
 1

A Case Study in Running a Parallel Branch and Bound Application
on the Grid

Kento Aida
Tokyo Institute of Technology/PRESTO, JST

aida@alab.ip.titech.ac.jp

Tomotaka Osumi
Tokyo Institute of Technology

osumi@alab.ip.titech.ac.jp

Abstract

This paper presents a case study to effectively run a

parallel branch and bound application on the Grid.
The application discussed in this paper is a fine-grain
application and is parallelized with the hierarchical
master-worker paradigm. This hierarchical algorithm
performs master-worker computing in two levels,
computing among PC clusters on the Grid and that
among computing nodes in each PC cluster. This
hierarchical manner reduces communication overhead
by localizing frequent communication in tightly
coupled computing resources, or a single PC cluster.
The algorithm is implemented on a Grid testbed by
using GridRPC middleware, Ninf-G and Ninf. In the
implementation, communication among PC clusters is
securely performed via Ninf-G, which uses Grid
security service on the Globus Toolkit, and
communication among computing nodes in each PC
cluster is performed via Ninf, which enables fast
invocation of remote computing routines. The
experimental results showed that implementation of the
application with the hierarchical master-worker
paradigm using a combination of Ninf-G and Ninf
effectively utilized computing resources on the Grid
testbed in order to run the fine-grain application,
where the average computation time of the single task
was less than 1[sec].

1. Introduction

Grid computing is regarded as new computing
technology that provides huge computational power
with low costs by employing computing resources
geographically distributed over the internet. It has
possibility not only to reduce execution time of
applications currently computed on hi-end computing
systems but also to expand applications of high-

performance computing or the internet. However, on
the current Grid infrastructures, applications that are
effectively computed are limited. Some applications
show unacceptable performance on the Grid because
of the large overhead, e.g. the overhead caused by poor
network performance, and that by Grid security service
such as user authentication and secure communication.

An example of applications that show poor
performance on the Grid is a fine-grain application.
Performances of applications that consist of small tasks
are significantly affected by relatively large overhead
on the Grid. Thus, currently, applications effectively
running on the Grid have enough task grain sizes that
compensate for the overhead, dozens of seconds or
hundreds seconds [1][2][3][4]. For instance, the work
presented in [1] shows experimental results for an
application, which solves the quadratic assignment
problem, on a Grid testbed; and the mean task grain
size, or the mean execution time of the single task, in
the application is 190 [sec]. The work in [3] also
presents experimental results for an application, which
solves the traveling salesman problem, on a Grid
testbed; and the mean task grain sizes are distributed
from 177 [sec] through 430 [sec].

However, there exist finer-grain applications, where
the mean task grain sizes are a few seconds or less, and
developers/users of these applications give up running
their applications on the Grid. Some of these
applications might consist of a huge number of fine-
grain tasks and require huge computational power,
such as computational resources distributed on the
Grid. Thus, implementation to effectively run these
fine-grain applications on the Grid contributes for
expanding applications of Grid computing.

This paper presents a case study to effectively run a
parallel branch and bound application on the Grid.
Branch and bound applications are widely used to
solve optimization problems in many engineering
fields, e.g. operations research, control theory,

 2

multiprocessor scheduling [5][6][7][8]. However,
many of these applications tend to be composed of a
huge number of fine-grain tasks, i.e. they are fine-grain
applications. The application presented in this paper is
parallelized with the hierarchical master-worker
paradigm [9] in order to efficiently compute fine-grain
tasks on the Grid. This hierarchical algorithm performs
master-worker computing in two levels, computing
among PC clusters on the Grid and that among
computing nodes in each PC cluster. This hierarchical
manner avoids performance degradation, which is
mainly caused by communication overhead between
the master process and worker processes, by localizing
frequent communication in tightly coupled computing
resources, or a single PC cluster. The application is
implemented on the Grid by using GridRPC [10]
middleware, Ninf-G [11] and Ninf [12]. GridRPC is a
programming model based on client-server-type
remote procedure calls on the Grid, and its model and
APIs have been proposed to the GGF for
standardization [13]. In the implementation,
communication among PC clusters is securely
performed via Ninf-G, which uses the Grid security
service in the Globus Toolkit [14], and communication
among computing nodes in each PC cluster is
performed via Ninf, which has no mechanism to
support Grid security service but enables fast
invocation of remote computing routines.

