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1. Introduction

Parallel computation is increasingly acknowledged as a natural complement
to problem solving strategies, particularly when applied to large-scale, hard
formulations and instances. The field of meta-heuristics is no exception to this
trend and the last ten to fifteen years have witnessed a continuously stronger
stream of important developments, most of which targeted tabu search, genetic
algorithms, and simulated annealing methods (e.g., the surveys of Crainic and
Toulouse 1998, 2003, Cung et al. 2002, Holmqvist, Migdalas, and Pardalos
1997, Pardalos et al. 1995, and Verhoeven and Aarts 1995). While a number
of these efforts addressed particular problem instances and yielded tailor-made
procedures, most proposed strategies of a more general nature, at least within the
framework of the underlying sequential search methodology. These strategies
are the object of this paper.

Parallel computing methods aim to solve a given problem quicker than the
corresponding sequential method. In meta-heuristic terms, this goal may be
stated as either “accelerate the search for a comparable solution quality” or
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“broaden the search”, that is, obtain better solutions for a comparable compu-
tation effort or, at least, for the same wall-clock time. Parallel meta-heuristic
search methods should also be more robust than sequential methods with re-
spect to the characteristics of the problem instances they encounter. Parallel
implementations are thus expected not only to identify better solutions but also
to do it consistently over diverse sets of problem instances without excessive
calibration efforts.

The review of the literature reveals that, beyond the idiosyncrasies of each
implementation that follow from the particular problem instance addressed,
there are only a limited number of general strategies that may be used to build
parallel meta-heuristics. A number of these strategies are well-understood by
now, others are still a fertile ground for research. Together, they enhance our
ability to address hard and large-scale problems. In this paper we focus on tabu
search. The objectives are to briefly review parallel strategies and developments
for tabu search, to discuss in somewhat more details co-operative methods that
are the subject of most contemporary efforts, and to identify promising research
directions.

The paper is organized as follows. Section 2 describes parallel strategies and
reviews parallel tabu search methods proposed in the literature. Section 3 de-
scribes the main multi-search strategies and discusses the challenges associated
to the development of successful co-operative methods. It also presents a num-
ber of ideas on how parallel strategies could be applied to some advanced tabu
search methods, particularly path relinking and scatter search. Section 4 sums
up the paper with a number of interesting challenges and research directions
for parallel tabu search.

2. Parallel Tabu Search

Meta-heuristics have been defined as master strategies (heuristics) to guide
and modify other heuristics to avoid getting trapped in local optima or sequences
of visited solutions (cycling), produce solutions beyond those normally identi-
fied by local search heuristics, and provide reasonable assurance that the search
has not overlooked promising regions (Glover 1986, Glover and Laguna 1993).

Tabu search, similarly to most meta-heuristics, is an improvingiterative pro-
cedure that movesfrom a given solution to a solution in its neighbourhoodthat is
better in terms of the objective function value (or some other measure based on
the solution characteristics). Thus, at each iteration, a local searchprocedure
(the “original” heuristic) identifies and evaluates solutions in the neighbour-
hood of the current solution, selects the best one relative to given criteria, and
implements the transformations required to establish the selected solution as
the current one. Inferior quality solutions encountered during neighbourhood
explorations may be accepted as a strategy to move away from local optima. In



Parallel Computation, Co-operation,Tabu Search 3

theory, the procedure iterates until no further improvement is possible. In actual
implementations, a more restrictive stopping criteria is used: total number of
iterations, relative improvement over a number of iterations, etc.

Memoryand memory hierarchyare major concepts in tabu search, as memory-
based strategies are used to guide the procedure into various search phases,
possibly exploring different neighbourhoods. Short-term tabu statusmemories
record recent visited solutions or their attributes to avoid cycling due to the
repetition or inversion of recent actions. The tabu status of a move may be
lifted if testing it against an aspiration criterionsignals the discovery of a high
quality solution (typically, the best one encountered so far). Medium to long-
term memory structures record various informations and statistics relative to the
solutions already encountered (e.g., frequency of certain attributes in the best
solutions) to “learn” about the solution space and guide the search. Intensifica-
tion of the search around good solutions and its diversificationtowards regions
of the solution space not yet explored are two main ingredients of tabu search.
These two types of moves are based on medium and long-term memories, are
implemented using specific neighbourhoods, and may involve quite complex
solution transformations. More details on the basic and advanced features of
tabu search may be found in Glover (1986, 1989, 1990, 1996) and Glover and
Laguna (1993, 1997).

