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Abstract

This work introduces a distributed branch-and-bound algorithm to be run on a wide-area-
network system provided with an infra-structure that allows to execute applications that require
much computational power, the so-called Grid. Although branch-and-bound algorithms are con-
sidered to be well suited for parallel implementations, its search trees can be highly unbalanced.
Moreover, usually it is not possible to predict in advance the size of each subtree. Thus we
propose a distributed branch-and-bound algorithm featuring procedures of load balance. The
diﬁi}l l‘UUi.thd dlgUliLlllll pr GEGIILC(.} was dappllﬁd Oll1 all dll t?ddy C)&iﬁi}ill}:’) bequeu‘biul ‘Ul dllCll-dlld-‘UUulld
algorithm for the Steiner Problem in Graphs. Good speedups were obtained, allowing the res-
olution of a number of formerly open instances from the SteinLib library in reasonable times.
This fact indicates the great potential of the procedures developed.
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1 Introduction

Some of the most important real world optimization problems are classified as NP-hard. Branch-
and-bound is by far the most widely used technique for finding the optimal solution of those
problems. Branch-and-bound algorithms searches the space of solutions through implicit enumer-
ation in subtrees, since the complete enumeration would be impossible due to the exponentially
increasing number of potential solutions. The calculation of good upper and lower bounds for the
optimal solutions in the subtrees is used to limit the growing of the enumeration tree.

Dranch-and-botuind algorithins are coinisidered to be well suited for parallel implementations
because the computation of subtrees can be accomplished independently. Essentially the only
global information in the algorithm is the value of the current best solution.

This works aims to develop a distributed branch-and-bound algorithm to be run on a wide-
area-network system provided with an infra-structure that allows to execute applications that
require much computational power, the so-called Grid. Large scale computational grids are gaining
popularity. Examples of such grids exist in the academic world (SETI@Home|2], Globus[10], and
Nile[17]) as well in the commercial sector (Entropia and Parabon among others).

We propose a distributed branch-and-bound algorithm featuring procedures of load balance.
Initially a subtree is associated to each process. Upon finishing the execution, it asks to a neighbor



process for another part of its local subtree. The algorithm does not use a master process to control
the balance because it could become a bottleneck. It favors the load balance among processors
concentrated geographically, since, typically, grids are usually composed of clusters whose processors
are connected via high-speed links and the clusters, geographically distant, are connected through
low-speed links, in a hierarchical fashion. The termination procedure proposed also takes advantage
of this usual hierarchical structure of grids.

The distributed algorithm was applied on an already existing branch-and-bound algorithm for
solving the Steiner Problem in Graphs (SPG), a classical NP-hard problems. This sequential algo-
rithm is, to the best of our knowledge, the only capable of solving almost all “incidence instances”,
a set of 400 hard SPG instances proposed by Duin 9] in 1993 as a benchinark and a challenge for fu-
ture algorithms. Today, as can be checked in the SteinLib website [13], only 20 incidence instances
could not be solved yet. Our initial goal in parallelizing that branch-and-bound was to obtain
the solution of those 20 remaining instances. As can be seen in our preliminary computational
results, this goal was partially fulfilled, since 5 instances could be solved for the first time using
16 processors. Solving the 15 remaining instances, at least with that branch-and-bound algorithm,
will probably require the computing power from hundreds of processors.

The computational experiments are been run on a grid that gathers clusters from some uni-
versities from Rio de Janeiro. The programming language used was C++ and Message Passage
Interface (MPI), version MPICH-G2, the Globus MPI version for parallelism [12].

The remainder of this paper is organized as follows. In the next section we present the se-
quential branch-and-bound algorithm. Section 3 presents the related work. Section 4 introduces
the proposed distributed algorithm. In Section 5 we summarize our experimental environment and
preliminary results are shown. Finally, in Section 6, we present our conclusions.

2 Sequential Branch-and-Bound for the SPG

The SPG is defined as follows: given a graph G = (V, E), positive edge costs ¢ and a set T C V
of terminal vertices, find a connected subgraph (V/, E') of G with T' C V' minimizing Y cp ce.
The directed cut formulation (DCF') of SPG works over the directed graph Gp = (V, A) obtained
by replacing each edge in E by two opposite arcs and choosing any terminal r to be the root. Let
W be the collection of all vertex-sets w containing some terminal but not the root and let 6~ (w)
be the directed cut made up by the arcs entering w. Let x, indicate whether arc a belongs to the
solution (an arborescence rooted at r) or not. The linear relaxation of DCF', (P), and its dual,
(D), are:
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Strong formulations for the SPG, like DC'F', usually give lower bounds quite close to the opti-
mum integer value. However, the solution of those formulations can be very expensive. Wong [23]
proposed a dual ascent, a fast algorithm for the approximate solution of (D). Such approximate
solutions also give valid lower bounds. Let y be a feasible solution of (D). Denote the reduced cost
w.r.t. y by ¢, = ca — Y (Yw : @ € 0~ (w)). Initialize y = 0 and at each iteration increase y,, as much
as possible, where w corresponds to a maximal set of vertices that can reach a terminal, but not



r, by arcs of zero reduced cost. Good primal solutions may be obtained searching the final set of
zero reduced cost arcs. Poggi de Aragao, Uchoa and Werneck [18] proposed three additional dual
heuristics to improve the lower bounds and reduce instance sizes.

