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Abstract

The Ant System is a new meta-heuristic method particularly appropri-
ate to solve hard combinatorial optimization problems. It is a population-
based, nature-inspired approach exploiting positive feedback as well as
local information and has been applied successfully to a variety of combi-
natorial optimization problem classes. The Ant System consists of a set
of cooperating agents (arti�cial ants) and a set of rules that determine the
generation, update and usage of local and global information in order to
�nd good solutions. As the structure of the Ant System highly suggests a
parallel implementation of the algorithm, in this paper two parallelization
strategies for an Ant System implementation are developed and evalu-
ated: the synchronous parallel algorithm and the partially asynchronous
parallel algorithm. Using the Traveling Salesman Problem a discrete event
simulation is performed, and both strategies are evaluated on the criteria
"speedup", "e�ciency" and "e�cacy". Finally further improvements for
an advanced parallel implementation are discussed.



1 Introduction

The Ant System, introduced by Colorni, Dorigo and Maniezzo [5], [8], [10] is
a new member in the class of meta-heuristics (cf. e.g. [14],[15]) to solve hard
combinatorial optimization problems. Many well-known methods of this class
are modeled on processes in nature. The same is true for the Ant System that
imitates real ants searching for food. Real ants are capable to �nd the shortest
path from a food source to their nest without strength of vision. They use an
aromatic essence, called pheromone, to communicate information regarding the
food source. While ants move along, they lay pheromone on the ground which
stimulates other ants rather to follow that trail than to use a new path. The
quantity of pheromone a single ant deposits on a path depends on the total
length of the path and on the quality of the food source discovered. As other
ants observe the pheromone trail and are attracted to follow it, the pheromone
on the path will be intensi�ed and reinforced and will therefore attract even more
ants. Roughly speaking, pheromone trails leading to rich, nearby food sources
will be more frequented and will grow faster than trails leading to low-quality,
far away food sources.

The above described behavioral mechanism of real ants was the pattern for a
new solving procedure for combinatorial optimization problems. It has inspired
Ant System using the following analogies: arti�cial ants searching the solution
space correspond to real ants searching their environment for food, the objective
values are the equivalent to the food sources quality and an adaptive memory
represents the pheromone trails. The arti�cial ants are additionally equiped
with a local heuristic function to guide their search through the set of feasible
solutions.

The application of the Ant System to Traveling Salesman [10], Quadratic
Assignment [13], Vehicle Routing [4], Job Shop Scheduling [6], Graph Coloring
[7] and Timetabling [2] is evidence for the methods' versatility. As problem size
increases performance becomes a crucial criteria. Furthermore, the structure of
the Ant System algorithm is highly suitable for parallelization. Both mentioned
considerations were the motivation to improve the Ant Systems' performance
using parallelization.

The remainder of the paper is organized as follows: initially we explain the
Ant System algorithm and use the Traveling Salesman Problem for illustration
purposes (x2). By identifying the problem-inherent parallelism we develop two
parallelization strategies for the Ant System in Section 3. The performance
of both strategies is compared using simulation experiments and algorithmic
aspects as well as critical performance factors are discussed (x4), followed by a
brief conclusion.

2 The Ant System Algorithm

In the following the Ant System algorithm is explained on the Traveling Sales-
man Problem (TSP), probably the most studied problem of combinatorial op-
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timization, where a traveling salesman has to �nd the shortest route visiting
several cities and returning to his home location.

More formally, the TSP can be represented by a complete weighted graph
G = (V;E; d) where V = fv1; v2; : : : ; vng is a set of vertices (cities) and E =
f(vi; vj) : i 6= jg is a set of edges. Associated with each edge (vi; vj) is a
nonnegative weight dij representing the distance (cost) between cities vi and vj .
The aim is to �nd a minimum length (cost) tour beginning and ending at the
same vertex and visiting each vertex exactly once.

Given an n-city TSP, the arti�cial ants are distributed to the cities according
to some rule. At the beginning of an iteration, all cities except the one the ant
is located in, can be selected. Until the tour is completed, each ant decides
independently which city to visit next, where only not yet visited cities are
feasible for selection.

