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1. Introduction

Parallel evolutionary algorithms (EAs) have received considerable at-
tention because of their potential to reduce the execution time in com-
plex applications. One common method to parallelize EAs is to use
multiple demes (populations) that occasionally exchange some individ-
uals in a process called migration. A specification of a parallel EA with
multiple demes defines the size and number of the demes, the topology
of the connections between them, the migration rate (the fraction of the
population that migrates), the frequency of migrations, and the policy
to select emigrants and to replace existing individuals with incoming
migrants. The importance of these parameters on the quality of the
search and on the efficiency of the algorithms has been recognized for
a long time (Grefenstette, 1981; Grosso, 1985; Tanese, 1987).

This paper shows that the migration policy affects considerably
the selection pressure, and that it influences significantly the speed of
convergence of the algorithm. Although it has been recognized before
that fitness-based selection of emigrants and replacements may increase
the selection pressure (Whitley, 1993; Whitley et al., 1999; Canti-Paz,
1999), its impact on the algorithm’s convergence is not well understood.
The objective of this paper is to quantify accurately the additional se-
lection pressure caused by migration. This leads to accurate predictions
of the number of generations until convergence. In addition, under-
standing the effect of the migration policies on the selection pressure is
important because excessively slow or fast convergence rates may cause
the search to fail (Goldberg et al., 1993; Thierens and Goldberg, 1993).
If selection is too weak the population may drift aimlessly for a long
time, and the quality of the solutions found is not likely to be good. On
the other hand, rapid convergence is desirable, but an excessively fast
convergence may cause the EA to converge prematurely to a suboptimal
solution.

This investigation also offers one of the first theoretical explanations
for the frequent claims of superlinear speedups in parallel EAs (see for
example (Tanese, 1989; Belding, 1995; Punch, 1998)). These contro-
versial claims imply that the parallel EA requires less total effort to
reach the same solution than a serial EA (Punch, 1998). However, we
are left with a perplexing question: What caused the reduction in the
required work? The answer offered by this paper is that the number
of generations until convergence is reduced by the additional selection
pressure caused by some migration policies.

There are two alternatives to select the individuals that emigrate
from a deme. They can be chosen randomly or by selecting the best
individuals in a deme. Likewise, there are two choices to replace existing
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individuals in the receiving deme with the incoming migrants: choose
randomly or replace the worst. Each of the four combinations of migrant
selection and replacement causes a different selection pressure, and
this paper examines them from two perspectives. First, we compute
the takeover time, and then we calculate the increase in the selection
intensity. The calculations in this paper assume that migration occurs
every generation, which is an upper bound on the migration frequency.
Less frequent migrations are expected to have a lower impact on the
convergence of the algorithm. In addition, the calculations assume that
the migrants are copies of the individuals selected to migrate. This
differs from natural populations, but is the most frequently-used form
of migration in EAs.

The paper is organized as follows. The next section reviews common
selection methods and explains intuitively the concept of selection pres-
sure. Section 3 summarizes previous work on takeover times for simple
GAs and extends the calculations to consider the four migration poli-
cies. The calculation of the selection intensity caused by the different
migration policies is in section 4, and the results of experiments that
validate the accuracy of the models are in section 5. Section 6 has a
brief discussion of superlinear speedups and illustrates how some of
them can be explained by an increase in selection pressure. Finally,
section 7 summarizes the findings of this study and discusses open
issues for future research.

2. Selection Methods and Selection Pressure

There are many different mechanisms used in evolutionary algorithms
to select the parents of the next generation. They can be classified
roughly into two groups: fitness-proportionate and rank-based selec-
tion.