While fine-grain applications on distributed systems
have been discussed in literatures [15][16], the detailed
performance of the fine-grain parallel branch and
bound application with GridRPC on the Grid has not
been sufficiently discussed. The contribution of this
paper is to present implementation and detailed
performance of the application on a Grid testbed
constructed with standard Grid technology [13][14].
The experimental results showed that the
implementation of the application with the hierarchical
master-worker paradigm using combination of Ninf-G
and Ninf effectively utilized computing resources on
the Grid testbed in order to run the fine-grain
application, where the average computation time of the
single task was less than 1[sec].

The rest of this paper is organized as follows:
Section 2 summarizes an overview of the application
presented in this paper, and Section 3 presents
implementation of the application on the Grid. Section
4 presents experimental results of the application on
the Grid testbed. Section 5 describes related works,
and Section 6 concludes the work presented in this
paper and outlines future work.

2. Target Application

This section summarizes an overview of the parallel
branch and bound algorithm and parallelization of the
application with the hierarchical master-worker
paradigm.

2.1. Branch and Bound Algorithm
The main idea of the branch and bound algorithm is

to find an optimal solution and to prove its optimality
by successively partitioning the feasible set of the
solution, or the original problem, into subproblems of
smaller size. To this end, these subproblems are
investigated by computing lower/upper bounds of the
objective function. These lower/upper bounds are used
to avoid exhaustive search of the solution space.

Procedures for the branch and bound algorithm are
illustrated by a tree structure like an example on Figure
1. On the figure, the root node on the tree denotes the
original problem. The original problem is partitioned
into two subproblems, which are depicted as child
nodes of the root node. This partitioning process is
called branching. After the branching, lower/upper
bounds of the objective function are computed on each
subproblem, and the best upper bound is computed.
The best upper bound means the lowest upper bound
among upper bounds currently computed on all
subproblems 1 . By continuing in this way, a tree
structure called the search tree is obtained. Some
subproblems, where their lower bounds (LB) are
higher than the current best upper bound (Z), can be
pruned, because further branching for these
subproblems does not yield an optimal solution. This

1 This paper assumes an optimization problem that
minimizes the objective function.

computing
lower/upper
bounds pruning

 if LB > Z

branching

Figure 1. An example of the search tree

 3

process is called pruning or bounding, and efficient
pruning is effective to reduce computation time.
Finally, an optimal solution is obtained, when the gap
between the best upper bound and the lower bound
becomes zero or less than the certain interval.

2.2. Parallelization with Hierarchical Master-
Worker Paradigm

The branch and bound algorithm is able to be
parallelized by distributing computation of
subproblems on multiple computing nodes. Parallel
branch and bound algorithms with the master-worker
paradigm, where a single master process dispatches
tasks to multiple worker processes, have been
proposed in many literatures [1][3][18]. Also, the
parallel algorithm with the hierarchical master-worker
paradigm is proposed to improve performance on
large-scale computing environment [9].

The hierarchical master-worker paradigm is one of
solutions to avoid performance degradation in the
master-worker paradigm on the Grid. In this paradigm,
a single supervisor process controls multiple process
sets, each of which is composed of a single master
process and multiple worker processes. The
distribution of tasks is performed in two phases: the
distribution from the supervisor process to master
processes and that from the master process to worker
processes. The collection of computed results is
performed in the reverse way. The hierarchical master-
worker paradigm has advantages compared with the
conventional master-worker paradigm. The first
advantage is to reduce communication overhead by
putting a set of the master process and worker
processes, which frequently communicate with each
other, on tightly coupled computing resources. The
second advantage is to avoid that a single heavily
loaded master process becomes a performance
bottleneck by distributing work among multiple master
processes.

The parallel branch and bound algorithm
parallelized with the hierarchical master-worker
paradigm performs parallel computation in the
following way: A set of the master and worker
processes performs a parallel branch and bound
algorithm for a subset of the search tree, that is, the
master process dispatches subproblems to multiple
worker processes and receives computed results from
these worker processes. The supervisor process
performs load balancing among master processes and
updates the best upper bound of the objective function
by communicating with master processes. Updating of
the best upper bound is crucial to improve the
performance of the application, because it accelerates

pruning. Figure 2 shows an overview of the branch and
bound (B&B) algorithm with the hierarchical master-
worker paradigm. Symbols on the figure, ZWi, ZMj and
Z, denote the current upper bound of the objective
function stored on the worker process Wi, the master
process Mj and the supervisor process, respectively.

