -7 2)
4
> (list (input-port-byte-position p) (output-port-byte-position p))
(4 4)
> (write-char #\! p)
> (list (input-port-byte-position p) (output-port-byte-position p))
(4 4)
> (force-output p)
> (list (input-port-byte-position p) (output-port-byte-position p))
(5 5)
> (input-port-byte-position p 1)
1
> (read p)
bcd!fghij

17.7.2 Process devices

[procedure](open-process path-or-settings)
This procedure starts a new process and returns a port that allows communication
with that process on its standard input and standard output. The default value of
the direction: setting is input-output, i.e. the Scheme program can write to
the process’ standard input and can read from the process’ standard output.

The first argument of this procedure is either a string denoting a filesystem path of
an executable program or a list of port settings which must contain a path: setting.
Here are the settings allowed in addition to the generic settings of byte-ports:

• path: string

This setting indicates the location of the executable program in the filesystem.
There is no default value for this setting.

• arguments: list-of-strings

This setting indicates the string arguments that are passed to the program. The
default value of this setting is the empty list (i.e. no arguments).

• environment: list-of-strings

This setting indicates the set of environment variable bindings that the process
receives. Each element of the list is a string of the form “VAR=VALUE”, where
VAR is the name of the variable and VALUE is its binding. When list-of-strings
is #f, the process inherits the environment variable bindings of the Scheme pro-
gram. The default value of this setting is #f.

• directory: dir

This setting indicates the current working directory of the process. When dir is
#f, the process uses the value of (current-directory). The default value
of this setting is #f.

Chapter 17: I/O and ports 148

• stdin-redirection: (#f | #t)
This setting indicates how the standard input of the process is redirected. A
setting of #t will redirect the standard input from the process-port (i.e. what is
written to the process-port will be available on the standard input). A setting
of #f will leave the standard input as-is, which typically results in input coming
from the console. The default value of this setting is #t.

• stdout-redirection: (#f | #t)
This setting indicates how the standard output of the process is redirected. A
setting of #t will redirect the standard output to the process-port (i.e. all output
to standard output can be read from the process-port). A setting of #f will leave
the standard output as-is, which typically results in the output going to the
console. The default value of this setting is #t.

• stderr-redirection: (#f | #t)
This setting indicates how the standard error of the process is redirected. A
setting of #t will redirect the standard error to the process-port (i.e. all output
to standard error can be read from the process-port). A setting of #f will leave
the standard error as-is, which typically results in error messages being output
to the console. The default value of this setting is #f.

• pseudo-terminal: (#f | #t)
This setting indicates what type of device will be bound to the process’ standard
input and standard output. A setting of #t will use a pseudo-terminal device
(this is a device that behaves like a tty device even though there is no real
terminal or user directly involved). A setting of #f will use a pair of pipes. The
difference is important for programs which behave differently when they are used
interactively, for example shells. The default value of this setting is #f.

For example:
> (define p (open-process (list path: "ls"

arguments: ’("../examples"))))
> (read-line p)
"README"
> (read-line p)
"Xlib-simple"
> (close-port p)
> (define p (open-process "/usr/bin/dc"))
> (display "2 100 ˆ p\n" p)
> (force-output p)
> (read-line p)
"1267650600228229401496703205376"

17.7.3 Network devices

[procedure](open-tcp-client settings)
This procedure opens a network connection to a socket server and returns a tcp-
client-port (a subtype of device-port) that represents this connection and allows
communication with that server. The default value of the direction: setting is
input-output, i.e. the Scheme program can send information to the server and
receive information from the server. The sending direction can be “shutdown” using
the close-output-port procedure and the receiving direction can be “shutdown”

Chapter 17: I/O and ports 149

using the close-input-port procedure. The close-port procedure closes both
directions of the connection.

The first argument of this procedure is a list of port settings which must contain
a server-address: setting and a port-number: setting. Here are the settings
allowed in addition to the generic settings of byte-ports:

• server-address: string-or-ip-address

This setting indicates the internet address of the server. It can be a string
denoting a host name, which will be translated to an IP address by the host-
info procedure, or a 4 element u8vector which contains the 32-bit IPv4 address
or an 8 element u16vector which contains the 128-bit IPv6 address. There is no
default value for this setting.

• port-number: 16-bit-exact-integer

This setting indicates the IP port-number of the server to connect to (e.g. 80
for the standard HTTP server, 23 for the standard telnet server). There is no
default value for this setting.

• keep-alive: (#f | #t)
This setting controls the use of the “keep alive” option on the connection. The
“keep alive” option will periodically send control packets on otherwise idle net-
work connections to ensure that the server host is active and reachable. The
default value of this setting is #f.

• coalesce: (#f | #t)
This setting controls the use of TCP’s “Nagle algorithm” which reduces the
number of small packets by delaying their transmission and coalescing them into
larger packets. A setting of #t will coalesce small packets into larger ones. A
setting of #f will transmit packets as soon as possible. The default value of this
setting is #t. Note that this setting does not affect the buffering of the port.

Here is an example of the client-side code that opens a connection to an HTTP server
on port 8080 on the same computer (for the server-side code see the example for the
procedure open-tcp-server):

> (define p (open-tcp-client (list server-address: ’#u8(127 0 0 1)
port-number: 8080
eol-encoding: ’cr-lf)))

> p
#<input-output-port #2 (tcp-client #u8(127 0 0 1) 8080)>
> (display "GET /\n" p)
> (force-output p)
> (read-line p)
"<HTML>"

[procedure](open-tcp-server port-number-or-settings)
This procedure sets up a socket to accept network connection requests from clients
and returns a tcp-server-port from which network connections to clients are obtained.
Tcp-server-ports are a direct subtype of object-ports (i.e. they are not character-
ports) and are input-ports. Reading from a tcp-server-port with the read procedure
will block until a network connection request is received from a client. The read
procedure will then return a tcp-client-port (a subtype of device-port) that represents

Chapter 17: I/O and ports 150

this connection and allows communication with that client. Closing a tcp-server-
port with either the close-input-port or close-port procedures will cause the
network subsystem to stop accepting connections on that socket.

The first argument of this procedure is an IP port-number (16-bit nonnegative ex-
act integer) or a list of port settings which must contain a port-number: setting.
Below is a list of the settings allowed in addition to the settings keep-alive: and
coalesce: allowed by the open-tcp-client procedure and the generic settings
of byte-ports. The settings which are not listed below apply to the tcp-client-port
that is returned by read when a connection is accepted and have the same meaning
as if they were used in a call to the open-tcp-client procedure.

• server-address: string-or-ip-address

This setting indicates the internet address of the network interface on which
connections requests are accepted. When this parameter is not specified or is
#f, the connection requests are accepted on all network interfaces (i.e. address
INADDR ANY). The parameter can be a string denoting a host name, which
will be translated to an IP address by the host-info procedure, or a 4 element
u8vector which contains the 32-bit IPv4 address or an 8 element u16vector which
contains the 128-bit IPv6 address.

• port-number: 16-bit-exact-integer

This setting indicates the IP port-number assigned to the socket which accepts
connection requests from clients. So called “well-known ports”, which are re-
served for standard services, have a port-number below 1024 and can only be
assigned to a socket by a process with superuser priviledges (e.g. 80 for the
HTTP service, 23 for the telnet service). No special priviledges are needed to
assign higher port-numbers to a socket. There is no default value for this setting.

• backlog: positive-exact-integer

This setting indicates the maximum number of connection requests that can be
waiting to be accepted by a call to read (technically it is the value passed as the
second argument of the UNIX listen() function). The default value of this
setting is 128.

• reuse-address: (#f | #t)
This setting controls whether it is possible to assign a port-number that is cur-
rently active. Note that when a server process terminates, the socket it was using
to accept connection requests does not become inactive immediately. Instead it
remains active for a few minutes to ensure clean termination of the connections.
A setting of #f will cause an exception to be raised in that case. A setting of #t
will allow a port-number to be used even if it is active. The default value of this
setting is #t.

Here is an example of the server-side code that accepts connections on port 8080 (for
the client-side code see the example for the procedure open-tcp-client):

> (define s (open-tcp-server (list port-number: 8080
eol-encoding: ’cr-lf)))

> (define p (read s)) ; blocks until client connects
> p
#<input-output-port #2 (tcp-client 8080)>

Chapter 17: I/O and ports 151

> (read-line p)
"GET /"
> (display "<HTML>\n" p)
> (force-output p)

17.8 Directory-ports

[procedure](open-directory path-or-settings)
This procedure opens a directory of the filesystem for reading its entries and returns
a directory-port from which the entries can be enumerated. Directory-ports are a
direct subtype of object-ports (i.e. they are not character-ports) and are input-ports.
Reading from a directory-port with the read procedure returns the next file name
in the directory as a string. The end-of-file object is returned when all the file names
have been enumerated. Another way to get the list of all files in a directory is the
directory-files procedure which returns a list of the files in the directory. The
advantage of using directory-ports is that it allows iterating over the files in a directory
in constant space, which is interesting when the number of files in the directory is
not known in advance and may be large. Note that the order in which the names are
returned is operating-system dependent.
The first argument of this procedure is either a string denoting a filesystem path to a
directory or a list of port settings which must contain a path: setting. Here are the
settings allowed in addition to the generic settings of object-ports:
• path: string

This setting indicates the location of the directory in the filesystem. There is no
default value for this setting.

• ignore-hidden: (#f | #t | dot-and-dot-dot)
This setting controls whether hidden-files will be returned. Under UNIX and
Mac OS X hidden-files are those that start with a period (such as ‘.’, ‘..’, and
‘.profile’). Under Microsoft Windows hidden files are the ‘.’ and ‘..’ entries
and the files whose “hidden file” attribute is set. A setting of #f will enumerate
all the files. A setting of #t will only enumerate the files that are not hidden. A
setting of dot-and-dot-dot will enumerate all the files except for the ‘.’ and
‘..’ hidden files. The default value of this setting is #t.

For example:
> (let ((p (open-directory (list path: "../examples"

ignore-hidden: #f))))
(let loop ()

(let ((fn (read p)))
(if (string? fn)

(begin
(pp (path-expand fn))
(loop)))))

(close-input-port p))
"/u/feeley/examples/."
"/u/feeley/examples/.."
"/u/feeley/examples/complex"
"/u/feeley/examples/README"
"/u/feeley/examples/simple"
> (define x (open-directory "../examples"))

Chapter 17: I/O and ports 152

> (read-all x)
("complex" "README" "simple")

17.9 Vector-ports

[procedure](open-vector [vector-or-settings])
[procedure](open-input-vector [vector-or-settings])
[procedure](open-output-vector [vector-or-settings])
[procedure](call-with-input-vector vector-or-settings proc)
[procedure](call-with-output-vector vector-or-settings proc)
[procedure](with-input-from-vector vector-or-settings thunk)
[procedure](with-output-to-vector vector-or-settings thunk)

Vector-ports represent streams of Scheme objects. They are a direct subtype of object-
ports (i.e. they are not character-ports). All of these procedures create vector-ports
that are either unidirectional or bidirectional. The direction: setting will default
to the value input for the procedures open-input-vector, call-with-input-
vector and with-input-from-vector, to the value output for the procedures
open-output-vector, call-with-output-vector and with-output-to-
vector, and to the value input-output for the procedure open-vector. Bidi-
rectional vector-ports behave like FIFOs: data written to the port is added to the end
of the stream that is read. It is only when a bidirectional vector-port’s output-side
is closed with a call to the close-output-port procedure that the stream’s end
is known (when the stream’s end is reached, reading the port returns the end-of-file
object).
The procedures open-vector, open-input-vector and open-output-
vector return the port that is created. The procedures call-with-input-
vector and call-with-output-vector call the procedure proc with the port
as single argument, and then return the value(s) of this call after closing the port.
The procedures with-input-from-vector and with-output-to-vector
dynamically bind the current input-port and current output-port respectively to the
port created for the duration of a call to the procedure thunk with no argument.
The value(s) of the call to thunk are returned after closing the port.
The first argument of these procedures is either a vector of the elements used to
initialize the stream or a list of port settings. If it is not specified, the argument
of the open-vector, open-input-vector, and open-output-vector proce-
dures defaults to an empty list of port settings. Here are the settings allowed in
addition to the generic settings of object-ports:
• init: vector

This setting indicates the initial content of the stream. The default value of this
setting is an empty vector.

• permanent-close: (#f | #t)
This setting controls whether a call to the procedures close-output-port
will close the output-side of a bidirectional vector-port permanently or not. A
permanently closed bidirectional vector-port whose end-of-file has been reached
on the input-side will return the end-of-file object for all subsequent calls to the
read procedure. A non-permanently closed bidirectional vector-port will return

Chapter 17: I/O and ports 153

to its opened state when its end-of-file is read. The default value of this setting
is #t.

For example:
> (define p (open-vector))
> (write 1 p)
> (write 2 p)
> (write 3 p)
> (read p)
1
> (read p)
2
> (close-output-port p)
> (read p)
3
> (read p)
#!eof

[procedure](open-vector-pipe [vector-or-settings1
[vector-or-settings2]])

The procedure open-vector-pipe creates two vector-ports and returns these two
ports. The two ports are interrelated as follows: the first port’s output-side is con-
nected to the second port’s input-side and the first port’s input-side is connected
to the second port’s output-side. The value vector-or-settings1 is used to setup the
first vector-port and vector-or-settings2 is used to setup the second vector-port. The
same settings as for open-vector are allowed. The default direction: setting is
input-output (i.e. a bidirectional port is created). If it is not specified vector-or-
settings1 defaults to the empty list. If it is not specified vector-or-settings2 defaults
to vector-or-settings1 but with the init: setting set to the empty vector and with
the input and output settings exchanged (e.g. if the first port is an input-port then
the second port is an output-port, if the first port’s input-side is non-buffered then
the second port’s output-side is non-buffered).
For example:

> (define (server op)
(receive (c s) (open-vector-pipe) ; client-side and server-side ports

(thread-start!
(make-thread

(lambda ()
(let loop ()

(let ((request (read s)))
(if (not (eof-object? request))

(begin
(write (op request) s)
(newline s)
(force-output s)
(loop))))))))

c))
> (define a (server (lambda (x) (expt 2 x))))
> (define b (server (lambda (x) (expt 10 x))))
> (write 100 a)
> (write 30 b)
> (read a)
1267650600228229401496703205376
> (read b)

Chapter 17: I/O and ports 154

1000000000000000000000000000000

[procedure](get-output-vector vector-port)
The procedure get-output-vector takes an output vector-port or a bidirectional
vector-port as argument and removes all the objects currently on the output-side,
returning them in a vector. The port remains open and subsequent output to the
port and calls to the procedure get-output-vector are possible.

