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Abstract 

 
This paper presents a case study to effectively run a 

parallel branch and bound application on the Grid. 
The application discussed in this paper is a fine-grain 
application and is parallelized with the hierarchical 
master-worker paradigm. This hierarchical algorithm 
performs master-worker computing in two levels, 
computing among PC clusters on the Grid and that 
among computing nodes in each PC cluster. This 
hierarchical manner reduces communication overhead 
by localizing frequent communication in tightly 
coupled computing resources, or a single PC cluster. 
The algorithm is implemented on a Grid testbed by 
using GridRPC middleware, Ninf-G and Ninf. In the 
implementation, communication among PC clusters is 
securely performed via Ninf-G, which uses Grid 
security service on the Globus Toolkit, and 
communication among computing nodes in each PC 
cluster is performed via Ninf, which enables fast 
invocation of remote computing routines. The 
experimental results showed that implementation of the 
application with the hierarchical master-worker 
paradigm using a combination of Ninf-G and Ninf 
effectively utilized computing resources on the Grid 
testbed in order to run the fine-grain application, 
where the average computation time of the single task 
was less than 1[sec]. 

1. Introduction 

Grid computing is regarded as new computing 
technology that provides huge computational power 
with low costs by employing computing resources 
geographically distributed over the internet. It has 
possibility not only to reduce execution time of 
applications currently computed on hi-end computing 
systems but also to expand applications of high-

performance computing or the internet. However, on 
the current Grid infrastructures, applications that are 
effectively computed are limited. Some applications 
show unacceptable performance on the Grid because 
of the large overhead, e.g. the overhead caused by poor 
network performance, and that by Grid security service 
such as user authentication and secure communication. 

An example of applications that show poor 
performance on the Grid is a fine-grain application. 
Performances of applications that consist of small tasks 
are significantly affected by relatively large overhead 
on the Grid. Thus, currently, applications effectively 
running on the Grid have enough task grain sizes that 
compensate for the overhead, dozens of seconds or 
hundreds seconds [1][2][3][4]. For instance, the work 
presented in [1] shows experimental results for an 
application, which solves the quadratic assignment 
problem, on a Grid testbed; and the mean task grain 
size, or the mean execution time of the single task, in 
the application is 190 [sec]. The work in [3] also 
presents experimental results for an application, which 
solves the traveling salesman problem, on a Grid 
testbed; and the mean task grain sizes are distributed 
from 177 [sec] through 430 [sec]. 

However, there exist finer-grain applications, where 
the mean task grain sizes are a few seconds or less, and 
developers/users of these applications give up running 
their applications on the Grid. Some of these 
applications might consist of a huge number of fine-
grain tasks and require huge computational power, 
such as computational resources distributed on the 
Grid. Thus, implementation to effectively run these 
fine-grain applications on the Grid contributes for 
expanding applications of Grid computing. 

This paper presents a case study to effectively run a 
parallel branch and bound application on the Grid.  
Branch and bound applications are widely used to 
solve optimization problems in many engineering 
fields, e.g. operations research, control theory, 
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multiprocessor scheduling [5][6][7][8]. However, 
many of these applications tend to be composed of a 
huge number of fine-grain tasks, i.e. they are fine-grain 
applications. The application presented in this paper is 
parallelized with the hierarchical master-worker 
paradigm [9] in order to efficiently compute fine-grain 
tasks on the Grid. This hierarchical algorithm performs 
master-worker computing in two levels, computing 
among PC clusters on the Grid and that among 
computing nodes in each PC cluster. This hierarchical 
manner avoids performance degradation, which is 
mainly caused by communication overhead between 
the master process and worker processes, by localizing 
frequent communication in tightly coupled computing 
resources, or a single PC cluster. The application is 
implemented on the Grid by using GridRPC [10] 
middleware, Ninf-G [11] and Ninf [12]. GridRPC is a 
programming model based on client-server-type 
remote procedure calls on the Grid, and its model and 
APIs have been proposed to the GGF for 
standardization [13]. In the implementation, 
communication among PC clusters is securely 
performed via Ninf-G, which uses the Grid security 
service in the Globus Toolkit [14], and communication 
among computing nodes in each PC cluster is 
performed via Ninf, which has no mechanism to 
support Grid security service but enables fast 
invocation of remote computing routines.  