Tabu search has proved a fertile ground for innovation and experimentation
in the area of parallel meta-heuristics. Most parallel strategies encountered in
the literature have been applied to tabu search for a variety of applications and
a number of interesting parallelization concepts have been introduced while
developing parallel tabu search methods (Crainic and Toulouse 2003).

Crainic, Toulouse, and Gendreau (1997) introduced in 1993 what is still the
most comprehensive taxonomy of parallel tabu search methods. The classifi-
cation has three dimensions (Figure 13.1). The first dimension, Search Control
Cardinality, explicitly examines how the global search is controlled: either by
a single process (as in master-slave implementations) or collegially by several
processes that may collaborate or not. The two alternatives are identified as
1-control (1C)and p-control (pC), respectively. The classes of the second di-
mension indicate the Search Differentiation: do search threads start from the
same or different solutions and do they make use of the same or different search
strategies? The four cases considered are: SPSS, Same initial Point, Same
search Strategy; SPDS, Same initial Point, Different search Strategies; MPSS,
Multiple initial Points, Same search Strategies; MPDS, Multiple initial Points,
Different search Strategies(see also Voß 1993). Finally, the dimension relative
to the type of Search Control and Communicationsaddresses the issue of how
information is exchanged.

In parallel computing, one generally refers to synchronousand asynchronous
communications. In the former case, all processes have to stop and engage in
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some form of communication and information exchange at moments (number
of iterations, time intervals, specified algorithmic stages, etc.) exogenously
determined, either hard-coded or determined by a control (master) process.
In the latter case, each process is in charge of its own search, as well as of
establishing communications with the other processes, and the global search
terminates once each individual search stops. To reflect more adequately the
quantity and quality of the information exchanged and shared, as well as the
additional knowledge derived from these exchanges (if any), we refine these
notions and define four classes of Search Control and Communication strategies,
Rigid (RS)and Knowledge Synchronization (KS)and, symmetrically, Collegial
(C) and Knowledge Collegial (KC). Crainic, Toulouse, and Gendreau (1997)
detail the taxonomy and use it to analyze the parallel methods proposed in the
literature up to that time.

1
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Figure 13.1. Method-oriented Taxonomy

Typically, 1-control strategies implement a classical master-slave approach
that aims solely to accelerate the search. Here, a “master” processor executes a
synchronous tabu search procedure but dispatches computing-intensive tasks to
be executed in parallel by “slave” processes. The master receives and processes
the information resulting from the slave operations, selects and implements
moves, gathers all the information generated during the tabu exploration, up-
dates the memories, and decides whether to activate different search strategies
or stop the search.
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In the context of tabu search, the operation most widely targeted in such ap-
proaches is the neighbourhood evaluation. At each iteration, the possible moves
in the neighbourhood of the current solution are partitioned into as many sets as
the number of available processors and the evaluation is carried out in parallel
by slave processes. This 1C/RS/SPSS strategy yielded very interesting results
for problems with large neighbourhoods and relatively small computing efforts
required to evaluate and perform a given move, such as the quadratic assign-
ment(QAP: Chakrapani and Skorin-Kapov 1992, 1993b, 1995, Taillard 1991,
1993b), travelling salesman(TSP: Chakrapani and Skorin-Kapov 1993a) and
vehicle routing(VRP: Garcia, Potvin, and Rousseau 1994) problems. For the
same quality of solution, near-linear speedups are reported using a relatively
small number of processors. Moreover, historically, this approach permitted
improvements to the best-known solutions to several problem instances pro-
posed in the literature.