For example:
> (define p (open-vector ’#(1 2 3)))
> (write 4 p)
> (get-output-vector p)
#(1 2 3 4)
> (write 5 p)
> (write 6 p)
> (get-output-vector p)
#(5 6)

17.10 String-ports

[procedure](open-string [string-or-settings])
[procedure](open-input-string [string-or-settings])
[procedure](open-output-string [string-or-settings])
[procedure](call-with-input-string string-or-settings proc)
[procedure](call-with-output-string string-or-settings proc)
[procedure](with-input-from-string string-or-settings thunk)
[procedure](with-output-to-string string-or-settings thunk)
[procedure](open-string-pipe [string-or-settings1

[string-or-settings2]])
[procedure](get-output-string string-port)

String-ports represent streams of characters. They are a direct subtype of character-
ports. These procedures are the string-port analog of the procedures specified in the
vector-ports section. Note that these procedures are a superset of the procedures
specified in the “Basic String Ports SRFI” (SRFI 6).

[procedure](object->string obj [n])
This procedure converts the object obj to its external representation and returns it
in a string. The parameter n specifies the maximal width of the resulting string. If
the external representation is wider than n, the resulting string will be truncated to
n characters and the last 3 characters will be set to periods. Note that the current
readtable is used.

17.11 U8vector-ports

[procedure](open-u8vector [u8vector-or-settings])
[procedure](open-input-u8vector [u8vector-or-settings])
[procedure](open-output-u8vector [u8vector-or-settings])
[procedure](call-with-input-u8vector u8vector-or-settings

proc)

Chapter 17: I/O and ports 155

[procedure](call-with-output-u8vector u8vector-or-settings
proc)

[procedure](with-input-from-u8vector u8vector-or-settings
thunk)

[procedure](with-output-to-u8vector u8vector-or-settings
thunk)

[procedure](open-u8vector-pipe [u8vector-or-settings1
[u8vector-or-settings2]])

[procedure](get-output-u8vector u8vector-port)
U8vector-ports represent streams of bytes. They are a direct subtype of byte-ports.
These procedures are the u8vector-port analog of the procedures specified in the
vector-ports section.

17.12 Parameter objects related to I/O

[procedure](current-input-port [new-value])
[procedure](current-output-port [new-value])
[procedure](current-error-port [new-value])
[procedure](current-readtable [new-value])

These procedures are parameter objects which represent respectively: the current
input-port, the current output-port, the current error-port, and the current readtable.

Chapter 18: Lexical syntax and readtables 156

18 Lexical syntax and readtables

18.1 Readtables

Readtables control the external textual representation of Scheme objects, that is the encod-
ing of Scheme objects using characters. Readtables affect the behavior of the reader (i.e.
the read procedure and the parser used by the load procedure and the interpreter and
compiler) and the printer (i.e. the procedures write, display, pretty-print, and pp,
and the procedure used by the REPL to print results). To preserve write/read invariance
the printer and reader must be using compatible readtables. For example a symbol which
contains upper case letters will be printed with special escapes if the readtable indicates
that the reader is case-insensitive.

Readtables are immutable records whose fields specify various textual representation
aspects. There are accessor procedures to retrieve the content of specific fields. There are
also functional update procedures that create a copy of a readtable, with a specific field set
to a new value.

[procedure](readtable? obj)
This procedure returns #t when obj is a readtable and #f otherwise.
For example:

> (readtable? (current-readtable))
#t
> (readtable? 123)
#f

[procedure](readtable-case-conversion? readtable)
[procedure](readtable-case-conversion?-set readtable

new-value)
The procedure readtable-case-conversion? returns the content of the
‘case-conversion?’ field of readtable. When the content of this field is #f, the
reader preserves the case of symbols and keyword objects that are read (i.e. Ice and
ice are distinct symbols). When the content of this field is the symbol upcase, the
reader converts lowercase letters to uppercase when reading symbols and keywords
(i.e. Ice is read as the symbol (string->symbol "ICE")). Otherwise the reader
converts uppercase letters to lowercase when reading symbols and keywords (i.e.
Ice is read as the symbol (string->symbol "ice")).
The procedure readtable-case-conversion?-set returns a copy of readtable
where only the ‘case-conversion?’ field has been changed to new-value.
For example:

> (output-port-readtable-set!
(repl-output-port)
(readtable-case-conversion?-set

(output-port-readtable (repl-output-port))
#f))

> (input-port-readtable-set!
(repl-input-port)
(readtable-case-conversion?-set

(input-port-readtable (repl-input-port))

Chapter 18: Lexical syntax and readtables 157

#f))
> ’Ice
Ice
> (input-port-readtable-set!

(repl-input-port)
(readtable-case-conversion?-set

(input-port-readtable (repl-input-port))
#t))

> ’Ice
ice
> (input-port-readtable-set!

(repl-input-port)
(readtable-case-conversion?-set

(input-port-readtable (repl-input-port))
’upcase))

> ’Ice
ICE

[procedure](readtable-keywords-allowed? readtable)
[procedure](readtable-keywords-allowed?-set readtable

new-value)
The procedure readtable-keywords-allowed? returns the content of the
‘keywords-allowed?’ field of readtable. When the content of this field is #f,
the reader does not recognize keyword objects (i.e. :foo and foo: are read as
the symbols (string->symbol ":foo") and (string->symbol "foo:")
respectively). When the content of this field is the symbol prefix, the reader
recognizes keyword objects that start with a colon, as in Common Lisp (i.e. :foo
is read as the keyword (string->keyword "foo")). Otherwise the reader
recognizes keyword objects that end with a colon, as in DSSSL (i.e. foo: is read as
the symbol (string->symbol "foo")).

The procedure readtable-keywords-allowed?-set returns a copy of readtable
where only the ‘keywords-allowed?’ field has been changed to new-value.

For example:
> (input-port-readtable-set!

(repl-input-port)
(readtable-keywords-allowed?-set

(input-port-readtable (repl-input-port))
#f))

> (map keyword? ’(foo :foo foo:))
(#f #f #f)
> (input-port-readtable-set!

(repl-input-port)
(readtable-keywords-allowed?-set

(input-port-readtable (repl-input-port))
#t))

> (map keyword? ’(foo :foo foo:))
(#f #f #t)
> (input-port-readtable-set!

(repl-input-port)
(readtable-keywords-allowed?-set

(input-port-readtable (repl-input-port))
’prefix))

> (map keyword? ’(foo :foo foo:))
(#f #t #f)

Chapter 18: Lexical syntax and readtables 158

[procedure](readtable-sharing-allowed? readtable)
[procedure](readtable-sharing-allowed?-set readtable

new-value)
The procedure readtable-sharing-allowed? returns the content of the
‘sharing-allowed?’ field of readtable. The reader recognizes the #n# and
#n=datum notation for circular structures and the printer uses this notation if
and only if the content of the ‘sharing-allowed?’ field is not #f. Moreover
when the content of the ‘sharing-allowed?’ field is the symbol serialize,
the printer uses a special external representation that the reader understands and
that extends write/read invariance to the following types: records, procedures and
continuations. Note that an object can be serialized and deserialized if and only if
all of its components are serializable.

The procedure readtable-sharing-allowed?-set returns a copy of readtable
where only the ‘sharing-allowed?’ field has been changed to new-value.

Here is a simple example:
> (define (wr obj allow?)

(call-with-output-string
’()
(lambda (p)

(output-port-readtable-set!
p
(readtable-sharing-allowed?-set

(output-port-readtable p)
allow?))

(write obj p))))
> (define (rd str allow?)

(call-with-input-string
str
(lambda (p)

(input-port-readtable-set!
p
(readtable-sharing-allowed?-set

(input-port-readtable p)
allow?))

(read p))))
> (define x (list 1 2 3))
> (set-car! (cdr x) (cddr x))
> (wr x #f)
"(1 (3) 3)"
> (wr x #t)
"(1 #0=(3) . #0#)"
> (define y (rd (wr x #t) #t))
> y
(1 (3) 3)
> (eq? (cadr y) (cddr y))
#t
> (define f #f)
> (let ((free (expt 2 10)))

(set! f (lambda (x) (+ x free))))
> (define s (wr f ’serialize))
> (string-length s)
4196
> (define g (rd s ’serialize))
> (eq? f g)

Chapter 18: Lexical syntax and readtables 159

#f
> (g 4)
1028

Continuations are tricky to serialize because they contain a dynamic environment
and this dynamic environment may contain non-serializable objects, in particular
ports attached to operating-system streams such as files, the console or standard in-
put/output. Indeed, all dynamic environments contain a binding for the current-
input-port and current-output-port. Moreover, any thread that has started
a REPL has a continuation which refers to the repl-context object in its dynamic en-
vironment. A repl-context object contains the interaction channel, which is typically
connected to a non-serializable port, such as the console. Another problem is that
the parameterize form saves the old binding of the parameter in the continuation,
so it is not possible to eliminate the references to these ports in the continuation by
using the parameterize form alone.
Serialization of continuations can be achieved dependably by taking advantage of
string-ports, which are serializable objects (unless there is a blocked thread), and the
following features of threads: they inherit the dynamic environment of the parent
thread and they start with an initial continuation that contains only serializable ob-
jects. So a thread created in a dynamic environment where current-input-port
and current-output-port are bound to a dummy string-port has a serializable
continuation.
Here is an example where continuations are serialized:

> (define (wr obj)
(call-with-output-string
’()
(lambda (p)

(output-port-readtable-set!
p
(readtable-sharing-allowed?-set
(output-port-readtable p)
’serialize))

(write obj p))))
> (define (rd str)

(call-with-input-string
str
(lambda (p)

(input-port-readtable-set!
p
(readtable-sharing-allowed?-set
(input-port-readtable p)
’serialize))

(read p))))
> (define fifo (open-vector))
> (define (suspend-and-die!)

(call-with-current-continuation
(lambda (k)

(write (wr k) fifo)
(newline fifo)
(force-output fifo)
(thread-terminate! (current-thread)))))

> (let ((dummy-port (open-string)))
(parameterize ((current-input-port dummy-port)

(current-output-port dummy-port))

Chapter 18: Lexical syntax and readtables 160

(thread-start!
(make-thread
(lambda ()

(* 100
(suspend-and-die!)))))))

#<thread #2>
> (define s (read fifo))
> (thread-join!

(thread-start!
(make-thread

(lambda ()
((rd s) 111)))))

11100
> (thread-join!

(thread-start!
(make-thread

(lambda ()
((rd s) 222)))))

22200
> (string-length s)
13114

[procedure](readtable-eval-allowed? readtable)
[procedure](readtable-eval-allowed?-set readtable new-value)

The procedure readtable-eval-allowed? returns the content of the
‘eval-allowed?’ field of readtable. The reader recognizes the #.expression
notation for read-time evaluation if and only if the content of the ‘eval-allowed?’
field is not #f.
The procedure readtable-eval-allowed?-set returns a copy of readtable
where only the ‘eval-allowed?’ field has been changed to new-value.
For example:

> (input-port-readtable-set!
(repl-input-port)
(readtable-eval-allowed?-set

(input-port-readtable (repl-input-port))
#t))

> ’(5 plus 7 is #.(+ 5 7))
(5 plus 7 is 12)
> ’(buf = #.(make-u8vector 25))
(buf = #u8(0 0))

[procedure](readtable-max-write-level readtable)
[procedure](readtable-max-write-level-set readtable new-value)

The procedure readtable-max-write-level returns the content of the
‘max-write-level’ field of readtable. The printer will display an ellipsis for the
elements of lists and vectors that are nested deeper than this level.
The procedure readtable-max-write-level-set returns a copy of readtable
where only the ‘max-write-level’ field has been changed to new-value, which
must be an nonnegative fixnum.
For example:

> (define (wr obj n)
(call-with-output-string

’()

Chapter 18: Lexical syntax and readtables 161

(lambda (p)
(output-port-readtable-set!

p
(readtable-max-write-level-set

(output-port-readtable p)
n))

(write obj p))))
> (wr ’(a #(b (c c) #u8(9 9 9) b) a) 3)
"(a #(b (c c) #u8(9 9 9) b) a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) a) 2)
"(a #(b (...) #u8(...) b) a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) a) 1)
"(a #(...) a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) a) 0)
"(...)"
> (wr ’hello 0)
"hello"

[procedure](readtable-max-write-length readtable)
[procedure](readtable-max-write-length-set readtable

new-value)
The procedure readtable-max-write-length returns the content of the
‘max-write-length’ field of readtable. The printer will display an ellipsis for the
elements of lists and vectors that are at an index beyond that length.

The procedure readtable-max-write-length-set returns a copy of readtable
where only the ‘max-write-length’ field has been changed to new-value, which
must be an nonnegative fixnum.

For example:
> (define (wr obj n)

(call-with-output-string
’()
(lambda (p)

(output-port-readtable-set!
p
(readtable-max-write-length-set

(output-port-readtable p)
n))

(write obj p))))
> (wr ’(a #(b (c c) #u8(9 9 9) b) . a) 4)
"(a #(b (c c) #u8(9 9 9) b) . a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) . a) 3)
"(a #(b (c c) #u8(9 9 9) ...) . a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) . a) 2)
"(a #(b (c c) ...) . a)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) . a) 1)
"(a ...)"
> (wr ’(a #(b (c c) #u8(9 9 9) b) . a) 0)
"(...)"

[procedure](readtable-start-syntax readtable)
[procedure](readtable-start-syntax-set readtable new-value)

The procedure readtable-start-syntax returns the content of the
‘start-syntax’ field of readtable. The reader uses this field to determine in which

Chapter 18: Lexical syntax and readtables 162

syntax to start parsing the input. When the content of this field is the symbol six,
the reader starts in the infix syntax. Otherwise the reader starts in the prefix syntax.

The procedure readtable-start-syntax-set returns a copy of readtable where
only the ‘start-syntax’ field has been changed to new-value.

For example:
> (+ 2 3)
5
> (input-port-readtable-set!

(repl-input-port)
(readtable-start-syntax-set

(input-port-readtable (repl-input-port))
’six))

> 2+3;
5
> exit();

18.2 Boolean syntax

Booleans are required to be followed by a delimiter (i.e. #f64() is not the boolean #f
followed by the number 64 and the empty list).

18.3 Character syntax

Characters are required to be followed by a delimiter (i.e. #\spaceballs is not the
character #\space followed by the symbol balls). The lexical syntax of characters is
extended to allow the following:

#\nul Unicode character 0

#\alarm Unicode character 7

#\backspace Unicode character 8

#\tab Unicode character 9

#\newline Unicode character 10 (newline character)

#\linefeed Unicode character 10

#\vtab Unicode character 11

#\page Unicode character 12

#\return Unicode character 13

#\esc Unicode character 27

#\space Unicode character 32 (space character)

#\delete Unicode character 127

#\xhh character encoded in hexadecimal (>= 1 hexadecimal digit)

#\uhhhh character encoded in hexadecimal (exactly 4 hexadecimal digits)

#\Uhhhhhhhh character encoded in hexadecimal (exactly 8 hexadecimal digits)

Chapter 18: Lexical syntax and readtables 163

18.4 String syntax

The lexical syntax of quoted strings is extended to allow the following escape codes:

\a Unicode character 7

\b Unicode character 8

\t Unicode character 9

\n Unicode character 10 (newline character)

\v Unicode character 11

\f Unicode character 12

\r Unicode character 13

\" "

\\ \

\| |

\? ?