While fine-grain applications on distributed systems 
have been discussed in literatures [15][16], the detailed 
performance of the fine-grain parallel branch and 
bound application with GridRPC on the Grid has not 
been sufficiently discussed. The contribution of this 
paper is to present implementation and detailed 
performance of the application on a Grid testbed 
constructed with standard Grid technology [13][14]. 
The experimental results showed that the 
implementation of the application with the hierarchical 
master-worker paradigm using combination of Ninf-G 
and Ninf effectively utilized computing resources on 
the Grid testbed in order to run the fine-grain 
application, where the average computation time of the 
single task was less than 1[sec]. 

The rest of this paper is organized as follows: 
Section 2 summarizes an overview of the application 
presented in this paper, and Section 3 presents 
implementation of the application on the Grid. Section 
4 presents experimental results of the application on 
the Grid testbed. Section 5 describes related works, 
and Section 6 concludes the work presented in this 
paper and outlines future work. 

2. Target Application 

This section summarizes an overview of the parallel 
branch and bound algorithm and parallelization of the 
application with the hierarchical master-worker 
paradigm. 

2.1. Branch and Bound Algorithm 
The main idea of the branch and bound algorithm is 

to find an optimal solution and to prove its optimality 
by successively partitioning the feasible set of the 
solution, or the original problem, into subproblems of 
smaller size. To this end, these subproblems are 
investigated by computing lower/upper bounds of the 
objective function. These lower/upper bounds are used 
to avoid exhaustive search of the solution space.  

Procedures for the branch and bound algorithm are 
illustrated by a tree structure like an example on Figure 
1. On the figure, the root node on the tree denotes the 
original problem. The original problem is partitioned 
into two subproblems, which are depicted as child 
nodes of the root node. This partitioning process is 
called branching. After the branching, lower/upper 
bounds of the objective function are computed on each 
subproblem, and the best upper bound is computed. 
The best upper bound means the lowest upper bound 
among upper bounds currently computed on all 
subproblems 1 . By continuing in this way, a tree 
structure called the search tree is obtained. Some 
subproblems, where their lower bounds (LB) are 
higher than the current best upper bound (Z), can be 
pruned, because further branching for these 
subproblems does not yield an optimal solution. This 

                                                           
1 This paper assumes an optimization problem that 
minimizes the objective function. 

computing  
lower/upper 
bounds pruning 

  if LB > Z

branching

Figure 1. An example of the search tree 
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process is called pruning or bounding, and efficient 
pruning is effective to reduce computation time. 
Finally, an optimal solution is obtained, when the gap 
between the best upper bound and the lower bound 
becomes zero or less than the certain interval. 

2.2. Parallelization with Hierarchical Master-
Worker Paradigm 

The branch and bound algorithm is able to be 
parallelized by distributing computation of 
subproblems on multiple computing nodes. Parallel 
branch and bound algorithms with the master-worker 
paradigm, where a single master process dispatches 
tasks to multiple worker processes, have been 
proposed in many literatures [1][3][18]. Also, the 
parallel algorithm with the hierarchical master-worker 
paradigm is proposed to improve performance on 
large-scale computing environment [9]. 

The hierarchical master-worker paradigm is one of 
solutions to avoid performance degradation in the 
master-worker paradigm on the Grid. In this paradigm, 
a single supervisor process controls multiple process 
sets, each of which is composed of a single master 
process and multiple worker processes. The 
distribution of tasks is performed in two phases: the 
distribution from the supervisor process to master 
processes and that from the master process to worker 
processes. The collection of computed results is 
performed in the reverse way. The hierarchical master-
worker paradigm has advantages compared with the 
conventional master-worker paradigm. The first 
advantage is to reduce communication overhead by 
putting a set of the master process and worker 
processes, which frequently communicate with each 
other, on tightly coupled computing resources. The 
second advantage is to avoid that a single heavily 
loaded master process becomes a performance 
bottleneck by distributing work among multiple master 
processes. 

