
Control Schemes in a Generalized Utility for Parallel
Branch-and-Bound Algorithms

Yuji Shinano�, Kenichi Harada and Ryuichi Hirabayashi
Department of Management Science

Science University of Tokyo
1-3, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

shinano@ms.kagu.sut.ac.jp

Abstract

Branch-and-bound algorithms are general methods ap-
plicable to various combinatorial optimization problems
and parallelization is one of the most hopeful methods to
improve these algorithms. Parallel branch-and-bound al-
gorithm implementations can be divided in two types based
on whether a central or a distributed control scheme is
used. Central control schemes have reduced scalability be-
cause of bottleneck problems frequently encountered. In
order to solve problem cases that cannot be solved with
sequential branch-and-bound algorithm, distributed con-
trol schemes are necessary. However, compared to central
control schemes, higher efficiency is not always achieved
through the use of a distributed control scheme. In this pa-
per, a mixed control scheme is proposed, changing between
the two different types of control schemes during execution.
In addition, a dynamic load balancing strategy is applied
in the distributed control scheme. Performance evaluation
for three different cases is carried out: central, distributed,
and mixed control scheme. Several TSP instances from the
TSPLIB are experimentally solved, using up to 101 worksta-
tions. The results of these experiments show that the mixed
control scheme is one of the most promising control schemes
and furthermore, the hybrid selection rule, which was intro-
duced in our previous work, has an advantage in parallel
branch-and-bound algorithms.

1. Introduction

Branch-and-bound algorithmsare general methods ap-
plicable to various combinatorial optimization problems
that belong to the class of NP-hard problems. These algo-
rithms are search-based techniques that enumerate the en-
tire solution space implicitly. Parallelization is the most ap-

�Research Fellow of the Japan Society for the Promotion of Science.

propriate method for accelerating the enumeration process.
Since the algorithms usually need much time to evaluate a
subproblem, we implementhigh-level parallelismof such
algorithms, in which case all the existing subproblems are
parallelized simultaneously provided that an adequate num-
ber of processors is available. Even though there are sev-
eral criteria for classifying parallel branch-and-bound algo-
rithms [1, 4, 9, 14], the most useful criterion is the search
tree management. The search tree is managed with a sin-
gle subproblem pool in the central control case(central con-
trol scheme) or with multiple subproblem pools in the dis-
tributed control case(distributed control scheme). Paral-
lelization with a single subproblem pool usually achieves
higher efficiency until a large number of processors are used
[3, 7].

In a previous work[13], a generalized system for
parallel branch-and-bound algorithms was developed
(PUBB:Parallelization Utility for Branch-and-Bound algo-
rithms). This was an implementation of the central con-
trol scheme with a single subproblem pool. Computational
experiments with PUBB showed the robustness of the hy-
brid selection rule in the central control scheme, but the
distributed control scheme was not tested. The system has
been rebuilt to accommodate distributed control with multi-
ple subproblem pools this time. Moreover,mixed control
schemeis implemented in this paper, which incorporates
both the central and the distributed control schemes dur-
ing execution. In this paper, a new dynamic load balanc-
ing strategy is also applied to the renewed PUBB. Load
balancing strategies based on thediffusion or the dimen-
sion exchangemethods perform load balancing operations
iteratively[2, 8, 10, 15]. However, the load balancing strat-
egy proposed here performs the operation only when it is
necessary. That is to say, a processor with few tasks to
perform, or with many tasks that exceed its capacity, in-
vokes the load balancing process. Naturally this kind of
load balancing has poor performance in terms of “quality”

1

IPPS 1997
ISSN 1063-7133/97 $10.00 © 1997 IEEE

as described in [8](Load balancing in parallel branch-and-
bound algorithms can generate additional workload. There-
fore, when applying this strategy the operator has to worry
about not only the workload distribution, but also how to de-
crease the workload level itself. An application of the load
balancing strategy which does not introduce much workload
and distributes the tasks to the processors efficiently, leads
to high “quality”). It is shown in this paper, that “quality”
can be enhanced with the appropriate use of selection rules
and control schemes.