\ooo character encoded in octal (1 to 3 octal digits, first digit must be less
than 4 when there are 3 octal digits)

\xhh character encoded in hexadecimal (>= 1 hexadecimal digit)

\uhhhh character encoded in hexadecimal (exactly 4 hexadecimal digits)

\Uhhhhhhhh character encoded in hexadecimal (exactly 8 hexadecimal digits)

\<space> Unicode character 32 (space character)

\<newline><whitespace-except-newline>*
This sequence expands to nothing (it is useful for splitting a long string
literal on multiple lines while respecting proper indentation of the source
code)

Gambit also supports a “here string” syntax that is similar to shell “here documents”.
For example:

> (pretty-print #<<THE-END
hello
world
THE-END
)
"hello\nworld"

The here string starts with the sequence ‘#<<’. The part of the line after the ‘#<<’ up
to and including the newline character is the key. The first line afterward that matches the
key marks the end of the here string. The string contains all the characters between the
start key and the end key, with the exception of the newline character before the end key.

Chapter 18: Lexical syntax and readtables 164

18.5 Symbol syntax

The lexical syntax of symbols is extended to allow a leading and trailing vertical bar (e.g.
|a\|b"c:|). The symbol’s name corresponds verbatim to the characters between the
vertical bars except for escaped characters. The same escape sequences as for strings are
permitted except that ‘"’ does not need to be escaped and ‘|’ needs to be escaped.

For example:
> (symbol->string ’|a\|b"c:|)
"a|b\"c:"

18.6 Keyword syntax

The lexical syntax of keywords is like symbols, but with a colon at the end (note that
this can be changed to a leading colon by setting the ‘keywords-allowed?’ field of the
readtable to the symbol prefix). A colon by itself is not a keyword, it is a symbol. Vertical
bars can be used like symbols but the colon must be outside the vertical bars. Note that
the string returned by the keyword->string procedure does not include the colon.

For example:
> (keyword->string ’foo:)
"foo"
> (map keyword? ’(|ab()cd:| |ab()cd|: : ||:))
(#f #t #f #t)

18.7 Box syntax

The lexical syntax of boxes is #&obj where obj is the content of the box.
For example:

> (list ’#&"hello" ’#&123)
(#&"hello" #&123)
> (box (box (+ 10 20)))
#&#&30

18.8 Number syntax

The lexical syntax of the special inexact real numbers is as follows:

+inf.0 positive infinity

-inf.0 negative infinity

+nan.0 “not a number”

-0. negative zero (‘0.’ is the positive zero)

18.9 Homogeneous vector syntax

Homogeneous vectors are vectors containing raw numbers of the same type (signed or
unsigned exact integers or inexact reals). There are 10 types of homogeneous vectors:
‘s8vector’ (vector of 8 bit signed integers), ‘u8vector’ (vector of 8 bit unsigned in-
tegers), ‘s16vector’ (vector of 16 bit signed integers), ‘u16vector’ (vector of 16 bit
unsigned integers), ‘s32vector’ (vector of 32 bit signed integers), ‘u32vector’ (vector
of 32 bit unsigned integers), ‘s64vector’ (vector of 64 bit signed integers), ‘u64vector’

Chapter 18: Lexical syntax and readtables 165

(vector of 64 bit unsigned integers), ‘f32vector’ (vector of 32 bit floating point numbers),
and ‘f64vector’ (vector of 64 bit floating point numbers).

The external representation of homogeneous vectors is similar to normal vectors but
with the ‘#(’ prefix replaced respectively with ‘#s8(’, ‘#u8(’, ‘#s16(’, ‘#u16(’, ‘#s32(’,
‘#u32(’, ‘#s64(’, ‘#u64(’, ‘#f32(’, and ‘#f64(’.

The elements of the integer homogeneous vectors must be exact integers fitting in the
given precision. The elements of the floating point homogeneous vectors must be inexact
reals.

18.10 Special #! syntax

The lexical syntax of the special #! objects is as follows:

#!eof end-of-file object

#!void void object

#!optional optional object

#!rest rest object

#!key key object

18.11 Multiline comment syntax

Multiline comments are delimited by the tokens ‘#|’ and ‘|#’. These comments can be
nested.

18.12 Scheme infix syntax extension

The reader supports an infix syntax extension which is called SIX (Scheme Infix eXtension).
This extension is both supported by the ‘read’ procedure and in program source code.

The backslash character is a delimiter that marks the beginning of a single datum ex-
pressed in the infix syntax (the details are given below). One way to think about it is that
the backslash character escapes the prefix syntax temporarily to use the infix syntax. For
example a three element list could be written as ‘(X \Y Z)’, the elements X and Z are
expressed using the normal prefix syntax and Y is expressed using the infix syntax.

When the reader encounters an infix datum, it constructs a syntax tree for that par-
ticular datum. Each node of this tree is represented with a list whose first element is
a symbol indicating the type of node. For example, ‘(six.identifier abc)’ is the
representation of the infix identifier ‘abc’ and ‘(six.index (six.identifier abc)
(six.identifier i))’ is the representation of the infix datum ‘abc[i];’.

18.12.1 SIX grammar

The SIX grammar is given below. On the left hand side are the production rules. On the
right hand side is the datum that is constructed by the reader. The notation $i denotes the
datum that is constructed by the reader for the ith part of the production rule.

<infix datum> ::=

Chapter 18: Lexical syntax and readtables 166

<stat> $1

<stat> ::=
<if stat> $1

| <for stat> $1
| <while stat> $1
| <do stat> $1
| <switch stat> $1
| <case stat> $1
| <break stat> $1
| <continue stat> $1
| <label stat> $1
| <goto stat> $1
| <return stat> $1
| <expression stat> $1
| <procedure definition> $1
| <variable definition> ; $1
| <clause stat> $1
| <compound stat> $1
| ; (six.compound)

<if stat> ::=
if (<pexpr>) <stat> (six.if $3 $5)

| if (<pexpr>) <stat> else <stat> (six.if $3 $5 $7)

<for stat> ::=
for (<stat> ; <oexpr> ; <oexpr>) <stat> (six.for $3 $5 $7 $9)

<while stat> ::=
while (<pexpr>) <stat> (six.while $3 $5)

<do stat> ::=
do <stat> while (<pexpr>) ; (six.do-while $2 $5)

<switch stat> ::=
switch (<pexpr>) <stat> (six.switch $3 $5)

<case stat> ::=
case <expr> : <stat> (six.case $2 $4)

<break stat> ::=
break ; (six.break)

<continue stat> ::=
continue ; (six.continue)

<label stat> ::=
<identifier> : <stat> (six.label $1 $3)

<goto stat> ::=
goto <expr> ; (six.goto $2)

Chapter 18: Lexical syntax and readtables 167

<return stat> ::=
return ; (six.return)

| return <expr> ; (six.return $2)

<expression stat> ::=
<expr> ; $1

<clause stat> ::=
<expr> . (six.clause $1)

<pexpr> ::=
<procedure definition> $1

| <variable definition> $1
| <expr> $1

<procedure definition> ::=
<type> <id-or-prefix> (<parameters>) <body> (six.define-procedure $2

(six.procedure $1 $4 $6))

<variable definition> ::=
<type> <id-or-prefix> <dimensions> <iexpr> (six.define-variable $2

$1 $3 $4)

<iexpr> ::=
= <expr> $2

| #f

<dimensions> ::=
| [<expr>] <dimensions> ($2 . $4)
| ()

<oexpr> ::=
<expr> $1

| #f

<expr> ::=
<expr18> $1

<expr18> ::=
<expr17> :- <expr18> (six.x:-y $1 $3)

| <expr17> $1

<expr17> ::=
<expr17> , <expr16> (|six.x,y| $1 $3)

| <expr16> $1

<expr16> ::=
<expr15> := <expr16> (six.x:=y $1 $3)

| <expr15> $1

<expr15> ::=
<expr14> %= <expr15> (six.x%=y $1 $3)

| <expr14> &= <expr15> (six.x&=y $1 $3)

Chapter 18: Lexical syntax and readtables 168

| <expr14> *= <expr15> (six.x*=y $1 $3)
| <expr14> += <expr15> (six.x+=y $1 $3)
| <expr14> -= <expr15> (six.x-=y $1 $3)
| <expr14> /= <expr15> (six.x/=y $1 $3)
| <expr14> <<= <expr15> (six.x<<=y $1 $3)
| <expr14> = <expr15> (six.x=y $1 $3)
| <expr14> >>= <expr15> (six.x>>=y $1 $3)
| <expr14> ˆ= <expr15> (six.xˆ=y $1 $3)
| <expr14> |= <expr15> (|six.x\|=y| $1 $3)
| <expr14> $1

<expr14> ::=
<expr13> : <expr14> (six.x:y $1 $3)

| <expr13> $1

<expr13> ::=
<expr12> ? <expr> : <expr13> (six.x?y:z $1 $3 $5)

| <expr12> $1

<expr12> ::=
<expr12> || <expr11> (|six.x\|\|y| $1 $3)

| <expr11> $1

<expr11> ::=
<expr11> && <expr10> (six.x&&y $1 $3)

| <expr10> $1

<expr10> ::=
<expr10> | <expr9> (|six.x\|y| $1 $3)

| <expr9> $1

<expr9> ::=
<expr9> ˆ <expr8> (six.xˆy $1 $3)

| <expr8> $1

<expr8> ::=
<expr8> & <expr7> (six.x&y $1 $3)

| <expr7> $1

<expr7> ::=
<expr7> != <expr6> (six.x!=y $1 $3)

| <expr7> == <expr6> (six.x==y $1 $3)
| <expr6> $1

<expr6> ::=
<expr6> < <expr5> (six.x<y $1 $3)

| <expr6> <= <expr5> (six.x<=y $1 $3)
| <expr6> > <expr5> (six.x>y $1 $3)
| <expr6> >= <expr5> (six.x>=y $1 $3)
| <expr5> $1

Chapter 18: Lexical syntax and readtables 169

<expr5> ::=
<expr5> << <expr4> (six.x<<y $1 $3)

| <expr5> >> <expr4> (six.x>>y $1 $3)
| <expr4> $1

<expr4> ::=
<expr4> + <expr3> (six.x+y $1 $3)

| <expr4> - <expr3> (six.x-y $1 $3)
| <expr3> $1

<expr3> ::=
<expr3> % <expr2> (six.x%y $1 $3)

| <expr3> * <expr2> (six.x*y $1 $3)
| <expr3> / <expr2> (six.x/y $1 $3)
| <expr2> $1

<expr2> ::=
& <expr2> (six.&x $2)

| + <expr2> (six.+x $2)
| - <expr2> (six.-x $2)
| * <expr2> (six.*x $2)
| ! <expr2> (six.!x $2)
| ! (six.!)
| ++ <expr2> (six.++x $2)
| -- <expr2> (six.--x $2)
| ˜ <expr2> (six.˜x $2)
| new <id-or-prefix> (<arguments>) (six.new $2 . $4)
| <expr1> $1

<expr1> ::=
<expr1> ++ (six.x++ $1)

| <expr1> -- (six.x-- $1)
| <expr1> (<arguments>) (six.call $1 . $3)
| <expr1> [<expr>] (six.index $1 $3)
| <expr1> -> <id-or-prefix> (six.arrow $1 $3)
| <expr1> . <id-or-prefix> (six.dot $1 $3)
| <expr0> $1

<expr0> ::=
<id-or-prefix> $1

| <string> (six.literal $1)
| <char> (six.literal $1)
| <number> (six.literal $1)
| (<expr>) $2
| (<block stat>) $2
| <datum-starting-with-#-or-backquote> (six.prefix $1)
| [<elements>] $2
| <type> (<parameters>) <body> (six.procedure $1 $3 $5)

Chapter 18: Lexical syntax and readtables 170

<block stat> ::=
{ <stat list> } (six.compound . $2)

<body> ::=
{ <stat list> } (six.procedure-body . $2)

<stat list> ::=
<stat> <stat list> ($1 . $2)

| ()

<parameters> ::=
<nonempty parameters> $1

| ()

<nonempty parameters> ::=
<parameter> , <nonempty parameters> ($1 . $3)

| <parameter> ($1)

<parameter> ::=
<type> <id-or-prefix> ($2 $1)

<arguments> ::=
<nonempty arguments> $1

| ()

<nonempty arguments> ::=
<expr> , <nonempty arguments> ($1 . $3)

| <expr> ($1)

<elements> ::=
<nonempty elements> $1

| (six.null)

<nonempty elements> ::=
<expr> (six.list $1 (six.null))

| <expr> , <nonempty elements> (six.list $1 $3)
| <expr> | <expr> (six.cons $1 $3)

<id-or-prefix> ::=
<identifier> (six.identifier $1)

| \ <datum> (six.prefix $2)

<type> ::=
int int

| char char
| bool bool
| void void
| float float
| double double
| obj obj

Chapter 18: Lexical syntax and readtables 171

18.12.2 SIX semantics

The semantics of SIX depends on the definition of the six.XXX identifiers (as functions and
macros). Many of these identifiers are predefined macros which give SIX a semantics that is
close to C’s. The user may override these definitions to change the semantics either globally
or locally. For example, six.xˆy is a predefined macro that expands (six.xˆy x y) into
(bitwise-xor x y). If the user prefers the ‘ˆ’ operator to express exponentiation in a
specific function, then in that function six.xˆy can be redefined as a macro that expands
(six.xˆy x y) into (expt x y). Note that the associativity and precedence of operators
cannot be changed as that is a syntactic issue.

Note that the following identifiers are not predefined, and consequently they do not have
a predefined semantics: six.label, six.goto, six.switch, six.case, six.break,
six.continue, six.return, six.clause, six.x:-y, and six.!.

The following is an example showing some of the predefined semantics of SIX:
> (list (+ 1 2) \3+4; (+ 5 6))
(3 7 11)
> \[1+2, \(+ 3 4), 5+6];
(3 7 11)
> (map (lambda (x) \(x*x-1)/log(x+1);) ’(1 2 3 4))
(0 2.730717679880512 5.7707801635558535 9.320024018394177)
> \obj n = expt(10,5);
> n
100000
> \obj t[3][10] = 88;
> \t[0][9] = t[2][1] = 11;
11
> t
#(#(88 88 88 88 88 88 88 88 88 11)

#(88 88 88 88 88 88 88 88 88 88)
#(88 11 88 88 88 88 88 88 88 88))

> \obj radix = new parameter (10);
> \radix(2);
> \radix();
2
> \for (int i=0; i<5; i++) pp(1<<i*8);
1
256
65536
16777216
4294967296
> \obj \make-adder (obj x) { obj (obj y) { x+y; }; }
> \map (new adder (100), [1,2,3,4]);
(101 102 103 104)
> (map (make-adder 100) (list 1 2 3 4))
(101 102 103 104)

Chapter 19: C-interface 172

19 C-interface

The Gambit Scheme system offers a mechanism for interfacing Scheme code and C code
called the “C-interface”. A Scheme program indicates which C functions it needs to have
access to and which Scheme procedures can be called from C, and the C interface automat-
ically constructs the corresponding Scheme procedures and C functions. The conversions
needed to transform data from the Scheme representation to the C representation (and
back), are generated automatically in accordance with the argument and result types of the
C function or Scheme procedure.