The parallel branch and bound algorithm 
parallelized with the hierarchical master-worker 
paradigm performs parallel computation in the 
following way: A set of the master and worker 
processes performs a parallel branch and bound 
algorithm for a subset of the search tree, that is, the 
master process dispatches subproblems to multiple 
worker processes and receives computed results from 
these worker processes. The supervisor process 
performs load balancing among master processes and 
updates the best upper bound of the objective function 
by communicating with master processes. Updating of 
the best upper bound is crucial to improve the 
performance of the application, because it accelerates 

pruning. Figure 2 shows an overview of the branch and 
bound (B&B) algorithm with the hierarchical master-
worker paradigm. Symbols on the figure, ZWi, ZMj and 
Z, denote the current upper bound of the objective 
function stored on the worker process Wi, the master 
process Mj and the supervisor process, respectively.  

In each set of the master process and worker 
processes, the master process maintains a subset of the 
search tree. Un-computed subproblems are saved in the 
queue on the master process. It dispatches subproblems, 
which correspond to leaf nodes on the search tree, to 
multiple worker processes and receives computed 
results from these worker processes. Simultaneously, 
the master process sends the best upper bound stored 
on itself to worker processes. The worker process that 
received a subproblem from the master process 
performs branching, that is, it partitions the 
subproblem into multiple (sub-)subproblems. Next, it 
computes the lower/upper bounds for each subproblem 
and performs pruning, that is, it prunes an unnecessary 
subproblem, where its lower bound exceeds the current 
best upper bound. Finally, the worker process returns 
computed results to the master process. The computed 
results contain the upper bound computed on the 
worker process, the solution, and subproblems that 
have generated by branching and have not been pruned 
on the worker process. 

The supervisor process periodically queries master 
processes about their statuses, which include the 
number of un-computed subproblems and the best 
upper bounds stored on these master processes. When 
numbers of un-computed subproblems, or loads, on 
master processes are not well balanced, the supervisor 
process moves un-computed subproblems from highly 
loaded master processes to lightly loaded master 
processes.  A strategy for the load balancing is 

M1 

W1

W2
S 

M2 W1

W2
 : task (subproblem) 
: the best upper bound Z

, ZW1 
, ZM1 

, ZW2 
, ZM2 

, ZM1 
, Z 

, ZM1 
, Z 

Figure 2. B&B algorithm with the 
hierarchical master-worker paradigm
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discussed in Section 4. When the supervisor process 
finds the new best upper bound on  the master process 
Mi, where ZMi < Z, the supervisor process updates the 
best upper bound stored on the supervisor process (Z) 
and distributes Z to other master processes. Thus, the 
master process communicates both with its worker 
processes and with the supervisor processes. Finally, 
the supervisor process terminates computation if the 
termination condition is satisfied. 

3. Implementation 

The Grid testbed assumed in this paper consists of 
multiple PC clusters that are connected to the internet 
and are administrated in multiple domains. In order to 
efficiently run the application described in the previous 
section on the Grid testbed, mapping of processes on 
computing resources and communication methods 
among these processes are crucial. Particularly, 
implementation to reduce overhead is necessary to run 
the fine-grain application on the Grid testbed, because 
the performance of the fine-grain application is 
significantly affected by the overhead.  

