
Search Procedures and Parallelism in Constraint
Programming

Laurent Perron?

ILOG SA
9, rue de Verdun, BP85, 94253 Gentilly Cedex, France

perron@ilog.fr

Abstract. In this paper, we present a major improvement in the search proce-
dures in constraint programming. First, we integrate various search procedures
from AI and OR. Second, we parallelize the search on shared-memory comput-
ers. Third, we add an object-oriented extensible control language to implement
complex complete and incomplete search procedures. The result is a powerful
set of tools which offers both brute force search using simple search procedures
and parallelism, and finely tuned search procedures using that expressive control
language. With this, we were able both to solve difficult and open problems using
complete search procedures, and to quickly produce good results using incom-
plete search procedures.

1 Introduction

Combinatorial Optimization and Combinatorial Problem Solving is an interesting ap-
plication for Constraint Programming (CP). It has grown out of the research world into
the industrial world as demonstrated by the success of different products (ILOG opti-
mization suite, CHIP).

However, when looking at real applications, it appears that Depth-First Search,
which is a standard way of searching for solutions is often an obstacle to optimization.
DFS, which is directly linked to the Constraint Logic Programming and the SLD reso-
lution of Prolog, needs exponential time to break out of subtrees if initial choices have
been incorrect. Searching for solutions using Depth-First Search usually goes against
reactivity and robustness. Therefore, real applications, to be successful, have to over-
ride this limitation by using tailored search techniques. Over the years, many different
approaches have been proposed: A simple approach using somegreedy heuristics, cou-
pled with some look-ahead can be interesting in scheduling [5]. Another traditional ap-
proach which has often proved successful is to change theorder of evaluation of nodes
[8, 20, 12] in the search tree. These approaches usually give good results, but they are
difficult to implement in a generic way on any application of Constraint Programming.
Usually, only a specific search procedure is implemented, or only on a limited subset of
problems. Another promising family of techniques is based onLocal-MovesandLocal-
Searchmethods. The first technique consists in applying local moves to a particular
? This research is partially funded by the Commission of the European Union contract ESPRIT

24960. The author is solely responsible for the content of the document.

solution of the problem until a improvement is found [3, 14, 13, 18]. The second one
consists in freezing part of a problem and applying a tree-search based optimization
process on the non-frozen part [2, 15]. Statistical methods have also been proposed:
Genetic Algorithm[1, 6], Simulated Annealing[1]. All these techniques are appealing
as they provide good results. They also have drawbacks: (1) Their implementations are
linked to the problem they attack. Genericity is rare as it implies a uniform API to
represent different problems and different optimization those implementations rely on.
For instance, Simulated Annealing is based on a notion of temperature that may prove
difficult to exhibit on different classes of problems. (2) They usually not extensible.
Few efforts have been made to propose paradigm which offers genericity and versatil-
ity. (3) Recently, some very interesting ideas have been proposed [10, 19], but they lack
usability as they provide (in our opinion) an API at too low a level, which ruins the
expressiveness of their proposal.

Our work is a bottom-up approach which aims at improving the search performance
of our constraint system. The starting point is tree search. We then distinguish between
two orthogonal notions:Search Heuristicswhich are linked to the definition of the
search tree andSearch Procedureswhich are linked to the exploration of this search
tree. This article deals only with search procedures. We try to improve the exploration
of a search tree using (1) an expressive extensible object-oriented language to describe
search procedures, and (2) parallelism to give more computing power.

We provide an efficient implementation of those search procedures – which leads
to significant reductions in running time – and parallelism based on a multi-threaded
architecture covering the full functionality of the sequential constraint solver. The com-
bination of the search procedures and parallelism is a necessary element for solving
large combinatorial problems such as crew rostering, large jobshop scheduling prob-
lems, and others.

Experimental results included in the paper show impressive speedups on jobshop
problems, and demonstrate the benefits of both parallelism and the new search proce-
dures.

The rest of the paper is organized as follows: Section 2 defines a few concepts on
search trees. These concepts are the basis of the search procedures we introduce in
section 3. Then, section 4 presents some examples of the use of the search procedures,
while section 5 gives an overview of the experiments we have conducted.