2. Renewed Parallelization Utility for Branch-
and-Bound algorithms

The renewed PUBB is a completely redesigned algo-
rithm and not an extension of the old implementation of
[13]. All program codes are written in C++ and use
the PVM (Parallel Virtual Machine) library. PUBB has
threerunning modeswith respect to the control schemes
used. The central control scheme is applied in the “Master-
Slave(MS)” mode, the distributed control scheme is ap-
plied in the “Fully-Distributed(FD)” mode and the mixed
control scheme is applied in the “Master-Slave to Fully-
Distributed(MStoFD)” mode.

2.1. Composition of the utility: the basic tasks

The renewed PUBB is composed of three tasks in the
PVM, which are presented in Figure 1.

Problem Manager (PM)

InitData Incumbent Subproblem Pool

PVM-LBG (Every LB joins a PVM group of LBs)

PVM (Parallel Virtual Machine)

Solution . . .

Subproblem

Load
Balancer

(LB)

Solver

Subproblem
Pool

Incumbent
Value

...

Load
Balancer

(LB)

Solver

Subproblem
Pool

Incumbent
Value

...

Load
Balancer

(LB)

Solver

Subproblem
Pool

Incumbent
Value

...

. . .

Figure 1. The composition of tasks

Problem Manager(PM): This task maintains through-
out the execution the instance data and the incumbent solu-
tion for the target problem. In the MS mode, it has a sub-
problem pool and once it is initialized, it behaves like an
“iterative server”, handling requests from other tasks.

Load Balancer(LB): This task spawns the correspond-
ing Solver. In the FD mode, it regulates the load balancing
in cooperation with otherLBs. It also behaves like an “it-
erative server”, when it is initialized. AllLBs join a PVM
group calledPVM-LBG.

Solver: This task and theLB have a one to one corre-
spondence and both run on the same workstation. Subprob-
lems are evaluated in the Solver. In PUBB, the “evaluation”
can be defined as follows: (1)obtain a subproblem, (2)com-
pute a bounding value, (3)check whether the subproblem
can be eliminated or not, (4)select branching variables and
generate new subproblems if necessary, and (5)remove the
obtained subproblem. A local subproblem pool is available,
only in the FD mode.

2.2. Implementation of selection rules

The data structure of a subproblem pool is presented in
Figure 2. It consists of three index heaps: (a)the selec-
tion ordered heap which is ordered by theselection crite-
rion value, (b)the best bound ordered heap and (c)the worst
bound ordered heap. Each heap element has only point-
ers. Basic heap operations such asinsertor removeare per-
formed based on the value of the subproblem data. Using
this data structure, a subproblem can be inserted into or re-
moved from the pool by either selection criterion value, best
bound, or worst bound order on a set of sizen in O(lgn)
time. The pruning procedure removes subproblems from
the subproblem pool by worst bound order as long as the
bounding value of the subproblem on the top of the worst
bound heap is worse than the incumbent value. This oper-
ation may take quite some time, but usually not many im-
proved solutions are found in the algorithms.

Subproblem Pool
Index heap

Subproblem

Selection heap Best bound heap Worst bound heap
Selection
criterion
order

Best
bound
Worst

order order
bound

...
Bounding value

Selection crierion value

Subproblem representation
for the target problem

....

Base
class
parts

Derived
class
parts

Figure 2. Data structure of a subproblem pool

The PUBB supportsdepth first, breadth first, best bound
first, hybridand anyheuristic value orderedselection rules.
The hybrid selection rule was proposed in [13] and Figure
3 shows how this rule is applied. Initially, depth first se-
lection is applied until the search is “terminated”, because

2

a feasible solution is found or it is certain that no improved
solution can be yielded. This is then followed by the appli-
cation of the best bound first selection rule. The depth first
selection rule is then performed till the next “termination”
and the iterations follow on. In the MS mode, the selection
is performed on only one global subproblem pool. On the
other hand, in the FD mode, the selection is performed on
the local subproblem pool in eachSolver.