3.1. Process Mapping 
Figure 3 illustrates mapping of processes in the 

application on the Grid testbed. On the figure, multiple 
PC clusters, which are depicted by squares with dotted 
lines, are distributed on the internet. Symbols on the 
figure, S, M and W denote the supervisor process, the 
master process and the worker process, respectively. 
The symbol C denotes a process that runs with the 
master process on the same computing node, which is 
depicted by the square with solid lines. It relays 
operations between the supervisor process and the 
master process. These relayed operations consist of 
queries about statuses of master processes, 
stealing/assigning subproblems from/to master 
processes and distributing the new best upper bound. 
As described in Section 2.2, the master process 
communicates both with its worker processes and with 
the supervisor process. The former communication is 
performed for computation of subproblems, or 
dispatching subproblems to worker processes and 
receiving computed results. The process C relays 
operations requested by the supervisor process so that 
computation on master processes will not be blocked 
by the supervisor process.  

A set of the master process (M and C) and worker 
processes (W) are mapped on computing nodes in a 
single PC cluster, where computing nodes are 
connected via dedicated high-speed network. This 
mapping is effective to reduce communication 

overhead in the application, because the amount of 
data transferred between the supervisor process and 
master processes is much smaller than that between the 
master process and worker processes. The discussion 
for the amount of the transferred data is presented in 
Section 4. The supervisor process is mapped on a 
computing node on the Grid testbed. 

3.2. Communication among Processes 
On the Grid testbed, communication between the 

supervisor process and master processes is performed 
among different domains via the internet, while that 
between the master process and worker processes is 
performed in a single PC cluster. Thus, the former 
communication needs to be securely performed using 
Grid security service, e.g. user authentication over 
different domains, secure communication and etc., 
even if it causes additional overhead. The latter 
communication needs to be fast performed without the 
Grid security service, because communication inside a 
PC cluster does not require user authentication and 
secure communication. 

In the implementation, communication between the 
supervisor process and the master process is performed 
by Grid RPC middleware Ninf-G [11], which uses the 
Grid security service on the Globus Toolkit [14]. Also, 
communication between the master process and 
worker processes is performed by Ninf [12], which has 
no mechanism to support Grid security service but 
enables fast invocation of remote computing routines.  

3.3. Implementation with GridRPC 
Ninf-G [11] is reference implementation of 

GridRPC API. The client program is able to invoke 
server programs, or executables, on remote computing 

S
C

WWM1 

RPC via Ninf

W
C

PC cluster

RPC via
Ninf-G

M2 

PC cluster

Figure 3. Process mapping 
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resources using the Ninf-G client API. Ninf-G is 
implemented on the Globus Toolkit [14]. When the 
client program starts its execution, it accesses MDS to 
get interface information to invoke the remote 
executable. Next, the client program requests GRAM 
to invoke the remote executable. In this phase, 
authentication is performed using GSI. After the 
invocation, the remote executable connects back to the 
client to establish connection. Finally, the client 
program dynamically encodes its arguments according 
to the interface information, and transfers them using 
Globus I/O and GASS. Ninf [12] has been developed 
as an initial product of Ninf-G. Ninf provides a client 
program almost same API as Ninf-G. Ninf is 
implemented as standalone software system, and has 
no mechanism to support Grid security service; 
however, it enables fast invocation of remote 
computing routines with low overhead. 

The supervisor process is firstly initiated at the 
execution. Next, it initiates the master process on the 
designate node for each PC cluster using Ninf-G. An 
example of program codes with the Ninf-G API on the 
supervisor process is as follows: 

 
for(i = 0; i < nMaster; i++){ 

grpc_function_handle_init(&ex[i],…,"Master"); 
} 
 
for(i = 0; i < nMaster; i++){ 

pid[i] = grpc_call_async(&ex[i],…); 
} 
 
Here, nMaster denotes the number of master processes, 
which is equal to the number of PC clusters employed 
to run the application. The API, 
grpc_function_handle_init(), is called to initialize a 
function handle to invoke a remote executable, or the 
master process. Its arguments include a hostname of 
the remote computing node, a port number and a path 
for the executable. The API, grpc_call_async(), is 
called to invoke the remote executable indicated by the 
function handle in its argument. 