Fitness-proportionate methods select individuals probabilistically
depending on the ratio of their fitness and the average fitness of the pop-
ulation. These methods are amongst the earliest methods used in EAs.
Some examples are roulette-wheel selection (or also called proportion-
ate selection) (Holland, 1975), stochastic remainder selection (Booker,
1982), and stochastic universal selection (Baker, 1987). Roulette-wheel
selection uses a simulated biased roulette wheel with slots that are sized
according to the fitness of each individual. The roulette is spinned once
for each individual to be selected. The other schemes were proposed to
reduce the stochastic error associated with spinning the roulette wheel
numerous times.
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Some common rank-based selection methods are linear ranking (Baker,
1985), tournament selection (Brindle, 1981), (u7)) selection (Schwefel,
1981), and truncation selection (Miithlenbein and Schlierkamp-Voosen,
1993). In linear ranking selection, individuals are selected with a proba-
bility that is linearly proportional to the rank of the individuals in the
population. The desired expected number of copies of the best (n™)
and worst (n~ = 2 —n") individuals are supplied as parameters to the
algorithm. In tournament selection, a random sample of s individuals
is selected (with or without replacement), and the best individual in
the sample is selected. The process is repeated until the mating pool
is filled. In (x4 + A) selection, A offspring are created from p parents,
and the u best individuals out of the union of parents and offspring are
selected. In (p, ) selection (A > u) the u best offspring are selected to
survive. Truncation selection selects the top 1/7 of the population and
creates 7 copies of each individual. It is equivalent to (i, A) selection
with p = A\/7.

All of these selection mechanisms have the same purpose of creating
more copies of the individuals with higher fitness than of those with
low fitness. However, the selection mechanisms differ in the manner in
which they allocate copies to the fittest individuals. A selection method
has a higher selection pressure than another if it makes more copies of
the best individuals, thereby eliminating rapidly low-fit individuals.
A strong selection method reaches equilibrium faster than a weaker
method, but it also sacrifices genetic diversity that may be needed to
find an adequate solution.

The parameters of selection methods regulate the selection pressure,
which in turn determines how fast the algorithms converge. We shall
see that the parameters of migration also affect the selection pres-
sure. The speed of convergence of different selection schemes was first
studied by Goldberg and Deb (1991), who introduced the concept of
takeover time. The takeover time is the number of generations that
selection alone requires to replicate a single individual of the best class
until the population is full. The next section of this paper extends
Goldberg and Deb’s analysis to consider different migration policies.
Later, Miihlenbein and Schlierkamp-Voosen (1993) used concepts from
population genetics to study convergence properties of a particular EA
and introduced the use of the selection intensity to study the conver-
gence of selection schemes. Section 4 calculates the additional selection
intensity that originates from migration. Of course, many others have
studied and compared different selection methods used in EAs (for
example, see the papers by Béack (1994) and by Hancock (1997))
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3. Takeover Times

This section is based on Goldberg and Deb’s (1991) analysis of the
takeover times of tournament selection, but similar calculations may
be performed for other selection schemes. This section considers a sim-
plified population model with only two classes of individuals: good and
bad. We may think of the good individuals as representatives of the
global solution, while the bad individuals are any other lesser solution.
The calculations of takeover time only consider the effect of selection
on the growth of good solutions and ignore other operators such as
recombination and mutation.

Let P, denote the proportion of good individuals in the population
at time ¢, and @+ = 1 — P; denote the proportion of bad individuals. In
the particular case of tournament selection of size s, a bad individual
will survive only if all the participants in the tournament are bad:

Qi+1 = QF- (1)
Substituting P = 1 — @ gives the proportion of good individuals:
Py =1-(1-F)". (2)

The extensions below assume that migration occurs every genera-
tion, and that it occurs after selection, so its effect may be accounted
for by adding a policy-dependent term to equation 2.

The simplified analysis of this section does not consider the origin
of good migrants. For example, the analysis does not distinguish if a
deme receives ten good migrants from one neighbor or five good mi-
grants from two neighbors. We recognize that the topology is one of the
most important parameters of migration, because it affects considerably
both the solution quality and the cost of communications (Cantii-Paz
and Goldberg, 1999). However, the takeover time calculations are not
concerned with obtaining a good solution or with minimizing the com-
munications, but rather with investigating how fast a good solution
dominates a population once it is found. Subsequent sections follow
another approach that makes fewer simplifying assumptions about the
population model and the topology of communications. However, the
qualitative observations made possible by the simple takeover time
calculations will remain valid.

