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Abstract

We present a state-of-the-art survey of parallel meta-heuristic developments
and results, discuss general design and implementation principles that apply
to most meta-heuristic classes, instantiate these principles for the three meta-
heuristic classes currently most extensively used - genetic methods, simulated
annealing, and tabu search, and identify a number of trends and promising
research directions.
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1. INTRODUCTION

Meta-heuristics are widely acknowledged as essential tools to address diffi-
cult problems in numerous and diverse fields, as this volume eloquently demon-
strates. In fact, meta-heuristics often offer the only practical approachto solving
complex problems of realistic scale.

Even using meta-heuristics, the limits of what may be solved in “reasonable”
computing times are still reached rapidly, however, at least much too rapidly for
the growing needs of research and industry alike. Heuristics do not, in general,
guaranty optimality. Moreover, the performance often depends on the particular
problem setting and data. Consequently, a major issue in meta-heuristic design
and calibration is not only how to build them for maximum performance, but
also how to make themrobust, in the sense of offering a consistently high level
of performance over a wide variety of problem settings and characteristics.

Parallel meta-heuristicsaim to address both issues. Of course, the first
goal is to solve larger problem instances in reasonable computing times. In
appropriate settings, such as co-operative multi-thread strategies, parallel meta-
heuristics also prove to be much more robust than sequential versions in dealing
with differences in problem types and characteristics. They also requireless
extensive, and expensive, parameter calibration efforts.

The objective of this paper is to paint a general picture of the parallel meta-
heuristic field. Specifically, the goals are to 1) present a state-of-the-art survey
of parallel meta-heuristic developments and results, 2) discuss general design
and implementation principles that apply to most meta-heuristic classes, 3)
instantiate these principles for the three meta-heuristic classes currently most
extensively used: genetic methods, simulated annealing, and tabu search,and
4) identify a number of trends and promising research directions.

The parallel meta-heuristic field is a very broad one, while the space avail-
able for this paper imposes hard choices and limits the presentation. In ad-
dition to the references provided in the following sections, a number of sur-
veys, taxonomies, and syntheses have been proposed and may prove of interest:
Greening (1990), Azencott (1992), M̈uhlenbein (1992), Shonkwiler (1993),
Voß (1993), Lin, Punch, and Goodman (1994), Pardaloset al. (1995), Ram,
Sreenivas, and Subramaniam (1995), Verhoeven and Aarts (1995), Laursen
(1996), Crainic, Toulouse, and Gendreau (1997), Glover and Laguna (1997),
Holmqvist, Migdalas, and Pardalos (1997), Cantù-Paz (1998), Crainic and
Toulouse (1998), Crainic (2002), Cunget al. (2002).

The paper is organized as follows. Section 2. introduces the notation, de-
scribes a generic meta-heuristic framework, and sets genetic, simulated anneal-
ing, and tabu search methods within this framework. Section 3. is dedicated
to a brief introduction to parallel computing and the presentation of three main
strategies used to build parallel meta-heuristics. Sections 4., 5., and 6. are
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dedicated to the survey and discussion of issues related to the parallelizationof
genetic approaches, simulated annealing, and tabu search, respectively. Section
7. briefly treats a number of other meta-heuristic approaches, draws a number
of general conclusions, and points to research directions and challenges.

2. HEURISTICS AND META-HEURISTICS

Sequential and parallel meta-heuristics are used in many disciplines - math-
ematics, operations research, artificial intelligence - and numerous applica-
tions: design, planning, and operation of complex systems and networks (e.g.,
production, transportation, telecommunication, etc.); management, allocation,
scheduling, and utilization of scarce resources; speech and image recognition
and enhancement; VLSI design; and so on. To simplify the presentation, and
with no loss of generality, in the following we adopt the notation and vocabulary
of combinatorial optimizationformulations.

Given a set of objects, the value associated to each, and the rules specifying
how objects may be joined together, the combinatorial optimization formula-
tion aims to select a subset of objects such that the sum of their contributions is
the highest/lowest among all possible combinations. Many problems of interest
may be cast as combinatorial optimization formulations, including design, lo-
cation, routing, and scheduling. In most cases, such formulations are extremely
difficult to solve for realistically-sized problem instances, the main issue be-
ing the number of feasible solutions - combinations of objects - that grows
exponentially with the number of objects in the initial set.

Combinatorial optimization problems are usually formulated as (mixed) in-
teger optimization programs. To define notation, assume that one desires to
minimize (or maximize) a functionf(x) subject tox ∈ X ⊆ R

n. The objec-
tive functionf(x) may be linear or not. The setX summarizes constraints on
thedecision variablesx and defines thefeasible domain. Decision variables are
generally non-negative and all or part of the elements ofx may be compelled
to take discrete values. One seeks a globallyoptimal solutionx∗ ∈ X such that
f(x∗) ≤ f(x) for all x ∈ X .

Once various methods have been applied to re-formulate the problem and
to bound the region where the optimal solution is to be found, most solution
methods are based on some form of exploration of the set of feasible solutions.
Explicit enumeration is normally out of the question and the search for the
optimal solution proceeds by implicit enumeration. Branch-and-bound (and
price, and cut, ...) methods are both typical of such approaches and one of the
methods of choice used in the search for optimal solutions to combinatorial
problems. Unfortunately, these methods fail for many instances, even when
parallel implementations are used. Thus, heuristics have been, and continue to
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be, an essential component of the methodology used to address combinatorial
optimization formulations.

A heuristic is any procedure that identifies a feasible solutionx̃ ∈ X . Of
course, one would likẽx to be identical tox∗ (if the latter is unique) orf(x̃)
to be equal tof(x∗). For most heuristics, however, one can only hope (and
for some, prove) thatf(x̃) is “close” to f(x∗). Heuristics have a long and
distinguished track record in combinatorial optimization. Often, heuristics are
the only practical alternative when dealing with problem instances of realistic
dimensions and characteristics.

Many heuristics areimproving iterative procedures thatmovefrom a given
solution to a solution in itsneighbourhoodthat is better in terms of the objective
function value (or some other measure based on the solution characteristics).
Thus, at each iteration, such alocal searchprocedure identifies and evaluates
solutions in the neighbourhood of the current solution, selects the best one rel-
ative to given criteria, and implements the transformations required to establish
the selected solution as the current one. The procedure iterates until no further
improvement is possible.

Formally, letN ⊆ X represent the set of neighbours of a given solutionx
that may be reached by a simple transformation (e.g., complement the value
of an integer-valued variable) or a given sequence of operations (e.g., λ-opt
modifications of routes in a vehicle routing problems). Letm(x) denote the
application that corresponds to these moves and that yields a solutiony ∈
N (s). Then, Figure 1.1 illustrates a simple steepest descent heuristic where the
objective function value is the only neighbour evaluation criterion.

1. Identify an initial solutionx0 ∈ X ; k = 0;

2. k = k + 1;

3. Findx̃ = argmin{f(x)|x ∈ N (xk)};

4. If f(x̃) ≥ f(xk) Stop.

5. Otherwise,xk+1 = m(x̃); Goto 2.

Figure 1.1 Simple Local Search/Steepest Descent Heuristic

A major drawback of classical heuristic schemes is their inability to con-
tinue past the first encountered local optimum. Moreover, such procedures are
unable to react and adapt to particular problem instances. Re-starting and ran-
domization strategies, as well as combinations of simple heuristics offer only
partial and largely unsatisfactory answers to these issues. The class ofmodern
heuristics known asmeta-heuristicsaims to address these challenges.
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Meta-heuristics have been defined as master strategies (heuristics) to guide
and modify other heuristics to produce solutions beyond those normally iden-
tified by local search heuristics (Glover 1986; see also Glover and Laguna
1993). Compared to exact search methods, such as branch-and-bound, meta-
heuristics cannot generally ensure a systematic exploration of the entire solution
space. Instead, they attempt to examine only parts thereof where, according
to certain criteria, one believes good solutions may be found. Well-designed
meta-heuristics avoid getting trapped in local optima or sequences of visited
solutions (cycling) and provide reasonable assurance that the search has not
overlooked promising regions.

Meta-heuristics for optimization problems may be described summarily as
a “walk through neighbourhoods”, a search trajectory through the solution do-
main of the problem at hand. Similar to classical heuristics, these are iterative
procedures thatmovefrom a given solution to another solution in itsneigh-
bourhood. Thus, at each iteration, one evaluates moves towards solutions in
the neighbourhood of the current solution, or in a suitably selected subset.
According to various criteria (objective value, feasibility, statistical measures,
etc.), a number of good moves are selected and implemented. Unlike classi-
cal heuristics, the solutions implemented by meta-heuristics are not necessarily
improving, however. Tabu search and simulated annealing methods usually im-
plement one move at each iteration, while genetic methods may generate several
new moves (individuals) at each iteration (generation). Moves may belongto
only one type (e.g., add an element to the solution) or to several quite different
categories (e.g., evaluate both add and drop moves). Moves may marginally
modify the solution or drastically inflect the search trajectory. The first case
is often referred to aslocal search. The diversification phase of tabu search
or the application of mutation operators in an evolutionary process are typical
examples of the second alternative. This last case may also be described as a
change in the “active” neighbourhood.

Each meta-heuristic has its own behaviour and characteristics. All, however,
share a number of fundamental components and perform operations thatfall
within a limited number of categories. To facilitate the comparison of paral-
lelization strategies for various meta-heuristic classes, it is convenient to define
these common elements:

1. Initialization. A method to create an initial solution or set of problem
configurations that may be feasible or not.

2. Neighbourhoods.To each solutionx corresponds a set of neighbour-
hoods and associated moves:{N1,N2, . . . ,Nq}, whereNi(x) = {y =
mi(x), y ∈ X}, i = 1, ..., q.

3. A neighbourhood selection criterionis defined when more than one
neighbourhood is included. This criterion must specify not only what
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neighbourhood to choose but also when to select it. Alternatives range
from “each iteration” (e.g., genetic methods) to “under given conditions”
(e.g., the diversification moves of tabu search).