In each set of the master process and worker
processes, the master process maintains a subset of the
search tree. Un-computed subproblems are saved in the
queue on the master process. It dispatches subproblems,
which correspond to leaf nodes on the search tree, to
multiple worker processes and receives computed
results from these worker processes. Simultaneously,
the master process sends the best upper bound stored
on itself to worker processes. The worker process that
received a subproblem from the master process
performs branching, that is, it partitions the
subproblem into multiple (sub-)subproblems. Next, it
computes the lower/upper bounds for each subproblem
and performs pruning, that is, it prunes an unnecessary
subproblem, where its lower bound exceeds the current
best upper bound. Finally, the worker process returns
computed results to the master process. The computed
results contain the upper bound computed on the
worker process, the solution, and subproblems that
have generated by branching and have not been pruned
on the worker process.

The supervisor process periodically queries master
processes about their statuses, which include the
number of un-computed subproblems and the best
upper bounds stored on these master processes. When
numbers of un-computed subproblems, or loads, on
master processes are not well balanced, the supervisor
process moves un-computed subproblems from highly
loaded master processes to lightly loaded master
processes. A strategy for the load balancing is

M1

W1

W2
S

M2 W1

W2
 : task (subproblem)
: the best upper bound Z

, ZW1
, ZM1

, ZW2
, ZM2

, ZM1
, Z

, ZM1
, Z

Figure 2. B&B algorithm with the
hierarchical master-worker paradigm

 4

discussed in Section 4. When the supervisor process
finds the new best upper bound on the master process
Mi, where ZMi < Z, the supervisor process updates the
best upper bound stored on the supervisor process (Z)
and distributes Z to other master processes. Thus, the
master process communicates both with its worker
processes and with the supervisor processes. Finally,
the supervisor process terminates computation if the
termination condition is satisfied.

3. Implementation

The Grid testbed assumed in this paper consists of
multiple PC clusters that are connected to the internet
and are administrated in multiple domains. In order to
efficiently run the application described in the previous
section on the Grid testbed, mapping of processes on
computing resources and communication methods
among these processes are crucial. Particularly,
implementation to reduce overhead is necessary to run
the fine-grain application on the Grid testbed, because
the performance of the fine-grain application is
significantly affected by the overhead.

3.1. Process Mapping
Figure 3 illustrates mapping of processes in the

application on the Grid testbed. On the figure, multiple
PC clusters, which are depicted by squares with dotted
lines, are distributed on the internet. Symbols on the
figure, S, M and W denote the supervisor process, the
master process and the worker process, respectively.
The symbol C denotes a process that runs with the
master process on the same computing node, which is
depicted by the square with solid lines. It relays
operations between the supervisor process and the
master process. These relayed operations consist of
queries about statuses of master processes,
stealing/assigning subproblems from/to master
processes and distributing the new best upper bound.
As described in Section 2.2, the master process
communicates both with its worker processes and with
the supervisor process. The former communication is
performed for computation of subproblems, or
dispatching subproblems to worker processes and
receiving computed results. The process C relays
operations requested by the supervisor process so that
computation on master processes will not be blocked
by the supervisor process.

A set of the master process (M and C) and worker
processes (W) are mapped on computing nodes in a
single PC cluster, where computing nodes are
connected via dedicated high-speed network. This
mapping is effective to reduce communication

overhead in the application, because the amount of
data transferred between the supervisor process and
master processes is much smaller than that between the
master process and worker processes. The discussion
for the amount of the transferred data is presented in
Section 4. The supervisor process is mapped on a
computing node on the Grid testbed.

3.2. Communication among Processes
On the Grid testbed, communication between the

supervisor process and master processes is performed
among different domains via the internet, while that
between the master process and worker processes is
performed in a single PC cluster. Thus, the former
communication needs to be securely performed using
Grid security service, e.g. user authentication over
different domains, secure communication and etc.,
even if it causes additional overhead. The latter
communication needs to be fast performed without the
Grid security service, because communication inside a
PC cluster does not require user authentication and
secure communication.

In the implementation, communication between the
supervisor process and the master process is performed
by Grid RPC middleware Ninf-G [11], which uses the
Grid security service on the Globus Toolkit [14]. Also,
communication between the master process and
worker processes is performed by Ninf [12], which has
no mechanism to support Grid security service but
enables fast invocation of remote computing routines.

