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Abstract
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1. INTRODUCTION

Meta-heuristics are widely acknowledged as essential tools to addriéss dif
cult problems in numerous and diverse fields, as this volume eloquently demon
strates. Infact, meta-heuristics often offer the only practical apptoaciving
complex problems of realistic scale.

Even using meta-heuristics, the limits of what may be solved in “reasonable”
computing times are still reached rapidly, however, at least much too rapidly f
the growing needs of research and industry alike. Heuristics do notnarale
guaranty optimality. Moreover, the performance often depends on ttieysar
problem setting and data. Consequently, a major issue in meta-heuristic design
and calibration is not only how to build them for maximum performance, but
also how to make themobust in the sense of offering a consistently high level
of performance over a wide variety of problem settings and charactsristic

Parallel meta-heuristicaaim to address both issues. Of course, the first
goal is to solve larger problem instances in reasonable computing times. In
appropriate settings, such as co-operative multi-thread strategieiglpasda-
heuristics also prove to be much more robust than sequential versioraimgde
with differences in problem types and characteristics. They also relgsise
extensive, and expensive, parameter calibration efforts.

The objective of this paper is to paint a general picture of the parallel meta-
heuristic field. Specifically, the goals are to 1) present a state-of-ttseHaey
of parallel meta-heuristic developments and results, 2) discuss geesighd
and implementation principles that apply to most meta-heuristic classes, 3)
instantiate these principles for the three meta-heuristic classes currently most
extensively used: genetic methods, simulated annealing, and tabu seaich,

4) identify a number of trends and promising research directions.

The parallel meta-heuristic field is a very broad one, while the space avail-
able for this paper imposes hard choices and limits the presentation. In ad-
dition to the references provided in the following sections, a number of sur-
veys, taxonomies, and syntheses have been proposed and mayfpnoseest:
Greening (1990), Azencott (1992), Mlenbein (1992), Shonkwiler (1993),
VoR (1993), Lin, Punch, and Goodman (1994), Pardatcal. (1995), Ram,
Sreenivas, and Subramaniam (1995), Verhoeven and Aarts (1088)sen
(1996), Crainic, Toulouse, and Gendreau (1997), Glover andna¢lLo97),
Holmqvist, Migdalas, and Pardalos (1997), GeRaz (1998), Crainic and
Toulouse (1998), Crainic (2002), Cuegal. (2002).

The paper is organized as follows. Section 2. introduces the notation, de-
scribes a generic meta-heuristic framework, and sets genetic, simulatad-ann
ing, and tabu search methods within this framework. Section 3. is dedicated
to a brief introduction to parallel computing and the presentation of three main
strategies used to build parallel meta-heuristics. Sections 4., 5., and 6. are



Parallel Strategies for Meta-heuristics 3

dedicated to the survey and discussion of issues related to the parallelifation
genetic approaches, simulated annealing, and tabu search, redpeStation

7. briefly treats a number of other meta-heuristic approaches, drawalzenu

of general conclusions, and points to research directions and chedleng

2. HEURISTICSAND META-HEURISTICS

Sequential and parallel meta-heuristics are used in many disciplines - math-
ematics, operations research, artificial intelligence - and numerous applica
tions: design, planning, and operation of complex systems and netwogks (e
production, transportation, telecommunication, etc.); management, allocation,
scheduling, and utilization of scarce resources; speech and imagmitioo
and enhancement; VLSI design; and so on. To simplify the presentatidn, an
with no loss of generality, in the following we adopt the notation and vocajpular
of combinatorial optimizatioriormulations.

Given a set of objects, the value associated to each, and the ruleysygcif
how objects may be joined together, the combinatorial optimization formula-
tion aims to select a subset of objects such that the sum of their contributions is
the highest/lowest among all possible combinations. Many problems of interest
may be cast as combinatorial optimization formulations, including design, lo-
cation, routing, and scheduling. In most cases, such formulationstaeensty
difficult to solve for realistically-sized problem instances, the main issue be-
ing the number of feasible solutions - combinations of objects - that grows
exponentially with the number of objects in the initial set.

Combinatorial optimization problems are usually formulated as (mixed) in-
teger optimization programs. To define notation, assume that one desires to
minimize (or maximize) a functiorf(z) subject tox € X C R™. The objec-
tive function f () may be linear or not. The sé&t summarizes constraints on
thedecision variables and defines thieasible domainDecision variables are
generally non-negative and all or part of the elements ofay be compelled
to take discrete values. One seeks a globabtymal solutionz™ € X’ such that
f(z*) < f(z) forallz € X.

Once various methods have been applied to re-formulate the problem and
to bound the region where the optimal solution is to be found, most solution
methods are based on some form of exploration of the set of feasible sslutio
Explicit enumeration is normally out of the question and the search for the
optimal solution proceeds by implicit enumeration. Branch-and-bound (and
price, and cut, ...) methods are both typical of such approaches and three o
methods of choice used in the search for optimal solutions to combinatorial
problems. Unfortunately, these methods fail for many instances, even whe
parallel implementations are used. Thus, heuristics have been, and edotinu
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be, an essential component of the methodology used to address comabinator
optimization formulations.

A heuristicis any procedure that identifies a feasible solutiog X. Of
course, one would like to be identical tac* (if the latter is unique) o (Z)
to be equal tof (z*). For most heuristics, however, one can only hope (and
for some, prove) thaf(z) is “close” to f(z*). Heuristics have a long and
distinguished track record in combinatorial optimization. Often, heuristics are
the only practical alternative when dealing with problem instances of realistic
dimensions and characteristics.

Many heuristics arémprovingiterative procedures thatovefrom a given
solution to a solution in itaeighbourhoodhat is better in terms of the objective
function value (or some other measure based on the solution charactgristics
Thus, at each iteration, sucHacal searchprocedure identifies and evaluates
solutions in the neighbourhood of the current solution, selects the besebn
ative to given criteria, and implements the transformations required to establish
the selected solution as the current one. The procedure iterates untitimerf
improvement is possible.

Formally, let\V' C X represent the set of neighbours of a given solution
that may be reached by a simple transformation (e.g., complement the value
of an integer-valued variable) or a given sequence of operations Keapt
modifications of routes in a vehicle routing problems). ketr) denote the
application that corresponds to these moves and that yields a sojution
N (s). Then, Figure 1.1 illustrates a simple steepest descent heuristic where the
objective function value is the only neighbour evaluation criterion.

Identify an initial solution:® € X; k = 0;
k=k+1;

Findz = argmin{f(z)|z € N'(z*)};

If f(Z) > f(«*) Stop.

Otherwiseg**! = m(z); Goto 2.

a s b pE

Figure 1.1 Simple Local Search/Steepest Descent Heuristic

A major drawback of classical heuristic schemes is their inability to con-
tinue past the first encountered local optimum. Moreover, such proegdee
unable to react and adapt to particular problem instances. Re-startimgran
domization strategies, as well as combinations of simple heuristics offer only
partial and largely unsatisfactory answers to these issues. The classlefn
heuristics known ameta-heuristicaims to address these challenges.
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Meta-heuristics have been defined as master strategies (heuristics)do guid
and modify other heuristics to produce solutions beyond those normally iden-
tified by local search heuristics (Glover 1986; see also Glover andrizagu
1993). Compared to exact search methods, such as branch-amdl-boeta-
heuristics cannot generally ensure a systematic exploration of the effitieso
space. Instead, they attempt to examine only parts thereof where, iagcord
to certain criteria, one believes good solutions may be found. Well-designed
meta-heuristics avoid getting trapped in local optima or sequences of visited
solutions ¢ycling and provide reasonable assurance that the search has not
overlooked promising regions.

Meta-heuristics for optimization problems may be described summarily as
a “walk through neighbourhoods”, a search trajectory through theéisoldo-
main of the problem at hand. Similar to classical heuristics, these are iterative
procedures thamnovefrom a given solution to another solution in iigh-
bourhood Thus, at each iteration, one evaluates moves towards solutions in
the neighbourhood of the current solution, or in a suitably selected tsubse
According to various criteria (objective value, feasibility, statistical messur
etc.), a number of good moves are selected and implemented. Unlike classi-
cal heuristics, the solutions implemented by meta-heuristics are not nelgessar
improving, however. Tabu search and simulated annealing methods usually im-
plement one move at each iteration, while genetic methods may generaté severa
new moves (individuals) at each iteration (generation). Moves may bétong
only one type (e.g., add an element to the solution) or to several quite differe
categories (e.g., evaluate both add and drop moves). Moves may marginally
modify the solution or drastically inflect the search trajectory. The first cas
is often referred to akcal search The diversification phase of tabu search
or the application of mutation operators in an evolutionary process are ltypica
examples of the second alternative. This last case may also be desaiked a
change in the “active” neighbourhood.

Each meta-heuristic has its own behaviour and characteristics. All, hgweve
share a number of fundamental components and perform operatiorfalthat
within a limited number of categories. To facilitate the comparison of paral-
lelization strategies for various meta-heuristic classes, it is convenierfine de
these common elements:

1. Initialization. A method to create an initial solution or set of problem
configurations that may be feasible or not.

2. Neighbourhoods.To each solution: corresponds a set of neighbour-
hoods and associated moves\, N, ... , Ny}, whereN;(z) = {y =
mi(z),y € X}i=1,..,4q.

3. A neighbourhood selection criteriois defined when more than one
neighbourhood is included. This criterion must specify not only what



neighbourhood to choose but also when to select it. Alternatives range
from “each iteration” (e.g., genetic methods) to “under given conditions”
(e.g., the diversification moves of tabu search).

4. Candidate selectionNeighbourhoods may be very large. Then, often,
only a subset of moves are examined at each iteration. The correspond-
ing candidate listC(x) C N(xz) may be permanent and updated from
iteration to iteration (e.g., tabu search) or it may be constructed at each
new iteration (e.g., genetic methods). In all cases, a selection criterion
specifies how solutions are picked for inclusion in the candidate list.