The C-interface places some restrictions on the types of data that can be exchanged
between C and Scheme. The mapping of data types between C and Scheme is discussed in
the next section. The remaining sections of this chapter describe each special form of the
C-interface.

19.1 The mapping of types between C and Scheme

Scheme and C do not provide the same set of built-in data types so it is important to
understand which Scheme type is compatible with which C type and how values get mapped
from one environment to the other. To improve compatibility a new type is added to Scheme,
the ‘foreign’ object type, and the following data types are added to C:

scheme-object denotes the universal type of Scheme objects (type ___SCMOBJ defined
in ‘gambit.h’)

bool denotes the C++ ‘bool’ type or the C ‘int’ type (type ___BOOL de-
fined in ‘gambit.h’)

int8 8 bit signed integer (type ___S8 defined in ‘gambit.h’)

unsigned-int8 8 bit unsigned integer (type ___U8 defined in ‘gambit.h’)

int16 16 bit signed integer (type ___S16 defined in ‘gambit.h’)

unsigned-int16
16 bit unsigned integer (type ___U16 defined in ‘gambit.h’)

int32 32 bit signed integer (type ___S32 defined in ‘gambit.h’)

unsigned-int32
32 bit unsigned integer (type ___U32 defined in ‘gambit.h’)

int64 64 bit signed integer (type ___S64 defined in ‘gambit.h’)

unsigned-int64
64 bit unsigned integer (type ___U64 defined in ‘gambit.h’)

float32 32 bit floating point number (type ___F32 defined in ‘gambit.h’)

float64 64 bit floating point number (type ___F64 defined in ‘gambit.h’)

ISO-8859-1 denotes ISO-8859-1 encoded characters (8 bit unsigned integer, type
___ISO_8859_1 defined in ‘gambit.h’)

UCS-2 denotes UCS-2 encoded characters (16 bit unsigned integer, type ___
UCS_2 defined in ‘gambit.h’)

Chapter 19: C-interface 173

UCS-4 denotes UCS-4 encoded characters (32 bit unsigned integer, type ___
UCS_4 defined in ‘gambit.h’)

char-string denotes the C ‘char*’ type when used as a null terminated string

nonnull-char-string
denotes the nonnull C ‘char*’ type when used as a null terminated
string

nonnull-char-string-list
denotes an array of nonnull C ‘char*’ terminated with a null pointer

ISO-8859-1-string
denotes ISO-8859-1 encoded strings (null terminated string of 8 bit un-
signed integers, i.e. ___ISO_8859_1*)

nonnull-ISO-8859-1-string
denotes nonnull ISO-8859-1 encoded strings (null terminated string of
8 bit unsigned integers, i.e. ___ISO_8859_1*)

nonnull-ISO-8859-1-stringlist
denotes an array of nonnull ISO-8859-1 encoded strings terminated with
a null pointer

UTF-8-string denotes UTF-8 encoded strings (null terminated string of char, i.e.
char*)

nonnull-UTF-8-string
denotes nonnull UTF-8 encoded strings (null terminated string of char,
i.e. char*)

nonnull-UTF-8-string-list
denotes an array of nonnull UTF-8 encoded strings terminated with a
null pointer

UCS-2-string denotes UCS-2 encoded strings (null terminated string of 16 bit unsigned
integers, i.e. ___UCS_2*)

nonnull-UCS-2-string
denotes nonnull UCS-2 encoded strings (null terminated string of 16 bit
unsigned integers, i.e. ___UCS_2*)

nonnull-UCS-2-string-list
denotes an array of nonnull UCS-2 encoded strings terminated with a
null pointer

UCS-4-string denotes UCS-4 encoded strings (null terminated string of 32 bit unsigned
integers, i.e. ___UCS_4*)

nonnull-UCS-4-string
denotes nonnull UCS-4 encoded strings (null terminated string of 32 bit
unsigned integers, i.e. ___UCS_4*)

nonnull-UCS-4-string-list
denotes an array of nonnull UCS-4 encoded strings terminated with a
null pointer

Chapter 19: C-interface 174

wchar_t-string
denotes wchar_t encoded strings (null terminated string of wchar_t,
i.e. wchar_t*)

nonnull-wchar_t-string
denotes nonnull wchar_t encoded strings (null terminated string of
wchar_t, i.e. wchar_t*)

nonnull-wchar_t-string-list
denotes an array of nonnull wchar_t encoded strings terminated with
a null pointer

To specify a particular C type inside the c-lambda, c-define and c-define-type
forms, the following “Scheme notation” is used:

Scheme notation C type

void void

bool bool

char char (may be signed or unsigned depending on the C compiler)

signed-char signed char

unsigned-char unsigned char

ISO-8859-1 ISO-8859-1

UCS-2 UCS-2

UCS-4 UCS-4

wchar_t wchar_t

short short

unsigned-short
unsigned short

int int

unsigned-int unsigned int

long long

unsigned-long unsigned long

long-long long long

unsigned-long-long
unsigned long long

float float

double double

int8 int8

unsigned-int8 unsigned-int8

Chapter 19: C-interface 175

int16 int16

unsigned-int16
unsigned-int16

int32 int32

unsigned-int32
unsigned-int32

int64 int64

unsigned-int64
unsigned-int64

float32 float32

float64 float64

(struct "c-struct-id" [tags [release-function]])
struct c-struct-id (where c-struct-id is the name of a C structure;
see below for the meaning of tags and release-function)

(union "c-union-id" [tags [release-function]])
union c-union-id (where c-union-id is the name of a C union; see
below for the meaning of tags and release-function)

(type "c-type-id" [tags [release-function]])
c-type-id (where c-type-id is an identifier naming a C type; see below
for the meaning of tags and release-function)

(pointer type [tags [release-function]])
T* (where T is the C equivalent of type which must be the Scheme
notation of a C type; see below for the meaning of tags and release-
function)

(nonnull-pointer type [tags [release-function]])
same as (pointer type [tags [release-function]]) except the
NULL pointer is not allowed

(function (type1...) result-type)
function with the given argument types and result type

(nonnull-function (type1...) result-type)
same as (function (type1...) result-type) except the NULL
pointer is not allowed

char-string char-string

nonnull-char-string
nonnull-char-string

nonnull-char-string-list
nonnull-char-string-list

ISO-8859-1-string
ISO-8859-1-string

Chapter 19: C-interface 176

nonnull-ISO-8859-1-string
nonnull-ISO-8859-1-string

nonnull-ISO-8859-1-string-list
nonnull-ISO-8859-1-string-list

UTF-8-string UTF-8-string

nonnull-UTF-8-string
nonnull-UTF-8-string

nonnull-UTF-8-string-list
nonnull-UTF-8-string-list

UCS-2-string UCS-2-string

nonnull-UCS-2-string
nonnull-UCS-2-string

nonnull-UCS-2-string-list
nonnull-UCS-2-string-list

UCS-4-string UCS-4-string

nonnull-UCS-4-string
nonnull-UCS-4-string

nonnull-UCS-4-string-list
nonnull-UCS-4-string-list

wchar_t-string
wchar_t-string

nonnull-wchar_t-string
nonnull-wchar_t-string

nonnull-wchar_t-string-list
nonnull-wchar_t-string-list

scheme-object scheme-object

name appropriate translation of name (where name is a C type defined with
c-define-type)

"c-type-id" c-type-id (this form is equivalent to (type "c-type-id"))

The struct, union, type, pointer and nonnull-pointer types are “foreign
types” and they are represented on the Scheme side as “foreign objects”. A foreign ob-
ject is internally represented as a pointer. This internal pointer is identical to the C pointer
being represented in the case of the pointer and nonnull-pointer types.

In the case of the struct, union and type types, the internal pointer points to a copy
of the C data type being represented. When an instance of one of these types is converted
from C to Scheme, a block of memory is allocated from the C heap and initialized with
the instance and then a foreign object is allocated from the Scheme heap and initialized
with the pointer to this copy. This approach may appear overly complex, but it allows the
conversion of C++ classes that do not have a zero parameter constructor or an assignment

Chapter 19: C-interface 177

method (i.e. when compiling with a C++ compiler an instance is copied using ‘new type
(instance)’, which calls the copy-constructor of type if it is a class; type’s assignment
operator is never used). Conversion from Scheme to C simply dereferences the internal
pointer (no allocation from the C heap is performed). Deallocation of the copy on the C
heap is under the control of the release function attached to the foreign object (see below).

The optional tags field of foreign type specifications is used for type checking on the
Scheme side. The tags field must be #f, a symbol or a non-empty list of symbols. When
it is not specified the tags field defaults to a symbol whose name, as returned by symbol-
>string, is the C type declaration for that type. For example the symbol ‘char**’ is the
default for the type ‘(pointer (pointer char))’. A tags field that is a single symbol
is equivalent to a list containing only that symbol. The first symbol in the list of tags is the
primary tag. For example the primary tag of the type ‘(pointer char)’ is ‘char*’ and
the primary tag of the type ‘(pointer char (foo bar))’ is ‘foo’.

Type compatibility between two foreign types depends on their tags. An instance of a
foreign type T can be used where a foreign type E is expected if and only if
• T’s tags field is #f, or
• E’s tags field is #f, or
• T’s primary tag is a member of E’s tags.

For the safest code a tags field of #f should be used sparingly, as it completely bypasses
type checking. The external representation of Scheme foreign objects (used by the write
procedure) contains the primary tag (if the tags field is not #f), and the hexadecimal address
denoted by the internal pointer, for example ‘#<char** #2 0x2AAC535C>’. Note that the
hexadecimal address is in C notation, which can be easily transferred to a C debugger with
a “cut-and-paste”.

A release-function can also be specified within a foreign type specification. The release-
function must be #f or a string naming a C function with a single parameter of type
‘void*’ (in which the internal pointer is passed) and with a result of type ‘___SCMOBJ’
(for returning an error code). When the release-function is not specified or is #f a default
function is constructed by the C-interface. This default function does nothing in the case
of the pointer and nonnull-pointer types (deallocation is not the responsibility of
the C-interface) and returns the fixnum ‘___FIX(___NO_ERR)’ to indicate no error. In
the case of the struct, union and type types, the default function reclaims the copy
on the C heap referenced by the internal pointer (when using a C++ compiler this is done
using ‘delete (type*)internal-pointer’, which calls the destructor of type if it is a
class) and returns ‘___FIX(___NO_ERR)’. In many situations the default release-function
will perform the appropriate cleanup for the foreign type. However, in certain cases special
operations (such as decrementing a reference count, removing the object from a table, etc)
must be performed. For such cases a user supplied release-function is needed.

The release-function is invoked at most once for any foreign object. After the release-
function is invoked, the foreign object is considered “released” and can no longer be used
in a foreign type conversion. When the garbage collector detects that a foreign object is no
longer reachable by the program, it will invoke the release-function if the foreign object is not
yet released. When there is a need to release the foreign object promptly, the program can
explicitly call (foreign-release! obj) which invokes the release-function if the foreign
object is not yet released, and does nothing otherwise. The call (foreign-released?

Chapter 19: C-interface 178

obj) returns a boolean indicating whether the foreign object obj has been released yet
or not. The call (foreign-address obj) returns the address denoted by the internal
pointer of foreign object obj or 0 if it has been released. The call (foreign? obj) tests
that obj is a foreign object. Finally the call (foreign-tags obj) returns the list of tags
of foreign object obj, or #f.

The following table gives the C types to which each Scheme type can be converted:

Scheme type Allowed target C types

boolean #f scheme-object; bool; pointer; function; char-string;
ISO-8859-1-string; UTF-8-string; UCS-2-string;
UCS-4-string; wchar_t-string

boolean #t scheme-object; bool

character scheme-object; bool; [[un]signed] char; ISO-8859-1; UCS-2;
UCS-4; wchar_t

exact integer scheme-object; bool; [unsigned-] int8/int16/int32/int64;
[unsigned] short/int/long

inexact real scheme-object; bool; float; double; float32; float64

string scheme-object; bool; char-string; nonnull-char-string;
ISO-8859-1-string; nonnull-ISO-8859-1-string;
UTF-8-string; nonnull-UTF-8-string; UCS-2-string;
nonnull-UCS-2-string; UCS-4-string; nonnull-UCS-4-
string; wchar_t-string; nonnull-wchar_t-string

foreign object scheme-object; bool; struct/union/type/pointer/nonnull-
pointer with the appropriate tags

vector scheme-object; bool

symbol scheme-object; bool

procedure scheme-object; bool; function; nonnull-function

other objects scheme-object; bool

The following table gives the Scheme types to which each C type will be converted:

C type Resulting Scheme type

scheme-object the Scheme object encoded

bool boolean

[[un]signed] char; ISO-8859-1; UCS-2; UCS-4; wchar_t
character

[unsigned-] int8/int16/int32/int64; [unsigned] short/int/long
exact integer

float; double; float32; float64
inexact real

Chapter 19: C-interface 179

char-string; ISO-8859-1-string; UTF-8-string; UCS-2-string;
UCS-4-string; wchar_t-string

string or #f if it is equal to ‘NULL’

nonnull-char-string; nonnull-ISO-8859-1-string;
nonnull-UTF-8-string; nonnull-UCS-2-string; nonnull-UCS-4-string;
nonnull-wchar_t-string

string

struct/union/type/pointer/nonnull-pointer
foreign object with the appropriate tags or #f in the case of a pointer
equal to ‘NULL’

function procedure or #f if it is equal to ‘NULL’

nonnull-function
procedure

void void object

All Scheme types are compatible with the C types scheme-object and bool. Con-
version to and from the C type scheme-object is the identity function on the object
encoding. This provides a low-level mechanism for accessing Scheme’s object representa-
tion from C (with the help of the macros in the ‘gambit.h’ header file). When a C bool
type is expected, an extended Scheme boolean can be passed (#f is converted to 0 and all
other values are converted to 1).

The Scheme boolean #f can be passed to the C environment where a char-string,
ISO-8859-1-string, UTF-8-string, UCS-2-string, UCS-4-string, wchar_t-
string, pointer or function type is expected. In this case, #f is converted to the
‘NULL’ pointer. C bools are extended booleans so any value different from 0 represents
true. Thus, a C bool passed to the Scheme environment is mapped as follows: 0 to #f
and all other values to #t.

A Scheme character passed to the C environment where any C character type is expected
is converted to the corresponding character in the C environment. An error is signaled if the
Scheme character does not fit in the C character. Any C character type passed to Scheme
is converted to the corresponding Scheme character. An error is signaled if the C character
does not fit in the Scheme character.

A Scheme exact integer passed to the C environment where a C integer type (other than
char) is expected is converted to the corresponding integral value. An error is signaled if
the value falls outside of the range representable by that integral type. C integer values
passed to the Scheme environment are mapped to the same Scheme exact integer. If the
value is outside the fixnum range, a bignum is created.

