
© J.C. Baltzer AG, Science Publishers

On the best search strategy in parallel branch-and-bound:
 Best-First Search versus Lazy Depth-First Search

Jens Clausena and Michael Perregaardb,★

aIMM, Department of Mathematical Modelling, Technical University of Denmark,
DK-2800 Lyngby, Denmark

bDIKU, Department of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark

E-mail: jc@imm.dtu.dk;perre@diku.dk

     The Best-First Search strategy (BeFS) and the Depth-First Search strategy (DFS) are
regarded as the prime strategies when solving combinatorial optimization problems by parallel
Branch-and-Bound (B&B) – BeFS because of efficiency with respect to the number of nodes
explored, and DFS for reasons of space efficiency.
     We investigate the efficiency of both strategies experimentally, and two versions of each
strategy are tested: In the first, a B&B iteration for a node consists of bounding followed by
branching on the node if necessary. For the second, the order is reversed – first branching
takes place, and then each child of the node is bounded and possibly fathomed. The first is
called lazy, the second eager .
     The strategies are tested on the Quadratic Assignment Problem and the Job Shop Scheduling
Problem. We use parallel codes developed specifically for the solution of the problem in
question, and hence containing different heuristic rules and tests to speed up computation.
In both cases, we start with an initial solution close to but not equal to the optimal solution.
     Surprisingly, the BeFS-based strategies turn out to be inferior to the DFS-based strategies,
both in terms of running times and in terms of bound calculations performed. Furthermore,
when tested in a sequential setting, DFS turns out to be still superior because pruning and
evaluation tests are more effective in DFS due to the presence of better incumbents.

1. Introduction

One of the key issues of search-based algorithms in general and B&B algorithms
in particular is the search strategy employed: In which order should the unexplored
parts of the solution space be searched? Different search strategies have different
properties regarding time efficiency and memory consumption, both when considered
in a sequential and a parallel setting.
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In parallel B&B, one often regards the Best-First Search strategy (BeFS) and the
Depth-First Search strategy (DFS) to be two of the prime candidates – BeFS due to
expectations of efficiency and theoretical properties regarding anomalies, and DFS
for reasons of space efficiency. However, BeFS requires that the bound for each node
be calculated when the node is created, whereas DFS leaves freedom to postpone the
bound calculation.

We introduce the concept of laziness, i.e. postponing bound calculations as long
as possible, and describe traditional (here termed eager) and lazy versions of both
BeFS and DFS. These are all implemented in an existing parallel branch-and-bound
framework code running on a 16-processor MEIKO Computing Surface. The code
has been tailored to solve two hard combinatorial optimization problems: Quadratic
Assignment (QAP) and Job Shop Scheduling (JSS). The tailoring consists of adding
bounding functions and different efficiency enhancing tests between branchings to
the parallel framework.

Experiments with the different search strategies are then performed based on
initial lower bounds close to but not equal to the optimal solution.These reveal that
general statements on the efficiency of eager BeFS with respect to minimizing the
number of bounds calculated are not valid. The parallelism and the enhancement of a
given branch-and-bound algorithm with rules to fix variables between branchings
result in superiority of DFS regarding time efficiency (in addition to its superior
properties regarding space efficiency). Furthermore, even in the sequential case, eager
BeFS is inferior to the other strategies.

To explain the poor results for eager BeFS, we conducted experiments for QAP
for different sequential versions of the branch-and-bound algorithm. These versions
gradually approach a pure branch-and-bound algorithm, in which the only operations
are branching and bounding. We make no use of additonal information, either during
branching or during bounding. Surprisingly, BeFS turns out to be superior with respect
to efficiency only if pure branch-and-bound is applied, however at a cost of almost
tripling the number of bound calculations made to obtain the optimal solution.

The paper is organized as follows. In section 2, we outline the strategies to be
tested, and previous results on the behaviour of parallel branch-and-bound algorithms
are reviewed in section 3. Section 4 contains descriptions of the two problems on
which the experiments were performed. The experimental results constitute section 5,
and section 6 is a general discussion of the pros and cons of each strategy in relation
to the experiments performed.

2. Search strategies

Recently, two surveys on parallel search methods in combinatorial optimization
have been published: one covering specifically branch-and-bound by Gendron and
Crainic [10], and one also dealing with search methods in connection with artificial
intelligence by Grama and Kumar [11]. Both surveys describe the BeFS and the DFS



search strategy. From these descriptions, it is apparent that branch-and-bound
algorithms using different strategies differ slightly with respect to the contents of an
iteration of the algorithm.