5. Acceptance criterionMoves are evaluated by applying a functign:, y)
based on one or several attributes of the two solutions: objective function
value, distance from certain constraints, penalties for violating some oth-
ers, etc. External factors, such as random terms or biases froetzged
characteristics of past solutions may also be included in the evaluation.
The best solution with respect to this criterion

T = argopt{g(r,y); y € C(z)}

is selected and implemented (unless forbidden by cycling-prevention
mechanisms).

6. Stopping criteria Meta-heuristics may be stopped on a variety of criteria:
computing time, number of iterations, rate of improvement, etc. More
than one criterion may be defined to control various phases of the search
(usually corresponding to various neighbourhoods).

With these definitions, we introduce a generic meta-heuristic procedure il-
lustrated in Figure 1.2 and use it to describe the three main classes of meta-
heuristics: genetic methodssimulated annealingandtabu search These
methodologies have been, and continue to be, most oftenly used and paral-
lelized. They are therefore treated in more detail in the following sections.
Other methods, such asatter searchGrAsP, ant colony systemsndvari-
able neighbourhood seardmave also been proposed and we briefly discuss
related parallelization issues in Section 7..

Genetic algorithms belong to the larger class of evolutionary methods and
were inspired by the evolution processes of biological organisms. Indyiolo
when natural populations are studied over many generations, theyrappea
evolveaccording to the principles ofatural selectiorandsurvival of the fittest
to produce “well adapted” individuals. Genetic algorithms mimic this process,
attempting tcevolvesolutions to optimization problems (Holland 1975; Gold-
berg 1989; Whitley 1994; Fogel 1994; Michalewicz 1992; Michalewicd an
Fogel 2000). In recent years, the genetic algorithm paradigm weasdern
ably enriched, as it evolved to include hybridization with local improvement
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Initialization: z°

Neighbourhood selectioh” € {N,... , N}

Candidate selectia®y(x) C N (z)

Move evaluation/neighbourhood exploratigix, y), v € C(x)
Move implementatiort = argopt{g(z,y)}

Solution evaluation, update search parameters

Test stopping criteria: Stop or Goto 3 (continue local search phase)
or Goto 2 (initiate new search phase)

No ok owdR

Figure 1.2 Generic Meta-heuristic

heuristics and other meta-heuristics. Although the specialized literature is fre
guently replacing the term “genetic algorithms” with “evolutionary methods”,
we use the former in this paper to distinguish these methods from other strate-
gies where a population of solutions evolves through an iterative préegss
scatter search and most co-operative parallel methods described I#tes in
paper).

Genetic methods work on a population of solutions that evolves by generating
new individuals out of combinations of existing individuals. At each iteration
a selectionoperator applied to the current population identifies the parents to
be used for the generation of new individuals. Thus, in a genetic cotiext,
candidate selection and move evaluation is based solely on thegalyehe
fithess of the parents (this may be contrasted to the evaluations used in, for
example, simulated annealing, tabu search, and scatter se@rok}overop-
erators are used to generate the new individuMstation and hill climbing
(local search) operators modify the definition or characteristics of thveime
dividuals to improve their fitness and the diversity of the population. Inraéve
variants, especially so for parallel genetic methods, the implementation of the
move is completed by survivaloperation that determines which of the parents
and offspring advances to the next generation. Figure 1.3 displaysrtbiédns
of the classical genetic operators, while Figure 1.4 summarizes the main steps
of a generic genetic algorithm.

Simulated annealing methods are inspired byaeealingprocess of cool-
ing materials in a heat bath. Here, solid materials are first heated past melting
point. They are then gradually cooled back to a solid staterateeof cool-
ing directly influencing on the structural properties of the final product. The
materials may be represented as systems of particles and the whole process
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Figure 1.3 Genetic Evolutionary Algorithm Operators

N B

. Initialization: generation of the initial population.

. Neighbourhood selection: selection of crossover and mutation
operators.

3. Candidate parent- selection: application of a selection operato
to the current population

4. Move evaluation/neighbourhood exploration: none

5. Move implementation: application of crossover, mutation, hill
climbing, and offspring and parent selection operators to obtair]
a new population

6. If stopping criteria not met, Goto 3 (continue the evolution) or
Goto 1.3 (modify the evolution criteria)

—3

Figure 1.4 A Generic Genetic Algorithm

of heating and cooling may be simulated to evaluate various cooling rates and
their impact on the properties of the finished product. $imeulated anneal-
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ing metaphor attempts to use similar statistical processes to guide the search
through feasible space (Metropoésal. 1953; Kirkpatrick, Gelatt, and Vec-

chi 1983; Laarhoven and Aarts 1989; Aarts and Korst 1989, 266G2). A
randomized scheme, themperaturecontrol, determines the probability of ac-
cepting non-improving solutions. This mechanism aims to allow escaping from
local optima. Thecooling scheduleletermines how this probability evolves:
many non-improving solutions are accepted initialigh temperaturgbut the
temperature is gradually reduced such that few (none) inferior soluditns
accepted towards the enlb\ temperature A generic simulated annealing
procedure is displayed in Figure 1.5.

1. Initialization: Select
= |nitial state (solution} = x¢;
= |nitial temperature- = y;
= Temperature reduction functien
2. Neighbourhood and candidate selections: none (generally);
Replaced by
3. Selection of number of iteratioristo approximate equilibrium
at temperature

4. Move evaluation/neighbourhood exploration:
Randomly selecy € X.

5. Move implementation
Af = f(y) — f(@);
if Af <0thenx:=y;
dseif g(z,y) = exp (—Af/7) > random(0,1) then z := y;
6. Solution evaluation
7. Test stopping criteria
m [f less thanL iterations, Goto 4
= |f convergence not verified; = a(7); Goto 3

Figure 1.5 Generic Simulated Annealing Procedure

One of the most appropriate tabu search metaphors is the capability of the
human brain to store, recall, and process information to guide and enttence
efficiency of repetitive processeddemoryand memory hierarchyare major
concepts in tabu search, as are the memory-based strategies used theguide
procedure into various search phases. Here, as elsewhere,istibéocally
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explores the domain by moving from one solution to the best available solution
in its neighbourhood. Inferior quality solutions are accepted as a stragegy
move away from local optima. Short-tetiaou statusmemories record recent
visited solutions or their attributes to avoid repeating or inverting recent ac-
tions. The tabu status of a move may be lifted if testing it againsisairation
criterion signals the discovery of a high quality solution (typically, the best one
encountered so far). Medium to long-term memory structures recoialugar
informations and statistics relative to the solutions already encountered (e.g.,
frequency of certain attributes in the best solutions) to “learn” aboutiléicn

space and guide the searthtensificatiorof the search around a good solution
and itsdiversificationtowards regions of the solution space not yet explored
are two main ingredients in tabu search. These two types of moves are based
on medium and long-term memories and are implemented using specific neigh-
bourhoods. More details on the basic and advanced features of tach sgay

be found in Glover (1986, 1989, 1990, 1996), Glover and Lagu88311997),
Gendreau (2002). Figure 1.6 displays a generic tabu search precedu

1. Initialization: zq

2. Neighbourhood selection: local search, intensification,
diversification, ...

3. Candidate selectia®(z) C N (x)

4. Move evaluation/neighbourhood exploration:
tabu criteria, aspiration criterion

5. Move implementation
6. Update of memories and tabu status

7. Test stopping criteria; If it fails Goto 3 (continue local search)
or Goto 2 (change search phase)

Figure 1.6 A Generic Tabu Search

This very brief summary of three major meta-heuristics emphasizes the sim-
ilarities of the main activities used by the various methodologies to explore
the solution space of given problems. This similarity translates into “similar”
requirements when strategies for parallelization are contemplated. For exam-
ple, all meta-heuristic procedures encompass a rather computationally heav
stage where the neighbourhood (or the population) is explored. Foetyurthe
computational burden may be reduced by performing the exploration iligdara
and most implementations of the first parallelization strategy discussed in the
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following section address this issue. This observation explains our chbice
discussing parallelization strategies not according to particular meta-ieuris
characteristics but rather following a few general principles.

3. PARALLEL COMPUTATION

The central goal of parallel computing is to speed up computation by dividing
the work load among several processors. From the view point of algodé:
sign, “pure” parallel computing strategies exploit the partial order ofrétlyns
(i.e., the sets of operations that may be executed concurrently in time without
modifying the solution method and the final solution obtained) and thus corre-
spond to the “natural” parallelism present in the algorithm. The partial order
of algorithms provides two main sources of parallelistata andfunctional
parallelism.

To illustrate, consider the multiplication of two matrices. To perform this
operation, one must perform several identical operations executing st
products of numbers. It is possible to overlap the execution of these identic
operations on different input data. Among computer architectures witdralev
arithmetic and logic units (ALUs)Single Instruction stream, Multiple Data
stream(SIMD) computers are particularly suited to this type of parallelism as
they can load the same operation on all ALUs (single flow of instructions) and
execute it on different input data (multiple flows of data). The total number o
computer operations required to compute the matrix product is not reduded,
given the concurrency of several operations, the total wall-clock ctetipn
time is reduced proportionally to the average number of overlapping sets of
operations during the computation. This is data parallelism.

Computations may also be overlapped even when operations are différent.
is usually inefficient to exploit this parallelism at the fine-grain level of alsing
instruction. Rather, the concurrent execution of different operatigpisally
occurs at the coarse-grain level of procedures or functions. Thisi@ional
parallelism. For example, one process can compute the first derivative ve
tor of a function while another computes the second derivative matrix. The
two processes can overlap at least partially in time. When computations are
complex and dimensions are large, this partial overlap may yield interesting
speedups. Parallel computers that are well adapted to perform fualgbiamn
allelism usually follow aMIMD (Multiple Instructions stream, Multiple Data
strean) architecture where both data and instructions flow concurrently in the
system. MIMD computers are often made up of somewhat loosely connected
processors, each containing an ALU and a memory module.

