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1.1 INTRODUCTION

Parallel meta-heuristics have been applied to a multitude of fields by people with
different backgrounds and active in different scientific communities. This illustrates
the importance of parallel meta-heuristics. This phenomenon has also resulted,
however, in what may be called a lack of dissemination of results across fields. This
is unfortunate but not exclusive to the parallel meta-heuristics field. This chapter
aims to contribute toward filling this gap.

The parallel meta-heuristic field is a very broad one. Parallel meta-heuristics may
potentially be applied to any decision problem in whicheverfield, as indeed it is
the case with sequential meta-heuristics. Yet, the space available for this chapter
imposes hard choices and limits the presentation. We have therefore selected a
number of topics that we believe representative due to theirsignificant methodological
impact and broad practical interest: graph coloring and partitioning, Steiner tree
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problems, set covering and partitioning,satisfiability and max-sat problems,quadratic
assignment, location and network design, traveling salesman and vehicle routing
problems.

We do not pretend to be exhaustive. We have also restricted toa minimum the
presentation of general parallel computation issues as well as that of the parallel
meta-heuristic strategies. The reader may consult a numberof surveys, taxonomies,
and syntheses of parallel meta-heuristics, of which quite afew address the “classical”
meta-heuristics, Simulated Annealing, Genetic Algorithms, and Tabu Search, while
some others address the field in more comprehensive terms:

PSA: Azencott [4], Greening [71, 70], Laursen [84], Ram, Sreenivas, and Subrama-
niam [119];

PGA: Cant̀u-Paz [21], Lin, Punch, and Goodman [91], Mühlenbein [104], Shon-
kwiler [133];

PTS: Crainic, Toulouse, and Gendreau [41], Glover and Laguna [69], Voß [162];

General: Barr and Hickman [9], Crainic [33], Crainic and Toulouse [37, 38], Cung
et al. [43], Holmqvist, Migdalas, and Pardalos [74], Pardaloset al. [114],
Verhoeven and Aarts [160],.

Surveying the literature, one notices an uneven distribution of work among the
various areas, both in number of papers and in the variety of methods used. Indeed,
in several fields the number of different meta-heuristics that are applied appears quite
limited as is the number of parallelization strategies. As aresult, general trends and
conclusions are difficult to identify, even within a given area. It appears, however,
that several areas would benefit from a broader investigation and critical comparison
of meta-heuristics and parallel strategies. This chapter has been conceived with the
aim to offer both a starting point and an incentive to undertake the research required
to address these challenges.

The Chapter is organized as follows. Section 1.2 introducesthe elements we
use to describe and classify each contribution. Sections 1.3 to 1.12 present parallel
meta-heuristic contributions to the areas identified above. Section 1.13 concludes the
chapter.

1.2 PARALLEL META-HEURISTICS

To survey applications of parallel meta-heuristics requires that one defines some
criteria to classify the parallel meta-heuristic strategies. Our approach is one of
conceptual, algorithmic design, the computer implementation plying second violin.

We adopt for this Chapter a classification that is sufficiently general to encompass
all meta-heuristic classes without, on the one side, erasing the specifics of each
while, on the other side, avoiding a level of detail incompatible with the scope and
dimension limits of the chapter. The classification is basedon the work of Crainic,
Toulouse, and Gendreau [41]) and Crainic [33]) with considerations from Crainic and
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Toulouse [37, 38]. Note that Verhoeven and Aarts [160] and Cunget al. [43] present
classifications that proceed of the same spirit as Crainic, Toulouse, and Gendreau
[41].

Parallel/distributed computing applied to problem solving means that several pro-
cesses work simultaneously on several processors with the common goal of solving a
given problem instance. One then has to determine how the global problem-solving
process is controlled and how information is exchanged among the various processes.
More than one solution method may be used to perform the same task and thus a
taxonomy has also to specify this characteristic. The first dimension,Search Control
Cardinality, thus explicitly examines how the global search is controlled: either by
a single process (as in master-slave implementations) or collegially by several pro-
cesses that may collaborate or not. The two alternatives areidentified as1-control
(1C)andp-control (pC), respectively.

The dimension relative to the type ofSearch Control and Communicationsad-
dresses the issue of how information is exchanged. In parallel computing, one
generally refers tosynchronousandasynchronouscommunications. In the former
case, all concerned processes have to stop and engage in someform of communi-
cation and information exchange at moments (number of iterations, time intervals,
specified algorithmic stages, etc.) exogenously determined, either hard-coded or
determined by a control (master) process. In the latter case, each process is in charge
of its own search, as well as of establishing communicationswith other processes,
and the global search terminates once each individual search stops. To reflect more
adequately the quantity and quality of the information exchanged and shared, as well
as the additional knowledge derived from these exchanges (if any), we refine these
notions and define four classes of Search Control and Communication strategies,
Rigid (RS)andKnowledge Synchronization (KS)and, symmetrically,Collegial (C)
andKnowledge Collegial (KC).

The third dimension indicates theSearch Differentiation: do search threads
start from the same or different solutions and do they make use of the same or
different search strategies? The four cases considered are: SPSS, Same initial
Point/Population, Same search Strategy; SPDS, Same initial Point/Population, Dif-
ferent search Strategies; MPSS, Multiple initial Points/Populations, Same search
Strategies; MPDS, Multiple initial Points/Populations, Different search Strategies.
Obviously, one uses “point” for neighbourhood-based methods such as Simulated
Annealing, Tabu Search, Variable Neighbourhood Search, GRASP, Guided Local
Search, etc., while “population” is used for Evolutionary methods (e.g., Genetic Al-
gorithms), Scatter Search, and Colony methods (e.g., ant colonies). When the initial
population is a singleton (e.g., an ant), the termsingle evolutionary pointis also used,
as well as, in the PGA-context, fine-grained, massive, or global parallelism.

Typically, 1-control strategies implement a classical master-slave approach that
aims solely to accelerate the search. Here, a “master” processor executes a sequential
meta-heuristic but dispatches computing-intensive tasksto be executed in parallel
by “slave” processes. The master receives and processes theinformation resulting
from the slave operations, selects and implements moves or,for population-based
methods, selects parents and generates children, updates the memories (if any) or
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the population, and decides whether to activate different search strategies or stop the
search.

In the context of neighbourhood-based search, the operation most widely targeted
in such approaches is the neighbourhood evaluation. At eachiteration, the possible
moves in the neighbourhood of the current solution are partitioned into as many sets
as the number of available processors and the evaluation is carried out in parallel
by slave processes. For population-based methods, it is thefitness evaluation that is
most often targeted in such 1C/RS/SPSS strategies.

Probing or look-ahead strategies to the 1C/KS class with anyof the search differ-
entiation models identified previously. For neighbourhood-based methods, such an
approach may allow slaves to perform a a number of iterationsbefore synchronization
and the selection of the best neighbouring solution from which the next iteration is
initiated (one may move directly to the last solution identified by the slave process
or not). For population-based methods, the method may alloweach slave process
to generate child solutions, “educate” them through a hill climbing or local search
procedure, and play out a tournament to decide who of the parents and children
survive and are passed back to the master.

Multi-searchor multi-threadparallel strategies for meta-heuristics have offered
generally better performances, in terms of solution quality and computing times,
than the methods introduced above. Historically, independent and synchronous co-
operative multi-search methods were proposed first. The emphasis currently is on
asynchronous communications and co-operation. Most applications of such strategies
generally fall into thepC category.

Independentmulti-search methods belong to the pC/RS class of the taxonomy.
Most implementations start several independent search processes, all using the same
search strategy, from different, randomly generated, initial configurations. No attempt
is made to take advantage of the multiple threads running in parallel other than to
identify the best overall solution once all processes stop.This definitively earns
independent search strategies their Rigid Synchronization classification. (Note that,
in general, the implementations designate a processor to collect the information
and verify stopping criteria.) This parallelization of theclassic sequential multi-
start heuristic is easy to implement and may offer satisfactory results. Co-operative
strategies often offer superior performance, however.

pC/KS co-operative strategies adopt the same general approach as in the inde-
pendent search case but attempt to take advantage of the parallel exploration by
synchronizing processors at pre-determined intervals. Ina master-slave implementa-
tion, the master process than collects the information and usually restarts the search
from the best solution. Note that one can overcome the limitations of the master-slave
architecture by, for example, empowering each search process to initiate synchro-
nization of all other searches (e.g., using a broadcast) or apre-specified subset (e.g.,
processes that run on neighbouring processors). Here, as inthe more advanced
co-operation mechanisms indicated bellow,migration is the term used to identify
information exchanges in PGA.

Asynchronous co-operative multi-thread search methods belong to the pC/C or
pC/KC classes of the taxonomy according to the quantity and quality of the infor-
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mation exchanged and, eventually, on the “new” knowledge inferred based on these
exchanges. Most such developments use some form ofmemoryfor inter-thread
communications (the termspool, blackboard, and data warehouseare also used
sometimes). Each individual search thread starts from (usually) a different initial
solution and generally follows a different search strategy. Exchanges are performed
asynchronously and through the pool. The information exchanged may be simply a
“good” solution, a solution and its context (e.g., memoriesrecording recent behaviour
of solution attributes), or a comprehensive history search. Some co-operation mech-
anisms, most migration-based population methods for example, do not keep any
trace of information exchanges. Most others keep at least the solutions exchanged.
Memories recording the performance of individual solutions, solution components,
or even search threads may be added to the pool and statics maybe gradually built.
Historically,adaptivememory mechanisms relied on building a set of “good” partial
solutions extracted from “good” solutions, whilecentralmemory ones kept all solu-
tions exchanged. The differences between the two approaches tend to become more
and more blurred. Various procedures may also be added to thepool to attempt to
extract information or to create new informations and solutions based on the solutions
exchanged. Co-operative multi-thread strategies implementing such methods belong
to the pC/KC class.

One of the goals of memory-based co-operation strategies isto increase the control
on the complex information diffusion process generated by chains of inter-process
information exchanges. (It is indeed well-known that unrestricted access to shared
information may have quite a negative impact on the global behaviour of co-operative
searches.) A different approach to co-operation has been proposed recently with the
same goals. The mechanism is calleddiffusionand in its original presentation was
based on amulti-levelparadigm. In this setting, each search works on a version of
the problem instance “aggregated” at a given level. Exchanges are then restricted
to the processes working at one aggregation level up and down. Exchanges involve
solution values and context information that is used by various operators to guide the
search at the receiving level. This pC/KC approach is presented in somewhat more
details in Section 1.4.4.

