
Parallel Large Neighborhood Search

Laurent Perron and Paul Shaw
ILOG SA

{lperron,pshaw}@ilog.fr

September 2003

Abstract

Industrial optimization applications must be robust: they must provide good solutions
to problem instances of different size and numerical characteristics, and must continue to
work well when side constraints are added. A good testbed for constructing such a robust
solver is a set of network design problem instances recently made public by France Telecom.
Together, these instances comprise the desired diversity in the aforementioned qualities of
scale, numerical attributes, and additional constraints.

We apply Constraint Programming to the above problems. In order to provide a robust
solver, however, we forgo traditional depth first search in favor of another search method
typically providing more predictable performance. Large Neighorhood Search (LNS) is a
method using the full power of constraint programming, while maintaining the robustness
benefits of local search. To further enhance robustness we parallelize our search in a variety
of ways. Most interesting is a method based on a portfolio of algorithms which is shown to
outperform all previously known CP-based methods for this problem set.

1 Introduction

In the design and development of industrial optimization applications, one major concern is that
the optimization algorithm must be robust. By “robust”, we mean not only that the algorithm
must provide “good” solutions to problem instances of different size and numerical characteristics,
but also that the algorithm must continue to work well when constraints are added or removed.
This expectation is heightened in constraint programming as the inherent flexibility of constraint
programming is often put forward as its main advantage over other optimization techniques.

An extensive benchmark suite, presented in two joint papers [5, 11], has been built on the basis
of real network design data provided by France Telecom R&D. The suite includes three series of
problem instances corresponding to different characteristics of the numerical data. In each series,
seven instances of different sizes are provided. In addition, six potential side constraints are
defined, leading to 64 versions of each instance, and 1344 in total.

We believe that an optimization technique which applies well to all of the 1344 problem in-
stances is more likely to remain applicable in the future than an optimization technique which
performs particularly well on some instances, but fails to provide reasonable solutions on some
others.

From our extensive study of the problems in question from a solution construction prespective,
robust solving specifically requires dealing with three difficulties:
Size: The size of the problem instances varies substantially. This is illustrated by the depth of
the first solution found by the CP program. In easy cases, the depth is around 30; in hard cases,
it is between 2,000 and 3,000. While exploring the complete search tree is feasible in the first case
because propagation helps to cut branches of the tree, it is completely unthinkable in the second
case. Moreover, even making a few mistakes early in the search tree is fatal as no search procedure
can attempt to correct them in a reasonable time period.

1



Selection: Deciding in which order demands are to be routed is error prone because of the
cumulative nature of the cost. This decision also has major consequences on the minimization
process afterward.
Topology: The side constraints and the numerical data make each problem instance very different.
This makes it difficult to design an algorithm that is efficient on each aspect of the problem. In
practice, we have found that efforts to improve the algorithm on one aspect of the problem typically
reduce its robustness as results are deteriorated on instances that do not contain this aspect.

Due to the above difficulties experienced by pure constructive (tree-search) approaches to these
problems, we examine a local search method. Although such methods cannot prove optimality,
they have been shown to be robust over a large set of problems, for example, see [1]. Here, however,
we take a less traditional line, using constraint programming to explore the neighborhood in a
technique known as Large Neighborhood Search.

Large Neighborhood Search (LNS) [18] is a local search paradigm based on two main ideas to
define and search large neighborhoods. The first key is to define neighborhoods by fixing or freezing
a part of an existing solution. The elements of the solution that are fixed are usually explicit or
implicit variables of the model. For example, in a scheduling model, one may choose to fix the
values of the start times of each activity (explicit variables) or one may add additional constraints
that force one activity to be scheduled before another (precedence constraints). The rest of the
variables, often referred to as a fragment, are released : they are free to change their values. The
resulting neighborhood is the set of solutions to the sub-problem created. The neighborhood
created is usually much larger than typical local search neighborhoods, and can be exponential in
the number of released variables.