If BeFS is used, the live subproblems are stored together with their lower bound,
and an iteration in a sequential branch-and-bound consists of choosing a live sub-
problem with least lower bound, performing branching on the subproblem to generate
its children in the search tree, and calculating the lower bound for each child. Each
child is then either fathomed by comparing the bound with the best solution value yet
discovered (called the incumbent) or stored in the pool of live subproblems together
with its lower bound. We call this processing scheme eager  (in line with terminology
from functional programming), since bound calculation is performed as soon as a
subproblem is generated.

When DFS is used, a live subproblem is stored without a bound (or with the
bound of the father node in the search tree). An iteration starts with one bound calcu-
lation, followed by branching if the subproblem is not fathomed. Finally, the children
of the node are stored in a last-in-first-out data structure to facilitate easy access to the
next subproblem to be processed, which by the selection strategy is one of those just
generated. Hence, all children of a node are considered before any of its siblings. The
processing scheme is called lazy since the heavy part of the work in processing a
subproblem – the bound calculation – is postponed as long as possible (in the hope
that it becomes unnecessary).

The virtue of BeFS with regard to the number of subproblems bounded stems
from the fact that no subproblem with a lower bound greater than the optimum value
is ever branched on – it will simply not be processed before the optimal solution has
been discovered. All subproblems with a lower bound less than the optimum value
(critical subproblems) will of course be branched on and, in addition, some subproblems
with a lower bound equal to the optimum value (semicritical) may be processed. Note
that if an optimal solution for the problem at hand is given as the initial solution (for
instance, produced by a heuristic), then DFS also processes only critical subproblems.
The better an initial solution is, the less one would expect the difference between
BeFS and DFS to be (measured in number of nodes bounded).

In a sequential DFS branch-and-bound, it is not possible to find a solution during
the search of the subtree of the first child of a node, which enables fathoming of the
other children without bounding these. Since each child is stored either without a
bound or with the bound of the father node, fathoming of the children requires fathom-
ing of the father node, which obviously cannot be done based on a solution found in
one of the child nodes. In a parallel setting, other parts of the search tree are searched
concurrently. The situation is therefore different in that a solution may be found during
the processing of the first child, which enables fathoming of the parent node and
thereby all children. Hence, it is common in the parallel setting to store each node in
a DFS branch-and-bound together with the bound of its parent node and check this
bound when the subproblem is to be processed – i.e. to use the lazy strategy.
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For parallel BeFS branch-and-bound, we observe a similar situation. The exist-
ence of several concurrently working processors implies that the following scenario
can occur: A processor p works with a subproblem P, which had the smallest lower
bound among the available live subproblems when p started processing it, but a sub-
problem Q with a smaller bound has been created by branching at another processor
q during the processing of P by p. Hence, parallel BeFS does not correspond exactly
to sequential BeFS. In contrast to the sequential case, nodes which are neither critical
nor semicritical may be processed in a parallel algorithm. Therefore, it is (as for DFS)
possible to take advantage of new good solutions found by other processors, if each
subproblem is stored with the lower bound of its parent rather than its own lower
bound, and each iteration starts with bounding rather than branching.

Based on the above considerations, we decided to test four different branch-and-
bound algorithms, both in the sequential and the parallel case: all combinations of
search strategy (BeFS, DFS) and processing strategy (eager, lazy). We decided to use
two difficult, but well studied test problems, for which we already had parallel codes.
Regarding initial solution, we decided to use good, but not optimal, solutions: If
optimal solutions are used, BeFS and DFS show the same sequential behaviour, and if
initial values far from the optimum are used, BeFS will run out of memory too early
to facilitate any comparison. The measures to be used in the comparisons regarding
efficiency are the number of nodes bounded and the running times measured. Since
DFS is known to be space efficient compared to BeFS, we expect to be able to solve
larger problems using DFS.

3. Theoretical results on search strategies in parallel branch-and-bound

As mentioned previously, parallelism in connection with branch-and-bound intro-
duces the possibility of anomalies, i.e. that increasing the number of processors in the
parallel system does not lead to a corresponding increase in speed of computation. If
the running time increases with an increase in number of processors, a detrimental
anomaly has been observed, whereas if the time decreases by a factor larger than the
ratio between the number of processors in the new and the old parallel system, we
have an acceleration anomaly. The reason for such behaviour is that the number of
nodes developed in the search tree usually varies with the number of processors – the
discovery of good or optimal solutions may take place both earlier and later than
before. One usually wants to increase the probability of observing acceleration anoma-
lies and decrease the probability of detrimental anomalies.