We complete this section with a note onhybrid methods. The term is much used
but its meaning varies widely. In a strict sense, all meta-heuristics are hybrids since
they involve at least two methods. Closer to most applications, a hybrid involves
at least two methods that belong to different methodological approaches. Thus,
for example, using genetic operators to control the temperature evolution in a PSA
method yields a hybrid. Notice, however, that by this definition, all evolutionary
methods that include an “educational” component, that is anenhancement of new
solutions through a hill climbing, a local search, or even a full-blown meta-heuristic,
are hybrids. Most co-operative parallel strategies could be qualified as hybrids as
well. Since, other than “more than one method is used”, the term does not offer any
fundamental insight into the design of parallel strategiesfor meta-heuristics, we do
not use it to qualify the contributions reviewed in this chapter.
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1.3 GRAPH COLORING

Graph coloring is a well-studied problem with many applications, in particular to the
problem of testing printed circuit boards for unintended short circuits, frequency
assignment in wireless networks, and time tabling. The parallel meta-heuristic
developments for the problem are, however, very limited.

Given a graph, the problem consists in finding the minimum number of colors
such that an assignment of colors to graph vertices yields a coloring where adjacent
vertices display different colors. The problem is known to be NP-hard.

The unique parallel meta-heuristic contribution we are aware of was proposed by
Kokosinski, Kolodziej, and Kwarciany [82]. The authors proposed a co-operative
coarse-grained parallel genetic algorithm, often identified in the PGA literature as
the island framework: each process in the co-operation run the same GA,and
all subpopulations were of the same dimension. Co-operation was performed by
migrating at fixed intervals, a fixed number of individuals from one island to all
the other ones. The arriving individuals randomly replacedthe same number of
individuals of the receiving subpopulation. Two migrationpolicies were proposed:
random and elitist. In the former, the migrating individuals were randomly selected,
while in the latter, the best individuals migrate. Experimental results on benchmark
test problems indicated that the elitist migration approach performed better than the
random one. Optimal solutions were obtained rapidly when the elitist migration
strategy was applied between a small number of subpopulations (3 or 5) of size 60.

1.4 GRAPH PARTITIONING

The graph (and hypergraph) partitioning problem may be stated as follows. Given
a graphG = (V , E) with vertex setV and edge setE), find a partition of the graph
into a number of disjoint subsets of vertices such that some conditions are satisfied.
Thus, for example, find ap-set partition such that the cardinality of thep subsets of
vertices are (nearly) equal.

Graph partitioning is a fundamental problem in combinatorial optimization and
graph theory. It appears in many application areas, especially in computer science
(e.g. VLSI design). A significant number of parallel meta-heuristics, involving a
wide array of meta-heuristic methodologies, have been proposed for the problem.

1.4.1 Fine-grained PGA

Mühlenbein [103] proposed an asynchronous fine-grained PGA approach, where the
individuals were placed on a particular topology (grid) anda small fixed-size neigh-
bourhood was assigned to each individual. This neighbourhood usually consisted of
the neighbour individuals on the grid, and the application of selection and crossover
operators was restricted to this neighbourhood. The authorsuggested that different
hill-climbing strategies could be applied concurrently, but did not implement this
strategy.
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Collins and Jefferson [31] developed a fine-grained PGA forthe multilevel graph
partitioning problem using the massively parallel Connection Machine. The main
purpose of this work was to characterize the difference between local and panmictic
(i.e., at the level of the entire population) selection/crossover schemes, which are
known to converge on a single peak of multimodal functions, even when several
solutions of equal quality exist. Tests were performed on a function with two optimal
solutions, and the panmictic approach never found both solutions. The method
using local selection and crossover consistently found both optimal solutions and
appeared more robust. The authors noted that behaviour-changing modifications to
the panmictic selection and crossover operators required access to global information,
which they claimed was not suitable for parallelization. One may question this
conclusion, given the new co-operationmechanisms proposed since and the particular
architecture used (that is no longer available).

Talbi and Bessìere [146] studied the problem of mapping parallel programs on
parallel architectures. The authors proposed a mathematical model related to the
graph partitioning problem and a fine-grained parallel genetic algorithm. The initial
population was arranged on a torus of transputers such that every transputer held
exactly one individual. Each individual thus had four neighboring individuals, and
each of them was selected in turn as the second parent for the reproduction opera-
tion. Each reproduction produced two offsprings, but only one of them (randomly
selected) survived to participate to the replacement operation that replaced the in-
dividual with the best of its surviving offsprings. The proposed parallel algorithm
was tested for a pipeline of 32 vertices partitioned into eight sub-sets. Near-linear
speedup was observed. Moreover, the solution quality increased with the population
size. According to the authors, the fine-grained algorithm outperformed simulated
annealing and hill-climbing methods.

Maruyama, Hirose, and Konagaya [97] implemented an asynchronous fine-grained
PGA on a cluster of workstations and a Sequent Symmetry computer in an attempted
to adapt the fine-grained strategy to coarse-grained parallel computer architectures.
Each processor had an active individual and a buffer of several suspended individuals.
Active individuals were sent to all other processors, whichrandomly selected one
individual among those received to replace one of the suspended individuals according
to the fitness function. Crossover consisted of replacing part of the active individual
by a part of one of the suspended individuals. Only one offspring was produced, the
other parts of the active and suspended individuals being rejected. Mutation was then
applied and the modified active individual was compared to the suspended individuals.
If it could not survive, it was replaced by one of the suspended individuals according
to the fitness function. Tests were performed with 15 processors for the Sequent
Symmetry and 6 processors for the cluster of workstations. The authors reported
near linear speed-ups for the same quality of solution on both types of coarse-grained
architecture.
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1.4.2 Coarse-grained PGA

Cohoonet al. [28] and Cohoon, Martin, and Richards [29, 30] compared the indepen-
dent multi-search PGA (i.e., without migration) and a pC/KSco-operative strategy
where migration operators were applied at regular intervals. The latter strategy
outperformed the independent search approach.

Diekmannet al. [49] proposed a 1C/RS PGA for thep-partitioning problem
implemented according to the master-slave model. Numerical experimentation on
a MIMD machine using up to 64 processors showed sub-linear speedups. Yet, the
solution quality of the parallel algorithm outperformed that of the sequential version.
This performance was increasing with the number of processors. The authors also
observed a strong dependence of the solution quality on the value ofp: the larger,
the better.

Lin, Punch, and Goodman [91] presented several coarse-grained genetic algo-
rithms based on different co-operation schemes, obtained by varying the Control
and Communication and the Search Differentiation strategies. Static and dynamic
communications have been considered. In the static model, communications are
defined by the physical topology, rings, meshes, etc. The dynamic model allows
several degrees of freedom in the choice of the process to communicate with by, for
example, taking into account the Hamming distance between the two processes in
the given computer architecture. The migration may be synchronous, after a fixed
number of generations or when a convergence threshold is attained, or asynchronous
(elitist). Two Search Differentiation strategies were implemented: either the same
strategy for all processes or different strategies for eachby varying the genetic op-
erators, encoding method, an so on. Computational experiments were conducted for
eight instantiations of the previous PGA model. Subpopulations were of equal size,
randomly generated initially, and placed in a ring. Communications were triggered
at fixed intervals. Numerical results indicated that the pC/C/MPDS strategy, i.e.,
different GA search strategies with asynchronous migrations toward a subpopulation
dynamically selected based on Hamming distance, offered the best performance.
Super-linear speedup was observed for 5, 10, and 25 subpopulations.

Hidalgoet al. [73] studied a graph partitioning problem issued of a particular cir-
cuit design application. The authors proposed a two-level hierarchical parallelization.
A pC/KS/MPDS multi-thread co-operative method, which synchronized at regular
intervals to improve the best individual, run at the first level. The fitness computation
was performed at the second level in a master-slave implementation. Experimental
results showed good performance for up to eight processors.The overhead due to the
parallelization of the fitness becomes significant for larger numbers of processors.

1.4.3 Parallel Simulated Annealing

Durand [54] addressed the issue of error tolerance for parallel simulated annealing
methods that implement 1C/KS strategies with domain decomposition. In such
strategies, the problem variables (i.e., vertices of the graph partitioning problem) are
partitioned into subsets and distributed among a number of processors. A master-slave
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approach was used on a shared-memory system. To initiate thesearch, the master
processor partitioned the vertices into a number of initialsets, and sent each set to
a processor, together with the initial values for the temperature and the number of
iterations to be executed. Each slave processor then executed the simulated annealing
search at the received temperature on its allocated set of variables, and sent its partial
configuration of the entire solution to the master processor. Once the information
from all slaves was received, the master processor merged the partial solutions into
a complete solution and verified the stopping criterion. If the search continued, it
generated a new partition of the variables such that each setis different from the one
at the previous partition, and sent them to the slave processors together with new
values for the number of iterations and the temperature. Theauthor tested different
levels of synchronization to measure the impact on the errors generated. As expected,
they conclude that 1) the error is small at frequent synchronization levels but the cost
in computation efficiency is high; and 2) the error increasesas the frequency of
synchronizations decreases and the number of processors increases.

An alternative to the decomposition-based strategies is tomove to multi-search
approaches, where each processors runs its own cooling schedule. Lee and Lee
[86, 88, 87] examined a pC/RS independent search model as well as several co-
operation variants where the SA threads interact synchronously and asynchronously
at fixed or dynamic intervals. For the graph partitioning problem, dynamic interval
exchange strategies generally performed best. Asynchronous and synchronous co-
operative multi-thread SA outperformed the other parallelizations in terms of solution
quality and running time. The pC/C strategy, where threads exchangeasynchronously
through a central memory obtained solutions of equal or better quality compared to
the synchronous parallel schemes.

Laursen [83] proposed a different co-operation mechanism.Noting that several
SA threads form a population, he proposed a scheme based on the selection and
migration operators of parallel genetic algorithms. Each processor concurrently runs
k simulated annealing procedures for a given number of iterations. Processors are
then paired and each processor migrates (copies) its solutions to its paired processor.
Thus, after the migration phase, each processor has2k initial solutions and this
number is reduced tok by selection. These newk solutions become the initial
configurations of thek concurrentsimulated annealing threads, and the search restarts
on each processor. Pairing is dynamic and depends on the topology of the parallel
machine. For example, in a grid topology, processors can pair with any of their corner
neighbours. Three co-operation strategies were tested: nomigration, global, and local
(stepping-stone). Global migration corresponded to a Knowledge Synchronization
strategy: the best states were brought to a given processor,which then chose the best
among the best and broadcast them to all processors. This strategy suffered a 10% to
20% overhead in communication cost and produced very bad solutions. As expected,
the independent search (no migration) approach was the fastest strategy but produced
lower quality solutions compared to the local migration strategy, which incurred only
a 2% overhead. Because processors are dynamically paired and neighbourhoods
overlap, in the local co-operation scheme information propagates in the network of
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processors similarly to the stepping-stone coarse-grained model for parallel genetic
methods.

1.4.4 Multi-level Co-operation

Toulouse, Thulasiraman, and Glover [158]; see also Toulouse, Glover, and Thu-
lasiraman 1998[157] proposed a new co-operation mechanismand applied it to
the graph and hypergraph partitioning problems with great success (Ouyanget al.
citeo+toulouse+tgd00,o+toulouse+tgd00a. Their approach is currently the best avail-
able for this problem.