3.3. Implementation with GridRPC
Ninf-G [11] is reference implementation of

GridRPC API. The client program is able to invoke
server programs, or executables, on remote computing

S
C

WWM1

RPC via Ninf

W
C

PC cluster

RPC via
Ninf-G

M2

PC cluster

Figure 3. Process mapping

 5

resources using the Ninf-G client API. Ninf-G is
implemented on the Globus Toolkit [14]. When the
client program starts its execution, it accesses MDS to
get interface information to invoke the remote
executable. Next, the client program requests GRAM
to invoke the remote executable. In this phase,
authentication is performed using GSI. After the
invocation, the remote executable connects back to the
client to establish connection. Finally, the client
program dynamically encodes its arguments according
to the interface information, and transfers them using
Globus I/O and GASS. Ninf [12] has been developed
as an initial product of Ninf-G. Ninf provides a client
program almost same API as Ninf-G. Ninf is
implemented as standalone software system, and has
no mechanism to support Grid security service;
however, it enables fast invocation of remote
computing routines with low overhead.

The supervisor process is firstly initiated at the
execution. Next, it initiates the master process on the
designate node for each PC cluster using Ninf-G. An
example of program codes with the Ninf-G API on the
supervisor process is as follows:

for(i = 0; i < nMaster; i++){

grpc_function_handle_init(&ex[i],…,"Master");
}

for(i = 0; i < nMaster; i++){

pid[i] = grpc_call_async(&ex[i],…);
}

Here, nMaster denotes the number of master processes,
which is equal to the number of PC clusters employed
to run the application. The API,
grpc_function_handle_init(), is called to initialize a
function handle to invoke a remote executable, or the
master process. Its arguments include a hostname of
the remote computing node, a port number and a path
for the executable. The API, grpc_call_async(), is
called to invoke the remote executable indicated by the
function handle in its argument.

The master process initiates worker processes on
computing nodes in the same PC cluster and dispatches
subproblems to idle worker processes using Ninf. An
example of the program code with the Ninf API on the
master process is as follows:

for(i = 0; i < nWorker; i++){

sprintf(ninfURL[i], NINF_URL_LENGTH,
"ninf://%s/Worker", workerList[i]);
exs[i] = Ninf_get_executable(ninfURL[i]);

}

while (1) {

id = Ninf_wait_any();
for (i = 0; i < nWorker; i++)

if (ids[i] == id) break;
 :
ids[i] = Ninf_call_executable_async(exs[i],…);

}

Here, nWorker denotes the number of worker
processes. The API, Ninf_get_executable(), is called
to initialize a function handle to invoke the worker
process. Its arguments include the same information as
those for grpc_function_handle_init(). The API,
Ninf_wait_any(), blocks execution of a client program
until one of invoked executables finishes its task, that
is, one of worker processes becomes idle. The API,
Ninf_call_executable_async(), is called to dispatch a
subproblem to an idle worker process.

On ordinary RPC systems, all input data for the
remote computing routine need to be transferred to the
remote computing node whenever the remote routine is
invoked. This data transfer might cause redundant
communication for some applications, where input
data for the remote computing routine are same for
every invocation. The application presented in this
paper avoids the redundant communication by re-using
constant input data transferred at the first invocation.
When the master process dispatches the first
subproblem on the worker process, the master process
transfers all input data to the worker process. At this
time, the worker process saves the constant input data
on the local memory. Since the second invocation, the
master process does not transfer the constant data, and
the worker process computes subproblems using the
saved constant data.

Load balancing and updating of the best upper
bound are performed by the supervisor process
invoking remote executables using Ninf-G. The
supervisor process queries statuses of master processes
by invoking Ninf-G executables on computing nodes
where master processes are running. The invoked
executable, which is presented as the process C on
Figure 3, obtains the number of un-computed
subproblems and the upper bound by communicating
with the master process via inter-process
communication. Then, the executable returns results to
the supervisor process. Other operations,
stealing/assigning subproblems from/to master
processes and distributing the updated best upper
bound, are performed in the same way.