Parallel computation based on data or functional parallelism is particularly
efficient when algorithms manipulate data structures that are strongly regula
such as matrices in matrix multiplications. Algorithms operating on irregular
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data structures, such as graphs, or on data with strong dependanoies the
different operations remain difficult to parallelize efficiently using only data
and functional parallelism. Meta-heuristics generally belong to this category
of algorithms that are difficult to parallelize. Yet, as we will see, parallelizing
meta-heuristics offers opportunities to find new ways to use parallel corspute
and to design parallel algorithms.

31 PARALLELIZING META-HEURISTICS

From a computational point of view, meta-heuristics are just algorithms from
which we can extract functional or data parallelism. Unfortunately, dada an
functional parallelism are in short supply for many meta-heuristics. Famex
ple, the local search loop (Steps 3 to 7) of the generic tabu search ireFigur
1.6 displays strong data dependencies between successive iterafidits;- p
larly in the application of the tabu criterion and the update of memories and
tabu status. Similarly, the passage from one generation to another in standar
genetic methods is essentially a sequential process, while the replacement of
the current solution of the generic simulated annealing procedure (Step 5 in
Figure 1.5) cannot be done in parallel, forcing the sequential executithe o
inner loop (Steps 4 to 6). As in other types of algorithms, however, opagtio
inside one step may offer some functional or data parallelism. Moreover, the
exploration of the solution space based on random restarts can be fiatigtio
parallelized since there are no dependencies between successivé nerset
of visited solutions, as well as the outcome of the search made up of random
restarts are identical to those obtained by the sequential procedurequttive
set of initial solutions is the same for both the sequential and parallel runs.

Meta-heuristics as algorithms may have limited data or functional paral-
lelism but, as problem solving methods, they offer other opportunities fer pa
allel computing. To illustrate, consider the well-known Branch-and-Bound
technique. The branching heuristic is one of the main factors affectingaiie w
Branch-and-Bound algorithms explore the search tree. Two Bramd{Baund
algorithms, each using a different branching heuristic, will most likelyqrenf
different explorations of the search tree of one problem instancebdt will
find the optimum solution. Thus, the utilization of different Branch-and+&bu
search patterns does not prevent the technique from finding the optilutEbs.

This critical observation may be used to construct parallel Branchbandd
methods. For example, the parallel exploration of the search tree based on
distributing sub-trees will modify the data available to the branching heuris-
tic and thus, for the same problem instance, the parallel and sequenté@ sea
patterns will differ. Yet, the different search strategies will all find th&roal
solution. Consequently, the exploration of sub-trees may be used asca sou
of parallelism for Branch-and-Bound algorithms. This source of pdisiidas
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not related to data parallelism, since the data (the variables of the optimization
problem) is not partitioned. It is not functional parallelism either, becthese

two computations, sequential and parallel, are different. Although this differ
ence makes comparative performance analyzes more difficult to pgigoroe

the parallel implementation does not do the same work as the sequential one),
sub-tree distribution remains a valuable and widely used parallelization strateg
for Branch-and-Bound algorithms.

Similar observations can be made relative to new sources of parallelism
in meta-heuristics. A meta-heuristic algorithm started from different initial
solutions will almost certainly explore different regions of the solution spad
return different solutions. The different regions of the solution spapéored
can then become a source of parallelism for meta-heuristic methods. Howeve
the analysis of parallel implementation of meta-heuristic methods becomes
more complex because often the parallel implementation does not return the
same solution as the sequential implementation. Evaluation criteria based on
the notion ofsolution quality(i.e., does the method find a better solution?) have
then to be used to qualify the more classical acceleration (speedup) e®asur

We have classified the parallelization strategies applied to meta-heuristics
according to the source of parallelism used:

Type 1. This source of parallelism is usually found within an iteration of the
heuristic method. The limited functional or data parallelism of a move
evaluation is exploited or moves are evaluated in parallel. This strat-
egy, also calledbw-levelparallelism, is rather straightforward and aims
solely to speed up computations, without any attempt at achieving a bet-
ter exploration (except when the same total wall-clock time required by
the sequential method is allowed to the parallel process) or higher quality
solutions.

Type 2: This approach obtains parallelism by partitioning the set of decision
variables. The partitioning reduces the size of the solution space, but it
needs to be repeated to allow the exploration of the complete solution
space. Obviously, the set of visited solutions using this parallel imple-
mentation is different from that of the sequential implementation of the
same heuristic method.

Type 3: Parallelism is obtained from multiple concurrent explorations of the
solution space.

Type 1l parallelism. Type 1 parallelizations may be obtained by the concur-
rent execution of the operations or the concurrent evaluation ofalanewves
making up an iteration of a search method. Type 1 parallelization strategies aim
directly to reduce the execution time of a given solution method. When the same
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number of iterations are allowed for both sequential and parallel versfahe
method and the same operations are performed at each iteration (e.g., the same
set of candidate moves is evaluated and the same selection criterion ighised),
parallel implementation follows the same exploration path through the prob-
lem domain as the sequential implementation and yields the same solution.
As a result, standard parallel performance measures apply straightébyw

To illustrate, consider the computation of the average fitness of a population
for genetic methods. Because the sequence used to compute the fitness of th
individuals is irrelevant to the final average fitness of the population,nt ca
be partitioned and the partial sums of each subpopulation can be computed in
parallel. Both the parallel and sequential computations yield the same average
fitness, the parallel implementation just runs faster.

Some implementations modify the sequential method to take advantage of the
extra computing power available, but without altering the basic search method
Forexample, one may evaluate in parallel several moves in the neighloowho
the current solution instead of only one. In Figure 1.5, one can cheveead
y variables in Step 4 and then perform Step 5 in parallel for each selected
y. In tabu search, one mayobefor a few moves beyond each immediate
neighbour to increase the available knowledge when selecting the best move
(Step 4 of Figure 1.6). The resulting search patterns of the serial aaligha
implementations are different in most cases. Yet, under certain conditiens, th
fundamental algorithmic design is not altered, therefore these appsosithe
qualify as Type 1 parallelism.

Type2paralldism. In Type 2 strategies, parallelism comes from the decom-
position of the decision variables into disjoint subsets. The particular tieuris

is applied to each subset and the variables outside the subset are muhside
fixed. Type 2 strategies are generally implemented in some sort of master-slav
framework:

= A masterprocess partitions the decision variables. During the search,
the master may modify the partition. Modifications may be performed at
intervals that are either fixed before or determined during the execution,
or, quite often, are adjusted when restarting the method.

= Slavesoncurrently and independently explore their assigned partitions.
Moves may proceed exclusively within the partition, the other variables
being considered fixed and unaffected by the moves which are pedorme
or the slaves may have access to the entire set of variables.

= When slaves have access to the entire neighbourhood, the master must
perform a more complex operation of combining the partial solutions
obtained from each subset to form a complete solution to the problem.
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Note that a decomposition based on partitioning the decision variables may
leave large portions of the solution space unexplored. Therefore, inappis-
cations, the partitioning is repeated to create different segments of thdecis
variable vector and the search is restarted.

Type 3 parallelism. The first two parallelization strategies yield a single
search path. Parallelization approaches that consist of severaloemisearches

in the solution space are classified as Type 3 strategies. Each condtoreawl

may or may not execute the same heuristic method. They may start from the
same or different initial solutions and may communicate during the search or
only at the end to identify the best overall solution. The latter are known as
independent searcmethods, while the former are often called-operative
multi-threadstrategies. Communications may be performed synchronously or
asynchronously and may be event-driven or executed at predetelrovity-
namically decided moments. These strategies belong to-tomtrol class ac-
cording to the taxonomy proposed by Crainic, Toulouse, and Gendtéauy,

and are identified asultiple-walksby Verhoeven and Aarts (1995).

To speed up computation by using a multi-thread strategy, one generally tries
to make eachthread perform a shorter search than the sequentiayrmecehis
technique is implemented differently for each class of meta-heuristig het
the number of processors. For tabu search, each thread per%o'memtions,
whereT is the number of iterations of the corresponding sequential procedure.
For simulated annealing, the total number of iterations of the inner loop (Steps 4
to 6 in Figure 1.5) is reduced proportionally frdiio £. For genetic algorithms,
it is not the number of generations which is generally reduced. Ratheizéhe s
N of the sequential population is reduced¥dor each genetic thread.

Type 3 parallelization strategies are often used to perform a more thorough
exploration of the solution space. Several studies have shown that multi-
thread procedures yield better solutions than the corresponding $iedjoresta-
heuristics, even when the exploration time permitted to each thread is signifi-
cantly lower than that of the sequential computation. Studies have also shown
that the combination of several threads that implement different parane¢ter s
tings increases the robustness of the global search relative to variatjmad-
lem instance characteristics. We review some of these results in Sections 4. to
6..

Itis noteworthy that the application of classical performance measutes (e
Barr and Hickman 1993) to multi-thread, parallel meta-heuristics is somewhat
problematic. For example, it is generally difficult to eliminate or control the
overlap between the search paths (to adequately control the seartdpove
would involve such high levels of search synchronization and informatien e
changes that all benefits of parallelization would be lost). Thus, one can-
not measure correctly the search efficiency in terms of the work pertbrme
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Moreover, many Type 3 parallelizations are based on asynchronoregitives
among threads. As asynchronous computations are time dependentsuch ¢
putations can produce different outputs for the same input. Classicadgpe
measures are ill-defined to compare the performances of asynchnoaals

lel meta-heuristics with sequential ones. In fact, several asynchsongpe 3
parallel meta-heuristics are so different from the original sequentiaigoiure

that one can hardly consider the two implementations to belong to the same
meta-heuristic class.

3.2 OTHER TAXONOMIES

The classification described above is sufficiently general to apply to almost
any meta-heuristic and parallelization strategy. Moreover, the lessongdear
by comparing within the same class the implementations and performances of
particular meta-heuristics are of general value and may be extendedd¢h sea
methods not covered in depth in this paper. Most taxonomies proposed in the
literature are, however, related to a specific type of meta-heuristic.