The size of the so-defined neighborhood requires a powerful algorithm to search it; one cannot
reasonably rely on simple enumeration or heuristics to quickly find neighboring solutions. The
second key idea of LNS is to use some form of tree search, constraint programming (CP) or mixed
integer programming (MIP) to search the neighborhood. However, even with such algorithms, in
practice, the tree search is most often truncated with a possibly adaptive time, node, or discrepancy
limit. Disrepancy-based searches are often used to try to examine the most promising parts of the
search tree early on in search.

LNS methods have been proved to be very successful on a variety of hard combinatorial prob-
lems, e.g., vehicle routing [4, 7, 18], scheduling (job-shop: shuffle [2], shifting bottleneck [10],
forget-and-extend [6]; RCPSP: block neighborhood [14]), network design [8, 11], frequency alloca-
tion [13].

This article discusses the benchmark instances examined, the basic LNS solving approach
taken, subsequent efforts to parallelize the basic algorithm, and the problems encountered. We
then settle on a parallization based on a portfilio of algorithms and examine its effectiveness on
the benchmark suite.

2 A network design problem

The benchmark problem consists of dimensioning the arcs of a telecommunications network, so
that a number of commodities can be simultaneously routed over the network without exceeding
the chosen arc capacities. The capacity to be installed on an arc must be chosen in a discrete set
and the cost of each arc depends on the chosen capacity. The objective is to minimize the total
cost of the network.

Given are a set of n nodes and a set of m arcs (i, j) between these nodes. A set of d demands
(commodities) is also defined. Each demand associates with a pair of nodes (p, q) an integer
quantity Dempq of flow to be routed along a unique path from p to q.

For each arc (i, j), Kij possible capacities Capak
ij , 1 ≤ k ≤ Kij , are given, to which we add

the zero capacity Capa0
ij = 0. Exactly one of these Kij + 1 capacities must be chosen. However,

it is permitted to multiply this capacity by an integer between a given minimal value Wmink
ij

and a given maximal value Wmaxk
ij . Hence, the problem consists in selecting for each arc (i, j)

a capacity Capak
ij and an integer coefficient wk

ij in [Wmink
ij ,Wmaxk

ij ]. The choices made for the

2



arcs (i, j) and (j, i) are linked. If capacity Capak
ij is retained for arc (i, j) with a non-zero coefficient

wk
ij , then capacity Capak

ji must be retained for arc (j, i) with the same coefficient wk
ji = wk

ij , and
the overall cost for both (i, j) and (j, i) is wk

ij × Costkij .
Six classes of side constraints are defined. Each of them is optional, leading to 64 variants of

each problem instance, which we denote by a six-bits vector. For example, “011000” indicates
that only the second constraint nomult and the third constraint symdem, as defined below, are
active.

• The security (sec) constraint states that some demands must be secured. Secured demands
must be routed through secured arcs.

• The no capacity multiplier (nomult) constraint forbids the use of capacity multipliers.

• The symmetric routing of symmetric demands (symdem) constraint states that for each
demand from p to q, if there exists a demand from q to p, then the paths used to route these
demands must be symmetric.

• The maximal number of bounds (bmax) constraint associates with each demand Dempq a
limit Bmaxpq on the number of bounds (also called “hops”) used to route the demand, i.e.,
on the number of arcs in the path followed by the demand.

• The maximal number of ports (pmax) constraint associates with each node i a maximal
number of incoming ports Pini and a maximal number of outgoing ports Pouti.

• The maximal traffic (tmax) constraint associates with each node i a limit Tmaxi on the total
traffic managed by i.

Twenty-one data files, organized in three series, are available. Each data file is identified by
its series (A, B, or C) and an integer which indicates the number of nodes in the considered
network. Series A includes the smallest instances, from 4 to 10 nodes. Series B and C include
larger instances with 10, 11, 12, 15, 16, 20, and 25 nodes. The series B instances have more choices
of capacity those of series A, which in turn have more capacity choices that those of series C. In
practice, instances of series B tend to be hard because the search space is larger, while instances
of series C tend to be hard because each branching mistake has a higher relative cost.