 6

4. Experimental Results

The Grid testbed used in the experiment consists of
four PC clusters and a client PC distributed over four
cities in Japan. Table 1 shows resources on the testbed.
Four PC clusters, Blade, PrestoIII, Mp and Sdpa, are
installed in different four sites. The client PC and
Blade are installed in the same site. Distances from the
site for the client PC and sites for other PC clusters,
PrestoIII, Mp and Sdpa, are 30[km], 500[km] and
50[km], respectively. RTT on the table indicates round
trip time measured by the ping command between the
client PC and PC clusters. The supervisor process runs
on the client PC, and a set of the master process and
worker processes runs on each PC cluster. Certificates
for users/hosts on the testbed are issued from the AIST
GTRC CA[17].

The benchmark problem solved by the application
in this experiment is the Bilinear Matrix Inequality
Eigenvalue Problem (BMI-EP). The objective of the
problem is to find an optimal solution that minimizes
the greatest eigenvalue of the following bilinear matrix
function with given constant matrices (Fij).

 nx ny nx ny
F(x,y) = F00 + ΣxiFi0 + ΣyjF0j + ΣΣxiyjFij

i=1 j=1 i=1 j=1

Fij = Fij
T, i = 0,…,nx, j = 0,…,ny

x = (x1,…,xnx)T, y = (y1,…,yny)T

The BMI-EP is recognized as a general framework for
analysis and synthesis of control systems in variety of

industrial applications, such as position control of a
helicopter and control of robot arms. Thus, speedup of
the computation is expected in the control theory
community in order to enable analysis and synthesis of
large scale control systems [6]. Also, in the operations
research community, it is an academic grand challenge
to solve the large scale problem that has never been
solved [7]. The problem size of the BMI-EP is defined
by the size of optimal solution, nx and ny, and the size
of Fij, m2.

Sizes of transferred data in the application to solve
the BMI-EP are calculated by its problem size. The
master process transfers the following sizes of data to
dispatch the first subproblem to each worker process,
or each computing node in the PC cluster:

Din1 = 4(m2 + m) (nx + ny + nxny + 1) + 28nx +

28ny + 28nxny + 136
Dout1 = N (24nx + 24ny + 16) + 8nx + 8ny + 16.

Here, Din1 and Dout1 denote sizes [Bytes] of data
transferred from the master process to the worker
process and those transferred in the reverse way,
respectively; N means the number of subproblems
returned to the master process.

The supervisor process transfers initial input data
once to each master process when the application starts.
The size of the transferred data is almost same as Din1.
After the transfer of the initial data, the amount of
transferred data between the supervisor process and
master processes is small. For instance, when the
supervisor process queries about the status of the
master process, sizes of transferred data are:

Din2 = 8
Dout2 = 8nx + 8ny + 32.

Here, Din2 and Dout2 denote sizes [Bytes] of data
transferred from the supervisor process to the master
process and those transferred in the reverse way,
respectively. Also, when the supervisor process steals
un-computed subproblems from the master process, the
following sizes of data are transferred:

Din2 = 12
Dout2 = N (24nx + 24ny + 16) + 4.

For the BMI-EP with the size of nx = 6, ny = 6, m = 24,
the master process transfers 120[KB] of data to each
worker process when it dispatches the first subproblem.
It is obvious that the amount of data transferred
between the supervisor process and master processes is
much smaller than that between the master process and
worker processes.

Table 1. The Grid testbed

 specification of
a single node

Grid
software

RTT
[ms]

Client
PC

PIII 1.0GHz,
256MB mem.
100BASE-T NIC

GTK 2.2
Ninf-G 1.1.1

Blade PIII 1.4GHz x2
512MB mem.
100BASE-T NIC

GTK 2.2
Ninf-G 1.1.1

0.04

Presto
III

Athlon 1.6GHz x2,
768MB mem.
100BASE-T NIC

GTK 2.4
Ninf-G 1.1.1

1

Mp Athlon 1.6GHz x2
512MB mem.
100BASE-T NIC

GTK 2.4
Ninf-G 1.1.1

20

Sdpa Athlon 2GHz x2,
1024MB mem.
1000BASE-T NIC

GTK 2.4
Ninf-G 1.1.1

14

 7

4.1. Results on Grid Testbed
Figure 4 shows execution time of five benchmark

problems (P1-P5), where their problem sizes are same
(nx = 6, ny = 6, m = 24) but their given constant
matrices (Fij) are different, on the Grid testbed. For the
experiment, 348 CPUs over four sites, 73 CPUs (one
for the master process and 72 CPUs for worker
processes) on Blade, 97 CPUs on PrestoIII, 81 CPUs
on Sdpa and 97 CPUs on Mp, are employed to solve
problems. On the figure, seq denotes sequential
execution time on the single computing node of Blade;
cluster means execution time on the single cluster
(Blade), where the application is parallelized by the
conventional master-worker paradigm with Ninf;
finally grid indicates execution time on the Grid
testbed, where the application is parallelized by the
hierarchical master-worker paradigm with Ninf-G and
Ninf. Values on the right hand side of bar diagrams
indicate the digitized execution time [sec].