Depth first
selection
is applied

Select a
subproblem

that has
best bound

Depth first
selection
is applied

Select a
subproblem

that has
best bound

Depth first
selection
is applied

Select a
subproblem

that has
best bound

waiting for processing
already branched
current processing
terminated by

terminated by
feasible solution

bounding rule

Figure 3. Hybrid selection rule

2.3. Initialization and interaction among tasks

2.3.1 “Master-Slave(MS)” mode

At first, a Problem Manager(PM) has to be started. ThePM
reads the problem instance data and recognizes the target
problem type(minimization or maximization) and the selec-
tion rule. Subsequently, an initial solution and a root prob-
lem are obtained by calling the user defined functions. Ini-
tialization of thePM ends when the root problem is put into
the subproblem pool. Then, thePM waits for requests.

When a Load Balancer(LB) starts, it spawns aSolver.
The PM is notified by theSolver on the completion of
the initialization via the correspondingLB . Then thePM
checks for availableSolvers and manages their operation.
After the initialization, thePM behaves as the “master” and
the Solvers are the “slaves”. As long as the subproblem
pool of thePM is not empty and more than one idleSolver
exist, thePM selects subproblems and assigns them to the
Solvers. When theSolver receives a subproblem, it evalu-
ates it. If an improved solution is found, theSolversends it
to thePM and broadcasts the objective value to the PVM-
LBG. EachLB receives the objective value, and sends it to
the correspondingSolver. If new subproblems are gener-
ated, they are also sent to thePM.

2.3.2 “Fully-Distributed(FD)” mode

The initialization sequence is almost the same as the one
in the MS mode. The only differences are in the following
two points: (1)thePM does not have a subproblem pool
and a root problem is just maintained by thePM and when
the firstSolver is available, the problem is assigned to this
Solver as a part of the initialization data, and (2)thePM
does not manage availableSolvers.

In theSolver, a sequential branch-and-bound algorithm
is operated obtaining subproblems from a local subproblem
pool and putting newly generated subproblems into it. In
order to avoid imbalance of workload among theSolvers,
eachSolver may send or receive subproblems at the end
of each evaluation. When the evaluation is completed, the
Solver sends its own local pool states (the number of sub-
problems, their best bound values etc.) to the corresponding
LB and checks if any messages have arrived or not. Upon
receiving a subproblem, theSolverputs it into the local pool
and sends an acknowledgment message to the sender. After,
receiving an instruction message from the corresponding
LB to send a subproblem to a specifiedSolver, theSolver
follows the instruction. Note that theSolver does not care
about the origin or destination decided by the corresponding
LB . This relation between theSolverand the corresponding
LB described above, is graphically depicted in Figure 4.

Load Balancer
(LB)

Solver
Subproblem

Pool

Sequential
branch-and-

bound algorithm

After every evaluation,
the Solver sends the local
pool states to the Load
Balancer

After every evaluation,
the Solver checks whether
any subproblems arrive
and receives them

The Load Balancer makes a
decision over load balancing
and gives instruction to the
Solver to send subproblems

The Solver sends subproblems
according to the instruction
of the Load Balancer

Figure 4. Interaction between the Solver and
the Load Balancer

When aLB recognizes that the number of subproblems
in the correspondingSolver is less than thethreshold value
specified as a parameter, theLB searches for apartner
which is theLB whose correspondingSolver is the partner
in the pairwise load balancing. Since eachLB knows the
pool states of the correspondingSolver, it can search for a
partner in cooperation with otherLBs. Therefore, during
the search process, the underlying evaluation in theSolvers
are performed concurrently. Although the search is initiated
usually from aLB of a receiver side, it is started from one
of a sender side, when the subproblem pool of aSolver is
filled up to its capacity.

