
© J.C. Baltzer AG, Science Publishers

The parallel search bench ZRAM and its applications

Adrian Brünggera, Ambros Marzettab, Komei Fukudac and Jurg Nievergeltd

aNovartis Pharma AG, CH-4002 Basel, Switzerland

E-mail: adrian.bruengger@pharma.novartis.com

bThe International Computer Science Institute, Berkeley, CA 94704, USA

E-mail: ambros.marzetta@iaeth.ch

cInstitute of Operations Research, Swiss Federal Institute of Technology,
CH-8092 Zürich, Switzerland

E-mail: fukuda@ifor.math.ethz.ch

dInstitute of Theoretical Computer Science, Swiss Federal Institute of Technology,
CH-8092 Zürich, Switzerland

E-mail: nievergelt@inf.ethz.ch

 Distributed and parallel computation is, on the one hand, the cheapest way to increase
raw computing power. Turning parallelism into a useful tool for solving new problems, on
the other hand, presents formidable challenges to computer science. We believe that parallel
computation will spread among general users mostly through the ready availability of con-
venient and powerful program libraries. In contrast to general-purpose languages, a program
library is specialized towards a well-defined class of problems and algorithms. This narrow
focus permits developers to optimize algorithms, once and for all, for parallel computers of
a variety of common architectures. This paper presents ZRAM, a portable parallel library of
exhaustive search algorithms, as a case study that proves the feasibility of achieving simul-
taneously the goals of portability, efficiency, and convenience of use. Examples of massive
computations successfully performed with the help of ZRAM illustrate its capabilities and
use.

1. The role of computing power for combinatorial search

For half a century since computers came into existence, the goal of finding ele-
gant and efficient algorithms to solve “simple” (well-defined and well-structured)
problems has dominated algorithm design. Over the same time period, both processing
and storage capacity of computers have increased by roughly a factor of 106. The next
few decades may give us a similar rate of growth in raw computing power, due to
various factors such as continuing miniaturization, parallel and distributed computing.

Annals of Operations Research 90(1999)45–63 45

If a quantitative change of orders of magnitude leads to qualitative changes, where
will the latter take place? Many discrete combinatorial problems exhibit no detectable
regular structure to be exploited, they appear “chaotic”, and do not yield to efficient
algorithms. For such problems, exhaustive search of large state spaces appears to be
the only viable approach [23].

Whereas the asymptotic complexity of polynomial-time algorithms provides an
excellent basis for estimating computing times, meaningful a priori estimates are more
difficult to obtain for problems that require exhaustive search.

The latter exhibit many differences from those that admit efficient algorithms.
Typically, they are NP-hard, a technical term that has often been interpreted as “com-
putationally intractable”. But we consider this interpretation to be misleading. It is
rarely the case that all problem instances in such a class are computationally demand-
ing; it is not even necessarily the case that the average instance is hard – it is merely
certain that there exist computationally intractable instances in such a class. But such
hard instances might be sparse or, more to the point, not of a type that tends to occur
in applications. The (Euclidean) Traveling Salesman Problem is an example where
instances have been solved that are much larger than earlier theoretical insights would
have led one to expect.

Because of the great variation in complexity between different instances of the
same problem class, even among those of equal input size, the problems to be tackled
are often individual instances, rather than a class parametrized by input size n. For
example, we have solved Sam Loyd’s 15-puzzle played on a 4 × 4 array [6]. From this
instance, with a state space of size 1013, nothing of great interest follows for a general-
ized sliding puzzle played on an n × n array.

If asymptotics, the most powerful technique for performance estimation of effi-
cient algorithms, does not help, we are reduced to empirical observations. One rule of
thumb states that several state spaces of irregular structure have been exhaustively
searched up to a size of about 1010. This observation does not give us much information
about the chances of solving the 15-puzzle, whose state space is 1000 times larger. It
is difficult to predict, for a given instance of an exhaustive search problem, whether it
can be solved in an hour, or a year, or at all.

If we cannot predict what computational resources are required, there is always
the hope that a computer several orders of magnitude faster may do the job. Indeed,
experimentation with faster computers to explore the limits of computational power
has always driven scientific computing. Most of it was of the numeric type. There is
much less experience with discrete, combinatorial computing, despite impressive early
achievements such as the proof of the Four Color Theorem [1].

Insight into the power of exhaustive search for solving unstructed combinatorial
problems can only come from empirical tests – problems that challenge today’s com-
putational resources. Such experimentation calls for a combination of four ingredients
and that is the subject to this paper: suitable benchmark problems, general-purpose
search algorithms, convenient software tools, and powerful computers.

46 A. Brüngger et al. y ZRAM

Parallel and distributed computing have made vast raw computational power
widely available in recent years. But the potential user of this abundance of riches
faces two well-known major problems. The first is of an algorithmic nature: to what
extent the computation can be executed in parallel and the raw power available used
productively. The second is a matter of software tools, exacerbated by the facts that
there are few standards for parallel software and that parallel computers have a short
life: it takes much work to port and adapt software from one parallel machine to the
next.