The results show that execution time of the
benchmark problems is effectively reduced by
parallelization on the single PC cluster, Blade,
compared with the sequential execution time. Also, the
execution time is further reduced by employing four
PC clusters distributed on the Grid testbed. The best
performance is observed for the benchmark problem
P2. It is solved for 5 minutes on the Grid testbed,
while it requires nine hours and half on the single CPU.
Also, the execution for P2 on the Grid testbed is four
times faster than that on the single PC cluster.

Figure 5 shows the breakdown of execution time
for the benchmark problems on the Grid testbed. On
the figure, init, compt and fin mean overhead to
initialize Ninf-G processes, computation time to solve
problems, and overhead to finalize Ninf-G processes,
respectively. The results on the Figure 5 indicate that
overhead to finalize Ninf-G processes significantly
affects the overall performance. It might be one of
reasons why the performance for P1 on the Grid
testbed is not well improved compared with that on the
single PC cluster. However, in the implementation,
computed results are obtained before the finalization
phase of the application. Thus, from the user’s point of
view, the user can obtain an optimal solution within
shorter time than the execution time on Figure 4, e.g.
execution time without the finalization phase is
120[sec] for P1; that is, the performance on the Grid
testbed is well improved.

The benchmark problem solved in this experiment
is a fine-grain problem. The average execution time of
the single task, or computation dispatched by the
master process to the worker process, is less than
1[sec]. Thus, it is obvious that the implementation with
the conventional master-worker paradigm on the Grid
shows unacceptable performance because of overhead
to dispatch fine-grain tasks via the internet2. However,
the results show that the implementation with the
hierarchical master-worker paradigm using a
combination of Ninf-G and Ninf effectively utilizes
computing resources on the Grid testbed in order to
run the fine-grain application.

2 The performance degradation of the application
implemented with the conventional master-worker
paradigm on WAN is discussed in [9].

217

300

235

266

297

227

1206

439

809

887

0 500 1000 1500

P1

P2

P3

P4

P5

be
nc

hm
ar

ks

exec. time [sec]

grid cluster seq.

11567

34137

18863

26979

28805

Figure 4. Execution time on the Grid testbed

Figure 5. The breakdown of execution time

0 100 200 300 400

P1

P2

P3

P4

P5

be
nc

hm
ar

ks

exec. time [sec]

init.
compt.
fin.

 8

4.2. Load Balancing
The performance of the application might be

affected by load balancing strategies among master
processes, or PC clusters. The load balancing strategy
implemented in this experiment tries to assign un-
computed subproblems to master processes, or PC
clusters, proportionally to their measured performance.
Whenever the supervisor process finds an idle PC
cluster 3 , the supervisor process steals/assigns un-
computed subproblems from/to master processes so
that the number of un-computed subproblems on
master processes, Ntask(i), becomes as follows:

Ntask(i) = Ntask (Ttask(i) Nworkers(i) / Σ(Ttask(j) Nworkers(j))) ,
 j

where Ntask, Ttask(i) and Nworkers(i) mean the number of
un-computed tasks, the average task execution time
measured on the PC cluster i during the execution and
the number of worker processes running on the PC
cluster i, respectively.

Figure 6 shows idle time on master processes, or PC
clusters, during execution of the application. On the
figure, M1, M2, M3 and M4 denote idle time on
master processes on Blade, PrestoIII, Sdpa and Mp,
respectively. The results on the figure show that idle
time of approximately 30-45[sec] is observed on PC
clusters except Blade. The detailed analysis of the
results shows that most of the idle time is observed

3 An idle PC cluster means that with no un-computed
subproblems in the queue of the master process.

during the initial phase of the execution, where there
are not enough subproblems to utilize multiple PC
clusters. Note that tasks, or subproblems, are generated
by branching during the execution, and there are not
enough tasks to make all PC clusters busy during the
initialization phase. Thus, idle time on master
processes is not much observed after the initialization
phase, and it means that the load balancing strategy
performs well in this experiment.