Implementations of the sequential fan candidate liststrategy (Glover, Tail-
lard, and de Werra 1993, Glover and Laguna 1997), also known as look ahead
or probingapproaches, allow slave processes to perform a number of iterations
before synchronization and the selection of the best neighbouring solution from
which the next iteration is initiated. Probing strategies thus belong to the 1-
control, knowledge synchronous (1C/KS) class and may use any of the four
search differentiation models identified earlier on. The only parallel implemen-
tation of this strategy the author is aware of is to be found in the comparative
study of several synchronous tabu search parallelizations performed by Crainic,
Toulouse, and Gendreau (1995a) for the location-allocation problem with bal-
ancing requirements. In this study, the authors implemented and compared a
1C/RS/SPSS and a 1C/KS/SPSS method. The second performed marginally
better. However, both methods were outperformed by p-control implementa-
tions that attempt a more thorough exploration of the solution space. These
results also emphasize that performance is less interesting for the low-level
parallelism offered by single control, synchronous parallel strategies when the
time required by one serial iteration is relatively important compared to the total
solution time and only a few hundred moves may be executed in a reasonable
computing time (compared to the tens of thousands performed by a typical VRP
tabu search procedure).

Domain decomposition is another major parallelization strategy. The funda-
mental idea is simple: Partition the feasible domain of the problem in several
(disjoint) sets and execute the contemplated meta-heuristic on each subset, thus
accelerating the global search. Two cases may then be encountered. Either the
solution of each search thread is a complete solution to the problem in hand
or a partial solution only, in which case a complete solution has to be recon-
structed. In both cases, however, each search process has had access to a part
of the domain only (especially when the partition is strictly enforced during
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the search). Then, to somewhat increase the thoroughness of the search, the
partition is modified and the search is started anew. This process is repeated a
number of times.

The “natural” implementation of domain decomposition is through a 1C/KS
master-slave scheme with any of the search differentiation strategy. (Notice
that different meta-heuristics may be applied to different sets and that, by def-
inition, each search starts from a different initial point.) The master deter-
mines the partition, synchronizes slave processes, reconstructs solutions (when
required), and determines stopping conditions. Slave processes perform the
search on their assigned partitions. Such approaches have proved successful
for problems for which numerous iterations may be performed in a relatively
short time and restarting the method with several different partitions does not
require unreasonable computational efforts (e.g., Fiechter 1994 for the TSP,
Porto and Ribeiro 1995, 1996, and Porto, Kitajima, and Ribeiro 2000 for the
task scheduling problem on heterogeneous systems).

The same idea may also be implemented in a pC/KS framework, however.
In this case, processors stop at pre-determined moments to exchange partial
solutions and build whole ones, modify the partition, verify the stopping con-
ditions. From a computer programming point of view, one of the processors
may assume co-ordination tasks, but this does not change the particular nature
of the algorithmic design. Taillard’s (1993a) early tabu search for VRP fol-
lows this pC/KS/MPSS paradigm. The domain is partitioned and vehicles are
allocated to the resulting regions. Once the initial partition is performed, each
subproblem is solved by an independent tabu search. All processors stop after
a number of iterations that varies according to the total number of iterations
already performed. The partition is then modified by an information exchange
phase, during which tours, undelivered cities, and empty vehicles are exchanged
between adjacent processors (corresponding to neighbouring regions).

Partition approaches did allow to address successfully a number of problem
instances. The synchronization inherent in the design of the strategy hinder
its performance, however. Indeed, in most cases, results obtained by using
partition strategies have been improved by methods that launch several search
threads to simultaneously explore the solution space with various degrees of
co-operation. In fact, enjoying the benefit of hindsight, the main contribution
of the Taillard (1993a) paper is to mark the evolution towards one of the most
successful sequential meta-heuristics for the VRP, the adaptive memorytabu
search (Rochat and Taillard 1995, Glover 1996).