The LB which starts searching for a partner, will be
calledinitiator. An initiator broadcasts a request for a part-
ner. When theLBs receive this request, each of them replies

3

with its states immediately. The initiator considers the
group ofLBs replies of which were communicated to the
initiator, as a cluster called theload balancing group(LBG).
TheLBs replies sent to the initiator are checked after every
iteration, or one second later if no subproblem exists in the
Solver. Therefore, the LBG extends with time. AnLB is
selected as a partner from the group ofLBs in the LBG,if
the following conditions are met: (1)The state of the cor-
respondingLB is FREE, which means that theLB is not
an initiator and the correspondingSolver is not perform-
ing pairwise load balancing, (2)The number of subprob-
lems stored in theSolver is greater than the average number
of subproblems in the LBG. These procedures mentioned
above are performed on eachLB independently. The case
where the procedures on severalLBs are performed asyn-
chronously is presented in Figure 5. This strategy usually
searches for a near partner, where the distance concept is
defined in terms of the response time. Subproblems keep
being transferred until the number of subproblems in the
Solvermanaged by the initiator is equal to the average num-
ber of subproblems in the LBG.

LBG is
created LB found

a partner
another
LBG is
created

LBG
extends

LBG
extends

LB found
a partner sends

subproblems

another
LBG is
created another

LBG is
created

LBG
extends

sends
subproblemsLB: Load Balancer

LBG: Load Balancing Group

: LBG

: LB which does nothing about load balancing
: LB which creates a LBG
: LB which is a member of LBG
: LB which is selected as a partner
: flow of Subproblem which are transmitted
: LB found a partner

Figure 5. Searching procedure for partner

The Solver can assume two different states: “idle”(no
subproblems) or “full” (the subproblem pool in theSolver
is filled up to its capacity) or it can also be canceled. The
PM is notified on any change in theSolverstate. When the
PM detects that the states of allSolver are “idle” or “full”,
the execution is terminated.

2.3.3 “Master-Slave to Fully-Distributed(MStoFD)”
mode

The PUBB starts execution with the same initialization se-
quence and internal architecture as that in the MS mode.

When the number of subproblems maintained by thePM
becomes greater than a certain value specified as a param-
eter, the internal architecture is modified to the one in the
FD mode. As soon as this condition is detected, thePM
broadcasts the “change architecture” message to PVM-LBG
and eachSolver receives the message via the correspond-
ing LB . Upon receiving the message, theSolver sends an
acknowledgment message to thePM and starts placing re-
cently generated subproblems into the local pool. When the
PM recognizes that all theSolverstates have been changed,
it selects a subproblem from the pool using best bound or-
der and distributes it to a differentSolverone by one using
the “round robin” scheme. Note that while these procedures
are performed, theSolvers keep evaluating subproblems.

3. Performance evaluation

Computational experiments on the TSP were conducted
and the results are presented here. We used the algorithm
for solving the TSP developed by M.Held and R.Karp and
based the bounding rule on the minimum 1-tree relaxation
and sub-gradient method [5, 6]. Though many powerful
algorithms have been proposed for the TSP, this method
is enough to evaluate the performance of the algorithm in
parallelizations. In these experiments, problem cases from
TSPLIB[12] were used.

The workstations operated were an IBM RS/6000 Model
25T with a PowerPC601 at 66MHz and 64M bytes memory.
The maximum number of networked workstations used was
101 and only oneSolverwas ran on each machine. ThePM
was hosted by a workstation where noSolver and no other
processes ran. Therefore, the number of the workstations
used for the experiments was one more than the number
of Solvers. No other user process ran on any workstation
during the experiments.

3.1. Preliminary experiments

In order to show the behavior of the algorithm in solv-
ing the TSP and to investigate the parallelization effective-
ness, the computational results of the sequential algorithm
are also presented here. We solved ten problem cases using
the sequential algorithm and applying the best bound first
and the hybrid selection rules, because these rules for the
algorithm showed good performance in our previous work.
Table 1 shows the computing time for each problem case.
The ending parts of the problem case names indicate the
number of TSP cities.