4. Candidate selection.Neighbourhoods may be very large. Then, often,
only a subset of moves are examined at each iteration. The correspond-
ing candidate listC(x) ⊆ N (x) may be permanent and updated from
iteration to iteration (e.g., tabu search) or it may be constructed at each
new iteration (e.g., genetic methods). In all cases, a selection criterion
specifies how solutions are picked for inclusion in the candidate list.

5. Acceptance criterion. Moves are evaluated by applying a functiong(x, y)
based on one or several attributes of the two solutions: objective function
value, distance from certain constraints, penalties for violating some oth-
ers, etc. External factors, such as random terms or biases from aggregated
characteristics of past solutions may also be included in the evaluation.
The best solution with respect to this criterion

x̃ = argopt{g(x, y); y ∈ C(x)}

is selected and implemented (unless forbidden by cycling-prevention
mechanisms).

6. Stopping criteria. Meta-heuristics may be stopped on a variety of criteria:
computing time, number of iterations, rate of improvement, etc. More
than one criterion may be defined to control various phases of the search
(usually corresponding to various neighbourhoods).

With these definitions, we introduce a generic meta-heuristic procedure il-
lustrated in Figure 1.2 and use it to describe the three main classes of meta-
heuristics: genetic methods, simulated annealing, and tabu search. These
methodologies have been, and continue to be, most oftenly used and paral-
lelized. They are therefore treated in more detail in the following sections.
Other methods, such asscatter search, grasp, ant colony systems, andvari-
able neighbourhood searchhave also been proposed and we briefly discuss
related parallelization issues in Section 7..

Genetic algorithms belong to the larger class of evolutionary methods and
were inspired by the evolution processes of biological organisms. In biology,
when natural populations are studied over many generations, they appear to
evolveaccording to the principles ofnatural selectionandsurvival of the fittest
to produce “well adapted” individuals. Genetic algorithms mimic this process,
attempting toevolvesolutions to optimization problems (Holland 1975; Gold-
berg 1989; Whitley 1994; Fogel 1994; Michalewicz 1992; Michalewicz and
Fogel 2000). In recent years, the genetic algorithm paradigm was consider-
ably enriched, as it evolved to include hybridization with local improvement
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1. Initialization: x0

2. Neighbourhood selectionN ∈ {N1, . . . ,Nq}

3. Candidate selectionC(x) ⊆ N (x)

4. Move evaluation/neighbourhood explorationg(x, y), y ∈ C(x)

5. Move implementatioñx = argopt{g(x, y)}

6. Solution evaluation, update search parameters

7. Test stopping criteria: Stop or Goto 3 (continue local search phase)
or Goto 2 (initiate new search phase)

Figure 1.2 Generic Meta-heuristic

heuristics and other meta-heuristics. Although the specialized literature is fre-
quently replacing the term “genetic algorithms” with “evolutionary methods”,
we use the former in this paper to distinguish these methods from other strate-
gies where a population of solutions evolves through an iterative process(e.g.,
scatter search and most co-operative parallel methods described later inthis
paper).

Genetic methods work on a population of solutions that evolves by generating
new individuals out of combinations of existing individuals. At each iteration
a selectionoperator applied to the current population identifies the parents to
be used for the generation of new individuals. Thus, in a genetic context,the
candidate selection and move evaluation is based solely on the valueg(x), the
fitness, of the parents (this may be contrasted to the evaluations used in, for
example, simulated annealing, tabu search, and scatter search).Crossoverop-
erators are used to generate the new individuals.Mutation andhill climbing
(local search) operators modify the definition or characteristics of the new in-
dividuals to improve their fitness and the diversity of the population. In several
variants, especially so for parallel genetic methods, the implementation of the
move is completed by asurvivaloperation that determines which of the parents
and offspring advances to the next generation. Figure 1.3 displays the functions
of the classical genetic operators, while Figure 1.4 summarizes the main steps
of a generic genetic algorithm.

Simulated annealing methods are inspired by theannealingprocess of cool-
ing materials in a heat bath. Here, solid materials are first heated past melting
point. They are then gradually cooled back to a solid state, therate of cool-
ing directly influencing on the structural properties of the final product. The
materials may be represented as systems of particles and the whole process
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Figure 1.3 Genetic Evolutionary Algorithm Operators

1. Initialization: generation of the initial population.

2. Neighbourhood selection: selection of crossover and mutation
operators.

3. Candidate -parent- selection: application of a selection operator
to the current population

4. Move evaluation/neighbourhood exploration: none

5. Move implementation: application of crossover, mutation, hill
climbing, and offspring and parent selection operators to obtain
a new population

6. If stopping criteria not met, Goto 3 (continue the evolution) or
Goto 1.3 (modify the evolution criteria)

Figure 1.4 A Generic Genetic Algorithm

of heating and cooling may be simulated to evaluate various cooling rates and
their impact on the properties of the finished product. Thesimulated anneal-
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ing metaphor attempts to use similar statistical processes to guide the search
through feasible space (Metropoliset al. 1953; Kirkpatrick, Gelatt, and Vec-
chi 1983; Laarhoven and Aarts 1989; Aarts and Korst 1989, 2002;etc.). A
randomized scheme, thetemperaturecontrol, determines the probability of ac-
cepting non-improving solutions. This mechanism aims to allow escaping from
local optima. Thecooling scheduledetermines how this probability evolves:
many non-improving solutions are accepted initially (high temperature) but the
temperature is gradually reduced such that few (none) inferior solutionsare
accepted towards the end (low temperature). A generic simulated annealing
procedure is displayed in Figure 1.5.

1. Initialization: Select

Initial state (solution)x = x0;
Initial temperatureτ = τ0;
Temperature reduction functionα;

2. Neighbourhood and candidate selections: none (generally);
Replaced by

3. Selection of number of iterationsL to approximate equilibrium
at temperatureτ

4. Move evaluation/neighbourhood exploration:
Randomly selecty ∈ X .

5. Move implementation

∆f := f(y) − f(x);
if ∆f ≤ 0 then x := y;
else if g(x, y) = exp (−∆f/τ) > random(0, 1) then x := y;

6. Solution evaluation

7. Test stopping criteria

If less thanL iterations, Goto 4
If convergence not verified,τ = α(τ); Goto 3

Figure 1.5 Generic Simulated Annealing Procedure

One of the most appropriate tabu search metaphors is the capability of the
human brain to store, recall, and process information to guide and enhancethe
efficiency of repetitive processes.Memoryandmemory hierarchyare major
concepts in tabu search, as are the memory-based strategies used to guidethe
procedure into various search phases. Here, as elsewhere, a heuristic locally
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explores the domain by moving from one solution to the best available solution
in its neighbourhood. Inferior quality solutions are accepted as a strategyto
move away from local optima. Short-termtabu statusmemories record recent
visited solutions or their attributes to avoid repeating or inverting recent ac-
tions. The tabu status of a move may be lifted if testing it against anaspiration
criterion signals the discovery of a high quality solution (typically, the best one
encountered so far). Medium to long-term memory structures record various
informations and statistics relative to the solutions already encountered (e.g.,
frequency of certain attributes in the best solutions) to “learn” about the solution
space and guide the search.Intensificationof the search around a good solution
and itsdiversificationtowards regions of the solution space not yet explored
are two main ingredients in tabu search. These two types of moves are based
on medium and long-term memories and are implemented using specific neigh-
bourhoods. More details on the basic and advanced features of tabu search may
be found in Glover (1986, 1989, 1990, 1996), Glover and Laguna (1993, 1997),
Gendreau (2002). Figure 1.6 displays a generic tabu search procedure.

1. Initialization: x0

2. Neighbourhood selection: local search, intensification,
diversification, ...

3. Candidate selectionC(x) ⊆ N (x)

4. Move evaluation/neighbourhood exploration:
tabu criteria, aspiration criterion

5. Move implementation

6. Update of memories and tabu status

7. Test stopping criteria; If it fails Goto 3 (continue local search)
or Goto 2 (change search phase)

Figure 1.6 A Generic Tabu Search

This very brief summary of three major meta-heuristics emphasizes the sim-
ilarities of the main activities used by the various methodologies to explore
the solution space of given problems. This similarity translates into “similar”
requirements when strategies for parallelization are contemplated. For exam-
ple, all meta-heuristic procedures encompass a rather computationally heavy
stage where the neighbourhood (or the population) is explored. Fortunately, the
computational burden may be reduced by performing the exploration in parallel
and most implementations of the first parallelization strategy discussed in the
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following section address this issue. This observation explains our choiceof
discussing parallelization strategies not according to particular meta-heuristic
characteristics but rather following a few general principles.

3. PARALLEL COMPUTATION

The central goal of parallel computing is to speed up computation by dividing
the work load among several processors. From the view point of algorithm de-
sign, “pure” parallel computing strategies exploit the partial order of algorithms
(i.e., the sets of operations that may be executed concurrently in time without
modifying the solution method and the final solution obtained) and thus corre-
spond to the “natural” parallelism present in the algorithm. The partial order
of algorithms provides two main sources of parallelism:data and functional
parallelism.

To illustrate, consider the multiplication of two matrices. To perform this
operation, one must perform several identical operations executing sums of
products of numbers. It is possible to overlap the execution of these identical
operations on different input data. Among computer architectures with several
arithmetic and logic units (ALUs),Single Instruction stream, Multiple Data
stream(SIMD) computers are particularly suited to this type of parallelism as
they can load the same operation on all ALUs (single flow of instructions) and
execute it on different input data (multiple flows of data). The total number of
computer operations required to compute the matrix product is not reduced,but
given the concurrency of several operations, the total wall-clock computation
time is reduced proportionally to the average number of overlapping sets of
operations during the computation. This is data parallelism.