According to an adaptive memory approach applied to the VRP, cities are
initially separated into several subsets, and routes are built using a construction
heuristic. Initial routes are then stored in a structure called an adaptive memory.
Then, a combination procedure builds a complete solution using the routes in
the memory and the solution is further improved using a tabu search method.
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The routes of “good” solutions are then deposited into the same memory, which
thus adapts to reflect the current state of knowledge of the search. The process
then re-starts with a new solution built from the routes stored in the adaptive
memory. The method stops when a pre-specified number of calls to the adaptive
memory have been performed. This approach clearly implements the principles
of decomposition using a serial procedure and has now been successfully applied
to other problem classes. However, interestingly, most parallel applications of
this approach are now found in co-operative multi-thread strategies.

Multi-threador multi-searchparallelizations for tabu search follow the same
basic pattern: p threads search through the same solution space, starting from
possibly different initial solutions and using possibly different tabu (or other)
search strategies. Historically, independent and synchronous co-operative multi-
thread methods were proposed first. Currently, asynchronous procedures are
being generally developed. One also observes an increased interest in issues
related to the definition and modelling of co-operation (Section 3).

Independentmulti-searches belong to the pC/RS class of the taxonomy. Most
implementations start several independent search processes from different, ran-
domly generated, initial configurations. No attempt is made to take advantage
of the multiple threads running in parallel other than to identify the best overall
solution once all processes stop. This definitively earns independent search
strategies their Rigid Synchronization classification. (Note that, in general,
the implementations designate a processor to collect the information and verify
stopping criteria.) Battiti and Tecchiolli (1992, for the QAP), Taillard (the main
study is found in his 1994 paper on parallel tabu methods for job shop scheduling
problems), and others studied and empirically established the efficiency of such
procedures when compared to the best heuristics proposed at the time for their
respective problems. This parallelization of the classic sequential multi-start
heuristic is easy to implement and may offer satisfactory results. Co-operative
strategies often offer superior performance, however (e.g., Crainic, Toulouse,
and Gendreau 1995b, Crainic and Gendreau 2002).

pC/KS strategies are also generally implemented in a master-slave setting but
attempt to take advantage of the parallel exploration by synchronizing proces-
sors at pre-determined intervals. The master process than collects information
and usually restarts the search from the best solution (Malek et al. 1989 for the
TSP, Rego and Roucairol 1996 for the VRP using ejection chains). De Falco et
al. (1994 for the QAP), and De Falco, Del Balio, and Tarantino (1995 for the
mapping problem) attempted to overcome the limitations of the master-slave
setting. When each search thread terminates its local search, they synchronize
and best solutions are exchanged between processes that run on neighbouring
processos. Good performance and results were reported by all authors.

Asynchronous co-operative multi-thread search methods belong to the pC/C
or pC/KC classes of the taxonomy according to the quantity and quality of
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the information exchanged and, eventually, on the “new” knowledge inferred
based on these exchanges. Most such developments use some form of memory
for inter-thread communications (the term blackboardis also used sometimes).
Each individual search thread starts from (usually) a different initial solution and
generally follows a different search strategy. Exchanges are performed asyn-
chronously and through the memory. Memories recording the performance of
individual solutions, solution components, or even search threads may be added
to the pool and statics may be gradually built. Moreover, various procedures
may also be added to the pool to attempt to extract information or to create new
informations and solutions based on the solutions exchanged. Co-operative
multi-thread strategies implementing such methods belong to the pC/KC class.

One may classify co-operative multi-thread search methods according to the
type of information stored in the central memory: complete or partial solutions.
In the latter case, one often refers to adaptive memorystrategies, while central
memory, pool of solutions, solution warehouseor, even, reference setare terms
used for the former. These methods have proved extremely successful on a broad
range of problem types: real-time routing and vehicle dispatching (Gendreau
et al. 1999), VRP with time windows (Taillard et al. 1997, Badeau et al. 1997,
Schulze and Fahle 1999, Le Bouthiller and Crainic 2004), multicommodity
location with balancing requirements (Crainic, Toulouse, and Gendreau 1995b),
fixed cost, capacitated, multicommodity network design (Crainic and Gendreau
2002), and partitioning of integrated circuits for logical testing (Andreatta and
Ribeiro 1994, Aiex et al. 1996, 1998, and Martins, Ribeiro, and Rodriguez
1996). One must notice, however, that the selection and the utilization of the
information exchanged significantly impacts the performance of co-operating
procedures. Co-operation mechanisms have to be carefully designed (Toulouse,
Crainic, and Gendreau 1996, Toulouse, Thulasiraman, and Glover 1999). We
return to these issues in the next section.