Greening (1990) divides simulated annealing parallelization strategies ac-
cording to the degree of accuracy in the evaluation of the cost functimtias
ated with a move. Parallel algorithms that provide an error-free evaluaton a
identified assynchronousvhile the others arasynchronousThe synchronous
category is divided further between parallel simulated annealing algoritlans th
maintain the convergence properties of the sequential meteoil-like) and
those that have an accurate cost evaluation but differ from the Stajuem-
putation in the search path generatiati€red generation Type 1 parallelism
completely covers the serial-like category. The altered generation categor
overlaps with the Type 1 and Type 2 strategies. Asynchronous algorittems a
those that tolerate some error in the cost function in order to get bettehgpee
and correspond to a subset of the Type 2 category. No Type 3 algoritans
considered in this work.

Canti-Paz (1995) provides a classification of parallel genetic algorithms.
The first category, calledlobal parallelization is identical to the Type 1 par-
allelization. Two other categories classify genetic algorithms according to the
size of the populations that evolve in parallel, the so-caltmarse-grainedcand
fine-grainedparallelization strategies. There is also a clas$hifdirid genetic
algorithm parallelizations. For example, global parallelization applied to sub-
populations of a coarse-grained parallel algorithm is one instance gftaith
algorithm. The union of these three groups forms the Type 3 categomjloestc
in this paper. No Type 2 strategies are considered inlGRat’s taxonomy.

Verhoeven and Aarts (1995) define local search as the class ahamar
tion methods based on the exploration of neighbourhoods of solutiongjiinglu
tabu search, simulated annealing, and genetic algorithms. Their taxonomy di-
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vides parallel methods betwesimgle-walkandmultiple-walkstrategies. The
former corresponds to Type 1 and Type 2 parallelism. The latter inclndés
tiple independent wallkandmultiple interacting walksind thus corresponds to
the Type 3 parallelism of this paper. Single-walk methods are further ckssifi
assingle-stepr multiple-stepstrategies. The former corresponds to the simple
parallel neighbourhood evaluation of Type 1. The latter includes praduialg
Type 2 strategies. The taxonomy explicitly distinguishes between synaksono
and asynchronous approaches. Cengl. (2002) present a classification of
parallel meta-heuristic strategies based on that of Verhoeven and 2A995)(
Currently, the most comprehensive taxonomy of parallel tabu search meth-
ods is offered by Crainic, Toulouse, and Gendreau (1997) andi€(ai002).
The classification has three dimensions. The first dimenstmtrol cardinal-
ity, explicitly examines how the global search is controlled, by a single process
(as in master-slave implementations) or collegially by several processes. Th
four classes of the second dimension indicategbarch differentiation do
search threads start from the same or different solutions and do theyusak
of the same or different search strategies? Finally,cbrtrol typedimen-
sion addresses the issue of information exchange and divides methofdsinto
classesrigid synchronizatior(e.g., simple neighbourhood evaluation in Type
1 strategiesknowledge synchronizatide.g., probing in Type 1 strategies and
synchronous information exchanges in Type 3 methods), and, finallggial
andknowledge collegial The last two categories correspond to Type 3 strate-
gies but attempt to differentiate methods according to the quantity and quality
of information exchanged, created, and shared. Although introdwcdeliu
search, this classification applies to many other meta-heuristics and may form
the basis for a comprehensive taxonomy of meta-heuristics. It refinparin
ticular, the classification used in this paper, which is based on the impact of
parallelization on the search trajectory.

4. GENETIC ALGORITHMS

At each iterationk, genetic algorithms compute the average fitngss=
Z;jf[ g(x¥)/N of the N strings in the current population (Step 3 in Figure
1.4). The time-consuming part of this operation is performing the summation
Zflv g(x¥). Obviously, this computation can be distributed over several pro-
cessors and, since there are no dependencies among operationsgitod a
candidate for efficient data, Type 1 parallelization. This summation hasdndee
been the first component of genetic algorithms to be parallelized (Grefienste
1981).

Intuitively, one expects almost linear speedups from this parallelization of
the average fitness evaluation. Surprisingly, however, most experineguois
significant sub-linear speedups due to the latencies of low-speed conatiomic
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networks (Fogarty and Huang 1990; Hauser ariethiker 1994; Chen, Nakao,
and Fang 1996; Abramson and Abela 1992; Abramson, Mills, and Perkins
1993). The implementations of the selection and crossover operatorsare a
based on simple iterative loops, but each involves relatively few compusation
Therefore, considering the impact of the communication overhead on a time-
consuming operation like the fitness evaluation, Type 1 parallelization of the
genetic operators has received little attention.

Genetic algorithms are acknowledged to be inherently parallel. This inher-
ent parallelism is limited to Type 1, however. We are not aware of any Type 2
parallelization strategy for genetic algorithms and, although many known par-
allel genetic algorithms are of Type 3, most of them are not strictly derived
from the standard genetic paradigm. Standard genetic methods are based on
single panmictic population, and computation is usually initiated on a new gen-
eration only after the old one has died out, thus preventing the occuroénce
parallelism across generations. Parallel genetic models, on the othefihdnd
more opportunities for parallelism such as, concurrent computationssadife
ferent generations or among different subpopulations. The literatyvarallel
genetic methods often identifies two categories of Type 3 approacbasse-
grainedandfine-grained However, some Type 3 parallel genetic algorithms do
not display such clear cut characterization (e.g., Moscato and Norng).19

Coarse-grained parallelizations usually refer to methods where the same se
quential genetic algorithm is run gnsubpopulations (each of siz®), al-
though some researchers (e.g., Schlierkamp-Voosen difdelbein 1994;
Herdy 1992) have pondered the possibility of using different stratdgies
each subpopulation. In such models, each subpopulation is relativelyismall
comparison with the initial population. This has an adverse impact on the di-
versity of the genetic material, leading to premature convergence of thegene
process associated to each subpopulation. To favor a more divegsfietic
material in each subpopulation, a new genetic operatomtgeationoperator,
is provided.

The migration operator defines strategies to exchange individuals among
subpopulations. This operator has several parameters: the seled@mspr
that determines which individuals will migrate (e.g., best-fit, randomly, ran-
domly among better than average individuals), the migration rate that specifies
the number of strings migrated, the migration interval that determines when mi-
gration may take place (usually defined in terms of a number of generations),
and the immigration policy that indicates how individuals are replaced in the
receiving subpopulation. Information exchanges are further detedrbyéhe
neighbourhood structure. In tidandmodel, individuals may migrate towards
any other subpopulation, while in tls¢epping-stonenodel only direct neigh-
bours are reachable. Often the connection structure of the parallelutemp
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determines how subpopulations are logically linked. Finally, migration may be
performed either synchronously or asynchronously.

Since a genetic algorithm is associated with each subpopulation, coarse-
grained parallel strategies can exploit parallelism across generationgjgd
each generation is related to a different subpopulation. And, it is alpess-
ble to combine Type 1 and Type 3 parallelism by computing the average fithess
within each subpopulation using the Type 1 strategy as described abdvi M
computers are well adapted to coarse-grained parallel genetic methita- M
tion rate and frequency are such that, in general, the quantity of datareyeth
is small and can be handled efficiently even by low-speed interconne@ion n
works. Furthermore, since the workload of each processor is signtifiaam-
ning a sequential genetic algorithm), latencies due to communications (if any)
can be hidden by computations in asynchronous implementations. Therefore
linear speedups could be expected. Yet, few reports detail the seetiup
coarse-grained parallel genetic algorithms. To some extent, this is explained
by the fact that speedups do not tell the whole story regarding therperfice
of coarse-grained parallelizations, since one also needs to considesse
ciated convergence behavior. Therefore, to this day, most effatsding
coarse-grained parallelizations have been focused on studying thmiles-
tion parameter settings. Most studies conclude that migration is better than no
migration, but that the degree of migration needs to be controlled.

Schnecke and Vornberger (1996) analyze the convergenceibehaficoarse-
grained parallel genetic algorithms using a Type 3 strategy where a differe
genetic algorithm is assigned to each subpopulation and search stratebhies,
than solutions, are migrated between subpopulations. At fixed intervatifthe
ferent genetic methods are ranked (usingrdsponse to selectiomethod of
Muhlenbein and Schlierkamp-Voosen 1994) and the search strategiad-are
justed according to the “best” one by importing some of the “best” one’s char
acteristics (mutation rate, crossover rate, etc). The paper contairereds to
several other works where self-adapting parallel genetic evoluticegies are
analyzed. Lis (1996), in particular, applies self-adaptation to the mutatien ra
The author implements a farming model where a master processor manages the
overall population and sends the same set of best individuals to slasespro
sors, each of which has a different mutation probability. Periodicallyraiang
to the mutation rate of the process that obtained the best results, the mutation
rates of all slave processors are shifted one level up or down andatioms
are recreated by the master processor using the best individuals dake s
processors. Starkweather, Whitley, and Mathias (1991; see also Wénittey
Starkweather 1990a,b) also suggest that an adaptive mutation rate might he
achieve better convergence for coarse-grained parallel genetiitiags.

A more conceptually focused approach toimprove the convergencarsiso
grained parallel genetic strategies may be derived from co-evolutigesstic
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algorithm ideas. Schlierkamp-Voosen anditienbein (1994), for example,
use competing subpopulations as a means to adapt the parameters controlling
the genetic algorithm associated with each subpopulation. Inthe gertéraj se

of co-evolutionary genetic methods, each subpopulation may have adiffer
optimization function that either competes with other subpopulations (as in a
prey-predator or host-parasite relationship, Hillis 1992) or may coavgerith

the other subpopulations by specializing on subproblems that are later @zmbin
to yield the full solution (Potter and De Jong 1994). In the competitive scheme
proposed by Hillis, a population of solutions competes with a population of
evolving problems (test cases). Fitness and selection pressureifalividuals

that make life difficult in the other population. For example, fit individuals in
the population of solutions are those that can solve many test cases, wh8e fit
cases are those that only few individuals in the solution population can solve
correctly. In the co-operative scheme, the selection pressure iadirgluals

that co-operate well to solve the global problem. The co-evolutionary gettin
provides the concept of complementary sub-problems as a way to improve
the convergence of coarse-grained parallel genetic algorithms. Toakjs d
however, this avenue has not been widely explored.