2. A programmer’s workbench and library for parallel search

2.1. On the nature of parallel search

Most algorithms for solving search-intensive problems share common concepts
and features often described in introductory textbooks in artificial intelligence. Among
these, we recall:

• The problem is modeled as a state space: a problem graph where each node
represents a configuration that potentially needs to be considered, and each edge,
or “move”, transforms a configuration into a neighboring configuration. Typically,
the size of the state space can be estimated a priori, but is so large that only small
parts of it are represented explicitly at any one time, thus parts being visited
must be recomputed on the fly. Typically, the structure of the space is irregular
and unknown.

• The algorithm superposes a search tree on the edges of the graph and defines a
traversal order, usually chosen among a few standard ones, such as depth-first,
breadth-first, best-first, or iterative deepening.

• When any node is expanded (i.e., its neighbors are generated), each new neighbor
defines a new search problem of the same type. Thus, search algorithms are easily
parallelized. In addition, the fact that state spaces are typically enormous as
compared to the number of processors gives the programmer complete control
over the important parameter of granularity (i.e., the size of the subspace assigned
to any one processor).

• New search tasks are generated everywhere, along the entire frontier of the graph
visited so far, and can be processed almost independently of each other. This
situation lends itself to distributed computation, thus avoiding the bottleneck
typically associated with central control.

2.2. Portable software for parallel computers

Parallel computers differ greatly in their architecture in many respects, such as
the number of processors, the topology of communication networks, memory manage-

A. Brüngger et al. y ZRAM 47

ment, and many other factors that affect programming. Considering the rapidly
changing nature of hardware development, a program optimized for one particular
machine is likely to be obsolete within a few years. It is unreasonable to expect poten-
tial users of parallel computers, whose speciality is mostly the applications domain
rather than systems development, to write programs optimized for particular machines.

Standardized interfaces that facilitate porting software among parallel machines
of different architectures range from languages designed for parallel programming,
such as High Performance FORTRAN (HPF) [17], to communication libraries, such as
PVM [13] or MPI [15]. Most standards aim to be general-purpose platforms for any
kind of programs and applications, but they strike different trade-offs between con-
venience to the programmer and achievable machine efficiency.

If one aims to provide simultaneously high convenience to the programmer and
high efficiency, one has to drop some other desirable property – for example, that the
interface be general purpose. It is evident that by narrowing the range of applications
and or algorithms to be run, one can exploit special properties of data structures and
algorithms to achieve high efficiency.

This argument suggests that parallel computation may spread among general
users more by the ready availability of convenient and powerful program libraries
than by the development of parallel programming languages. In contrast to general-
purpose languages, a program library is specialized towards a well-defined class of
problems and algorithms. This narrow focus permits developers to optimize algo-
rithms, once and for all, for parallel computers of a variety of common architectures.

Many experiments in parallel branch-and-bound have been made (see [8,14]
for an overview). Most of them focus on particular applications or on various load-
balancing mechanisms. The need for general-purpose parallel search algorithm libraries,
though, was recognized as early as 1987 [10], and several libraries have been imple-
mented [4,19,22,29]. Most of them are specialized to branch-and-bound. With ZRAM
[20], we aim at a broader application range and in particular, at long computations. As
far as we know, ZRAM is the first parallel search library to include reverse search and
checkpointing.

2.3. Structure of ZRAM

ZRAM, a portable parallel library of exhaustive search algorithms, is designed
as a case study to prove the feasibility of the goals listed above: portability, efficiency,
and convenience of use. The goal of portability is achieved through ZRAM’s archi-
tecture based on three interfaces that separate four layers of software (figure 1):

• Message passing interface

This interface hides all machine dependencies of the host systems. Since it has
been modeled on a subset of the standard message passing interface MPI, we
call it MPI –. It retains the basic nonblocking point-to-point send and receive
primitives of MPI, but omits collective communication, communicators, etc.

48 A. Brüngger et al. y ZRAM

MPI – has been implemented for parallel computers as diverse as the Intel
Paragon, NEC Cenju-3, ETH GigaBooster, and workstation networks using MPI.
A single workstation or a Macintosh is treated as a parallel computer which has
only one processor.

• Virtual machine
A layer of service modules enhances the message passing interface with functions
common to many parallel programs, in particular to the search engines: dynamic
load balancing, checkpointing, termination detection and a (virtual) front-end
processor (section 3).

• Application interface
A library of Search Engines that run on top of the virtual machine makes up the
layer that implements the top-most interface. Search algorithms (and the data
structures they use) implemented so far include backtrack, branch-and-bound,
reverse search [3], and a tree-size estimator based on sampling [16].

• Applications
Most ZRAM users will write programs only at this level: typically, some applica-
tion-specific functions, such as branching rules, and a short, sequential main
program that calls a search engine. Notice that there is no explicit parallelism in
this layer! Application programs can range from simple to fairly elaborate, such
as the two examples we will describe: a convex hull computation using reverse
search and the branch-and-bound search for the hardest position in Sam Loyd’s
“15-puzzle” (section 5).