Computations may also be overlapped even when operations are different.It
is usually inefficient to exploit this parallelism at the fine-grain level of a single
instruction. Rather, the concurrent execution of different operationstypically
occurs at the coarse-grain level of procedures or functions. This isfunctional
parallelism. For example, one process can compute the first derivative vec-
tor of a function while another computes the second derivative matrix. The
two processes can overlap at least partially in time. When computations are
complex and dimensions are large, this partial overlap may yield interesting
speedups. Parallel computers that are well adapted to perform functional par-
allelism usually follow aMIMD (Multiple Instructions stream, Multiple Data
stream) architecture where both data and instructions flow concurrently in the
system. MIMD computers are often made up of somewhat loosely connected
processors, each containing an ALU and a memory module.

Parallel computation based on data or functional parallelism is particularly
efficient when algorithms manipulate data structures that are strongly regular,
such as matrices in matrix multiplications. Algorithms operating on irregular
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data structures, such as graphs, or on data with strong dependencies among the
different operations remain difficult to parallelize efficiently using only data
and functional parallelism. Meta-heuristics generally belong to this category
of algorithms that are difficult to parallelize. Yet, as we will see, parallelizing
meta-heuristics offers opportunities to find new ways to use parallel computers
and to design parallel algorithms.

3.1 PARALLELIZING META-HEURISTICS

From a computational point of view, meta-heuristics are just algorithms from
which we can extract functional or data parallelism. Unfortunately, data and
functional parallelism are in short supply for many meta-heuristics. For exam-
ple, the local search loop (Steps 3 to 7) of the generic tabu search in Figure
1.6 displays strong data dependencies between successive iterations, particu-
larly in the application of the tabu criterion and the update of memories and
tabu status. Similarly, the passage from one generation to another in standard
genetic methods is essentially a sequential process, while the replacement of
the current solution of the generic simulated annealing procedure (Step 5 in
Figure 1.5) cannot be done in parallel, forcing the sequential execution of the
inner loop (Steps 4 to 6). As in other types of algorithms, however, operations
inside one step may offer some functional or data parallelism. Moreover, the
exploration of the solution space based on random restarts can be functionally
parallelized since there are no dependencies between successive runs. The set
of visited solutions, as well as the outcome of the search made up of random
restarts are identical to those obtained by the sequential procedure provided the
set of initial solutions is the same for both the sequential and parallel runs.

Meta-heuristics as algorithms may have limited data or functional paral-
lelism but, as problem solving methods, they offer other opportunities for par-
allel computing. To illustrate, consider the well-known Branch-and-Bound
technique. The branching heuristic is one of the main factors affecting the way
Branch-and-Bound algorithms explore the search tree. Two Branch-and-Bound
algorithms, each using a different branching heuristic, will most likely perform
different explorations of the search tree of one problem instance. Yet,both will
find the optimum solution. Thus, the utilization of different Branch-and-Bound
search patterns does not prevent the technique from finding the optimal solution.
This critical observation may be used to construct parallel Branch-and-bound
methods. For example, the parallel exploration of the search tree based on
distributing sub-trees will modify the data available to the branching heuris-
tic and thus, for the same problem instance, the parallel and sequential search
patterns will differ. Yet, the different search strategies will all find the optimal
solution. Consequently, the exploration of sub-trees may be used as a source
of parallelism for Branch-and-Bound algorithms. This source of parallelism is
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not related to data parallelism, since the data (the variables of the optimization
problem) is not partitioned. It is not functional parallelism either, becausethe
two computations, sequential and parallel, are different. Although this differ-
ence makes comparative performance analyzes more difficult to perform(since
the parallel implementation does not do the same work as the sequential one),
sub-tree distribution remains a valuable and widely used parallelization strategy
for Branch-and-Bound algorithms.

Similar observations can be made relative to new sources of parallelism
in meta-heuristics. A meta-heuristic algorithm started from different initial
solutions will almost certainly explore different regions of the solution space and
return different solutions. The different regions of the solution spaceexplored
can then become a source of parallelism for meta-heuristic methods. However,
the analysis of parallel implementation of meta-heuristic methods becomes
more complex because often the parallel implementation does not return the
same solution as the sequential implementation. Evaluation criteria based on
the notion ofsolution quality(i.e., does the method find a better solution?) have
then to be used to qualify the more classical acceleration (speedup) measures.

We have classified the parallelization strategies applied to meta-heuristics
according to the source of parallelism used:

Type 1: This source of parallelism is usually found within an iteration of the
heuristic method. The limited functional or data parallelism of a move
evaluation is exploited or moves are evaluated in parallel. This strat-
egy, also calledlow-levelparallelism, is rather straightforward and aims
solely to speed up computations, without any attempt at achieving a bet-
ter exploration (except when the same total wall-clock time required by
the sequential method is allowed to the parallel process) or higher quality
solutions.

Type 2: This approach obtains parallelism by partitioning the set of decision
variables. The partitioning reduces the size of the solution space, but it
needs to be repeated to allow the exploration of the complete solution
space. Obviously, the set of visited solutions using this parallel imple-
mentation is different from that of the sequential implementation of the
same heuristic method.

Type 3: Parallelism is obtained from multiple concurrent explorations of the
solution space.

Type 1 parallelism. Type 1 parallelizations may be obtained by the concur-
rent execution of the operations or the concurrent evaluation of several moves
making up an iteration of a search method. Type 1 parallelization strategies aim
directly to reduce the execution time of a given solution method. When the same
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number of iterations are allowed for both sequential and parallel versionsof the
method and the same operations are performed at each iteration (e.g., the same
set of candidate moves is evaluated and the same selection criterion is used),the
parallel implementation follows the same exploration path through the prob-
lem domain as the sequential implementation and yields the same solution.
As a result, standard parallel performance measures apply straightforwardly.
To illustrate, consider the computation of the average fitness of a population
for genetic methods. Because the sequence used to compute the fitness of the
individuals is irrelevant to the final average fitness of the population, it can
be partitioned and the partial sums of each subpopulation can be computed in
parallel. Both the parallel and sequential computations yield the same average
fitness, the parallel implementation just runs faster.

Some implementations modify the sequential method to take advantage of the
extra computing power available, but without altering the basic search method.
For example, one may evaluate in parallel several moves in the neighbourhood of
the current solution instead of only one. In Figure 1.5, one can choose several
y variables in Step 4 and then perform Step 5 in parallel for each selected
y. In tabu search, one mayprobe for a few moves beyond each immediate
neighbour to increase the available knowledge when selecting the best move
(Step 4 of Figure 1.6). The resulting search patterns of the serial and parallel
implementations are different in most cases. Yet, under certain conditions, the
fundamental algorithmic design is not altered, therefore these approaches still
qualify as Type 1 parallelism.

Type 2 parallelism. In Type 2 strategies, parallelism comes from the decom-
position of the decision variables into disjoint subsets. The particular heuristic
is applied to each subset and the variables outside the subset are considered
fixed. Type 2 strategies are generally implemented in some sort of master-slave
framework:

A masterprocess partitions the decision variables. During the search,
the master may modify the partition. Modifications may be performed at
intervals that are either fixed before or determined during the execution,
or, quite often, are adjusted when restarting the method.

Slavesconcurrently and independently explore their assigned partitions.
Moves may proceed exclusively within the partition, the other variables
being considered fixed and unaffected by the moves which are performed,
or the slaves may have access to the entire set of variables.

When slaves have access to the entire neighbourhood, the master must
perform a more complex operation of combining the partial solutions
obtained from each subset to form a complete solution to the problem.
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Note that a decomposition based on partitioning the decision variables may
leave large portions of the solution space unexplored. Therefore, in most appli-
cations, the partitioning is repeated to create different segments of the decision
variable vector and the search is restarted.

Type 3 parallelism. The first two parallelization strategies yield a single
search path. Parallelization approaches that consist of several concurrent searches
in the solution space are classified as Type 3 strategies. Each concurrent thread
may or may not execute the same heuristic method. They may start from the
same or different initial solutions and may communicate during the search or
only at the end to identify the best overall solution. The latter are known as
independent searchmethods, while the former are often calledco-operative
multi-threadstrategies. Communications may be performed synchronously or
asynchronously and may be event-driven or executed at predetermined or dy-
namically decided moments. These strategies belong to thep-controlclass ac-
cording to the taxonomy proposed by Crainic, Toulouse, and Gendreau (1997),
and are identified asmultiple-walksby Verhoeven and Aarts (1995).

To speed up computation by using a multi-thread strategy, one generally tries
to make each thread perform a shorter search than the sequential procedure. This
technique is implemented differently for each class of meta-heuristic. Letp be
the number of processors. For tabu search, each thread performsT

p
iterations,

whereT is the number of iterations of the corresponding sequential procedure.
For simulated annealing, the total number of iterations of the inner loop (Steps 4
to 6 in Figure 1.5) is reduced proportionally fromL to L

p
. For genetic algorithms,

it is not the number of generations which is generally reduced. Rather, the size
N of the sequential population is reduced toN

p
for each genetic thread.

Type 3 parallelization strategies are often used to perform a more thorough
exploration of the solution space. Several studies have shown that multi-
thread procedures yield better solutions than the corresponding sequential meta-
heuristics, even when the exploration time permitted to each thread is signifi-
cantly lower than that of the sequential computation. Studies have also shown
that the combination of several threads that implement different parameter set-
tings increases the robustness of the global search relative to variationsin prob-
lem instance characteristics. We review some of these results in Sections 4. to
6..

It is noteworthy that the application of classical performance measures (e.g.,
Barr and Hickman 1993) to multi-thread, parallel meta-heuristics is somewhat
problematic. For example, it is generally difficult to eliminate or control the
overlap between the search paths (to adequately control the search overlap
would involve such high levels of search synchronization and information ex-
changes that all benefits of parallelization would be lost). Thus, one can-
not measure correctly the search efficiency in terms of the work performed.
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Moreover, many Type 3 parallelizations are based on asynchronous interactions
among threads. As asynchronous computations are time dependent, such com-
putations can produce different outputs for the same input. Classical speedup
measures are ill-defined to compare the performances of asynchronousparal-
lel meta-heuristics with sequential ones. In fact, several asynchronous Type 3
parallel meta-heuristics are so different from the original sequential procedure
that one can hardly consider the two implementations to belong to the same
meta-heuristic class.

