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1. Introduction

We report results for a 0y1 mixed integer programming code, powerful enough
to solve instances of real interest, including all the 0y1 problems in MIPLIB [6], and
at least two difficult, previously unsolved models. Two interesting features are that
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the code runs in parallel on a variety of architectures, including networks of work-
stations, and that it employs an apparently new branching rule called strong branching,
which was developed in conjunction with work on the traveling salesman problem [1].

Gendron and Crainic [15] provide a comprehensive survey paper on parallel
branch-and-bound algorithms. Most of the implementations described therein place
an emphasis on parallelism in the tree search, load-balancing, and node selection. In
recent work, some of the parallel branch-and-bound solvers also include cutting plane
techniques, which have shown to be effective in aiding in the solution process of
difficult integer programs. In Canon and Hoffman [11], a complex branch-and-cut
algorithm was run on a network of 9 DECstations, joined to form a “Local Area
VAXcluster”. Data, such as the global queue of active nodes, were shared through
disk files. The test set was a subset of those used in Crowder et al. [12]. In Applegate
et al. [1], the computations were very coarse-grained, with individual “tasks” often
running for a large fraction of a day on the hardest instances. The parallelism, which
employed a rather complex list of tasks, was implemented using the master–slave
paradigm. Data were shared through message passing over TCPyIP sockets. This code
ran on heterogeneous networks of Unix workstations. Eckstein’s code [13], in contrast,
was written for a specific, dedicated parallel computer, the Thinking Machine CM-5.
His code also used message passing to share data. There have been numerous imple-
mentations of parallel branch-and-bound as a simple search procedure on similar large-
scale parallel computers, but Eckstein’s work was, to our knowledge, the first based
upon a robust algorithm, capable of solving practical MIP instances of real interest.

Among commercially available MIP solvers, OSL and CPLEX both include
implementations on parallel platforms. In the former, a loosely-coupled master–slave
scheme with local pools is built on top of the Parallel Virtual Machine (PVM) environ-
ment. The code supports execution on the SP1, the SP2, and a network of RISC6000
workstations. In CPLEX, the implementation is done exclusively for SGI multi-
processors under the shared-memory environment.

In our parallel implementation, portability and simplicity are achieved by using
TreadMarks.1) TreadMarks [19] is a parallel programming system that allows distri-
buted memory computing machines to be programmed as if they were shared memory
machines. Thus, our code, which is written in C, should run on any machine to which
TreadMarks has been ported2) and, with minor syntactic changes, on shared memory
multiprocessors such as the DEC 2100 or the SGI Challenge. The advantage of a
system such as TreadMarks is that it is typically much easier to modify sequential
programs to use shared memory than to directly use message passing.

The paper is organized as follows. We begin with sections discussing the basic
features of our algorithm:  preprocessing, cutting planes, branching variable and node
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selection, reduced-cost fixing, and a heuristic for finding integral feasible solutions.
This discussion is followed by a section on TreadMarks and a section giving an overall
description of our parallel implementation. Finally, we present computational results.

Before proceeding, we formally state that a 0 1 mixed integer programming
problem  (0y1 MIP) is an optimization problem of the form

maximize cT x

subject to A x ≤ b,

x ≥ 0,

x j ∈{0,1} ( j = 1,… , p),

(M)

where A ∈Rm× n, b ∈Rm, c ∈Rn, and p ≤ n.

2. Basic features of the algorithm

Unlike other branch-and-cut implementations which involve specific cuts related
to the polyhedral structures of interest, or studying one specific type of cut on a class
of integer programs, our MIP solver is general purpose and incorporates various types
of cuts, including disjunctive cuts, knapsack cuts and a restricted kind of clique cuts.
Rather than studying how individual cuts behave, we aim at studying how these cuts
interact with each other and measure their overall effectiveness in solving general 0y1
mixed integer programs. In addition, the solver includes a relatively new branching
scheme – strong branching – and a general mixed 0y1 primal heuristic. Strong branch-
ing has been shown to be very effective in solving TSP problems [1]. In this work, we
study its effectiveness when applied to general 0y1 mixed integer programs. The
primal heuristic is a generalization of the primal heuristic developed specifically for
a class of equality constrained truck dispatching scheduling problems [7,8]. Below,
we briefly describe each of the basic components of our branch-and-bound solver.

2.1. Preprocessing

Problem preprocessing has been shown to be a very effective way of improving
integer programming formulations prior to and during branch-and-bound [9,12,17,21].
Rather than writing our own preprocessor, we have simply employed the CPLEX 3.03)

preprocessor, invoking it not only once, but repeatedly until no further reductions
result. In addition to applying standard linear programming (LP) reductions, also valid
for integer programs, CPLEX applies “coefficient reduction” and “bound strengthen-
ing”, see [12,21]. Statistics for the problems solved and the preprocessed versions are
given in table 1. We remark that, without preprocessing, our code could not solve the
mod011 instance from MIPLIB, and its performance was seriously affected in a number
of other cases.

3) CPLEX is a registered trademark of CPLEX Optimization, Inc.
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2.2. Cutting plane

The basic algorithm is branch-and-bound. As an additional preprocessing step,
before branching begins, we strengthen the formulation by generating cutting planes:
Where P # Rn is the convex hull of integral feasible solutions of (M), and x* ∈RnnP,
a cutting plane for x* is an inequality aTx ≤ α, satisfied by all integral feasible solutions
of (M) and violated by x* (aTx* > α). Typically, x* is the solution of some linear
program obtained by relaxing the integrality restrictions of (M).

We have included only three kinds of cutting planes: disjunctive cuts, knapsack
cuts, and a very restricted kind of clique cuts. These are discussed in the subsections
that follow.