Applications

 – Application interface –

– Virtual machine –

 – Message passing (MPI –) –

Quadratic Assignment, Traveling Salesman, 15-Puzzle, Vertex
Enumeration, Euclidean Spanning Trees,…

Branch
and

Bound

Reverse
Search

Backtrack Tree Size
Estimation

Virtual front end, termination detection,
dynamic load balancing, checkpointing

Intel
Paragon

Workstation
network

MPI

Giga-
Booster

Mac
NEC

Cenju-3

Search
engines

Service
modules

Host
systems

Figure 1. ZRAM architecture.

A. Brüngger et al. y ZRAM 49

ZRAM is still under development. Interfaces to other machines and additional
search algorithms will be implemented. The initial experience with ZRAM, however,
already proves its capability to solve previously unsolved large-scale search problems
efficiently, in parallel, with a modest investment in programming time.

3. The virtual machine: interface and common services

Defining a virtual machine is a time-honored technique to achieve portability by
hiding most of the machine dependencies. A useful virtual machine must strike a
balance between two competing goals:

• High-level abstraction
A sufficiently high-level interface hides differences among various host systems
and facilitates program development.

• Efficiency
It must be possible to map the interface onto the target hosts with little loss of
efficiency.

3.1. Services provided

ZRAM is designed for a message passing model of parallel computation. The
abstraction level of the two most popular message passing virtual machines, PVM
and MPI, is too low for our purposes. The ZRAM virtual machine provides the follow-
ing additional functions:

(1) Dynamic load balancing
In practice, the size and shape of a search tree is unknown at the beginning of a
computation. Thus, it cannot be partitioned into subtrees of equal size a priori.
Therefore, a parallel search algorithm needs a mechanism to redistribute the work
among the processors during the computation when the sizes of subtrees become
available and processors run out of work. As this issue is common to most tree
search algorithms, dynamic load balancing is implemented in the virtual machine.
At present, ZRAM offers two distinct load-balancing disciplines, a general one
(relaxed queue, see section 3.2) and one specialized to best-first search (specula-
tive priority queue).

(2) Checkpointing
Our computations take days or weeks on a powerful parallel computer. Since it
is rarely possible to get that much processor time in one chunk, a checkpointing
facility is necessary (see section 3.3). The combination of load balancing and
checkpointing supports a dynamically changing number of processors: computa-
tions can be interrupted at a checkpoint and continued later with a different
number of processors.

50 A. Brüngger et al. y ZRAM

(3) Distributed termination detection
Many distributed algorithms need some way of detecting the condition when all
subtasks spawned have terminated. ZRAM contains a standard algorithm [21]
for global termination detection.

(4) A (virtual) front-end processor
Parallel programs often use a master process for managing sequential tasks, such
as initialization, reading input and making an initial distribution of the work to
other (slave) processors. Slaves execute a main loop consisting of a receive
operation, a computation, and sending results back to the master. Hiding this
main loop inside the virtual machine makes programs more readable. Hence,
ZRAM defines a front-end process that executes the main program, and slave
processes that execute their receive–compute–send loop. Every call to a search
engine on the front end corresponds to one iteration of the loop by the slaves. In
contrast to a pure master–slave model, the processing elements (slaves) may
communicate with each other during the compute phase by using MPI’s point-
to-point communication. Some host systems include a designated front-end
processor, others do not. In the latter case, the front-end process and one compute
process are assigned to the same physical processor.

(5) Implicit receive operation
Typical message passing programs contain receive operations followed by a
switch statement on some message tag. This programming style is analogous to
a (non-object-oriented) procedure that executes a switch on the type of its argu-
ments, and has the same disadvantage (collecting information which does not
belong together, lack of extensibility). Our virtual machine installs every mes-
sage tag together with a message handler procedure, and the handler is called
implicitly when a message is received.

3.2. Dynamic load balancing implementation

ZRAM’s dynamic load-balancing mechanism (relaxed queue) is currently used
by all search engines except best-first branch-and-bound. Since centralized load
balancing among many processors easily becomes a bottleneck, ZRAM balances com-
putational loads in a distributed manner. Although we have implemented only one load-
balancing algorithm, the algorithm could be replaced without changing the interface.

From an abstract point of view, the virtual machine manages just one (distributed)
data structure: a global queue of work units (for depth-first branch-and-bound, a work
unit is a subtree represented by its root node; for reverse search, it is an interval of the
depth-first traversal of the tree). Every processor repeatedly removes a work unit from
the global queue, works on it, and inserts zero or more new (smaller) work units into
the queue. The algorithm terminates when the virtual machine detects that the global
queue is empty.