A number of researchers have addressed the issue of anomalies in parallel branch-
and-bound [4,12–15]. In [10], the results are summarized. Essentially, anomalies,
when going from 1 to p processors, can be avoided for synchronous parallel BeFS
branch-and-bound. Here, the available p processors synchronously perform an eager
branch-and-bound iteration on the p nodes of lowest bounds in the search trees, repre-
sented by a global data structure, and return the undiscarded children to the data
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structure to make ready for the next synchronous iteration. The condition to be met to
avoid anomalies is that the value of the bound function does not decrease from a node
to each child node. This result is also true for more general BeFS rules based on so-
called heuristic selection functions, provided that these satisfy the same condition
and, in addition, are one-to-one, i.e. that different nodes have different values of the
selection function. However, these results do not hold in general when going from p1

to p2 processors.
In [4], similar results are derived in connection with asynchronous parallel

branch-and-bound. In addition, algorithms in which dominance tests are performed
are dealt with in the paper.

From a practical point of view, the results mentioned above are unfortunately
based on implementations of parallel branch-and-bound which differ from practice
and or assumptions which, in general, are not fulfilled. The synchronous parallel
branch-and-bound algorithm will, in general, suffer from so-called synchronization
loss, since in each synchronous step, all other processors have to wait for the one
performing the most time-consuming branch-and-bound iteration. In practice, parallel
BeFS is normally implemented asynchronously using a shared global data structure
or a procesor, which coordinates the solution process. The technique is known as the
master–slave paradigm: The slaves receive subproblems from the master, process
these, and communicate newly generated subproblems and new best solutions back to
the master. The master is responsible for the implementation of the search strategy.
The asynchronous implementation eliminates the synchronization loss and does not,
in general, introduce new problems compared to the synchronous implementation.

Regarding the selection function, a common situation is that a large number of
nodes have a lower bound equal to the optimal solution value of the problem. In order
to apply the theory, one hence has to construct a two- or even three-argument heuristic
function based on the lower bound and additional properties of each node (such as
path number and level in the search tree, cf. [15]). Nevertheless, the majority of parallel
branch-and-bound implementations consider BeFS to be the optimal search strategy
and deviate from it only because of memory limitations. Likewise, some of the avail-
able branch-and-bound libraries such as, for example, the BOB library [3], invest sub-
stantial effort in enabling the user to implement BeFS branch-and-bound regardless
of the computational platform used in the implementation.

4. The test problems: Quadratic Assignment and Job-Shop Scheduling

In the following, we briefly describe our test problems. The descriptions follow
[8] and [18].

4.1. QAP

Here, we consider the Koopmans–Beckman version of the Quadratic Assignment
Problem, which can informally be stated with reference to the following practical
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situation: A company is to decide the assignment of n facilities to an equal number of
locations and wants to minimize the total transportation cost. For each pair of facilities
(i, j), a flow of communication f (i, j) is known, and for each pair of locations (l, k),
the corresponding distance d(l, k) is known. The transportation cost between facili-
ties i and j, given that i is assigned to location l and j is assigned to location k, is
f (i, j) · d(l, k), and the objective of the company is to find an assignment minimizing
the sum of all transportation costs.

Each feasible solution corresponds to a permutation of the facilities, and letting
S denote the group of permutations of n elements, the problem can hence be formally
stated as

min
π ∈S i = 1

n

∑ fi, j ⋅ dπ (i), π( j).
j = 1

n

∑
The matrices of flows and distances are denoted by F and D, respectively. If we

introduce binary variables xik , i, k ∈{1,…, n}, and define that facility i is assigned to
location k if and only if xik  equals 1, the problem can be formulated as an integer
programming problem in the following way:

The difficulty of the problem stems from the objective function, which is quad-
ratic. Hence, methods based on linear programming relaxations are not immediately
applicable.

4.2. JSS

In the Job-Shop Scheduling (JSS) problem, n jobs are to be processed on m
distinct machines. Each job is composed of a set of operations of different length to
be processed on the m machines in a predefined order. Each machine is only able to
process one operation at a time and once an operation is started, it cannot be inter-
rupted. The problem is to find an optimal schedule on each machine such that the
overall processing time is as short as possible.

