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Consider one of our standard problems in operations research.  Perhaps we are moving product through

a global supply chain to satisfy a customer.  Or we might be planning the movement of our trucks and

aircraft, with their associated drivers and pilots, to move small packages overnight in response to that

day’s demands from the internet.  If we are feeling brave, we might be interested in taking on the task of

planning, in real time, the problem of managing the locomotives or crews of a major freight railroad,

moving thousands of trains between hundreds of locations.

In all of these applications, we would usually end up formulating a model that looks something like:
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In our “little” optimization problem, we have chosen to capture that our problem is probably defined

over time, where equation (2) couples different time periods together. And we are probably tracking the

flows of different types of commodities, which are bundled somewhere with an equation looking like

(3).  Of course, equation (4) is our omnipresent nonnegativity constraint (we might also need to add

integrality constraints).

For the types of large scale problems with which we opened our discussion, this optimization problem is

very hard to solve.  Even with modern workstations and the major advances in linear programming

algorithms, the truly large scale multicommodity flow problems remain a challenge.  Making the
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problem truly intractable is the likely presence of many integer variables.  Needless to say, this problem

remains a very active area of research.

But perhaps what makes this problem really hard is that we do not even know the values for the

constraint matrices A and B (where we have to capture uncertain travel times), the cost vector c (where

we have to capture soft preferences for different types of activities), and the resource constraint b, where

we capture the future demands from customers (see Sen and Higle, 1999, for an overview of

optimization under uncertainty).

Decomposing large problems

In actual large-scale operations, it is customary to break up a large problem into numerous small

problems.  For our purposes, it is useful to think of a set Q  as representing the set of people

Figure 1

Illustration of the decomposition of a large scale operation into a set of different subproblems.
Each subproblem q is comprised of a set of decisions qD .
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making decisions, and let q Q∈  be a particular decision maker.  Further let qD  be the set of decisions

that are made by decision maker q .  Figure 1 illustrates a set of activities for a large scale operation (our

example is drawn from a major railroad) into a set of subproblems. (Our notation in this paper is based

on Powell and Shapiro, 2000).

When we decompose a problem into subproblems, it is important to capture who impacts whom.  A

useful bit of notation (which we need later) is the forward reachable set, denoted qM .  This is the set of

subproblems that are directly impacted by decisions made in subproblem q.

Normally, we motivate the design of a set of subproblems based on the mathematical structure of the

original problem.  In the real world, a subproblem is somewhat more tangible.  In fact, a good example

of a subproblem is shown in figure 2.  For convenience, we will refer to our subproblem as “Harry.”  We

observe that Harry is doing what a lot of humans do in

operations – he is looking at a sheet of paper and talking on

the phone.  Both of these represent a form of communication

that does not involve the computer!  In other words, Harry is

collecting information that is not going to go into the

computer.  Needless to say, Harry is able to look out the

window and use similar forms of data collection.  This, then,

is the reason that Harry can make some decisions that cannot

be made centrally, either by people or a computer.
Figure 2
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The problem is that Harry is a fairly low-cost instrument for collecting information and performing not

just simple planning functions, but actually quite sophisticated operational strategies, as long as they do

not require information from other subproblems (Harry is no better at learning what is going on

elsewhere in the network than anyone else).

The information wall

In today’s information age, we often harbor the goal that we will be able to centralize all the information

about our system so that people, typically with computerized assistance, will be able to make the best

possible decisions.  With the vast expansion in information technologies, this is a reasonable goal.  But

there is a fundamental tradeoff between our ability to eliminate errors in our knowledge of a system, and

the cost of eliminating these

errors.  While we may have the

technology to know almost

anything we want about our

problem, at some point the cost

of doing so exceeds the business

benefit, creating what I like to

call an information wall,

depicted in figure 3.  On one

side of the wall is information

that is generally known to the

company (for example, it is available in the computer); on the other side is Harry, doing the best he can,

but doing better than anyone else because he has the information, and the rest of us don’t.