A. Brüngger et al. y ZRAM 51

Viewed locally, every processor manages its own local queue of work units. It
can remove items from the queue and insert others. The coarse-grain parallelism pre-
valent in search algorithms allows simple load-balancing heuristics to be effective.
Because a single node of the search tree almost always generates many new nodes, all
processors are usually busy working off the initial node assigned to them. Only towards
the very end of the computation do some processors become idle. When the local
queue of a processor becomes empty, it sends an “I need work” message to some
other randomly selected processor. If this second processor’s local queue contains at
least two elements, it sends one of these back to the requesting processor. Otherwise,
the second processor forwards the “I need work” message to a third processor. To
keep the algorithm simple, the third and all succeeding processors are selected in a
round-robin fashion rather than randomly.

3.3. Checkpointing implementation

Where is the best place to implement checkpointing? The same mechamism that
transfers data between processors in order to balance the load is also used to save data
to disk. At regular intervals (e.g., every hour) during the tree search, the computation
is interrupted, the dynamic load-balancing algorithm is brought into a known state by
synchronizing all processors, and the global queue of work units is saved to disk. The
virtual machine then calls a function in the search engine to save other relevant data,
such as current bounds. On machines supporting a signal facility, checkpointing can
also be triggered by sending a signal to the process group before killing the job.

To restart the computation, the virtual machine first reads the global data and
broadcasts it to all processors. It then reads the queue of work units and redistributes
it onto the new set of processors. Finally, it calls a search engine function to read the
other saved data.

4. Library of parallel search algorithms

4.1. Application interface

ZRAM search engines are implementations of general-purpose search algorithms,
such as backtrack, branch-and-bound, and reverse search. Since branch-and-bound is
a general paradigm and admits many technical variations, it is implemented by three
distinct search engines.

There is no explicit parallelism at the application interface level. All the search
engines share the same style of interface. When using a search engine, one has to

• define the global data to be distributed among the processors;

• define a data type for the nodes of the search tree;

• define the problem-specific routines that are to be called by the search engine
(figure 2).

52 A. Brüngger et al. y ZRAM

The global data, which describes the problem instance, is initialized by the main
program and supplied to the search engine as a parameter. It is then broadcast to all
processors. It cannot be modified during the execution of the search algorithm.

ZRAM’s search engines automatically distribute the nodes of the search tree
among the processors. In contrast, the work to be done in a single node, which is
application-dependent, is not parallelized. This approach is efficient for search trees
much larger than the number of processors, whose coarse granularity does not limit
achievable speedup [5]. The tree-size estimator calls the same problem-specific rou-
tines as the search engines.

Below, we describe the implementation of each search algorithm.

4.2. Branch-and-bound

Branch-and-bound is a standard tool of combinatorial optimization, used to mini-
mize or maximize a given objective function over some state space. Without loss of
generality, we describe the minimization case. A branching rule is used to recursively
divide a space into subspaces, thus generating a search tree. A relaxed version of the
original problem, solved in each subspace, yields a lower bound for the optimal solu-
tion. Whenever the lower bound exceeds the currently known best solution, or an
optimal solution of the subproblem is found, a cut-off occurs. Among various traversal
orders of the search tree, best-first has the advantage that the resulting search tree
contains the minimum number of nodes.

Every branch-and-bound search engine needs three application-dependent func-
tions: a branching function, which also computes lower bounds of subnodes; a solution
test; and a function which compares the lower bounds stored in two nodes.

Figure 2. Call graph for the branch-and-bound interface.

A. Brüngger et al. y ZRAM 53

We have implemented three variants of sequential and parallel branch-and-
bound engines: depth-first, iterative deepening, and best-first. Depth-first and iterative
deepening, which require a stack, balance computational load by using the load-
balancing module described in section 3.2. Best-first, which requires a priority queue,
is approximated by using a heuristic, speculative priority queue. In contrast to a priority
queue, which returns a global minimum, a speculative queue returns a node close to
minimum. This is a trade-off between the communication overhead involved in finding
a global minimum and the search overhead caused by the expansion of non-minimum
nodes.

The following applications have been implemented using the branch-and-bound
engine:

• Traveling Salesman Problem using the Held–Karp 1-Tree as the lower bound,
with iteration of Lagrangian coefficients [5].

• Quadratic Assignment Problem using the Gilmore–Lawler bound.

• Vertex cover.

• 15-puzzle.

We present the last application in detail in section 5.2.

4.3. Reverse search

Reverse search [2,3] is a memory-efficient technique for enumerating the vertices
of a graph without marking visited vertices. Its time complexity is linear in the output
size and its space complexity is independent of the output size.

Suppose we have a finite connected graph G and an objective function to be
maximized over its vertices. A local search algorithm is a procedure for moving from
a vertex to an adjacent vertex whose objective function value is larger. Obviously, the
local search algorithm finds a local optimum. The union of all paths that can be chosen
by the local search algorithm is a partition of the graph into trees rooted at the local
optima.

Reverse search reverses this process. Suppose that a graph G is given in the form
of an adjacency oracle that returns all the neighbors of any given vertex, and suppose
that we know how to enumerate all the local optima. Starting at each local optimum,
we can traverse every tree in a depth-first manner, and thus enumerate all vertices of
the graph.