Formally, we consider a set J of jobs, a set M of machines and a set O of
operations. For each operation o ∈O, there is a job jo ∈J to which it belongs and a

QAP(F, D) : = minimise
i =1

n

∑
k = 1

n

∑
j =1

n

∑ fij dklxik x jl
l =1

n

∑

subject to xik = 1,
i =1

n

∑ k ∈{1, … , n},

xik = 1,
k = 1

n

∑ i ∈{1,… , n},

xik ∈{0,1}, i, k ∈{1,… , n}.
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machine mo ∈M on which it is to be processed. All the operations belonging to one
job must be processed in a predefined order. Thus, each operation o can be identified
by the corresponding job jo and its position within the job, denoted by ko . Finally,
each operation o ∈O has a processing time po .

The earliest time an operation o can be started if the precedence constraints of a
given schedule are met is called the release time of o and is denoted by ro . A set of
release times for all operations constitutes a potential schedule, in which each opera-
tion is started at its release time. The schedule is feasible if (a) all release times are
non-negative, (b) if operation o1 precedes operation o2 in some job j, then o2 does not
start before o1 has finished, (c) no machine processes more than one operation at a
time, and (d) the schedule is non-preemptive (when started, an operation finishes
without interruption). The problem can be stated as follows:

The difficulty here is not so much the objective function but the constraints:
those regarding non-preemption turn out to be disjunctive, leading to a non-convex
feasible region. Again, methods based directly on a linear programming relaxation
are of little use because of the severe weakening of the disjunctive constraints imposed
by the convexification.

5. Experimental results

Here, we briefly describe the test problems and the implemented branch-and-
bound algorithms for QAP and JSS. For each of the algorithms, we describe the bound
function, the branching strategy, and the various efficiency enhancing tests included
between branchings. However, first we describe the common parallel framework for
the parallel versions of the algorithms.

5.1. Parallel branch-and-bound framework

Both of the implemented parallel branch-and-bound algorithms are based on a
framework for defining communication protocols and information exchange for an
asynchronous distributed branch-and-bound algorithm implemented on a 16-proces-
sor Intel i860-based MEIKO Computing Surface. The system is a distributed system
with message passing as the communication facility. Each processor has 16 MB local
memory and 8 communication channels used to communicate with other proces-
sors. Each communication channel is handled by a T800 transputer. Point-to-point

  

minimise maximise
o ∈O

(ro + po) 
  

 
  

subject to ro1
+ po1

≤ ro 2
, o1 , o2 ∈ j ∈ J , ko1

< ko2
,

ro1
+ po1

≤ ro 2
_ ro2

+ po2
≤ ro1

, mo1
= mo2

, o1 , o2 ∈O,

ro ≥ 0, o ∈O.
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communication between processors is implemented at system level, but no shared
memory is available. The algorithm works with distributed pools of live problems, on
which each processor works using the sequential branch-and-bound method with the
relevant search strategy. The processors are organized in a ring. After 128 iterations,
each processor exchanges information regarding pool size with the neighbouring
processors in the ring. Then, subproblems are sent in order to equalize the pool size.
Finally, a termination test for distributed computation is used in order to detect when
the algorithm has finished.

5.2. QAP

The problems we used for the experiments for QAP are from the classical Nugent
test set [17]. The results are obtained using an adapted version of the code (described
in [9]), where we use the Gilmore–Lawler (G–L) bound function combined with
iteratively binding variables based on the information provided by the reduced costs
calculated during the actual bound calculation. Each node in the search tree corre-
sponds to a partial solution, in which each location in a subset of the locations has
been assigned to a specific facility, leaving a set of free locations to be assigned to a
set of free facilities in order to produce a complete solution from the partial solution
of the node.

The G–L bound function first calculates, for each combination of an unassigned
facility i and a free location k, a lower bound on the increase in objective function
value given that i is assigned to k. This is done by sorting the flow coefficients from
i to unassigned facilities ascendingly and the distance coefficients from location k to
free locations descendingly. The scalar product of these two vectors is a lower bound
on the cost incurred from the flow between i and the unassigned facilities when i have
been assigned to k. All these lower bounds are joined into a matrix C, for which a
linear assignment problem is then solved to produce the final G–L bound value. The
result is the G–L bound and reduced cost information c jl  for all combinations of an
unassigned facility j and a free location l. The value of c jl  equals the increase in the
solution of the linear assignment problem, which will be incurred if j is forced to be
assigned to l rather than being assigned as indicated by the optimal solution. Hence,
c jl  is a lower bound on the increase in the G–L bound for the child of the current
node resulting from a j-to-l assignment. We take advantage of this information in the
branching scheme.