Fine-grained strategies for parallel genetic algorithms divide the population
into a large number of small subsets. Ideally, subsets are of cardinality one
each individual being assigned to a processor. Each subset isctedrie
several others in its neighbourhood. Together, a subset and its paigynp
subsets form a subpopulation @eme. Genetic operators are applied using
asynchronous exchanges between individuals in the same deme onlys Deme
may be defined according to a fixed topology (consisting of individuals re-
siding in particular processors), obtained by a random walk (applyingea g
Hamming distance among individuals), etc. Neighbourhoods overlap to allow
propagation of individuals or individual characteristics and mutationssacr
subpopulations. This overlapping plays a similar role to that of the migration
operator for coarse-grained parallel genetic algorithms. Fine-graaediel
genetic algorithms are sometimes identifieccalular algorithms because a
fine-grained method with fixed topology deme and relative fithess policy may
be shown to be equivalent to finite cellular automata with probabilistic rewrite
rules and an alphabet equal to the set of strings in the search spadeh{gkey
1993).

Fine-grained parallel genetic algorithms evolve a single population thatspaw
over several generations. This enables parallelism across gensraitgen-
eration gap” (signaled by different iteration counts) tends to emerge in the
population because the selection and crossover operators in one denu ar
synchronized with the other demes. In effect, it is still a single populatios, du
to the overlap among demes. Yet, the global dynamics of fine-grained paralle
genetic algorithms are quite different from those of general genetic method
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In a single panmictic population, individuals are selected based on a global
average fitness value and the selected individuals have the same probability
of interacting with each other through the crossover operator. In fiaieeg
parallel strategies, average fitness values (or whatever stand forahetogal

to demes. Consequently, individuals in the population do not have the same
probability to mate and the genetic information can only propagate by diffusion
through overlapping demes.

Diffusion is channeled by the overlapping structure of the demes, which is
often modeled on the interconnection network of the parallel computer.eCons
guently, network topology is an important issue for fine-grained paraltadiza
strategies, because the diameter of the network (the maximum shortest path
between two nodes) determines how long it takes for good solutions to prop-
agate over all of the demes. Long diameters isolate individuals, giving them
little chance of combining with other good individuals. Short diameters pre-
vent genotypes (solution vectors) from evolving, since good solutiapisl iy
dominate, which leads to premature convergence. Individual fitnesssvalue
are relative to their deme and thus individuals on processing units notlgirec
connected may have no chance to be involved together in the same crossove
operator. Schwehm (1992) implemented a fine-grained parallel genetic alg
rithm on a massively parallel computer to investigate which network topology
is best-suited to fine-grained parallel genetic algorithms. Compared with a ring
and three cubes of various dimensions, a torus yielded the best resalltga B
(1993) conducted studies regarding the capability of different topddgiere-
vent demes of fine-grained parallel genetic algorithms to be dominated by the
genotype of strong individuals. Three different topologies were stualie
numerical results suggest that 2D arrays are best suited to fine-gjpanalel
genetic algorithms. See also the recent work of Kohlmorgen, Schmeck, and
Haase (1999).

Fine-grained parallel genetic methods have been hybridized with hill-climbing
strategies. Nihlenbein, Gorges-Schleuter, andakrer (1987, 1988), among
others, have designed hybrid strategies for several optimization probladns
obtained good performance. Memetic algorithms (e.g., Moscato 1989, Mosca
and Norman 1992) belong to the same category. Hybrid schemes construct
selection and crossover operators in a similar manner to regular fineedrain
parallelizations but a hill-climbing heuristic is applied to each individual. When
the computational cost of the hill-climbing heuristic (or any other heuristic) is
substantial (in Memetic algorithms, for example), the population size has to
be small and the computing units powerful. Such hybrids appear to be closer
to coarse-grained parallelism, except that the selection and crosgaratars
are those usually associated with fine-grained parallelization mechanisms. In
teresting comments about fine-grained parallel genetic strategies, thigin des
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and application as well as the role of hill-climbing heuristics, can be found in
Muhlenbein (1991, 1992, 1992a).

Research on parallel genetic algorithms is still active and prolific. Unlike
other meta-heuristics, parallelizations of Type 1, that exploit the inhegent p
allelism of standard genetic methods, are still quite competitive in terms of
performance, degree of parallelism, adaptation to current parallel cempu
architectures, and ease of implementation. In terms of research dire@ions,
novation in algorithmic design, and capacity for hybridization with other $earc
methods, Type 3 parallelism is currently the most active area. Howewad, go
models to compare the performance of different Type 3 parallel stratiegies
genetic algorithms are still missing.

5. SIMULATED ANNEALING

A simulated annealing iteration consists of four main steps (Steps 4 to 6 in
Figure 1.5): select a move, evaluate the cost function, accept or thgct
move, update (replace) the current solution if the move is accepted. Two
main approaches are used to obtain Type 1 parallel simulated annealing algo-
rithms: single-trial parallelism where only one move is computed in parallel,
andmultiple-trial strategies where several moves are evaluated simultaneously.

The evaluation of the cost function for certain applications may be quite com-
putationally intensive, thus suggesting the possible exploitation of functional
parallelism. Single-trial strategies exploit functional parallelism by decompos
ing the evaluation of the cost function into smaller problems that are assigned to
different processors. Single-trial strategies do not alter the algorithesiga
nor the convergence properties of the sequential simulated annealingdmetho
The resulting degree of parallelismis very limited, however, and thus sirigle-
parallelization strategies do not speedup computation significantly.

Multiple-trial parallelizations distribute the iterations making up the search
among different processors. Each processor fully performs thesteps of
each iteration mentioned above. This distribution does not raise particular
issues relative to the first three steps since these tasks are essentiaknicielat
with respect to different potential moves. Solution replacement is, honave
fundamentally sequential operation. Consequently, the concurrenttex@of
several replacement steps may yield erroneous evaluations of theiigotsbh
because these evaluations could be based on outdated data.

Type 1 multiple-trial strategies for simulated annealing enforce the condi-
tion that parallel trials always result in @mror-free cost function evaluation.
This may be achieved when solution updating is restricted to a single accepted
move or to moves that do not interact with each other. The latter approach,
referred to as theerializable subsemethod, accepts only a subset of moves
that always produces the same result when applied to the current state of
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system, independent of the order of implementation (a trivial serializabsesub
contains only rejected moves). To implement the former approach, one pro-
cessor is designated to be the holder of the current solution. Onceespooc
accepts a move, it sends the new solution to the holder, which then brtmdcas
it to all processors. Any new move accepted during the update of the cur-
rent solution is rejected. Performance varies with the temperature parameter
At high temperatures, when many potential moves are accepted, communica-
tions, synchronization, and rejection of moves generate substantihleats.
At low temperatures, fewer moves are accepted and speedups impreye. Y
performance is not very satisfactory in most cases.

Most multiple-trial parallelization strategies for simulated annealing follow
a Type 2 approach and partition the variables into subsets. A master-slave
approach is generally used, as illustrated in Figure 1.7. To initiate the search
the master processor partitions the decision variablespimbitial sets. The
appropriate set is sent to each processor together with the initial values fo
the temperaturey and the number of iterations, to be executed. In Step 2,
each slave processbexecutes the simulated annealing search at temperature
T ON its set of variables\/ﬁ and sends its partial configuration of the entire
solution to the master processor. Once the information from all slaves bas be
received, the master processor merges the partial solutions into a complete
solution and verifies the stopping criterion. If the search continues, érgess
a new partition of the variables such thgf # A*~! and sends it to the slave
processors together with new values fgrandr.

1. Initialization (Master: Processor 0):
(a) xo; -/\/’(?7-/\/’017 s 7/\/(1)7_1; LO = LO/p: 70, k= 0:
(b) SendNVQ, N, ... , N, 7, Lo, k to the slave processors

2. Slave processar(concurrent processing):
(a) Perform search: Steps 4 to 6 of Figure 1.5Kgrterations

(b) Send partial configuratian to processor 0

3. Master processor 0O:
(a) Solution update: Combine partial solutions

(0) Ly, = Ly./p; s NO, N, ... L NP~ such that
N AN L 1=01,...,p—1;

(c) If stopping criterion not true, send?, A7}, ... , NP1,
Tk, and Ly, k to the slave processors

Figure 1.7 Type 2 Parallel Simulated Annealing
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Felten, Karlin, and Otto (1985) applied this strategy to a 644c#yelling
salesman problem (TSRking up to 64 processors of a hypercube computer.
An initial tour was randomly generated and partitioned intsubsets of ad-
jacent cities, which were assignedi@rocessors. Each processor performed
local swaps on adjacent cities for a given number of iterations, followeal b
synchronization phase where cities were rotated among processaadlelPa
moves did not interact due to the spatial decomposition of the decision vari-
ables. Moreover, each synchronization ensured the integrity of thalgitaite.
Hence, there was no error and almost linear speedups were ohserved

In most cases, however, error-free strategies cannot be efficiemphe-
mented. It is often difficult, for example, to partition variables such that par-
allel moves do not interact. Therefore, the two main issues in Type 2 parallel
simulated annealing are “how important is the error?” and “how can eorors
controlled?”.