2 Open Nodes and Search Procedures

In order to implement user-defined search procedures, we need to be able to get access
to individual parts of the search tree. These parts are calledopen nodes. Once open
nodes are defined, we can present how one search process can explore a given search
tree arbitrarily. These are the fundamental building blocks needed to implement generic
search procedures.

2.1 Open Nodes and Node Expansion

To model search, the search tree is partitioned into three sets: the set ofopen nodesor
the search frontier, the set ofclosed nodesand the set ofunexplored nodes. These sets

evolves during the search through an operation callednode expansion. Throughout this
paper, we will make the assumption the search tree is a binary search tree. This is true
in our implementation.

Open Nodes and Search FrontierAt any point during the search, the set of nodes of
the search tree is divided into three independent subsets: the set ofopen nodes; the set
of closed nodes; the set ofunexplored nodes.

These subsets have the following properties:

– All the ancestors of an open node are closed nodes.
– Each unexplored node has exactly one open node as its ancestor.
– No closed node has an open node as its ancestor.

The set of open nodes is called thesearch frontier. The following figure illustrates
this idea.

� �� �
� �� �

�� �� � �	

explored tree

search nodes

search frontier

unexplored search tree

Node Expansion The search frontier evolves simply through a process known asnode
expansion. (Node expansion corresponds to thebranchoperation in a branch & bound
algorithm.) It removes an open node from the frontier, transforms the removed node
into a closed node, and adds the two unexplored children of that node to the frontier.
This move is the only operation that happens during the search.

new nodes

new frontier

old frontierold node

We shall later use the method to show how basic search procedures such as LDS[8]
can be described as different selections of the next open node to expand.

2.2 Active Path and Jumps in the Search Tree

Expanding one node after another may require changing the state (the domains of the
variables of the problem) of the search process from the first node to the second. How-
ever, from a memory consumption point of view, it is unrealistic to maintain in memory
the state associated with every open nodes of the search tree. Therefore, the search pro-
cess exploring the search tree must reconstruct each state it visits. This is done using an
active pathand ajumpingoperation.

Active Path in a Search TreeWhen going down in the search tree, our search process
builds anactive path. An active path is the list of ancestors of the current open node, as
illustrated in the following figure.

active path

current search node

Jumping in the Search Tree When our search engine moves from one search node to
another, it must jump in the search tree. To make the jump, it computes the maximum
common path between the current position (1) and the destination. Then it backtracks to
the corresponding choice point (the lowest node in the maximum common path). Next,
it recomputes every move until it gets to (2). Recomputation does not change the search
frontier as there is no node expansion during that operation.

(1)

(2)
recompute

common path

backtrack

2.3 Discussion of the implementation of the Branch & Bound Paradigm

Other methods exist to implement the Branch & Bound paradigm. As the problem is
closely related to the implementation of or-parallelism in Prolog, a comparison with
available implementations can be enlightening. In [17], a complete presentation of the
different techniques developed for parallel Prolog was made: many proposals have been
made. These proposal were primarily motivated by hardware considerations. There are
basically two kinds of parallel computers:shared memory andnon-shared memory
computers. From these two categories of computer come two categories of parallel im-
plementation.

As we may deal with large problems, we cannot save the problem at each node. Thus
our implementation must use recomputation. Furthermore, managing multiple binding
to the same variable leads to quadratic behavior. Therefore, we decided that each search
process would have its own copy of the problem. Thus, faced with the constraint of
robustness, extensibility and memory consumption, it appeared early in our search de-
sign that the only practical choice was an implementation of the Delphi Model [4] on
shared-memory computers. In our implementation, each search process share the same
search tree with nodes being represented as binary paths in this tree.

3 A Object-Oriented Language for Search Procedures

Search heuristics and search trees are defined using goals. There are different goals:
predefined goals and user-defined goals. Two important predefined goals are theAnd
goal and theOr goal. They are the most fundamental blocks used when writing search
heuristics.

Our approach relies on these goals. A search procedure will be defined as a con-
structor that will be build with search goals and special objects. Basically, each atomic
search procedure, itself a goal, will be written as:Function (goal, object) .
We will present three differentfunctions : Apply to change the order of evaluation
of nodes,SelectSearch to select some leaves out of a search tree, andLimit-
Search to limit the exploration of a search tree. These functions will be applied onto
goals usingobjects . We will present predefinedobjects for eachfunction and
also a quick overview of how user-definedobjects can be created.