The application of the hybrid selection rule was not al-
ways faster than that of the best bound first selection. How-
ever, the mean evaluation time of each subproblem was
short when the hybrid selection rule was applied, because
each evaluation used knowledge produced by the previous

4

evaluation in the depth first phase. This is an advantage of
the hybrid selection rule.

Table 1. Computing time in the sequential al-
gorithm (sec)

Best Bound Selection Hybrid Selection
Prob. Comp. Ev.Time of a Subproblem Comp. Ev.Time of a Subproblem

Time Mean(S.D.) Max Min Time Mean(S.D.) Max Min

berlin52 343.19 2.37(1.44) 5.64 0.32 32.70 2.05(1.89) 5.88 0.36
dantzig42 16605.20 1.35(0.63) 3.76 0.01 6539.66 0.93(0.85) 3.78 0.02

eil101 4859.47 6.20(3.55)21.39 0.57 5850.59 5.54(4.20)21.75 0.17
eil51 717.64 1.32(0.78) 4.82 0.07 1120.83 1.32(0.84) 5.30 0.03
eil76 447.13 4.43(0.86) 8.68 1.89 618.43 3.37(2.58)11.72 0.11
gr48 26152.501.221(0.95) 4.73 0.06 23605.86 1.16(0.98) 4.91 0.02
rat99 687.98 6.73(1.07) 8.72 1.82 2027.10 6.01(2.95)15.43 0.15
rd100 50463.03 7.98(5.62)22.16 0.18 36573.59 6.90(5.68)22.17 0.16
st70 14209.283.598(0.85) 9.55 0.39 15245.44 2.80(2.37)10.28 0.06

swiss42 23.07 1.13(0.75) 2.87 0.29 23.13 0.96(0.92) 3.48 0.06

3.2. Performance comparison among several
schemes

In the following results, we demonstrate the perfor-
mance of each control scheme. We experimented only four
cases: dantzig42, gr48, rd100 and st70 in parallel with
2,3,5,7,10,20,40,70 and 100Solvers. Other cases are gen-
erally solved fast, do not have to be solved in parallel.
Experiments were conducted with three control schemes:
central(MS), distributed(FD) and mixed(MStoFD). In the
MStoFD mode, the control scheme was changed when
the number of subproblems maintained by thePM ex-
ceeded over the following number:(threshold value+ 1) �
(the number ofSolvers). This setting of parameter causes
no initial imbalance amongSolvers turn in the distributed
control. The best first and the hybrid selection rules were
also applied. Five runs were repeated with the same pa-
rameter specifications in the same computing environment.
Figures 6, 8, 10 and 12 computing time vs. the number
of Solvers used. Figures 7, 9, 11 and 13 the number of
subproblems that were evaluated vs. the number ofSolvers
used. The results of the use of sequential algorithms are also
plotted in the figures, for comparison reasons. All the re-
sults except the trials with the sequential algorithm are plot-
ted using the mean value of five repeated runs. The shapes
of plots and lines in Figures 7, 9, 11 and 13 are the same as
those in Figures 6, 8, 10 and 12.LinearSpeedupplots are
drawn using the following function:LinearSpeedup(x) =
(Computing time in the sequential algorithm)=x

The application of the hybrid selection rule often showed
better performance than that of the best bound first selec-
tion. This performance is observed not only in the short
computing time but also in the small number of evaluated
subproblems. In addition, in the parallelization with many
Solvers, the performance seems to have plenty of advan-
tages. The reason is that, since a depth-first search is used in
the hybrid selection rule, solutions which can improve the

incumbent value are more likely to be found earlier com-
pared to the best bound first selection rule. Hence, the
number of redundant subproblems evaluated with the hy-
brid rule will be less than the one in the best bound first rule.
Moreover, a parallel application of the hybrid selection rule
seems to enhance the advantages.