The mechanism is calledmulti-level co-operative search, belongs to the pC/KC
with potentially any Search Differentiation strategy (theauthors used MPSS), and is
based on the principle of controlled diffusion of information. Each search process
works at a different level of aggregation of the original problem (one processor works
on the original problem). The aggregation scheme ensures that a feasible solution at
at any level is feasible at the more disaggregated levels. Ouyanget al. [111, 112]
analyze various aggregation operators for the graph partitioning problem.

Each search communicates exclusively with the processes working on the im-
mediate higher and lower aggregation levels. Improved solutions are exchanged
asynchronously at various moments dynamically determinedby each process ac-
cording to its own logic, status, and search history. Received solutions are used to
modify the search at the receiving level. An incoming solution will not be trans-
mitted further until a number of iterations have been performed, thus avoiding the
uncontrolled diffusion of information. The approach is very successful for graph
partitioning problems and starts now to be applied to other fields.

Banoset al. [7, 6] have also used the multi-level approach as a basis for con-
structing a co-operative search, but used a pC/RS/MPSS strategy, implemented in a
master-slave configuration. Each search thread consisted of a simulated annealing
algorithm, enhanced of a simple tabu search to avoid SA cycling, and worked at a
given aggregation level. Periodically, each search threadsent its best solution to the
master, which selected the overall best and broadcasted it back to the threads, which
then continued their search. Computational results revealthat the parallel algorithm
obtained solutions as good or better that the sequential version in shorter computing
times.

1.5 STEINER TREE PROBLEM

The Steiner tree problem, also identified sometimes simply as the Steiner problem
(Verhoeven and Severens [161], or as the Steiner problem in graphs or the Steiner
minimal tree (Martins, Ribeiro, and Souza [96], has many applications, including
VLSI design and telecommunication network design (e.g., multicast routing).

Consider a graphG = (V , E) with vertex setV and edge setE), and a non-negative
weight functionw that associates a positive valuew(e) to every edgee ∈ E . Let
X ⊂ V such thatV \ X 6= ∅. The Steiner tree problem then consists in finding
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a minimum weighted subtree ofG spanning all terminal vertices inX . The set
of non-terminal vertices of the minimum tree are calledSteiner Set. The Steiner
tree problem is NP-Hard. Many meta-heuristics belonging tovarious types, e.g.,
tabu search, simulated annealing,grasp, genetic algorithm, and local search, have
therefore been proposed. A few of these methods have been parallelized.

1.5.1 Parallelgrasp

Martins, Ribeiro, and Souza [96], Martinset al. [95] proposed severalgrasp proce-
dures for the Steiner problem. The parallel versions of these methods have also been
proposed. The authors used a pC/RS/MPSS parallelization strategy implemented ac-
cording to a master-slave model. Each thread run the samegrasp procedure with a
different initial seed for a number of iterations equal to those of the sequential version
divided by the number of available processors. The best solution was collected at the
end. The strategy achieved high solution quality for the problem instances tested, as
well as good speedups. The Martinset al. [95] implementation achieved comparable
results, in terms of solution quality, compared to the best known tabu search with
path-relinking method of Bastos and Ribeiro [10].

1.5.2 Parallel Local Search

Verhoeven and Severens [161] proposed sequential and parallel local search methods
for the Steiner tree problem based on a novel neighborhoods,the authors claimed
“better" than those known in the literature. The parallel strategy followed a 1C/KS
model. Computational results indicated that good speed-ups could be obtained with-
out loss in solution quality. Actually, the proposed parallel algorithm outperformed
in terms of speedup the parallelgrasp of Martins, Ribeiro, and Souza [96].

1.6 SET PARTITIONING AND COVERING

Consider a setS of cardinalityn and a collectionC = (S1,S2, · · · Sm) of m subsets
of S. A weightcj is associated with each subsetSj . A partition ofS is a subset of
C such that all elements ofS are included and each of them belongs to exactly one
set of the partition. A cover ofS is a subset ofC such that each element ofS are
belongs to at least one subset in the cover. The weight of a partition or of a cover
is the sum of the weights of the included sets. The set partition problem consists of
finding a partition ofS with minimum total weight, while a cover ofS of minimum
total weight is the goal of the set covering problem.

The set partitioning and covering problems may be also cast as 0-1 linear op-
timization problemsmin

∑
j=1,m cjxj subject toAx < (=)1 and xj ∈ {0, 1},

where line of the matrixA corresponds to an element ofS, each column to a subset
Sj , j = 1, · · · , m of C, and each decision variablexj , j = 1, · · · , m indicates if the
corresponding subset is to be part of the optimal partition (cover).
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The literature on the set partitioning and covering problems is very rich. The two
problems appear in many application domains, routing and scheduling, location and
design, production, capital investment, image coding, andso on. Exact, heuristic, and
meta-heuristic solution methods have been proposed, including a number of parallel
meta-heuristics summarized in the following.

1.6.1 Set Partitioning Applications

We identified only two contributions aimed at parallel meta-heuristics for the set
partitioning problem.

Levine [89] addressed the set-partitioning problem applied to the airline crew
scheduling problem and proposed two versions of a coarse-grained, island parallel
genetic algorithm: with (co-operative search) and without(independent search) mi-
gration. A simple co-operative mechanism was proposed: thebest chromosome in a
subpopulation migrates to a neighboring subpopulation at fixed intervals, while the
chromosome to delete is randomly selected. A MPSS Search Differentiation strategy
was selected, the initial populations for the islands beingrandomly and indepen-
dently generated. Numerical results indicated that the twoparallel versions generally
offered similar solution quality, with a slight advantage to the method integrating
migration. Both methods outperformed the sequential approach.

Czech [45] has studied a single-depot vehicle routing problem where each route
cannot serve more than a fixed,small number of customers. Theauthor formulated the
problem as a set-partitioning problem, and proposed two parallel simulated anneal-
ing algorithms, based on the independent and co-operative multi-search paradigms,
respectively. The co-operation is of the pC/KS type. The SA processes transmit
their best solutions every n steps. Each thread then starts again the search after up-
dating its best solution. The results reported show that both parallel methods obtain
better results than the sequential version in terms of solution quality. Moreover, the
co-operative method outperformed the independent multi-thread search.

1.6.2 Set Covering Applications

We identified four contributions to the parallel meta-heuristic for set covering litera-
ture: two island-based co-operative PGA methods, one ant colony, and one proposing
randomized approaches.

Calegariet al. [20] have considered the problem of selecting the best set ofradio-
transmitter locations such that a maximum covering area with an optimal cost (or
minimum number of radio transmitters) is achieved, and stated it as a variant of the set
covering problem. The authors proposed a pC/KS co-operative approach according
to an island model with a small population (two or four individuals) associated to
each island (and processor). The islands were arranged on anoriented ring, and
migrations were only allowed between neighboring islands.The authors choose this
arrangement to minimize the amount of migrations and the communication overload
due to migrations between remote islands. Once a new generation is computed, a
copy of the best individual of each island was sent to the nextisland on the ring.
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Each island thus received a new individual that replaced a randomly selected local
individual. The proposed co-operative multi-thread search performed well in terms
of computational time compared to the sequential genetic algorithm. The speedup
was almost linear and the efficiency reached 93%.

Solar, Parada, and Urrutia [137] presented a 1C/KS parallelmethod based on a
coarse-grained genetic algorithm. The authors used an island model, where each
island contains one subpopulation. Initial subpopulationwere independently and
randomly generated. A master-slave scheme was selected to implement the proposed
approach. Each slave run a standard GA on its island. After performing the compu-
tations of each generation, each slave sent its best individual to the master. Once the
master received all the best individuals from the slaves, itselected the overall best
and broadcast it. Each slave replaced its worst local solution with the individual sent
by the master, and launched again its GA. The authors reported numerical results that
showed that the parallel approach could reach near-optimalsolutions. Errors ranged
from 3.3% to 10% of the optimal solution value for almost all problems tested. They
also concluded that the parallel approach is more efficient than the corresponding
sequential one in the number of generations required to obtain a certain quality of
solution. The authors claimed that the solution quality of the proposed algorithm
is better than that of both tabu search and simulated annealing. Unfortunately, this
comparison is not very helpful because no details were givenregarding the solution
quality versus computational time for each of these approaches.

Rahoual, Hadji, and Bachelet [118] presented two parallel approaches based on
a combination of an ant colony system and a local search heuristic. The sequential
method, called AntsLS, consisted in launching the ant searches and applying a local
search to each solution found. This sequence was repeated until a stopping criterion
based on a convergence threshold was reached. The first parallel approach was a
pC/RS independent multi-thread search, where each thread run AntsLS and the best
solution is collected at the end. The second method represented a direct parallelization
of AntsLS according to a 1C/KS strategy in a a master-slave implementation. Each
slave holds one ant process. The master synchronizes the searches of all ants. Once a
solution is found by every slave, it is sent to the master. A pheromone updating is then
performed by the master. The master also updates the best solution. The numerical
results show a high performance of the independent approachin both solution quality
and speedup. Not surprisingly, the 1C/RS approach did not perform well due to high
communication times. It is noteworthy that the two methods do not parallelize the
same algorithm and cannot therefore be compared.

Fiorenzo Catalano and Malucelli [57] discussed several general schemes that lead
to approximate approaches for the Set Covering Problem. These schemes embed-
ded two constructive heuristics: a greedy algorithm, whichat each iteration added
a set to the partial solution according to associated probabilities, and a randomized
primal-dual approach (Beasley [13]). The authors proposedsynchronous and asyn-
chronous parallelizations of these schemes. The first synchronous approach is a
variant of the 1p/KS/MPSS strategy and was used for the randomized primal-dual
method. It was implemented according to a master-slave scheme. The master held
the reduced cost information and updated the Lagragian multipliers, as well as up-
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dates the best solution following synchronization, at regular intervals, when slaves
sent their best solutions. Slaves received from the master the information required
to run the procedure, but also exchanged and updated information regarding recent
set operations. The second synchronous approach followed apC/KS scheme where
independent searches regularly exchange information. It was used with both random-
ized procedures. The authors also proposed a pC/KS/MPDS co-operative procedure
implemented in a master-slave framework.. The master received and updated best
solutions and search information. Each thread run one of thesequential randomized
procedure and exchanged with the master. The parallel algorithms performed well.

1.7 SATISFIABILITY PROBLEMS

Satisfiability problems are boolean problems of central importance in various fields
such artificial intelligence, automated reasoning, computer design, data base search,
computational complexity, and so on. Loosely speaking, theproblem consists in
finding an assignment of variables that evaluatetrue a given formula.