We branch on locations, i.e. a location among the free locations is chosen and a
child node corresponding to locating each of the free facilities on the chosen location
is formed. The scheme was originally proposed in [16]. For each combination of free
location j and free facility l, we use the reduced cost c jl  as a lower bound on the
increase in the G–L bound. If this lower bound together with the incumbent is
sufficient to rule out the possibility of finding the optimal solution in the subspace
corresponding to a j-to-l assignment, this assignment is discarded. The location to
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branch on is chosen to be the one with the smallest number of locations remaining
feasible candidates after the test just described.

We assign a facility permanently to a location if we discover that all other facili-
ties have been discarded through the testing – this is called a forced assignment.
Similarly, we may discover that a facility has only one possible location – then a
forced assignment also takes place. After a forced assignment has taken place, we
recalculate the G–L bound for the new subproblem, again performing the test for
forced assignments. Results in [9] show that the effect of forcing assignments is to
“push downwards” the nodes of the search tree rather than to reduce their number
substantially. Note that the efficiency of the forcing procedure is dependent on the
incumbent – the better the incumbent is, the more forced assignments we will make.
Hence, the search strategy in this implementation indirectly influences the branching
performed.

The aim of our investigation is to shed light on the efficiency of different branch-
ing strategies with respect to the size of the search tree. Hence, we do not set the
initial solution equal to the optimum value for the given problem, even if we know
that for QAP a heuristic such as simulated annealing will produce this value with high
probability. Instead, the initial solution is set to 2% above the optimum of the problem.
The value of 2% is chosen because the initial values supplied by a heuristic for the
JSS test problems deviate by approximately 2% from optimum. No symmetries with
respect to solution structure are exploited in the algorithm.

The results (running times in seconds, number of nodes bounded in the search
tree, and number of critical nodes bounded) for one processor are given in table 1. For
the 16-processor version, we report the same figures in table 2. We also report the
relative speedup for the parallel algorithm, i.e. the running time for a sequential version
divided by the running time obtained for the parallel algorithm using 16 processors.
The speedup results show that the algorithm scales well and that QAP is a good
candidate for parallel solution – the results are stable, with no sign of detrimental
anomalies.

Comparing the results from tables 1 and 2 regarding the number of nodes
bounded, it is obvious that the major reason for the poor behaviour of parallel eager
BeFS is not the parallelization itself. The sequential BeFS algorithms are by far inferior
to the DFS-based algorithms. The lazy versions have a slight advantage over the eager
versions and, surprisingly, this effect is more profound for BeFS than for DFS. To
explain these results, we investigated under which circumstances the eager best-first
search strategy satisfies that the number of nodes bounded is the smallest among the
strategies tested. We tested our sequential code, first without the iterative binding of
variables between branchings, but still using the reduced cost information in the
branching scheme, and secondly by also disregarding the reduced cost information (i.e.
a “pure” branch-and-bound, in which the only operations are branching and bounding).
The results are shown in table 3. The pure version shows the expected superior be-
haviour of BeFS compared to DFS, however, at the cost of a large increase in the
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number of nodes bounded. The major reason for the degradation of performance is
that the reduced cost information is not used during branching. Essentially, a cost-free
way of bounding and discarding nodes of the search tree is lost.

5.3. JSS

We now turn to the corresponding results for JSS. The test problems considered
are taken from the collection electronically available through the OR library [2], and
the results are obtained using the code described in [18] combined with the branching
strategy recently developed by Caseau and Laburthe [7]. As for QAP, we briefly
describe the bound function, the branching strategy and the efficiency enhancing tests
employed.

Table 1

Running times in seconds, number of nodes bounded, and number of critical
nodes (with G–L lower bound less than optimum) bounded when solving QAPs

on one i860 processor.

