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1.1 INTRODUCTION

Parallel meta-heuristics have been applied to a multitddesldls by people with
different backgrounds and active in different scientifiexrounities. This illustrates
the importance of parallel meta-heuristics. This phenamelmas also resulted,
however, in what may be called a lack of dissemination ofltesicross fields. This
is unfortunate but not exclusive to the parallel meta-retigs field. This chapter
aims to contribute toward filling this gap.

The parallel meta-heuristic field is a very broad one. Paraleta-heuristics may
potentially be applied to any decision problem in whichefield, as indeed it is
the case with sequential meta-heuristics. Yet, the spaaiahbie for this chapter
imposes hard choices and limits the presentation. We haueftire selected a
number of topics that we believe representative due toskgriificant methodological
impact and broad practical interest: graph coloring anditmaring, Steiner tree
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2 PARALLEL META-HEURISTICS APPLICATIONS

problems, set covering and partitioning, satisfiabilitg amax-sat problems, quadratic
assignment, location and network design, traveling sad@send vehicle routing
problems.

We do not pretend to be exhaustive. We have also restrictadimimum the
presentation of general parallel computation issues akasethat of the parallel
meta-heuristic strategies. The reader may consult a nuaflseirveys, taxonomies,
and syntheses of parallel meta-heuristics, of which quitevaaddress the “classical”
meta-heuristics, Simulated Annealing, Genetic Algorishand Tabu Search, while
some others address the field in more comprehensive terms:

PSA Azencott [4], Greening [71, 70], Laursen [84], Ram, Sreagjand Subrama-
niam [119];

PGA Canti-Paz [21], Lin, Punch, and Goodman [91]iNenbein [104], Shon-
kwiler [133];

PTS Crainic, Toulouse, and Gendreau [41], Glover and Lagunp |83 [162];

General Barr and Hickman [9], Crainic [33], Crainic and Toulouse [38], Cung
et al. [43], Holmqvist, Migdalas, and Pardalos [74], Pardaédsal. [114],
Verhoeven and Aarts [160],.

Surveying the literature, one notices an uneven distidutif work among the
various areas, both in number of papers and in the varietyetfiods used. Indeed,
in several fields the number of different meta-heuristias #ne applied appears quite
limited as is the number of parallelization strategies. Assallt, general trends and
conclusions are difficult to identify, even within a giverear It appears, however,
that several areas would benefit from a broader investigatia critical comparison
of meta-heuristics and parallel strategies. This chamerdeen conceived with the
aim to offer both a starting point and an incentive to undertae research required
to address these challenges.

The Chapter is organized as follows. Section 1.2 introddlceselements we
use to describe and classify each contribution. Sectidh$011.12 present parallel
meta-heuristic contributions to the areas identified ab&eetion 1.13 concludes the
chapter.

1.2 PARALLEL META-HEURISTICS

To survey applications of parallel meta-heuristics reggiithat one defines some
criteria to classify the parallel meta-heuristic stragsgi Our approach is one of
conceptual, algorithmic design, the computer implemémailying second violin.
We adopt for this Chapter a classification that is sufficiegéineral to encompass
all meta-heuristic classes without, on the one side, egatsia specifics of each
while, on the other side, avoiding a level of detail inconitgatwith the scope and
dimension limits of the chapter. The classification is basedhe work of Crainic,
Toulouse, and Gendreau [41]) and Crainic [33]) with consitiens from Crainic and
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Toulouse [37, 38]. Note that Verhoeven and Aarts [160] andd&a al. [43] present
classifications that proceed of the same spirit as Crairdojolise, and Gendreau
[41].

Parallel/distributed computing applied to problem sajvimeans that several pro-
cesses work simultaneously on several processors witlothexon goal of solving a
given problem instance. One then has to determine how thmabtwoblem-solving
process is controlled and how information is exchanged grttomvarious processes.
More than one solution method may be used to perform the saskeand thus a
taxonomy has also to specify this characteristic. The firmedsion Search Control
Cardinality, thus explicitly examines how the global search is corgdilleither by
a single process (as in master-slave implementations)li@gély by several pro-
cesses that may collaborate or not. The two alternative&largified asl-control
(1C)andp-control (pC) respectively.

The dimension relative to the type 8earch Control and Communicatioas-
dresses the issue of how information is exchanged. In gar@adimputing, one
generally refers t@ynchronousnd asynchronousommunications. In the former
case, all concerned processes have to stop and engage ifaomef communi-
cation and information exchange at moments (number oftiters, time intervals,
specified algorithmic stages, etc.) exogenously detemhiagher hard-coded or
determined by a control (master) process. In the latter, e@sd process is in charge
of its own search, as well as of establishing communicatwitts other processes,
and the global search terminates once each individualtlsstops. To reflect more
adequately the quantity and quality of the information exayed and shared, as well
as the additional knowledge derived from these exchan§esy), we refine these
notions and define four classes of Search Control and Conuationm strategies,
Rigid (RS)andKnowledge Synchronization (K&8hd, symmetricallyCollegial (C)
andKnowledge Collegial (KC)

The third dimension indicates th®earch Differentiation do search threads
start from the same or different solutions and do they malkeaisthe same or
different search strategies? The four cases considered SIPSS, Same initial
Point/Population, Same search Strate@PDS, Same initial Point/Population, Dif-
ferent search StrategipMPSS, Multiple initial Points/Populations, Same search
Strategies MPDS, Multiple initial Points/Populations, Different seh Strategies
Obviously, one uses “point” for neighbourhood-based meshsuch as Simulated
Annealing, Tabu Search, Variable Neighbourhood SearchA®R Guided Local
Search, etc., while “population” is used for Evolutionargtinods (e.g., Genetic Al-
gorithms), Scatter Search, and Colony methods (e.g., émmies). When the initial
population is a singleton (e.g., an ant), the tsingle evolutionary poiris also used,
as well as, in the PGA-context, fine-grained, massive, dsajlparallelism.