3.1 Changing the Order of Evaluation of Nodes

Many references demonstrate the usefulness of changing the order of evaluation of
nodes in a search tree [16, 8]. We perform these changes using theApply function and
instances of theNodeEvaluator class.

Node Evaluators for the Apply function A node evaluator is an object which has
two purposes: evaluate a node and decide whether the search engine should jump from
one node to another. This leads to an implementation of the B&B scheme where (1) the
default behavior is chronological backtracking, and (2) nodes are stored in a priority
queue, ordered by their evaluation.

Thus, the termApply(Goal g, NodeEvaluator e) returns a goal which
applies the evaluatore to the search tree defined by the goalg. This changes the order
of evaluation of the open nodes of the search tree defined byg according toe.

Some Common Node EvaluatorsWe implemented several important search proce-
dures.Depth First Search: This is the standard search procedure.Best First Search:
We have implemented a variation of Best First Search Strategy with a parameterε.
When selecting an open node, we determine the set of open nodes the cost of which
is at mostε (this is a difference and not a factor) worse than the best open node. If
a child of the current node is in the set, we go to this child. If not, we choose the best
open node.Limited Discrepancy Search:Limited discrepancy search was first defined
in [8]. We did not implement the original scheme but a variation nameDiscrepancy
Bounded Depth First Search. This variation will be presented more fully in a future
paper. Thediscrepancyof a search node is defined as its right depth, that is, the number
of times the search engine has chosen the right branch of a choice point to go from the
root of the search tree to the current node. Given a parameterk, the discrepancy search
procedure is one that will first explore nodes with a discrepancy less thank. After this
exploration is complete, it will explore nodes with a discrepancy betweenk and2k, and
so on. This search procedure cuts the search tree intostrips. Depth Bounded Discrep-
ancy Search:This search procedure was introduced in [20]. It is a variation of LDS
which makes the assumption that mistakes are more likely near the top of the search
tree than further down. For this reason, not the number of discrepancies but the depth of
the last one is used to evaluate the node. We do not implement Walsh’s schema exactly,
but a version we found more robust. Rather than the depth of the deepest discrepancy,
we consider the depth of thewth deepest discrepancy, wherew is a parameter of the
search. This parameter is in fact an allowed width after the depth limit of the last dis-
crepancy as described in the original DDS design.Interleaved Depth First Search:
This search procedure was introduced by [12]. It tries to mimic the behavior of an in-
finite number of threads exploring the search tree. We use a variation which limits the
depth limit of this interleaving behavior.

Defining a New Node Evaluator A node evaluator is linked to the life cycle of an
open node. When a node is created, the methodevaluate is called to give the node
its evaluation. This method returns a real value which will be used when the node is
stored. When the manager has to decide whether it should jump to another node, the
methodsubsume is called. This function is called with the evaluations of the current
open node and of the best open node. A return value oftrue indicates that the search
engine should jump from the current open node to the best one.

For instance, we could implement the Best-First Search evaluator this way in a C++
syntax:

IntBFSEvaluator::IntBFSEvaluator(IntVar var, IlcInt epsilon) {
_epsilon = epsilon;
_var = var;

}

Float IntBFSEvaluator::evaluate(const SearchNode) const {
return _var->getMin();

}

Bool IntBFSEvaluator::subsume(Float val1, Float val2) const {
return (val1 + _epsilon <= val2);

}

This node evaluator is constructed with a variable and an epsilon. The evaluation
of a node is the minimum of the variable. The function subsume will returntrue if the
minimum of the variable for the best node is lower than the current minimum value of
the variable minus epsilon.

3.2 Selecting Leaves of a Search Tree

In a minimizing process, or in a incomplete search, it may be interesting to focus on
some promising leaves of a search tree and to forget the other leaves. This is done using
theSelectSearch function and instances of theSearchSelector class

A Goal to Select LeavesA search selector is used to select (or filters) leaves of a search
tree. It has three purposes: to store leaves of the search tree and to re-activate them once
the search tree is completely explored, to implement a minimization process, and to
perform a simple feasibility check on nodes.

Thus, the termSelectSearch(Goal g, SearchSelector s) is a goal
which applies the selectors to the search tree defined byg. A selector then executes
the complete search tree and selects leaves of this search tree.