The reverse search engine needs four application-dependent functions: the local
search function, the adjacency oracle, an equality test for vertices, and the maximum
degree in the graph.

Reverse search traverses a tree in depth-first order. It uses the adjacency oracle
to move down the tree (away from the root) and the local search function to move up.
In contrast to backtracking, which has a space complexity proportional to the height

54 A. Brüngger et al. y ZRAM

of the tree, reverse search does not have to save the whole path from the current node
back to the root, and thus its space complexity is independent of the height of the tree.
ZRAM keeps a cache of ancestors of the current node which eliminates most calls to
the local search function. Load balancing transfers subproblems (intervals) between
processors, but not the ancestor cache. This loss of context contributes to the parallel-
ization overhead.

The memory requirements of reverse search are independent of the size of the
graph, and any intermediate state of the sequential computation can be saved by merely
recording the current node, along with the values of global variables, such as bounds.
Thus, checkpointing and restarting a computation are inexpensive operations, a great
practical asset for long computations.

The large variance in the size of the subtrees, coupled with the impossibility of
estimating their sizes, creates the need to balance the processor load dynamically. The
reverse search engine uses the load balancer of ZRAM’s virtual machine. The work is
not split into contiguous subtrees, but rather into intervals of the tree’s pre-order
traversal. In this memory-efficient approach, every processor stores only one interval
instead of a set of subtrees. Such an interval [s, e] extends from its start node s to its
end node e. Two operations are defined on intervals: (1) removing the start node of an
interval, and (2) splitting an interval of size greater than one into two parts [s, m] and
[m + 1, e].

We can limit our implementation to a set of intervals which contains the interval
corresponding to the whole search tree and is closed under these two operations, so
we work only with intervals representable by a triple hs, d, ki, where d is the depth of
the start node relative to the least common ancestor and k is the number of the node
following e as a neighbor of the least common ancestor defined by the adjacency

oracle (figure 3). The whole search tree is represented by the triple hroot, 0, `i. As
the average size of a node is typically much greater than two integers, this imple-
mentation outperforms one which simply stores the start and the end node.

Figure 3. The filled circles mark an interval of the pre-order traversal represented
by hs, 2, 3i. The nodes which may be in the ancestor cache are marked by a 3.

A. Brüngger et al. y ZRAM 55

The following applications have been implemented using the ZRAM reverse
search engine:

• convex hull and vertex enumerations in polyhedra [2];

• enumeration of connected induced subgraphs;

• enumeration of Euclidean spanning trees.

For other applications of reverse search, see [3]. In section 5.1, we present some
computational results of the vertex enumeration application.

4.4. Backtracking

Backtracking is a form of exhaustive search used to find all solutions to a prob-
lem. In contrast to branch-and-bound, no upper bound is saved in order to prune
subtrees. This simplifies the interface (no comparison between nodes) and the imple-
mentation (no broadcasting of upper bounds). In fact, the application has to provide
only a branching procedure, and the search engine takes care of the rest.

The following applications have been implemented using the backtrack code:

• the n-queens problem;

• enumeration of all partitions of a set.

4.5. Tree size estimation

If one knew the running time of a given problem instance before starting the
computation, one could avoid starting computations which later turn out to exceed the
time available. This would be preferable to killing a computation which has already
used many resources.

Since we cannot predict the running times of a branch-and-bound algorithm by
traditional complexity analysis (aside from very weak worst-case considerations),
another approach is needed for estimating the resources such as running time involved
in the actual solution of an instance. The difficulty of a given instance is estimated in
order to decide whether or not it is solvable by the available algorithm in a reasonable
time.

Knuth’s tree-size estimator [16] evaluates a relatively small number of paths of
the search tree and computes the degree of every node along these paths. This infor-
mation provides an unbiased estimate of the size of the full tree. In the ZRAM imple-
menation, every processor independently follows some number of paths in the search
tree and collects the data needed. At the end of the computation, one processor gathers
the results and computes the mean and standard deviation.

The different paths in a search tree generally have different lengths and their
evaluations have different running times. As in any other search engine, the total work
of the estimator is balanced dynamically among the processors.

56 A. Brüngger et al. y ZRAM

5. Applications and benchmarks

ZRAM, running on a variety of parallel computers, has been instrumental in
solving search-intensive problems that are too large for sequential computers. We
describe two of them:

• Convex hull and vertex enumeration in polyhedra (reverse search).

• The 15-puzzle (branch-and-bound).

5.1. Convex hull and vertex enumeration in polyhedra

A convex polyhedron, or simply polyhedron, is the solution set of a system of
linear inequalities in d variables; it is a subset P of the d-dimensional space Rd of the
form {x ∈Rd : Ax ≤ b}, for some matrix A ∈Rm × d and vector b ∈Rm. The vertex
enumeration problem asks for the generation of all vertices (extreme points) of P for
given inputs A and b. The convex hull problem is the reverse problem, that is, for a
given set V of m points in Rd find minimal A and b whose solution is the convex hull
of V. These two problems are computationally equivalent (see [2,11]), and have been
extensively studied in operations research and computational geometry. Many prob-
lems, such as the computation of the d-dimensional Voronoi diagram or the Delaunay
triangulation, can be reduced to one of these problems, see [9].