The master process initiates worker processes on 
computing nodes in the same PC cluster and dispatches 
subproblems to idle worker processes using Ninf. An 
example of the program code with the Ninf API on the 
master process is as follows: 

 
for(i = 0; i < nWorker; i++){ 

sprintf(ninfURL[i], NINF_URL_LENGTH, 
"ninf://%s/Worker", workerList[i]); 
exs[i] = Ninf_get_executable(ninfURL[i]); 

} 

 
while (1) { 

id = Ninf_wait_any(); 
for (i = 0; i < nWorker; i++)  

if (ids[i] == id) break; 
 : 
ids[i] = Ninf_call_executable_async(exs[i],…); 

} 
 

Here, nWorker denotes the number of worker 
processes. The API, Ninf_get_executable(), is called 
to initialize a function handle to invoke the worker 
process. Its arguments include the same information as 
those for grpc_function_handle_init(). The API, 
Ninf_wait_any(), blocks execution of a client program 
until one of invoked executables finishes its task, that 
is, one of worker processes becomes idle. The API, 
Ninf_call_executable_async(), is called to dispatch a 
subproblem to an idle worker process. 

On ordinary RPC systems, all input data for the 
remote computing routine need to be transferred to the 
remote computing node whenever the remote routine is 
invoked. This data transfer might cause redundant 
communication for some applications, where input 
data for the remote computing routine are same for 
every invocation. The application presented in this 
paper avoids the redundant communication by re-using 
constant input data transferred at the first invocation. 
When the master process dispatches the first 
subproblem on the worker process, the master process 
transfers all input data to the worker process. At this 
time, the worker process saves the constant input data 
on the local memory. Since the second invocation, the 
master process does not transfer the constant data, and 
the worker process computes subproblems using the 
saved constant data. 

Load balancing and updating of the best upper 
bound are performed by the supervisor process 
invoking remote executables using Ninf-G. The 
supervisor process queries statuses of master processes 
by invoking Ninf-G executables on computing nodes 
where master processes are running. The invoked 
executable, which is presented as the process C on 
Figure 3, obtains the number of un-computed 
subproblems and the upper bound by communicating 
with the master process via inter-process 
communication. Then, the executable returns results to 
the supervisor process. Other operations, 
stealing/assigning subproblems from/to master 
processes and distributing the updated best upper 
bound, are performed in the same way. 
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4.  Experimental Results 

The Grid testbed used in the experiment consists of 
four PC clusters and a client PC distributed over four 
cities in Japan. Table 1 shows resources on the testbed. 
Four PC clusters, Blade, PrestoIII, Mp and Sdpa, are 
installed in different four sites. The client PC and 
Blade are installed in the same site. Distances from the 
site for the client PC and sites for other PC clusters, 
PrestoIII, Mp and Sdpa, are 30[km], 500[km] and 
50[km], respectively. RTT on the table indicates round 
trip time measured by the ping command between the 
client PC and PC clusters. The supervisor process runs 
on the client PC, and a set of the master process and 
worker processes runs on each PC cluster. Certificates 
for users/hosts on the testbed are issued from the AIST 
GTRC CA[17]. 

The benchmark problem solved by the application 
in this experiment is the Bilinear Matrix Inequality 
Eigenvalue Problem (BMI-EP). The objective of the 
problem is to find an optimal solution that minimizes 
the greatest eigenvalue of the following bilinear matrix 
function with given constant matrices (Fij). 
 

                   nx                       ny              nx ny 
F(x,y) = F00 + ΣxiFi0 + ΣyjF0j + ΣΣxiyjFij  

                              
i=1                j=1               i=1 j=1 

Fij = Fij
T, i = 0,…,nx, j = 0,…,ny 

x = (x1,…,xnx)T, y = (y1,…,yny)T 
 
The BMI-EP is recognized as a general framework for 
analysis and synthesis of control systems in variety of 

industrial applications, such as position control of a 
helicopter and control of robot arms. Thus, speedup of 
the computation is expected in the control theory 
community in order to enable analysis and synthesis of 
large scale control systems [6]. Also, in the operations 
research community, it is an academic grand challenge 
to solve the large scale problem that has never been 
solved [7]. The problem size of the BMI-EP is defined 
by the size of optimal solution, nx and ny, and the size 
of Fij, m2.  