Some Search SelectorsSome simple search selectors are already implemented.Mini-
mization: The selectorMinimize(IntVar v) implements a minimization process
on the integer variablev and selects a leaf which minimizes this variable.FirstSolu-
tion: The selectorFirstSolution(int n) simply selects the first n solutions of
a search tree.

Defining a New Search SelectorDefining a new search selector is more complex than
defining a new node evaluator. There are three types of methods to implement:

Minimization Management: To implement a minimization process, the search se-
lector must check whether a known upper bound on the objective is better than the
current upper bound of the objective. In this case, the constraint stating that the objec-
tive is strictly less than this known bound is imposed. This information is stored so that
it can be used during recomputation to re-post the same constraint.Feasibility Test: A
feasibility test is implemented using an evaluation function which returns a real value
and a test which decides whether the evaluation attached to a node corresponds to an
infeasible node. When a node is declared infeasible, it is simply postponed and not

evaluated.Leaf Management:When the search engine arrives at a leaf of the search
tree, it can decide to store it, to delete an old leaf, or to forget it. When the search tree
is completely explored, another method is called to re-activate stored leaves.

3.3 Search Limits

In real application, one cannot afford to see its search for solution lost in a uninterest-
ing sub-search tree. Therefore is needed some way to limit the time spent by a search
process in any part of the search tree. This is done using theLimitSearch function
and instances of theSearchLimit class.

A Goal to Limit Search A search limit is a function which implements a periodic test
to decide whether a particular limit has been reached. When this limit arrives, the set of
open nodes covered by this limit are discarded. Thus, a call toLimitSearch(Goal
g, SearchLimit l) returns a goal which limits the exploration of the search tree
defined byg with the limit l . Once a limit is crossed, all nodes explored afterwards are
discarded.

Pre-defined Limits Two simple limits are offered.Time limit: The limit Time-
Limit(double time) creates a search limit. With this limit, the search engine
explores the search tree for onlytime seconds. Afterwards, all remaining open nodes
are discarded.Failure limit: The limit FailLimit(int numOfFails) creates a
search limit. With this limit, the search engine explores the search tree untilnumOf-
Fails failures have been encountered. Afterwards, all unexplored open nodes in the
search tree are discarded.

Defining a New Search Limit A limit is used to prune part of the search tree. Its main
method is a check method which indicates whether the limit has been reached.

3.4 Parallelism

In parallel search, different instances of the search engine (called workers) run on dif-
ferent processes and explore the same search tree. The workers communicate and coor-
dinate their work via a virtual communication layer.

A virtual communication layer must fulfill three tasks:Starvation Balancing: The
layer must propagate the work and insure that no worker is starving while there is
work available; this means moving nodes from one worker to another.Load Balancing:
The layer can periodically balance good open nodes such that every worker can work
on a promising part of the search tree.Termination Detection: The layer must also
have a mechanism to detect termination (every worker is starving). In this case, it must
terminate the search cleanly.

In our design(figure 1), the storage of open nodes is distributed over the different
workers, the same open node cannot be expanded by two different workers. This choice
reduces the synchronization cost between workers and minimizes the differences be-
tween the sequential code and the parallel code.

virtual communication
layer

node storages

multi-threaded search

search engines

Fig. 1.Parallel Solver Architecture

3.5 Comparison with related work

All our work is greatly inspired from Salsa [10]. There are three main improvements
over F. Laburthe’s original design:

1. Salsa is based on choice points whereas our work is based on search goals and their
corresponding search tree. Thus, basic search procedures like LDS are natural in
our design. They are not so natural in Salsa because these basic search procedures
are difficult to implement on a choice point level.

2. Furthermore, as we are dealing with goals, we do not need the two channels we
find in Salsa (the leaf channel and the solution channel).

3. Our design is completely extensible. We can define easily new limits, new evalua-
tors and new selectors. This is not the case in Salsa.

4 Using the Object-Oriented Language for Search Procedures

4.1 Some Small-Scale Examples to Illustrate Search Procedures

Given a goalg, we can write different search goals using our Search Language. We
suppose we have a functionsolve which takes a goal as parameter and returns the
first solution of this goal. Therefore,

– solve(g) will search for the first solution of the search tree defined byg.
– solve(Apply(g, LDSEvaluator(3))) will search in LDS with strips of

width 3 for the first solution of the search tree defined byg.