The central control in the MS mode often showed good
performance within applications of the same selection rule.
Especially, when the hybrid selection rule was used, super-
linear speedup was achieved. The distributed control case in
the FD mode with the best bound first selection rule showed
that our load balancing strategy is poor in terms of “qual-
ity”, because it increased the number of evaluated subprob-
lems very much in gr48 and st70. However, substituting
the best bound first with the hybrid selection rule improved
the situation. Moreover, the mixed control in the MStoFD
mode improved the situation even more. In the setting of
the parameter in the MStoFD mode, the control scheme
was changed in the beginning of the execution. It is likely
that imposing central control in the beginning of the algo-
rithms is important, because the performance of the poor
load balance case in the FD mode was greatly improved in
the MStoFD mode (especially the results of gr48 and st70).

Table 2 shows the efficiency vs. the number ofSolvers
used. Efficiencycan be defined as:Efficiency(x) = (
Computing time in sequential) / ((Computing time in par-
allel withx Solvers)�x). The problem cases are arranged
in order of the number of subproblems evaluated by the se-
quential algorithms with each selection rule (the number is
indicated under the problem case name). It is not clear, but
the advantages of FDtoMS mode is observed with increas-
ing the number and with addingSolvers used.

Table 2. Efficiency vs. # of Solvers used
Prob. Mode #=1 #=2 #=3 #=5 #=7 #=10 #=20 #=40 #=70 #=100

st70 FD 1.00 0.76 1.14 0.96 0.72 0.59 0.15 0.13 0.08 0.06
[Best] MS-FD 1.00 0.77 1.14 0.81 0.66 0.48 0.44 0.33 0.27 0.32
(3923) MS 1.00 0.99 0.99 0.99 0.99 0.98 0.96 0.91 0.85 0.74
rd100 FD 1.00 0.77 1.20 1.09 1.00 0.92 0.94 0.76 0.53 0.38

[Hybrid] MS-FD 1.00 0.98 1.54 0.75 0.74 1.07 1.01 0.92 0.78 0.57
(5269) MS 1.00 1.24 1.14 0.80 0.79 1.22 1.06 1.15 0.99 1.03
st70 FD 1.00 0.95 0.93 0.90 0.85 0.88 0.69 0.59 0.36 0.30

[Hybrid] MS-FD 1.00 0.81 0.75 0.94 0.77 1.01 0.77 0.77 0.61 0.34
(5418) MS 1.00 0.80 0.76 0.88 0.73 0.72 0.90 1.00 1.27 0.93
rd100 FD 1.00 0.89 0.72 0.94 0.85 0.86 0.69 0.66 0.43 0.37
[Best] MS-FD 1.00 1.09 0.93 1.08 0.64 0.85 0.68 0.70 0.66 0.50
(6280) MS 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.96 0.89 0.86

dantzig42 FD 1.00 0.80 0.68 0.64 0.58 0.60 0.65 0.53 0.37 0.18
[Hybrid] MS-FD 1.00 0.86 0.91 0.69 0.76 0.79 0.66 0.55 0.43 0.28
(6966) MS 1.00 1.08 0.80 0.77 0.85 0.78 0.82 0.64 0.57 0.36

dantzig42 FD 1.00 0.85 0.65 0.74 0.77 0.60 0.67 0.56 0.52 0.34
[Best] MS-FD 1.00 0.85 0.88 0.83 0.80 0.75 0.78 0.79 0.70 0.50

(12217) MS 1.00 0.99 0.98 0.98 0.98 0.96 0.95 0.91 0.61 0.44
gr48 FD 1.00 0.92 0.82 0.81 0.97 0.93 0.98 0.82 0.74 0.51

[Hybrid] MS-FD 1.00 1.12 0.82 0.83 0.71 0.81 0.86 1.00 0.85 0.66
(20292) MS 1.00 0.94 1.08 1.08 0.92 1.00 1.03 1.07 0.89 0.71

gr48 FD 1.00 1.07 0.84 0.74 0.57 0.64 0.50 0.40 0.33 0.34
[Best] MS-FD 1.00 0.90 1.02 0.99 0.77 0.81 0.85 0.76 0.65 0.60