Sizes of transferred data in the application to solve 
the BMI-EP are calculated by its problem size. The 
master process transfers the following sizes of data to 
dispatch the first subproblem to each worker process, 
or each computing node in the PC cluster: 

 
Din1 = 4(m2 + m) (nx + ny + nxny + 1) + 28nx +  

28ny + 28nxny + 136 
Dout1 = N (24nx + 24ny + 16) + 8nx + 8ny + 16. 

 
Here, Din1 and Dout1 denote sizes [Bytes] of data 
transferred from the master process to the worker 
process and those transferred in the reverse way, 
respectively; N means the number of subproblems 
returned to the master process.  

The supervisor process transfers initial input data 
once to each master process when the application starts. 
The size of the transferred data is almost same as Din1. 
After the transfer of the initial data, the amount of 
transferred data between the supervisor process and 
master processes is small. For instance, when the 
supervisor process queries about the status of the 
master process, sizes of transferred data are:  

 
Din2 = 8 
Dout2 = 8nx + 8ny + 32. 

 
Here, Din2 and Dout2 denote sizes [Bytes] of data 
transferred from the supervisor process to the master 
process and those transferred in the reverse way, 
respectively. Also, when the supervisor process steals 
un-computed subproblems from the master process, the 
following sizes of data are transferred: 
 

Din2 = 12 
Dout2 = N (24nx + 24ny + 16) + 4. 

 
For the BMI-EP with the size of nx = 6, ny = 6, m = 24, 
the master process transfers 120[KB] of data to each 
worker process when it dispatches the first subproblem. 
It is obvious that the amount of data transferred 
between the supervisor process and master processes is 
much smaller than that between the master process and 
worker processes. 

Table 1. The Grid testbed 

 specification of 
a single node 

Grid 
software 

RTT
[ms]

Client 
PC 

PIII 1.0GHz, 
256MB mem. 
100BASE-T NIC 

GTK 2.2 
Ninf-G 1.1.1

 

Blade PIII 1.4GHz x2 
512MB mem. 
100BASE-T NIC 

GTK 2.2 
Ninf-G 1.1.1

0.04

Presto 
III 

Athlon 1.6GHz x2, 
768MB mem. 
100BASE-T NIC 

GTK 2.4 
Ninf-G 1.1.1

1

Mp Athlon 1.6GHz x2 
512MB mem. 
100BASE-T NIC 

GTK 2.4 
Ninf-G 1.1.1

20

Sdpa Athlon 2GHz x2, 
1024MB mem. 
1000BASE-T NIC 

GTK 2.4 
Ninf-G 1.1.1

14
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4.1. Results on Grid Testbed 
Figure 4 shows execution time of five benchmark 

problems (P1-P5), where their problem sizes are same 
(nx = 6, ny = 6, m = 24) but their given constant 
matrices (Fij) are different, on the Grid testbed. For the 
experiment, 348 CPUs over four sites, 73 CPUs (one 
for the master process and 72 CPUs for worker 
processes) on Blade, 97 CPUs on PrestoIII, 81 CPUs 
on Sdpa and 97 CPUs on Mp, are employed to solve 
problems. On the figure, seq denotes sequential 
execution time on the single computing node of Blade; 
cluster means execution time on the single cluster 
(Blade), where the application is parallelized by the 
conventional master-worker paradigm with Ninf; 
finally grid indicates execution time on the Grid 
testbed, where the application is parallelized by the 
hierarchical master-worker paradigm with Ninf-G and 
Ninf. Values on the right hand side of bar diagrams 
indicate the digitized execution time [sec]. 