4.3. Results on Emulated Grid Testbed
The performance of the application might be

affected by communication performance between the
supervisor process and master processes. Figure 7
shows execution time for P2 on the emulated Grid

0 10 20 30 40 50

P1

P2

P3

P4

P5
be

nc
hm

ar
ks

idle time [sec]

M4
M3
M2
M1

Figure 8. The emulated Grid testbed

workersmaster
s

supervisor

router

WAN
emulation

Figure 6. Idle time on master processes

0

500

1000

1500

2000

0 15 25 50 100
emulated latency [msec]

ex
ec

. t
im

e
[s

ec
]

init. compt. fin.

Figure 7. Execution time on the emulated
Grid testbed

 9

testbed illustrated on Figure 8, where communication
latency between the supervisor process and master
processes is emulated from 0[msec] through 100[msec].
For instance, the 100[ms] latency corresponds to one
way latency between US and Japan. The emulated Grid
testbed includes four groups of computing nodes, each
of which has one computing node (P4 2.4GHz, 512MB
mem.) for the master process and four computing
nodes (PIII 1.4GHz x2, 512MB mem.) for worker
processes. Communication between the supervisor
process and master processes is performed via the PC
router (P4 2.4GHz, 512MB mem.), which emulates
communication latency on wide area network by the
software, NIST Net [19].

The results on Figure 7 show that performance
degradation of the application is small even under high
communication latency. The performance degradation
is mainly caused by increase of overhead to initialize
Ninf-G processes. The results mean that the
application implemented with the hierarchical master-
worker paradigm using GridRPC is robust even on
Grid environment with high communication latency.

4.4. User Interface
A user of the application can operate through the

web interface as illustrated on Figure 9 and can
observe interim results of the computation. The upper
window on the interface depicts the best upper/lower
bounds currently computed on the Grid, and the lower
window shows the number of un-computed
subproblems. The interim information is useful for the
user to find the best parameter for the user’s problem.
The user can restart the computation with other
parameters through the web, if he/she finds
unsatisfactory behavior in the interim information.

5. Related Work

Fine-grain applications on distributed systems have
been discussed in literatures [15][16]. The work
presented in [15] discusses performance of
applications on multiple PC clusters connected via
slow network. The experimental results show an
impact on performance by gap between fast network
and slow network for six benchmark applications. The
work also discusses optimization techniques, which
includes communication in a hierarchical manner, to
improve the performance. The experiment for fine-
grain divide-and-conquer applications on the Grid is
reported in [16]. It shows the performance of the
divide-and-conquer Java applications, which is
parallelized in a hierarchical manner, on Satin/Ibis,
Java based Grid programming environment. The

parallel branch and bound algorithm with the
hierarchical master-worker paradigm is proposed in [5],
and the preliminary evaluation is presented. However,
detailed performance of the fine-grain parallel branch
and bound application on the Grid constructed with
standard Grid technology, which this paper presents,
has not been reported.

The work presented in [20] discusses load
balancing strategies on distributed systems, where
applications are parallelized in a hierarchical manner.
The work reports evaluation results for various load
balancing strategies on multiple PC clusters with
simulated WAN setting. The idea behind the load
balancing strategy in the hierarchical master-worker
paradigm, which is presented in this paper, is similar to
that of CLS [20] in the view that load balancing is
performed in a hierarchical way via designated nodes
on PC clusters.

6. Conclusions

This paper presented a case study to effectively run
a parallel branch and bound application on the Grid.
The application discussed in this paper is a fine-grain
application, and is parallelized with the hierarchical
master-worker paradigm, where communication
overhead on WAN is effectively reduced by localizing
frequent communication in tightly coupled computing

Figure 9. The user interface

 10

resources, or a PC cluster. The application is
implemented on the Grid testbed by using two
GridRPC middleware, Ninf-G and Ninf, where secure
communication among PC clusters is performed via
Ninf-G and fast communication among computing
nodes in each PC cluster is performed via Ninf. The
experimental results showed that implementation of the
application with the hierarchical master-worker
paradigm using a combination of Ninf-G and Ninf
effectively utilized computing resources on the Grid
testbed in order to run the fine-grain application, where
the average computation time of the single task was
less than 1[sec].

There is room to improve the load balancing
strategy for the application. Experiments on the actual
testbed are not suitable for comparison of multiple
strategies, because the testbed does not exhibit
reproducible results. The authors plan to perform
experiments to compare various load balancing
strategies, including the conventional load balancing
strategies proposed in the distributed computing
community, on the emulated Grid testbed.