e Dual Scaling: Given a feasible solution y of (D), let ¥/ = ay, where a € [0, 1] (typically
a = 0.875). Then apply dual ascent starting from y’. This simple procedure may be enough
to improve the lower bounds.

e Dual Adjustment: Let y be a feasible dual solution and Z be the best known integral
solution. Make 3’ equal to y, but with ¢/, = 0 for every w such that 6~ (w) contains more
than one arc in Z. Afterwards, apply dual ascent starting from ¢’. Apart from improving
lower bounds, this procedure may help to eliminate arcs by reduced costs.

e Active Fixation by Reduced Costs: Let y be a dual solution with cost Z4, and let Z;n¢
be the cost of the best known integral solution. Given an arc a such that ¢, > Z;yo — Zy,
make y’ equal to y, but with y/, = 0 for every w such that a € 6~ (w). Then apply a modified
dual ascent forbidding the use of a, to get a new dual solution 3”. After that, perform dual
ascent again allowing the use of a, obtaining ¢”. The reduced cost ¢, w.r.t. 3" is equal to c,.
If the cost of y” plus ¢, exceeds Zrnc, then arc a can be fixed to 0. Other arcs can be fixed

using solution y”’.

The resulting branch-and-bound algorithm can be described by the pseudo-code shown in Fig-
ure 1. The recursive function ProcessNode receives as parameters a directed Steiner instance
represented as (Gp,c,T) and the the best dual solution y* of its father (0 in the root node). The
functions DUALASCENT(y), DUALADJUST(y) and ACTIVEFIX(y) perform dual ascent, dual
adjust and active fixation over a dual solution y. The branch rule chooses a vertex v incident to a
maximum number of saturated arcs. In the first subproblem v and its adjacent arcs are removed
from Gp. In the second subproblem v is considered as a terminal vertex.

Further details on this branch-and-bound algorithm ! can be found in [18, 21, 22]. This algo-
rithm represented a significant improvement in the solution of SPG instances with relatively few
vertices (many edges are no problem). It could solve about 50 incidence instances for the first time,
the larger one with 640 vertices and 200,000 edges. Only 20 instances from that set could not be
solved in reasonable time (less than one day on a PC). The wish to solve those remaining instances
was our first motivation to work on distributed branch-and-bound algorithms.

The sequential branch-and-bound for the Steiner has the following good characteristics for
parallelization on grids: there are many nodes in the tree whose evaluations are fast, what favors
load balance; and it does not use expensive commercial LP solvers, such as CPLEX or XPRESS,
that can not be assumed to exist on machines in a grid.

3 Related Work

There are many papers about parallel branch-and-bound algorithms [1, 3, 4, 6, 8, 11, 14, 15].
Some of them present libraries dedicated to the development of these methods such as PPBB-Lib
[12], ZRAM [7] and BOB [19].
Anomalies of speedups in parallel branch-and-bound algorithms have also been investigated.
One would expect that attacking a problem with p processors instead of one, resulted in speedups

!The branch-and-bound code is included in a large computational package named BOSSA and is available upon
request to its authors.



ProcessNode({(Gp,c,T), y* )
Do {
y «—— DUALASCENT(0);
(If (v(y) > v(y*)) update y*;
Find a primal x corresponding to y;
If (¢(x) < c(xine)) update e

(global);
If (v(7*) > v(xine)) return;
Try to eliminate arcs by reduced
costs
using y; )
y «— DUALADJUST (y*);
(N
(..)
y «— ACTIVEFIX(y*);

} While (v(y*) improves or instance is
reduced by more than 1%)

Let v a the non-terminal vertex incident to a
maximum number of saturated arc in y*;

ProcessNode ( (Gp \ {v}, ¢, T), y* );

ProcessNode ( (Gp,c, T U{v}), y* );

Figure 1: Sequential Branch-and-Bound Algorithm



close to p, but in examples of parallelizations of branch-and-bound algorithms some anomalies have
been observed: detrimental anomalies (speedup less than 1), and acceleration anomalies (speedups
greater than p) [4, 14].