More precisely, consider a set of variablesx1 , ..., xn , a set of clausesC1 , ...,
Cm, and operators∧ (and), ∨ (or), andnot. A variable may be eithertrue

or false. A literal is defined as “a variable or its negation”. A clauseis a finite
disjunction of one or more literals. Thus, for example, a clause with three literals,
C = x1 ∨ x2 ∨ not x3, will be true if at least one of the literals is true.

The satisfiability problemsat consists in determining if there is an assignment
of variables that evaluate the formulaC1 ∧ C2∧ ••• ∧Cm to true. The maximum
satisfiability problem,max-sat, refers to finding a truth assignment of variables
such that the number oftrue clauses is maximized.

1.7.1 Parallel Genetic Algorithms

Wilkerson and Nemer-Preece [163] proposed two coarse-grain PGA, an independent
and a co-operative multi-search. An initial sequential phase reduced the search space
by assigning atrue orfalse value to each variable that appeared in the same literal
(positive or negative form) in all the clauses. The remaining variables were used
to generate the initial populations for an island model with2p processors, where
p ∈ {2, 3, 4, 5}, represented the highest ranking variables according to the Jeroslaw-
Wang rule. A different assignment oftrue or false values to thep variables was
performed for each processor. Then, an initial population was randomly generated
for each processor by considering the rest of the variables.the same genetic algorithm
was used for all islands. A pC/KS co-operation mechanism wasimplemented. At
fixed intervals (number of iterations), each processor broadcast its best individual
to all other processors, the best new individual replacing the worst individual of
the receiving population. Experimental results showed that the co-operative model
outperformed the independent strategy, achieving super-linear speedups on some
problem instances.
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Folino, Pizzuti, and Spezzano [60, 59] proposed a fine-grained PGA based on a
diffusion model in a Cellular Automata framework. Every cell contained one indi-
vidual and interacted with the neighbour displaying the best fitness. The offspring
survived to replace the parent and be enhanced through a local search (Selman,
Levesque, and Mitchell [131], Selman, Kautz, and Cohen [130]), if it had a better
fitness. Comparative experimentation on hard 3-SAT problems (Mitchell, Selman,
and Levesque [100]) showed that the proposed method outperformed the parallel ver-
sion of local search used to enhance surviving offspring. Additional results reported
later (Folino, Pizzuti, and Spezzano [61]) displayed almost linear speedup and high
quality solutions. Moreover, the parallel GA outperformeda Simulated Annealing
(Spears [139]) and a Genetic Algorithm (Marchiori and Rossi[94]) developed for the
sat problem.

1.7.2 Parallel Simulated Annealing

Sohn and Biswas [136] and Sohn [135] proposed a 1C/RS PSA method for the-lsat
problem, a variant of thesat problem whereL is the ratio of the number of clauses to
the number of variables. The algorithm was implemented according to a master-slave
scheme. At each temperature and step,p iterations were distributed by the master
amongp slaves, one iteration per slave. The master received all the“accepted” solu-
tions of the slaves and, in order to avoid errors associated to simultaneous evaluation
of solution, it kept the solution of the slave with the smallest index in the list of
processors. The algorithm was implemented on a large-scaledistributed-memory
multiprocessor machine. The authors reported high qualitysolutions (i.e., , the qual-
ity increasing with the number of processors. Almost linearspeedup was reported,
particularly when the processors number was below 100.

1.7.3 Parallelgrasp

Pitsoulis, Pardalos, and Resende [116] proposed independent multi-search parallel
grasp method for themax-sat problem. Different seeds were used for each thread
in the construction phase to favor the exploration of different search spaces by the
independent threads. The maximum number of iterations (Resende and Feo [123])
was divided among the processors. The authors reported highquality solutions in
almost linear speedups.

1.7.4 Parallel Ant Colony Systems

Assume a positive weightwi is associated with each clausei. The weightedmax-

sat problem then refers to finding a truth assignment of variables such that the
total weight of true clauses is maximized. Drias and Ibri [50] propose a sequential
ant colony system formax-sat, as well as two parallelizations. Similar to coarse-
grained strategies for population methods, both parallelizations are based on dividing
the colony into several sub-colonies, each assigned to a different processor. In the
1C/KS/MPSS strategy, implemented according to the master-slave model, each slave
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sent to the master its best solution once its ants finished searching. The master then
updated the pheromone and launched a new search phase.

The second parallel followed a pC/KS/MPSS strategy. Each process executes the
same ant colony method on its sub-colony. When the search is over, it broadcasts
its best solution to all other sub-colonies and requests their current best solutions. A
“local” synchronization is thus generated within an asynchronous-communication en-
vironment. The process then selects the overall best solution, updates the pheromone,
and restarts the search. Numerical tests showed the superiority of the co-operative
strategy over the first approach. Both parallel methods outperformed, however,
Moreover, the scatter search proposed by Drias and Khabzaoui [51] and the sequen-
tial grasp presented in Resende and Feo [124].

1.8 QUADRATIC ASSIGNMENT

One of the most difficult problem in combinatorial optimization, the quadratic assign-
ment problem (QAP) may be simply stated as follows. GivenA andB, two square ma-
trices of dimensionn, find a permutationp to minimize

∑
i=1,...,n

∑
j=1,...n AijBp(i)p(j).

The QAP has many applications, facility location problems in particular. Neighbour-
hoods based on swapping elements in the permutation have been particularly popular,
even though their dimensions grow very fast.

1.8.1 Tabu Search

Among the first parallelizations of tabu search for the QAP, as for the other applica-
tions with large neighbourhoods and relatively small computing efforts required to
evaluate and perform a given move, one finds the 1C/RS/SPSS strategy that targets
the neighbourhood evaluation. At each iteration, the possible moves in the neigh-
bourhood of the current solution are partitioned into as many sets as the number of
available processors and the evaluation is carried out in parallel by slave processes.

Chakrapani and Skorin-Kapov [22, 24, 25] proposed and studied such algorithms
for the Connection Machine CM-2, a massively parallel SIMD machine. At the time,
the authors reported that they either attained or improved the best known solutions
for benchmark problems, in a significantly smaller number ofiterations.

Taillard [142, 144] used a different implementation and a ring of 10 transputers.
There was no specific master processor. Following the initial partition of the set of
possible moves and their assignment to different processors, each processor evalu-
ated the pair-wise interchange moves and identified the bestone. It then broadcast
it to all other processors, which then performed all the normal tasks of a “master”
selecting and implementing the move, making the necessary adjustments and up-
dates, partitioning the neighbourhood, etc. Load balancing through partition of the
neighbourhood was acknowledged as critical, but no indication was given on how
it was performed. On several problem sets proposed in the literature (essentially,
the same set used by Chakrapani and Skorin-Kapov, with problem instances up to
size 100, Taillard reported very good solutions, improvingthe best known values of
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many of the problems tested and obtaining suboptimal solutions (conjectured but not
proven to be optimal) for problems up to size 64.

Battiti and Tecchiolli [11, 12] proposed an independent multi-thread PTS, where
the independent tabu searches started the exploration of the solution domain from
different randomly-generated initial solutions. Each tabu search was including a
hashing procedure to dynamically modify the length of the tabu lists and thus react
to the behaviour of the search. The authors then proceeded toderive probability
formulas for the success of this pC/RS/MPDS global search, which tended to show
that the independent search parallelization scheme was efficient - the probability
of success increased, while the average success time decreased with the number of
processors - provided the tabu procedure did not cycle.

De Falcoet al [47] proposed a pC/KS co-operative approach. At each iteration,
each search thread performed a local search from its best solution. Best solutions were
then exchanged between searches that run on neighbouring processors. Local best
solutions were replaced with imported ones only if the latter solutions were better.
The authors experimented on several architectures and reported that they obtained
better solutions when cooperation was included compared toan independent thread
strategy. Super-linear speedups were reported.

Talbi, Hafidi and Geib [147] (see also Talbiet al. [149] and Talbi, Hafidi and Geib
[148]) presented independent multi-thread strategies based on tabu search hybridized
with simulated annealing for the intensification phase. An interesting feature of this
contribution was the dynamic-loadingmechanism, which allowed to use the available
resources of a heterogeneous network of single and multi-processors computers. The
computational results showed very promising performance of the proposed dynamic
loading mechanism in terms of the scheduling overhead. Overhead was low (0.09%)
comparing to the total execution time. Moreover, the authors claimed very high
solution quality compared to the literature.

1.8.2 Genetic Algorithm

Mühlenbein [101, 101] proposed a fine-grained PGA for the QAP.Individuals were
arranged into two equal subsets placed on two rings, such that each individual had two
neighbours on each ring. A hill-climbing heuristic was applied to individuals and GA
operators were applied to the resulting local optimum. It isinteresting to recall that
this work was part of a larger body of contributions where hill-climbing heuristics
were embedded into genetic algorithms to improve (“educate”) individuals and the
impact of this hybridization on GA behaviour and performance was addressed (e.g.,
Mühlenbein, Gorges-Schleuter, and Krämer [106, 107], M̈uhlenbein [102, 104, 105]).

1.8.3 Simulated annealing

Boissin and Lutton [17] developed a parallel SA that uses a domain decomposition
strategy on a massively parallel computer. Experiments performed on a 16K Connec-
tion Machine produced interesting performances. Laursen [83] applied to the QAP
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the same co-operation mechanism described in Section 1.4.3. The strategy suffered
a 10% to 20% communication overhead and produced very bad solutions.

1.8.4 Parallelgrasp

Li, Pardalos, and Resende [90] and Pardalos, Pitsoulis, andResende [115] proposed
the same pC/RS/MPSS parallelization strategy for large-scale QAP that will later be
applied to the Steiner problem (i.e., Martins, Ribeiro, andSouza [96] and Martins
et al. [95]; see Section 1.5.1). Recall that the strategy calls forequal distribution
of a maximum number of iterations among the availablegrasp threads. Numerical
experiments revealed almost linear speedup, around 62 for 64 processors.

Pardalos, Li, and Murthy [113] proposed a pC/RS/MPSS independent multi-search
method. Computational results on benchmark problem instances showed that best
known solutions were generally found. The speedup results were more varied.

1.8.5 Parallel Scatter Search

Cung et al. [44] introduced the first parallel scatter search method forthe QAP.
The authors proposed an independent multi-thread scatter search, where the differ-
ent searches used different parameter settings. The computational results showed
encouraging speedups, but no improvement in solution quality compared to the se-
quential algorithm. According to the authors, the main reason that could explain this
is the rapid convergence of the small-sized subpopulation of each search.