Data errors

“The wall”

Figure 3
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We all understand that when we formulate a model, we should try to capture the real problem as

accurately as possible, recognizing the usually tradeoffs between precision and tractability.  An

overlooked dimension of problem realism is modeling how decisions are really made, and the

information available to each decision maker when he or she makes a decision.  I call these

informational subproblems.  Because of the presence of the information wall, we are not going to be

able to get rid of “Harry.”  This means that any system we build must ultimately be understandable to

Harry, who will  be looking at the problem from the perspective of his part of the world.

Controlling complex systems

Our challenge of making decisions without complete information brings us back to the task: how do we

manage complex systems?  If we return to our original optimization problem, we probably formulated

our problem in terms of the flows of various resources, captured by our decision vector x.  Let’s call

these primal controls.  Of course, for every primal problem there is the dual, formulated in terms of a set

of prices that we might as well call p.  The operations research community has for many years

formulated problems using this nice dichotomy.

It is my claim, however, that the control of complex systems can be divided along three primary

dimensions:

• Primal controls – Here we cover decisions that involve the traditional management of
physical resources.

• Dual controls – These cover prices and other parameters that affect the value of a decision.

• Information controls – Here, we include decisions that govern what information is made
available to each decision maker.

It is somewhat ironic that while the operations research community (including myself) spends much of

its time trying to solve for primal controls, many managers spend most of their time with dual and, most
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notably, informational controls.  American industry has spent billions in the last decade on new

information systems; a decision to provide information is an indirect way of controlling a system.  In the

presence of incomplete information, we can best help Harry not by telling him what to do, but by giving

him more information so that he can make better decisions.

Formulating a subproblem

If we are going to address this issue formally, we need to model informational subproblems.  If x is our

vector of decisions and q is our index for a subproblem, we can let qx  be the vector of decisions for

subproblem q, where { }
q

q dq d D
x x

∈
= .  Now let qxπ  be the function that makes these decisions, where the

superscript π  denotes a policy, and where Π  is a family of policies.  We might let cΠ  be the set of

policies in class c consisting of a single, functional form.  Policies cπ ∈ Π  would represent different

values of any parameters that would be used to characterize policies in a particular class.

Of course, a decision function depends on the information available to the decision maker.  We let qI

denote the information set for subproblem q.  As an illustration, assume that our class c is a set of linear

programs, so that our decision function looks like:
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In this case, we would have { }, ,q q q qI A b c= .  Not surprisingly, we say that “ qI ” is the “IQ” of our

subproblem.
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Our path to making better decisions starts to become clear.  To get better performance from subproblem

q, we have to raise its “IQ.”  First, however, we have to understand just what we mean by information.

What is information?

To provide better information, we have to first settle on what it is, and then turn to identifying the major

classes of information.  Our approach to information is quite different than that used within the field of

information theory (see, for example, Cover and Thomas, 1991) where the emphasis is on data

representation, whereas we are interested in information only as it supports decisions.  We begin by

distinguishing data, knowledge and information.

For our purposes, data is anything that can be stored in a computer data file (in other words, bits and

bytes).  The concept of knowledge is a bit more involved.  Knowledge comes in two forms: data

knowledge, and functional knowledge.  Data knowledge is data produced by an exogeneous source.

Functional knowledge is functions (both the form and the parameters) that help us to improve our

knowledge about something that is not fully known.  For example, data knowledge may be the history of

demands for a product or the parameters of a regression model relating demands to calendar effects and

other exogenous information.  The prediction of the demand next week represents a kind of information,

but it is not knowledge (it was derived from the knowledge of the historical patterns and the functional

relationship between past and future demands).

Information, finally, is data that helps us make a decision (somewhat more formally, information is a

type of data that under at least some circumstances will change a decision).  If the provision of a piece of

data never has an impact on a decision, then it is not information (we might call it entertainment).
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Our system evolves over time because of the arrival of information.  We distinguish two primary

sources: exogenous information (customer demands, weather delays, equipment failures) and decisions,

which we view as a type of endogenous information.  Sometimes exogenous and endogenous

information sources have the same impact (exogenous: the plane broke down; endogenous: we decided

to put the plane in for maintenance).  Regardless of the source, they both have the effect of changing our

system.

I claim there are four classes of information:

• D
qK  - Knowledge (data).