A Scheme inexact real passed to the C environment is converted to the corresponding
float, double, float32 or float64 value. C float, double, float32 and float64
values passed to the Scheme environment are mapped to the closest Scheme inexact real.

Scheme’s rational numbers and complex numbers are not compatible with any C numeric
type.

A Scheme string passed to the C environment where any C string type is expected is
converted to a null terminated string using the appropriate encoding. The C string is a fresh

Chapter 19: C-interface 180

copy of the Scheme string. If the C string was created for an argument of a c-lambda,
the C string will be reclaimed when the c-lambda returns. If the C string was created
for returning the result of a c-define to C, the caller is responsible for reclaiming the C
string with a call to the ___release_string function (see below for an example). Any C
string type passed to the Scheme environment causes the creation of a fresh Scheme string
containing a copy of the C string (unless the C string is equal to NULL, in which case it is
converted to #f).

A foreign type passed to the Scheme environment causes the creation and initialization
of a Scheme foreign object with the appropriate tags (except for the case of a pointer
equal to NULL which is converted to #f). A Scheme foreign object can be passed where
a foreign type is expected, on the condition that the tags are compatible and the Scheme
foreign object is not yet released. The value #f is also acceptable for a pointer type, and
is converted to NULL.

Scheme procedures defined with the c-define special form can be passed where the
function and nonnull-function types are expected. The value #f is also accept-
able for a function type, and is converted to NULL. No other Scheme procedures are
acceptable. Conversion from the function and nonnull-function types to Scheme
procedures is not currently implemented.

19.2 The c-declare special form

Synopsis:
(c-declare c-declaration)

Initially, the C file produced by gsc contains only an ‘#include’ of ‘gambit.h’. This
header file provides a number of macro and procedure declarations to access the Scheme
object representation. The special form c-declare adds c-declaration (which must be a
string containing the C declarations) to the C file. This string is copied to the C file on a
new line so it can start with preprocessor directives. All types of C declarations are allowed
(including type declarations, variable declarations, function declarations, ‘#include’ direc-
tives, ‘#define’s, and so on). These declarations are visible to subsequent c-declares,
c-initializes, and c-lambdas, and c-defines in the same module. The most com-
mon use of this special form is to declare the external functions that are referenced in
c-lambda special forms. Such functions must either be declared explicitly or by including
a header file which contains the appropriate C declarations.

The c-declare special form does not return a value. It can only appear at top level.
For example:

(c-declare #<<c-declare-end

#include <stdio.h>

extern char *getlogin ();

#ifdef sparc
char *host = "sparc";
#else
char *host = "unknown";
#endif

Chapter 19: C-interface 181

FILE *tfile;

c-declare-end
)

19.3 The c-initialize special form

Synopsis:
(c-initialize c-code)

Just after the program is loaded and before control is passed to the Scheme code, each C
file is initialized by calling its associated initialization function. The body of this function is
normally empty but it can be extended by using the c-initialize form. Each occurence
of the c-initialize form adds code to the body of the initialization function in the order
of appearance in the source file. c-code must be a string containing the C code to execute.
This string is copied to the C file on a new line so it can start with preprocessor directives.

The c-initialize special form does not return a value. It can only appear at top
level.

For example:
(c-initialize "tfile = tmpfile ();")

19.4 The c-lambda special form

Synopsis:
(c-lambda (type1...) result-type c-name-or-code)

The c-lambda special form makes it possible to create a Scheme procedure that will
act as a representative of some C function or C code sequence. The first subform is a
list containing the type of each argument. The type of the function’s result is given next.
Finally, the last subform is a string that either contains the name of the C function to call or
some sequence of C code to execute. Variadic C functions are not supported. The resulting
Scheme procedure takes exactly the number of arguments specified and delivers them in the
same order to the C function. When the Scheme procedure is called, the arguments will
be converted to their C representation and then the C function will be called. The result
returned by the C function will be converted to its Scheme representation and this value will
be returned from the Scheme procedure call. An error will be signaled if some conversion is
not possible. The temporary memory allocated from the C heap for the conversion of the
arguments and result will be reclaimed whether there is an error or not.

When c-name-or-code is not a valid C identifier, it is treated as an arbitrary piece of C
code. Within the C code the variables ‘___arg1’, ‘___arg2’, etc. can be referenced to
access the converted arguments. Similarly, the result to be returned from the call should be
assigned to the variable ‘___result’ except when the result is of type struct, union,
type, pointer, nonnull-pointer, function or nonnull-function in which case a
pointer must be assigned to the variable ‘___result_voidstar’ which is of type ‘void*’.
For results of type pointer, nonnull-pointer, function and nonnull-function,
the value assigned to the variable ‘___result_voidstar’ must be the pointer or func-
tion cast to ‘void*’. For results of type struct, union, and type, the value assigned to
the variable ‘___result_voidstar’ must be a pointer to a memory allocated block con-
taining a copy of the result. Note that this block will be reclaimed by the release-function

Chapter 19: C-interface 182

associated with the type. If no result needs to be returned, the result-type should be void
and no assignment to the variable ‘___result’ or ‘___result_voidstar’ should take
place. Note that the C code should not contain return statements as this is meaning-
less. Control must always fall off the end of the C code. The C code is copied to the
C file on a new line so it can start with preprocessor directives. Moreover the C code
is always placed at the head of a compound statement whose lifetime encloses the C to
Scheme conversion of the result. Consequently, temporary storage (strings in particular)
declared at the head of the C code can be returned by assigning them to ‘___result’ or
‘___result_voidstar’. In the c-name-or-code, the macro ‘___AT_END’ may be defined
as the piece of C code to execute before control is returned to Scheme but after the result
is converted to its Scheme representation. This is mainly useful to deallocate temporary
storage contained in the result.

When passed to the Scheme environment, the C void type is converted to the void
object.

For example:
(define fopen

(c-lambda (nonnull-char-string nonnull-char-string)
(pointer "FILE")

"fopen"))

(define fgetc
(c-lambda ((pointer "FILE"))

int
"fgetc"))

(let ((f (fopen "datafile" "r")))
(if f (write (fgetc f))))

(define char-code
(c-lambda (char) int "___result = ___arg1;"))

(define host
((c-lambda () nonnull-char-string "___result = host;")))

(define stdin
((c-lambda () (pointer "FILE") "___result_voidstar = stdin;")))

((c-lambda () void
#<<c-lambda-end

printf("hello\n");
printf("world\n");

c-lambda-end
))

(define pack-1-char
(c-lambda (char)

nonnull-char-string
#<<c-lambda-end

___result = malloc (2);
if (___result != NULL) { ___result[0] = ___arg1; ___result[1] = 0; }
#define ___AT_END if (___result != NULL) free (___result);

c-lambda-end
))

Chapter 19: C-interface 183

(define pack-2-chars
(c-lambda (char char)

nonnull-char-string
#<<c-lambda-end

char s[3];
s[0] = ___arg1;
s[1] = ___arg2;
s[2] = 0;
___result = s;

c-lambda-end
))

19.5 The c-define special form

Synopsis:

(c-define (variable define-formals) (type1...) result-type c-name scope
body)

The c-define special form makes it possible to create a C function that will act
as a representative of some Scheme procedure. A C function named c-name as well as
a Scheme procedure bound to the variable variable are defined. The parameters of the
Scheme procedure are define-formals and its body is at the end of the form. The type of
each argument of the C function, its result type and c-name (which must be a string) are
specified after the parameter specification of the Scheme procedure. When the C function
c-name is called from C, its arguments are converted to their Scheme representation and
passed to the Scheme procedure. The result of the Scheme procedure is then converted to
its C representation and the C function c-name returns it to its caller.

The scope of the C function can be changed with the scope parameter, which must be
a string. This string is placed immediately before the declaration of the C function. So if
scope is the string "static", the scope of c-name is local to the module it is in, whereas
if scope is the empty string, c-name is visible from other modules.

The c-define special form does not return a value. It can only appear at top level.

For example:
(c-define (proc x #!optional (y x) #!rest z) (int int char float) int "f" ""

(write (cons x (cons y z)))
(newline)
(+ x y))

(proc 1 2 #\x 1.5) => 3 and prints (1 2 #\x 1.5)
(proc 1) => 2 and prints (1 1)

; if f is called from C with the call f (1, 2, ’x’, 1.5)
; the value 3 is returned and (1 2 #\x 1.5) is printed.
; f has to be called with 4 arguments.

The c-define special form is particularly useful when the driving part of an application
is written in C and Scheme procedures are called directly from C. The Scheme part of the
application is in a sense a “server” that is providing services to the C part. The Scheme
procedures that are to be called from C need to be defined using the c-define special
form. Before it can be used, the Scheme part must be initialized with a call to the function
‘___setup’. Before the program terminates, it must call the function ‘___cleanup’

Chapter 19: C-interface 184

so that the Scheme part may do final cleanup. A sample application is given in the file
‘tests/server.scm’.

19.6 The c-define-type special form

Synopsis:

(c-define-type name type [c-to-scheme scheme-to-c [cleanup]])

This form associates the type identifier name to the C type type. The name must
not clash with predefined types (e.g. char-string, ISO-8859-1, etc.) or with types
previously defined with c-define-type in the same file. The c-define-type special
form does not return a value. It can only appear at top level.

If only the two parameters name and type are supplied then after this definition, the use
of name in a type specification is synonymous to type.

For example:
(c-define-type FILE "FILE")
(c-define-type FILE* (pointer FILE))
(c-define-type time-struct-ptr (pointer (struct "tms")))
(define fopen (c-lambda (char-string char-string) FILE* "fopen"))
(define fgetc (c-lambda (FILE*) int "fgetc"))

Note that identifiers are not case-sensitive in standard Scheme but it is good program-
ming practice to use a name with the same case as in C.

If four or more parameters are supplied, then type must be a string naming the C type,
c-to-scheme and scheme-to-c must be strings suffixing the C macros that convert data of
that type between C and Scheme. If cleanup is supplied it must be a boolean indicating
whether it is necessary to perform a cleanup operation (such as freeing memory) when data
of that type is converted from Scheme to C (it defaults to #t). The cleanup information
is used when the C stack is unwound due to a continuation invocation (see Section 19.7
[continuations], page 191). Although it is safe to always specify #t, it is more efficient
in time and space to specify #f because the unwinding mechanism can skip C-interface
frames which only contain conversions of data types requiring no cleanup. Two pairs of C
macros need to be defined for conversions performed by c-lambda forms and two pairs for
conversions performed by c-define forms:

___BEGIN_CFUN_scheme-to-c(___SCMOBJ, type, int)
___END_CFUN_scheme-to-c(___SCMOBJ, type, int)

___BEGIN_CFUN_c-to-scheme(type, ___SCMOBJ)
___END_CFUN_c-to-scheme(type, ___SCMOBJ)

___BEGIN_SFUN_c-to-scheme(type, ___SCMOBJ, int)
___END_SFUN_c-to-scheme(type, ___SCMOBJ, int)

___BEGIN_SFUN_scheme-to-c(___SCMOBJ, type)
___END_SFUN_scheme-to-c(___SCMOBJ, type)

The macros prefixed with ___BEGIN perform the conversion and those prefixed with
___END perform any cleanup necessary (such as freeing memory temporarily allocated
for the conversion). The macro ___END_CFUN_scheme-to-c must free the result of the
conversion if it is memory allocated, and ___END_SFUN_scheme-to-c must not (i.e. it is
the responsibility of the caller to free the result).

Chapter 19: C-interface 185

The first parameter of these macros is the C variable that contains the value to be
converted, and the second parameter is the C variable in which to store the converted
value. The third parameter, when present, is the index (starting at 1) of the parameter
of the c-lambda or c-define form that is being converted (this is useful for reporting
precise error information when a conversion is impossible).

To allow for type checking, the first three ___BEGIN macros must expand to an unter-
minated compound statement prefixed by an if, conditional on the absence of type check
error:

if ((___err = conversion_operation) == ___FIX(___NO_ERR)) {

The last ___BEGIN macro must expand to an unterminated compound statement:
{ ___err = conversion_operation;

If type check errors are impossible then a ___BEGIN macro can simply expand to an
unterminated compound statement performing the conversion:

{ conversion_operation;

The ___END macros must expand to a statement, or to nothing if no cleanup is re-
quired, followed by a closing brace (to terminate the compound statement started at the
corresponding ___BEGIN macro).

The conversion operation is typically a function call that returns an error code value
of type ___SCMOBJ (the error codes are defined in ‘gambit.h’, and the error code ___
FIX(___UNKNOWN_ERR) is available for generic errors). conversion operation can also set
the variable ___errmsg of type ___SCMOBJ to a specific Scheme string error message.

Below is a simple example showing how to interface to an ‘EBCDIC’ character type.
Memory allocation is not needed for conversion and type check errors are impossible when
converting EBCDIC to Scheme characters, but they are possible when converting from
Scheme characters to EBCDIC since Gambit supports Unicode characters.

(c-declare #<<c-declare-end

typedef char EBCDIC; /* EBCDIC encoded characters */

void put_char (EBCDIC c) { ... } /* EBCDIC I/O functions */
EBCDIC get_char (void) { ... }

char EBCDIC_to_ISO_8859_1[256] = { ... }; /* conversion tables */
char ISO_8859_1_to_EBCDIC[256] = { ... };

___SCMOBJ SCMOBJ_to_EBCDIC (___SCMOBJ src, EBCDIC *dst)
{

int x = ___INT(src); /* convert from Scheme character to int */
if (x > 255) return ___FIX(___UNKNOWN_ERR);
*dst = ISO_8859_1_to_EBCDIC[x];
return ___FIX(___NO_ERR);

}

#define ___BEGIN_CFUN_SCMOBJ_to_EBCDIC(src,dst,i) \
if ((___err = SCMOBJ_to_EBCDIC (src, &dst)) == ___FIX(___NO_ERR)) {
#define ___END_CFUN_SCMOBJ_to_EBCDIC(src,dst,i) }

#define ___BEGIN_CFUN_EBCDIC_to_SCMOBJ(src,dst) \
{ dst = ___CHR(EBCDIC_to_ISO_8859_1[src]);
#define ___END_CFUN_EBCDIC_to_SCMOBJ(src,dst) }

Chapter 19: C-interface 186

#define ___BEGIN_SFUN_EBCDIC_to_SCMOBJ(src,dst,i) \
{ dst = ___CHR(EBCDIC_to_ISO_8859_1[src]);
#define ___END_SFUN_EBCDIC_to_SCMOBJ(src,dst,i) }

#define ___BEGIN_SFUN_SCMOBJ_to_EBCDIC(src,dst) \
{ ___err = SCMOBJ_to_EBCDIC (src, &dst);
#define ___END_SFUN_SCMOBJ_to_EBCDIC(src,dst) }

c-declare-end
)

(c-define-type EBCDIC "EBCDIC" "EBCDIC_to_SCMOBJ" "SCMOBJ_to_EBCDIC" #f)

(define put-char (c-lambda (EBCDIC) void "put_char"))
(define get-char (c-lambda () EBCDIC "get_char"))

(c-define (write-EBCDIC c) (EBCDIC) void "write_EBCDIC" ""
(write-char c))

(c-define (read-EBCDIC) () EBCDIC "read_EBCDIC" ""
(read-char))

Below is a more complex example that requires memory allocation when converting from
C to Scheme. It is an interface to a 2D ‘point’ type which is represented in Scheme by a
pair of integers. The conversion of the x and y components is done by calls to the conversion
macros for the int type (defined in ‘gambit.h’). Note that no cleanup is necessary when
converting from Scheme to C (i.e. the last parameter of the c-define-type is #f).