As described in [11], we have attacked this problem using three approaches: Constraint Pro-
gramming using ILOG Solver, MIP using ILOG CPLEX and Colum Generation using both. In
this article, we focus on the CP approach.

3 Using a subset of the full benchmark

The benchmark problems are specified such that 10 minutes of CPU time are available for each
instance; the goal being to produce the best solution possible in those 10 minutes. As the whole
suite takes 1344 × 10 minutes (more than nine days) to run, we first concentrated our efforts on
a small subset, which served to calibrate and tune our algorithms. We chose to focus on five
particular problem instances:

B10 000000 An average problem with a best CP-found solution of 20510 and the best known
solution of 19395.1

B10 100111 A problem where a first solution may become very difficult to find if the heuristic is
not robust enough. The best CP-found solution is 28083; the best known solution is 25534,
found by CPLEX on a MIP formulation.

1This second solution is not actually found, but inferred from the solution of a more constrained variation of
the problem.

3



C10 100011 A problem where the first solution may become very difficult to solve if the heuristic
is not robust enough. The best CP-found solution is 18925, the same as the best known
solution.

C12 000000 A problem where column generation gives better solutions. CP finds 40099 and
column generation finds 37385.

C25 100000 A large problem where CP is currently the only technique finding feasible solutions.2

The best CP solution is 149500 and the best known solution is 109293, inferred from a
solution found by CP on a more constrainted version of the example.

We believe this selection, while somewhat arbitrary, will allow us to conduct fruitful experi-
ments. While not all options are represented, these five examples will guide us in our experiments.
In the end, we will validate our results by using the best of the breed method on the complete
benchmark to evaluate how it performs.

We will display each set of results3 in this order in an table. For instance, below are the best
results from a pure CP approach:

20510 28083 18925 40099 145900

In order to take into account of any randomness involved in the results (due to randomization
of the solving algorithms), we will display the results of one standalone run for each experiment
that we will choose as representative of the multiple runs. In practice, we choose the median run.

And as a standard, we will always compare to the best known results noted below:

19395 25534 18925 37385 109223

4 Large neighborhood search and randomization

Our first addition to the standard CP framework was a large neighborhood search method [18].
Starting from an instantiated solution stating routes for each demand, we chose to freeze a large
portion of this solution and to re-optimize the unfrozen fragment.

The unfrozen fragment was chosen using the following algorithm: Given a number n of demands
and size, the total number of demands, we compute the ratio ρ = n/size. Then we iterate on
all demands and freeze them with a probability (1 − ρ). Throughout the rest of the paper, the
n = 30.

We continually freeze the randomly chosen part, re-optimizing the remainder, searching for a
solution which is better than the best solution previously encountered. To ensure the last condition
holds, a constraint on the objective variable is added before each iteration. This allows the CP
propagation engine to make additional deductions, accelerating the search.

The above technique was later subsumed by a more structured choice method, of which more
details are given in section 7. However, all experiments outside of section 7 are performed using
the random choice procedure just described.

4.1 A fast restart strategy

As mentioned in the introduction, it is often practical to limit the CP search for an improving
neighbor, the premise being that is can be more beneficial to perform more subproblem selections
and partial explorations than to spend a long time on a particular sub-problem. This mechanism
is often called a fast restart strategy [9].

A promising technique that can be used is to cut branches from the CP search tree which we
heuristically decide as less promising. We examined two approaches:

2We expect this to change when our column generation approach is improved.
3Each sequential run was conducted on a Pentium III 1.13 GHz running Windows XP, using the Microsoft Visual

Studio.NET C++ Compiler.

4



• The first approach relies on the Discrepancy-Bounded Depth First Search (DBDFS) proce-
dure [3] with a maximum discrepancy usually set to 1.

• The second approach, known as amortized search, uses the search techniques described
in [12]. The basic idea is to cut the right branch at each binary choice point with a fixed
probability (set to 0.93 throughout this paper).