2.2.1. Disjunctive cuts
Disjunctive cuts were introduced by Balas [2], and their computational properties

studied extensively in recent work by Balas et al. [3]. Consider the polyhedron

  PI = conv{ x ∈Rn : ˆ A x ≤ ˆ b , x j ∈{0,1}, j = 1,… , p},

where we assume that ˆ A x ≤ ˆ b  includes Ax ≤ b, the restrictions 0 ≤ xj ≤ 1 for j = 1,…,p,
and xj ≥ 0 for j = p + 1,…, n. Let x* be a feasible solution of ˆ A x ≤ ˆ b  such that 0 <
xi

* < 1 for some i ∈{1,…, p} and consider the pair of polyhedra

  

P0 = {x ∈Rn : ˆ A x ≤ ˆ b , xi = 0},

P1 = {x ∈Rn : ˆ A x ≤ ˆ b , xi = 1}.

Clearly, PI # Pxi ≡ conv(P0 < P1). Assume that both P0 ≠ ∅, and P1 ≠ ∅ (otherwise, xi

can be eliminated). Now, if x* ∉Pxi, the following procedure will find an inequality
valid for PI and violated by x*.

Consider the system
ˆ A y − y0

ˆ b ≤ 0,
ˆ A z − z0

ˆ b ≤ 0,

yi = 0,

zi − z0 = 0,

y0 + z0 = 1,

y + z = x,

where auxiliary variables y, z ∈Rn and y0, z0 ∈R have been introduced. It is easy to
see that this system is feasible for every x ∈Pxi, and that it is infeasible for x = x* if
x* ∉Px i. In this latter case, consider the following feasible LP:

(DISJ)                                        minimize  α
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where e = (1,…,1)T ∈Rn. Let α* > 0 be the optimal objective value of (DISJ),
and let u*, υ *, β* , γ *, δ * , s*, t*  be an optimal dual solution, where u*, υ* ∈Rm, β*,
γ *, δ * ∈R, and s*, t* ∈Rn. Then (t* – s*)Tx > δ * is a valid inequality for Pxi, but
(t* – s*)Tx* – δ * = – α*. As an alternative, one might also consider the LP that results
by replacing the last two constraints of (DISJ) with y + z + w = x* and minimizing
∑ijwij; however, the cuts produced by this second alternative seem to be considerably
denser, and we did not use it in our tests.

Our implementation of the above idea is straightforward and, hence, compu-
tationally too expensive to be applied as a default: Consider a given x*. For each 0y1
variable xi such that 0.0001 < xi

* < 0.9999, we solve the corresponding instance of
(DISJ).  If α* > 0.001, we add the resulting valid inequality to our formulation. After
all such valid inequalities have been added, a new x* is computed and the procedure
repeated. The MIPLIB models for which we found it necessary to apply disjunctive
cuts are set1* and modglob .

2.2.2. Knapsack cuts
A commonly employed technique is to generate cutting planes by analyzing

individual constraints. This approach was applied in [12], for pure 0y1 problems, using
the well-developed theory of knapsack polyhedra. One way of applying knapsack cuts
to mixed 0y1 problems proceeds as follows. Given a constraint

ˆ A y − y0
ˆ b ≤ 0,

ˆ A z − z0
ˆ b ≤ 0,

yi = 0,

zi − z0 = 0,

y0 + z0 = 1,

y + z + α e ≥ x* ,

− y − z + αe ≥ − x* ,

                          subject to

a jx j +
j = p+ 1

n

∑
j =1

p

∑ aj x j ≤ b,

taken from (M), the knapsack inequality

a jx j ≤ b 
j = 1

p

∑
is valid for (M), where

and lj , uj , j = p + 1,…, n, are valid lower and upper bounds for the corresponding
continuous variables. Let x* be a fractional solution, and let a  and x  be the vectors

b = b −
j = p+ 1
aj >0

n

∑ ajl j −
j = p+ 1
a j < 0

n

∑ ajuj ,
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obtained after complementing binary variables where necessary to obtain a j ≥ 0 for
j = 1,…, p. In our procedure, violated covers are identified using a greedy approach
on the nonzero fractional variables in a fashion similar to that described in [12]. We
approximate the optimal objective for the knapsack problem

min (1 − x j)s j : a jsj > b , s j ∈{0,1}, j = 1,… , p
j =1

p

∑
j =1

p

∑
 
 
 

  

 
 
 

  

by setting sj to 1 in nondecreasing order with respect to the ratios   (1 − x j*)ya j ,  j =
1,…, p. During this solution process, the minimum constraint coefficient among the
chosen variables, a jmin , together with its objective coefficient are recorded. There are
two cases to consider:

Case 1: If the corresponding objective value is less than 1, a violated cover is ob-
tained. We then check if the sum of the coefficients, excluding a jmin , is less
than b , in which case the cover is minimal; otherwise, we modify it by first
discarding a jmin , then resetting as many sj’s to 0 as possible without leaving
the feasible region.

Case 2:  If the objective value is greater than or equal to 1, and if the objective co-
efficient corresponding to a jmin  is positive, we correct this cover by discard-
ing a jmin . If that results in a feasible solution with an objective value less
than 1, we again obtain a violated cover.

After identifying a violated cover, it is lifted (in both forward and reverse passes)
[4,22,23]. We approximate the lifting coefficients by solving the linear programming
relaxations of the corresponding lifting problems.

2.2.3.  Clique cuts
We employ the following exact procedure to find lifted 2-covers. Consider again

a constraint of the form
a jx j ≤ b ,

j∈ B
∑

where a , b  and x  are as described in the previous section. Let B = {1,…, p},

  ′ B = {j ∈ B : a j > b y2},
and for each k ∈BnB ′, let

  ′ B k = {k} < {j ∈ ′ B : a k + a j > b }.