The reverse search algorithm [2] has the best time and space complexities for
solving these two problems, at least under the assumption of nondegeneracy. The time
and space complexities of the vertex enumeration problem for υ vertices are O(mdυ)
and O(md), respectively. Reverse search is ideally suited for parallel computation,
unlike other known algorithms such as the double description method and its dual, the
beneath-and-beyond method [9], which is a memory-intensive sequential algorithm.

Table 1 shows the running times for a sample polytope on four different machines.
The polytope c7-3 is the cross product of the dual of the 7-dimensional hypercube and
a 3-dimensional cube. It is 10-dimensional, has 134 facets and 112 vertices, and thus
d = 10, m = 134 and υ = 112. The reverse search algorithm generates 75040 bases in
a search tree of depth 37. Note that each basis of the system Ax ≤ b represents a vertex,
but generally there are many bases representing the same vertex. Typical instances
that arise in applications and have been solved using ZRAM are three orders of magni-
tude larger.

Figure 4 shows the speedup of parallel vertex enumeration on the Paragon MP
(Cenju-3 results are similar). The speedup of 35.2 for 100 processors is rather good,
considering the small test problem. Higher dimensional problems with much wider
and larger search trees have a more favorable speedup. See section 4.3 for an expla-
nation of the parallelization overhead.

Our parallel code was able to solve three large polytopes on a Cenju-3 with 64
processors (table 2). These instances could not be solved on any single workstation
– estimated CPU time on a DEC AXP workstation ranges from 130 days to 5.4 years.

A. Brüngger et al. y ZRAM 57

Table 1

Running times for c7-3 on different machines.

Machine Processors Time [s] Speedup

DEC AXP 3000 700 1 791.5 1.0

Paragon MP 1 2523.0 1.0
10 268.3 9.4

100 71.6 35.2
150 65.7 38.4

Cenju-3 1 952.0 1.0
10 101.5 9.4

100 27.8 34.2

GigaBooster 1 1520.3 1.0
7 248.3 6.1

The Cenju-3 system used is a research machine dedicated primarily to software
development. During the computation, it was rebooted with different system software
at unexpected times. Thus, the restart capability of ZRAM running reverse search was
essential.

Figure 4. Speedup for c7-3 on the Intel Paragon.

Table 2

Three previously unsolved polytopes.

Name d m υ Bases
 Time Time on workstation
(64 processors) (estimated)

01torus15x 14 240 101445 409794857 3 days 130 days
mit71-61 60 71 3149579 57613364 4.5 days 130 days
01torus16x 15 340 519275 3971059018 38 days 5.4 years

58 A. Brüngger et al. y ZRAM

5.2. The 15-puzzle

Games and puzzles often serve as ideal test cases for calibrating the effective-
ness of “brute force” approaches to enumeration problems. Simple rules and problem
instances that cover a wide range of difficulty have made puzzles standard benchmarks
for measuring progress and for assessing the performance of various search techniques.
The steadily rising computing power of available hardware has made it possible to
attack problems which seemed unsolvable a few years ago. Examples of successful
applications of exhaustive search techniques are chess endgames (where all five-stone
endgames without pawns and some with pawns have been analyzed [26–28]), or the
game of Nine Men’s Morris, which has been proved to be a draw [12]. The largest
state spaces which have been search exhaustively are about 1010 states (e.g., Nine
Men’s Morris or the chess endgame KRNKNN). The 15-puzzle state space contains
about 1013 positions and is a target for a new milestone in exhaustive search.

Sam Loyd’s 15-puzzle consists of a permutation of 15 numbered tiles and an
empty space over a 4 × 4 board (figure 5). Any tile adjacent to the empty space can
slide into the empty space in a single move. The goal is to find, for any given starting

Figure 5. The 15-puzzle.

permutation, a minimum sequence of moves that leads to the goal state. The general-
ized n × n version of this problem is NP-hard in the size of the board [24]. A branch-
and-bound algorithm that uses the Manhattan distances as a lower bound and executes
an iterative-deepening search has become the standard approach [18]. It has been
enhanced by refinements, such as hashing techniques to avoid redundant computation
[25], or databases of tight lower bounds [12].

The hardest positions (those requiring the maximum number of moves in a mini-
mum solution sequence) were unknown previous to this work. Gasser [12] found 9
positions, requiring 80 moves, and proved that there are no positions requiring more
than 87 moves. We have now proved that the hardest 15-puzzle positions require, in
fact, 80 moves. We have also discovered two previously unknown positions, requiring
exactly 80 moves to be solved.