Algorithms executed on shared-memory systems can regularly and quite ef-
ficiently update the global state of the current solution so that errors o no
accumulate during the computation. However, the issue is significantly more
difficult for distributed memory systems because each processor hasrits ow
copy of the data, including the “current” solution, and global updatesasty
in communication time. Trade-offs, therefore, must be made between the fre-
qguency of the global state updates and the level of error one is readgratéo
during the parallel simulated annealing computation, while acknowledging the
possibility that significant errors might accumulate locally. It has been ob-
served, however, that errors tend to decrease as temperatureasgedrecause
solution updates occur less frequently at low temperatures. Jayaraman an
Darema (1988) and Durand (1989) specifically address the issueocoftelr
erance for parallel simulated annealing. As expected, they concludthéhat
error increases as the frequency of synchronizations decreadéseanumber
of processors increases. In their studies, the combined error duadbrey
nization and parallelism had a significant impact on the convergence of the
simulated annealing algorithm. Of the two factors, parallelism emerged as the
most important.

One of the reasons for partitioning variables among processors is tenprev
the same variable from being simultaneously involved in more than one move.
This goal can also be achieved logkingthe variables involved in a move. A
locking mechanism permits only the processor that owns the lock to update a
given variable. Any other processor that attempts to execute a move iryalvin
locked variable must either wait for the variable to become available or attempt a
different move. However, the use of locks results in a communication eadrh
which increases with the number of processors (e.g., Darema, Kirkpatridk
Norton 1987).
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Rather than having several processors execute moves from the saerd cu
solution or subset of decision variables, processors could work émdigmtly
using different initial solutions and cooling schedules, or simply using thie-pr
abilistic nature of simulated annealing to obtain different search paths. This
is Type 3 parallelism. Numerous efforts to develop Type 3 parallel simulated
annealing strategies using independent or co-operative searchistaesare-
ported in the literature. An interesting recent development involves thesyste
atic inclusion of principles and operators from genetic algorithms in simulated
annealing multi-thread procedures. This hybrid approach tends toperérsy
well.

The first Type 3 parallelization strategy to emerge waddilission strategy
proposed by Aartgt al. (1986). LetL be the number of iterations executed
by a sequential simulated annealing program before reaching equilibtium a
temperature. The division strategy executégp iterations orp processors at
temperature. Here, a single initial solution and cooling strategy is used and it
is assumed that the search paths will not be the same due to the differtesit pro
bilistic choices made by each processor. Atihg-th iteration, processors can
either synchronize and choose one of the solutions as the initial corfayufier
the next temperature, or continue from their last configurations at tieeglirey
temperature level. When synchronization is used, the procedure moncs
to a synchronous co-operative scheme with global exchange of infiorma
(otherwise, it is equivalent to an independent search approacijrtUmately,
the length of the chain can not be reduced arbitrarily without significantly af
fecting the convergence properties of the method. This is particularly true a
low temperatures, where many steps are required to reach equilibrium- To ad
dress this problem, the authors clustered the processors at low temgeratur
and applied multi-trial parallelism of Type 1 within each cluster. Kliewer and
Tschbke (2000) have addressed practical issues such as the propr ¢éng
parallel chains and the best time to cluster processors.

An alternative to the division strategy is to run each processor with its own
cooling schedule in an independent search framework. The Multiplepérde
dent Runs (MIR, Lee 1995) and the Multiple Markov Chains (MMC, Leg an
Lee 1996) schemes are Type 3 parallelizations based on this approaem W
there are no interactions among processors, performance is negaffeelgd
by idle processors which are waiting for the longest search path to terminate
The MIR strategy addresses this problem by calculating estimates of the total
run length, and then using these estimates to end computation on all processing
units. The MMC scheme addresses the same issue by allowing processes to
interact synchronously and asynchronously at fixed or dynamic alterifhe
authors of this co-operating multi-thread strategy observe that communication
overheads from co-operation are largely compensated for by thetienlwf
processor idle time.
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A different Type 3 initiative to increase the degree of parallelism of simulated
annealing algorithms consists of moving the methodology closer to genetic al-
gorithms by considering a population of simulating annealing threads. Lraurse
(1994) proposed such a population scheme based on the selection aad migr
tion operators of parallel genetic algorithms. Each processor comtiyrrens
k simulated annealing procedures for a given number of iterations. Proces
sors are then paired and each processor migrates (copies) its solutits to
paired processor. Thus, after the migration phase, each procesgérihitial
solutions and this number is reduceditdy selection. These new solu-
tions become the initial configurations of theoncurrent simulated annealing
threads, and the search restarts on each processor. Pairing is dpamahdie-
pends on the topology of the parallel machine. For example, in a grid topology
processors can pair with any of their corner neighbours. Becaasegsors are
dynamically paired and neighbourhoods overlap, information propaigetes
network of processors similar to the stepping-stone coarse-grained foode
parallel genetic methods. Mahfoud and Goldberg (1995) also propesalto
uate concurrently a population afMarkov chains. The general idea proceeds
as follows: aftem /2 iterations, two parents are selected from the population of
then current solutions. Two children are generated using a genetic cerssov
operator, followed by a mutation operator. Probabilistic trial competitions are
held between children and parents and the replacement step is perfarmed a
cording to the outcome of the competition. The temperature is lowered when
the population reaches equilibrium. There are different ways to parallelize
this algorithm. The asynchronous parallelization described in Mahfoud and
Goldberg (1995) follows the Type 3 coarse-grained parallel geneticitig
approach. The population efMarkov chains is divided intp subpopulations
of n/p Markov chains. Crossover, mutation, and probability trials are applied
to individuals of each local subpopulation. Asynchronous migrationlesab
sharing of individuals among subpopulations.

The literature on parallel simulated annealing methods has continued to flour-
ish in recent years. Recent research focuses on applying paiaildated
annealing to new problems and developing software packages, rathesrtha
discovering new parallelization strategies. The relatively poor perfaceman
of Type 1 and Type 2 approaches have been noticed and, consiggtiene
have been few applications of these strategies. The most actively apatied p
allelization strategies are of Type 3: hybridation with hill-climbing (e.g.,dbu
al. 1999) or with genetic methods (e.g., Kurbel, Schneider, and Singh 1995);
co-operative multi-threads (e.g., Chu, Deng, and Reinitz 1999); andumass
parallelism (e.g., Mahfoud and Goldberg 1995, Bhandagkal. 1996). We
believe methods of Type 3 will continue to offer the best performancesiaiie!
simulated annealing.
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6. TABU SEARCH

Tabu search has proved a fertile ground for innovation and experitienta
in the area of parallel meta-heuristics. Most parallel strategies introdaced
Section 3. have been applied to tabu search for a variety of applicatiodis, a
a number of interesting parallelization concepts have been introduced while
developing parallel tabu search methods.

Similar to most other meta-heuristics, low-level, Type 1 parallelism has been
the first strategy to be applied to tabu search methods. The usual targst in th
case is the acceleration of the neighbourhood exploration (Step 4 o€Ridgi)r
Following the ideas summarized in Section 3., most Type 1 implementations
correspond to a master process that executes a sequential tabwpecaed
dispatches, at each iteration, the possible moves in the neighbourhoaal of th
current solution to be evaluated in parallel by slave processes. Slayestirex
evaluate only the moves in the set they receive from the master processy or
probe beyond each move in the set. The master receives and prottesses
information resulting from the slave operations and then selects and implements
the next move. The master also gathers all the information generated during
the tabu exploration, updates the memories, and decides whether to activate
different search strategies or stop the search.

The success of Type 1 strategies for tabu search appears more aignific
than for genetic or simulated annealing methods. Indeed, very interesirtgre
have been obtained when neighbourhoods are very large and the tiraéuatev
and perform a given move is relatively small, such aguadratic assignment
(QAP. Chakrapani and Skorin-Kapov 1992, 1993, 1995; Taillard (12923a),
travelling salesmafChakrapani and Skorin-Kapov 1993a) armdhicle routing
(VRP. Garcia, Potvin, and Rousseau 1994) applications. For the same quality
of solution, near-linear speedups are reported using a relatively sumaber
of processors. Moreover, historically (the first half of the 90’'sp a1 parallel
tabu search strategies permitted improvements to the best-known solutions to
several problem instances proposed in the literature.

Similarly to the other meta-heuristics, Type 1 tabu search implementations
depend heavily upon the problem characteristics. Thus, performasatisr
are less interesting when the time required by one serial iteration is relatively
important compared to the total solution time, resulting in executions with
only a few hundred moves compared to the tens of thousands required by a
typical VRP tabu search procedure. This was illustrated by the comparativ
study of several synchronous tabu search parallelization strategfesnped
by Crainic, Toulouse, and Gendreau (1995a) for the location-allogatadtem
with balancing requirements. With respectto Type 1 parallelization appesach
two variants were implemented: 1) slaves evaluate candidate moves only; 2)
probing slaves also perform a few local search iterations. The second vari-
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ant performed marginally better. However, both variants were outpeeidr
by co-operative multi-thread (Type 3) implementations, which attempt a more
thorough exploration of the solution space.

Typical tabu search implementations of Type 2 parallelization strategies par-
tition the vector of decision variables and perform a search on eacats(liss
approach was part of the preliminary experimentation in the study by Crainic,
Toulouse, and Gendreau (1995a). It performed poorly, mainly Isecaiithe
nature of the class of problems considered; multicommaodity location with bal-
ancing requirements requires a significant computation effort to evalodte a
implement moves, resulting in alimited number of moves that may be performed
during the search.