Then the following clique inequalities are valid:

  

x j
j ∈ ′ B 
∑ ≤ 1,

x j
j∈ ′ B k
∑ ≤ 1, k ∈ Bn ′ B .
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Note that if the elements of a  are sorted in nonincreasing order, then the entire
collection of sets Bk′ can be computed in linear time in jBj. For a given x*, determining
the clique inequalities violated by x* is also a linear time computation.

2.2.4.  Cuts management
The cuts described above are generated at the root node of the branch-and-bound

tree. We stop as soon as the gain in the objective value in the LP relaxation is less than
0.1% over a span of three consecutive x* computations. Cuts are declared “weak” and
are dropped if the corresponding dual variables remain zero in the solution of eight
consecutive LP relaxations. Once cut generation is completed and all weak cuts are
removed, these cuts are not removed at non-root nodes.

2.3. Node and variable selection

To obtain upper bounds at the nodes of the branching tree, we solve the corre-
sponding linear programming relaxations. If the solution is integral, if its objective
value is exceeded by the value of the best known integral solution, or if the LP relaxa-
tion is infeasible, the processing of the node is complete; otherwise, a branching
variable is selected and two new nodes are created. The rule we use to select the
branching variable is strong branching, described below. To select the next node for
processing, we use the best-bound rule, taking the active node with the largest objec-
tive value.

Strong branching works as follows. Let N and K be positive integers. Given the
solution of some linear programming relaxation, make a list of N binary variables that
are fractional and closest to 0.5 (if there are fewer than N fractional variables, take all
fractional variables). Suppose that I is the index set of that list. Then, for each xi , i ∈I,
starting with the optimal basis for the LP relaxation, fix xi  first to 0.0 and then to 1.0
and perform K iterations of the dual simplex method with steepest-edge pricing, using
as “normalizing” factors the L2 norms of the rows of the basis inverse [14]. Let Li , Ui,
i ∈I, be the objective values that result from these simplex runs, where Li corresponds
to fixing xi  to 0.0 and Ui  to fixing it to 1.0. In our implementation, we use N = 10 and
K = 50, and select as the branching variable one that minimizes 10.0max{Li , Ui} +
min{Li, Ui}. Strong branching was shown to be effective in solving difficult traveling
salesman problems in parallel [1]. In this paper, we present evidence that it can also
be effective when applied to general mixed 0y1 integer programs. In section 5, we
summarize our numerical findings when comparing strong branching with two other
branching strategies we have implemented: branching on the smallest indexed fraction-
al variable, and branching on the most infeasible variable.

2.4. Reduced-cost fixing and heuristics

Reduced-cost fixing refers to the fixing of variables to their upper or lower
bounds by comparing their reduced-costs to the gap between a linear programming
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optimum and the current problem lower bound (the best known integral-feasible solu-
tion). We perform reduced-cost fixing both globally – at the root node – and locally.
Global fixing is applied whenever the gap between the root linear program and the
current lower bound changes; local fixing is carried out at each node before and after
each heuristic call.

We use the term (primal) heuristic to refer broadly to heuristic procedures for
constructing “good, approximately optimal” integral feasible solutions from available
solutions that are in some sense “good”, but fail to satisfy integrality. We incorporate
an “adaptive” heuristic based on the heuristic used in [7,8].

At some node in the branch-and-bound tree, assume that an LP relaxation has
been solved and that the optimal solution is fractional. The heuristic works as follows.
If some problem lower bound is currently available, reduced-cost fixing is applied (as
indicated above). Second, all variables that are identically equal to 1.0 in the current
LP solution are fixed to 1.0. Finally, where ε is the current integrality tolerance (10–4

by default), the following procedure is applied iteratively until either the LP relaxation
yields an integral solution, is infeasible, or has an optimal value that is exceeded by
the current lower bound. Let x* be an optimal solution of the current LP relaxation.
Let

The heuristic fixes variables in the following manner:

Case 1: jx*
max – x*

minj  ≥ ε : If ε ≤ x*
j ≤ x*

min , set xj = 0.0; otherwise, if x*
max ≤ x*

j , set
xj = 1.0.

Case 2: jx*
max – x*

minj < ε : Set xj = 1.0, where j is the smallest index satisfying x*
min ≤

x*
j ≤ xmax .

Instead of applying the heuristic to every branch-and-bound node, our (simple) default
selects every node whose depth from the root is a multiple of 4.

3. TreadMarks

TreadMarks is a distributed shared memory (DSM) system for networks of Unix
workstations and distributed-memory multiprocessors, such as the IBM SP2. DSM
enables processes running on different workstations to share data through a network-
wide virtual memory, even though the hardware provided by the network lacks the
capability for one workstation to access another workstation’s physical memory [20].
For example, figure 1 illustrates a DSM system consisting of N workstations, each
with its own physical memory, connected by a network. The DSM software imple-
ments the abstraction of a network-wide virtual memory, denoted by the dashed line in
the figure, in which each processor can access any data item, without the programmer

xmin
* = min{x j

* : ε ≤ x j
* ≤ 1.0 − ε},

xmax
* = max{x j

* : ε ≤ x j
* ≤ 1.0 − ε}.
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having to worry about where the data is, or how to obtain its value. In contrast, in the
“native” programming model directly provided by the hardware, message passing,
the programmer must decide when a processor needs to communicate, with whom to
communicate, and what data to communicate. For programs requiring complex data
structures and parallelization strategies, such an implementation can become a diffi-
cult task. On a DSM system, the programmer can focus on the development of a good
parallel algorithm rather than on partitioning data among the workstations and com-
municating values. In addition to ease of programming, DSM provides the same
programming environment as that on (hardware) shared-memory multiprocessors,
allowing for portability between the two environments.