3.2 OTHER TAXONOMIES

The classification described above is sufficiently general to apply to almost
any meta-heuristic and parallelization strategy. Moreover, the lessons learned
by comparing within the same class the implementations and performances of
particular meta-heuristics are of general value and may be extended to search
methods not covered in depth in this paper. Most taxonomies proposed in the
literature are, however, related to a specific type of meta-heuristic.

Greening (1990) divides simulated annealing parallelization strategies ac-
cording to the degree of accuracy in the evaluation of the cost function associ-
ated with a move. Parallel algorithms that provide an error-free evaluation are
identified assynchronouswhile the others areasynchronous. The synchronous
category is divided further between parallel simulated annealing algorithms that
maintain the convergence properties of the sequential method (serial-like) and
those that have an accurate cost evaluation but differ from the sequential com-
putation in the search path generation (altered generation). Type 1 parallelism
completely covers the serial-like category. The altered generation category
overlaps with the Type 1 and Type 2 strategies. Asynchronous algorithms are
those that tolerate some error in the cost function in order to get better speedups
and correspond to a subset of the Type 2 category. No Type 3 algorithmsare
considered in this work.

Cant̀u-Paz (1995) provides a classification of parallel genetic algorithms.
The first category, calledglobal parallelization is identical to the Type 1 par-
allelization. Two other categories classify genetic algorithms according to the
size of the populations that evolve in parallel, the so-calledcoarse-grainedand
fine-grainedparallelization strategies. There is also a class forhybrid genetic
algorithm parallelizations. For example, global parallelization applied to sub-
populations of a coarse-grained parallel algorithm is one instance of an hybrid
algorithm. The union of these three groups forms the Type 3 category described
in this paper. No Type 2 strategies are considered in Cantù-Paz’s taxonomy.

Verhoeven and Aarts (1995) define local search as the class of approxima-
tion methods based on the exploration of neighbourhoods of solutions, including
tabu search, simulated annealing, and genetic algorithms. Their taxonomy di-
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vides parallel methods betweensingle-walkandmultiple-walkstrategies. The
former corresponds to Type 1 and Type 2 parallelism. The latter includesmul-
tiple independent walksandmultiple interacting walksand thus corresponds to
the Type 3 parallelism of this paper. Single-walk methods are further classified
assingle-stepor multiple-stepstrategies. The former corresponds to the simple
parallel neighbourhood evaluation of Type 1. The latter includes probingand
Type 2 strategies. The taxonomy explicitly distinguishes between synchronous
and asynchronous approaches. Cunget al. (2002) present a classification of
parallel meta-heuristic strategies based on that of Verhoeven and Aarts (1995).

Currently, the most comprehensive taxonomy of parallel tabu search meth-
ods is offered by Crainic, Toulouse, and Gendreau (1997) and Crainic (2002).
The classification has three dimensions. The first dimension,control cardinal-
ity, explicitly examines how the global search is controlled, by a single process
(as in master-slave implementations) or collegially by several processes. The
four classes of the second dimension indicate thesearch differentiation: do
search threads start from the same or different solutions and do they make use
of the same or different search strategies? Finally, thecontrol typedimen-
sion addresses the issue of information exchange and divides methods intofour
classes:rigid synchronization(e.g., simple neighbourhood evaluation in Type
1 strategies),knowledge synchronization(e.g., probing in Type 1 strategies and
synchronous information exchanges in Type 3 methods), and, finally,collegial
andknowledge collegial. The last two categories correspond to Type 3 strate-
gies but attempt to differentiate methods according to the quantity and quality
of information exchanged, created, and shared. Although introduced for tabu
search, this classification applies to many other meta-heuristics and may form
the basis for a comprehensive taxonomy of meta-heuristics. It refines, inpar-
ticular, the classification used in this paper, which is based on the impact of
parallelization on the search trajectory.

4. GENETIC ALGORITHMS

At each iterationk, genetic algorithms compute the average fitnessḡk =∑i=N
i=1

g(xk
i )/N of the N strings in the current population (Step 3 in Figure

1.4). The time-consuming part of this operation is performing the summation∑i=N
i=1

g(xk
i ). Obviously, this computation can be distributed over several pro-

cessors and, since there are no dependencies among operations, it is agood
candidate for efficient data, Type 1 parallelization. This summation has indeed
been the first component of genetic algorithms to be parallelized (Grefenstette
1981).

Intuitively, one expects almost linear speedups from this parallelization of
the average fitness evaluation. Surprisingly, however, most experimentsreport
significant sub-linear speedups due to the latencies of low-speed communication
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networks (Fogarty and Huang 1990; Hauser and Männer 1994; Chen, Nakao,
and Fang 1996; Abramson and Abela 1992; Abramson, Mills, and Perkins
1993). The implementations of the selection and crossover operators are also
based on simple iterative loops, but each involves relatively few computations.
Therefore, considering the impact of the communication overhead on a time-
consuming operation like the fitness evaluation, Type 1 parallelization of the
genetic operators has received little attention.

Genetic algorithms are acknowledged to be inherently parallel. This inher-
ent parallelism is limited to Type 1, however. We are not aware of any Type 2
parallelization strategy for genetic algorithms and, although many known par-
allel genetic algorithms are of Type 3, most of them are not strictly derived
from the standard genetic paradigm. Standard genetic methods are based on
single panmictic population, and computation is usually initiated on a new gen-
eration only after the old one has died out, thus preventing the occurrenceof
parallelism across generations. Parallel genetic models, on the other hand, find
more opportunities for parallelism such as, concurrent computations across dif-
ferent generations or among different subpopulations. The literature on parallel
genetic methods often identifies two categories of Type 3 approaches:coarse-
grainedandfine-grained. However, some Type 3 parallel genetic algorithms do
not display such clear cut characterization (e.g., Moscato and Norman 1992).

Coarse-grained parallelizations usually refer to methods where the same se-
quential genetic algorithm is run onp subpopulations (each of sizeN

p
), al-

though some researchers (e.g., Schlierkamp-Voosen and Mühlenbein 1994;
Herdy 1992) have pondered the possibility of using different strategiesfor
each subpopulation. In such models, each subpopulation is relatively smallin
comparison with the initial population. This has an adverse impact on the di-
versity of the genetic material, leading to premature convergence of the genetic
process associated to each subpopulation. To favor a more diversifiedgenetic
material in each subpopulation, a new genetic operator, themigrationoperator,
is provided.

The migration operator defines strategies to exchange individuals among
subpopulations. This operator has several parameters: the selection process
that determines which individuals will migrate (e.g., best-fit, randomly, ran-
domly among better than average individuals), the migration rate that specifies
the number of strings migrated, the migration interval that determines when mi-
gration may take place (usually defined in terms of a number of generations),
and the immigration policy that indicates how individuals are replaced in the
receiving subpopulation. Information exchanges are further determined by the
neighbourhood structure. In theislandmodel, individuals may migrate towards
any other subpopulation, while in thestepping-stonemodel only direct neigh-
bours are reachable. Often the connection structure of the parallel computer
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determines how subpopulations are logically linked. Finally, migration may be
performed either synchronously or asynchronously.

Since a genetic algorithm is associated with each subpopulation, coarse-
grained parallel strategies can exploit parallelism across generations, provided
each generation is related to a different subpopulation. And, it is alwayspossi-
ble to combine Type 1 and Type 3 parallelism by computing the average fitness
within each subpopulation using the Type 1 strategy as described above. MIMD
computers are well adapted to coarse-grained parallel genetic methods. Migra-
tion rate and frequency are such that, in general, the quantity of data exchanged
is small and can be handled efficiently even by low-speed interconnection net-
works. Furthermore, since the workload of each processor is significant (run-
ning a sequential genetic algorithm), latencies due to communications (if any)
can be hidden by computations in asynchronous implementations. Therefore,
linear speedups could be expected. Yet, few reports detail the speedups of
coarse-grained parallel genetic algorithms. To some extent, this is explained
by the fact that speedups do not tell the whole story regarding the performance
of coarse-grained parallelizations, since one also needs to consider theasso-
ciated convergence behavior. Therefore, to this day, most efforts regarding
coarse-grained parallelizations have been focused on studying the best migra-
tion parameter settings. Most studies conclude that migration is better than no
migration, but that the degree of migration needs to be controlled.

Schnecke and Vornberger (1996) analyze the convergence behaviour of coarse-
grained parallel genetic algorithms using a Type 3 strategy where a different
genetic algorithm is assigned to each subpopulation and search strategies,rather
than solutions, are migrated between subpopulations. At fixed intervals, thedif-
ferent genetic methods are ranked (using theresponse to selectionmethod of
Mühlenbein and Schlierkamp-Voosen 1994) and the search strategies aread-
justed according to the “best” one by importing some of the “best” one’s char-
acteristics (mutation rate, crossover rate, etc). The paper contains references to
several other works where self-adapting parallel genetic evolution strategies are
analyzed. Lis (1996), in particular, applies self-adaptation to the mutation rate.
The author implements a farming model where a master processor manages the
overall population and sends the same set of best individuals to slave proces-
sors, each of which has a different mutation probability. Periodically, according
to the mutation rate of the process that obtained the best results, the mutation
rates of all slave processors are shifted one level up or down and populations
are recreated by the master processor using the best individuals of the slave
processors. Starkweather, Whitley, and Mathias (1991; see also Whitleyand
Starkweather 1990a,b) also suggest that an adaptive mutation rate might help
achieve better convergence for coarse-grained parallel genetic algorithms.