The probability that a city is selected is the higher the more intense the trail
level leading to the city is and the nearer the city is located. The intensity of the
trail can be interpreted as an adaptive memory and is regulated by a parameter
�. The latter criteria can be interpreted as a measure of desirability and is
called visibility. It represents the local heuristic function mentioned above and
is regulated by a parameter �. The probability that city vj is selected to be
visited next after city vi can be written in a formula as follows:

pij =

8><
>:

[�ij ]
� [�ij ]

�P
h2


[�ih ]� [�ih ]�
if j 2 


0 otherwise

(1)

where �ij =
1

dij

where �ij intensity of trail between cities vi and vj
� parameter to regulate the inuence of �ij
�ij visibility of city vj from city i
� parameter to regulate the inuence of �ij

 set of cities, that have not been visited yet
dij distance between cities vi and j

This selection process is repeated until all ants have completed a tour. In
each step of an iteration the set of cities to be visited is reduced by one city and
�nally, when only one city is left, it is selected with probability pij = 1. For
each ant the length of the tour generated is then calculated and the best tour
found is updated.

Then the trail levels are updated: an underlying assumption of the Ant
System concept is that the quantity of pheromone per tour is the same for all
arti�cial ants. Therefore on shorter tours more pheromone is left per unit length.
By analogy to nature, part of the pheromone trail evaporates, i.e. existing trails
are reduced before new trails are laid. This is done to avoid early convergence
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and is regulated by a parameter �. On basis of these updated trail levels the
next iteration can be started. The updating of the trail levels �ij can be written
in a formula as follows:

�ij(t+ 1) = ��ij(t) + ��ij (2)

where ��ij =
mX
k=1

��kij and ��kij =

8<
:

1
Lk

if ant k travels on edge (vi; vj)

0 otherwise

where t iteration counter
� 2 [0; 1] parameter to regulate the reduction of �ij
��ij total change of trail level on edge (vi; vj)
m number of ants
��kij change of trail level on edge (vi; vj) caused by ant k
Lk length of tour found by ant k

In Figure 1 the sequential algorithm for solving the n-city TSP in T iterations
using m ants is given. Its computational complexity is of order O(T �m � n2).
Previous experiments have shown, that using m = n ants for the n-city TSP
and initially placing one ant in each city yields good results with respect to
both, the quality of the best solution found and the rate of convergence [10].
We will therefore in the following assume m = n and refer to this parameter
as the problem size. As the number of iterations is independent of the problem
size, the computational complexity is thus O(m3).

3 The Parallel Algorithmic Idea

The computational complexity of the sequential algorithm hinders its use for
solving large problems. To reduce the computation time, we introduce a parallel
version of the Ant System. The \sequential" algorithm contains a high degree

Initialize
For t = 1 to T

For k = 1 to m do
Repeat until ant k has completed a tour

Select city vj to be visited next
with probability pij given by equation (1)

Calculate the length Lk of the tour generated by ant k
Update the trail levels �ij on all edges according to
equation (2)

End

Figure 1: Sequential Ant System Algorithm in PseudoCode
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τsend i,j

Figure 2: Synchronous (left) and Partially Asynchronous (right) Parallel Algo-
rithm

of natural parallelism, i.e. the behavior of a single ant during one iteration is
totally independent of the behavior of all other ants during that iteration.

Exploiting this problem-inherent parallelism, we develop an algorithmic idea
for parallelization. Furthermore we discuss two implementation strategies: a
synchronous (fork-join) algorithm and a partially asynchronous algorithm.

A straight forward parallelization strategy for the Ant System algorithm is
to compute the TSP tours in parallel. This would result in a fork-join structure
as shown in Figure 2 (left). An initial process (master) would spawn a set of
processes, one for each ant. After distributing initial information about the
problem (i.e. the distance matrix D and the initial trail intensities �0), each
process can start to draw up the path and compute the tour length for its ant.
After �nishing this procedure, the result (tour and tour length Lk) is sent from
each process back to the master process. The master process updates the trail
levels by calculating the intensity of the trails and checks for the best tour found
so far. A new iteration is initiated by sending out the updated trail levels.