Out of the four migration policies, the easiest case to model is when
good migrants replace bad individuals. With this policy, on every gener-
ation the proportion of good individuals increases by the migration rate
p (which is the fraction of the population that migrates). Therefore, a
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difference equation for this case can be obtained easily, just by adding
p to Goldberg and Deb’s equation (eq. 2):

Ppi=1-(1-F)" +p. (3)

In the case where good individuals migrate and the replacements are
chosen randomly, the migrants may replace good or bad individuals. If
good migrants replace good individuals, then the proportion of good
individuals in the receiving deme remains unchanged. Thus, we are
interested in calculating how many bad individuals are replaced. The
probability of replacing bad individuals is equal to their proportion in
the population after selection, Q;+1 = Qf = (1 — P;)*, and therefore
the proportion of bad individuals that is replaced by the good migrants
is p(1 — P;)%. Adding this to equation 2 we obtain

Pi1=1-(1-F)" +p(1-F)". (4)

We can use a similar idea to examine the case when random migrants
replace bad individuals. The proportion of good individuals in the re-
ceiving deme will increase by the good migrants, so we are interested
in calculating how many migrants are good. Since migrants are chosen
uniformly at random, the proportion of good migrants is the same as
the proportion of good individuals present in a deme, 1 — (1 — P;)%.
Therefore, the proportion of good individuals at the receiving deme is
incremented by the good migrants as follows:

Pi1=1-01-F)+p(1-01-F)°)

— (14 )1 (1-P)). )

When random migrants replace random individuals the proportion
of good individuals in each deme is expected to be the same over time,
choosing migrants and replacements randomly does not have any effect
on the takeover times.

To find the takeover times of the different migration policies we sim-
ply iterate the difference equations and count the number of iterations
until P; reaches or exceeds 1. The starting point for the equations is
Py = 1/n (there is a single good individual in the population). Figure 1
shows the takeover times in demes with n = 10000 individuals and
pairwise tournament selection (s = 2). The plots illustrate how as the
migration rate increases the convergence is faster, and that the fastest
convergence occurs when good migrants replace bad individuals, which
is a frequently used migration policy (e.g., (Grefenstette, 1981; Tanese,
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Figure 1. Takeover times using different migration policies and varying the migra-
tion rate.

1987; Miihlenbein, 1991; Lin et al., 1997)). The slowest convergence
occurs when both migrants and replacements are chosen randomly. A
GA with a single population would converge in exactly the same time
as this case.

These simple calculations suggest that the difference between the
fastest and slowest convergence times is quite large, and therefore the
migration policy must be taken into account when designing parallel
GAs. The analysis also suggests that the choice of migrants is a greater
factor in the convergence speed than the choice of replacements. A
similar behavior is observed in the next sections.

4. Selection Intensity

This section follows a different approach to estimate the convergence
times of parallel GAs. The assumptions used here are more realistic
than in the previous section, and the results are very accurate predic-
tions of the convergence time. First, the concept of selection intensity
is defined and closed-form expressions for the selection intensity of
common selection methods is provided as a reference. Then, the section
presents the derivation of the additional selection intensity caused by
migration. We show how these values can be used to predict the con-
vergence times, and the next section verifies empirically the accuracy
of the predictions.

The first observation needed to calculate the intensity of a selection
method is that the average fitness of the individuals that are selected
to survive is greater than the average fitness of the population. The
magnitude of this increase depends on the selection method being used,
and it can be quantified as the selection differential

St:ﬁ_fta (6)
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Table I. Selection intensity for common selection schemes.

Selection Method Parameters I
Tournament ] s:s
A
(1, N) B A i Zi:A_MH Peizx
Linear Ranking nt (nt — 1)#
Proportional Oty bt o/

which is the difference between the mean fitness of the selected in-
dividuals and the mean fitness of the population (Miihlenbein and
Schlierkamp-Voosen, 1993). The superscript ¢ denotes the generation
number. Assuming that the fitness of the population has a normal
distribution, the selection differential can be calculated as

st = Ioy, (7)

where o, is the standard deviation of the population at time ¢, and the
factor I is the selection intensity. The selection intensity of some com-
mon selection schemes has been calculated analytically. Back (1995)
and Miller and Goldberg (1995) independently derived the selection
intensity for tournament selection, and Béck (1995) also derived I for
(1, A) selection. Blickle and Thiele (1996) calculated the intensity of
linear ranking, and Miihlenbein and Schlierkamp-Voosen (1993) calcu-
lated I for proportional selection. Table I contains the known selection
intensities (adapted from (Miller and Goldberg, 1996)). Note that I is
independent of the distribution of the current population, except for
proportional selection.