All experiments on our five target problems are based on these two fast restart methods. 4

The first method (DBDFS) gave the results:

20760 27414 18925 39738 140738

while the second method (amortized search) gave the results:

20188 27592 18925 40099 138929

As we can see, no method strictly dominates the other and they both improve previous results
by a small margin.

4.2 Randomizing the instantiation order

As described in [11], the instantiation order between demands is fixed using heuristic weights
associated with each demand. We tried to give a random order over demands, hoping that this
would correct mistakes in the fixed instantiation order. We believe that the fixed instantiation
order, while quite efficient, can make serious mistakes in the initial routing of large unconstrained
demands. This means that small critical demands will be routed afterward on a network already
full of traffic.

The DBDFS method was judged best under instantiation order randomization and gave the
results:

20778 27417 18925 36603 140922

As we can see, this method gives a significant improvement in the fourth test (C12 000000).
There is a deterioration in results on the fifth test. The amortized search process does not greatly
benefit from this change.

5 A portfolio of algorithms

While designing the CP search for the routing of each demand, it appeared that each modification
we made that dramatically improved the solution of one or two problem instances would deteriorate
in a significant way the solution of one or two other instances. This, therefore, seemed the perfect
case to which to apply portfolios of algorithms [9].

5.1 Simple implementation of portfolio of algorithms

Our first implementation of the portfolio of algorithms technique was made using a round-robin
method. Each large neighborhood search loop would be made using one algorithm, with each
algorithm chosen in a round-robin fashion. To implement different algorithms, we examined the
routing of each demand. As described in [11], for each demand, we compute a shortest path from
the source to the sink (of the unrouted part of the demand). The last arc of this shortest path
is then chosen and a choice point is created. The left branch of the choice point states that the

4Subsequent work [17] has shown that these two methods do not perform better than a more traditional depth
first search with a fast restart based on a fail limit. However, fast restarting of DBDFS using a fail limit was shown
to outperform both depth first search with a fail limit and the two methods used here.

5



route must use this arc and the right branch states that this arc is forbidden for this route. This
selection is applied until the demand is completely routed.

This method was altered by computing different kinds of penalties on the cost of each arc
and by choosing different combinations of standard cost and penalties. This allowed us to create
different algorithms by applying different coefficients to each component of the cost of one arc.

The standard “cost” is equal to the increase in capacity needed when instantiating a route
for a demand. This cost is not very informative because it depends on the instantiation order of
demands and thus does not reflect the cumulative nature of the cost function. To remedy this
somewhat, we implemented a differerent way of computing a “cost” associated with the decision
to route a demand through one arc. For instance, one of these ways computed the relative cost of
a route as the ratio (cost of the current arc × size of the demand / maximum capacity for this arc
and this current cost). In total, five different ways of computing marginal cost were implemented.
Finally, each of the five + one (standard cost) were associated into seven different cost functions
by using seven linear combinations of the atomic costs. All the coefficients involved in these linear
combinations were chosen after long investigations on benchmarks suite.

One again, the DBDFS method performed better and gave the results:

20524 27498 18925 38805 131323

This method is most useful for the fifth test, where only the additional algorithms (which are
not particulaly usefule on the other problems) were able to go below the 135000 barrier.

5.2 Specialization schema

While attractive, this implementation of a portfolio of algorithms tends to waste a lot of resources.
Let us imagine that we have n algorithms and that only one algorithm can improve our routing
problem, then we spend (n− 1)/n of our time in a speculative and unproductive way.

We decided to implement a specialization mechanism. Given n algorithms, we use an array
of integer weights w. Initially, each weight is set to 3. We then choose each algorithm Ai with
probability (wi)/(

∑
j wj). In the event of the success of an LNS loop, the weight of the successful

algorithm is increased by 1 (with an upper bound set to 12). In case of repeated failure of an
algorithm (in our implementation, 20 consecutive failures), the weight wi is decreased by 1 (with
a lower bound of 2).

The first method (DBDFS) gave the results:

19627 27249 18925 37495 125327

The second method (amortized) gave the results:

19605 28219 18925 36429 125327

As we can see, this specialization schema is very effective. No test is deteriorated by this
approach. Also, there is no clear winner between the DBDFS approach and the amortized search
one.