Although introduced for tabu search, the classification used in this paper
applies to many other classes of meta-heuristics and refines the criteria based on
the impact of parallelization on the search trajectory (e.g., Crainic and Toulouse
2003). Thus, it may form the basis for a comprehensive taxonomy of parallel
meta-heuristics. This task, however, is beyond the scope of this paper.

3. Co-operation, Path Relinking, Scatter Search

A trend emerges from the collective efforts dedicated to parallel meta-heuristics
in general and tabu search in particular. The main methodological focus moved
from the low-level parallelism (e.g., the 1C/RS methods) of the initial develop-
ments, through a phase of domain decomposition approaches, on to independent
search methods and co-operation (and hybridization). Of course, each type of
parallelization strategy may play an important role given the particular problem
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class and instance. In this section, we focus on co-operation, however, since
it appears to offer both the most promising avenues for superior performances
and the biggest challenges in terms of algorithm design.

Co-operative multi-thread tabu search methods launch several independent
searches and implement information-exchange mechanisms among these threads.
The general objective is to exchange meaningfulinformation in a timelyman-
ner such that the global parallel search achieves a better performance than the
simple concatenation of the results of the individual methods. Performance is
measured in terms of computing time and solution quality (Barr and Hickman
1993, Crainic and Toulouse 2003).

As mentioned already, independent search methods implement multi-start
sequential heuristics and, therefore, cannot achieve both performance objec-
tives. Computation time is indeed reduced, but the same solution is reached.
To overcame this limitation, Knowledge Synchronous pC strategies have been
implemented where information is exchanged once all threads have completed
their searches. The best overall solution is the only information exchanged
and it serves as departure point for a new round of independent searches. The
method is simple to implement and authors report good results. Computing
times soar, however, and it would be interesting to thoroughly compare solu-
tion quality performance with co-operative methods. The limited evidence to
this effect comes from applications to vehicle routing formulations and seem
to indicate that co-operative strategies perform better in general.

Two other issues should be investigated in relation to these pC/KS strategies.
First, the implementations reported in the literature start newsearches following
synchronization, cleaning up all memories. Given the importance of memories
for tabu search, one wonders whether precious information is lost in the process.
An investigation into what information to pass from one independent search
phase to the next, how to use it, and its impact on performance might prove
very interesting. The second issue has to do with the fact that, up to now, the only
information exchanged when processes synchronize is the best solution. Yet,
it has been shown that for co-operative methods this strategy may be counter-
productive by concentrating most (all) threads on the same region of the solution
space. This is an issue for further study as well.

Co-operation strategies require careful design as well as resources to manage
the exchanges and process the data. A number of fundamental issues have to be
addressed when designing co-operative parallel strategies for meta-heuristics
(Toulouse, Crainic, and Gendreau 1996):

What information is exchanged?

Between what processes it is exchanged?

When is information exchanged?



10

How is it exchanged?

How is the imported data used?

It is beyond the scope of this paper to address in detail all these issues. The
reader may refer to the papers mentioned in this section for a more thorough
description. It may be of interest, however, to sum up some of the pitfalls and
less-than-winning strategies that have been identified in the literature so far.

Synchronous co-operative implementations tend to show a poorer perfor-
mance compared to asynchronous and independent searches, especially when
synchronization points are pre-determined (as in most current implementa-
tions). Such strategies display large computation overheads and a loss of ef-
ficiency. This is due to the obligation to wait for all processes to reach the
synchronization point. The pre-definition of synchronization points also makes
these strategies much less reactive to the particular problem instance and the
progress of the search than asynchronous approaches and methods.