A more conceptually focused approach to improve the convergence of coarse-
grained parallel genetic strategies may be derived from co-evolutionarygenetic
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algorithm ideas. Schlierkamp-Voosen and Mühlenbein (1994), for example,
use competing subpopulations as a means to adapt the parameters controlling
the genetic algorithm associated with each subpopulation. In the general setting
of co-evolutionary genetic methods, each subpopulation may have a different
optimization function that either competes with other subpopulations (as in a
prey-predator or host-parasite relationship, Hillis 1992) or may co-operate with
the other subpopulations by specializing on subproblems that are later combined
to yield the full solution (Potter and De Jong 1994). In the competitive scheme
proposed by Hillis, a population of solutions competes with a population of
evolving problems (test cases). Fitness and selection pressure favorsindividuals
that make life difficult in the other population. For example, fit individuals in
the population of solutions are those that can solve many test cases, while fittest
cases are those that only few individuals in the solution population can solve
correctly. In the co-operative scheme, the selection pressure favorsindividuals
that co-operate well to solve the global problem. The co-evolutionary setting
provides the concept of complementary sub-problems as a way to improve
the convergence of coarse-grained parallel genetic algorithms. To this day,
however, this avenue has not been widely explored.

Fine-grained strategies for parallel genetic algorithms divide the population
into a large number of small subsets. Ideally, subsets are of cardinality one,
each individual being assigned to a processor. Each subset is connected to
several others in its neighbourhood. Together, a subset and its neighbouring
subsets form a subpopulation (ordeme). Genetic operators are applied using
asynchronous exchanges between individuals in the same deme only. Demes
may be defined according to a fixed topology (consisting of individuals re-
siding in particular processors), obtained by a random walk (applying a given
Hamming distance among individuals), etc. Neighbourhoods overlap to allow
propagation of individuals or individual characteristics and mutations across
subpopulations. This overlapping plays a similar role to that of the migration
operator for coarse-grained parallel genetic algorithms. Fine-grainedparallel
genetic algorithms are sometimes identified ascellular algorithms, because a
fine-grained method with fixed topology deme and relative fitness policy may
be shown to be equivalent to finite cellular automata with probabilistic rewrite
rules and an alphabet equal to the set of strings in the search space (see Whitley
1993).

Fine-grained parallel genetic algorithms evolve a single population that spawns
over several generations. This enables parallelism across generations. A “gen-
eration gap” (signaled by different iteration counts) tends to emerge in the
population because the selection and crossover operators in one deme are not
synchronized with the other demes. In effect, it is still a single population, due
to the overlap among demes. Yet, the global dynamics of fine-grained parallel
genetic algorithms are quite different from those of general genetic methods.
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In a single panmictic population, individuals are selected based on a global
average fitness value and the selected individuals have the same probability
of interacting with each other through the crossover operator. In fine-grained
parallel strategies, average fitness values (or whatever stand for them)are local
to demes. Consequently, individuals in the population do not have the same
probability to mate and the genetic information can only propagate by diffusion
through overlapping demes.

Diffusion is channeled by the overlapping structure of the demes, which is
often modeled on the interconnection network of the parallel computer. Conse-
quently, network topology is an important issue for fine-grained parallelization
strategies, because the diameter of the network (the maximum shortest path
between two nodes) determines how long it takes for good solutions to prop-
agate over all of the demes. Long diameters isolate individuals, giving them
little chance of combining with other good individuals. Short diameters pre-
vent genotypes (solution vectors) from evolving, since good solutions rapidly
dominate, which leads to premature convergence. Individual fitness values
are relative to their deme and thus individuals on processing units not directly
connected may have no chance to be involved together in the same crossover
operator. Schwehm (1992) implemented a fine-grained parallel genetic algo-
rithm on a massively parallel computer to investigate which network topology
is best-suited to fine-grained parallel genetic algorithms. Compared with a ring
and three cubes of various dimensions, a torus yielded the best results. Baluja
(1993) conducted studies regarding the capability of different topologies to pre-
vent demes of fine-grained parallel genetic algorithms to be dominated by the
genotype of strong individuals. Three different topologies were studied and
numerical results suggest that 2D arrays are best suited to fine-grained parallel
genetic algorithms. See also the recent work of Kohlmorgen, Schmeck, and
Haase (1999).

Fine-grained parallel genetic methods have been hybridized with hill-climbing
strategies. M̈uhlenbein, Gorges-Schleuter, and Krämer (1987, 1988), among
others, have designed hybrid strategies for several optimization problemsand
obtained good performance. Memetic algorithms (e.g., Moscato 1989, Moscato
and Norman 1992) belong to the same category. Hybrid schemes construct
selection and crossover operators in a similar manner to regular fine-grained
parallelizations but a hill-climbing heuristic is applied to each individual. When
the computational cost of the hill-climbing heuristic (or any other heuristic) is
substantial (in Memetic algorithms, for example), the population size has to
be small and the computing units powerful. Such hybrids appear to be closer
to coarse-grained parallelism, except that the selection and crossover operators
are those usually associated with fine-grained parallelization mechanisms. In-
teresting comments about fine-grained parallel genetic strategies, their design
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and application as well as the role of hill-climbing heuristics, can be found in
Mühlenbein (1991, 1992, 1992a).

Research on parallel genetic algorithms is still active and prolific. Unlike
other meta-heuristics, parallelizations of Type 1, that exploit the inherent par-
allelism of standard genetic methods, are still quite competitive in terms of
performance, degree of parallelism, adaptation to current parallel computer
architectures, and ease of implementation. In terms of research directions,in-
novation in algorithmic design, and capacity for hybridization with other search
methods, Type 3 parallelism is currently the most active area. However, good
models to compare the performance of different Type 3 parallel strategiesfor
genetic algorithms are still missing.

5. SIMULATED ANNEALING

A simulated annealing iteration consists of four main steps (Steps 4 to 6 in
Figure 1.5): select a move, evaluate the cost function, accept or rejectthe
move, update (replace) the current solution if the move is accepted. Two
main approaches are used to obtain Type 1 parallel simulated annealing algo-
rithms: single-trial parallelism where only one move is computed in parallel,
andmultiple-trial strategies where several moves are evaluated simultaneously.

The evaluation of the cost function for certain applications may be quite com-
putationally intensive, thus suggesting the possible exploitation of functional
parallelism. Single-trial strategies exploit functional parallelism by decompos-
ing the evaluation of the cost function into smaller problems that are assigned to
different processors. Single-trial strategies do not alter the algorithmic design
nor the convergence properties of the sequential simulated annealing method.
The resulting degree of parallelism is very limited, however, and thus single-trial
parallelization strategies do not speedup computation significantly.

Multiple-trial parallelizations distribute the iterations making up the search
among different processors. Each processor fully performs the four steps of
each iteration mentioned above. This distribution does not raise particular
issues relative to the first three steps since these tasks are essentially independent
with respect to different potential moves. Solution replacement is, however, a
fundamentally sequential operation. Consequently, the concurrent execution of
several replacement steps may yield erroneous evaluations of the cost function
because these evaluations could be based on outdated data.

Type 1 multiple-trial strategies for simulated annealing enforce the condi-
tion that parallel trials always result in anerror-freecost function evaluation.
This may be achieved when solution updating is restricted to a single accepted
move or to moves that do not interact with each other. The latter approach,
referred to as theserializable subsetmethod, accepts only a subset of moves
that always produces the same result when applied to the current state ofthe
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system, independent of the order of implementation (a trivial serializable subset
contains only rejected moves). To implement the former approach, one pro-
cessor is designated to be the holder of the current solution. Once a processor
accepts a move, it sends the new solution to the holder, which then broadcasts
it to all processors. Any new move accepted during the update of the cur-
rent solution is rejected. Performance varies with the temperature parameter.
At high temperatures, when many potential moves are accepted, communica-
tions, synchronization, and rejection of moves generate substantial overheads.
At low temperatures, fewer moves are accepted and speedups improve. Yet,
performance is not very satisfactory in most cases.

Most multiple-trial parallelization strategies for simulated annealing follow
a Type 2 approach and partition the variables into subsets. A master-slave
approach is generally used, as illustrated in Figure 1.7. To initiate the search,
the master processor partitions the decision variables intop initial sets. The
appropriate set is sent to each processor together with the initial values for
the temperatureτ0 and the number of iterationsL0 to be executed. In Step 2,
each slave processori executes the simulated annealing search at temperature
τk on its set of variablesN k

l and sends its partial configuration of the entire
solution to the master processor. Once the information from all slaves has been
received, the master processor merges the partial solutions into a complete
solution and verifies the stopping criterion. If the search continues, it generates
a new partition of the variables such thatN k

l 6= N k−1

l and sends it to the slave
processors together with new values forLk andτk.

1. Initialization (Master: Processor 0):
(a) x0; N 0

0 ,N 1
0 , . . . ,N p−1

0
; L0 = L0/p; τ0; k = 0;

(b) SendN 0
0 ,N 1

0 , . . . ,N p−1

0
, τ0, L0, k to the slave processors

2. Slave processori (concurrent processing):
(a) Perform search: Steps 4 to 6 of Figure 1.5 forLk iterations
(b) Send partial configurationxk

i to processor 0

3. Master processor 0:
(a) Solution update: Combine partial solutions
(b) Lk = Lk/p; τk; N 0

k ,N 1
k , . . . ,N p−1

k such that
N l

k 6= N l
k−1

, l = 0, 1, . . . , p − 1;

(c) If stopping criterion not true, sendN 0
k ,N 1

k , . . . ,N p−1

k ,
τk, andLk, k to the slave processors

Figure 1.7 Type 2 Parallel Simulated Annealing
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Felten, Karlin, and Otto (1985) applied this strategy to a 64-citytravelling
salesman problem (TSP)using up to 64 processors of a hypercube computer.
An initial tour was randomly generated and partitioned intop subsets of ad-
jacent cities, which were assigned top processors. Each processor performed
local swaps on adjacent cities for a given number of iterations, followed by a
synchronization phase where cities were rotated among processors. Parallel
moves did not interact due to the spatial decomposition of the decision vari-
ables. Moreover, each synchronization ensured the integrity of the global state.
Hence, there was no error and almost linear speedups were observed.

In most cases, however, error-free strategies cannot be efficientlyimple-
mented. It is often difficult, for example, to partition variables such that par-
allel moves do not interact. Therefore, the two main issues in Type 2 parallel
simulated annealing are “how important is the error?” and “how can errorsbe
controlled?”.