(21281) MS 1.00 0.99 0.99 0.99 0.98 0.99 0.98 0.94 0.70 0.50

5

10

100

1000

10000

100000

1 2 3 5 7 10 20 40 70 100

C
om

pu
tin

g
T

im
e(

se
c)

Number of Solvers

FD(Best)
MStoFD(Best)

MS(Best)
LinearSpeedup(Best)

FD(Hybrid)
MStoFD(Hybrid)

MS(Hybrid)
LinearSpeedup(Hybrid)

Figure 6. Time results for dantzig42

5000

10000

15000

20000

25000

30000

1 2 3 5 7 10 20 40 70 100

N
um

be
r

of
 E

va
lu

at
ed

 S
ub

pr
ob

le
m

s

Number of Solvers

Figure 7. Number results for dantzig42

100

1000

10000

100000

1 2 3 5 7 10 20 40 70 100

C
om

pu
tin

g
T

im
e(

se
c)

Number of Solvers

FD(Best)
MStoFD(Best)

MS(Best)
LinearSpeedup(Best)

FD(Hybrid)
MStoFD(Hybrid)

MS(Hybrid)
LinearSpeedup(Hybrid)

Figure 8. Time results for gr48

16000

18000

20000

22000

24000

26000

28000

30000

32000

34000

36000

38000

1 2 3 5 7 10 20 40 70 100

N
um

be
r

of
 E

va
lu

at
ed

 S
ub

pr
ob

le
m

s

Number of Solvers

Figure 9. Number results for gr48

100

1000

10000

100000

1 2 3 5 7 10 20 40 70 100

C
om

pu
tin

g
T

im
e(

se
c)

Number of Solvers

FD(Best)
MStoFD(Best)

MS(Best)
LinearSpeedup(Best)

FD(Hybrid)
MStoFD(Hybrid)

MS(Hybrid)
LinearSpeedup(Hybrid)

Figure 10. Time results for rd100

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 5 7 10 20 40 70 100

N
um

be
r

of
 E

va
lu

at
ed

 S
ub

pr
ob

le
m

s

Number of Solvers

Figure 11. Number results for rd100

100

1000

10000

100000

1 2 3 5 7 10 20 40 70 100

C
om

pu
tin

g
T

im
e(

se
c)

Number of Solvers

FD(Best)
MStoFD(Best)

MS(Best)
LinearSpeedup(Best)

FD(Hybrid)
MStoFD(Hybrid)

MS(Hybrid)
LinearSpeedup(Hybrid)

Figure 12. Time results for st70

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 5 7 10 20 40 70 100

N
um

be
r

of
 E

va
lu

at
ed

 S
ub

pr
ob

le
m

s

Number of Solvers

Figure 13. Number results for st70

6

4. Concluding remarks

In this paper, the mixed control scheme was proposed
and examined and a load balancing strategy was imple-
mented on the renewed PUBB. The most important result
presented is the power of the hybrid selection rule in the real
world cases. It is known that the number of subproblems
visited in a sequential branch-and-bound algorithm is mini-
mized when the best bound first selection is applied. There-
fore, implementations have often been applied to the best
bound selection rule[7, 8, 11]. However, the idea is based
on the assumption that the evaluation of each subproblem
takes up the same computing time. Our results showed that
the evaluation time varies significantly(see Table 1) in prac-
tice. Based on the experimental facts, the advantages of the
hybrid selection rule, both in the central control and in the
distributed control scheme, were shown.

The results presented in this paper do not show that
mixed control in the MStoFD mode is better than central
control in the MS mode. However, it is important to know
that the instances solved in the parallel algorithm can also
be solved in the sequential one. These cases were selected
for a comparison between the sequential and the paral-
lel. The central control scheme has its memory bottleneck.
Therefore, an instance which cannot be solved in a sequen-
tial algorithm because of the memory bottleneck problem,
often can neither be solved in parallel when the maximum
available subproblem pool size is fixed. In order to increase
the solvable instances, the distributed control schemes are
especially useful in practice. For the limitation of comput-
ing environment, we could not show the the advantages of
mixed control in the MStoFD mode. However the efficiency
analysis provided in Table 2 shows its potential.