– solve(SelectSearch(g, Minimize(var))) will minimize the variable
var in the search tree defined byg. Whensolve() returns, the solver is in the
state of the best solution.

– solve(SelectSearch(LimitSearch(g, TimeLimit(5.0)), Mini-
mize(var))) will return the best solution (according tovar) found in a 5-
second time frame in the search tree generated byg.

4.2 Using Search Procedures to Implement a Complex Incomplete Search

Using Limited-Discrepancy Search to solve a problem is already an improvement over
standard Depth-First Search. But our language for search procedures can be used in
a more ambitious way. We will present an example where we search for solutions by
composing two goals,inner1 and inner2 . We will change the search procedures
such that the search (a) uses limits to keep the process from being stuck in a subtree;
and (b) implements a two-phase decomposition of the problem to have a better overview
of the complete search tree than with the limited one.

The original goal is equivalent to :
LimitSearch(And(inner1, inner2), TimeLimit(t)) wheret is a pa-
rameter of the search. Later, we will adjustt such that exactly the same time will be
spent searching with the original goal and our complex goal. This will allows us to
compare their behavior in the same time frame.

The First Phase This phase will try to solve the first part of the problem using a Depth-
Bounded Discrepancy Search, along with a fail limit. We will restrain ourselves to the
first five leaves of the search tree.The corresponding goal is:

Goal apply1 = Apply(inner1, DDSEvaluator(2, 2));
Goal limit1 = LimitSearch(apply1, FailLimit(15));
Goal restrict1 = SelectSearch(limit1, FirstSolution(5));

The goallimit1 will explore the search tree associated with the goalinner1 only
until 15 failures happen. This search tree will be explored by increments of 2, with 2
remaining discrepancies after the depth limit. Afterward, this goal will simply fail. Thus
the effect of theLimitSearch function is to prune part of the search tree. The goal
restrict1 will keep the first 5 solutions of the goallimit1 .

The Second PhaseThis second phase will solve the second part of the problem using
a Limited-Discrepancy Search. We will limit the maximum number of discrepancies
during the search to 1 in order to have a simple limit on the time spent. The code is the
following: Goal apply2 = Apply(inner2, LDSEvaluator(1, 1));

The Complete Goal The complete goal is the composition of the two previous goals
(limit1 andapply2) embedded in a minimization process. The complete goal along
with the search for solution results in the following code:

Goal comp1 = And(restrict1, apply2);
SearchSelector minim = Minimize(totalCost);
Goal minimizeGoal = SelectSearch(comp1, minim);

The Explored Search TreeSimple graphs can illustrate the explored part of the search
tree in our case (figure 2) and in the original case (figure 3). The complex search is quite
different than the simple limited one we could have obtained with a time limit. With this
complex search procedure, we have a better overview of the complete search tree using
our complex goal instead of the original one, we claim that our complex goal is more
robust. This will be verified experimentally in section 5.2.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

at most 5 sub-trees

by LDS
pruned

not explored

inner1 pruned by limit

inner2

Fig. 2.Complex Search

5 Results

In this section, we will present some results to illustrate the benefits of the search pro-
cedures and parallelism. In these examples, the standard behavior is defined by a depth
first search procedure and a single processor search.

All the times are given in seconds. The computer used was a 4 processors Pentium
Pro 200Mz computer running Linux. The compiler used was egcs 1.1.1.

This was implemented on top of ILOG SOLVER and ILOG SCHEDULER.

5.1 Complete Search on Jobshops Problems

We will try complete search procedures on different jobshops in order to see how they
find good solutions and how they prove them

pruned by limit

inner2

inner1

Fig. 3.Limited Simple Search

Two Jobshop Examples These two jobshops come from [7]. The search heuristic is
a simple one based on ranking of activities. The edge finder algorithm is used at each
stage. The time to find the best solution and the total time (best solution + proof) is
given.

Problem Strategy 1 worker 4 workers
MT10 DFS 434.79 s / 654.80 s
MT10 LDS 83.12 s / 536.97 s34.57 s / 177.87 s
MT20 DFS not found not found
MT20 LDS 111.50 s / 144.97 s 10.85 s / 11.95s

These examples demonstrate clearly the benefit of both parallelism and changing the
order of evaluation of search nodes. The most interesting part is that LDS changes a
problem too difficult to solve in a reasonable time into an easy one.