The strategies of search in parallel have also been researched. The Best-First strategy and the
Depth-First strategy are regarded as the main strategies for solving combinatorial optimization
problems by parallel branch-and-bound algorithms. The Best-First because of efficiency with re-
spect to the number of nodes explored and the Depth-First for reasons of space efficiency. Some
results about the performance of these strategies in parallel algorithms can be found in [6, 15].

Implementations of parallel branch-and-bound in specific distributed systems have been con-
ducted in [3] that presented parallel branch-and-bound algorithins to be run on NOWS and in (1]
that presented a hierarchical master-worker algorithm for parallel branch-and-bound to be executed
on grids.

We can cite other papers that consider the development of parallel branch-and-bound algorithms
for specific optimization problems such as [5, 8, 16].

4 A Distributed Branch-and-Bound Algorithm

A branch-and-bound algorithm sets out to traverse the entire search space by recursively refining
the search space into disjoint subspaces. A branch-and-bound tree is produced by the branching
procedure. At any given point each node represents a subtree. Any of these containing feasible
solutions within the current bounds are subject for further investigation which is done by recursively
splitting into subtrees. If a feasible solution exists, we eventually find it as a leave node. The
evaluation of nodes are independent tasks resulting in a lot of opportunities for parallelism.

The distributed algorithm proposed is comnosed by the following nrocedures: Initial distrib-
ution, Leader election, Load balance, Pruning and Termination detection, described in the next
subsections.

4.1 Initial Distribution

The initial distribution phase corresponds to the initial assignment of subtrees to processes. At each
branching a process sends a message, called Branch with the new node of the branch-and-bound
algorithm to what we call next process (nextproc). A process of identification i selects nextproc,
to send the new node as follows: nextproc = i+ 2/¢¥°! where level represents the depth of i in
the tree. When nextproc reaches a value greater than the number of processors available, process i
stops sharing its local load at each branching.

Consider this procedure with 8 processors and consider that only one process is executed on
each processor. We identify each processor as Py, P, P», P3, Py, Ps, Ps and P;. Initially, Py shares
its load with P; (level=0) and goes on processing the other half of the tree. In the second level
(level=1) of the tree, I shares its load with I, while I shares its load with 5. In the third level
(level=2), Py shares its load with Py, P; shares its load with Ps, P» with Ps, and P3 with P;. See
Figure 2.

4.2 Leader Election

At each cluster a leader is chosen that will be helpful in the other procedures. Each cluster elects
as leader the process with the smallest identification and Py is the application leader.



Figure 2: Load Distribution

4.3 lLoad Balance

Because the required time to process a subtree may vary a lot, a procedure to balance the load
among the processors is frequently employed in this problem. Distributed dynamic load balance
methods can be classified according to the acting component of the load transfer (sending process
or receiving process) [6]. There are two types of load balance algorithms: sender initiated and
receiver initiated that are described next.

The difference between them is that in the sender initiated algorithm, a processor with load to
share looks for potential receivers while in the receiver initiated processors having low load send
load requests to other processors.

We implemented the algorithm receiver initiated with a round-robin strategy. Thus, upon fin-
ishing the execution of a subtree, each process sends a message with the result (Result) to process
0 and asks to a neighbor for another part of its subtree. The algorithm proposed favors the load
balance among processors concentrated geographically, since, typical grids are composed of clus-
ters whose processors are connected via high-speed links and the clusters, that are geographically
distant, are connected through low-speed links.

In this way, each process 7 sends a message, called Loadrequest, to a process j whose rank is
calculated as follows: j = (¢ + 1) mod (cs) + cl where cs represents the number of processors in the
cluster to which process ¢ belongs and cl the cluster leader, in order to request load. If this process
does not have load to share, it sends in turn a message to process ¢, called Idle. In this case process
1 tries to get load of another process j = (i 4+ 2) mod (cs) + cl. If it receives a message Idle again,
process i still tries a process j = (i + 3) mod (cs) + ¢l and so on. Finally, if process i is not able to
obtain a subtree from any of its neighbors it begins a termination procedure, described later. The
load balance strategy can be adapted according to the cluster sizes. 'lo implement this strategy a
static schedule of processes to processors was defined so that processes of consecutive identifications
are assigned to processors of the same cluster whose size is known a priori. The main objective of
this procedure is to favor balance among processors concentrated within the same site.

4.4 Pruning

The calculation of good upper bounds for the optimal subtrees is used to limit the growing of the
enumeration tree. The pruning procedure is responsible for broadcasting the upper bound among
the processors across the grid.

Thus, upon finding a primal, each process sends it to the local leader and to processes within the
same cluster. The leader then broadcasts it to other leaders which in turn forward it to processors
in their respective clusters. Upon receiving a Primal message, if the received primal is smaller than
the local one, the local value is replaced by the new one.