Algorithms executed on shared-memory systems can regularly and quite ef-
ficiently update the global state of the current solution so that errors do not
accumulate during the computation. However, the issue is significantly more
difficult for distributed memory systems because each processor has its own
copy of the data, including the “current” solution, and global updates arecostly
in communication time. Trade-offs, therefore, must be made between the fre-
quency of the global state updates and the level of error one is ready to tolerate
during the parallel simulated annealing computation, while acknowledging the
possibility that significant errors might accumulate locally. It has been ob-
served, however, that errors tend to decrease as temperatures decrease, because
solution updates occur less frequently at low temperatures. Jayaraman and
Darema (1988) and Durand (1989) specifically address the issue of error tol-
erance for parallel simulated annealing. As expected, they conclude thatthe
error increases as the frequency of synchronizations decreases and the number
of processors increases. In their studies, the combined error due to synchro-
nization and parallelism had a significant impact on the convergence of the
simulated annealing algorithm. Of the two factors, parallelism emerged as the
most important.

One of the reasons for partitioning variables among processors is to prevent
the same variable from being simultaneously involved in more than one move.
This goal can also be achieved bylocking the variables involved in a move. A
locking mechanism permits only the processor that owns the lock to update a
given variable. Any other processor that attempts to execute a move involving a
locked variable must either wait for the variable to become available or attempt a
different move. However, the use of locks results in a communication overhead
which increases with the number of processors (e.g., Darema, Kirkpatrick, and
Norton 1987).
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Rather than having several processors execute moves from the same current
solution or subset of decision variables, processors could work independently
using different initial solutions and cooling schedules, or simply using the prob-
abilistic nature of simulated annealing to obtain different search paths. This
is Type 3 parallelism. Numerous efforts to develop Type 3 parallel simulated
annealing strategies using independent or co-operative search threads are re-
ported in the literature. An interesting recent development involves the system-
atic inclusion of principles and operators from genetic algorithms in simulated
annealing multi-thread procedures. This hybrid approach tends to perform very
well.

The first Type 3 parallelization strategy to emerge was thedivision strategy
proposed by Aartset al. (1986). LetL be the number of iterations executed
by a sequential simulated annealing program before reaching equilibrium at
temperatureτ . The division strategy executesL/p iterations onp processors at
temperatureτ . Here, a single initial solution and cooling strategy is used and it
is assumed that the search paths will not be the same due to the different proba-
bilistic choices made by each processor. At theL/p-th iteration, processors can
either synchronize and choose one of the solutions as the initial configuration for
the next temperature, or continue from their last configurations at the preceding
temperature level. When synchronization is used, the procedure corresponds
to a synchronous co-operative scheme with global exchange of information
(otherwise, it is equivalent to an independent search approach). Unfortunately,
the length of the chain can not be reduced arbitrarily without significantly af-
fecting the convergence properties of the method. This is particularly true at
low temperatures, where many steps are required to reach equilibrium. To ad-
dress this problem, the authors clustered the processors at low temperatures
and applied multi-trial parallelism of Type 1 within each cluster. Kliewer and
Tscḧoke (2000) have addressed practical issues such as the proper length of
parallel chains and the best time to cluster processors.

An alternative to the division strategy is to run each processor with its own
cooling schedule in an independent search framework. The Multiple Indepen-
dent Runs (MIR, Lee 1995) and the Multiple Markov Chains (MMC, Lee and
Lee 1996) schemes are Type 3 parallelizations based on this approach. When
there are no interactions among processors, performance is negativelyaffected
by idle processors which are waiting for the longest search path to terminate.
The MIR strategy addresses this problem by calculating estimates of the total
run length, and then using these estimates to end computation on all processing
units. The MMC scheme addresses the same issue by allowing processes to
interact synchronously and asynchronously at fixed or dynamic intervals. The
authors of this co-operating multi-thread strategy observe that communication
overheads from co-operation are largely compensated for by the reduction of
processor idle time.
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A different Type 3 initiative to increase the degree of parallelism of simulated
annealing algorithms consists of moving the methodology closer to genetic al-
gorithms by considering a population of simulating annealing threads. Laursen
(1994) proposed such a population scheme based on the selection and migra-
tion operators of parallel genetic algorithms. Each processor concurrently runs
k simulated annealing procedures for a given number of iterations. Proces-
sors are then paired and each processor migrates (copies) its solutions toits
paired processor. Thus, after the migration phase, each processor has2k initial
solutions and this number is reduced tok by selection. These newk solu-
tions become the initial configurations of thek concurrent simulated annealing
threads, and the search restarts on each processor. Pairing is dynamicand de-
pends on the topology of the parallel machine. For example, in a grid topology,
processors can pair with any of their corner neighbours. Because processors are
dynamically paired and neighbourhoods overlap, information propagatesin the
network of processors similar to the stepping-stone coarse-grained model for
parallel genetic methods. Mahfoud and Goldberg (1995) also propose toeval-
uate concurrently a population ofn Markov chains. The general idea proceeds
as follows: aftern/2 iterations, two parents are selected from the population of
then current solutions. Two children are generated using a genetic crossover
operator, followed by a mutation operator. Probabilistic trial competitions are
held between children and parents and the replacement step is performed ac-
cording to the outcome of the competition. The temperature is lowered when
the population reaches equilibrium. There are different ways to parallelize
this algorithm. The asynchronous parallelization described in Mahfoud and
Goldberg (1995) follows the Type 3 coarse-grained parallel genetic algorithm
approach. The population ofn Markov chains is divided intop subpopulations
of n/p Markov chains. Crossover, mutation, and probability trials are applied
to individuals of each local subpopulation. Asynchronous migration enables
sharing of individuals among subpopulations.

The literature on parallel simulated annealing methods has continued to flour-
ish in recent years. Recent research focuses on applying parallel simulated
annealing to new problems and developing software packages, rather than on
discovering new parallelization strategies. The relatively poor performance
of Type 1 and Type 2 approaches have been noticed and, consequently, there
have been few applications of these strategies. The most actively applied par-
allelization strategies are of Type 3: hybridation with hill-climbing (e.g., Duet
al. 1999) or with genetic methods (e.g., Kurbel, Schneider, and Singh 1995);
co-operative multi-threads (e.g., Chu, Deng, and Reinitz 1999); and massive
parallelism (e.g., Mahfoud and Goldberg 1995, Bhandarkaret al. 1996). We
believe methods of Type 3 will continue to offer the best performance for parallel
simulated annealing.



Parallel Strategies for Meta-heuristics 27

6. TABU SEARCH

Tabu search has proved a fertile ground for innovation and experimentation
in the area of parallel meta-heuristics. Most parallel strategies introducedin
Section 3. have been applied to tabu search for a variety of applications, and
a number of interesting parallelization concepts have been introduced while
developing parallel tabu search methods.

Similar to most other meta-heuristics, low-level, Type 1 parallelism has been
the first strategy to be applied to tabu search methods. The usual target in this
case is the acceleration of the neighbourhood exploration (Step 4 of Figure 1.6).
Following the ideas summarized in Section 3., most Type 1 implementations
correspond to a master process that executes a sequential tabu procedure and
dispatches, at each iteration, the possible moves in the neighbourhood of the
current solution to be evaluated in parallel by slave processes. Slaves may either
evaluate only the moves in the set they receive from the master process, ormay
probe beyond each move in the set. The master receives and processesthe
information resulting from the slave operations and then selects and implements
the next move. The master also gathers all the information generated during
the tabu exploration, updates the memories, and decides whether to activate
different search strategies or stop the search.

The success of Type 1 strategies for tabu search appears more significant
than for genetic or simulated annealing methods. Indeed, very interesting results
have been obtained when neighbourhoods are very large and the time to evaluate
and perform a given move is relatively small, such as inquadratic assignment
(QAP: Chakrapani and Skorin-Kapov 1992, 1993, 1995; Taillard (1991,1993a),
travelling salesman(Chakrapani and Skorin-Kapov 1993a) andvehicle routing
(VRP: Garcia, Potvin, and Rousseau 1994) applications. For the same quality
of solution, near-linear speedups are reported using a relatively small number
of processors. Moreover, historically (the first half of the 90’s), Type 1 parallel
tabu search strategies permitted improvements to the best-known solutions to
several problem instances proposed in the literature.

Similarly to the other meta-heuristics, Type 1 tabu search implementations
depend heavily upon the problem characteristics. Thus, performance results
are less interesting when the time required by one serial iteration is relatively
important compared to the total solution time, resulting in executions with
only a few hundred moves compared to the tens of thousands required by a
typical VRP tabu search procedure. This was illustrated by the comparative
study of several synchronous tabu search parallelization strategies performed
by Crainic, Toulouse, and Gendreau (1995a) for the location-allocationproblem
with balancing requirements. With respect to Type 1 parallelization approaches,
two variants were implemented: 1) slaves evaluate candidate moves only; 2)
probing: slaves also perform a few local search iterations. The second vari-
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ant performed marginally better. However, both variants were outperformed
by co-operative multi-thread (Type 3) implementations, which attempt a more
thorough exploration of the solution space.

Typical tabu search implementations of Type 2 parallelization strategies par-
tition the vector of decision variables and perform a search on each subset. This
approach was part of the preliminary experimentation in the study by Crainic,
Toulouse, and Gendreau (1995a). It performed poorly, mainly because of the
nature of the class of problems considered; multicommodity location with bal-
ancing requirements requires a significant computation effort to evaluate and
implement moves, resulting in a limited number of moves that may be performed
during the search.

As with Type 1 implementations, Type 2 parallel methods were more suc-
cessful for problems for which numerous iterations may be performed in a
relatively short time and restarting the method with several different partitions
does not require unreasonable computational efforts. TSP and VRP formula-
tions belong to this class of applications. Fiechter (1994) proposed a method
for the TSP that includes an intensification phase during which each process
optimizes a specific slice of the tour. At the end of the intensification phase,
processes synchronize to recombine the tour and modify (shift part of the tour to
a predetermined neighbouring process) the partition. To diversify, each process
determines from among its subset of cities a candidate list of most promising
moves. The processes then synchronize to exchange these lists, so thatall build
the same final candidate list and apply the same moves. Fiechter reports near-
optimal solutions to large problems (500, 3000 and 10000 vertices) and almost
linear speedups (less so for the 10000 vertex problems). Porto and Ribeiro
(1995, 1996) studied the task scheduling problem for heterogeneous systems
and proposed several synchronous parallel tabu search procedures where a mas-
ter process determines and modifies partitions, synchronizes slaves, andcom-
municates best solutions. Interesting results were reported, even for strategies
involving a high level of communications. Almost linear speedups were ob-
served, better performances being observed for larger problem instances.