A Small Example : Abz5 Abz5 is a small jobshop (10×10) from [9]. It has been
solved using various strategies. In the table below, the first figure represents the time
(in seconds) to get the optimal solution; the second figure represents the total running
time (best solution + proof of optimality). We can deduce that on a small problem,
parallelism, as it gives more breadth during the exploration of the search tree, leverages
the differences between different search procedures. However, when it comes to proving
optimal solution, the best method is DFS as it implies no recomputation as opposed to
other methods. This is visible with one processor when comparing LDS and DFS on a
problem where the proof is difficult like this one. LDS finds the optimal solution much
faster than DFS, but the total time is greater.

Strategy 1 worker 2 workers 4 workers
DFS 89.15 s / 98.98 s52.90 s / 60.27 s14.87 s / 22.11 s
BFS 92.91 s / 125.55 s62.18 s / 78.41 s10.67 s / 20.02 s

BFS with tuning131.95 s / 133.85 s65.39 s / 66.01 s 9.14 s / 28.8 s
LDS with k=4 35.04 s / 104.68 s19.04 s / 52.06 s3.86 s / 18.49 s
LDS with k=2 51.12 s / 116.71 s40.24 s / 72.12 s11.29 s / 32.47 s

DDS 63.98 s / 112.88 s16.34 s / 36.72 s 2.21 s / 21.4 s
IDFS 51.77 s / 58.46 s29.45 s / 32.07 s12.37 s / 13.95 s

A Bigger Example : la36 la36 is a medium jobshop (15×15) from [11]. For solving
these problems, a global time limit of 500 seconds was set on the resolution of these
problems. With this time limit, IDFS and un-tuned BFS are not able to find a solution,
even with 4 processors. The table below illustrates the fact that when the problem gets
more difficult, the difference in robustness between search procedures becomes more
evident. Which a medium problem and a good search heuristic, LDS and DDS appear
more robust.

Strategy 1 worker 2 workers 4 workers
DFS >500 s />500 s >500 s />500 s231.07 s / 246.71 s

BFS with tuning >500 s />500 s >500 s />500 s100.37 s / 210.79 s
LDS with k=4 297.35 s / 361.12 s241.69 s / 282.36 s 93.2 s / 141.4 s
LDS with k=2 402.35 s / 464.06 s211.82 s / 252.57 s131.23 s / 163.37 s

DDS 411.79 s / 479.90 s269.87 s / 362.79 s 47.75 s / 83.60 s

An Open Problem: swv01Using LDS, 4 processors and a good ranking goal and shav-
ing, we were able to solve completely an open scheduling problem: SWV01 (20×10)

Strategy No of Workers Time for Best solution Total time
LDS 4 451385 s 461929 s

Thus, five and a half days were necessary on a Quadri Pentium Pro computer to break
this difficult problem and prove the optimal solution to be1407.

5.2 Incomplete Search on Some Jobshops

We have adapted the two goals of the section 4.2 on jobshop problems. The goalin-
ner1 correspond to the complete ordering of two resources. The goalinner2 corre-
sponds to the ranking of all remaining activities.

We fixed some parameters of the complex goal. We keep the 10 first solutions of
the goallimit1 . The goallimit1 has a failure limit of 50. The width of the LDS
part of goalinner2 is respectively 1 in case A and 2 in case B. To compare with the
original goal, we ran the original goal with a time limit equal to the total running time
of the complex goal. When doing this, we can compare the objective value found. Here
are the results on 4 different jobshops : ABZ5, FT10, LA19 and LA21. One cell display
the running time for the modified goal, the bound found and the bouind found in the
same time by the original goal.

Problem Abz5(1165) FT10 (930) LA19 (842) LA21 (1046)
Case A 2.87s : 1272/12562.18s : 1029/10442.27s : 884/90015.08s : 1126/1135
Case B 5.62s : 1272/12562.86s : 1013/10445.19s : 867/86735.09s : 1098/1127

We can see that except on easy problems where good solution are found fast us-
ing the original goal (Abz5), the complex goal give consistently better results than the
original goal.