As with Type 1 implementations, Type 2 parallel methods were more suc-
cessful for problems for which numerous iterations may be performed in a
relatively short time and restarting the method with several different padition
does not require unreasonable computational efforts. TSP and Rl
tions belong to this class of applications. Fiechter (1994) proposed a method
for the TSP that includes an intensification phase during which eachgsroce
optimizes a specific slice of the tour. At the end of the intensification phase,
processes synchronize to recombine the tour and modify (shift pad tftinto
a predetermined neighbouring process) the partition. To diversifiy,macess
determines from among its subset of cities a candidate list of most promising
moves. The processes then synchronize to exchange these lists aidhiéd
the same final candidate list and apply the same moves. Fiechter repofts near
optimal solutions to large problems (500, 3000 and 10000 vertices) andtalmos
linear speedups (less so for the 10000 vertex problems). Porto andRibeir
(1995, 1996) studied the task scheduling problem for heterogengsiesrs
and proposed several synchronous parallel tabu search preseduere a mas-
ter process determines and modifies partitions, synchronizes slavesyrand
municates best solutions. Interesting results were reported, evendiagsds
involving a high level of communications. Almost linear speedups were ob-
served, better performances being observed for larger problemdesta

Taillard (1993) studied parallel tabu search methods for vehicle routotg pr
lems. In Taillard’s approach, the domain is decomposed into polar regions, to
which vehicles are allocated, and each subproblem is solved by an irdiaye
tabu search. All processors synchronize after a certain numberatfdtes (ac-
cording to the total number of iterations already performed) and the partition is
modified: tours, undelivered cities, and empty vehicles are exchangeddie
adjacent processors. Taillard reports very good results for théneptowever,
enjoying the benefit of hindsight, the main contribution of this paper is to mark
the evolution towards one of the most successful sequential meta-hefigstic
the VRP: a tabu search method calkdbptive memoryRochat and Taillard
1995; Glover 1996).
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According to an adaptive memory approach, cities are initially separated
into several subsets, and routes are built using a construction heulrdtiial
routes are then stored in a structure callecdaptive memoryThen, a com-
bination procedure builds a complete solution using the routes in the memory,
and the solution is further improved using a tabu search method. The routes of
“good” solutions are then deposited into the same memory, which thus adapts
to reflect the current state of knowledge of the search. The process¢h
starts with a new solution built from the routes stored in the adaptive memory.
The method stops when a pre-specified number of calls to the adaptive mem-
ory have been performed. This approach clearly implements the principles o
Type 2 decomposition using a serial procedure; See also the interestilg de
opments in vocabulary building strategies for tabu search proposed bgrGlo
(1996). Adaptive memory principles have now been successfully apigied
other problem classes and are opening interesting research av&ioesr(
1996). However, interestingly, most parallel applications of this appraae
now found in co-operative multi-thread strategies (Type 3).

Type 3 parallelizations for tabu search methods follow the same basic pattern
described in Section 3.p threads search through the same solution space,
starting from possibly different initial solutions and using possibly différe
tabu (or other) search strategies. Historically, independent and reyrals
co-operative multi-thread methods were proposed first. Howevererdlyy
asynchronous procedures are being increasingly developede@artly, one
observes an increased awareness of the issues related to the definétion a
modelling of co-operation.

Battiti and Tecchiolli (1992, for the QAP) and Taillard (the main study is
found in his 1994 paper on parallel tabu methods for job shop scheduling
problems) studied independent multi-thread parallelization schemes, where th
independent search processes start the exploration from diffeegratomly
generated, initial configurations. Both studies empirically established the ef-
ficiency of independent multi-thread procedures when compared to #te be
heuristics proposed at the time for their respective problems. Both stusiies a
attempted to establish some theoretical justifications for the efficiency of inde-
pendent search. Battiti and Tecchiolli derived probability formulas theted
to show that the probability of “success” increases, while the correlipgn
average time to “success” decreases, with the number of processmrisigal
the tabu procedure does not cycle). On the other hand, Taillard shbattie
conditions required for the parallel method to be “better” than the sequential
one are rather strong, where “better” was defined as “the probabilipattadiel
algorithm achieves success with respect to some condition (in terms of optimal-
ity or near-optimality) by time is higher than the corresponding probability of
the sequential algorithm by time”. However, the author also mentions that,
in many cases, the empirical probability function of iterative algorithms is not
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very different from an exponential one, implying that independent muitictth
parallelization is an efficient strategy. The results for the job shop problem
seemed to justify this claim. Similar results may also be found in Eikedtler
al. (1999).

Malek et al. (1989, for the TSP), De Falaet al. (1994, for the QAP), and
De Falco, Del Balio, and Tarantino (1995, for the mapping problem) megho
co-operative parallel strategies where the individual search theeadsather
tightly synchronized. The implementation proposed by Madelkl. (1989)
proceeds with one main process that controls the co-operation, andhidalir
processes that run serial tabu search algorithms with different tallitioos
and parameters. The child processes are stopped after a specified time inte
val, solutions are compared, bad areas of solution space are eliminated, an
the searches are restarted with a good solution and an empty tabu list. This
implementation was part of a comparative study of serial and parallel simulated
annealing and tabu search algorithms for the TSP. The authors repdnetpar-
allel tabu search implementation outperformed the serial one and consistently
produced comparable or better results than sequential or parallel simaated
nealing. De Falco and colleagues implemented a multi-thread strategy, where
each process performs a local search from its best solution. Thetegses
synchronize and best solutions are exchanged between procestseston
neighbouring processors. Local best solutions are replaced withtietpames
only if the latter are better. The authors indicate that better solutions were
obtained when co-operation was included compared to an independesd thr
strategy. Super-linear speedups are reported.

Rego and Roucairol (1996) proposed a tabu search method for the VRP
based on ejection chains and implemented an independent multi-thread parallel
version, each thread using a different set of parameter settings tiurgsfeom
the same solution. The method is implemented in a master-slave setting, where
each slave executes a complete sequential tabu search. The masterthather
solutions found by the threads, selects the overall best, and reinitializes the
threads for a new search. Low-level (Type 1) parallelism accelettzeanove
evaluations of the individual searches, as well as the post-optimizatiaepha
Experiments show the method to be competitive on the standard VRP problem
set (Christofides, Mingozzi, and Toth 1979).

Asynchronous co-operative multi-thread search methods are beipgged
in continuously increasing numbers. All such developments we have identi-
fied use some form afentral memoryor inter-thread communications. Each
individual search thread starts from a different initial solution and gelye
follows a different search strategy. Exchanges are performedlagymously
and are done through the central memory. O ne may classify co-operative
multi-thread search methods according to the type of information stored in the
central memory: complete or partial solutions. In the latter case, one often
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refers toadaptive memorgtrategies, whileentral memorypool of solutions
or solution warehouseethods are used for the former.

Very successful Type 3 co-operative multi-thread parallel tabu seaeth-
ods are based adaptive memorgoncepts. This strategy has been particularly
used for real-time routing and vehicle dispatching problems (Gendreall
1999), as well as for VRP with time window restrictions (Taillatcal. 1997;
Badeatetal. 1997). A generalimplementation framework of adaptive memory
strategies begins with each thread constructing an initial solution and improving
it through a tabu search or any other procedure. Each thread depesitsites
of its improved solution into the adaptive memory. Each thread then constructs
a new initial solution out of the routes in the adaptive memory, improves it,
communicates its routes to the adaptive memory, and repeats the process. A
“central” process manages the adaptive memory and oversees commumicatio
among the independent threads. It also stops the procedure basednomth
ber of calls to the adaptive memory, the number of successive calls whish sh
no improvement in the best solution, or a time limit. In an interesting devel-
opment, Gendreaet al. (1999) also exploited parallelism within each search
thread by decomposing the set of routes along the same principles plopose
in Taillard’s work (1993). Good results have been obtained by using fhis a
proach on a network of workstations, especially when the number oépsocs
is increased. Another interesting variant on the adaptive memory idea may be
found in the work of Schulze and Fahle (1999). Here, the pool of padla-
tions is distributed among processes to eliminate the need for a “master”. The
elements of the best solutions found by each thread are broadcastite that
each search has still access to all the information when building new solutions
Implemented on a limited number of processors, the method performed well (it
is doubtful, however, that it would perform equally well for a larger nendsf
processors).

As far as we can tell, Crainic, Toulouse, and Gendreau (1997) pedpos
the first central memory strategy for tabu search as part of their taxonomy
The authors also presented a thorough comparison of various paréleliza
strategies based on this taxonomy (Crainic, Toulouse, and Gendreba 499
1995h). The authors implemented several Type 1 and 2 strategies, epeimd
dent multi-thread approach, and a number of synchronous and asyocis
co-operative multi-thread methods. They used the multicommodity location
problem with balancing requirements for experimentation. The authorstrepo
that the parallel versions achieved better quality solutions than the seduentia
ones and that, in general, asynchronous methods outperformed @yochkr
strategies. The independent threads and the asynchronous etiapeap-
proaches offered the best performance.

Crainic and Gendreau (2001) proposed a co-operative multi-thread pa
lel tabu search for the fixed cost, capacitated, multicommodity network de-
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sign problem. In their study, the individual tabu search threads differed
their initial solution and parameter settings. Communications were performed
asynchronously through a central memory device. The authors codfpage
strategies of retrieving a solution from the pool when requested by andodi
thread. The strategy that always returns the overall best solution ykspihe

best performance when few (4) processors were used. When thieenwof
processors was increased, a probabilistic procedure, based anthefrthe
solution in the pool, appears to offer the best performance. The pagvedlel
cedure improves the quality of the solution and also requires less (wall)clock
computing time compared to the sequential version, particularly for large prob
lems with many commaodities (results for problems with up to 700 design arcs
and 400 commodities are reported). The experimental results also emphasize
the need for the individual threads to proceed unhindered for some time (e
until the first diversification move) before initiating exchanges of solutions
This ensures that local search histories can be established and daibahso

can be found to establish the central memory asli@ candidateset. By con-
trast, early and frequent communications yielded a totally random seaich tha
was ineffective. The authors finally report that the co-operative muibiaith
procedure also outperformed an independent search strategydbdhasame
search parameters and started from the same initial points. Other implementa-
tions of asynchronous co-operative multi-thread parallel tabu searttiodse

are presented by Andreatta and Ribeiro (1994; see alsodtiak 1996 and
Martins, Ribeiro, and Rodriguez, 1996) for the problem of partitioning-inte
grated circuits for logical testing as well as by Cavalcasttal. (2002) for
labor scheduling problems.