Calculating the standard deviation is more complicated, and it de-
pends on the fitness function. For the case of a [-bit OneMax function
f= Zé:o x; (x; is the i-th bit of the string x), uniform crossover (Syswerda,
1989) creates an approximately binomial fitness distribution with prob-
ability P;, where P, is the proportion of bits set to one in generation
t. Therefore, the standard deviation may be calculated as (Miihlenbein
and Schlierkamp-Voosen, 1993; Thierens and Goldberg, 1994):

or=IB(l- P). (8)

The selection differential f**! — f* = g, - I can be written as

I
P —PB = vat(l - P).
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This can be approximated as a differential equation that can be solved
to obtain the proportion of correct bits at time ¢ as

I

P, =0.5 (1 + sin (—t + arcsin(2P — 1))) , (9)
Vi

where Py is the initial proportion of bits correct. In the case of the

OneMax function this is usually 0.5. The number of generations until

convergence can be calculated making P, = 1 and solving for ¢ to obtain

l
G:(Z—aNWﬁﬂ%—D)l; (10)
2 1
which in the usual case when Py = 0.5 simplifies to G = %4 We shall
use the two equations above to verify the calculations of the selection
intensity caused by migration.

4.1. MIGRATION AND SELECTION INTENSITY

The remainder of the section follows closely the notation and method
used by Béck (1995) in his study of (i, A) selection. This should not
imply that fitness-based migration is equivalent to (u, A) selection. In
fact it is not. Back’s paper provides a good framework and some useful
approximations that we adapt here for our own purposes.

To calculate the selection intensity, we must calculate the selection
differential between the mean fitness of a deme after migration f* and
before migration f*:

st=fv — . (11)

The average fitness before migration is simply f* = 1 37 | f!, where
f! is the fitness of the i-th individual of the population at generation ¢.
The average fitness after migration can be written as a weighted sum
of the average fitness of the migrants and the average fitness of the
individuals that survive migration (i.e., are not replaced by migrants).
Let § denote the degree of the topology (the number of neighbors of a
deme), and m = pn the number of migrants from one deme. We can
write

F = = (mfly + (= 6m) ) (12)
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where f! . o 18 the mean fitness of migrants from one deme, and flur is
the mean fitness of the (n — dm) survivors. Similarly we can write

F'= o (bmf 4 (0= om) ) (13)

Grouping similar terms we can decompose the selection differential
into two parts. One that corresponds to the selection of emigrants st
and another that corresponds to the selection of replacements s:

i ot t
s =8, +s,

_ _ _ _ 14
= il fg — ) + = o)y — ) -

By writing the selection differential in this way, we can separate the
calculation of the selection intensity into two independent steps. First,
we consider the intensity caused by selecting the best individuals to
emigrate. We shall see that selecting emigrants randomly has no effect
on the selection intensity. Later, similar calculations are performed to
calculate the intensity caused by replacing individuals.

The major assumption that we make is that the fitness values of the
population at time ¢ have a normal distribution. Under this assumption,
the fitness values f} can be interpreted as samples of random variables
F} with a common distribution N(ft,a;).