• qΩ  - Forecasts of exogenous information processes (forecasting).

• p
qx  - Forecasts of endogenous information processes (planning).

• qMV  - Forecasts of the impact of a decision in one subproblem on another (we call these

values).

Because these information classes are so fundamental, a brief discussion of each is warranted.

Data knowledge

Most planning systems focus on expanding the knowledge database D
qK .  We might say that the

information age has focused on increasing this set.  We can formalize the set D
qK  with just a little more

notation.  Let IC  be the set of information classes, and let c
qE  be the information elements for

subproblem q within a class (for example, Ic C∈ may be the set of trucks we are managing, and ( )truckE

would be the actual list of trucks).  Typically, an information element ce ∈E  would have a set of

attributes, which we can represent as ea ∈ cA .  If we have multiple decision makers, we would assume
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that decision maker q has access to the information elements in the set qE .  Now, we can represent our

(data) knowledge base as:

{ }|q e qK a e= ∈E

Forecasts of exogeneous processes

Forecasts of exogenous processes, represented by qΩ , capture basics such as demand forecasting, but

can also include forecasts of people behavior (e.g. predicting the number of factory workers who will

call in sick on a given day), equipment behavior (how many locomotives will be out of order on a given

day), and weather.

The vast majority of forecasting systems make a single projection of future events.  This is equivalent to

assuming that qΩ  has a single element (the point forecast).  This is understandable for its simplicity,

but surprising because it is so unrealistic.  People routinely make decisions that reflect the distribution of

outcomes when they make allowances for safety stock or extra time in a schedule.

Forecasts of endogenous information processes (planning)

This category covers plans that have been made previously, which are then an input to our process.

Strictly speaking, this is a form of knowledge, because it is exogenously derived information, but we

prefer to group it alongside forecasts of exogenous processes.  We represent a plan using the notation

p
qx .  This notation is similar to our (primal) decision vector qx , but in practice, the plan is usually made

at a more aggregate level.  The decision vector qx  is often very detailed (for example, which job goes on

which machine at a point in time), whereas a plan is almost always aggregated up to a more meaningful

level (the total number of jobs to be processed on a machine on a given day).  It is useful to think of a
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plan as a forecast of a decision.  In this way, an aggregated set of decisions (a “plan”) is a better forecast

of a future decision since a detailed plan is unlikely to be a good predictor of actual future decisions.

It is very common to formulate optimization models without incorporating prior plans (the concept is

that the model is being used to develop a plan).  This is surprising, because almost no company could

run this way; it is important when planning to be sure that decisions do not deviate too much from

previous plans.  Interestingly, there is a strong theoretical foundation for incorporating prior plans into

current decisions.  Proximal point algorithms, originally developed by Rockafellar (1976), use the basic

form:

1 arg minn nx cx x xρ+ = + −

where the decision at iteration n+1 should not be “too far” from the decision at the previous iteration,

given by nx .  If a company revises its plan each month, then we would view nx as last month’s plan, and

1nx +  would be next month’s plan.

Planning is fundamental, but it is not always explicit.  There are three types of “plans”:

• Plans – These are explicit sets of decisions at some level of aggregation.

• Patterns – Even when a company does not use an explicit plan, people acquire behavioral
patterns, generally in the form of state action×  pairs.  Humans acquire these patterns over
time, and they help to provide stability to an operation over time.  Of course, what some
people view as stability others view as behavioral inertia.  Even if these state action×  pairs
are not explicit, the tendency of humans to follow them can have as powerful an effect as any
plan.  Models which deviate too dramatically from historical patterns typically have a
difficult time being implemented.

• Policies – These are explicit rules (typically in the form of state action×  pairs) set by
management that prescribe actions under certain conditions.  These are similar to patterns,
but they are set explicitly by management.
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It is important, in the formulation and implementation of models, to understand the role of plans,

patterns and policies.  As much as management wants to use a model to overcome behavioral inertia,

there are both good as well as bad patterns of behavior in any organization, and the challenge is sorting

these out.  A model can incorporate historical patterns explicitly, running the risk of repeating past

mistakes, or ignore these patterns, running perhaps the even greater risk of ignoring the lessons of years

of experience developed by knowledgeable operations professionals.