In general, a proper selection of the control scheme is
determined by the characteristics of the solving algorithm
for the target problem and the scale of the parallel comput-
ing environment used. When the evaluation workload for a
subproblem is very low, the access convergence bottleneck
in the central control scheme becomes a serious problem.
In this case, the use of the distributed control scheme has to
be attempted. If the evaluation workload for a subproblem
is large enough and the algorithm is applied on a few pro-
cessors, the central control scheme seems to be the most ap-
propriate. Therefore, several control schemes are necessary
in a generalized system in order to have a wide application.

Acknowledgments

Our special thanks are due to Yiannis Anagnostakis for
reading the entire text in its original form. Research sup-
port from the Information Processing Center at the Science
University of Tokyo is highly acknowledged by the authors.

The authors are grateful to the anonymous referees for care-
ful reading of the manuscript and helpful comments.

References

[1] R. Corrêa. A parallel formulation for general branch-and-
bound algorithms. In A.Ferreira and J.Rolim, editors,Paral-
lel Algorithms for Irregularly Structured Problems, volume
980 ofLecture Notes in Computer Science, pages 395–409.
Springer-Verlag, 1995.

[2] G. Cybenko. Dynamic load balancing for distributed mem-
ory multiprocessors. Jornal of Parallel and Distributed
Computing, 7:279–301, 1989.

[3] J. Eckstein. Control strategies for parallel branch-and-
bound. InProceedings of Super-computing ’94, pages 41–
48, 1994.

[4] G. Gendron and T. G. Crainic. Parallel branch-and-bound
algorithms:survey and synthesis.Operations Research,
42(6):1042–1066, 1994.

[5] M. Held and R. M. Karp. The traveling-salesman prob-
lem and minimum spanning trees.Operations Research,
18:1138–1162, 1970.

[6] M. Held and R. M. Karp. The traveling-salesman problem
and minimum spanning trees: Partii.Mathematical Pro-
gramming, 1:6–25, 1971.

[7] R. Lüling and B. Monien. Two strategies for solving the
vertex cover problem on transputer network. In M.Raynal
and J.C-.Bermond, editors,Distributed Algorithms, Lecture
Notes in Computer Science, pages 160–170, 1989.

[8] R. Lüling and B. Monien. Load balancing for distributed
branch & bound algorithms. InProceedings of the 6th In-
ternational Parallel Processing Symposium, pages 543–549,
1992.

[9] G. P. McKeown, V. J. Rayward-Smith, and S. A.
Rush. Parallel branch-and-bound. In L.Kronsj¨o and
D.Shumsheruddin, editor,Advances in Parallel Algorithms,
Advanced topics in computer science, pages 111–150, 1992.

[10] P. M. Paradalos and G. P. Rodgers. Parallel branch and
bound algorithms for quadratic zero-one programs on the
hypercube architecture.Annals of Operations Research,
22:271–292, 1990.

[11] M. J. Quinn. Analysis and implementation of branch-and-
bound algorithms on a hypercube multicomputer.IEEE
Transactions on Computers, 39(3):384–387, 1990.

[12] G. Reinelt. Tsplib - a traveling salesman problem library.
In ORSA Journal on Computing, volume 3, pages 376–384,
1991.

[13] Y. Shinano, M. Higaki, and R. Hirabayashi. A generalized
utility for parallel branch and bound algorithms. InProceed-
ings of the 7th IEEE Symposium on Parallel and Distributed
Processing, pages 392–401, San Antonio, Texas, 1995.

[14] H. W. J. M. Trienekens.Parallel Branch and Bound Algo-
rithms. Phd thesis, Erasmus Universiteit, Rotterdam, 1990.

[15] S. Tschöke, R. Lüling, and B. Monien. Solving the travel-
ing salesman problem with a distributed branch-and-bound
algorithm on a 1024 processor network. InProceedings of
the 9th International Parallel Processing Symposium, Santa
Barbara, California, 1995(to appear).

7