The results show that execution time of the 
benchmark problems is effectively reduced by 
parallelization on the single PC cluster, Blade, 
compared with the sequential execution time. Also, the 
execution time is further reduced by employing four 
PC clusters distributed on the Grid testbed. The best 
performance is observed for the benchmark problem 
P2. It is solved for 5 minutes on the Grid testbed, 
while it requires nine hours and half on the single CPU. 
Also, the execution for P2 on the Grid testbed is four 
times faster than that on the single PC cluster.  

Figure 5 shows the breakdown of execution time 
for the benchmark problems on the Grid testbed. On 
the figure, init, compt and fin mean overhead to 
initialize Ninf-G processes, computation time to solve 
problems, and overhead to finalize Ninf-G processes, 
respectively. The results on the Figure 5 indicate that 
overhead to finalize Ninf-G processes significantly 
affects the overall performance. It might be one of 
reasons why the performance for P1 on the Grid 
testbed is not well improved compared with that on the 
single PC cluster. However, in the implementation, 
computed results are obtained before the finalization 
phase of the application. Thus, from the user’s point of 
view, the user can obtain an optimal solution within 
shorter time than the execution time on Figure 4, e.g. 
execution time without the finalization phase is 
120[sec] for P1; that is, the performance on the Grid 
testbed is well improved. 

The benchmark problem solved in this experiment 
is a fine-grain problem. The average execution time of 
the single task, or computation dispatched by the 
master process to the worker process, is less than 
1[sec]. Thus, it is obvious that the implementation with 
the conventional master-worker paradigm on the Grid 
shows unacceptable performance because of overhead 
to dispatch fine-grain tasks via the internet2. However, 
the results show that the implementation with the 
hierarchical master-worker paradigm using a 
combination of Ninf-G and Ninf effectively utilizes 
computing resources on the Grid testbed in order to 
run the fine-grain application. 

                                                           
2 The performance degradation of the application 
implemented with the conventional master-worker 
paradigm on WAN is discussed in [9]. 
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4.2. Load Balancing 
The performance of the application might be 

affected by load balancing strategies among master 
processes, or PC clusters. The load balancing strategy 
implemented in this experiment tries to assign un-
computed subproblems to master processes, or PC 
clusters, proportionally to their measured performance. 
Whenever the supervisor process finds an idle PC 
cluster 3 , the supervisor process steals/assigns un-
computed subproblems from/to master processes so 
that the number of un-computed subproblems on 
master processes, Ntask(i), becomes as follows: 

 
Ntask(i) = Ntask (Ttask(i) Nworkers(i) / Σ(Ttask(j) Nworkers(j))) , 
                                                   j                                                 

 
where Ntask, Ttask(i) and Nworkers(i) mean the number of 
un-computed tasks, the average task execution time 
measured on the PC cluster i during the execution and 
the number of worker processes running on the PC 
cluster i, respectively. 

Figure 6 shows idle time on master processes, or PC 
clusters, during execution of the application. On the 
figure, M1, M2, M3 and M4 denote idle time on 
master processes on Blade, PrestoIII, Sdpa and Mp, 
respectively. The results on the figure show that idle 
time of approximately 30-45[sec] is observed on PC 
clusters except Blade. The detailed analysis of the 
results shows that most of the idle time is observed 

                                                           
3 An idle PC cluster means that with no un-computed 
subproblems in the queue of the master process. 

during the initial phase of the execution, where there 
are not enough subproblems to utilize multiple PC 
clusters. Note that tasks, or subproblems, are generated 
by branching during the execution, and there are not 
enough tasks to make all PC clusters busy during the 
initialization phase. Thus, idle time on master 
processes is not much observed after the initialization 
phase, and it means that the load balancing strategy 
performs well in this experiment. 