1.8.6 Parallel Ant Colony Systems

According to our best knowledge, the first parallel implementation of an ant colony
system for the QAP was proposed by Talbiet al. [150, 151]. The method consisted in
a 1C/KS parallelization of ANTabu, which is a combination ofan ant colony system
and tabu search. In a master-slave implementation, the master kept and updated
the pheromone matrix and the best solution. At each iteration, the master spread
the current pheromone matrix among all the ants. Each ant performed its search
to construct a complete solution, launched a tabu search to improve that solution,
and sent the final solution to the master. Computational tests conducted with 10
ants indicated the method offered good performances, in terms of solution quality,
compared to the independent multi-thread tabu search proposed by Talbi, Hafidi, and
Geib [147].

1.9 LOCATION PROBLEMS

Location problems may be defined in continuous or discrete space (two dimensions
are generally used, but not always) or on graphs. The objective is to select, locate,
a number of points to cover optimally given zones or points, while satisfying var-
ious constraints (topological, demand, capacity, and so onand so forth). Location
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problems are broadly applied from marketing and economic research, topolitical dis-
tricting, from transportation and logistics to telecommunications and production. We
present in this section parallel meta-heuristics proposedfor three particular classes
of location problems.

1.9.1 Simple Plant Location Problem

The Simple Plant Location Problem is a classical discreet location problem. We
are given a set of customer points with known demands and a setof potential plant
(or warehouse) locations. A fixed cost for opening the facility is associated to each
potential plant site. Transportation costs are associatedto each customer-plant site
pair. The objective is to select the plant locations such that customer demand is
satisfied at minimum total system, opening and transportation, cost.

Kohlmorgern, Schmeck, and Haase [81] proposed two fine-grained parallel ver-
sions based on the island and the diffusion models for the uncapacitated warehouse
location problem. The initial population was divided into 1, 4, 16, 64, 256, and
1024 islands on a parallel machine with 16K processors, eachprocessor holding one
individual. Individuals were arranged in a two-dimensional grid and had eight neigh-
bours. In the first version, a sequential GA was launched in each island (for each
sub-population). Individuals were exchanged between two neighboring island after
a pre-determined number of iterations. The migration rate was fixed as well. The
second model was based on selecting partners at given distances. Each processor
selected a neighboring partner according at the given distance in one of the eight
possible directions A wheel selection rule was used. Experimental results indicated
that the performance of the second model increased with the number of neighbors.
Best results were found when an elitist selection procedurewas used. No results
were given for the island model.

1.9.2 Location with Balancing requirements

The multicommodity location problem with balancing requirements emerged in
the design of intermodal transportation systems. We are given a set of vehi-
cle/commodities, a set of potential locations for vehicle depots and two sets of
"customers", one that supply and another that requests known quantities of given ve-
hicle types. Commodity-specific transportation costs are associated to the customer-
to-depot, depot-to-customer, and depot-to-depot movements (there are no customer-
to-customer movements). The latter are more efficient (bulkshipments) and cost
less that the other two. Fixed opening costs characterize the depot locations. The
objective is to design the system such that the total cost is minimized while satisfying
requests at supply and demand points. The problem is NP-Hardand is represented
as a fixed-cost, mixed-integer formulation with a multicommodity network structure.

The problem served to illustrate the parallel tabu search taxonomy introduced by
Crainic, Toulouse, and Gendreau [41], as well as a thorough comparison of various
parallelization strategies based on this taxonomy (Crainic, Toulouse, and Gendreau
[40, 39]).
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The authors implemented and compared a 1C/RS/SPSS and a 1C/KS/SPSS method.
In a master-slave implementation, the first method had slaves evaluate candidate
moves only, while in the second, calledprobing, slaves also performed a few local
search iterations. The second strategy performed marginally better. However, both
methods were outperformed by p-Control implementations that attempt a more thor-
ough exploration of the solution space. A decomposition approach, which partitioned
the vector of decision variables and performed a search on each subset, was also part
of the study (Crainic, Toulouse, and Gendreau [40]). It performed poorly, mainly
because of the nature of the class of problems considered; multicommodity location
with balancing requirements requires a significant computation effort to evaluate and
implement moves, resulting in a limited number of moves thatmay be performed
during the search.

As far as we can tell, Crainic, Toulouse, and Gendreau [41] proposed the first co-
operative central memory strategy for tabu search as part oftheir taxonomy. Other
than this pC/KC/MPDS strategy, the authors also implemented and compared an
independent multi-thread pC/RS/MPDS approach,pC/KS synchronous co-operations
(varying the synchronization mechanisms and the Search Differentiation strategies),
and broadcast-based asynchronous pC/C co-operative strategies. The authors report
that the parallel versions achieved better quality solutions than the sequential ones
and that, in general, asynchronous methods outperformed synchronous strategies.
The independent multi-search and the asynchronous co-operative approaches offered
the best performance.

Crainic and Gendreau [34] report the development of a hybridsearch strategy
combining the co-operative multi-thread parallel tabu search method of Crainic,
Toulouse and Gendreau [39] with a genetic engine. The genetic algorithm initiates
its population with the first elements from the central memory of the parallel tabu
search. Asynchronous migration (migration rate = 1) subsequently transfers the best
solution of the genetic pool to the parallel tabu search central memory, as well as
solutions of the central memory towards the genetic population. The hybrid appears
to perform well, especially on larger problems where the best known solutions are
improved. It is noteworthy that the genetic algorithm alonewas not performing well
and that it was the parallel tabu search procedure that identified the best results once
the genetic method contributed to the quality of the centralmemory.

The multicommodity location-allocation problem has also been used to study
the impact of co-operation on the global behaviour of the search (Toulouseet al.
[155], Toulouse, Crainic, and Sansó [153, 154], Toulouse, Crainic, and Thulasiraman
[156]). The authors showed that co-operativemeta-heuristics with unrestricted access
to shared knowledge may experience serious premature “convergence” difficulties,
especially when the shared knowledge reduces to one solution only (the overall best
or the new best from a given thread). This is due to a combination of factors: There is
no global history or knowledge relative to the trajectory ofthe parallel search and thus
each process has a (very) partial view of the entire search; Threads often use similar
criteria to access the (same) “best” solution; Each processmay broadcast a new best
solution after a few moves only and thus disseminate information where only part
of the solution has been properly evaluated. The contents ofshared data tend then
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to become stable and biased by the best moves of the most performing threads and
one observes a premature convergence of the dynamic search process. Moreover, the
phenomenon may be observed whether one initializes the local memories following
the import of an external solution or not.

This study explains several of the anomalies reported in theliterature. It has also
been the motivation for the development of more advanced co-operation concepts, in
particular the central memory and the multi-level diffusion co-operationmechanisms.

Gendron, Potvin, and Soriano [67] proposed a co-operative multi-thread parallel
meta-heuristic for the capacitated version of the multicomodity location problem
with balancing requirements. The method combined variableneighborhood descent
(VND), a version of VNS, and slope scaling (SS). The central memory-based co-
operation was implemented via a master-slave architectureand consisted of two
phases. In the first phase, the slaves performed SS procedures in parallel and sent
the best solutions to the SS and VND memories located in the central memory.
In the second phase, a certain proportion of slaves run a VND search, while the
others run SS heuristics. VND processes started from SS memory and fed the VND
memory, while SS processes started from VND memory and fed the SS memory. The
computational tests revealed that the proposed parallel search was more diversified
and thus performed better with an increase in the number of slaves.

1.9.3 Thep-median Problem

Given a set of potential locations forp facilities and a set of locations for their many
users, thep-median problem is to locate simultaneously thep facilities in order to
minimize the total transportation cost for satisfying the demand of the users, each
supplied from its closest facility. Thep-median problem is one of the fundamental
models in (discrete) location theory and a classical combinatorial optimization for-
mulation with a broad application range, including clusteranalysis, data mining, and
so on. Despite the apparent simplicity of its mathematical expression, thep-median
problem is difficult to solve. It belongs to the NP-hard classof problems and exact
solution methods cannot address realistically sized problem instances in most cases
of interest.

1.9.3.1 Parallel Variable Neighbourhood SearchGarćıa-Lópezet al. [62] pro-
posed the first parallelizations for thep-median problem and among the first for VNS
in general. The authors introduced and compared three strategies. The first approach
was a 1C/RS parallelization that attempted to reduce computation time by paralleliz-
ing the local search phase within a sequential VNS. The second one implemented
an independent multi-search strategy, pC/RS/MPSS, which run an independent VNS
procedure on each processor, the best solution being collected at the end. The third
method applied a pC/RS synchronous co-operation mechanismthrough a classical
master-slave approach. The master processor run a sequential VNS. The current
solution was sent to each slave processor that modifies it randomly to obtain an
initial solution from which local search was started. The solutions were passed on
to the master that selected the best and continued the algorithm. The authors tested
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their methods using thetsplib problem instances with 1400 customers only. Not
surprisingly, the last two strategies found better solutions, with the third approach
using marginally less iterations than the second one.

Crainicet al. [36] presented a pC/C/MPSS co-operation mechanism that allowed
each individual search access to the current overall best solution without disturbing
its normal proceedings. The parallel procedure was implemented in an asynchronous
master-slave scheme and may be summarized as follows. Individual VNS processes
communicated exclusively with a central process calledcentral memoryor master.
There were no communications among individual VNS processes. The master kept,
updated, and communicated the current overall best solution. Solution updates
and communications were performed following messages fromthe individual VNS
processes. The master also initiated and terminated the algorithm. To initiate the
process, a parallel reduced VNS (no local search phase) was executed until a number
of unsuccessful trials were observed.

Each search process implemented the same VNS meta-heuristic (local search
used First Improvement, Fast Interchange, andkmax = p). It proceeded with the
“normal” VNS exploration for as long as it improved the solution. When the solution
was not improved, it was communicated to the master (if better than the one at the
last communication) and the overall best solution was requested from the master.
The search was then continued starting from the best overallsolution in the current
neighborhood. Computational results ontsplib problem instances with up to 11849
customers showed that the co-operative strategy yielded significant gains in terms of
computation time without loosing on solution quality. The quality of the solutions
obtained was, in fact, comparable to that of the best resultsin the literature (when
available).

1.9.3.2 Parallel Scatter SearchGarćıa-Lópezet al. [63] proposed three parallel
scatter search methods for thep-median problem. The first parallelization was a
1C/RS synchronous parallel scatter search, where the neighborhood was divided into
several disjoints subsets that were assigned to processors, one subset per processor.
Each processor run a local search on its corresponding subset and returned the result
to the master running the sequential scatter search. The second parallelization, called
Replicated combination scatter search (RCSS), also lead toruntime reductions. It
consisted of partitioning the reference set and running separate scatter searches on
each one of them. The third parallelization follows an independent multi-search
strategy by running the scatter search in parallel for several populations. According
to the reported computational results, the simple 1C/RS parallelization achieved
super-linear speedup, while the best values were found by the independent multi-
search procedure.