Ignoring any communication overhead, this approach would imply optimum
(asymptotic) speedup, assuming that an in�nite number of processing elements
(workers) is available, i.e. one process is assigned to one worker:

Sasymptotic(m) =
Tseq(m)

Tpar(m;1)
=
O(m3)

O(m2)
= O(m)
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where Tseq(m) = O(m3) is the computational complexity of the sequential
algorithm for problem size m and Tpar(m;1) = O(m2) is the computational
complexity of the parallel algorithm for problem size m and for in�nite system
size.

Departing from the above assumption communication overhead certainly
cannot be disregarded and has to be taken into account, and further the system
size (number of processing elements N ) is restricted and is typically smaller
(N � m) than the problem size (number of ants m). Therefore, a set of
processes (ants) would be assigned to a physical processing element (worker),
thus increasing the granularity of the application. Balancing the load among
the workers is easily accomplished by assigning to worker j (j = 1 : : :N ) the
processes (ants) mi (i = 1 : : :m) according to fmi : j = i mod Ng, thus each
worker holds about the same number of processes and each process is of the
same computational complexity.

When considering communication overhead, the ratio of the amount of com-
putation assigned to a worker and the amount of data to be communicated
has to be balanced. In the synchronous approach the frequency and volume
of communication is rather high. After each iteration, all completed tours and
their lengths have to be sent to a central process (master). There the new trail
levels need to be computed and then broadcasted to each worker which only
then can start a new iteration. This synchronization and communication over-
head Tovh(m;N ) typically slows down the performance and consumes part of
the parallelization bene�ts. Speedup is reduced to

S(m;N ) =
O(m3)

O(m3=N ) + Tovh(m;N )

An estimate on Tovh(m;N ) depends on the communication behavior of the
underlying parallel architecture and typically cannot be given in a closed form.

In a next step of improvement we will reduce the frequency of communica-
tion. For this purpose we propose a partially asynchronous strategy as presented
in Figure 2 (right). In this approach, each worker holds a certain number of
processes (denoted by the dashed boxes in Fig. 2) and performs - independently
of other workers - a certain number of iterations of the sequential algorithm on
them consecutively. Only after these local iterations a global synchronization
among all workers will take place, i.e. the master will globally update the trail
levels.

While this approach is expected to reduce the communication overhead con-
siderably, good and promising values obtained during local iterations might be
ignored by other workers. For that reason a carefully chosen local/global itera-
tion ratio is crucial.

4 Exploiting Parallelism

Parallel program behavior can either be evaluated using analytical techniques,
using simulation models or by conducting measurement experiments on a real
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Figure 3: Communication Behavior for Synchronous (left) and Asynchronous
(right) Version

implementation.
Analytical methods are based on an abstract, simpli�ed model of the parallel

program characteristics. For a detailed performance analysis and comparison of
the two parallelization strategies, analytical methods are insu�cient due to the
complexity of estimating the communication overhead Tovh. As the character-
istics of the particular parallel machine will bias the performance of a real im-
plementation, results obtained from measurements would be valid only for this
distinct environment. Therefore, we decided to use discrete-event-simulation as
an appropriate means to evaluate the parallel program behavior.

We apply a problem-speci�c tool called N-MAP [12]. The input for the simu-
lator is the task behavior speci�cation which is a C-like description of the parallel
program structure and the resource requirements speci�cation which includes an
estimate for the computational complexity. For our program, we have de�ned
three computational tasks (compute tour, local update and global update) and
two communication blocks (broadcast of trails, collection of paths).

When simulating the parallel execution, several assumptions on the com-
munication behavior have to be made: in our experiments, we assumed, that
sending a message involves a �xed startup time and a variable time depending
on the size of the packet, which is reasonable for most parallel architectures.

The simulator will generate a trace �le of the simulated parallel execution,
which contains time stamps for the start and end of computation and commu-
nication blocks. Based on the time stamps in the trace �le, the total execution
time as well as several other performance measures can be derived. In addition,
the behavior can be visualized. Figure 3 is a snapshot of the simulated com-
munication behavior for a problem size of 50 using �ve workers and one master
process for both strategies. The broadcasts from the master (process 0) and the
collects from the workers (processes 1-5) are depicted as diagonal lines connect-
ing the sender and the receiver. The horizontal lines correspond to phases of
computation or to idle times due to waiting for communication. The diagrams
show clearly the higher communication frequency of the synchronous version.