4.3. Results on Emulated Grid Testbed 
The performance of the application might be 

affected by communication performance between the 
supervisor process and master processes. Figure 7 
shows execution time for P2 on the emulated Grid 
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testbed illustrated on Figure 8, where communication 
latency between the supervisor process and master 
processes is emulated from 0[msec] through 100[msec]. 
For instance, the 100[ms] latency corresponds to one 
way latency between US and Japan. The emulated Grid 
testbed includes four groups of computing nodes, each 
of which has one computing node (P4 2.4GHz, 512MB 
mem.) for the master process and four computing 
nodes (PIII 1.4GHz x2, 512MB mem.) for worker 
processes. Communication between the supervisor 
process and master processes is performed via the PC 
router (P4 2.4GHz, 512MB mem.), which emulates 
communication latency on wide area network by the 
software, NIST Net [19]. 

The results on Figure 7 show that performance 
degradation of the application is small even under high 
communication latency. The performance degradation 
is mainly caused by increase of overhead to initialize 
Ninf-G processes. The results mean that the 
application implemented with the hierarchical master-
worker paradigm using GridRPC is robust even on 
Grid environment with high communication latency.  

4.4. User Interface 
A user of the application can operate through the 

web interface as illustrated on Figure 9 and can 
observe interim results of the computation. The upper 
window on the interface depicts the best upper/lower 
bounds currently computed on the Grid, and the lower 
window shows the number of un-computed 
subproblems. The interim information is useful for the 
user to find the best parameter for the user’s problem. 
The user can restart the computation with other 
parameters through the web, if he/she finds 
unsatisfactory behavior in the interim information.  

5. Related Work 

Fine-grain applications on distributed systems have 
been discussed in literatures [15][16].  The work 
presented in [15] discusses performance of 
applications on multiple PC clusters connected via 
slow network. The experimental results show an 
impact on performance by gap between fast network 
and slow network for six benchmark applications. The 
work also discusses optimization techniques, which 
includes communication in a hierarchical manner, to 
improve the performance. The experiment for fine-
grain divide-and-conquer applications on the Grid is 
reported in [16]. It shows the performance of the 
divide-and-conquer Java applications, which is 
parallelized in a hierarchical manner, on Satin/Ibis, 
Java based Grid programming environment. The 

parallel branch and bound algorithm with the 
hierarchical master-worker paradigm is proposed in [5], 
and the preliminary evaluation is presented. However, 
detailed performance of the fine-grain parallel branch 
and bound application on the Grid constructed with 
standard Grid technology, which this paper presents, 
has not been reported. 

The work presented in [20] discusses load 
balancing strategies on distributed systems, where 
applications are parallelized in a hierarchical manner. 
The work reports evaluation results for various load 
balancing strategies on multiple PC clusters with 
simulated WAN setting. The idea behind the load 
balancing strategy in the hierarchical master-worker 
paradigm, which is presented in this paper, is similar to 
that of CLS [20] in the view that load balancing is 
performed in a hierarchical way via designated nodes 
on PC clusters. 

6. Conclusions 

This paper presented a case study to effectively run 
a parallel branch and bound application on the Grid. 
The application discussed in this paper is a fine-grain 
application, and is parallelized with the hierarchical 
master-worker paradigm, where communication 
overhead on WAN is effectively reduced by localizing 
frequent communication in tightly coupled computing 

Figure 9. The user interface 
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resources, or a PC cluster. The application is 
implemented on the Grid testbed by using two 
GridRPC middleware, Ninf-G and Ninf, where secure 
communication among PC clusters is performed via 
Ninf-G and fast communication among computing 
nodes in each PC cluster is performed via Ninf.  The 
experimental results showed that implementation of the 
application with the hierarchical master-worker 
paradigm using a combination of Ninf-G and Ninf 
effectively utilized computing resources on the Grid 
testbed in order to run the fine-grain application, where 
the average computation time of the single task was 
less than 1[sec]. 

There is room to improve the load balancing 
strategy for the application. Experiments on the actual 
testbed are not suitable for comparison of multiple 
strategies, because the testbed does not exhibit 
reproducible results. The authors plan to perform 
experiments to compare various load balancing 
strategies, including the conventional load balancing 
strategies proposed in the distributed computing 
community, on the emulated Grid testbed.  
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