We may arrange the random variables in increasing order as

Flp < Fpp <o < Frp

These are the order statistics of the F} variables, and we can use
them to calculate the average fitness of the emigrants and the survivors.
Without loss of generality we assume a maximization problem. The
mean fitness of the m = pn best individuals selected to migrate from
one deme is

_ 1 n

Frig = o Z E(F,). (15)
1=n—m-+1

The random variables can be normalized as

F;tn - f i
Ot

Zi:n = ~ N(Oa 1)5

and the average fitness of the migrants may be rewritten in terms of
the normalized variables
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R _
— (E(Zi:n)at + ft)
m .

i=n—m-+1

n

:at.% S E(Zin) + T

i=n—m+1

rt
fmig =

(16)

Now, we can calculate the selection differential caused by the mi-
grants as

= =T = ood Y B@a) (D

n .
t=n—m-+1

Since the selection differential is also defined as s* = I - o} (equa-
tion 7), the selection intensity caused by selecting the best individuals
to emigrate is

L==-6-Y  E(Zun) (18)

i=n—m+1

The expected value of the i-th order statistic of a sample of size n
is defined as

o
pin = BZin) =01~ 1) [ 0000 - 0@z ()
—0o0
where @(z) = exp(—2z%/2)/V2r and ®(z) = [*__ $(x)dz are the PDF
and CDF respectively of a standard normal distribution with mean 0
and standard deviation of 1. The values of p;.,, are computationally
expensive to calculate, but they are tabulated for n < 400 (Harter,
1970). Nevertheless, computing the sum in equation 18 can be cumber-

some, but fortunately the following approximation exists' (Burrows,
1972; Béck, 1995):

Z Hizn = n¢(q>_1(1 - p))a (20)

t=n—m-+1

and therefore equation 18 can be approximated as

! Bick shows that for n > 50 the approximation is indistinguishable from the
real values.
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I, ~ (@7 (1 — p)). (21)

It is important to realize that the selection intensity is an adimen-
sional quantity that does not depend on the fitness function or on
the generation ¢. The only assumption made to calculate the intensity
is that the fitness values have a normal distribution, but any other
distribution may be used as long as E(F;.,) may be computed (by
substituting the appropriate PDF and CDF in equation 19). The se-
lection intensity depends on the population size (see equation 18), but
its approximation depends only on the migration rate.

In the case where individuals are chosen randomly to emigrate, the
expected fitness of the migrants is the same as the mean fitness of the
population, and therefore the selection differential is s* = _fm' 0= ft=o,
and there is no additional selection intensity (I, = 0). However, there
may be an increase in the overall selection intensity if the migrants
replace the worst individuals in the target deme. The replacement of
individuals is treated in the following paragraphs.

Replacing the worst individuals in a deme with migrants causes an
increase in the average fitness of the deme. In a manner similar as
above, we can calculate the mean fitness of the individuals that survive
(i.e., are not replaced by the dm migrants) as

- 1
fgur = n—om Z E(an)
i=dm+1 (22)
T S
=0t n—om iz .
i=dm+1

In this case the response to selection is the difference between the
mean of the individuals that survive and the mean fitness of the pop-
ulation:

= (0 — 6m) (Flur — 1)

1 n
=0¢ E . Z Mi:m (23)
i=dm—+1
=0t 1.

Therefore, the selection intensity caused by choosing the worst in-
dividuals to be replaced is

I, = % Z?:Jm-}-l Him (24)
~ (®1(1 = 6p)). (25)
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In this case, the maximum of I, is $(0) = 1/v/27 = 0.3989, which is a
fairly low value, but it is not negligible. When the migration policy is to
replace individuals randomly in the target deme, there is no differential
between the average fitness of the individuals that survive and the
average fitness of the entire deme. Therefore, in this case I, = 0.

The overall selection intensity caused by migration is simply

To predict the number of generations until convergence, we should
add I, to the intensity from the selection method used to select the
parents of the next generation in each deme (given in table I). The
total intensity is then used in equation 10.

4.2. COMPARING THE MIGRATION POLICIES

The simple analysis of the takeover times in section 3 showed the trends
in selection pressure that may be expected from the migration policies.
This section confirms the previous observations and provides reference
tables for frequently used configurations of parallel EAs.