TreadMarks is provided to the user as an ordinary software library that is linked
with the user’s parallel program. Standard Unix compilers and linkers are used to
build TreadMarks programs. Furthermore, no kernel modifications or special (super-
user) privileges are required to execute parallel programs.

The challenge in developing an efficient DSM system is to minimize the amount
of communication (message passing) required to implement the shared memory ab-
straction, in particular, to ensure data consistency. Data consistency is the guarantee
that changes to shared memory variables get propagated to each processor before that
processor tries to use the variable. Various techniques are used by TreadMarks to meet
this challenge, including lazy release consistency [18] and a multiple-writer protocol
[10].

Lazy release consistency is a novel algorithm that implements the release con-
sistency memory model developed by Gharachorloo et al. [16]. From the programmer’s
standpoint, release consistency is identical to the traditional (hardware) multiprocessor
shared-memory model, sequential consistency, if the data accesses by different pro-
cessors are correctly synchronized. However, unlike sequential consistency, release
consistency does not require data consistency at each write to shared memory. Instead,
lazy release consistency enforces data consistency when a synchronization object, such
as a lock, is acquired. In contrast, earlier implementations of release consistency
enforced data consistency when a synchronization object was released. This difference
has the effect that lazy release consistency only requires data consistency messages to

Figure 1. Distributed shared memory.

R.E. Bixby et al.  Parallel mixed integer programming 27



travel between the last releaser and the new acquirer, instead of a global broadcast at
each release. As a result, lazy release consistency requires fewer messages to be sent.

All shared-memory multiprocessors, such as the DEC 2100 and SGI Challenge,
and most DSM systems, use single-writer protocols. These protocols allow multiple
readers to access a given page simultaneously, but a writer is required to have sole
access to a page before performing any modifications. Single-writer protocols are
easy to implement because all copies of a given page are always identical. Hence, a
processor that needs a copy of the page can retrieve one from any processor that has
a current copy. Unfortunately, this simplicity often comes at the expense of message
traffic. Before a page can be written, all other copies must be invalidated. These
invalidations can then cause subsequent requests for the page if the processors whose
pages have been invalidated are still accessing data.

As the name implies, multiple-writer protocols allow multiple processes to simul-
taneously modify the same page, with data consistency messages deferred until a later
time, when synchronization occurs. TreadMarks uses the virtual memory hardware to
detect accesses and modifications to shared memory pages. Shared pages are initially
write-protected. When a write occurs, the protocol creates a copy of the virtual memory
page, a twin, and saves the twin in system space. When modifications must be sent to
another processor, the current copy of the page is compared with the twin on a word-
by-word basis and the bytes that vary are saved into a “diff” data structure. Once the
diff has been created, the twin is discarded. With the exception of the first time a
processor accesses a page, its copy of the page is updated exclusively by applying
diffs; a new complete copy of the page is never needed. Thus, the diffs provide two
benefits that outweigh the computation overhead. First, they can be used to implement
a multiple-writer protocol, reducing the number of messages sent between processors;
second, they usually reduce the amount of data sent because a diff only contains the
parts of a page that changed.

4. Implementation

Our parallelism is developed on a loosely-coupled network of workstations using
TreadMarks as the parallel software platform. The parallel design is an asynchronous
single pool implementation. However, unlike most other shared-memory implementa-
tions of this type, there is no master–slave paradigm. Once parallel processing is
invoked, all processors behave in the same manner. In addition, unlike other asyn-
chronous systems where eventually shared data is broadcast for data consistency,
there is no broadcast in our code. Data consistency is maintained via the lazy release
mechanism in TreadMarks, where a processor learns of changes in memory pages by
a very small overhead in the lock messages. In addition, unlike other shared-memory
systems and distributed shared-memory abstractions where only a single write is
allowed on shared data, we can perform multiple writes, where data consistency is
deferred until synchronization occurs.

28 R.E. Bixby et al.  Parallel mixed integer programming



At the startup of the parallel code, one processor is responsible for reading the
problem. That processor also solves the initial linear programming relaxation. If the
optimal solution is integral feasible, the algorithm is done; otherwise, the heuristic is
called. If it succeeds, reduced-cost fixing is performed. Cut generation is then called
in an attempt to improve the upper bound (in the case of maximization). Once “enough”
cuts are generated, reduced-cost fixing is performed again. After that, sequential
branch-and-bound is performed until the number of active nodes accumulated exceeds
a predetermined threshold. This threshold is an increasing function of the number of
processors. We delay the beginning of the parallel branch-and-bound in order to avoid
having processors contend for access to the global active list until nodes are avail-
able for processing. Such contention generates useless communication and slows the
accumulation of active nodes.

The choice of using a threshold that is an increasing function of the number of
processors was made after experimenting with three different options: immediate
start of the parallel process, use a constant threshold independent of the number of
processors, and use a threshold that is an increasing linear function with respect to the
number of processors. Empirical tests provide strong evidence that the last option is
superior to the other two. In addition, further preliminary experiments suggest that
other increasing functions (e.g., quadratic) with respect to the number of processors
are also reasonable candidates for determining thresholds on active node build-up
prior to initiating parallel processing.