In the following sections 4.1 and 4.2, we will compare the two strategies with
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respect to several performance indices [11], namely

1. the ratio of computation, communication and idle times in relation to the
total simulated execution time,

2. the speedup S(N ) = T (1)=T (N ),

3. the e�ciency E(N ) = S(N )=N , and

4. the e�cacy �(N ) = S(N ) �E(N ).

For the comparison, we have chosen exemplarily three di�erent problem
sizes: small (m = 50), medium (m = 250), and large (m = 500). The number
of workers (excluding the master) has been varied from N = 5; 10; 15; 20;25.
In 4.3 we will present and discuss algorithmic modi�cations of the parallel Ant
System algorithm.

4.1 Synchronous Parallel Implementation

Fig. 4 (left) shows the simulated busy, communication and idle times for the
synchronous parallel implementation. The busy time contains all periods of the
total execution time, where computations were performed. The communication
time consists of the time necessary to prepare and send a message and depends
on the amount of data which is sent in the message. The idle time is de�ned
as the time where neither computation nor communication takes place, i.e. a
process is waiting for a message or has not started / already �nished its com-
putation. The sum of computation, communication and idle times gives the
total simulated execution time, which is an accumulated time measure due to
overlapping computation, communication and idle phases.

For the small problem size, the idle phases are the dominant time fraction
due to the frequent waiting for messages. With increasing problem size, the ratio
of computation and idle times improves signi�cantly and communication time
becomes negligible. However, this e�ect is caused by the assumptions made in
the simulation, that multiple communications can be performed simultaneously
without contention.

The ratio of computation time decreases with an increasing number of work-
ers indicating the decrease in utilization. In order to �nd the optimum number
of processing elements, we have to compare the increase in speedup and the loss
in e�ciency. The corresponding results are presented in the diagrams in Fig-
ure 5 (left), which depicts the change of the three key indicators as a function
of the number of workers used.

The left top diagram shows the speedup, the ratio of the simulated execution
time of the sequential version to the simulated execution time of the parallel
version using N workers. The gained speedup is poor for small problems. It
even decreases if the number of workers is too large, thus resulting in a relative
\slowdown" and in an e�ciency close to zero (left middle diagram).

For larger problems, speedup is nearly optimum S(N ) � N (close to the
number of workers) and e�ciency decreases much slower. Relating speedup
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Figure 4: Relative Computation, Communication, and Idle Times for the Syn-
chronous (left) and the Asynchronous (right) Parallel Implementation

and e�ciency, we can determine the optimum number of workers which is the
maximum of the e�cacy curve (left bottom diagram). The slope of the e�cacy
curve for the largest problem size investigated indicates, that even more than
25 workers could be e�ciently used to solve the problem.

4.2 Partially Asynchronous Parallel Implementation

The core idea of the partially asynchronous parallel algorithm is to perform a
number of local iterations before synchronizing information among all workers
in a global exchange (cf. Figure 2 right). In the experiments, we have assumed
a local/global iteration ratio of �ve to one.

Figure 4 (right) shows the behavior for the partially asynchronous strategy,
which is similar to the behavior of the synchronous strategy, i.e. idle times
decrease with increasing problem size and increase with increasing number of
workers. Utilization bene�ts from the lower communication frequency which can
be seen in the lowered idle times in the aggregated representation of Figure 4.
Communication times are negligible even for the small problem size.

By reducing the communication frequency, the idle times were signi�cantly
reduced as the number of synchronization points was reduced. The e�ects of
this improvement can be seen in Figure 5. For all problem sizes investigated
the speedup (right top diagram) for the asynchronous parallel version outper-
forms the synchronous version. Analogous results were obtained with respect
to e�ciency (right middle diagram) and e�cacy (right bottom diagram).