Figure 2 presents plots of (the approximations of) I, for topologies
with different degrees and varying the migration rate?. The maximum
migration rate in the case when the best individuals migrate and replace
the worst at the target is p* = 1/(d+1), where I,;, reaches its maximum.
At this migration rate, the migrants replace all but the n/(é + 1) best
individuals already present in the deme. In the case when the best
migrants replace random individuals, the maximum of I occurs at p =
0.5, but the highest migration rate that makes sense to use is p* =
1/6 (for 6 > 1), because there are no more than ép* individuals in a
deme. Finally, when random emigrants replace the worst individuals,
the maximum of I, is at p* = 1/(26). In this case, the average fitness
of the migrants is the same as the average fitness of the populations
fhig = [', and as long as the migrants replace the lowest half of the
individuals in the receiving deme, the selection differential st = fZ,, — f*
will be positive. Beyond that point, the average fitness of the survivors
would decrease.

From the plots it is easy to see that the migration policy with the
highest intensity is when the best individuals migrate and replace the
worst, followed closely by the case when the best migrants replace
random individuals. The difference between these two policies is not
as large as the difference with the policy where migrants are selected
randomly, as predicted from the takeover time calculations.

2 @7 !(x) in equations 21 and 25 was calculated numerically using Mathematica
3.0 as v/2InverseErf[0,2x-1]
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Table II. I, when the best individuals migrate and replace the worst individuals at the receiving
deme.

P 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5
=1 0.053 0.206 0.350 0.466 0.559 0.635 0.695 0.740 0.772 0.791 0.797
6=2 0.101 0.381 0.630 0.814 0.946 1.034 1.081
é = 0.147 0.542 0.874 1.095 1.226 1.271
=4 0192 0.692 1.088 1.318 1.399
6= 0.236 0.833 1.276 1.483

Table III. I,, when the best individuals migrate and replace random individuals at the receiving

deme.

p 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5
=1 0.026 0.103 0.175 0.233 0.279 0.317 0.347 0.370 0.386 0.395 0.398
=2 0.063 0.206 0.350 0.466 0.559 0.635 0.695 0.740 0.772 0.791 0.797
=3 0.079 0.309 0.526 0.699 0.839 0.953 1.043
=4 0.106 0.412 0.701 0932 1.119 1.271
=5 0.133 0.515 0.877 1.165 1.399

Table IV. I,, when random individuals migrate and replace the worst individuals at the receiving

deme.

P 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5
=1 10.026 0.103 0.175 0.233 0.279 0.317 0.347 0.370 0.386 0.395 0.398
=2 0.048 0.175 0.279 0.347 0.386 0.398 0.386
6=3 0.068 0.233 0.347 0.395 0.386 0.317
=4 0.086 0.279 0.386 0.386 0.279
=5 0.103 0.317 0.398 0.317

Table V. Selection intensity for different tournament sizes (ps:s)
s 2 3 4 5 6 7 8 16 32
I 0564 0.846 1.029 1.162 1.267 1.352 1.423 1.765 2.069
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Figure 2. Selection intensity for different migration policies varying the number of
neighbors (6=1,2,..,5 from bottom to top) and the migration rate.

Tables II, III, and IV have the values of I,, for common configura-
tions. Observe that the magnitudes of I,,, are fairly large. For example,
in the case where the best migrants replace the worst individuals, a
hypercube of degree § = 3 and using only 5% migration produces ap-
proximately the same selection intensity as tournament selection with
s = 3 (see table V). Further comparisons between the tables of I, and
table V suggest that migration alone is capable of producing significant
selection pressures and can cause the populations to converge fast.

Notice that when the best individuals migrate, the relation between
¢ and p is not linear. The selection intensity produced by two neighbors
using p = 0.05 is greater than the selection intensity caused by one
neighbor sending a fraction p = 0.10 of its individuals.

As an aside, note that it is possible to reduce the selection pres-
sure with migration. The largest reduction would result from selecting
the worst individuals to migrate and replace the best individuals of
the receiving deme. Selecting the worst individuals to migrate and
replacing randomly in the target deme would produce an intermediate
reduction of selection pressure. The smallest reduction would be caused

pressure.tex; 2/11/1999; 15:34; p.15



16 Erick Cantu-Paz

by selecting emigrants at random and replacing the best individuals.
Calculations similar to those in the previous section would quantify
the decrease in selection intensity. But, why would we want to reduce
the selection intensity with migration? The answer is the same as in
a serial GA: to slow down convergence so that the variation operators
have enough time to create new solutions. This may be particularly
important when low crossover rates are used or when the demes are
too small.