The shared data in our implementation consists of the best lower bound (for
maximization problems), its corresponding solution, and the global list of active nodes.
For an individual processor, the initial setup consists of reading in a transparent copy
of the linear programming relaxation, as well as all the cuts appended to this linear
program after performing cut generation at the root. The processors then perform the
following procedure repeatedly until the entire list of active nodes is exhausted and
every processor is idle, signaling the completion of the parallel processing. Each idle
processor fetches an active node from the list, using best-node selection, and reads
the current best lower bound. The linear program is then solved. If an integral solution
is obtained, this node is fathomed without further branching; otherwise, local reduced-
cost fixing is performed, and the heuristic is called according to the heuristic interval
setting. If the heuristic is performed and a better lower bound is obtained, the best
lower bound and solution are “updated”. If there is no gap between the linear program-
ming objective value and this lower bound, for the current node, the node is fathomed;
otherwise, a branching variable is selected and two new nodes corresponding to the
selected variable are added to the list of active nodes.

Our approach is centralized in the sense that a global list of active nodes is stored
in a single, shared data structure. When a processor becomes idle, it selects the current
best-node from the global list. To ensure that only one processor accesses this list at
a time, a “lock” is acquired before the list is accessed and subsequently released after
processing is complete; locks are a standard synchronization facility provided by
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TreadMarks. After fetching an active node from the list, a processor is only certain of
the current lower bound until the lock is released. As the computation on the node
proceeds, the other processors may update the lower bound. However, since Tread-
Marks has no broadcasting mechanism, the processor that is working on the node will
not discover the update until it attempts to read or update the shared lower bound
itself. While it is possible that some unnecessary computation is performed, it is
equally important that the amount of communication does not become excessive. In
place of broadcasting, which can create communication bottlenecks, TreadMarks
enables a processor to learn which memory pages have changed, at negligible cost, by
piggybacking a few bytes on the lock messages.

We have experimented with various ways of handling critical sections in the
code, and our current implementation tries to strike a balance between computation
and communication overhead. If the amount of work between consecutive accesses to
the active list is too small, then the overhead associated with the lock mechanism can
be significant. This fact suggests the alternative strategy of fetching several nodes,
rather than just one, with each access to the active list. While this idea certainly
deserves further testing, in our limited examination it did not improve the results, and
thus was not included in our final testing. For example, on stein45, when our code
was modified to fetch two nodes instead of one per access, the running time on two
processors increased from 3227.9 to 3429.2 seconds and the node count increased
by 399.

5. Numerical results

Numerical tests were performed on all of the mixed 0y1 instances from MIPLIB
and on two additional, previously unsolved, mixed 0y1 integer programs. One was a
multicommodity flow instance, supplied to us by Dan Bienstock, and the other was a
telecommunication network problem. The former model included a significant number
of non-trivial cutting planes (424 in total) added as a result of the research by Bienstock
and Günlük [5].

Let Tn denote the time elapsed when n processors are used. In our tests, Tn was
always measured using “wall-clock” time, and was recorded starting from reading in
the problem instance to the final shutdown of all processors after printing the solution.
We define the speedup for n processors to be the ratio T1yTn . (See the later discussion
of the alternative measure (T1 – Tstartup)y(Tn – Tstartup).)

Table 1 shows the problem statistics. Here, Name, Original rows, Cols, and 0 1
var denote, respectively, the name of the test instance, the initial number of rows, the
number of columns, and the number of 0y1 variables in the constraint matrix. Pre-
processed rows, Cols and 0 1 var denote the size after running CPLEX’s presolve
procedure. Initial LP objective, Preprocessed LP objective and Optimal  MIP objective
record, respectively, the optimal objective value for the initial LP relaxation, the opti-
mal objective value for the initial LP relaxation after preprocessing, and the optimal

30 R.E. Bixby et al.  Parallel mixed integer programming



objective value for the original integer program. Of  51 problem instances, the presolve
procedure closed the gap for 16; on some of the more difficult models (e.g., fixnet*,
set1al), the gap was reduced by over 70%.

The code is set to use the dual simplex method for resolving the branch-and-
bound nodes, strong branching with 50 dual steepest pivots, and a simple “adaptive”
primal heuristic with heuristic interval 4. In addition, branch-and-bound nodes are
stored internally in a global list, a best-node selection strategy is employed, and clique
and knapsack cuts are applied at the root node. Cuts are removed at the root after
being inactive for 8 consecutive LP solves. Cuts are not removed at non-root nodes.
(More details of these algorithmic components are given in sections 2 and 4.) Nodes
are fathomed when a provable bound is known that is within 0.01 of the best-known
feasible solution. In the special case where only integral variables appear in the objec-
tive, and all objective coefficients are also integral, this cutoff tolerance is increased
to 0.99.

Tables 2(a) and 2(b) record statistics of problems after initial cut generation at
the root node. Only those problems for which cuts were actually generated are in-
cluded. Clique passes, Clique found, Clique time, Knap. passes, Knap. found and
Knap. time record, respectively, the number of clique passes, the number of cliques
generated, total time for clique generation, the number of knapsack passes, the number
of knapsack cuts found and total time for knapsack generation. Total cuts added de-
notes the final number of cuts appended to the LP relaxation after weak cuts are
discarded. Initial obj., Cut obj. and Optimal IP obj. denote, respectively, the optimal
objective value of the initial LP relaxation, the optimal LP objective value after pre-
solve and cut generation, and the optimal objective value for the integer program
itself. The last column gives the percentage of the gap closed due to presolve and cut
generation. Table 2(b) shows the statistics for the instances where disjunctive cuts
were necessary. There were four such cases, and these were the only four models for
which disjunctive cuts were used.