Value functions

Value functions represent the ability to estimate the impact of a decision made by one person

(subproblem) on another part of the system.  A value function captures the impact of a decision on the

objective function, and hence the units are always in dollars (or the units of the objective function).  The

simplest illustration of a value function arises when purchasing something from an outside supplier.

Assume you wish to purchase a quantity x, and the price of the item is p.  The amount you will spend,

then, is px.  This is an instance of a linear value function.

Value functions are often ignored, but are widely used in the technical literature (see, for example,

Puterman, 1994, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998 for discrete dynamic programs

and Sen and Higle, 1999, Birge and Louveaux, 1997 for stochastic linear programs).  A value function

can be derived from dynamic programming (where they are often called value functions but sometimes

are referred to as cost-to-go functions), and stochastic programming (where they are called recourse

functions, and are sometimes approximated using Benders cuts).  In the context of multistage linear

programs (which arise in many resource allocation problems), a value function can be viewed as a

forecast of a dual variable.
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Summary

We have, then, four different types of information which we represent, notationally, by qK , qΩ , px and

qMV . Using these types of information, we can construct different decision functions.  Not surprisingly,

the design of the information set and the design of the information function need to go together.  For this

reason, just as we used the index π  to indicate the type of decision function in qxπ , we can use the same

notation to capture the type of information set, as in qI π .  Four useful classes of information sets include

       Myopic information set (based purely on data knowledge)

M
qKΠ =

=

{ },

Rolling horizon procedures (which combine knowledge with forecasts)

RH
q qKΠ = Ω

=

{ }, ,

 Knowledge combined with forecasts of exogenous and endogenous 

information processes.

P p
q q qK xΠ = Ω

=

{ },

 Knowledge and value functions.

q

V
q MK VΠ =

=

These four classes represent the most popular ones in practice (the first two) or in the technical literature

(the last two).  Of course, it is possible to create a fifth class that we might call “all of the above”, but I

have never seen this implemented either in practice or in the academic literature.

The class MΠ  covers myopic policies that use only knowledge, without any attempt to forecast the

future.  Most people who refer to “policies” are referring to myopic policies.  Procedures that use

forecasts of exogenous events, RHΠ , are typically called rolling horizon procedures, and the vast

majority of these use deterministic forecasts ( 1qΩ = ).  Decision functions in the class PΠ  incorporate
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previously designed plans, patterns or policies; conveniently, a standard method for incorporating these

is via a proximal point algorithm, a convenient mnemonic device as well as a powerful planning tool.

These algorithms would use plans (or patterns or policies) as follows:

( )1 arg minn Px cx G x xρ+ = + − (5)

where ( )G x  is a function that aggregates the decision vector x up to the same level as the plan px .

Value policies, represented by VΠ , are perhaps the most difficult class of policies to develop and

implement, but these are also the only class that have a theoretical basis for optimality for general

problems.

Each of these classes of information creates a different class of decision function.  Which one is best?

Obviously, that depends on the class of problem, but I would rank the four classes in terms of

sophistication in the same order they are listed above.  Myopic policies are the easiest to implement and

can be optimal in very specialized circumstances, but rarely in practice.  However, for many companies,

simply increasing the knowledge set qK  can be an important step.  The transition from a myopic

information set to a rolling horizon procedure which incorporates forecasting is typically the second step

that companies take to improve decision  making (after increasing the knowledge base).  Incorporating

plans or value functions represent successively higher levels of sophistication.

Controlling the flow of information

The important message, of course, is that we control behavior by controlling information.  More

precisely, we can control who has access to what information.  We start by assuming that every

information element e exists in a set qE  for some q (the same element may be in more than one set).



Page 14

The information challenge arises when q is a human, and qE  represents head knowledge (for example,

the retail distributor who is the only one who sees the status of shelf inventory, or the yard supervisor at

a railroad who is the only one who knows that the locomotive is out of order).  Assume now that we

wish to send a piece of information in qE  to another set 'qE  (q might be a person, while q’ might be a

different person, a local computer, or a central database).  We might let , , ' 1e q qθ =  if we decide to send

element qe ∈E  over to set 'qE , and let qθ  be the vector of all information exchange decisions for

subproblem q.  The parallels between our primal decisions qx  and our information decisions qθ  are

quite close.  We might, for example, let ( )X
q qc x  be the cost of moving physical resources, and ( )I

q qc θ  be

the cost of moving informational resources.  If qI  is the information available to subproblem q, then we

would write ( )qI θ  to capture the dependence of information on our decisions to flow information.