5. Experiments

This section presents experimental evidence that verifies the accuracy
of the predictions of the previous section. Experiments are performed
with the four migration policies, and the results shown are the average
of 20 independent runs for each parameter setting.

All experiments use a 500-bit OneMax function, and the popula-
tions are initialized randomly (on average Py = 0.5). Each deme is a
generational GA with n = 100 individuals, which is sufficient to ensure
convergence to the optimum in all cases. The GAs use pairwise tourna-
ment selection (s = 2, I = 0.5642), uniform crossover with probability
1.0, and no mutation. The experiments vary the migration rate and the
degree of the topology. Migration occurs every generation.

5.1. BEST MIGRANTS REPLACE WORST INDIVIDUALS

The first set of experiments uses equation 9, which predicts the number
of bits correct over time, to assess the accuracy of the calculations of 1.
Figure 3 presents the results of experiments using a fully connected
topology with two demes (6 = 1). Note that the accuracy of the
predictions decreases slightly as higher migration rates are used. A
possible explanation for the small discrepancies is that it is likely that
the migrants are different from the individuals already present in a
deme (although their average fitness is the same). The increased diver-
sity would require additional mixing (crossover) of alleles to produce
a distribution more similar to a binomial. The problem is aggravated
as longer strings and higher migration rates are used. The predictions
should be much more accurate for algorithms such as PBIL (Baluja,
1994), UMDA (Miihlenbein and Paa$, 1996), or the compact GA (Harik
et al., 1998), which treat each bit independently and do not suffer from
the inadequate mixing problem described here. However, the predic-
tions are adequate for the purposes of this paper, and therefore the
effect of increased diversity due to migration is ignored here, but should
be the subject of future research.
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Figure 3. Bits correct in a topology with one neighbor using different migration
rates. The line is the prediction from equation 9 and the dots are the experimental
results.

The next set of experiments is designed to verify the prediction of
the number of generations until convergence (eq. 10). In this migration
policy, both the choices of migrants and replacements increase the selec-
tion pressure, and therefore I, is calculated by adding equations 21 and
25. Then, the selection intensity from pairwise tournament selection
is added, and the result is used as I in equation 10. The theoretical
predictions and the experimental results are presented in figure 4.

Experiments with other topologies of the same degree show no dif-
ference. In particular, experiments with 8 demes connected as uni-
and bi-directional rings (0 = 1 and 2, respectively) and hypercubes
of degree § = 3 and 4 (16 demes) yield identical results as those with
fully-connected topologies in figures 3 and 4. For this reason, in the
remainder we experiment only with fully connected topologies.

5.2. BEST MIGRANTS REPLACE RANDOM INDIVIDUALS

For this migration policy, I, is given by equation 21 and I,, = 0. The re-
sults are presented in figure 5. We can observe that the generations until
convergence are only slightly fewer than in the previous case, where the
replacements were chosen according to their fitness. This observation
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Figure 4. Number of generations until convergence when the best individuals are
selected to migrate and replace the worst. The line plots the predictions (eq. 10)
and the dots are the experimental results.

supports the hypothesis raised by the analysis of takeover times that
indicated that the major component in the increase of selection pressure
is the selection of emigrants, not the selection of replacements.

5.3. RANDOM MIGRANTS REPLACE WORST INDIVIDUALS

In this migration policy, there is no selection pressure caused from
selecting random emigrants (I, = 0), but replacing the worst individ-
uals in the target deme causes the intensity to increase. I, is given by
equation 25.

We can observe in figure 6 that since the additional selection pressure
caused by this migration policy is not very strong, the generations until
convergence do not decrease as much as in the previous cases. We used
migration rates higher than the maximum p* = 1/(26) rate that makes
sense in this case to be consistent with the previous experiments and
to illustrate how the selection pressure decreases after this point.
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Figure 5. Number of generations until convergence when the best individuals are
selected to migrate and replace random individuals. The line plots the predictions
(eq. 10) and the dots are the experimental results.