Tables 3 and 4 show, respectively, the solution time (in seconds) and the total
number of branch-and-bound nodes searched for each model, running on n SPARC-
20’s, where n ranged from 1 to 8.  For each n, we performed four independent runs on
each model. The best sequential time was then recorded for n = 1. The parallel running
time is an average over the four runs. Tstartup records the time elapsed before parallel
execution began. Observe that our implementation of disjunctive cuts, while effective
in closing the gap, can be computationally expensive (see modglob  and set1* in tables
2(b) and 3). In contrast, clique and knapsack cuts – which are also very effective in
closing the gap – are computationally inexpensive to generate. As a measure of speed-
up, we used the ratio (T1 – Tstartup)y(T8 – Tstartup) rather than the more standard T1yT8.
The former ratio reflects the speedup in the parts of the algorithm that we actually
attempted to parallelize.

Few of the problems with sequential solution times under 100 seconds achieve
significant speedup. Indeed, in some instances, the parallel running times are actually
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Table 4

Nodes searched on n processors.

Name n = 1 2 3 4 5 6 7 8

air01 1 1 1 1 1 1 1 1
air02 10 11 11 11 11 11 10 11
air03 2 2 2 2 2 2 2 2
air04 176 182 188 173 183 195 184 220
air05 1061 1031 1032 1039 1031 1194 1214 1225
air06 6 5 5 5 5 5 5 5
bm23 82 78 82 79 131 109 170 82
cracpb1 0 0 0 0 0 0 0 0
diamond 1 1 1 1 1 1 1 1
egou 2706 2706 2706 2708 2708 2707 2708 2715
enigma 472 467 549 573 612 684 649 761
fixnet3 41 44 53 55 61 61 66 69
fixnet4 114 114 114 116 121 108 156 154
fixnet6 241 242 242 239 244 266 276 268
khb05250 1648 1896 1650 1898 1897 1898 1901 1903
l152lav 545 599 590 564 584 557 584 559
lp4l 36 16 24 27 31 40 35 43
lseu  1540 1542 1538 1537 1539 1545 1497 1566
misc01 192 192 192 192 192 193 196 193
misc02 22 22 22 22 22 22 22 22
misc03 217 287 320 323 326 330 326 332
misc04 9 13 13 14 15 13 14 14
misc05 199 204 202 211 176 175 156 150
misc06 39 46 51 60 66 67 71 74
misc07 13401 13401 13401 13401 13401 13401 13401 13402
mod008 1627 1630 1635 1647 1635 1654 1627 1687
mod010 28 23 31 34 40 45 45 48
mod011* 12102 10725 10725 10726 10726 10726 10727 10726
mod013 280 280 281 280 285 268 281 300
modglob+ 12406 12405 12407 12408 12408 12409 12410 12409
p0033 198 202 199 200 286 207 207 20
p0040 2 2 4 4 4 4 4 4
p0201 251 259 262 155 169 179 176 198
p0282 232 242 249 273 302 367 400 451
p0291 42 44 42 64 70 67 80 72
p0548 25963 25990 25969 25963 25967 25967 25967 25990
p2756 6105 6153 6143 6157 6172 6180 6227 6235
p6000 3521 3513 3391 2878 2874 2848 2836 2832
pipex 703 700 709 710 710 716 703 719
rentacar 18 30 39 44 47 50 43 50
rgn 1410 1410 1412 1414 1416 1381 1161 1151
sample2 148 150 153 155 159 160 169 165
sentoy 200 201 209 198 218 308 231 377
set1al+ 1156 1156 1158 1162 1167 1169 1174 1170
set1ch+ 48 30 54 56 54 55 62 68
set1cl+ 939 941 941 946 951 948 953 955
stein9 6 6 6 6 6 6 6 6
stein15 37 37 37 37 37 37 37 37
stein27 1175 1175 1175 1175 1175 1175 1182 1176
stein45 15678 15678 15679 15679 15679 15679 15679 15679
vmp1 155636 155636 155636 155636 155636 155636 155636 155636
* Run on an SP1 with 8 nodes. + Disjunctive cuts activated.
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slower than the sequential time. Such behavior is not unexpected, and can be largely
attributed to communication overhead. In addition, several of these models simply do
not generate enough nodes to justify (or necessitate) the use of parallelism. We observe,
in addition, that parallelism does occasionally lead to extra work, and in some instances,
that extra work is excessive. Consider, for example, the model rentacar. When running
sequentially, only 18 nodes were solved and the number of nodes in the queue was
never greater than 2. However, when multiple processors were used, as many as 50
total nodes were processed, with considerable effort expended on processing nodes
that were fathomed in the sequential run.

We also remark that, when running sequentially, in 35 out of 51 problems from
MIPLIB, strong branching outperforms both that of selecting the smallest indexed
fractional variable, and selecting the most infeasible variable. In 15 out of 51 cases,
selecting the smallest indexed fractional variable performs best. In particular, this
choice of branching variable selection solves each of misc01–06 in under 10 CPU
seconds, and misc07  in only 1573.0 CPU seconds. It is interesting that the numbers of
nodes solved in the misc01–06 problems are actually higher when using the smallest
indexed fractional variable branching strategy than when using strong branching,
and about 2000 nodes less in misc07 . Only one problem solves best using the most
infeasible variable branching strategy. Strong branching tends to produce a branch-
and-bound tree with fewer nodes; however, more time is spent in selecting branching
variables. Nevertheless, our findings provide encouraging support that additional time
spent in selecting a branching variable pays off and that strong branching can be a
very effective strategy when applied to general mixed 0y1 integer programs.

In table 5, we present statistics on the load-balancing among n processors. In
particular, we report the ratio of the smallest number of nodes solved by a processor
over the largest number of nodes solved by a processor. Observe that in 17 problem
instances – those that required more than 900 nodes solved – the average load-balance
ratio is over 0.9 for all n. In air05, the sudden drop of the load-balance ratio at n = 6
to 0.7 coincides with a sharp increase in the running time. For rgn, a drop in the load-
balance ratio when n = 7 and 8 coincides with a drop of about 200 branch-and-bound
nodes solved in these two runnings. For problems where the number of nodes solved
is between 200–700, the load-balance ratio averages around 0.8–0.9. In 8 problem
instances, the number of nodes solved is fewer than the number of processors available.
Clearly, in these cases a 0 load-balance ratio is observed. For the remaining 22 prob-
lems, in which the number of nodes solved range from 10 to 200, most of them start
out with a decent ratio, and then deteriorate as n increases.