As the asynchronous algorithm focuses on the reduction of communication
frequency, especially problems of small size bene�t from this strategy, because
of their relatively high communication and idle ratio. Considering - in con-
trast to the assumptions in the simulation experiments - a class of architectures
where the simultaneous sending of messages is not possible, the asynchronous
algorithm would be even more advantageous.
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4.3 Algorithmic Aspects

Variants of the two parallel algorithms introduced will focus on modi�cations
which are expected to either gain further speedup while maintaining at least
the same level of quality of results or to improve the solution quality without a
loss in computation speed, or both.

While in the synchronous algorithm, the only tunable parameter is the rule
for grouping the processes and assigning them to the workers, in the asyn-
chronous parallel implementation also the number of local iterations can be
varied.

The larger the number of local iterations the more the frequency of com-
munication can be reduced, but at the same time the convergence rate would
increase. The higher the local/global iteration ratio the more likely it is for
workers to get trapped in a local optimum without knowing about good and
promising solutions found by ants assigned to other workers. A static approach
would perform an a priori �xed amount of local iterations or would iterate
within a prede�ned �xed time-window. A usefull dynamic approach would per-
form only a few local iterations in the beginning to avoid early convergence
and then successively increase the local/global iterations ratio, a concept sim-
ilar to the cooling scheme of Boltzmann machines [1]. This may happen on a
number-of-iterations or exible-time-windows basis.

The decision upon synchronizing in a global exchange can also be made
autonomously and self-regulated, e.g. if a worker �nds a signi�cant improvement
in the tour length. However, such a worker-initiated synchronization requires a
more sophisticated implementation, and might - as a consequence - lead to more
communication overhead. The tradeo� between this overhead and the possible
improvements for the search has to be found by experimental studies.

The criteria grouping of processes has two aspects: assignment and dynam-
ics. Processes may be assigned randomly or may be assigned using the distance-
criterion: ants initially placed on clustered cities could be treated on one worker
or - in the contrary - rather distant processes could be assigned to a single
worker. Another possibility would be an assigment according to a speci�c rule:
it may assure that the agents are evenly distributed regarding their quality, i.e.
every worker holds about the same number of \good" and \bad" agents (initial
cities) or opposed to that, the \good" and \bad" ants are grouped, i.e. worker 1
holds the m=N best ants and so on and �nally, worker N holds the m=N worst
of them.

With respect to dynamics, the assignment process may be performed only
once and the sets of processes may be kept in a static manner. The dynamic
alternative implies repetitious selection and assignment processes after several
global or local exchanges. Again, thorough testing will be needed to discover
the most promising con�guration.

Furthermore, recent publications addressing adaptive memory and trail up-
date improved the general Ant System algorithm considerably. In [3] the ants
are ranked according to solution quality and only the best ranked ants con-
tribute to the trail update, whereas in [9] and [16] only the very best ant is
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considered. In addition to that, they use local search to improve the solution
generated by the arti�cial ants. Such combination of meta-heuristics with e�ec-
tive local search procedures is a new concept in combinatorial optimization that
outperforms most other approaches. To investigate the e�ects of these ideas on
the parallel strategies as proposed in this work is subject for future research.

5 Conclusion

The Ant System is a new distributed meta-heuristic for hard combinatorial op-
timization problems. It was �rst used to solve the Traveling Salesman Problem,
and has later been applied successfully to other standard problems of com-
binatorial optimization such as Quadratic Assignment, Vehicle Routing, Job
Shop, Scheduling, Graph Coloring and Timetabling using sequential implemen-
tations of the Ant System algorithm. As shown in [3] the Ant System shows
good worst case results for large problems compared to other classical meta-
heuristics. The desired application of the Ant System to large-scale problems
and the distributed, modular structure of the algorithm were the motivation to
parallelize the algorithm.

We developed two parallelization strategies, the Synchronous Parallel Al-
gorithm and the Partially Asynchronous Parallel Algorithm, and used discrete
event simulation to evaluate their performance. Based on the simulation output
performance indices like speedup, e�ciency, and e�cacy were derived. Compar-
ing the two strategies, we conclude, that the performance of the partially asyn-
chronous strategy bene�ts from the reduced communication frequency, which is
particularly important for an implementation on a real parallel architecture.

A critical discussion of the algorithmic aspects like number of local iterations,
the assignment rules of ant processes to workers, and static versus dynamic
approaches gives an impetus for further research.
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