6. Superlinear Speedups in EAs

In the EA community there has been some controversy about claims
of superlinear speedups. The primary reason to suspect these claims
is a common argument used to dismiss superlinearity in general: if all
the tasks of a parallel program are executed by several threads on a
single processor, the total execution time cannot be less than the exe-
cution time of a serial program that performs the same computations.
As Punch (1998) points out, the key assumption is that that the serial
and parallel programs execute the exact same tasks. In this view, the
only possible explanation of superlinear speedups is that the parallel
EA somehow executes less work than the serial EA. The argument of
this paper is that in many cases the reduction of computations is caused
by the increased selection pressure of migration.

To illustrate how the different convergence times affect the speedups
of parallel GAs consider an example with the 500-bit OneMax problem
used in the previous section. A simple GA with a single population of
n = 100 individuals and the same parameters as before reached the
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Figure 6. Number of generations until convergence when random individuals are
selected to migrate and replace the worst. The line plots the predictions (eq. 10)
and the dots are the experimental results.

global solution in all of 20 independent trials. We verified empirically
that this population size was the smallest that consistently reached
the global optimum. The execution time of the serial GA can be es-
timated as Ty = nG Ty, where G is the number of generations until
convergence and Ty is the function evaluation time. With / = 500,
Py = 0.5, and using pairwise tournaments (I = 0.5642), equation 10
gives G, = 62. For the purposes of the example, let Ty = 1 unit of time,
and therefore T = 6200.

For the parallel case, consider r = 4 demes with n = 25 individuals
each. The demes are connected by a bi-directional ring (§ = 2) and
use a migration rate of p = 0.05. We validated empirically that this
configuration reaches the optimum in all of 20 independent runs, and
that this was the smallest deme size to do so. The execution time in
the parallel case is T, = nGpTy + T, where T, is the time used in
communications. It depends on § and p, and for our example we will

pressure.tex; 2/11/1999; 15:34; p.20



Migration Policies and Parallel EAs 21

use a large value T, = 100%. The value of I,, = 0.381 may be found in
table II. Substituting I = 0.5642 + 0.381 in equation 10 gives G, = 37.
With these values T}, = 1025, and the ratio % = 6.05, which even with
the conservative values used here is much higher than the ideal speedup
of 4.

We should not conclude that all claims of superlinear speedups are
caused by an increase of selection pressure due to migration. Other pos-
sible causes are implementation particulars (for example, the smaller
demes may fit completely in the processors’ caches, which was the
explanation that Belding (1995) gave for his results) or inappropriate
sizing of populations (such that convergence to solutions of the same
quality is not guaranteed).

7. Summary and Future Research Directions

The choice of migrants and the replacement of individuals are not often
considered important parameters of parallel EAs. However, this paper
showed that choosing migrants or replacements according to their fit-
ness increases the selection pressure and may cause the algorithm to
converge significantly faster.

The migration policy that causes the greatest reduction in work is
to choose both the migrants and the replacements according to their
fitness, which is also the most common policy. The results of the paper
also indicate that the selection pressure increases monotonically with
higher migration rates. The faster convergence may result in a reduc-
tion of the total computational work, and may explain some claims of
superlinear speedups in parallel EAs.

These conclusions were obtained with two different methods. The
first method is extremely simple, but produced valuable qualitative
observations that prompted further investigation with more complex
tools. Besides of the results that were obtained, this paper illustrates a
methodology may be used to explore other areas of EAs.

As was mentioned in section 5.1, migration also introduces diversity
into a deme. Although it seems that the selection intensity largely
determines the convergence speed, in future research the effect of the
increased diversity may be quantified and incorporated into the calcu-
lations to obtain more accurate predictions.

Another open area for future research is to calculate the selection
intensity of different selection schemes used in fine-grained parallel EAs.

3 Notice that the ratio of T./T; is very high. In most practical applications of
parallel GAs this ratio is much lower than one. We are being extremely conservative
here.
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There is some important work in this area that is related with takeover
times (e.g., (Sarma and De Jong, 1996; Sarma and De Jong, 1997)),
but calculations of the selection intensity are still nonexistent. These
would permit to compare directly the selection pressure across different
models of parallel EAs.
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