Furthermore, we note that our decisions ( )( ) ( )q q q q qx x I x Iπ π θ= =  are also, indirectly, a function of our

informational decisions.  This means that we can now write an objective function for flowing

information that reflects both the cost of moving information, and the impact of these decisions on the

flows of physical resources:

( )( )min ( ) ( )X I
q q q

q

C x I Cπ

θ
θ θ+∑ (6)

Of course, the cost function for information flow is going to be similar to the types of cost functions that

we often encounter for flowing physical resources.

To complete our optimization problem, we have to fill out a set of constraints.  When we formulate

models of physical resources, we typically include three types of constraints: flow conservation, upper

bounds reflecting restrictions on the rate of flow, and nonnegativity or integrality constraints.  When we
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turn to formulating constraints on the flow of information, we find that one notable constraint is

missing… flow conservation!  With information, I can share information with others (without giving up

the information myself).  What is particularly interesting is that I can give away information that I do not

even have!  (This is called lying).  The handling of false or unreliable information is a skill that humans

manage particularly well, and which computers manage particularly badly.

The cost function ( )I
q qc θ , as with the more traditional cost function for the flow of physical resources

( )X
q qc x , may take a variety of functional forms.  Linear functions might be used to describe telephone

calls, reading the newspaper, or sending emails, faxes and letters.  By adding information technology

(for example, developing a new database) we may lower the marginal cost of flowing information (the

phone call is replaced with the cost of bringing up a computer screen) but we incur the fixed charge of

developing and implementing the database.  A convex cost function would be used to describe the

increasing cost of trying to communicate too much information (think about filling out a long

questionnaire or reading a long email), while a concave cost function would describe the lower marginal

cost of adding information to an exchange (it is easier to send and receive a three-line email than three

one-line emails).

The flow of information, controlled by the vector qθ , can describe the movement of any of our four

types of information.  Most of the time, qθ  is describing the movement of knowledge from one source to

another.  These flows have the effect of increasing qK .  However, qθ  can be used to capture the

decision to implement a new forecasting system (thereby adding qΩ  to the information set qI ), a new

planning system (which adds a plan p
qx  to the information set, and implies the use of a decision function

similar to (5)), or the use of value functions 
qMV .
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Conclusions

The thoughts in this paper have grown out of a two-decade long career of implementing computer

models for complex operations arising in transportation and logistics.  The successful models can be

easily separated from the unsuccessful ones based on an understanding of human decision functions and

information.  Planning models are often the most successful because both computers and humans tend to

have access to the same information.  As models get closer to real-time operations, we encounter the

information wall, which means we are ultimately dependent on the human making the decision with the

computer playing a supporting role.

In this setting, we have to carefully understand the human’s decision function ( ( )q qx Iπ ), and to make

sure that we are providing information (data that may impact a decision) and not entertainment.  Here,

we encounter another wall.  Human decision making fundamentally follows the paradigm of

state action× pairs (when in this state, use this action), which is the foundation of much of artificial

intelligence.  By contrast, computer models depend on costs and value functions (in any of its major

disguises).  Providing humans with this same information is of relatively little value.  Instead, we

depend on computer models to develop plans, which humans have an easier time of following.

However, it is important that computer models communicate these plans at an appropriate level of

aggregation.  Just as an overly detailed forecasting model is of little value, an overly detailed decision

function (which can be viewed as a kind of forecasting function) should make decisions at an

appropriate level of aggregation.

Traditional computer models focus on planning the flows of resources.  In this paper, the focus has been

on modeling the flow of information, and building decision functions that capture the kind of

information that will actually be available to a real decision maker when a decision is actually made.
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When we make this step, we can then focus on understanding the value of information, and determining

which information is cost effective to provide.
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