1.10 NETWORK DESIGN

Network design problems are a generalization of location formulations. They are
defined on graphs containing nodes, connected by links, either undirected edges or
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directed arcs. Links may have various characteristics, such as length, capacity, and
cost. In particular, fixed costs may be associated to some or all links, signaling that as
soon as one chooses to use that particular arc, one has to incur the fixed cost, in excess
of the utilization cost which is in most cases related to the volume of traffic on the link.
Recall that when the fixed costs are associated to nodes, one obtains the formulation
of a location problem. Such representations are generally used to model the cost
of constructing new facilities, offering new services, or adding capacity to existing
facilities. In network design problems, the aim is to chooselinks in a network, along
with capacities, eventually, in order to enable demand to flow between their origin
and destination at the lowest possible system cost, i.e., the total fixed cost of selecting
the links plus the total variables cost of using the network.Network design has a wide
variaty of applications in transportation, logistics, telecommunication, production,
and so on.

We found few parallel-meta-heuristic developments for thefundamental network
design formulations. Most contributions are dedicated to various aspects of telecom-
munication network design as illustrated in this section.

1.10.1 Multicommodity Network Design

Crainic and Gendreau [35] proposed a pC/KS/MPDS co-operative multi-thread par-
allel tabu search for the fixed cost, capacitated, multicommodity network design
(CMND) problem. In their study, the individual tabu search threads differed in
their initial solution and parameter settings. Communications were performed asyn-
chronously through a central memory device. The authors compared five strategies
of retrieving a solution from the pool when requested by an individual thread. The
strategy that always returns the overall best solution displayed the best performance
when few (4) processors were used. When the number of processors was increased,
a probabilistic procedure, based on the rank of the solutionin the pool, appeared to
offer the best performance. The parallel procedured improves the quality of the so-
lution and also required less (wall clock) computing time compared to the sequential
version, particularly for large problems with many commodities (results for problems
with up to 700 design arcs and 400 commodities are reported).The experimental
results also emphasized the need for the individual threadsto proceed unhindered
for some time (e.g., until the first diversification move) before initiating exchanges
of solutions. This ensures that local search histories can be established and good
solutions can be found to establish the central memory as anelite candidateset. By
contrast, early and frequent communications yielded a totally random search that was
ineffective. The co-operative multi-thread procedure also outperformed an indepen-
dent search strategy that used the same search parameters and started from the same
initial points.

Crainic, Toulouse, and Li [42] proposed a multi-level diffusion parallel algorithm
for the CMND problem. Each individual search thread involved in cooperation made
use of the cycle-based tabu search proposed by Crainic, Gendreau, and Ghamlouche
[68], and explored a given level of aggregation of the graph.Aggregation was
performed by variable fixing. Sets of elite solutions were built at each level and
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local memories recorded the frequency of variables in elitesolutions. Exchanges
occurred at regular intervals and involved solutions, as well as context information
(e.g., memories). Computational results on a set of benchmark problem instances
indicated that this approach yielded good quality solutions comparable to those
obtained by the current best meta-heuristics for the problem.

1.10.2 Telecommunication Network Design

Sleemet al. [134] studied the design of cost-effective ATM networks to provide low
end-to-end delays and such that link are well used within their capacity limitations.
A 1C/RS/MPSS parallelization strategy was implemented on adistributed (network
of workstations) and a multi-processor computer. A first GA was applied to an
initial population. The resulting population was divided into subpopulations, one
per processor, and a second GA was applied to each subpopulation. The resulting
subpopulations were then returned to the master process that reconstituted the whole
population and restarted the process. Surprisingly, numerical results indicated better
performance on the distributed network than on the parallelmachine. The general
performance of the parallel algorithm, compared to the serial method, was mediocre
due to the overhead associated to exchanging large quantities of data (subpopulations).

Flores, Cegla, and Caceres [58] proposed parallel GA methods for the multi-
ojective telecommunication network design. The authors proposed a pC/RS/MPSS
co-operative coarse-grained island strategy. Each subpopulation performed its own
evolutionary algorithm. Following each generation, an elite migration was triggered
from each subopopulation to all other subpopulations. The numerical experimen-
tation was used exclusively to compare this parallel strategy applied to two GA,
SPEA (Strenght Pareto Evolutionary Algorithm) and NSGA (Non-dominated Stor-
ing Genetic Algorithm) that differed in the fitness evaluation procudure. The former
dominated the latter.

Ribeiro and Rosseti [125, 126, 127] proposed pC/RS/MPSS parallelization strate-
gies for agrasp procedure for the 2-path network design. This problem appears
often in telecommunication network design. It aims to identify a minimum cost
design that includes a path with at most two edges for each origin-destination pair in
the network. The authors made use of the same pC/RS/MPSS parallelization strategy
that was applied for quadratic assignment, Steiner, and other problems (e.g., Sections
1.5.1 and 1.8.4). The authors compared several parallel versions of the sequential
grasp on a set of small-sized problem instances. They concluded that the version
integrating a two-way path-relinking improvement phase performed best. The re-
sults also showed that versions that include the path-relinking improvement phase
outperformed a "pure"grasp.

1.10.3 Mobile Network Design

A core problem in the design of wireless networks is the selection of the best set
of radio transmitter locations to maximize the covered areaat a minimum cost (or
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minimum number of transmitters). The problem may be formulated as a set covering
problem.

Caĺegariet al. [20] proposed a co-operative PGA based on the island framework
with small subpopulation size. Numerical results on data from a real-life problem,
showed that the parallel algorithm performed well, in termsof computational time,
in comparison with the sequential genetic algorithm (the speedup was almost linear
and the efficiency is high).

Tongcheng and Chundi [152] propose a co-operative coarse-grained parallel ge-
netic algorithm for the same problem, and implemented it on three different topolo-
gies: ring, bi-oriented ring, and torus. Each thread run a GAenhanced with a local
search applied to 20% of the population after each generation. Migration involves
neighboring nodes which exchange their best chromosome. Each process sent its best
chromosome to all its neighboring nodes, where it replaced the worst individual. The
proposed strategy performed well on the torus topology in terms of solution quality
and number of generations to reach a good solution. The authors performed a limited
comparison between their algorithm implemented with 16 subpopulation of size 10
and the method proposed by Calégariet al. [20] applied to 40 subpopulation of size
4. The results were close with a slight advantage to the latter method. The authors
concluded that their approach performed well even when the number of processors
and individuals was small.

Towhidul Islam, Thulasiraman, and Thalasiram [159] present a parallel ant colony
algorithm for the all-pair routing problem in a wireless network with mobile nodes
(MANET). In MANET, nodes are mobile and can instantaneouslyand dynamically
form a network as needed. The topology of the nodes can thus substantially change
during a short period of time. This makes the problem of determining the best route
for data between all pairs of nodes very difficult. The most significant applications
of this type of network appear in the military domain and in major disaster situa-
tions. According to our knowledge, this is the first time thata parallel meta-heuristic
is applied to the all-pair routing problem (the recent studyof Gunes, Sorges, and
Bouazizi [72] does not address the all-pair routing problemand does not use parallel
computing). The parallel ant colony system proposed by Towhidul Islam, Thulasir-
aman, and Thalasiram applied a domain-decomposition strategy. The network was
decomposed into subgraphs. Each ant was assigned to "its" processor and received a
subgraph on which to search for the shortest paths between all pairs of nodes. The
ants communicated during their searches. Unfortunately, no details were given on
how this communication was realized. It was reported, however, that it required
between 93% and 97% of the total runtime. A speedup of 7 could,however, be
reached when 10 computers were used.

1.11 THE TRAVELING SALESMAN PROBLEM

A well-known, even outside of scientific circles, and fundamental problem in graph
theory and combinatorial optimization, the Traveling Salesman Problem (TSP) may
be summarized as follows. Given a set of points and distancesbetween all pairs of
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points, find a Hamiltonian tour through all points. The TSP appears prominently in
many applications, transportation, distribution, logistics, telecommunications, pro-
duction planning, and so on. The TSP is NP-Hard. In recent years, however, advances
in mixed-integer programmoing have resulted in codes that may address very large
problem instances. Yet, it is still interesting to survey the parallel meta-heuristic field,
since the TSP has offerred a rich environment for developments, many of which were
later applied to other problems. Moreover, it often appearsas a subproblem in many
applications where meta-heuristics are the solution method of choice.

The next subsections examine parallel meta-heuristics forthe TSP according to
the basic methodology. The last subsection group the contributions to a variant of
the problem, the Traveling Purchaser Problem.

1.11.1 Parallel Simulated Annealing

Felten, Karlin, and Otto [55] proposed a 1C/KS/MPSS strategy based on the domain
decomposition idea, and experimented with 64 cities using up to 64 processors of
a hypercube computer. An initial tour was randomly generated and partitioned into
p subsets of adjacent cities. Each subset was then assigned toa processor, which
performed local swaps on adjacent cities for a number of iterations. This was
followed by a synchronization phase where cities were rotated among processors.
Parallel moves did not interact due to the spatial decomposition of the decision
variables. Moreover, each synchronization ensured the integrity of the global state.
Hence, there was no error and almost linear speedups were observed.

Similar developments were proposed by Allwright and Carpenter [2], but com-
munication overhead impaired performances. Jeong and Kim [76, 77] improved the
performance by working on the implementation to reduce thisoverhead. Numerical
results showed their method to be ten times faster than the previous one. A differ-
ent approach, based on parallelizing the speculative computation method of Witte,
Chamberlain and Franklin [164, 165] was presented by Nabhanand Zomaya [109].
The authors managed to reduce the overhead by communicatingonly the moves ac-
tually performed rather than whole solutions. The method produced modest results,
however.

Bevilacqua [16] proposed an adaptive strategy to parallelize simulating annealing
methods and used the TSP as benchmark. According to the status of the search, the
adaptive strategy executes eitherk iterations of the sequential SA or2k iterations of
an independent multi-search SA, withk a parameter to be calibrated. Computational
results indicated the proposed method may yield high quality solutions. For the
instances tested, deviation of the order of 1% to 2.5% from the optimal solution were
observed.

Sanvicente-Śanchez and Frausto-Solı́s [129] proposed a pC/C/MPSS strategy that
decomposed the the sequential SA along temperature lines. ASA was launched at
each temperature. Once its iterations are finished, a SA process broadcast its best
solution to all processes working at lower temperature. On receiving a solution,
a process verified if it was better than its best. In the affirmative, it restarted its
search from the imported solution. It continued, otherwise. The algorithm was tested
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on a network of workstations with few machines on a few test problem instances.
Computation times were reduced, for the same solution quality, compared to the
sequential version. It would be surprising if such an approach could perform on a
larger number of processors.

Diekmann, L̈uling, and Simon [48] proposed a synchronous pC/KS/MPSS co-
operative multi-search. The parallel method performed as well as the sequential SA
in terms of solution quality, while achieving a speedup of 85over 121 processors on
a parallel machine (OCCAM-2) with 320 transputers. The authors noticed that the
solution quality was independant of the numebr of processors.