(c-declare #<<c-declare-end

typedef struct { int x, y; } point;

void line_to (point p) { ... }
point get_mouse (void) { ... }
point add_points (point p1, point p2) { ... }

___SCMOBJ SCMOBJ_to_POINT (___SCMOBJ src, point *dst, int arg_num)
{

___SCMOBJ ___err = ___FIX(___NO_ERR);
if (!___PAIRP(src))

___err = ___FIX(___UNKNOWN_ERR);
else

{
___SCMOBJ car = ___CAR(src);
___SCMOBJ cdr = ___CDR(src);
___BEGIN_CFUN_SCMOBJ_TO_INT(car,dst->x,arg_num)
___BEGIN_CFUN_SCMOBJ_TO_INT(cdr,dst->y,arg_num)
___END_CFUN_SCMOBJ_TO_INT(cdr,dst->y,arg_num)
___END_CFUN_SCMOBJ_TO_INT(car,dst->x,arg_num)

}
return ___err;

}

___SCMOBJ POINT_to_SCMOBJ (point src, ___SCMOBJ *dst, int arg_num)
{

___SCMOBJ ___err = ___FIX(___NO_ERR);
___SCMOBJ x_scmobj;
___SCMOBJ y_scmobj;

Chapter 19: C-interface 187

___BEGIN_SFUN_INT_TO_SCMOBJ(src.x,x_scmobj,arg_num)
___BEGIN_SFUN_INT_TO_SCMOBJ(src.y,y_scmobj,arg_num)
*dst = ___EXT(___make_pair) (x_scmobj, y_scmobj, ___STILL);
if (___FIXNUMP(*dst))

___err = *dst; /* return allocation error */
___END_SFUN_INT_TO_SCMOBJ(src.y,y_scmobj,arg_num)
___END_SFUN_INT_TO_SCMOBJ(src.x,x_scmobj,arg_num)
return ___err;

}

#define ___BEGIN_CFUN_SCMOBJ_to_POINT(src,dst,i) \
if ((___err = SCMOBJ_to_POINT (src, &dst, i)) == ___FIX(___NO_ERR)) {
#define ___END_CFUN_SCMOBJ_to_POINT(src,dst,i) }

#define ___BEGIN_CFUN_POINT_to_SCMOBJ(src,dst) \
if ((___err = POINT_to_SCMOBJ (src, &dst, ___RETURN_POS)) == ___FIX(___NO_ERR)) {
#define ___END_CFUN_POINT_to_SCMOBJ(src,dst) \
___EXT(___release_scmobj) (dst); }

#define ___BEGIN_SFUN_POINT_to_SCMOBJ(src,dst,i) \
if ((___err = POINT_to_SCMOBJ (src, &dst, i)) == ___FIX(___NO_ERR)) {
#define ___END_SFUN_POINT_to_SCMOBJ(src,dst,i) \
___EXT(___release_scmobj) (dst); }

#define ___BEGIN_SFUN_SCMOBJ_to_POINT(src,dst) \
{ ___err = SCMOBJ_to_POINT (src, &dst, ___RETURN_POS);
#define ___END_SFUN_SCMOBJ_to_POINT(src,dst) }

c-declare-end
)

(c-define-type point "point" "POINT_to_SCMOBJ" "SCMOBJ_to_POINT" #f)

(define line-to (c-lambda (point) void "line_to"))
(define get-mouse (c-lambda () point "get_mouse"))
(define add-points (c-lambda (point point) point "add_points"))

(c-define (write-point p) (point) void "write_point" ""
(write p))

(c-define (read-point) () point "read_point" ""
(read))

An example that requires memory allocation when converting from C to Scheme and
Scheme to C is shown below. It is an interface to a “null-terminated array of strings” type
which is represented in Scheme by a list of strings. Note that some cleanup is necessary
when converting from Scheme to C.

(c-declare #<<c-declare-end

#include <stdlib.h>
#include <unistd.h>

extern char **environ;

char **get_environ (void) { return environ; }

void free_strings (char **strings)
{

Chapter 19: C-interface 188

char **ptr = strings;
while (*ptr != NULL)

{
___EXT(___release_string) (*ptr);
ptr++;

}
free (strings);

}

___SCMOBJ SCMOBJ_to_STRINGS (___SCMOBJ src, char ***dst, int arg_num)
{

/*
* Src is a list of Scheme strings. Dst will be a null terminated
* array of C strings.
*/

int i;
___SCMOBJ lst = src;
int len = 4; /* start with a small result array */
char **result = (char**) malloc (len * sizeof (char*));

if (result == NULL)
return ___FIX(___HEAP_OVERFLOW_ERR);

i = 0;
result[i] = NULL; /* always keep array null terminated */

while (___PAIRP(lst))
{

___SCMOBJ scm_str = ___CAR(lst);
char *c_str;
___SCMOBJ ___err;

if (i >= len-1) /* need to grow the result array? */
{

char **new_result;
int j;

len = len * 3 / 2;
new_result = (char**) malloc (len * sizeof (char*));
if (new_result == NULL)

{
free_strings (result);
return ___FIX(___HEAP_OVERFLOW_ERR);

}
for (j=i; j>=0; j--)

new_result[j] = result[j];
free (result);
result = new_result;

}

___err = ___EXT(___SCMOBJ_to_CHARSTRING) (scm_str, &c_str, arg_num);

if (___err != ___FIX(___NO_ERR))
{

free_strings (result);
return ___err;

}

Chapter 19: C-interface 189

result[i++] = c_str;
result[i] = NULL;
lst = ___CDR(lst);

}

if (!___NULLP(lst))
{

free_strings (result);
return ___FIX(___UNKNOWN_ERR);

}

/*
* Note that the caller is responsible for calling free_strings
* when it is done with the result.
*/

*dst = result;
return ___FIX(___NO_ERR);

}

___SCMOBJ STRINGS_to_SCMOBJ (char **src, ___SCMOBJ *dst, int arg_num)
{

___SCMOBJ ___err = ___FIX(___NO_ERR);
___SCMOBJ result = ___NUL; /* start with the empty list */
int i = 0;

while (src[i] != NULL)
i++;

/* build the list of strings starting at the tail */

while (--i >= 0)
{

___SCMOBJ scm_str;
___SCMOBJ new_result;

/*
* Invariant: result is either the empty list or a ___STILL pair
* with reference count equal to 1. This is important because
* it is possible that ___CHARSTRING_to_SCMOBJ and ___make_pair
* will invoke the garbage collector and we don’t want the
* reference in result to become invalid (which would be the
* case if result was a ___MOVABLE pair or if it had a zero
* reference count).
*/

___err = ___EXT(___CHARSTRING_to_SCMOBJ) (src[i], &scm_str, arg_num);

if (___err != ___FIX(___NO_ERR))
{

___EXT(___release_scmobj) (result); /* allow GC to reclaim re-
sult */

return ___FIX(___UNKNOWN_ERR);
}

/*
* Note that scm_str will be a ___STILL object with reference

Chapter 19: C-interface 190

* count equal to 1, so there is no risk that it will be
* reclaimed or moved if ___make_pair invokes the garbage
* collector.
*/

new_result = ___EXT(___make_pair) (scm_str, result, ___STILL);

/*
* We can zero the reference count of scm_str and result (if
* not the empty list) because the pair now references these
* objects and the pair is reachable (it can’t be reclaimed
* or moved by the garbage collector).
*/

___EXT(___release_scmobj) (scm_str);
___EXT(___release_scmobj) (result);

result = new_result;

if (___FIXNUMP(result))
return result; /* allocation failed */

}

/*
* Note that result is either the empty list or a ___STILL pair
* with a reference count equal to 1. There will be a call to
* ___release_scmobj later on (in ___END_CFUN_STRINGS_to_SCMOBJ
* or ___END_SFUN_STRINGS_to_SCMOBJ) that will allow the garbage
* collector to reclaim the whole list of strings when the Scheme
* world no longer references it.
*/

*dst = result;
return ___FIX(___NO_ERR);

}

#define ___BEGIN_CFUN_SCMOBJ_to_STRINGS(src,dst,i) \
if ((___err = SCMOBJ_to_STRINGS (src, &dst, i)) == ___FIX(___NO_ERR)) {
#define ___END_CFUN_SCMOBJ_to_STRINGS(src,dst,i) \
free_strings (dst); }

#define ___BEGIN_CFUN_STRINGS_to_SCMOBJ(src,dst) \
if ((___err = STRINGS_to_SCMOBJ (src, &dst, ___RETURN_POS)) == ___FIX(___NO_ERR)) {
#define ___END_CFUN_STRINGS_to_SCMOBJ(src,dst) \
___EXT(___release_scmobj) (dst); }

#define ___BEGIN_SFUN_STRINGS_to_SCMOBJ(src,dst,i) \
if ((___err = STRINGS_to_SCMOBJ (src, &dst, i)) == ___FIX(___NO_ERR)) {
#define ___END_SFUN_STRINGS_to_SCMOBJ(src,dst,i) \
___EXT(___release_scmobj) (dst); }

#define ___BEGIN_SFUN_SCMOBJ_to_STRINGS(src,dst) \
{ ___err = SCMOBJ_to_STRINGS (src, &dst, ___RETURN_POS);
#define ___END_SFUN_SCMOBJ_to_STRINGS(src,dst) }

c-declare-end
)

Chapter 19: C-interface 191

(c-define-type char** "char**" "STRINGS_to_SCMOBJ" "SCMOBJ_to_STRINGS")

(define execv (c-lambda (char-string char**) int "execv"))
(define get-environ (c-lambda () char** "get_environ"))

(c-define (write-strings x) (char**) void "write_strings" ""
(write x))

(c-define (read-strings) () char** "read_strings" ""
(read))

19.7 Continuations and the C-interface

The C-interface allows C to Scheme calls to be nested. This means that during a call from
C to Scheme another call from C to Scheme can be performed. This case occurs in the
following program:

(c-declare #<<c-declare-end

int p (char *); /* forward declarations */
int q (void);

int a (char *x) { return 2 * p (x+1); }
int b (short y) { return y + q (); }

c-declare-end
)

(define a (c-lambda (char-string) int "a"))
(define b (c-lambda (short) int "b"))

(c-define (p z) (char-string) int "p" ""
(+ (b 10) (string-length z)))

(c-define (q) () int "q" ""
123)

(write (a "hello"))

In this example, the main Scheme program calls the C function ‘a’ which calls the Scheme
procedure ‘p’ which in turn calls the C function ‘b’ which finally calls the Scheme procedure
‘q’.

Gambit-C maintains the Scheme continuation separately from the C stack, thus allowing
the Scheme continuation to be unwound independently from the C stack. The C stack frame
created for the C function ‘f’ is only removed from the C stack when control returns from ‘f’
or when control returns to a C function “above” ‘f’. Special care is required for programs
which escape to Scheme (using first-class continuations) from a Scheme to C (to Scheme)
call because the C stack frame will remain on the stack. The C stack may overflow if this
happens in a loop with no intervening return to a C function. To avoid this problem make
sure the C stack gets cleaned up by executing a normal return from a Scheme to C call.

Chapter 20: System limitations 192

20 System limitations

• On some systems floating point overflows will cause the program to terminate with a
floating point exception.

• On some systems floating point operations involving ‘+nan.0’ ‘+inf.0’, ‘-inf.0’,
or ‘-0.’ do not return the value required by the IEEE 754 floating point standard.

• The compiler will not properly compile files with more than one definition (with
define) of the same procedure. Replace all but the first define with assignments
(set!).

• The maximum number of arguments that can be passed to a procedure by the apply
procedure is 8192.

Chapter 21: Copyright and license 193

21 Copyright and license

The Gambit-C system release v4.2.2 is Copyright c© 1994-2008 by Marc Feeley, all rights
reserved. The Gambit-C system release v4.2.2 is licensed under two licenses: the Apache
License, Version 2.0, and the GNU LESSER GENERAL PUBLIC LICENSE, Version 2.1.
You have the option to choose which of these two licenses to abide by. The licenses are
copied below.

Chapter 21: Copyright and license 194

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the

Chapter 21: Copyright and license 195

Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents

Chapter 21: Copyright and license 196

of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason

Chapter 21: Copyright and license 197

of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Chapter 21: Copyright and license 198

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author’s reputation will not be affected by problems that might be
introduced by others.

Chapter 21: Copyright and license 199

Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

We call this license the "Lesser" General Public License because it
does Less to protect the user’s freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the
users’ freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

Chapter 21: Copyright and license 200

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

Chapter 21: Copyright and license 201

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

Chapter 21: Copyright and license 202

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

Chapter 21: Copyright and license 203

6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer’s own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user’s computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally

Chapter 21: Copyright and license 204

accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

Chapter 21: Copyright and license 205

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

Chapter 21: Copyright and license 206

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

Chapter 21: Copyright and license 207

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-

1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library ‘Frob’ (a library for tweaking knobs) written by James Ran-

dom Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!

Chapter 21: General index 208

General index

#
. 28
. 28

+
+z . 17

,
,(c expr) . 25
,(e expr) . 27
,(v expr) . 27
,+ . 26
,- . 26
,? . 25
,b . 26
,c . 25
,d . 25
,e . 26
,i . 26
,l . 25
,n . 26
,q . 25
,qt . 25
,s . 25
,t . 25
,y . 26

-
- . 12
-:+ . 22
-:- . 22
-:= . 22
-:d . 21
-:d- . 22
-:da . 21
-:dc . 22
-:di . 22
-:dLEVEL . 22
-:dp . 21
-:dq . 22
-:dr . 21
-:ds . 22
-:f . 22
-:h . 21
-:l . 21
-:m . 21
-:s . 21
-:S . 21
-:t . 22
-c . 12
-call_shared . 17

-cc-options . 11
-D___DYNAMIC . 14
-D___LIBRARY . 16
-D___PRIMAL . 16
-D___SHARED . 16
-D___SINGLE_HOST . 17
-debug . 11
-debug-environments 11
-debug-source . 11
-dynamic . 12
-e . 12
-expansion . 11
-flat . 12
-fpic . 17
-fPIC . 17
-G . 17
-gvm . 11
-i . 11
-I/usr/local/Gambit-

C/current/include 17
-keep-c . 12
-Kpic . 17
-KPIC . 17
-l base . 12
-L/usr/local/Gambit-C/current/lib

. 17
-ld-options . 11
-ld-options-prelude 11
-link . 9, 12
-O . 17
-o output . 12
-pic . 17
-postlude . 11
-prelude . 11
-rdynamic . 17
-report . 11
-shared . 17
-track-scheme . 12
-verbose . 11
-warnings . 11

.