6 Parallelizing the portfolio of algorithms

Given the success of the previous sequential methods, we decided to parallelize our efforts using a
four processor 700MHz Pentium III.

6



6.1 Parallel solver

ILOG Parallel Solver is a parallel extension of ILOG Solver [19] which was first described in [15].
It implements or -parallelism on shared memory multiprocessor computers. ILOG Parallel Solver
provides services to share a single search tree among workers, ensuring that no worker starves
when there are still parts of the search tree to explore and that each worker is synchronized at the
end of the search.

First experiments with ILOG Parallel Solver are described in [16] and [5]. Switching from the
sequential version to the parallel version required a minimal code change of a few lines, and so we
were immediately able to experiment with parallel methods.

6.2 Simple parallelism

The first parallelization of our LNS approach was very simple. We used the usual API of ILOG
Parallel Solver and with minor changes to the sequential code (around five lines of code), we were
able to implement parallel LNS + portfolio of algorithms. This approach parallelizes at the level
of the resolution of the neighborhood exploration sub-problem, and so is rather fine-grained.

The DBDFS method gave the results:

19960 27357 18598 36963 126530

while the amortized search method gave the results:

20057 27627 18598 37583 125327

These results are rather disappointing. If we do simple math, 4×700 MHz = 2.8GHz (compared
to 1.13 GHz for our sequential machine). We expected better results. In fact, we have a degradation
in the first and second test results, a breakthrough in the third where we improve the best known
solution, a small improvement in the fourth test, and a small degradation in the fifth one.

Deeper investigation shows that parallelization is inefficient (only around 50% of the time is
spent solving). This is due to the nature of the search trees generated, and on the operation
of ILOG Parallel Solver. The trees generated by DBDFS (with a discrepancy limit of 1 as used
here) and amortized search are very “left heavy”. ILOG Parallel Solver implements work stealing,
where a single thread continues the left dive, and the right branches then define sub-trees which
are given out to other threads. However, in the two methods used, the right branches do not occur
frequently and when they do, they typically define very small sub-trees. These problems result
in an increase in swithing overhead and idling. For more traditional ‘bushy’ search trees, such as
those created in standard depth-first search, ILOG Parallel Solver works at much higher efficiency.

6.3 Concurrent execution of the portfolio of algorithms

As shown in the previous section, parallelizing the LNS neighborhood search is inefficient when
using DBDFS or amortized search. We therefore decided to investigate another kind of paralleliza-
tion. We parallize at the portfolio level and run each algorithm in the portfolio in parallel with the
others. Furthermore, in order to reduce the effects of latency and idle workers, we decided to use
more algorithms than processors (6 algorithms on a 4-processor machine). The general mechan-
sim is as follows: First, we choose the LNS subproblem by fixing a some of the problem variables.
Then, on the released fragment, we run all algorithms in parallel, looking for an improvment in
the global cost from any of the algorithms. When all algorithms have completed, the process is
repeated with a new choice of subproblem.

The first method (DBDFS) gave the results:

20326 27573 18598 36507 126530

The second method (amortized search) gave the results:

7



20173 24940 18925 36582 126530

The results, compared to the previous test, are equivalent in the DBDFS approach and im-
proved in the amortized approach. So, again, the results are disappointing.

Although the algorithms are now run in parallel, the important algorithms, which were previ-
ously identified by the specialization schema, are afforded no more time than the others. This is
an important cause of the disappointing results.

Regarding parallelization efficiency, study of the computer workload revealed that approxi-
mately 60% of the total computing power is used at any given time. This is due to the fact
that on the average, some algorithms fail rapidly and do not improve the solution, and typically
40% of the workers are waiting for the others to finish exploring their search tree. This is little
better than the previous naive implementation. However, it has another serious flaw—it is not
scalable. We cannot simply add more processors to delivery speed ups; we are obliged to concoct
new algorithms to occupy them.