Ram, Sreenivas, and Subramaniam [119] proposed two variants of a pC/RS/MPDS
synchronous multi-search strategy and applied it to the TSPand the Jop-Shop prob-
lem. The first parallel approach was a direct implementationof the strategy according
to a master-slave model. Slaves run different simulated annealing threads and syn-
chronized at predefined moments to exchange information. The second parallel
approach consisted in executing a sequential genetic algorithm first, and then to start
the previous PSA, each thread starting from a different individual (solution) from the
last generation of the GA. Experimental tests were conducted on a limited number of
processors and the two parallel procedures performed well compared to the sequential
SA, in terms of both solution quality and computation time. Using the GA to initiate
the parallel search seemed to be beneficial.

Miki et al. [99] presented a different SA-GA combination within a parallel
scheme. The authors proposed pC/RS independent multi-search strategy, where each
thread corresponds to a SA, where an adaptive temperature schedule is controled by
a genetic algorithm. Computational results showed good speedups (from 20 to 26.60
on 32 processors).

1.11.2 Parallel Genetic Algorithms

1.11.2.1 Fine-grained Methods Mühlenbein,Gorges-Schleuter,and Krämer [106,
107] proposed a fine-grained parallel GA for the TSP. The individuals of the pop-
ulation were placed on a planar grid, each on a processor. Consequently, each
individual had thus 4 neighbours and neighbourhoods overlapped allowing diffusion
of informaiton. This work was part of the effort to study the introduction into the GA
framework of individual enhancement procedures (a fast version of the 2-opt local
search procedure in this case).

Knight and Wainwright [80] and Mutaliket al. [108] proposed a pC/KS/MPSS
coarse-grained co-operative GA, called HYPERGEN, where aninitial population
was evenly distributed among the processors of a hypercube.Migration occurred at
predetermined moments. The proposed algorithm was tested for few (three) TSP test
problems, but with different parameter settings: population size, migration rate, and
interval migration. The authors observed that,on their test problems, implementations
with large subpopulations needed less interaction (migration exchanges) than those
with smaller subpopulations, for equivalent solution quality. The achieved solution
quality was comparable to the best known solutions at the time.
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Logar, Corwin, and English [92] developed a massively parallel genetic algorithm
on a MasPar MP-1 parallel computer for the TSP. The 2048 processors of the SIMD
machine were arranged in a toroidal grid. Each processor had16 KB memory and
8 neighboring processors. The authors used all 2048 processors to created an equal
number of islands with 10 individuals each. They compared different migration
strategies for their pC/MPSS method. The variant that triggered migration at each
generation offered the best performance with a no-so-impressive speedup of 145.

Chen, Flann and Watson [26] proposed a massively parallel algorithm for a GA
that included a simulated annealing method to determine thesurviving offspring. The
method is similar to a cellular GA, except that mating is not limited to neighbouring
individuals. According to the authors, one of the most striking remarks was the
inversely proportional relationship between the number ofprocessors and the time
needed to reach a near-optimal solution.

Kohlmorgern , Schmeck, and Haase [81] focused on studies regarding the capabil-
ity of different processor topologies to prevent demes of fine-grained parallel genetic
algorithms to be dominated by the genotype of strong individuals. The population
was distributed, one individual per processor, on the processors of a massively parallel
computer 16k processing elements.p subpopulations of 1, 4, 16, 64, 256, and 1024
were defined for the purpose of the study. The authors noticedthat solution quality
increased with the number of subpopulations. They also reported good speedups, but
slow convergence.

1.11.2.2 Coarse-grained MethodsSena, Megherbi, and Isern [132] discussed a
parallel implementation of PGA that combined strict synchronization and population
decomposition ideas. A master-slave platform was used to realize this implemen-
tation. Slaves run the same GA on subpopulations that were randomly generated
initially. After every generation, slaves sent their best solutions to the master. The
master synchronized and controlled the operations. It stooped the search when the
best solution reached a certain threshold. The master couldalso stop or let continue
slaves evolve their populations, depending on the quality of solution received. Ex-
perimental results pointed to relations between the population size and the number
of slave GA processes. Indeed, an optimum combination seemed to exist between
these two parameters for best performance. The authors alsonoticed that as the size
of the population increases, the performance of the proposed PGA improved with an
increase in the number of slaves. Performances were poor forsmall population sizes
due to communication overhead.

Baraglia, Hidalgo, and Perego [8] started from a GA enhancedwith a Lin-
Kernighan heuristic for “educating" new individuals and proposed a coarse-grained
parallelization. The population was partitioned into a fewsubpopulations, each of
which evolved in parallel on different processors. An elitist migration occurred at
predefined period between all subpopulations. According tothe authors, the pro-
posed algorithm performed well on a number of TSP benchmarks. It required less
iterations to reach the optimal solution than the sequential version.

Katayama, Hibarayashi, and Narihisa [78, 79] studied the impact on island-based
parallel genetic algorithms of crossover and selections operators. The pC/KS/MPSS
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strategy had the initial population partitioned into subpopulations and the same local
search (2-opt) enhance GA run starting from each. Co-operation was performed by
elit migration at fixed intervals defined as a number of iterations. Numerical results
(first paper) showed that the proposed PGA was robust relative to the three crossover
operators MPX, ERX, and CSEX, but that the PGA using CSEX dominated the
others. The results (second paper) also showed that the performance of the parallel
approach is more sensitive to the choice of crossover operator than to that of the
selection operators.

1.11.3 Tabu search

Malek et al. [93] proposed a pC/KS/MPDS co-operative parallel strategywhere
the individual search threads were tightly synchronized. The authors implemented
acording to a master-slave model. Their method proceeded with one master that
controled the co-operation and four slaves that run serial tabu search algorithms with
different tabu conditions and parameters. Slaves were stopped after a specified time
interval, solutions were compared, bad areas of solution space were eliminated, and
the searches were restarted with a good solution and an emptytabu list. Note that
long-term diversification memories were disabled in order to strictly implement this
strategy. This implementation was part of a comparative study of serial and parallel
simulated annealing and tabu search algorithms for the TSP.The authors reported that
the parallel tabu search implementation outperformed the serial one and consistently
produced comparable or better results than sequential or parallel simulated annealing.

Chakrapani and Skorin-Kapov [23] proposed the same general1C/RS/SPSS strat-
egy used for the QAP (Chakrapani and Skorin-Kapov [22, 24, 25]; Section 1.8.1)
based on distributing the neighbourhood evaluation. The Connection Machine was
again used for experimentation. The authors reported that,for the same quality of so-
lution as the sequential version, near-linear speedups were achieved using a relatively
small number of processors.

De Falcoet al [47] also applied to the TSP their pC/KS co-operative approach
used for QAP. Recall that the authors implemented a multi-thread strategy, where
each process performed a local search from its best solution. When done, processes
synchronized to exchange best solutions with processes that run on neighbouring
processors. Local best solutions were replaced with imported ones only if the latter
were better. The authors indicated that better solutions were obtained when co-
operation was included compared to an independent thread strategy. Super-linear
speedups were reported.

Fiechter [56] proposed pC/KS/MPSS co-operative method forthe TSP that in-
cluded an intensification phase during which each process optimizes a specific slice
of the tour. At the end of the intensification phase, processes synchronized to re-
combine the tour and modify (shift part of the tour to a predetermined neighbouring
process) the partition. To diversify, each process determined from among its subset
of cities a candidate list of most promising moves. The processes then synchronized
to exchange these lists, so that all build the same final candidate list and apply the
same moves. A master-slave model was used for implementation. Fiechter reported
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near-optimal solutions to large problems (500, 3000, and 10000 vertices) and almost
linear speedups (less so for the 10000 vertex problems).

1.11.4 Parallel Ant Colony Systems

Stutzle [140] implemented an independent multi-search pC/RS/MPSS approach,
where each thread was an enhanced ant colony system (Stutzleand Hoos 1997).
For a similar total run time, i.e., the parallel method run for the time of the se-
quential method divided by the number of processors, this approach achieved high
performance on a number of TSP instances.

Bullnheimer, Kotsis, and Strauß [19] presented for the TSP two parallel ant colony
systems: synchronous and partially asynchronous algorithms. The 1p/KS parallel
synchronous method was implemented in a master-slave platform, where each slave
held one ant. After each iteration, each slave sent its tour and the trace trail to the
master. After updating the trails, the master sent the new information back to the
slaves, which restarted the seach. In order to reduce the communication overhead, a
partially asynchronous strategy was also proposed. In thisapproach, a certain number
of ants was assigned to each slave, which performed their search independently of
other slaves. The master triggered the trail updating by a global synchronization of
all slaves at regular intervals (number of iterations).

In 2000, Middendorf,Reischle, and Schmeck [98] discussed information exchange
strategies for multi-colonyant algorithms. They focused on the impact of information
exchange on running time and solution quality. Colonies were of different sizes and
each was assigned to one processor arranged in a ring. Synchronization took place
after several generations and the best ants were exchanged.This is a very simple
co-operation mechanism and, not surprisingly, the authorsreported that the solution
quality was better when the colonies did not exchange too much information.

Randall and Lewis [120] examined several parallelization strategies, including
multi-colony co-operation: Parallel Independent Ant Colonies (pC/RS/MPDS), Par-
allel Interacting Ant Colonies (pC/KS/MPDS), Parallel Ants (1C/KS), Parallel Evalu-
ation of Solution Elements (1C/RS), and Parallel Combination of Ants and Evaluation
of Solution Elements (1C/KS). A simple synchronization with broadcasting was used
as co-operation mechanism in the second strategy. The authors selected Parallel Ants
for the experiments dedicated to the TSP. he authors implemented this approach ac-
cording to a master-slave model. Each slave launched an ant search separately from
other ants. The master received information from slaves (pheromone, solutions),
updated pheromones, and restart ed the search for each ant. The computational tests
revealed that the performance, in terms of speedup and efficiency, was acceptable for
larger problems (number of cities > 200). However, one of thedisadvantages of the
approach is the large amount of communication required in maintaining and updating
the pheromone matrix.
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1.12 VEHICLE ROUTING PROBLEMS

The vehicle routing problem (VRP)is one of the central problems in operations
research and combinatorial optimization with numerous applications in the fields
of transportation, telecommunications, production planning, etc. The VRP may
be briefly described as follows. Given one or more depots, a fleet of vehicles,
homogeneous or nor, and a set of customers with known or forecast demands, find
a set of closed routes, originating and ending at one of the depots, to service all
customers at minimum cost, while satisfying vehicle and depot capacity constraints.
Other constraints may be added to this core problem, e.g., time restrictions, yielding
a rich set of problem variants. Most VRP problems are NP-Hardand exact solution
methods address limited-size problem instances only.