Asynchronous strategies are increasingly being proposed. Not all approaches
offer the potential for success, however. To illustrate some of the issues, con-
sider the following generic “broadcast and replace” strategy. When a search
thread improves its local best solution, a message is sent to all other processes
to stop their own exploration and import the broadcast solution. Then, if the
imported solution is better than the local one, the search is restarted with the
new solution. Several variants of this approach may be found in the literature. It
has been observed, however, that interrupting the “local search” phase does not
yield good results. The main reason is that one no longer performs a thorough
search based on the local observation of the solution space. Rather, one trans-
forms the tabu search into random search. This phenomenon is particularly
disruptive if one permits the initial local search phase to be interrupted.

Stated in more general terms, the previous observation says that co-operative
meta-heuristics with unrestricted access to shared knowledge may experience
serious premature “convergence” difficulties, especially when the shared knowl-
edge reduces to one solution only (the overall best or the new best from a given
thread). This is due to a combination of factors: There is no global history or
knowledge relative to the trajectory of the parallel search and thus each process
has a (very) partial view of the entire search; Threads often use similar criteria
to access the (same) “best” solution; Each process may broadcast a new best
solution after a few moves only and thus disseminate information where only
part of the solution has been properly evaluated. The contents of shared data
tend then to become stable and biased by the best moves of the most performing
threads and one observes a premature convergence of the dynamic search pro-
cess. Moreover, the phenomenon may be observed whether one initializes the
local memories following the import of an external solution or not (Toulouse



Parallel Computation, Co-operation,Tabu Search 11

et al. 1998, Toulouse, Crainic, and Sansó 1999, 2004, Toulouse, Crainic, and
Thulasiraman 2000).

Toulouse, Thulasiraman, and Glover (1999; see also Toulouse, Glover, and
Thulasiraman 1998) proposed a new co-operation mechanism that attempts to
address these challenges. The mechanism is called multi-level co-operative
searchand is based on the principle of controlled diffusion of information.
Each search process works at a different level of aggregation of the original
problem (one processor works on the original problem; the aggregation scheme
ensures that a feasible solution at at level is feasible at the more disaggregated
levels). Each search communicates exclusively with the processes working
on the immediate higher and lower aggregation levels. Improved solutions
are exchanged asynchronously at various moments dynamically determined by
each process according to its own logic, status, and search history. An incoming
solution will not be transmitted further until a number of iterations have been
performed. The approach has proven very successful for graph partitioning
problems (Ouyang et al. 2000, 2000a). Significant research is needed, however,
to explore the various possibilities of the mechanisms, including the role of local
and global memories.

Adaptiveand centralmemory strategies also aim to overcome the limitations
of straightforward co-operation by implementing mechanisms to build knowl-
edge regarding the global search. This knowledge is then used to guide the
exchange of information and, thus, to impact the trajectory of each individ-
ual process. The two approaches have much in common. In both approaches,
there is no communication among the individual search processes: communica-
tion takes place exclusively between the memory process and individual search
threads. Both approaches control when communication takes place (not very
often and not during local search phases) and assign this responsibility to the
individual searches. Based on the implementations reported in the literature,
differences are mainly at the level of the information stored in the memory and
its use.

As indicated in the previous section, adaptive memory implementations fol-
low the general principles of the sequential adaptive memory strategy (Rochat
and Taillard 1995) and store the elements of the best solutions found by the in-
dividual threads together with, eventually, memories counting the frequency of
each element in the best solutions encountered so far. Processes communicate
their best solutions at the normal end of their search. New starting solutions
are built out of the elements in the memory. When frequency memories are
implemented, they are used to bias the selection of the elements during the
construction phase.