6.4 Multi-fragment large neighborhood search

Given the above results, we decided to examined another schema, which combines ideas from the
two previous ones; use of parallelism and the specialization schema, while maintaining scalability.
The important point to note here is that although diverse algorithms are not particularly simple
to generate, the LNS subproblems are, and so this can be used as a way of delivering different work
to all processors. Moreover, as there is no obligation here to run different algorithms in parallel,
the specialization schema can still be used.

In each LNS loop, an algorithm is chosen using the specialization schema. Then, a different LNS
fragment is chosen by each processor, and all processors go to work using the chosen algorithm.
In addition, as new tasks are so easy to generate, if some workers finish before the slowest, they
can restart using a new sub-problem, and continue to do this until the slowest completes, at which
point all workers are stopped.

In our experiments, in order to reduce the effects of latency, we use a few more workers than
processors (7 workers and 4 processors).

The first method (DBDFS) gave the results:

20021 25382 18448 36191 123628

The second method (amortized search) gave the results:

19855 25412 18592 35931 122190

This last implementation is the best so far. It combines excellent results, scalability, and
robustness. The load was constant between 90% and 100% during the whole search process.

7 Results on the complete benchmark

Here we compare full results of the algorithm described in section 6.4 (and an improved variant)
against results described other work [5, 11]. We look at four different CP-based methods:

CPLS A constraint programming based method which also includes a neighborhood search which
removes arcs from the network and reroutes the demands which passed through them.

CPRLNS A sequential version of the algorithm presented in section 6.4.

CPSLNS Equivalent to CPRLNS, except in the choice of the released fragment, which is more
structured than the random choice of CPRLNS. We randomly choose two arcs of the current
solution, and then release all routes which use any of the arcs in question. This has the
benefit of releasing routes which have something in common, resulting in more potential for

8



optimization. Importantly, by rerouting all traffic off an arc, one may close arcs. In the
standard random route selection scheme in CPRLNS, the chances that one would release all
routes passing though an arc are low.

CPSLNS4 Equivalent to CPSLNS, but using four processors.

Tables 1 and 2 summarize the overall results for the above algorithms, noting the number of
times an algorithm produced or bettered the best known result, the total cost sum, and the mean
percentage above the best known solutions. The results were obtained on a 700MHz Pentium III
in ten minutes for the sequential CP variations, and on a four processor 700MHz Pentium III in
ten minutes for the parallel version.

Algorithm B10 B11 B12 B15 B16 B20 B25 Total

CPLS Best 0 0 0 0 0 0 0 0
Sum 1610770 3023086 2555469 2616749 2521154 4809675 6878867 24015770
MRE 13.54% 20.09% 17.71% 22.96% 17.27% 27.42% 21.42% 20.06%

CPRLNS Best 0 0 0 1 0 0 0 1
Sum 1559876 2867269 2495065 2545590 2482189 4633576 6792567 23376132
MRE 10.00% 13.88% 14.87% 19.32% 15.33% 22.63% 19.84% 16.56%

CPSLNS Best 9 2 0 2 0 0 2 15
Sum 1462431 2672609 2287097 2359371 2299906 4439418 6760833 22281665
MRE 3.15% 6.11% 5.52% 10.47% 6.71% 17.61% 19.28% 9.83%

CPSLNS4 Best 19 5 8 3 10 1 5 51
Sum 1443323 2617710 2254242 2313863 2269249 4361197 6573861 21833445
MRE 1.83% 4.04% 3.96% 8.45% 5.24% 15.55% 15.99% 7.86%

Table 1: Mean solutions found in 10 minutes, series B, for all 64 parameter values

Algorithm C10 C11 C12 C15 C16 C20 C25 Total

CPLS Best 20 0 0 0 0 0 0 20
Sum 1110966 2003101 2801849 4207669 2013729 7218196 7444034 26799544
MRE 6.34% 17.14% 22.12% 24.15% 16.86% 31.67% 21.20% 19.93%

CPRLNS Best 18 1 0 0 0 0 0 19
Sum 1074942 1856626 2603355 3860496 1858298 6990726 7340627 25585070
MRE 2.85% 8.65% 13.44% 14.84% 7.84% 27.66% 19.55% 13.55%