When an early pruning occurs in the initial distribution phase, it prevents the respective process
from sending a branch message to another one that is waiting for it. In this case the process which
has no load to share sends an Idle message to that waiting process. This one in turn is free to ask
load for another process.

4.5 Termination Detection

In a distributed algorithm, where there is no central point of global control as well no previous
knowledge of the number of messages to be exchanged by processes, each process requires a global
knowledge of the application to determine when the overall computation is done and consequently
to finish its local computation. In our algorithm, in order to terminate the algorithm a process
sends the message SuspectEnd to the leader of its cluster. The leader upon receiving this message
from all processes of its cluster forwards it to all other leaders. A leader upon receiving this message
from all other leaders and also from all other processes of its cluster, broadcasts this message to the
processes of its cluster and terminates. Other processes terminate their processing upon receiving
this message from their leaders.

4.6 Types of Messages

We can summarize the set of types of messages exchanged as follows:

e Branch: it contains the nodes of the tree previously executed.
e LoadRequest: it contains a request for load.

e [dle: it contains the information that the process is sending that this message does not have
load to share.

e Primal: it contains the new upper-bound (primal).
e Result: it contains the result found by the sender.

e SuspectEnd: it contains the information that the process sending this message finished its
local execution.

5 Preliminary Results

Our parallel algorithm has been developed in the programming language C++ and MPICH-G2
[12|, a Globus-enabled version of the MPI parallel programming toolkit.

Our experiments will be run on GridRio that is an initiative to create a research oriented
computational grids across the state of Rio de Janeiro. Today, two universities take part of GridRio:
UFF (Universidade Federal Fluminense) and PUC (Pontificia Universidade Catdlica do Rio de
Janeiro). The following resources are currently available in GridRio: 8 PC’s Athlon with 1.3GHz
of clock, and 2 PC’s Pentium III with 800MHz of clock running the Globus Toolkit version 2.4 and
10 Red Hat Linux version 7.3 at UFF and 32 PC’s Pentium IV with 1.4 GHz of clock, running the
Globus Toolkit version 2.2 and Linux at PUC. It must be extended with the participation of two
other institutions.

In our preliminary experiments we ran our tests on the PUC cluster using 16 processors. We
executed each instance three times.



The best known results and the results obtained by our algorithm are presented in Table 1. The
execution times, in seconds and hours, required to execute each instance sequentially, in parallel,
and its corresponding speedups are also presented.

In order to test the algorithm we used some open instances of a benchmark that is a set of
400 hard SPG instances. Our initial goal in parallelizing that branch-and-bound was to obtain the
solution of the 20 remaining open instances.

In our preliminary computational results, this goal was partially fulfilled, since 5 instances could
be solved for the first time using 16 processors with good speedups.

Instance | Best Known | Optimum | Sequential Time | Parallel Time | Speedup
(second /hour) (second /hour)

i640-211 12022 11984 524387.2 / 145.6 | 40877.99 / 11.3 12.82

i640-212 11795 11795 13794.5 / 3.8 3755.08 / 1.04 3.67

i640-213 11879 11879 37429.4 / 10.3 3034.06 / 0.84 12.33

i640-214 11898 11898 350482.4 / 97.3 | 38262.58 / 10.6 9.16

i640-215 12081 12081 105131.8 / 29.2 9391.87 / 2.6 11.19

Table 1: Results of the sequential and parallel algorithms

T'he algorithm proposed presented good speedups, although in the instance i640-212 the speedup
was low. It occurs probably due to the branching and pruning behavior of this instance. If a good
solution is, by chance, discovered early, the subtrees can be much better pruned.

Anomalies of parallel branch-and-bound algorithms speedups have been extensively studied, as
can he seen in related literature.

6 Concluding Remarks

The distributed branch-and-bound algorithm that we proposed was able to obtain the solution of
5 open instances of a benchmark for the SPG problem with good speedups.

We developed load balance and termination algorithms adapted to the usual hierarchical struc-
ture of grids aiming to reduce the communication among the clusters, that are connected through
low-speed links. We intend to run the other 15 instance of the problem on GridRio, using also the
UFF cluster. Those instances probably require much more computational power and will benefit
by our procedures.

Another important point to be tackled is the fault tolerance of parallel algorithms executed on
grids. This is important mainly due to our long execution time applications. Thus, we also intend
to include procedures of fault tolerance in our parallel algorithm allowing for them to continue the
execution despite the presence of faults. The strategy being developed is based on independent
checkpoints. Periodically, each process will ask to a neighbor process within the same cluster for
saving its checkpoint without coordination with other processes. 1'he algorithm is being designed
to tolerate only one single permanent fault.
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