             Lazy            Eager

Problem Best-first Depth-first Best-first Depth-first

Running times in seconds

Nugent 10     0.51      0.39     0.47       0.36
Nugent 12   18.19     11.00   16.52     10.04
Nugent 14 137.56   117.05 156.74   108.84
Nugent 15     –   407.16 666.26   381.15
Nugent 16     – 3002.43     – 2767.62

Number of nodes bounded

Nugent 10     690       650       819        655
Nugent 12 15592   13948   21447     13936
Nugent 14 93466 107383 144634   107397
Nugent 15    – 318920 518799   319013
Nugent 16    – 206498     – 2064997

Number of critical nodes

Nugent 10     200       190     216       195
Nugent 12   4475     4347   4806     4379
Nugent 14 21838   21694 23138   22746
Nugent 15    –   76265 80929   77088
Nugent 16    – 500717    – 502289
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A complete schedule for a given JSS problem is modelled as a digraph, with a
node for each operation and two additional nodes, a source corresponding to the start
of the schedule and a drain corresponding to the completion of the schedule. There is
an arc from o1 to o2 if o1 is scheduled before o2. Furthermore, there are arcs from the
source to each starting operation of a job, and from each final operation of a job to the
drain. Each node in the graph has an associated cost corresponding to the processing
time of the operation – the cost of the source and the drain are 0. The length of the
schedule is the cost of a most-expensive (longest) path from the source to the drain,
where the cost is calculated as the sum of the costs of the nodes on the path. The
initial information for a JSS problem gives rise to those arcs in a final schedule which

Table 2

Running times in seconds and speedup, number of nodes bounded, and number
of critical nodes (having G–L lower bound less than optimum) bounded when

solving QAPs on sixteen i860 processors.

          Lazy         Eager

Problem        Best-first        Depth-first       Best-first        Depth-first

Running times in seconds and speedup

   Time Sp-up      Time Sp-up   Time Sp-up      Time Sp-up

Nugent 10      0.12   4.3        0.10    3.9     0.14    3.4        0.14    2.6
Nugent 12      1.45 12.5        1.06  10.4     1.31  12.6        1.10    9.1
Nugent 14    11.34 12.1        7.58  15.4   10.61  14.8        6.60  16.5
Nugent 15    43.25   –      28.26  14.4   43.34  15.3      24.74  15.4
Nugent 16       –   –    213.38  14.1 336.05    –    183.24  15.1

Number of nodes bounded

Nugent 10       763         680         833         815
Nugent 12   15325     15375     22548     17680
Nugent 14   93688     90452   144243     90685
Nugent 15 319895   299747   518170   311204
Nugent 16      – 2082710 3596716 2095039

Number of critical nodes

Nugent 10       199         195         213         208
Nugent 12     4474       4357       4737       4519
Nugent 14   21838     21523     23080     21818
Nugent 15   77186     75956     80869     76972
Nugent 16      –   500628   519025   502184
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Table 3

Running times in seconds, number of nodes bounded, and number of critical
nodes bounded when solving QAPs on one i860 processor, first with forced

assignments and then with pure G–L branch-and-bound.

             Lazy             Eager

Problem Best-first Depth-first Best-first Depth-first

Without forced assignments

Running times in seconds

Nugent 10 0.52 0.42 0.50 0.40
Nugent 12 16.12 11.59 16.60 11.03
Nugent 14 138.87 121.76 161.3 115.19
Nugent 15 –    419.94 651.18 400.17
Nugent 16 –    3115.36 –    2876.56

Number of nodes bounded

Nugent 10 709 719 878 722
Nugent 12 15759 14616 21920 14604
Nugent 14 93561 111071 145538 111084
Nugent 15 –    327422 521022 327512
Nugent 16 –    2122311 –    2122316

Number of critical nodes

Nugent 10 201 207 219 212
Nugent 12 4479 4446 4818 4480
Nugent 14 21841 21828 23144 22896
Nugent 15 –   76977 90980 77805
Nugent 16 –   502218 –    503786

Pure G–L branch-and-bound

Running times in seconds

Nugent 10 1.09 1.01 0.83 0.83
Nugent 12 35.62 25.86 24.01 23.36
Nugent 14 –   268.00 199.60 249.76
Nugent 15 –   956.36 898.82 893.20
Nugent 16 –   6977.70 –    6560.43

Number of nodes bounded

Nugent 10 1540 1727 1606 1727
Nugent 12 38376 35993 34701 35996
Nugent 14 –   267390 194785 267392
Nugent 15 –   804632 758885 804635
Nugent 16 –   5280080 –    5280086

Number of critical nodes

Nugent 10 209 209 209 209
Nugent 12 4401 4401 4401 4401
Nugent 14 –   20945 20945 20945
Nugent 15 –   72357 72357 72357
Nugent 16 –   470100 –   470100
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correspond to precedence relations within jobs. The problem is now to add arcs to the
initial graph which schedule all operations belonging to identical machines, such that
the resulting schedule is as short as possible. A partial schedule hence corresponds to
a digraph in which a directed edge has been introduced from o1 to o2 if they belong to
the same machine and their relative sequence has been decided to be o1 before o2. The
length of a partial schedule is of course a lower bound on the length of any comple-
tion, but this bound can be improved. If a partial schedule cannot be discarded by a
combination of bound calculations and tests, we perform a branching on a pair of
operations, for which the relative order has not been determined. We generate two
subproblems corresponding to the two possible relative orderings of the operations.