.c . 9

.scm . 9

.six . 9

<
< . 50
<= . 50

=
= . 50

Chapter 21: General index 209

>
> . 50
>= . 50

ˆ
ˆC . 24
ˆD . 24

___cleanup . 183
___setup . 183

˜
˜/ . 116
˜˜/ . 116
˜username/ . 116

A
abandoned-mutex-exception? 101
abort . 98
absolute path . 116, 117
all-bits-set? . 53
any-bits-set? . 53
arithmetic-shift . 51

B
bit-count . 52
bit-set? . 53
bitwise-and . 51
bitwise-ior . 51
bitwise-merge . 51
bitwise-not . 52
bitwise-xor . 52
block . 42
box . 39
box? . 39
boxes . 39
break . 31

C
c-declare . 180
c-define . 183
c-define-type . 184
c-initialize . 181
c-lambda . 181
call-with-current-continuation . . . 36
call-with-input-file 145
call-with-input-string 154
call-with-input-u8vector 154
call-with-input-vector 152
call-with-output-file 145
call-with-output-string 154

call-with-output-u8vector 154
call-with-output-vector 152
call/cc . 36
cfun-conversion-exception-

arguments . 104
cfun-conversion-exception-code . . 104
cfun-conversion-exception-message

. 104
cfun-conversion-exception-

procedure . 104
cfun-conversion-exception? 104
char->integer . 48
char-ci<=? . 48
char-ci<? . 48
char-ci=? . 48
char-ci>=? . 48
char-ci>? . 48
char<=? . 48
char<? . 48
char=? . 48
char>=? . 48
char>? . 48
clear-bit-field . 54
close-input-port . 137
close-output-port . 137
close-port . 137
command-line . 6, 121
compile-file . 18
compile-file-to-c . 17
compiler . 9
compiler options . 9
condition-variable-broadcast! 91
condition-variable-name 90
condition-variable-signal!. 90
condition-variable-specific 90
condition-variable-specific-set!

. 90
condition-variable? 89
console-port . 45
constant-fold . 43
continuation-capture 44
continuation-graft 44
continuation-return 44
continuations . 191
copy-bit-field . 54
copy-file . 120
cpu-time . 122
create-directory . 119
create-fifo . 119
create-link . 119
create-symbolic-link 119
current exception-handler . 96
current working directory 116
current-directory . 116
current-error-port 155
current-exception-handler 96
current-input-port 155
current-output-port 155

Chapter 21: General index 210

current-readtable . 155
current-thread . 79
current-time . 122
current-user-interrupt-handler . . . 45

D
datum-parsing-exception-kind 107
datum-parsing-exception-parameters

. 107
datum-parsing-exception-readenv

. 107
datum-parsing-exception? 107
deadlock-exception? 101
declare . 42
default-random-source 57
define . 36, 192
define-macro . 41
define-structure . 75
define-syntax . 41
define-type-of-thread 44
delete-directory . 120
delete-file . 120
deserialization . 64, 158
directory-files . 120
display-continuation-dynamic-

environment . 44
display-continuation-environment

. 44
display-environment-set! 32
display-exception . 44
display-exception-in-context 44
display-procedure-environment 44
divide-by-zero-exception-arguments

. 111
divide-by-zero-exception-procedure

. 111
divide-by-zero-exception? 111

E
Emacs . 34
eq?-hash . 66
equal?-hash . 67
eqv?-hash . 67
err-code->string . 45
error . 115
error-exception-message 115
error-exception-parameters 115
error-exception? . 115
eval . 41
exit . 121
expression-parsing-exception-kind

. 108
expression-parsing-exception-

parameters . 108
expression-parsing-exception-

source . 108

expression-parsing-exception? . . . 108
extended-bindings . 43
extract-bit-field . 54

F
f32vector . 63
f32vector->list . 63
f32vector-append . 63
f32vector-copy . 63
f32vector-fill! . 63
f32vector-length . 63
f32vector-ref . 63
f32vector-set! . 63
f32vector? . 63
f64vector . 63
f64vector->list . 63
f64vector-append . 63
f64vector-copy . 63
f64vector-fill! . 63
f64vector-length . 63
f64vector-ref . 63
f64vector-set! . 63
f64vector? . 63
FFI . 172
file names . 116
file-attributes . 126
file-creation-time 126
file-device . 126
file-exists? . 123
file-group . 126
file-info . 124
file-info-attributes 126
file-info-creation-time 126
file-info-device . 125
file-info-group . 125
file-info-inode . 125
file-info-last-access-time 126
file-info-last-change-time 126
file-info-last-modification-time

. 126
file-info-mode . 125
file-info-number-of-links 125
file-info-owner . 125
file-info-size . 125
file-info-type . 124
file-info? . 124
file-inode . 126
file-last-access-time 126
file-last-change-time 126
file-last-modification-time 126
file-mode . 126
file-number-of-links 126
file-owner . 126
file-size . 126
file-type . 126
file.c . 9
file.scm . 9

Chapter 21: General index 211

file.six . 9
first-bit-set . 53
fixnum . 43
fixnum->flonum . 56
fixnum-overflow-exception-

arguments . 55
fixnum-overflow-exception-

procedure . 55
fixnum-overflow-exception?. 55
fixnum? . 54
fl* . 56
fl+ . 56
fl- . 56
fl/ . 56
fl< . 56
fl<= . 56
fl= . 56
fl> . 56
fl>= . 56
flabs . 56
flacos . 56
flasin . 56
flatan . 56
flceiling . 57
flcos . 57
fldenominator . 57
fleven? . 57
flexp . 57
flexpt . 57
flfinite? . 57
flfloor . 57
flinfinite? . 57
flinteger? . 57
fllog . 57
flmax . 57
flmin . 57
flnan? . 57
flnegative? . 57
flnumerator . 57
floating point overflow . 192
flodd? . 57
flonum . 43
flonum? . 56
flpositive? . 57
flround . 57
flsin . 57
flsqrt . 57
fltan . 57
fltruncate . 57
flzero? . 57
force-output . 137
foreign function interface . 172
foreign-address . 45
foreign-release! . 45
foreign-released? . 45
foreign-tags . 45
foreign? . 45
fx* . 54

fx+ . 54
fx- . 54
fx< . 54
fx<= . 54
fx= . 54
fx> . 54
fx>= . 54
fxand . 54
fxarithmetic-shift 55
fxarithmetic-shift-left 55
fxarithmetic-shift-right 55
fxbit-count . 55
fxbit-set? . 55
fxeven? . 55
fxfirst-bit-set . 55
fxif . 55
fxior . 55
fxlength . 55
fxmax . 55
fxmin . 55
fxmodulo . 55
fxnegative? . 55
fxnot . 55
fxodd? . 55
fxpositive? . 55
fxquotient . 55
fxremainder . 55
fxwrap* . 55
fxwrap+ . 55
fxwrap- . 55
fxwraparithmetic-shift 55
fxwraparithmetic-shift-left 55
fxwraplogical-shift-right 55
fxwrapquotient . 55
fxxor . 55
fxzero? . 55

G
GAMBCOPT, environment variable 23
Gambit . 1
Gambit installation directory 116
Gambit-C . 1
gambit.el . 34
GC . 33
gc-report-set! . 33
generate-proper-tail-calls. 32
generic . 43
gensym . 40
get-output-string . 154
get-output-u8vector 155
get-output-vector . 154
getenv . 121
group-info . 127
group-info-gid . 127
group-info-members 127
group-info-name . 127
group-info? . 127

Chapter 21: General index 212

gsc . 1, 9, 17, 18, 19, 21
gsc-script. 6
gsi . 1, 3, 21
gsi-script. 6

H
hashing . 65
heap-overflow-exception? 98
home directory . 116
homogeneous vectors . 61, 164
host-info . 129
host-info-addresses 130
host-info-aliases . 130
host-info-name . 129
host-info? . 129
host-name . 129

I
ieee-scheme . 42
improper-length-list-exception-

arg-num . 112
improper-length-list-exception-

arguments . 112
improper-length-list-exception-

procedure . 112
improper-length-list-exception?

. 112
include . 41
initialized-thread-exception-

arguments . 45
initialized-thread-exception-

procedure . 45
initialized-thread-exception? 45
inline . 42
inline-primitives . 42
inlining-limit . 42
input-port-byte-position 146
input-port-bytes-buffered 45
input-port-char-position 46
input-port-characters-buffered . . . 45
input-port-column . 139
input-port-line . 139
input-port-readtable 141
input-port-readtable-set! 141
input-port-timeout-set! 137
input-port? . 135
integer->char . 48
integer-length . 52
integer-nth-root . 50
integer-sqrt . 50
interpreter . 3, 9
interrupts-enabled 43
invalid-hash-number-exception-

arguments . 45
invalid-hash-number-exception-

procedure . 45

invalid-hash-number-exception? . . . 45

J
join-timeout-exception-arguments

. 102
join-timeout-exception-procedure

. 102
join-timeout-exception? 102

K
keyword->string . 39
keyword-expected-exception-

arguments . 114
keyword-expected-exception-

procedure . 114
keyword-expected-exception? 114
keyword-hash . 66
keyword? . 39
keywords . 39

L
lambda . 36
lambda-lift . 43
last_.c . 12
limitations . 192
link-flat . 19
link-incremental . 18
list->f32vector . 63
list->f64vector . 63
list->s16vector . 62
list->s32vector . 62
list->s64vector . 63
list->s8vector . 61
list->table . 72
list->u16vector . 62
list->u32vector . 62
list->u64vector . 63
list->u8vector . 61
load . 18

M
mailbox-receive-timeout-exception-

arguments . 85
mailbox-receive-timeout-exception-

procedure . 85
mailbox-receive-timeout-exception?

. 85
main . 46
make-condition-variable 90
make-f32vector . 63
make-f64vector . 63
make-mutex . 86
make-parameter . 93
make-random-source 58

Chapter 21: General index 213

make-s16vector . 61
make-s32vector . 62
make-s64vector . 62
make-s8vector . 61
make-table . 69
make-thread . 79
make-thread-group . 44
make-u16vector . 62
make-u32vector . 62
make-u64vector . 63
make-u8vector . 61
make-uninterned-keyword 40
make-uninterned-symbol 40
make-will . 67
mostly-fixnum . 43
mostly-fixnum-flonum 43
mostly-flonum . 43
mostly-flonum-fixnum 43
mostly-generic . 43
multiple-c-return-exception? 106
mutex-lock! . 87
mutex-name . 86
mutex-specific . 86
mutex-specific-set! 86
mutex-state . 87
mutex-unlock! . 89
mutex? . 86

N
network-info . 45, 132
network-info-aliases 46, 132
network-info-name 45, 132
network-info-net . 45
network-info-number 133
network-info? . 45, 132
newline. 136
no-such-file-or-directory-

exception-arguments 99
no-such-file-or-directory-

exception-procedure 99
no-such-file-or-directory-

exception? . 99
noncontinuable-exception-reason . . 98
noncontinuable-exception? 98
nonempty-input-port-character-

buffer-exception-arguments 45
nonempty-input-port-character-

buffer-exception-procedure 45
nonempty-input-port-character-

buffer-exception? 45
nonprocedure-operator-exception-

arguments . 113
nonprocedure-operator-exception-

code . 113
nonprocedure-operator-exception-

operator . 113

nonprocedure-operator-exception-
rte . 113

nonprocedure-operator-exception?
. 113

normalized path . 117
number-of-arguments-limit-

exception-arguments 113
number-of-arguments-limit-

exception-procedure 113
number-of-arguments-limit-

exception? . 113

O
object file . 18
object->serial-number 65
object->string . 154
object->u8vector . 64
open-directory . 151
open-dummy . 45
open-event-queue . 46
open-file . 145
open-input-file . 145
open-input-string . 154
open-input-u8vector 154
open-input-vector . 152
open-output-file . 145
open-output-string 154
open-output-u8vector 154
open-output-vector 152
open-process . 147
open-string . 154
open-string-pipe . 154
open-tcp-client . 148
open-tcp-server . 149
open-u8vector . 154
open-u8vector-pipe 155
open-vector . 152
open-vector-pipe . 153
options, compiler . 9
options, runtime . 21
os-exception-arguments 99
os-exception-code . 99
os-exception-message 99
os-exception-procedure 99
os-exception? . 99
output-port-byte-position 146
output-port-char-position 46
output-port-column 139
output-port-line . 139
output-port-readtable 141
output-port-readtable-set! 141
output-port-timeout-set! 137
output-port-width . 139
output-port? . 135
overflow, floating point . 192

Chapter 21: General index 214

P
parameterize . 94
path-directory . 118
path-expand . 117
path-extension . 118
path-normalize . 117
path-strip-directory 118
path-strip-extension 118
path-strip-trailing-directory-

separator . 118
path-strip-volume . 118
path-volume . 118
peek-char . 139
port-settings-set! 45
port? . 135
pp . 33
pretty-print . 33
primordial-exception-handler 45
print . 44
println . 44
process-pid . 45
process-status . 45
process-times . 122
proper tail-calls . 32
protocol-info . 46, 131
protocol-info-aliases 46, 131
protocol-info-name 46, 131
protocol-info-number 46, 132
protocol-info?. 46, 131

R
r4rs-scheme . 42
raise . 97
random-integer . 58
random-real . 58
random-source-make-integers 59
random-source-make-reals 59
random-source-pseudo-randomize! . . 59
random-source-randomize! 59
random-source-state-ref 58
random-source-state-set! 58
random-source? . 58
range-exception-arg-num 111
range-exception-arguments 111
range-exception-procedure 111
range-exception? . 111
read . 136
read-all . 136
read-char . 139
read-line . 140
read-substring . 140
read-subu8vector . 144
read-u8. 143
readtable-case-conversion? 156
readtable-case-conversion?-set . . 156
readtable-eval-allowed? 160
readtable-eval-allowed?-set 160

readtable-keywords-allowed? 157
readtable-keywords-allowed?-set

. 157
readtable-max-write-length 161
readtable-max-write-length-set . . 161
readtable-max-write-level 160
readtable-max-write-level-set . . . 160
readtable-sharing-allowed? 158
readtable-sharing-allowed?-set . . 158
readtable-start-syntax 161
readtable-start-syntax-set 161
readtable? . 156
real-time . 122
relative path . 116, 117
rename-file . 120
repl-input-port . 45
repl-output-port . 45
repl-result-history-max-length-

set! . 28
repl-result-history-ref 28
replace-bit-field . 54
run-time-bindings . 43
runtime options . 21

S
s16vector . 61
s16vector->list . 62
s16vector-append . 62
s16vector-copy . 62
s16vector-fill! . 62
s16vector-length . 61
s16vector-ref . 61
s16vector-set! . 61
s16vector? . 61
s32vector . 62
s32vector->list . 62
s32vector-append . 62
s32vector-copy . 62
s32vector-fill! . 62
s32vector-length . 62
s32vector-ref . 62
s32vector-set! . 62
s32vector? . 62
s64vector . 62
s64vector->list . 63
s64vector-append . 63
s64vector-copy . 63
s64vector-fill! . 63
s64vector-length . 63
s64vector-ref . 63
s64vector-set! . 63
s64vector? . 62
s8vector . 61
s8vector->list . 61
s8vector-append . 61
s8vector-copy . 61
s8vector-fill! . 61