CPSLNS Best 31 6 0 9 4 4 2 56
Sum 1059816 1793732 2406664 3539685 1758174 5846432 6933942 23338445
MRE 1.35% 5.19% 4.89% 5.04% 2.02% 6.77% 12.10% 5.34%

CPSLNS4 Best 37 5 4 14 8 11 10 89
Sum 1054491 1775844 2369699 3473590 1755041 5754809 6711360 22894834
MRE 0.84% 4.19% 3.28% 3.19% 1.85% 4.99% 8.78% 3.87%

Table 2: Mean solutions found in 10 minutes, series C, for 64 parameter values

The figures demonstrate a significant improvement in terms of robustness from the combination
of parallelism, LNS, randomness, and portfolios of algorithms.

8 The effect of the number of workers

In this section, we vary the number of workers used on six benchmark instances (B10, B15, B20,
C12, C16, C25). For each instance, all 64 versions involving all combinations of side constraints
were run. We examine the behavior of DBDFS with a fast restart based on a fail limit and the
structured neighborhood implementation (CPSLNS4). We list results using from one to eight

9



Time (s)
Threads 30 60 90 120 150 180 210 240 270 300 600

1 28.63% 23.75% 20.52% 18.75% 17.16% 16.02% 12.95% 11.54% 10.53% 9.75% 7.92%
2 28.07% 23.08% 20.02% 17.96% 16.61% 15.67% 12.82% 11.33% 10.43% 9.81% 7.93%
3 25.60% 21.90% 18.66% 16.71% 15.59% 14.63% 11.73% 10.33% 9.37% 8.62% 6.73%
4 24.98% 21.74% 18.76% 16.55% 15.33% 14.38% 11.75% 10.20% 9.26% 8.59% 6.64%
5 27.01% 22.45% 18.60% 16.76% 15.21% 14.49% 11.20% 9.78% 8.83% 8.15% 6.04%
6 38.28% 21.17% 19.17% 17.39% 16.12% 14.95% 11.81% 10.41% 9.26% 8.45% 6.27%
7 23.64% 21.33% 20.57% 17.85% 16.78% 15.54% 11.83% 10.21% 9.15% 8.35% 6.18%
8 24.42% 22.43% 20.02% 18.09% 16.73% 15.90% 11.73% 10.12% 9.24% 8.43% 5.87%

Table 3: Results for 1 to 8 threads on all six problems in ten minutes

workers on a 700MHz four processor pentium III machine. The runs are ten minutes long and we
report time in seconds.

The results show, as expected, that solution quality is improved as we move from one to four
workers, the latter providing one worker per processor. Quality is further improved, however, from
the use of five workers, as the effects of latency are reduced. The use of six or seven workers appears
to slightly degrade results, which could be due to additional switching overhead. However, the use
of eight workers produces the best results of all. Further examination of this effect is necessary,
but an initial conjecture is that the multi-threading system is more efficient with an integer ratio
of threads to processors.

9 Conclusion

The contributions of this article can be summarized as follows. First, the use randomness and
algorithm portfolios to increase robustness. The use of randomness eliminates any pathological
behavior of heuristics, while the portfolios increase the probability that any particular problem will
be addressed by an algorithm having the means to solve it well. The use of these two techniques
led to significant improvements.

Second, the use of a the specialization mechanism in order to ‘match up’ the correct algorithms
from the portfolio with the problem at hand. This reinforcement learning mechanism was shown
to be indispensable when a large number of algorithms were being used.

Third, as our final results show, adding more structure to the initial random approach is
important as it improves quality of the neighborhoods generated.