Taillard (1993) studied parallel tabu search methods for vehicle routing prob-
lems. In Taillard’s approach, the domain is decomposed into polar regions, to
which vehicles are allocated, and each subproblem is solved by an independent
tabu search. All processors synchronize after a certain number of iterations (ac-
cording to the total number of iterations already performed) and the partition is
modified: tours, undelivered cities, and empty vehicles are exchanged between
adjacent processors. Taillard reports very good results for the epoch. However,
enjoying the benefit of hindsight, the main contribution of this paper is to mark
the evolution towards one of the most successful sequential meta-heuristics for
the VRP: a tabu search method calledadaptive memory(Rochat and Taillard
1995; Glover 1996).
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According to an adaptive memory approach, cities are initially separated
into several subsets, and routes are built using a construction heuristic.Initial
routes are then stored in a structure called anadaptive memory. Then, a com-
bination procedure builds a complete solution using the routes in the memory,
and the solution is further improved using a tabu search method. The routes of
“good” solutions are then deposited into the same memory, which thus adapts
to reflect the current state of knowledge of the search. The process then re-
starts with a new solution built from the routes stored in the adaptive memory.
The method stops when a pre-specified number of calls to the adaptive mem-
ory have been performed. This approach clearly implements the principles of
Type 2 decomposition using a serial procedure; See also the interesting devel-
opments in vocabulary building strategies for tabu search proposed by Glover
(1996). Adaptive memory principles have now been successfully appliedto
other problem classes and are opening interesting research avenues (Glover,
1996). However, interestingly, most parallel applications of this approach are
now found in co-operative multi-thread strategies (Type 3).

Type 3 parallelizations for tabu search methods follow the same basic pattern
described in Section 3.:p threads search through the same solution space,
starting from possibly different initial solutions and using possibly different
tabu (or other) search strategies. Historically, independent and synchronous
co-operative multi-thread methods were proposed first. However, currently,
asynchronous procedures are being increasingly developed. Consequently, one
observes an increased awareness of the issues related to the definition and
modelling of co-operation.

Battiti and Tecchiolli (1992, for the QAP) and Taillard (the main study is
found in his 1994 paper on parallel tabu methods for job shop scheduling
problems) studied independent multi-thread parallelization schemes, where the
independent search processes start the exploration from different,randomly
generated, initial configurations. Both studies empirically established the ef-
ficiency of independent multi-thread procedures when compared to the best
heuristics proposed at the time for their respective problems. Both studies also
attempted to establish some theoretical justifications for the efficiency of inde-
pendent search. Battiti and Tecchiolli derived probability formulas that tended
to show that the probability of “success” increases, while the corresponding
average time to “success” decreases, with the number of processors (provided
the tabu procedure does not cycle). On the other hand, Taillard showedthat the
conditions required for the parallel method to be “better” than the sequential
one are rather strong, where “better” was defined as “the probability theparallel
algorithm achieves success with respect to some condition (in terms of optimal-
ity or near-optimality) by timet is higher than the corresponding probability of
the sequential algorithm by timept”. However, the author also mentions that,
in many cases, the empirical probability function of iterative algorithms is not
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very different from an exponential one, implying that independent multi-thread
parallelization is an efficient strategy. The results for the job shop problem
seemed to justify this claim. Similar results may also be found in Eikelderet
al. (1999).

Malek et al. (1989, for the TSP), De Falcoet al. (1994, for the QAP), and
De Falco, Del Balio, and Tarantino (1995, for the mapping problem) proposed
co-operative parallel strategies where the individual search threadsare rather
tightly synchronized. The implementation proposed by Maleket al. (1989)
proceeds with one main process that controls the co-operation, and fourchild
processes that run serial tabu search algorithms with different tabu conditions
and parameters. The child processes are stopped after a specified time inter-
val, solutions are compared, bad areas of solution space are eliminated, and
the searches are restarted with a good solution and an empty tabu list. This
implementation was part of a comparative study of serial and parallel simulated
annealing and tabu search algorithms for the TSP. The authors report that the par-
allel tabu search implementation outperformed the serial one and consistently
produced comparable or better results than sequential or parallel simulatedan-
nealing. De Falco and colleagues implemented a multi-thread strategy, where
each process performs a local search from its best solution. Then, processes
synchronize and best solutions are exchanged between processes that run on
neighbouring processors. Local best solutions are replaced with imported ones
only if the latter are better. The authors indicate that better solutions were
obtained when co-operation was included compared to an independent thread
strategy. Super-linear speedups are reported.

Rego and Roucairol (1996) proposed a tabu search method for the VRP
based on ejection chains and implemented an independent multi-thread parallel
version, each thread using a different set of parameter settings but starting from
the same solution. The method is implemented in a master-slave setting, where
each slave executes a complete sequential tabu search. The master gathers the
solutions found by the threads, selects the overall best, and reinitializes the
threads for a new search. Low-level (Type 1) parallelism acceleratesthe move
evaluations of the individual searches, as well as the post-optimization phase.
Experiments show the method to be competitive on the standard VRP problem
set (Christofides, Mingozzi, and Toth 1979).

Asynchronous co-operative multi-thread search methods are being proposed
in continuously increasing numbers. All such developments we have identi-
fied use some form ofcentral memoryfor inter-thread communications. Each
individual search thread starts from a different initial solution and generally
follows a different search strategy. Exchanges are performed asynchronously
and are done through the central memory. O ne may classify co-operative
multi-thread search methods according to the type of information stored in the
central memory: complete or partial solutions. In the latter case, one often
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refers toadaptive memorystrategies, whilecentral memory, pool of solutions,
or solution warehousemethods are used for the former.

Very successful Type 3 co-operative multi-thread parallel tabu search meth-
ods are based onadaptive memoryconcepts. This strategy has been particularly
used for real-time routing and vehicle dispatching problems (Gendreauet al.
1999), as well as for VRP with time window restrictions (Taillardet al. 1997;
Badeauet al. 1997). A general implementation framework of adaptive memory
strategies begins with each thread constructing an initial solution and improving
it through a tabu search or any other procedure. Each thread depositsthe routes
of its improved solution into the adaptive memory. Each thread then constructs
a new initial solution out of the routes in the adaptive memory, improves it,
communicates its routes to the adaptive memory, and repeats the process. A
“central” process manages the adaptive memory and oversees communication
among the independent threads. It also stops the procedure based on the num-
ber of calls to the adaptive memory, the number of successive calls which show
no improvement in the best solution, or a time limit. In an interesting devel-
opment, Gendreauet al. (1999) also exploited parallelism within each search
thread by decomposing the set of routes along the same principles proposed
in Taillard’s work (1993). Good results have been obtained by using this ap-
proach on a network of workstations, especially when the number of processors
is increased. Another interesting variant on the adaptive memory idea may be
found in the work of Schulze and Fahle (1999). Here, the pool of partial solu-
tions is distributed among processes to eliminate the need for a “master”. The
elements of the best solutions found by each thread are broadcast to ensure that
each search has still access to all the information when building new solutions.
Implemented on a limited number of processors, the method performed well (it
is doubtful, however, that it would perform equally well for a larger number of
processors).

As far as we can tell, Crainic, Toulouse, and Gendreau (1997) proposed
the first central memory strategy for tabu search as part of their taxonomy.
The authors also presented a thorough comparison of various parallelization
strategies based on this taxonomy (Crainic, Toulouse, and Gendreau 1995a and
1995b). The authors implemented several Type 1 and 2 strategies, one indepen-
dent multi-thread approach, and a number of synchronous and asynchronous
co-operative multi-thread methods. They used the multicommodity location
problem with balancing requirements for experimentation. The authors report
that the parallel versions achieved better quality solutions than the sequential
ones and that, in general, asynchronous methods outperformed synchronous
strategies. The independent threads and the asynchronous co-operative ap-
proaches offered the best performance.

Crainic and Gendreau (2001) proposed a co-operative multi-thread paral-
lel tabu search for the fixed cost, capacitated, multicommodity network de-
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sign problem. In their study, the individual tabu search threads differedin
their initial solution and parameter settings. Communications were performed
asynchronously through a central memory device. The authors compared five
strategies of retrieving a solution from the pool when requested by an individual
thread. The strategy that always returns the overall best solution displayed the
best performance when few (4) processors were used. When the number of
processors was increased, a probabilistic procedure, based on the rank of the
solution in the pool, appears to offer the best performance. The parallelpro-
cedure improves the quality of the solution and also requires less (wall clock)
computing time compared to the sequential version, particularly for large prob-
lems with many commodities (results for problems with up to 700 design arcs
and 400 commodities are reported). The experimental results also emphasize
the need for the individual threads to proceed unhindered for some time (e.g.,
until the first diversification move) before initiating exchanges of solutions.
This ensures that local search histories can be established and good solutions
can be found to establish the central memory as anelite candidateset. By con-
trast, early and frequent communications yielded a totally random search that
was ineffective. The authors finally report that the co-operative multi-thread
procedure also outperformed an independent search strategy that used the same
search parameters and started from the same initial points. Other implementa-
tions of asynchronous co-operative multi-thread parallel tabu search methods
are presented by Andreatta and Ribeiro (1994; see also Aiexet al. 1996 and
Martins, Ribeiro, and Rodriguez, 1996) for the problem of partitioning inte-
grated circuits for logical testing as well as by Cavalcanteet al. (2002) for
labor scheduling problems.