Acknowledgements: The authors would like to thank
members of the Ninf project for their insightful
comments. This research is partially supported by
Research and Development for Applying Advanced
Computational Science and Technology (ACT-JST),
Japan Science and Technology Agency.

References

[1] J. Goux, S. Kulkarni, J. Linderoth, and M. Yoder, An
enabling framework for master-worker applications
on the computational grid, In Proc. the 9th IEEE
Symposium on High Performance Distributed
Computing (HPDC9), 2000.

[2] E. Heymann, M. A. Senar, E. Luque, and M. Livny,
Adaptive scheduling for master-worker applications
on the computational grid, Proc. of the 1st
IEEE/ACM International Workshop on Grid
Computing (Grid2000), 2000.

[3] M. O. Neary and P. Cappello, Advanced Eager
Scheduling for Java-Based Adaptively Parallel
Computing, Proc. of the 2002 joint ACM-ISCOPE
conference on Java Grande, 2002.

[4] H. Takemiya, K. Shudo, Y. Tanaka and S. Sekiguchi.
Development of Grid Applications on Standard Grid
Middleware, Porc. of the GGF8 Workshop on Grid
Applications and Programming Tools, 2003.

[5] R. Horst, P. M. Pardalos and N. V. Thoai,
Introduction to Global Optimization, Kluwer
Academic Publishers, 1995.

[6] K. C. Goh, M. G. Safonov and G. P.
Papavassilopoulos, A Global Optimization Approach

for the BMI Problem, Proc. of the 3rd Conference on
Decision and Control, pp.2009-2014, 1994.

[7] M. Fukuda and M. Kojima, Branch-and-Cut
Algorithms for the Bilinear Matrix Inequality
Eigenvalue Problem, Computational Optimization
and Applications, 19(1):79-105, 2001.

[8] H. Kasahara and S. Narita, Practical Multiprocessor
Scheduling Algorithms for Efficient Parallel
Processing, IEEE Trans. on Computers, C-33(11),
pp.1023-1029, 1984.

[9] K. Aida, W. Natsume and Y. Futakata, Distributed
Computing with Hierarchical Master-worker
Paradigm for Parallel Branch and Bound Algorithm,
Proc. of the 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid 2003),
2003.

[10] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C
Lee and H. Casanova, Overview of GridRPC: A
Remote Procedure Call API for Grid Computing,
Grid Computing – Grid 2002, LNCS2536, pp.274-
278, 2002.

[11] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura
and S. Matsuoka, Ninf-G: A Reference
Implementation of RPC-based Programming
Middleware for Grid Computing, J. of Grid
Computing, 1(1):41-51, 2003.

[12] S. Matsuoka, H. Nakada, M. Sato and S. Sekiguchi,
Design Issues of Network Enabled Server Systems
for the Grid, Grid Computing – Grid 2000,
LNCS1971, pp.4-17, 2000.

[13] Global Grid Forum, http://www.ggf.org/
[14] I. Foster and C. Kesselman, Globus: A

Metacomputing Infrastructure Toolkit, Int. J. of
Supercomputing Applications, 11(2):115-128, 1997.

[15] Plaat, H. E. Bal and R. F. Hofman, Sensitivity of
Parallel Applications to Large Differences in
Bandwidth and Latency in Two-Layer Interconnects,
Porc. of High Performance Computer Architecture
(HPCA-5), pp. 244-253, 1999.

[16] R. van Nieuwpoort, J. Massen, T. Kielmann and H. E.
Bal, Satin: Simple and Efficient Java-based Grid
Programming, Proc. Workshop on Adaptive Grid
Middleware (AGridM 2003), 2003.

[17] ApGrid, http://www.apgrod.org/
[18] Y. Tanaka, M. Sato, M. Hirano, H. Nakada, and S.

Sekiguchi, Performance evaluation of a firewall
compliant globus-based wide-area cluster system,
Proc. of 9th IEEE Symposium on High-Performance
Distributed Computing, 2000.

[19] NIST Net, http://snad.ncsl.nist.gov/nistnet/
[20] R. van Nieuwpoort, T. Kielmann and H. E. Bal,

Efficient Load Balancing for Wide-Area Divide-and-
Conquer Applications, Porc. the 2001 ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP’01), 2001.