6 Conclusion

In this paper, we have stressed the importance of overriding the Depth-First Search
limitation in constraint programming. We believe we have proposed an elegant language
for both brute force search and finely tuned complex search procedures. We have shown
that (a) this language is expressive and useful, (b) search procedures and parallelism
greatly improves greatly the performance of our search engine, namely ILOG SOLVER

and (c) this whole design can be implemented efficiently: the overhead between parallel
DFS with 1 processor and the original ILOG SOLVER DFS is as low as 2-3% for the
jobshop examples we have solved in this paper.

We think there are many perspectives for this work. The most important one be-
ing (a) using this control language to implement special search procedures like adap-
tative search for real time optimization problem; (b) implementing parallelism and
distributed-memory architecture using PVM or MPI; and (c) extending the language
itself with otherfunctions implementing other useful behaviors.

Finally, in the long run, we would like to integrate other search techniques not based
on tree search into this framework: for example local moves, statistical methods, genetic
algorithms. This would allow us to prove our driving assumption which is that by im-
proving the expressivity of search procedures, we increase radically the set of problems
we can solve effectively.

Acknowledgement

First, I would like to thank the referee for their insightful comments on my article.
Then, I would like to thank everybody who helped me in my work, especially Paul

Shaw for doing much more than a complete proofread of this article and Jean-François
Puget for helping me getting out of design and implementation problems, and François
Laburthe, for his work on Salsa, which was a wonderful start for my own work.

References

1. E.H.L. Aarts, P.J.M. van Laarhoven, J.K. Lenstra, and N.J.L. Ulder. A computational study
of local search algorithms for job shop scheduling. 6:113–125, 1994.

2. D. Applegate and W. Cook. A computational study of the job-shop scheduling problem.
ORSA Journal on Computing, 3(2):149–156, 1991.

3. J.W. Barnes and J.B. Chambers. Solving the job shop scheduling problem using tabu search.
IEE Transactions, 27/2:257–263, 1994.

4. W. Clocksin. Principles of the DelPhi parallel inference machine.Computer Journal,
30(5):386–392, 1987.

5. M. Dell’Amico and M. Trubian. Appplying tabu-search to the job-shop scheduling problem.
Annals of Operational Research, 41:231–252, 1993.

6. U. Dorndorf and E. Pesch. Evolution based learning in a job shop scheduling environment.
Computers and Operations Research, 22:25–40, 1995.

7. G.L. Thompson H. Fisher. Probabilistic learning combinations of local job-shop scheduling
rules. In G.L. Thompson J.F. Muth, editor,Industrial Scheduling, pages 225–251. Prentice
Hall, Englewood Cliffs, New Jersey, 1963.

8. William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. InProceeding of
IJCAI, volume 1, pages 607–613, August 1995.

9. E. Balas J. Adams and D. Zawack. The shifting bottleneck procedure for job shop scheduling.
Management Science, 34:391–401, 1988.

10. François Laburthe and Yves Caseau. Salsa: A language for search algorithms. InPrinciples
and Practice of Constraint Programming, number 1520 in LNCS, pages 310–325, 1998.

11. S Lawrence. Resource constrained project scheduling: an experimental investigation of
heuristic scheduling techniques. Carnegie-Mellon University, Pennsylvania, 1984. supple-
ment.

12. Pedro Meseguer. Interleaved depth-first search. InInternational Joint Conference on Artifi-
cial Intelligence, volume 2, pages 1382–1387, August 1997.

13. L. Michel and P. Van Hentenryck. Localizer: A modelling language for local search. In
CP’97, number 1330 in LNCS. Springer, 1997.

14. E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem.
Management Science, 42(6):797–813, 1996.

15. W. Nuijten and C. Le Pape. Constraint-based job shop scheduling withILOG SCHEDULER.
Journal of Heuristics, 3:271–286, 1998.

16. Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

17. Laurent Perron. An implementation of or-parallelism based on direct access to the MMU. In
Proc. of Compulog-Net worshop on parallelism and implementation technology, JICSLP’96,
1996.

18. G. Pesant and M. Gendreau. A view of local search in constraint programming. InCP’96,
number 1118 in LNCS, pages 353–366. Springer, 1996.

19. Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee Naish, editor,
Proceedings of the Fourteenth International Conference on Logic Programming, pages 286–
300, Leuven, Belgium, July 1997. The MIT Press.

20. Toby Walsh. Depth-bounded discrepancy search. InInternational Joint Conference on Arti-
ficial Intelligence, volume 2, pages 1388–1393, August 1997.