The central memory approach has less limitations. In theory at least since,
in our opinion, the potential of this method has not been fully explored yet. As
far as we can tell, Crainic, Toulouse, and Gendreau (1997) proposed the first
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central memory strategy for tabu search. A more fully developed implementa-
tion is reported by Crainic and Gendreau (2002) for the fixed cost, capacitated,
multicommodity network design problem. In both studies, the individual tabu
search threads communicate the vector of design variables each time the lo-
cal solution is improved, but import a solution from the central memory only
before undertaking a diversification phase. Then, if the imported solution is
better than the current best, the diversification proceeds from the new solution.
Otherwise, the imported solution is discarded and the procedure proceeds as
usual. Memories are never re-initialized. The authors compared five strategies
of retrieving a solution from the pool when requested by an individual thread.
The strategy that always returns the overall best solution displayed the best per-
formance when few (4) processors were used. When the number of processors
was increased, a probabilistic procedure, based on the rank of the solution in the
pool, appears to offer the best performance. The parallel procedure improves
the quality of the solution and also requires less (wall clock) computing time
compared to the sequential version, particularly for large problems with many
commodities.

Recently, Le Bouthiller and Crainic (2004) took this approach one step further
and proposed a central memory parallel meta-heuristic for the VRP with time
windows where several tabu search and genetic algorithm threads co-operate. In
this model, the central memory constitutes the population common to all genetic
threads. Each genetic algorithm has its own parent selection and crossover
operators. The offspring are returned to the pool to be enhanced by a tabu
search procedure. The tabu search threads and the central memory follow the
same rules as in the work of Crainic and Gendreau (2002). Experimental results
show that without any particular calibration, the parallel meta-heuristic obtains
solutions whose quality is comparable to the best meta-heuristics available,
and demonstrates almost linear speedups. These results indicate that central
memory approaches apply equally well whether complex constraint structures
complement the combinatorial characteristics of the problems studied or not.

Many enhancements could be added to these co-operation mechanisms and
should be studied further. One such enhancement, proposed but not yet tested
in the literature, concerns performance measures that could be attached to each
individual search. Then, processes that do not contribute significantly nei-
ther to the quality of the solutions in the pool, nor to their diversity could be
discarded. The computing resources thus recuperated could either be simply
released or assigned to more productive duties (e.g., speed up computations of
some critical search steps or initiate new search threads modeled on the most
successful ones). A second possibility concerns performance statistics attached
to individual solutions (or parts thereof) measuring, for example, the relative
improvement of solutions generated by individual threads when starting from
them. Another open question concerns the global search memories that could



Parallel Computation, Co-operation,Tabu Search 13

be inferred from the records built by individual searches and how the global
search trajectory could then be inflected to yield superior results.

It has been noted that the pool of solutions constitutes a population. Then,
other than the usual construction heuristics, population-based methods may be
used to generate new solutions and improve the pool. Crainic and Gendreau
(1999) report the development of such a hybrid search strategy combining their
co-operative multi-thread parallel tabu search method with a genetic engine.
The genetic algorithm initiates its population with the first elements from the
central memory of the parallel tabu search. Asynchronous migration (migra-
tion rate = 1) subsequently transfers the best solution of the genetic pool to the
parallel tabu search central memory, as well as solutions of the central memory
towards the genetic population. Even though the strategy is not very elabo-
rate, the hybrid appears to perform well, especially on larger problems. It is
noteworthy that the genetic algorithm alone was not performing well and that
it was the parallel tabu search procedure that identified the best results once the
genetic method contributed to the quality of the central memory.

This combination of individual tabu search threads and population-based
methods that run on the set of solutions in the central memory appears very
promising and should be investigated in depth. (In more general terms, this
strategy applies equally well to many meta-heuristic classes and is the object
of research in the genetic and simulated annealing communities.) Different
population-based methods could be used, path relinking and scatter search
(Glover 1997, Glover and Laguna 1997, Glover, Laguna, and Mart́ı 2000, La-
guna and Mart́ı 2003) being prime candidates. Both methods have proved highly
successful on a wide spectrum of difficult problems. Moreover, the close re-
lationships displayed by the two methods would facilitate the exchanges with
co-operating tabu search threads. This topic must be thoroughly investigated.