Our search for the hardest 15-puzzle position iterates, for various values of k,
two steps:

A. Brüngger et al. y ZRAM 59

Step 1 . Generate a candidate set that contains all positions p which may require
more than k moves (and probably contains some positions requiring less than
k moves);

Step 2 . For each candidate, prove either that it can be excluded from the candidate
set, or that it requires more than k moves.

The generation of the candidate set is done by applying to all positions p in the 15-
puzzle a heuristic that returns a path from p to the goal positions, with its length h(p).
Whenever h(p) > k, p becomes a candidate. The requirements on h are

(A) It is fast, so it can be evaluated for all 1013 positions.

(B) It is a good upper bound, so the candidate set is not bloated by too many simple
positions.

We met these requirements by computing and storing databases for many partial
solutions. In a first step, a subset of the tiles are moved to their goal position. A first
database contains the optimal values for all permutations of this subset. In the second
step, the remaining tiles are moved to their goal positions without moving the tiles
fixed in the first step. Again, a database contains the optimal values for all permutations
of the remaining tiles on the remaining board. Experiments with different settings of
the first subset of tiles have led us to choose the L-shaped rim consisting of the right-
hand column and the bottom row of the 4 × 4 board. Thus, the second step reduces to
finding the optimal solutions of the 3 × 3 puzzle.

Different approaches can be used during the proving phase. The obvious approach
of actually solving each candidate requires too much time. A shortcut for reducing the
candidate set applies consistency constraints CC. As an example, let c be a candidate
and ni its adjacent positions (i.e., those that can be reached from c in a single move).
If min(h(ni)) < h(c) – 1, a shorter path for c can be found.

Both steps of the algorithm are computationally intense. Using ZRAM on 64
nodes of an Intel Paragon, we have computed the candidate set shown in table 3.

Table 3

Number of candidates in the generated candidate set.

 k h(c) Before applying CC After applying CC

79 80 34189 33208

81 3792 1339

82 393 44

83 8 0

84 1 0

≥ 85 0 0

60 A. Brüngger et al. y ZRAM

The remaining 1383 candidates, which might require 81 or more moves, have
been solved in parallel by the standard branch-and-bound algorithm. Additionally, we
used a depth-14 move generator to avoid a single 15-puzzle position appearing several
times in the search tree, thus reducing the number of nodes in the very large search
trees by roughly a factor of four compared to the standard approach. These compu-
tations were carried out on the NEC Cenju-3 with from 64 up to 128 processors and
the solution of the 1383 instances took approximately three days on Cenju-3, which is
the equivalent of 230 days of (sequential) CPU time. Thus, the computation would
have been impossible within reasonable time without the use of a parallel computer
system. The computation has shown that all 1383 candidates require less than 81
moves to be solved. Six positions required exactly 80 moves, 4 of them have previously
been detected by Gasser [12]. The new ones are (15, 14, 13, 12, 10, 11, 8, 9, 2, 6, 5,
1, 3, 7, 4, 0) and (15, 11, 13, 12, 14, 10, 9, 5, 2, 6, 8, 1, 3, 7, 4, 0). The computation
proves that the hardest 15-puzzle positions require exactly 80 moves to be solved.

6. An emerging tool

Our portable library of parallel search algorithms ZRAM, although still under
development, has already provided several useful functions. Thanks to the straight-
forward porting to half a dozen machines of different architectures, ZRAM has served
as a rapid-prototyping tool for benchmark tests that compare the performance of vari-
ous computers.

However, our aim in developing ZRAM is not merely to facilitate computational
experiments, but rather to provide a tool that permits users who are not specialists in
parallel computing to solve application problems they cannot solve by other means.
Admittedly, for a limited class of problems, namely those that are dominated by search,
ZRAM harnesses the extensive computing power of parallel machines in an efficient
manner, without special efforts on the part of the applications programmer. As we
have shown, the search algorithms built into ZRAM often achieve a linear speedup
over a wide range of problem sizes and number of processors.

The goal of providing a useful tool has already been achieved. One of the vertex
enumeration calculations described (mit71-61) arises from previously unsolved
materials science problems presented by Garbulsky of MIT [7]. The solitaire cone
calculations (01torus15x and 01torus16x) confirm conjectures by Deza (Ecole Poly-
technique Fédérale de Lausanne, Switzerland).

Other programmers are now extending the library of search algorithms. In due
time, we expect ZRAM to include a comprehensive library that contains most general-
purpose search techniques. We encourage readers to experiment with it. The ZRAM
source code is available at http: wwwjn.inf.ethz.ch ambros zram zram.html.

Acknowledgements

We thank David Avis for permission to use and modify his “Irs” code, which we
have integrated into ZRAM, Will Sawyer for his help with porting ZRAM to the NEC

A. Brüngger et al. y ZRAM 61

Cenju, the Swiss Center for Scientific Computation for the extensive use of their
facilities, Tony Gunzinger for making available a parallel computer GigaBooster, and
the Swiss National Science Foundation for financial support.