In table 6, we present a summary of the speedup for problems with sequential
running times greater than 1000 seconds. We observe that significant speedup is
realized in most of these problems. Note that in problems vmp1, misc07  and stein45,
the node counts remained essentially constant regardless of the number of processors
used. The constant node counts were due to the fact that for each of these models, an
optimal solution was found very early in the branch-and-bound process (after 400
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Table 5

Load-balancing statistics among n SPARC’s (smallest node solvedylargest node solved).

Name  2 3 4 5 6 7 8

air01 – – – – – – –
air02 0.84 0.50 0.67 0.33 0.33 0 0
air03 1.0 0 0 0 0 0 0
air04 1.0 0.93 0.75 0.70 0.71 0.68 0.55
air05 0.96 0.93 0.93 0.89 0.70 0.88 0.93
airo6 0.67 0.50 0.50 1 0 0 0
bm23 0.79 0.68 0.90 0.44 0.28 0.25 0.35
cracpb1 – – – – – – –
diamond – – – – – – –
egout 0.95 0.88 0.93 0.96 0.93 0.93 0.86
enigma 0.96 0.95 0.94 0.97 0.93 0.89 0.9
fixnet3 0.94 0.86 0.79 0.77 0.64 0.55 0.55
fixnet4 0.96 0.89 0.89 0.80 0.82 0.73 0.67
fixnet6 0.96 0.94 0.91 0.80 0.78 0.59 0.81
khb05250 0.99 0.96 0.95 0.95 0.96 0.92 0.96
l152lav 0.94 0.98 0.92 0.91 0.89 0.83 0.84
lp4l 0.57 0.57 0.51 0.44 0.50 0.33 0.29
lseu 0.97 0.94 0.99 0.92 0.96 0.90 0.94
misc01 0.94 0.33 0.80 0.53 0.64 0.65 0.74
misc02 0.91 0.75 0.50 0.50 0.33 0.20 0.20
misc03 0.35 0.78 0.94 0.77 0.75 0.72 0.74
misc04 0.67 0.60 0.40 0.23 0.67 0.33 0.25
misc05 0.97 0.50 0.84 0.83 0.73 0.74 0.75
misc06 0.95 0.50 0.79 0.69 0.75 0.82 0.58
misc07 1.0 0.98 0.99 0.95 0.96 0.94 0.97
mod008 0.99 0.97 0.95 0.90 0.87 0.88 0.89
mod010 1.0 0.56 0.62 0.86 0.86 0.30 0.50
mod011* 0.98 0.99 0.98 0.97 0.86 0.97 0.94
mod01 0.97 0.69 0.92 0.75 0.50 0.60 0.59
modglob+ 0.97 0.99 0.97 0.96 0.95 0.93 0.97
p0033 0.94 0.90 0.94 0.90 0.50 0.82 0.60
p0040 1 0 1 0 0 0 0
p0201 1.0 0.82 0.52 0.81 0.62 0.74 0.46
p0282 0.93 0.92 0.85 0.83 0.89 0.83 0.86
p0291 0.84 0.88 0.69 0.85 0.67 0.70 0.50
p0548 0.99 0.95 0.92 0.98 0.96 0.94 0.94
p2756 0.95 0.95 0.98 0.96 0.95 0.96 0.92
p6000 0.96 0.94 0.96 0.91 0.92 0.89 0.95
pipex 0.86 0.94 0.87 0.95 0.89 0.81 0.93
rentacar 0.92 0.70 0.50 0.64 0.50 0.46 0.44
rgn 0.90 0.94 0.95 0.94 0.94 0.87 0.75
sample2 1 0.82 0.90 0.70 0.85 0.78 0.40
sentoy 0.95 0.88 0.89 0.81 0.61 0.77 0.44
set1al+ 0.98 0.99 0.96 0.97 0.91 0.93 0.87
set1ch+ 0.85 0.64 0.57 0.67 0.67 0.50 0.55
set1cl+ 0.93 0.93 0.94 0.95 0.93 0.91 0.90
stein9 1.0 0.33 0.50 0.50 0 0 0
stein15 0.85 0.92 0.80 0.75 0.38 0.22 0.29
stein27 0.98 0.98 0.90 0.96 0.95 0.85 0.87
stein45 0.99 0.98 0.97 0.98 0.99 0.97 0.95
vmp1 0.99 0.96 0.99 0.98 0.98 0.99 0.99
* Run on an SP1 with 8 nodes. + Disjunctive cuts activated.
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nodes in both misc07  and stein45, and 2400 nodes in vmp1). Note also that for vmp1,
performance deteriorated significantly when the number of processors exceeded 4.
By way of explanation, the LP relaxations for this model are extremely easy to solve.
The number of simplex iterations per node solved is around 2 to 15. As a result, the
processors spent the majority of their time waiting to acquire the lock on the list of
active nodes. For example, on eight processors, each processor spent 62% of its time
waiting. In contrast, for misc07 , each processor spent only 4% of its time waiting.

The problems air04 and air05 exhibit some of the same behavior as, for example,
rentacar: Nodes are generated too slowly to effectively use a larger number of pro-
cessors. Thus, when the number of processors is small, performance (speedup) remains
good, but eventually, as the number of processors grows, the number of nodes also
grows. Since the linear programs for these problems are far from trivial (taking about
50 and 30 seconds, respectively, per node), any increase in node count directly influ-
ences the solution time.