This brings forth the issue of the parallelization of path relinking and scatter
search. In their sequential versions, both methods make use of an initialization
phase to generate “good” solutions, as well as of a referenceor elite set of
solutions continuously updated during the search. A path relinking method
will select two solutions, a starting solution and a target one, and use a tabu
search to move from the starting to the target solution. Moves are biased to
favor gradually entering “good” attributes of the target solution into the current
one. Scatter search, selects a number of solutions from the reference set and
combines then to yield a new solution that may be improved by a local or tabu
search algorithm. Solutions with “good” attributes, including overall best ones,
are included by each method in the corresponding reference set.

Research on parallel path relinking and parallel scatter search is very scarce,
yet. Of course, the strategies already presented for tabu search may be applied
to path relinking and scatter search. Low level, 1-control, strategies, as well
as multi-search approaches involving several path relinking or scatter search
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threads, are straightforward. Co-operative strategies offer a greater challenge.
Indeed, the reference set corresponds to a central memory co-operation mech-
anism that may be used by several path relinking or scatter search threads.
Issues to be studied concern the initialization of the reference set and of each
thread, as well as the particular definition of each thread. Thus, for example,
one could consider the main algorithmic parts of scatter search – the selection
of candidates, the generation of new solutions (different searches could com-
bine a different number of solutions), and their possible improvement by a tabu
search procedure – as “separate” procedures. A large number of co-operation
designs become possible and should be investigated thoroughly. Also worthy
of serious research is the role of memories in co-operation settings involving
path relinking and scatter search methods, as well as the strategies that have the
two methods co-operate through a unique reference set.

4. Perspectives and Research Directions

We have presented strategies to design parallel tabu search algorithms and
surveyed developments and results in the area. Parallel tabu search methods of-
fer the possibility to address problems more efficiently, both in terms of comput-
ing efficiency and solution quality. Low-level parallelization strategies appear
often beneficial to speed up computation-intensive tasks, such as the evalua-
tion of potential moves in the neighbourhood of a given solution. Moreover,
such strategies may be advantageously incorporated into hierarchical parallel
schemes where the higher level method either explores partitions of the solution
domain or implements a co-operating multi-thread search.

Co-operation and multi-thread parallelization appear to offer the most inter-
esting perspectives for tabu search, as for meta-heuristics in general. Asyn-
chronous co-operative multi-thread strategies constitute probably the strongest
trend in parallel meta-heuristics, the results reported in the literature indicating
that they offer better results than synchronous and independent searches. They
also seem to offer the most interesting development avenue for advanced tabu
search methods, including path relinking and scatter search. More theoretical
and empirical work is still required in this field, however. Consequently, in
the second part of the paper, we focussed on multi-search strategies. We dis-
cussed general design and implementation principles, pointed out a number of
challenges and pitfalls, and identified trends and promising research directions.

Hybridization is another important trend in sequential and parallel meta-
heuristics and recent studies tend to demonstrate that combining different meta-
heuristics yields superior results. This opens up an exciting field of enquiry.
What meta-heuristics to combine with tabu search? What role can each type of
meta-heuristic play? What information is exchanged and how it is used in this
context? How important a role path relinking and scatter search may play for



Parallel Computation, Co-operation,Tabu Search 15

parallel meta-heuristics in general? These are only a few of the questions that
need to be explored.

It has been often noticed that co-operating parallel mechanisms bear little, if
any, resemblance to the initial meta-heuristic one attempts to parallelize. This
remark is true whether the individual search threads belong to the same class of
meta-heuristics or not. A natural question then is whether co-operating multi-
thread parallel methods should form a “new”, very broadly defined, class of
meta-heuristics.

Is co-operative multi-thread parallelization a “new” meta-heuristic? Almost
certainly, even though we face the challenge to properly define it. Is it a “new”
tabu search class? Not as currently used. Indeed, the method misses a global
search control mechanism and, especially, the memories that would guide this
mechanism are a central component of tabu search. The development of such
memories and mechanisms is one of the most interesting challenges we face.
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Taillard, É.D. (1993) Recherches it´eratives dirigées parallèles. PhD thesis,
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