The bound function for JSS is based on Jackson’s Preemptive Scheduling rule
for the scheduling of operations with given release times (heads) and post-processing
times (tails) on one machine. The JPS schedule is the optimal schedule obtained when
preemption is allowed, i.e. when the processing of an operation may be interrupted.
At each point in time, the operation processed is the one with the longest tail. Note
that rescheduling is only necesary when the current operation finishes or a new opera-
tion is released – hence the schedule can be computed very efficiently. Each of the
machines in the JSS problem is considered independently. The partial decisions already
taken give rise to trivial values for the head and tail of an operation o, namely the
length of a longest path from the source node to o resp. from o to the drain node.
For each machine, we now calculate the length of a JPS schedule, and the maximum
length constitutes our lower bound. As noted in [18], the bound is very weak, but the
immediate ideas for improvement (disallowing preemption in the Jackson schedule
and scheduling two machines rather than just one) do not work.

The pair of operations to branch on is chosen based on the idea of creating a
large difference in the lower bounds of the two new nodes. The scheme resembles that
originally proposed by Carlier and Pinson [5], but is a little more sophisticated.

After having calculated the lower bound of a node in the search tree correspond-
ing to a partial schedule, we perform a number of different tests and adjustments.
These are a subset of the tests proposed by Carlier and Pinson [5,6]. The idea is that
by using the heads and tails of two operations o1 and o2, which must be scheduled on
the same machine, one may infer their relative schedule in any completion schedule
which is shorter than the current best known upper bound UB. If e.g. heado1

 + po1
 +

po2
 + tailo2

 > UB, then o2 must be scheduled first in a completion of the current partial
schedule with a value smaller than UB. Based on such tests, we can sometimes fathom
a node (none of the children survive the test) and sometimes fix the order between
two operations. Essentially, we perform an easy bound calculation. If the tests result
in the addition of an edge in the digraph corresponding to our partial solution, we
recalculate heads and tails, and test again. Testing and recalculating heads and tails is
very expensive in running time compared to the inter-branching tests used in QAP.

For each of the problems, the initial value for the current best solution has been
set to the best solution produced by the shifting bottleneck heuristic [1].

J. Clausen, M. Perregaard y Search strategies in parallel branch and bound 13



Table 4 reports the running times and the corresponding number of nodes when
solving a selected set of problems on a single i860 processor. In table 5, the running
times and the corresponding number of nodes when solving the same problems distri-
buted on 16 processors are given for the parallel version of the code. Contrary to the
situation for QAP, large differences between the different strategies can be observed,
especially between BeFS and DFS (LA17 and LA22 in the sequential version and
LA22 in the parallel version). The lazy DFS strategy is here the clear winner with
respect to running times, whereas the picture is more unclear with respect to number
of nodes bounded. This seems to be due to the complicated tests between branching.
The branch-and-bound method for JSS is much more sensitive to the incumbent value,
which again can be seen in the speedup results. The speedups are quite unstable,
ranging from 0.6 to 29.9 with 16 processors.

6. Discussion and conclusions

The first immediate fact noted from the results is that BeFS in general is inferior
to DFS, both in the sequential case and in the parallel case, and both with respect to
running times and numbers of nodes bounded. The eager BeFS, i.e. the combination

Table 4

Running times in seconds and number of nodes bounded when solving JSSs
on one i860 processor.

              Lazy            Eager

Problem Best-first Depth-first Best-first Depth-first

Running times in seconds

LA16 83.84 15.59 155.61 18.98
LA17 55.30 2.00 4.91 1.95
LA18 12.79 7.03 14.33 7.74
LA19 244.35 61.84 320.19 62.77
LA20 279.67 209.10 145.17 126.08
LA22 –    689.05 2379.09 89.88

      Number of nodes bounded

LA16 3552 681 7622 808
LA17 4178 138 278 112
LA18 482 322 538 292
LA19 9222 2391 10976 2188
LA20 10909 8533 5392 4354
LA22 –    11889 40864 1824

14 J. Clausen, M. Perregaard y Search strategies in parallel branch and bound



Table 5

Running times in seconds and number of nodes bounded when
solving JSSs on sixteen i860 processors.