1.12.1 Parallel Meta-heuristics for the VRP

Rego and Roucairol [121] proposed a tabu search approach forthe VRP based on
ejection chains and an independent multi-thread parallel version where each thread
used a different set of parameter settings but started from the same solution. The
method was implemented in a master-slave setting, where each slave executed a
complete sequential tabu search. The master gathered the solutions found by the
threads, selected the overall best, and reinitialized the threads for a new search.
Low-level parallelism was used to accelerate the move evaluations of the individual
searches, as well as in a post-optimization phase. Experiments showed the method
to be competitive on a set of standard VRP problems (Christofides, Mingozzi, and
Toth, [27]).

Ochi et al. [110] (see also Drummond, Ochi, and Vianna [52, 53]) proposed a
pC/KS/MPSS coarse-grained PGA based on the island model forthe vehicle routing
problem with heterogeneous fleet. A petal decomposition procedure was used to
build the initial population. The population was then divided into several disjoint
subpopulations. Each GA thread evolves a subpopulation andtriggers migration
when subpopulation renewal is necessary. An island in this case would broadcast its
need and receive the best individual of every other island. The incoming individuals
would replace the worst individuals of the receiving population. Computational tests
show encouraging results in terms of solution quality and computing effort.

Alba and Dorronsoro [1] addressed the VRP in which the routeshave to be
limited by a predefined travel time and proposed a fine-grained, cellular PGA. The
population was arranged in a 2 dimentional toroidal grid, each individual having 4
neighbors. Binary tournament selection was applied when selecting the mate for
the first parent. Crossover was applied for these parents, then mutation and local
search for the offspring. Two local search procedures were tested, 2-opt and 2-opt+λ-
Interchange, withλ ∈ {1, 2}. Elitist replacement was used. The authors compared
their algorithm to classical heuristics, the tabu search ofRochat and Taillard [128],
the genetic algorithms of Prins and Taillard [117] and Berger and Barkaoui [15],
the ant algorithms of Bullnheimer, Hartl, and Strauß[18] and Reimann, Doerner,
and Hartl [122]. Computational results on benchmark problem instances showed
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high performance quality for both local search versions. Best performance (solution
quality and rapidity) was observed for 2-opt+1-Interchange.

1.12.2 Vehicle Routing with Time Constraints

Also known as theVehicle Routing Problem with Time Windows (VRPTW), this
problem specifies that service at customer sites must take place within given time
intervals. Most time constraints specify that service cannot begin before a certain
moment (but vehicles may wait "outside", in most cases) and must be over by a given
deadline. In soft-constrainted versions, the time limits may be violated at a penalty.

Czech and Czarnas [46] proposed a pC/KS/MPSS co-operative multi-thread PSA
implemented on a master-slave platform. The master sent theinitial solution to the
salves. It was also in charge of controlling the annealing procedure temperature
schedule, collecting the best local solution from each slave aftern2 iterations for
each temperature level (n was the number of customers), and updating the global
best solution. Each slave run a SA algorithm with the same parameters. Each
slavej co-operated with slavesj − 1 andj + 1 (slave 1 co-operated with slave 2
only) by exchanging best solutions. Co-operation was triggered everyn iterations.
Computational tests with few (five) showed good performance, in terms of solution
quality, compared to the best-known solutions of the Solomon benchmarks.

Berger and Berkaoui [14] presented a low-level parallel hybrid GA that used two
population. The first one aimed to minimize of the total traveled distance, while the
second aimed to minimize the violation of the time window constraints. A different
fitness function was associated with each population. A master-slave platform was
applied, where the master controled the execution of the algorithm and coordinated
the genetic operations. The slave concurrently executed the reproduction and muta-
tion operators. Computational tests were conducted on a cluster of heterogeneous
machines (19 computers). The authors compared their algorithm to the best-known
methods in the literature for Solomon’s benchmark. Their results showed that the
proposed technique was very competitive.

Taillard [143] proposed a pC/KS/MPSS parallel tabu search based on domain
decomposition. The domain was partitioned and vehicles were allocated to the re-
sulting regions. Once the initial partition was performed,each subproblem was
solved by an independent tabu search. All processors stopped after a number of
iterations that varies according to the total number of iterations already performed.
The partition was then modified by an information exchange phase, during which
tours, undelivered cities, and empty vehicles were exchanged between adjacent pro-
cessors (corresponding to neighbouring regions). This approach did allow to address
successfully a number of problem instances. The synchronization inherent in the
design of the strategy hindered its performance, however.

Rochat and Taillard [128] proposed what may be considered asthe first fully
developed adaptive memory-based approach for the VRPTW. The adaptive memory
contained tours of good solutions identified by the tabu search threads. The tours
were ranked according to attribute values, including the objective values of their
respective solutions. Each tabu search process then probabilistically selected tours
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in the memory, constructed an initial solution, improved it, and returned the corre-
sponding tours to the adaptive memory. Despite the fact thatit used a rather simple
tabu search, this method produced many new best results at publication time. Taillard
et al. [145] and Badeauet al. [5] refined this method by enriching the neighbour-
hood and the intensification phase and by adding a post-optimization procedure. The
authors reported 14 new best solutions for the standard dataset (Solomon 1987).

Gehring and Homberger [64] (see also Homberger and Gehring [75]) proposed
a pC/KS/MPDS co-operative parallel strategy where concurrent searches were per-
formed with differently configured two-phase meta-heuristics. The first phase tried
to minimize the number of vehicles by using an evolutionary meta-heuristic, while
the second phase aimed to minimize the total traveled distance by means of a tabu
search. The parallel meta-heuristic was initiated on different threads with different
starting points and values for the search time available forthe first and second search
phases. Threads co-operated by exchangingsolutions asynchronously through a mas-
ter process. For now, this approach has produced, on average, the best solution for
the Solomon problems with respect to, first, the number of vehicles and, second, the
total distance. Results were also presented on larger instances, generated similarly to
the original Solomon problems, but varying in size from 200 to 1000 customers. It
is worth mentioning, however, that this method is rather time consuming compared
to other meta-heuristics, tabu search in particular.

Le Bouthiller and Crainic [85] proposed a central memory pC/KS/MPDS parallel
meta-heuristic where several tabu search and genetic algorithm threads co-operate.
In this model, the central memory constituted the population common to all genetic
threads. Each genetic algorithm had its own parent selection and crossover operators.
The offspring were returned to the pool to be enhanced by two tabu search procedures.
The central memory followed the same rules as in the work of Crainic and Gendreau
[35]. Experimental results show that without any particular calibration, the parallel
meta-heuristic obtained solutions whose quality is comparable to the best meta-
heuristics available, in almost linear speedups.

1.12.3 Dynamic Problems

Gendreau, Laporte, and Semet [66] addressed the deploymentproblem for a fleet of
emergency vehicles and proposed a parallel tabu search based on domain decompo-
sition. A master-slave implementation was performed whereeach slave addressed a
sub-problem associated to a vehicle. Computation tests showed high solution quality
as indicated by territory coverage measures.

Attanasioet al. [3] addressed the multi-vehicle dial-a-ride-problem and pro-
posed two parallel strategies based on a multi-thread tabu search. a pC/C/SPDS and
pc/C/MPSS strategies. In the pC/C/SPMS approach, each processor run a different
tabu search strategy from the same initial solution. Once a processor found a new
best solution, it broadcast it. Re-initilization searcheswere then launched. Everyκ
iterations, a diversification procedure was applied to the first half of the processors,
while an intensification was run on the remaining ones. The pC/KS/MPSS strategy
consists of running various tabu search algorithms from different starting points.
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Each processor run the same tabu search algorithm with the best known parameter
settings. Moreover, everyη iterations, processors exchanged information in order
to perform a diversification procedure. According to the computational results, both
the pC/C/SPMS and pC/C/MPSS strategies outperformed the sequential tabu search
of Cordeau and Laporte [32].

Gendreauet al. [65] proposed a co-operative multi-thread parallel tabu search
method for real-time routing and vehicle dispatching problems. The authors followed
and adaptive memory approach. In an interesting development, the authors also
exploited parallelism within each search thread by decomposing the set of routes
along the same principles proposed in Taillard’s work [143]. Very good results were
obtained. This line of research is continuing very strongly.

1.13 SUMMARY

We have presented a survey of parallel meta-heuristic methods applied to a rather
broad set of problems: graph coloring and partitioning, Steiner tree problems, set
covering and partitioning, satisfiability and max-sat problems, quadratic assignment,
location and network design, traveling salesman and vehicle routing problems.

This survey it is certainly not comprehensive. Important topics could not be
covered and not all published contributions in the topics covered could be surveyed.
The scope of the chapter is sufficiently broad, however, to allow us to draw some
conclusions and share a number of thoughts on the subject of parallel meta-heuristic
applications.

The survey illustrates the richness of contributions to thedevelopment of parallel
meta-heuristics as well as that of their applications to many important problems in
science and practice. It also illustrate the fact that this richness notwithstanding,
one finds only a somewhat limited number of fundamental principles regarding how
to design parallel meta-heuristic procedures. We summarized these principles in
the taxonomy section presented at the beginning of the chapter. To sum up, it
appears that asynchronous co-operation enhances the performance of parallel meta-
heuristics independently of the methodology used in the initial sequential method.
This conclusion is strongly supported by the results obtained by multi-thread co-
operative strategies.

The survey also illustrate that not all application fields have been studied with com-
parable fervor. Indeed, many important topics have seen only a few of contributions.
Even for topics for which the number of contributions is morenumerous, these are
not evenly distributed among meta-heuristic classes. Without trying to completely
explain the phenomenon, one may observe correlations between the methodologies
selected and the scientific field of most of the researchers that have addressed it.
Interesting research avenues and promising developments may thus go unexplored,
and appropriate tools may be missing in some areas. It shouldbe a challenge of the
profession to explore as comprehensivelyas possible as many problem types as possi-
ble. While taking up this challenge, one should make sure that methods are compared
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across methodological approaches and that such comparisons are performed fairly,
that is, all algorithmic developments are at the same level of sophistication.

To conclude, parallel meta-heuristics offer versatile andpowerful tools to address
large and complex problems. Many fascinating research avenues are open. Some
address issues related to the design of parallel meta-heuristics. Others concern
the application of these designs to specific problems and theselection of the most
appropriate. We hope that this chapter has contributed to illustrate these opportunities
and challenges.
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Álvarez, J., editors,Artificial Neural Nets Problem Solving Methods - Proceed-
ings of the 7th International Work-Conference on Artificialand Natural Neural
Networks, volume 2686 ofLecture Notes in Computer Science, pages 414–421.
Springer-Verlag, Heidelberg, 2003.

51. Drias, H. and Khabzaoui, M. Scatter Search with Random Walk Strategy for SAT
and Max-SAT Problems. In L. Monostori, Váncza, J., and A. Moonis, editors,
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142. Taillard,É.D. Robust Taboo Search for the Quadratic Assignment Problem.
Parallel Computing, 17:443–455, 1991.
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