Looking to the future, we would like to extend our multi-fragment LNS paradigm into a full
multi-point search, using a population of solutions. This could have various advantages. First,
in the generation of initial solutions, parallelizing with Parallel Solver is not efficient as such an
initial solution is roughly a dive down the left branch of the search tree with little scope for
parallelization. However, in a multi-processor machine, we could use the additional computational
resources to generate several solutions simultaneously, with practically no loss of efficiency. During
the improvment phase, the presence of a population of solutions would allow different types of
decision to be made on where to place resources. One could, for example, dedicate different levels
of resource to different solutions as well as to different algorithms. Finally, populations allow
the creation of new solutions from existing ones via techniques such as genetic crossover or path
relinking. We look forward to exploring such directions in the course of our future work.

References

[1] E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization. Wiley,
Chichester, 1997.

10



[2] D. Applegate and W. Cook. A computational study of the job-shop scheduling problem.
ORSA Journal on Computing, 3(2):149–156, 1991.

[3] J. Christopher Beck and Laurent Perron. Discrepancy-Bounded Depth First Search. In
Proceedings of CP-AI-OR 00, March 2000.

[4] R. Bent and P. Van Hentenryck. A two-stage hybrid local search for the vehicle routing
problem with time windows. Technical Report CS-01-06, Brown University, september 2001.

[5] Raphaël Bernhard, Jacques Chambon, Claude Le Pape, Laurent Perron, and Jean-Charles
Régin. Résolution d’un problème de conception de réseau avec parallel solver. In Proceeding
of JFPLC, 2002. (In French).

[6] Yves Caseau and François Laburthe. Effective forget-and-extend heuristics for scheduling
problems. In Proceedings of the First International Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimisation Problems (CP-AI-
OR’99), 1999.

[7] Alain Chabrier, Emilie Danna, and Claude Le Pape. Coopération entre génération de colonnes
avec tournées sans cycle et recherche locale appliquée au routage de véhicules (in french). In
Huitièmes Journées Nationales sur la résolution de Problèmes NP-Complets (JNPC’2002),
2002.

[8] Alain Chabrier, Emilie Danna, Claude Le Pape, and Laurent Perron. Solving a network
design problem. To appear in Annals of Operations Research, Special Issue following CP-AI-
OR’2002, 2003.

[9] Carla P. Gomes and Bart Selman. Algorithm Portfolio Design: Theory vs. Practice. In
Proceedings of the Thirteenth Conference On Uncertainty in Artificial Intelligence (UAI-97),
New Providence, 1997. Morgan Kaufmann.

[10] E. Balas J. Adams and D. Zawack. The shifting bottleneck procedure for job shop scheduling.
Management Science, 34(3):391–401, 1988.

[11] Claude Le Pape, Laurent Perron, Jean-Charles Régin, and Paul Shaw. Robust and parallel
solving of a network design problem. In Pascal Van Hentenryck, editor, Proceedings of CP
2002, pages 633–648, Ithaca, NY, USA, September 2002.

[12] Olivier Lhomme. Amortized random backtracking. In Proceedings of CP-AI-OR 2002, pages
21–32, Le Croisic, France, March 2002.

[13] Mireille Palpant, Christian Artigues, and Philippe Michelon. A heuristic for solving the fre-
quency assignment problem. In XI Latin-Iberian American Congress of Operations Research
(CLAIO), 2002.

[14] Mireille Palpant, Christian Artigues, and Philippe Michelon. Solving the resource-constrained
project scheduling problem by integrating exact resolution and local search. In 8th Interna-
tional Workshop on Project Management and Scheduling PMS 2002, pages 289–292, 2002.

[15] Laurent Perron. Search procedures and parallelism in constraint programming. In Joxan
Jaffar, editor, Proceedings of CP ’99, pages 346–360. Springer-Verlag, 1999.

[16] Laurent Perron. Practical parallelism in constraint programming. In Proceedings of CP-AI-
OR 2002, pages 261–276, March 2002.

[17] Laurent Perron. Fast restart policies and large neighborhood search. In Proceedings of
CPAIOR 2003, 2003.

11



[18] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In M. Maher and J.-F. Puget, editors, Proceeding of CP ’98, pages 417–431.
Springer-Verlag, 1998.

[19] Solver. ILOG Solver 5.2 User’s Manual and Reference Manual. ILOG, S.A., 2001.

12