Chapter 21: General index 215

s8vector-length . 61
s8vector-ref . 61
s8vector-set! . 61
s8vector? . 61
safe . 43
scheduler-exception-reason 101
scheduler-exception? 101
Scheme . 1
scheme-ieee-1178-1990 6
scheme-r4rs . 6
scheme-r5rs . 6
scheme-srfi-0 . 6
seconds->time . 122
separate . 42
serial-number->object 65
serialization . 64, 158
service-info . 46, 130
service-info-aliases 46, 131
service-info-name 46, 130
service-info-number 131
service-info-port . 46
service-info-protocol 46
service-info? . 46, 130
set! . 192
set-box! . 39
setenv . 121
sfun-conversion-exception-

arguments . 105
sfun-conversion-exception-code . . 105
sfun-conversion-exception-message

. 105
sfun-conversion-exception-

procedure . 105
sfun-conversion-exception? 105
shell-command . 120
six-script. 6
six.make-array . 46
socket-info-address 46
socket-info-family 46
socket-info-port-number 46
socket-info? . 46
stack-overflow-exception? 98
standard-bindings . 43
started-thread-exception-arguments

. 102
started-thread-exception-procedure

. 102
started-thread-exception? 102
step . 30
step-level-set! . 30
string->keyword . 39
string-ci<=? . 49
string-ci<? . 48
string-ci=? . 48
string-ci=?-hash . 66
string-ci>=? . 49
string-ci>? . 49
string<=? . 48

string<? . 48
string=? . 48
string=?-hash . 66
string>=? . 48
string>? . 48
subf32vector . 63
subf64vector . 63
subs16vector . 62
subs32vector . 62
subs64vector . 63
subs8vector . 61
subu16vector . 62
subu32vector . 62
subu64vector . 63
subu8vector . 61
subvector . 39
symbol-hash . 66
syntax-case . 41
syntax-rules . 41
system-stamp . 46
system-type . 46
system-type-string 46
system-version . 46
system-version-string 46

T
table->list . 72
table-copy . 73
table-for-each . 72
table-length . 70
table-merge . 74
table-merge! . 73
table-ref . 71
table-search . 71
table-set! . 71
table? . 70
tables . 65
tail-calls . 32
tcp-client-peer-socket-info 46
tcp-client-self-socket-info 46
terminated-thread-exception-

arguments . 103
terminated-thread-exception-

procedure . 103
terminated-thread-exception? 103
test-bit-field? . 54
thread-base-priority 80
thread-base-priority-set! 80
thread-group-name . 44
thread-group-parent 44
thread-group-resume! 44
thread-group-suspend! 44
thread-group-terminate! 44
thread-group? . 44
thread-init! . 44
thread-join! . 83

Chapter 21: General index 216

thread-mailbox-extract-and-rewind
. 84

thread-mailbox-next 84
thread-mailbox-rewind 84
thread-name . 80
thread-priority-boost 80
thread-priority-boost-set!. 80
thread-quantum . 81
thread-quantum-set! 81
thread-receive . 84
thread-resume! . 44
thread-send . 84
thread-sleep! . 82
thread-specific . 80
thread-specific-set! 80
thread-start! . 81
thread-suspend! . 44
thread-terminate! . 82
thread-thread-group 44
thread-yield! . 81
thread? . 79
threads . 76
time . 123
time->seconds . 122
time? . 122
timeout->time . 45
touch . 46
trace . 29
transcript-off . 36
transcript-on . 36
tty-history . 46
tty-history-max-length-set! 46
tty-history-set! . 46
tty-mode-set! . 46
tty-paren-balance-duration-set! . . 46
tty-text-attributes-set! 46
tty-type-set! . 46
tty? . 46
type-exception-arg-num 110
type-exception-arguments 110
type-exception-procedure 110
type-exception-type-id 110
type-exception? . 110

U
u16vector . 62
u16vector->list . 62
u16vector-append . 62
u16vector-copy . 62
u16vector-fill! . 62
u16vector-length . 62
u16vector-ref . 62
u16vector-set! . 62
u16vector? . 62
u32vector . 62
u32vector->list . 62
u32vector-append . 62

u32vector-copy . 62
u32vector-fill! . 62
u32vector-length . 62
u32vector-ref . 62
u32vector-set! . 62
u32vector? . 62
u64vector . 63
u64vector->list . 63
u64vector-append . 63
u64vector-copy . 63
u64vector-fill! . 63
u64vector-length . 63
u64vector-ref . 63
u64vector-set! . 63
u64vector? . 63
u8vector . 61
u8vector->list . 61
u8vector->object . 64
u8vector-append . 61
u8vector-copy . 61
u8vector-fill! . 61
u8vector-length . 61
u8vector-ref . 61
u8vector-set! . 61
u8vector? . 61
unbound-global-exception-code . . . 109
unbound-global-exception-rte 109
unbound-global-exception-variable

. 109
unbound-global-exception? 109
unbound-os-environment-variable-

exception-arguments 100
unbound-os-environment-variable-

exception-procedure 100
unbound-os-environment-variable-

exception? . 100
unbound-serial-number-exception-

arguments . 65
unbound-serial-number-exception-

procedure . 65
unbound-serial-number-exception?

. 65
unbound-table-key-exception-

arguments . 73
unbound-table-key-exception-

procedure . 73
unbound-table-key-exception? 73
unbox . 39
unbreak . 31
uncaught-exception-arguments 103
uncaught-exception-procedure 103
uncaught-exception-reason 103
uncaught-exception? 103
uninitialized-thread-exception-

arguments . 45
uninitialized-thread-exception-

procedure . 45
uninitialized-thread-exception? . . 45

Chapter 21: General index 217

uninterned-keyword? 40
uninterned-symbol? 40
unknown-keyword-argument-

exception-arguments 114
unknown-keyword-argument-

exception-procedure 114
unknown-keyword-argument-

exception? . 114
unterminated-process-exception-

arguments . 45
unterminated-process-exception-

procedure . 45
unterminated-process-exception? . . 45
untrace . 29
user-info . 128
user-info-gid . 128
user-info-home . 129
user-info-name . 128
user-info-shell . 129
user-info-uid . 128
user-info? . 128
user-name . 128

V
vector-append . 39
vector-copy . 38
void . 40

W
weak references . 65
will-execute! . 67
will-testator . 67
will? . 67
with-exception-catcher 97
with-exception-handler 96
with-input-from-file 145
with-input-from-port 46
with-input-from-string 154
with-input-from-u8vector 155
with-input-from-vector 152
with-output-to-file 145
with-output-to-port 46
with-output-to-string 154
with-output-to-u8vector 155
with-output-to-vector 152
write . 136
write-char . 140
write-substring . 140
write-subu8vector . 144
write-u8 . 144
wrong-number-of-arguments-

exception-arguments 112
wrong-number-of-arguments-

exception-procedure 112
wrong-number-of-arguments-

exception? . 112

i

Table of Contents

1 The Gambit-C system. 1
1.1 Accessing the system files . 1

2 The Gambit Scheme interpreter 3
2.1 Interactive mode . 3
2.2 Batch mode . 4
2.3 Customization . 4
2.4 Process exit status . 5
2.5 Scheme scripts . 6

2.5.1 Scripts under UNIX and Mac OS X . 7
2.5.2 Scripts under Microsoft Windows . 7
2.5.3 Compiling scripts . 8

3 The Gambit Scheme compiler 9
3.1 Interactive mode . 9
3.2 Customization . 9
3.3 Batch mode . 9
3.4 Link files . 12

3.4.1 Building an executable program . 13
3.4.2 Building a loadable library . 14
3.4.3 Building a shared-library . 16
3.4.4 Other compilation options . 17

3.5 Procedures specific to compiler . 17

4 Runtime options for all programs 21

5 Debugging . 24
5.1 Debugging model . 24
5.2 Debugging commands . 25
5.3 Debugging example . 27
5.4 Procedures related to debugging . 28
5.5 Console line-editing . 33
5.6 Emacs interface . 34
5.7 GUIDE . 35

6 Scheme extensions . 36
6.1 Extensions to standard procedures . 36
6.2 Extensions to standard special forms . 36
6.3 Miscellaneous extensions . 38
6.4 Undocumented extensions . 44

ii

7 Namespaces . 47

8 Characters and strings . 48
8.1 Extensions to character procedures . 48
8.2 Extensions to string procedures . 48

9 Numbers . 50
9.1 Extensions to numeric procedures . 50
9.2 IEEE floating point arithmetic . 50
9.3 Integer square root and nth root . 50
9.4 Bitwise-operations on exact integers . 51
9.5 Fixnum specific operations . 54
9.6 Flonum specific operations . 56
9.7 Pseudo random numbers . 57

10 Homogeneous vectors . 61

11 Hashing and weak references 65
11.1 Hashing . 65
11.2 Weak references . 67

11.2.1 Wills . 67
11.2.2 Tables . 68

12 Records . 75

13 Threads . 76
13.1 Introduction . 76
13.2 Thread objects . 76
13.3 Mutex objects . 77
13.4 Condition variable objects . 77
13.5 Fairness . 77
13.6 Memory coherency . 78
13.7 Timeouts . 79
13.8 Primordial thread . 79
13.9 Procedures . 79

14 Dynamic environment. 92

iii

15 Exceptions . 96
15.1 Exception-handling . 96
15.2 Exception objects related to memory management 98
15.3 Exception objects related to the host environment 99
15.4 Exception objects related to threads . 101
15.5 Exception objects related to C-interface . 104
15.6 Exception objects related to the reader . 107
15.7 Exception objects related to evaluation and compilation 108
15.8 Exception objects related to type checking 110
15.9 Exception objects related to procedure call 112
15.10 Other exception objects . 115

16 Host environment . 116
16.1 Handling of file names . 116
16.2 Filesystem operations. 118
16.3 Shell command execution . 120
16.4 Process termination . 121
16.5 Command line arguments . 121
16.6 Environment variables . 121
16.7 Measuring time . 122
16.8 File information . 123
16.9 Group information . 127
16.10 User information . 128
16.11 Host information . 129
16.12 Service information . 130
16.13 Protocol information . 131
16.14 Network information . 132

17 I/O and ports . 134
17.1 Unidirectional and bidirectional ports . 134
17.2 Port classes . 134
17.3 Port settings . 135
17.4 Object-ports . 135

17.4.1 Object-port settings . 135
17.4.2 Object-port operations . 135

17.5 Character-ports . 138
17.5.1 Character-port settings . 138
17.5.2 Character-port operations . 139

17.6 Byte-ports . 141
17.6.1 Byte-port settings . 141
17.6.2 Byte-port operations . 143

17.7 Device-ports . 145
17.7.1 Filesystem devices . 145
17.7.2 Process devices . 147
17.7.3 Network devices . 148

17.8 Directory-ports . 151
17.9 Vector-ports . 152

iv

17.10 String-ports . 154
17.11 U8vector-ports . 154
17.12 Parameter objects related to I/O . 155

18 Lexical syntax and readtables 156
18.1 Readtables . 156
18.2 Boolean syntax . 162
18.3 Character syntax . 162
18.4 String syntax . 163
18.5 Symbol syntax . 164
18.6 Keyword syntax . 164
18.7 Box syntax . 164
18.8 Number syntax . 164
18.9 Homogeneous vector syntax . 164
18.10 Special #! syntax . 165
18.11 Multiline comment syntax . 165
18.12 Scheme infix syntax extension . 165

18.12.1 SIX grammar . 165
18.12.2 SIX semantics . 170

19 C-interface . 172
19.1 The mapping of types between C and Scheme 172
19.2 The c-declare special form . 180
19.3 The c-initialize special form . 181
19.4 The c-lambda special form . 181
19.5 The c-define special form . 183
19.6 The c-define-type special form . 184
19.7 Continuations and the C-interface . 191

20 System limitations . 192

21 Copyright and license 193

General index . 208

	The Gambit-C system
	Accessing the system files

	The Gambit Scheme interpreter
	Interactive mode
	Batch mode
	Customization
	Process exit status
	Scheme scripts
	Scripts under UNIX and Mac OS X
	Scripts under Microsoft Windows
	Compiling scripts

	The Gambit Scheme compiler
	Interactive mode
	Customization
	Batch mode
	Link files
	Building an executable program
	Building a loadable library
	Building a shared-library
	Other compilation options

	Procedures specific to compiler

	Runtime options for all programs
	Debugging
	Debugging model
	Debugging commands
	Debugging example
	Procedures related to debugging
	Console line-editing
	Emacs interface
	GUIDE

	Scheme extensions
	Extensions to standard procedures
	Extensions to standard special forms
	Miscellaneous extensions
	Undocumented extensions

	Namespaces
	Characters and strings
	Extensions to character procedures
	Extensions to string procedures

	Numbers
	Extensions to numeric procedures
	IEEE floating point arithmetic
	Integer square root and nth root
	Bitwise-operations on exact integers
	Fixnum specific operations
	Flonum specific operations
	Pseudo random numbers

	Homogeneous vectors
	Hashing and weak references
	Hashing
	Weak references
	Wills
	Tables

	Records
	Threads
	Introduction
	Thread objects
	Mutex objects
	Condition variable objects
	Fairness
	Memory coherency
	Timeouts
	Primordial thread
	Procedures

	Dynamic environment
	Exceptions
	Exception-handling
	Exception objects related to memory management
	Exception objects related to the host environment
	Exception objects related to threads
	Exception objects related to C-interface
	Exception objects related to the reader
	Exception objects related to evaluation and compilation
	Exception objects related to type checking
	Exception objects related to procedure call
	Other exception objects

	Host environment
	Handling of file names
	Filesystem operations
	Shell command execution
	Process termination
	Command line arguments
	Environment variables
	Measuring time
	File information
	Group information
	User information
	Host information
	Service information
	Protocol information
	Network information

	I/O and ports
	Unidirectional and bidirectional ports
	Port classes
	Port settings
	Object-ports
	Object-port settings
	Object-port operations

	Character-ports
	Character-port settings
	Character-port operations

	Byte-ports
	Byte-port settings
	Byte-port operations

	Device-ports
	Filesystem devices
	Process devices
	Network devices

	Directory-ports
	Vector-ports
	String-ports
	U8vector-ports
	Parameter objects related to I/O

	Lexical syntax and readtables
	Readtables
	Boolean syntax
	Character syntax
	String syntax
	Symbol syntax
	Keyword syntax
	Box syntax
	Number syntax
	Homogeneous vector syntax
	Special #! syntax
	Multiline comment syntax
	Scheme infix syntax extension
	SIX grammar
	SIX semantics

	C-interface
	The mapping of types between C and Scheme
	The c-declare special form
	The c-initialize special form
	The c-lambda special form
	The c-define special form
	The c-define-type special form
	Continuations and the C-interface

	System limitations
	Copyright and license
	General index