          Lazy         Eager

Problem        Best-first        Depth-first       Best-first     Depth-first

       Running times in seconds and speedup

  Time Sp-up  Time Sp-up   Time Sp-up  Time Sp-up

    LA16     8.57    9.8   3.99    3.9     8.16  19.1   7.14    2.7
LA17     2.24  24.7   1.97    1.0     3.58    1.4   3.41    0.6
LA18     2.05    6.2   1.95    3.6     5.97    2.4   5.62    1.4
LA19   15.01  16.3   7.97    7.8   20.65  15.5 10.27    6.1
LA20   15.70  17.8   9.53  21.9   12.00  12.1 10.31  12.2
LA22 144.23    – 23.05  29.9 101.32  23.6 28.23    3.2

        Number of nodes bounded

LA16    4624 2382   4346 3660
LA17    1354   923     844   586
LA18      799   688   1370 1044
LA19    8300 3487   9582 3208
LA20    8683 4715   4202 1956
LA22  38956 5810 25874 5554

 of strategy and processing usually recommended described, is inferior to all other
combinations in the QAP test, both in the sequential and the parallel versions. For the
JSS test, eager and lazy BeFS perform comparably, but in general much worse than
lazy DFS.

Regarding DFS, there seems to be no clear winner between the lazy and eager
strategy, neither in the sequential nor in the parallel setting.

The results are surprising and counter-intuitive. When BeFS in the sequential
case is known to process in some sense as few subproblems as possible, why does
DFS perform better when we count the number of subproblems processed during the
actual solution of problems? According to the results obtained for QAP, the answer
lies in the efficiency enhancing tests performed between branchings. In the case of
QAP, the assignment of a currently free facility to a free location is excluded if the
reduced cost information shows that this will lead to a non-optimal solution, i.e. that
any solution with the facility assigned to that particular location will have a cost
exceeding the current best solution. Such a decision may give rise to other variable
bindings, and the process continues until no more information can be derived. This
has a considerable effect, both on the size and on the shape of the search tree compared
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to the situation in which the information is not exploited. In the latter, all children of
a given partial solution are generated and bounded, even if the reduced cost informa-
tion shows that this is not necessary.

Similar tests are used in JSS, where the order of two operations in a machine
may be fixed, if it is known that the head of one plus the processing times of both plus
the tail of the other exceeds the best know solution – then the second of the operations
must be scheduled first on the machine in question. We have not, in this case, con-
ducted the experiment of running “pure” branch-and-bound. Our experience, as well
as results from others, indicate that a pure branch-and-bound algorithm for JSS is too
inefficient to provide any interesting result from a practical perspective – the best
bounds currently known are simply too weak.

The superiority of DFS compared to BeFS seems intimately related to the tests
between branchings. The tests crucially depend on the value of the incumbent – the
better this is, the more effective the performance of the tests. Hence, a search strategy
which facilitates early discovery of good solutions is preferable. DFS rapidly generates
complete solutions, but may in the process bound non-critical nodes. BeFS bounds
only critical nodes, but may spend quite some time processing partial solutions before
a good complete solution is identified. The presence of a good incumbent is, however,
critical for the efficiency of the tests, and hence these tests perform much better with
the DFS strategy, resulting in superior performance. Finally, the interplay between the
incumbent and the tests implies that a processing of each node should be postponed as
long as possible to allow for the maximum decrease in the incumbent.

Another way of viewing the tests is that these represent ad hoc boundings per-
formed by a bound function different to the one used in general. In this sense, the tests
represent parts of a search based on different bounds, in which the search order is not
BeFS. The resulting combined search may hence differ substantially from the BeFS
aimed at with respect to the general bound function. Therefore, conclusions on the
efficiency of search methods in “pure” branch-and-bound are not applicable.

In conclusion, the claimed efficiency of BeFS branch-and-bound has been shown
invalid for QAP and JSS; here, DFS branch-and-bound is more efficient. Experiments
should be carried out with a broader range of problems before general conclusions are
drawn, and the effect of tests between branchings should be investigated in more detail,
both theoretically and experimentally.
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