Crainic and Gendreau (1999) report the development of a hybridisear
strategy combining their co-operative multi-thread parallel tabu search thetho
with agenetic engine. The genetic algorithminitiates its population with the first
elements from the central memory of the parallel tabu search. Asynalsono
migration (migration rate = 1) subsequently transfers the best solution of the
genetic pool to the parallel tabu search central memory, as well as solutions
of the central memory towards the genetic population. The hybrid appears to
perform well, especially on larger problems where the best known sofuaien
improved. Itis noteworthy that the genetic algorithm alone was not perfgrmin
well and that it was the parallel tabu search procedure that identifieceite b
results once the genetic method contributed to the quality of the central memory.

Recently, Le Bouthiller and Crainic (2001) took this approach one stépeiur
and proposed a central memory parallel meta-heuristic for the VRP with time
windows where several tabu search and genetic algorithm threagiecate. In
this model, the central memory constitutes the population common to all genetic
threads. Each genetic algorithm has its own parent selection and ceossov
operators. The offspring are returned to the pool to be enhancedtdiyua
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search procedure. Thetabu searchthreads follow the same rulessasanktof
Crainic and Gendreau (2001). Only preliminary results are currentliagie,

but they are extremely encouraging. Without any particular calibration, the
parallel meta-heuristic obtains solutions whose quality is comparable to the
best meta-heuristics available, and demonstrates almost linear speedups.

To conclude, Type 1 (and in some cases Type 2) parallelization strategies ma
still prove of value, especially for the evaluation of large neighbourkpod
when used in hierarchical implementations to speedup computations of meta-
heuristics involved in co-operative explorations. As illustrated abovpe Ty
3, co-operative multi-thread strategies offer the most interesting péinsgsec
They do require, however, some care when they are designed arglawvill
be discussed in the next section.

1. PERSPECTIVES AND RESEARCH DIRECTIONS

We have presented the main meta-heuristic parallelization strategies and
their instantiation in the context of three major classes of methods: genetic
algorithms, simulated annealing, and tabu search. Beyond the peculiarities
specific to each methodology class and application domain, a number odbener
principles emerge:

= Meta-heuristics often have strong data dependencies. Therefaighstr
forward data or functional parallelization techniques can identify only
limited parallelism.

= Nevertheless, parallelization is very often beneficial. The evaluation of
neighbouring solutions is a prime example of meta-heuristic algorith-
mic components that permit significant computational gains. Moreover,
the concurrent exploration of the solution space by co-operating meta-
heuristics often yields gains in solution quality, computational efficiency,
and robustness of the search.

= Type 1 parallelization techniques are particularly useful for computation-
intensive tasks, such as the evaluation of potential moves in the neigh-
bourhood of a given solution. Moreover, such strategies may be &dvan
geously incorporated into hierarchical parallel schemes where therhighe
level either explores partitions of the solution domain (Type 2 parallelism)
or implements a co-operating multi-thread search (Type 3 parallelism).

= Hybridization, the incorporation of principles and strategies proper to
one class of meta-heuristics into the algorithmic design of another, may
improve performance of sequential and parallel meta-heuristics alike.

= When implemented properly, co-operating multi-thread parallel meta-
heuristics appear to be the most promising strategy.
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We have focussed on genetic methods, simulated annealing, and taltu searc
to reflect their wide-spread utilization in both sequential and parallel settings
Several other meta-heuristics have also been proposed in the literatliserae
have proven quite successful for certain problem types. They inclcalter
search(Glover 1994; Glover and Laguna 199@R asp (Feo and Resende 1995;
Festa and Resende 20023riable neighbourhood sear¢hlansen and Mlade-
novic 1997, 1999, 2002ant colony system&olorni, Dorigo, and Maniezzo
1991; Dorigo, Maniezzo, and Colorni 1996; Maniezzo and Carlw?@02), as
well as a host of ad-hoc methods based on neighbourhood explonatia,
in some surveys, are lumped together under the “local search” he&bkngral
of these methods also implement some sort of hybridization scheme where,
typically, the current incumbent solution is enhanced by a local improvement
procedure. In most cases, the basic working principle of the method may be
cast in the generic meta-heuristic framework illustrated in Figure 1.2. Thais, th
main principles and strategies described in this paper apply to the parallelization
of these meta-heuristics as well, as illustrated by the parallelization efforts that
have been reported for these methods (e.g., Kindervater, Lenstr&aants-
berg 1993; Pardalos, Pitsoulis, and Resende 1995; Sondergeld&rb99;
Verhoeven and Severens 1999). Of course, the most efficient afiptis of
these principles and strategies to each of these meta-heuristics have get to b
established, which constitutes a most interesting research subject.

Co-operation and multi-thread parallelization appear to offer the most inter-
esting perspectives for meta-heuristics. However, several issdehalenges
remain to be addressed.

Synchronous implementations, where information is exchanged at regular
intervals, have been reported for the three classes of meta-heuristrogex
in this paper. In general, these implementations outperform the serial methods
in solution quality. For tabu search (Crainic, Toulouse, and Gendre@bl) 19
and simulated annealing (Graffigne 1992), synchronous co-operagthods
appear to be outperformed, however, by independent searchdprese Yet,
the study by Lee and Lee (1992) contradicts this trend. Their results show
the independent thread approach to be outperformed by two strategigs- of
chronous co-operating parallel threads. Similar finds have beentedpor
genetic algorithms: Cohooet al. (1987) and Cohoon, Martin, and Richards
(1991a, 1991b) report that parallel search with migration operatqigedpat
regular intervals outperforms the same method without migration. These results
pointto interesting research issues that should be further investigapetially
since Lee and Lee used a dynamically adjusted synchronization interval tha
modified the traditional synchronous parallelism paradigm.

Asynchronous co-operative multi-thread search strategies appeaveo h
been less studied but are being increasingly proposed. In fact, thesgstia
probably the strongest current trend in parallel meta-heuristics, asaledtr
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by the development of memetic algorithms, of methods that evolve populations
of simulated annealing threads, of the adaptive and central memory ¢sncep
initiated within the tabu search community but displaying general applicability
characteristics. The results reported in the literature seem to indicateythat as
chronous co-operative multi-thread parallelization strategies offer besielts

than synchronous and independent searches. More theoreticahgidcal

work is still required in this field, however.

An important issue for parallel meta-heuristic development and success co
cerns the definition of co-operation schemes and their impact on search be
haviour and performance. A number of basic communication issues in eesign
ing multi-thread parallel meta-heuristics are discussed by Toulouse, Grainic
and Gendreau (1996). More thorough analysis (Toulouse, CramicSané
1999, 1997; Toulouset al. 1998; Toulouse, Crainic, and Thulasiraman 2000)
shows that co-operative parallel meta-heuristics form dynamic systedhs an
that the evolution of these systems may be more strongly determined by the
co-operation scheme than by the optimization process. The selection of the
information exchanged, and the part of it that is propagated past the @xtial
change, significantly impacts the performance of co-operating proegdiihe
determination for each search thread of both when to import externairiafor
tion and how to use it (e.g., restart from the imported solution and clean up
all history contrasted to the use of imported global information to bias local
selection mechanisms) are equally important ingredients in the design of co-
operating multi-thread parallel schemes. The application of these principles
forms the basis of a new co-operation scheme, callalli-level co-operative
search(Toulouse, Thulasiraman, and Glover 1999; see also Toulouse, Glover
and Thulasiraman 1998 and Ouyagial. 2000, 2000a), which has proven
very successful for graph partitioning problems.

The solutions exchanged by co-operating search threads form piopsla
that do not evolve according to genetic principles, but rather follow tha-inf
mation exchange mechanisms that define the co-operation. Of coursicgen
operators may be used to control this evolution, as seen in some co-eperati
simulated annealing schemes. Scatter search and ant colony systems offer
alternate co-operation mechanisms. In this respect, it is noteworthy that ant
systems and, more generally, swarm-based methods (Bonabeau, 2migo,
Theraulaz 1999) appear as one of the first nature-inspired cedapemech-
anisms. Yet, for now, despite the interest of its fundamental idea of trend
enforcement/dilution, the co-operation principle underlying these metheds ap
pears much too rigid to offer a general purpose method. Scatter search,
the other hand, offers context-related combination mechanisms and memories
for medium and long term steering of the evolution of the population. New
mechanisms need to be developed, however, to relate this information to the
search threads that make up the co-operating parallel algorithm. In fact, w
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believe that no single mechanism may adequately cover all possibilities and
hybrid mechanisms will have to be defined.

Parallel co-operating methods do not have to include strategies belonging
to only one meta-heuristic class. In fact, a number of recent studies (e.g.,
Le Bouthillier and Crainic 2001) tend to demonstrate that combining different
meta-heuristics yields superior results. At the parallel computing level, this
approach generalizes the trend towards hybrid development obsenveda-
heuristic communities. It also opens up an exciting field of enquiry. What
meta-heuristics to combine? What role can each type of meta-heuristic play?
What information is exchanged and how it is used in this context? These are
only a few of the questions that need to be answered.

Last but not least, recall an earlier remark that co-operating paraltdane
nisms bear little, if any, resemblance to the initial meta-heuristic one attempts
to parallelize. This remark is even more true when different meta-heuristics
combine their efforts. In fact, more and more authors argue that caiinpgr
multi-thread parallel methods should form a “new”, very broadly definkds
of meta-heuristics. If true, which we believe it is, we are left with the chal-
lenge of properly defining this meta-heuristic class. For example, memory
mechanisms appear appropriate to record statistics on both the attributes of the
solutions exchanged (or present in the solution population) and theperice
of individual searches. How can this information be used to globally dihect
search? What interactions are most appropriate between global ah{féoca
each thread) information (memories)? These are among the most interesting
challenges we face in this respect.

To conclude, parallel meta-heuristics offer the possibility to addres$gmsb
more efficiently, both in terms of computing efficiency and solution quality.
A rather limited number of strategies exist and this paper aims to both put
these strategies into perspective and to briefly describe them. The study of
parallel meta-heuristics design and performance still constitutes an exciting
and challenging research domain with much opportunity for experimentation
and development of important applications.
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