For problem p6000, consistent superlinear speedup is realized. The explanation
is threefold. Firstly, when running in parallel, the optimal solution is found much more
quickly. Secondly, the value of the objective is integral. Thirdly, the gap between the
optimal value and the objective value of the LP relaxation is relatively small. Thus,
where k denotes the optimal value of the objective, failure to find k early means, in
this problem, that a large number of nodes with LP value in the gap (k – 1, k] are un-
necessarily processed.

In fact we observe that the speedup in all the test instances is roughly inversely
proportional to the average idle time for each processor. On all instances exhibiting
near-linear or superlinear speedup, the average idle time per processor within the
parallel process is less than 4%. In contrast, vmp1, which exhibited a speedup of only

Table 6

Speedup on n SPARC20’s.

Name S2 S3 S4 S5 S6 S7  S8

air04 2.0 2.8 3.7 3.9 3.2 3.7   2.9
air05 2.0 2.9 3.9 4.8 5.2 6.1   6.7
l152lav 1.7 2.7 3.7 4.4 5.4 6.2   6.9
misc07 1.9 2.9 3.9 4.8 5.8 6.8   7.8
modglob 2.1 2.9 3.9 4.4 5.8 6.0   7.4
mod011* 1.8 2.8 3.7 4.6 4.9 6.8   8.9
p0548 1.8 2.7 3.5 4.4 5.2 6.0   6.8
p2756 2.0 3.0 4.0 5.0 5.9 6.8   7.7
p6000 2.1 3.2 4.8 5.9 7.1 8.1   9.3
set1ch 2.2 2.5 2.8 5.6 8.2 6.5 11.3
stein45 1.8 2.8 3.7 4.5 5.3 6.1   7.4
vmp1 1.7 2.4 2.9 3.0 2.8 2.8   2.7

* Run on an SP1 with 8 nodes.
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2.66 with 8 processors, has an average of 62% idle time; and problems air04  and
air05 , with speedups of 2.9 and 6.7, respectively, have average idle times of about
45%.

For problems modglob  and set1ch  in which disjunctive cuts are generated, near
linear and superlinear speedup was achieved, respectively. However, due to the signifi-
cant sequential time used to generate the disjunctive cuts, the actual reduction in total
CPU time is only 2–3 times in modglob , and only about 1.1 times in set1ch , as all
processors except one were idle when cuts are generated.

We also remark that, although the RISC6000 CPU in SP1 and SP2 is slightly
faster than that for SPARC20, the speedup for all the instances on the SP1 and SP2 are
similar to those obtained when running on the 8-SPARC20yM61 workstations, with
the exception that superlinear speedup was observed for misc07  and  p0548.

Table 7 reports the solution time for two previously unsolved problems: a multi-
commodity flow problem quasiunif2 [5] and a telecommunication network problem
teleicm . Here, Rows, Cols, and 0 1 var denote, respectively, the initial numbers of
rows, columns and 0y1 variables in the problem. Cuts denotes the total number of

Table 7

Solution status for quasiumf2 and teleicm.

Optimal
Name  Rows  Cols 0y1 var.  LP obj. Cut obj.

MIP obj.

quasiunif2    240   521     56       11.72  62.64 +   65.67
teleicm  2672 * 7069*     58 34818.42      –   39345

Name  Runtime Node count      Machine type

quasiunif2 132277.5    349965 SP2 thin node (16 nodes)
quasiunif2 374075.7    366420 8 SPARC20y61’s
teleicm 306817.0    237802 8 SPARC20y61’s

+ Note that this value is different from that in [5] since different cuts were included in the
formulation.

* Size after one presolve on CPLEX. Original size is 3276 rows and 9611 columns (63
0y1 variables).

cuts added. LP obj., Cut obj., and Optimal obj. are, respectively, the objective value
of the initial LP relaxation, the objective value of the LP with cuts appended, and
the optimal MIP objective value. It is interesting to note that while the gap for
quasiunif2 is relatively small after the addition of cuts, this problem is very difficult
to solve. (This difficulty is the reason for not reporting running times with fewer than
eight processors.) Bienstock and Günlük [5] used a cutting plane algorithm to establish
a lower bound of 62.7. An upper bound of 65.67 was obtained by Cook after running
his branch-and-bound code on the extended formulation (i.e., with the cuts generated
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in [5] appended to the original formulation) for a few days of CPU time. We finally
solved this problem to proven optimality using the parallel MIP code reported herein.

6. Conclusion

We have presented a simple parallel branch-and-bound implementation for mixed
integer programs. The implementation is built on TreadMarks, a distributed shared
memory software environment that provides the abstraction of a network-wide virtual
memory. Such an environment provides for ease of programming on networks of Unix
workstations, as well as portability across platform and network types.

The MIP code incorporates strategies such as heuristics, problem reformulation,
and cutting plane generation that have repeatedly been shown to be effective – par-
ticularly when combined – in solving difficult, real-world MIP instances. In addition,
we use an apparently new branching approach, called strong branching, whereby a
branching variable is selected based upon a rule that involves performing a fixed
number of dual simplex pivots on each LP in a sequence of LP’s derived from sequen-
tially fixing each variable in a collection of fractional 0y1 variables to its upper and
lower bound.

Our numerical results demonstrate that this code is powerful enough to solve all
the mixed 0y1 MIPLIB problem instances, as well as two other difficult, real instances.
Moreover, the speedup achieved on the harder instances is in most cases close to linear,
and in some cases superlinear. Thus, this work provides some justification for the
time-consuming task of developing even more sophisticated mixed integer program-
ming codes in a similar environment.
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