Crainic and Gendreau (1999) report the development of a hybrid search
strategy combining their co-operative multi-thread parallel tabu search method
with a genetic engine. The genetic algorithm initiates its population with the first
elements from the central memory of the parallel tabu search. Asynchronous
migration (migration rate = 1) subsequently transfers the best solution of the
genetic pool to the parallel tabu search central memory, as well as solutions
of the central memory towards the genetic population. The hybrid appears to
perform well, especially on larger problems where the best known solutions are
improved. It is noteworthy that the genetic algorithm alone was not performing
well and that it was the parallel tabu search procedure that identified the best
results once the genetic method contributed to the quality of the central memory.

Recently, Le Bouthiller and Crainic (2001) took this approach one step further
and proposed a central memory parallel meta-heuristic for the VRP with time
windows where several tabu search and genetic algorithm threads co-operate. In
this model, the central memory constitutes the population common to all genetic
threads. Each genetic algorithm has its own parent selection and crossover
operators. The offspring are returned to the pool to be enhanced by atabu
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search procedure. The tabu search threads follow the same rules as in the work of
Crainic and Gendreau (2001). Only preliminary results are currently available,
but they are extremely encouraging. Without any particular calibration, the
parallel meta-heuristic obtains solutions whose quality is comparable to the
best meta-heuristics available, and demonstrates almost linear speedups.

To conclude, Type 1 (and in some cases Type 2) parallelization strategies may
still prove of value, especially for the evaluation of large neighbourhoods, or
when used in hierarchical implementations to speedup computations of meta-
heuristics involved in co-operative explorations. As illustrated above, Type
3, co-operative multi-thread strategies offer the most interesting perspectives.
They do require, however, some care when they are designed and setup as will
be discussed in the next section.

7. PERSPECTIVES AND RESEARCH DIRECTIONS

We have presented the main meta-heuristic parallelization strategies and
their instantiation in the context of three major classes of methods: genetic
algorithms, simulated annealing, and tabu search. Beyond the peculiarities
specific to each methodology class and application domain, a number of general
principles emerge:

Meta-heuristics often have strong data dependencies. Therefore, straight-
forward data or functional parallelization techniques can identify only
limited parallelism.

Nevertheless, parallelization is very often beneficial. The evaluation of
neighbouring solutions is a prime example of meta-heuristic algorith-
mic components that permit significant computational gains. Moreover,
the concurrent exploration of the solution space by co-operating meta-
heuristics often yields gains in solution quality, computational efficiency,
and robustness of the search.

Type 1 parallelization techniques are particularly useful for computation-
intensive tasks, such as the evaluation of potential moves in the neigh-
bourhood of a given solution. Moreover, such strategies may be advanta-
geously incorporated into hierarchical parallel schemes where the higher
level either explores partitions of the solution domain (Type 2 parallelism)
or implements a co-operating multi-thread search (Type 3 parallelism).

Hybridization, the incorporation of principles and strategies proper to
one class of meta-heuristics into the algorithmic design of another, may
improve performance of sequential and parallel meta-heuristics alike.

When implemented properly, co-operating multi-thread parallel meta-
heuristics appear to be the most promising strategy.
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We have focussed on genetic methods, simulated annealing, and tabu search
to reflect their wide-spread utilization in both sequential and parallel settings.
Several other meta-heuristics have also been proposed in the literature, and some
have proven quite successful for certain problem types. They includescatter
search(Glover 1994; Glover and Laguna 1997),grasp (Feo and Resende 1995;
Festa and Resende 2002),variable neighbourhood search(Hansen and Mlade-
novic 1997, 1999, 2002),ant colony systems(Colorni, Dorigo, and Maniezzo
1991; Dorigo, Maniezzo, and Colorni 1996; Maniezzo and Carbonaro 2002), as
well as a host of ad-hoc methods based on neighbourhood exploration,which,
in some surveys, are lumped together under the “local search” heading.Several
of these methods also implement some sort of hybridization scheme where,
typically, the current incumbent solution is enhanced by a local improvement
procedure. In most cases, the basic working principle of the method may be
cast in the generic meta-heuristic framework illustrated in Figure 1.2. Thus, the
main principles and strategies described in this paper apply to the parallelization
of these meta-heuristics as well, as illustrated by the parallelization efforts that
have been reported for these methods (e.g., Kindervater, Lenstra, andSavels-
berg 1993; Pardalos, Pitsoulis, and Resende 1995; Sondergeld and Voß 1999;
Verhoeven and Severens 1999). Of course, the most efficient applications of
these principles and strategies to each of these meta-heuristics have yet to be
established, which constitutes a most interesting research subject.

Co-operation and multi-thread parallelization appear to offer the most inter-
esting perspectives for meta-heuristics. However, several issues and challenges
remain to be addressed.

Synchronous implementations, where information is exchanged at regular
intervals, have been reported for the three classes of meta-heuristics examined
in this paper. In general, these implementations outperform the serial methods
in solution quality. For tabu search (Crainic, Toulouse, and Gendreau 1995)
and simulated annealing (Graffigne 1992), synchronous co-operative methods
appear to be outperformed, however, by independent search procedures. Yet,
the study by Lee and Lee (1992) contradicts this trend. Their results show
the independent thread approach to be outperformed by two strategies ofsyn-
chronous co-operating parallel threads. Similar finds have been reported for
genetic algorithms: Cohoonet al. (1987) and Cohoon, Martin, and Richards
(1991a, 1991b) report that parallel search with migration operators applied at
regular intervals outperforms the same method without migration. These results
point to interesting research issues that should be further investigated, especially
since Lee and Lee used a dynamically adjusted synchronization interval that
modified the traditional synchronous parallelism paradigm.

Asynchronous co-operative multi-thread search strategies appear to have
been less studied but are being increasingly proposed. In fact, this strategy is
probably the strongest current trend in parallel meta-heuristics, as illustrated
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by the development of memetic algorithms, of methods that evolve populations
of simulated annealing threads, of the adaptive and central memory concepts
initiated within the tabu search community but displaying general applicability
characteristics. The results reported in the literature seem to indicate that asyn-
chronous co-operative multi-thread parallelization strategies offer betterresults
than synchronous and independent searches. More theoretical andempirical
work is still required in this field, however.

An important issue for parallel meta-heuristic development and success con-
cerns the definition of co-operation schemes and their impact on search be-
haviour and performance. A number of basic communication issues in design-
ing multi-thread parallel meta-heuristics are discussed by Toulouse, Crainic,
and Gendreau (1996). More thorough analysis (Toulouse, Crainic, and Sanśo
1999, 1997; Toulouseet al. 1998; Toulouse, Crainic, and Thulasiraman 2000)
shows that co-operative parallel meta-heuristics form dynamic systems and
that the evolution of these systems may be more strongly determined by the
co-operation scheme than by the optimization process. The selection of the
information exchanged, and the part of it that is propagated past the initialex-
change, significantly impacts the performance of co-operating procedures. The
determination for each search thread of both when to import external informa-
tion and how to use it (e.g., restart from the imported solution and clean up
all history contrasted to the use of imported global information to bias local
selection mechanisms) are equally important ingredients in the design of co-
operating multi-thread parallel schemes. The application of these principles
forms the basis of a new co-operation scheme, calledmulti-level co-operative
search(Toulouse, Thulasiraman, and Glover 1999; see also Toulouse, Glover,
and Thulasiraman 1998 and Ouyanget al. 2000, 2000a), which has proven
very successful for graph partitioning problems.

The solutions exchanged by co-operating search threads form populations
that do not evolve according to genetic principles, but rather follow the infor-
mation exchange mechanisms that define the co-operation. Of course, genetic
operators may be used to control this evolution, as seen in some co-operative
simulated annealing schemes. Scatter search and ant colony systems offer
alternate co-operation mechanisms. In this respect, it is noteworthy that ant
systems and, more generally, swarm-based methods (Bonabeau, Dorigo,and
Theraulaz 1999) appear as one of the first nature-inspired co-operation mech-
anisms. Yet, for now, despite the interest of its fundamental idea of trend
enforcement/dilution, the co-operation principle underlying these methods ap-
pears much too rigid to offer a general purpose method. Scatter search,on
the other hand, offers context-related combination mechanisms and memories
for medium and long term steering of the evolution of the population. New
mechanisms need to be developed, however, to relate this information to the
search threads that make up the co-operating parallel algorithm. In fact, we
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believe that no single mechanism may adequately cover all possibilities and
hybrid mechanisms will have to be defined.

Parallel co-operating methods do not have to include strategies belonging
to only one meta-heuristic class. In fact, a number of recent studies (e.g.,
Le Bouthillier and Crainic 2001) tend to demonstrate that combining different
meta-heuristics yields superior results. At the parallel computing level, this
approach generalizes the trend towards hybrid development observedin meta-
heuristic communities. It also opens up an exciting field of enquiry. What
meta-heuristics to combine? What role can each type of meta-heuristic play?
What information is exchanged and how it is used in this context? These are
only a few of the questions that need to be answered.

Last but not least, recall an earlier remark that co-operating parallel mecha-
nisms bear little, if any, resemblance to the initial meta-heuristic one attempts
to parallelize. This remark is even more true when different meta-heuristics
combine their efforts. In fact, more and more authors argue that co-operating
multi-thread parallel methods should form a “new”, very broadly defined,class
of meta-heuristics. If true, which we believe it is, we are left with the chal-
lenge of properly defining this meta-heuristic class. For example, memory
mechanisms appear appropriate to record statistics on both the attributes of the
solutions exchanged (or present in the solution population) and the performance
of individual searches. How can this information be used to globally directthe
search? What interactions are most appropriate between global and local (for
each thread) information (memories)? These are among the most interesting
challenges we face in this respect.

To conclude, parallel meta-heuristics offer the possibility to address problems
more efficiently, both in terms of computing efficiency and solution quality.
A rather limited number of strategies exist and this paper aims to both put
these strategies into perspective and to briefly describe them. The study of
parallel meta-heuristics design and performance still constitutes an exciting
and challenging research domain with much opportunity for experimentation
and development of important applications.
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