References

[1] K. Appell and W. Haken, The solution of the four-color-map problem, Sci. American (Oct. 1977)
108–121.

[2] D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrange-
ments and polyhedra, Discrete Computational Geometry 8(1992)295–313.

[3] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Applied Mathematics 65(1996)
21–46.

[4] M. Benaïchouche, V. Cung, S. Dowaji, B. Le Cun, T. Mautor and C. Roucairol, Building a parallel
branch and bound library, in: Solving Combinatorial Optimization Problems in Parallel, LNCS
1054, eds. A. Ferreira and P. Pardalos, Springer, Berlin, 1996, pp. 201–231.

[5] A. Brüngger, A parallel best-first branch and bound algorithm for the traveling salesperson problem,
in: Proceedings of the 9th International Parallel Processing Symposium, Workshop on Solving
Irregular Problems on Distributed Memory Machines, ed. S. Ranka, 1995, pp. 98–106.

[6] A. Brüngger, Solving hard combinatorial optimization problems in parallel: Two case studies, Ph.D.
Thesis, ETH Zürich, 1997.

[7] G. Ceder, G.D. Garbulsky, D. Avis and K. Fukuda, Ground states of a ternary fcc lattice model with
nearest- and next-nearest-neighbor interactions, Physical Review B49(1994)1–7.

[8] R. Corrêa and A. Ferreira, Parallel best-first branch-and-bound in discrete optimization: A frame-
work, in: Solving Combinatorial Optimization Problems in Parallel, LNCS 1054, eds. A. Ferreira
and P. Pardalos, Springer, Berlin, 1996, pp. 171–200.

[9] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer, 1987.
[10] R. Finkel and U. Manber, DIB – a distributed implementation of backtracking, ACM Transactions

on Programming Languages and Systems 9(1987)235–256.
[11] K. Fukuda and A. Prodon, Double description method revisited, to appear in: Lecture Notes in

Computer Science , Springer. PS file available from ifor13.ethz.ch (129.132.154.13), directory pub
fukuda reports.

[12] R. Gasser, Harnessing computational resources for efficient exhaustive search, Ph.D. Thesis, ETH
Zürich, 1995.

[13] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek and V. Sunderam, PVM: Parallel Virtual
Machine – A User’s Guide and Tutorial for Networked Parallel Computing, MIT Press, 1994.

[14] B. Gendron and T.G. Crainic, Parallel branch-and-bound algorithms. Survey and synthesis, Operations
Research 42(1994)1042–1066.

[15] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-
Passing Interface, MIT Press, 1994.

[16] D.E. Knuth, Estimating the efficiency of backtrack programs, Math. Comp. 29(1975)121–136.
[17] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Stelle, Jr. and M.E. Zosel, The High Performance

FORTRAN Handbook, MIT Press, 1994.
[18] R.E. Korf, Depth-first iterative deepening: An optimal admissible tree search, Artificial Intelligence

62(1993)97–109.
[19] N. Kuck, M. Middendorf and H. Schmeck, Generic branch-and-bound on a network of transputers,

in: Transputer Applications and Systems ’93, eds. R. Grebe et al., IOS Press, Amsterdam, 1993, pp.
521–535.

[20] A. Marzetta, ZRAM: A library of parallel search algorithms and its use in enumeration and com-
binatorial optimization, Ph.D. Thesis, ETH Zürich, 1998. http: www.inf.ethz.ch publications
diss.html.

62 A. Brüngger et al. y ZRAM

[21] F. Mattern, Experience with a new distributed termination detection algorithm, in: Distributed
Algorithms 1987, LNCS 312, Springer, 1987, pp. 127–143.

[22] G.P. McKeown, V.J. Rayward-Smith and H.J. Turpin, Branch-and-bound as a higher-order function,
Annals of Operations Research 33(1991)379–402.

[23] J. Nievergelt, R. Gasser, F. Mäser and C. Wirth, All the needles in a haystack: Can exhaustive
search overcome combinatorial chaos?, Invited paper in Lecture Notes in Computer Science 1000,
Computer Science Today, ed. J. van Leeuwen, Springer, 1995, pp. 254–274.

[24] D. Ratner and M. Warmuth, Finding a shortest solution for the (N × N)-extension of the 15-puzzle
is intractable, Journal of Symbolic Computation 10(1990)111–137.

[25] A. Reinefeld and T.A. Marsland, Enhanced iterative-deepening search, Reihe Informatik 120,
Paderborn Center for Parallel Computing, 1993.

[26] L.B. Stiller, Exploiting symmetry on parallel architectures, Ph.D. Thesis, The Johns Hopkins Uni-
versity, 1995.

[27] K. Thompson, Chess endgames, vol. 1, ICCA Journal 14(1991)22.
[28] K. Thompson, Chess endgames, vol. 2, ICCA Journal 15(1992)149.
[29] S. Tschöke and T. Polzer, Portable parallel branch-and-bound library: User manual, Technical

Report, University of Paderborn, 1995.

A. Brüngger et al. y ZRAM 63