Typically, 1-control strategies implement a classical taaslave approach that
aims solely to accelerate the search. Here, a “master” psocexecutes a sequential
meta-heuristic but dispatches computing-intensive taskse executed in parallel
by “slave” processes. The master receives and processe¥dhmation resulting
from the slave operations, selects and implements movdsropopulation-based
methods, selects parents and generates children, uptateseimories (if any) or
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the population, and decides whether to activate differeatch strategies or stop the
search.

In the context of neighbourhood-based search, the oparnatist widely targeted
in such approaches is the neighbourhood evaluation. Atigaetiion, the possible
moves in the neighbourhood of the current solution are faréd into as many sets
as the number of available processors and the evaluaticariged out in parallel
by slave processes. For population-based methods, it fitrileas evaluation that is
most often targeted in such 1C/RS/SPSS strategies.

Probing or look-ahead strategies to the 1C/KS class withodittye search differ-
entiation models identified previously. For neighbourhtaded methods, such an
approach may allow slaves to perform a a number of iterabefre synchronization
and the selection of the best neighbouring solution fromcivithe next iteration is
initiated (one may move directly to the last solution id&atl by the slave process
or not). For population-based methods, the method may alaeh slave process
to generate child solutions, “educate” them through a Hiithloing or local search
procedure, and play out a tournament to decide who of thentsmsnd children
survive and are passed back to the master.

Multi-searchor multi-thread parallel strategies for meta-heuristics have offered
generally better performances, in terms of solution qualitd computing times,
than the methods introduced above. Historically, indepahdnd synchronous co-
operative multi-search methods were proposed first. Thehasip currently is on
asynchronous communications and co-operation. Mostegifins of such strategies
generally fall into thepC category.

Independenmulti-search methods belong to the pC/RS class of the tarngno
Most implementations start several independent searatepses, all using the same
search strategy, from different, randomly generatedailibnfigurations. No attempt
is made to take advantage of the multiple threads runningialiel other than to
identify the best overall solution once all processes stdpis definitively earns
independent search strategies their Rigid Synchronizatassification. (Note that,
in general, the implementations designate a processorltectthe information
and verify stopping criteria.) This parallelization of tbkassic sequential multi-
start heuristic is easy to implement and may offer satiefgatesults. Co-operative
strategies often offer superior performance, however.

pC/KS co-operative strategies adopt the same general agpias in the inde-
pendent search case but attempt to take advantage of thiéepearploration by
synchronizing processors at pre-determined intervala.niaster-slave implementa-
tion, the master process than collects the information anidlly restarts the search
from the best solution. Note that one can overcome the ltiaita of the master-slave
architecture by, for example, empowering each search psateinitiate synchro-
nization of all other searches (e.g., using a broadcastpee-®pecified subset (e.g.,
processes that run on neighbouring processors). Here, & imore advanced
co-operation mechanisms indicated bellanigration is the term used to identify
information exchanges in PGA.

Asynchronous co-operative multi-thread search methottmpgeo the pC/C or
pC/KC classes of the taxonomy according to the quantity aradity of the infor-
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mation exchanged and, eventually, on the “new” knowledégriad based on these
exchanges. Most such developments use some formewhoryfor inter-thread
communications (the termgool, blackboard and data warehouseare also used
sometimes). Each individual search thread starts fromallygua different initial
solution and generally follows a different search stratdgychanges are performed
asynchronously and through the pool. The information emgked may be simply a
“good” solution, a solution and its context (e.g., memoreerding recent behaviour
of solution attributes), or a comprehensive history seaBzime co-operation mech-
anisms, most migration-based population methods for elgnto not keep any
trace of information exchanges. Most others keep at leassatutions exchanged.
Memories recording the performance of individual solusiosolution components,
or even search threads may be added to the pool and staticeergrgdually built.
Historically, adaptivememory mechanisms relied on building a set of “good” partial
solutions extracted from “good” solutions, whidentralmemory ones kept all solu-
tions exchanged. The differences between the two appreaehd to become more
and more blurred. Various procedures may also be added foothigo attempt to
extractinformation or to create new informations and sohg based on the solutions
exchanged. Co-operative multi-thread strategies imphimg such methods belong
to the pC/KC class.

One of the goals of memory-based co-operation strategiesisrease the control
on the complex information diffusion process generatedhmjirts of inter-process
information exchanges. (It is indeed well-known that utrieted access to shared
information may have quite a negative impact on the globladkimur of co-operative
searches.) A different approach to co-operation has bemoped recently with the
same goals. The mechanism is caltkfiusionand in its original presentation was
based on anulti-levelparadigm. In this setting, each search works on a version of
the problem instance “aggregated” at a given level. Excharage then restricted
to the processes working at one aggregation level up and.dBwechanges involve
solution values and context information that is used byotegioperators to guide the
search at the receiving level. This pC/KC approach is ptesen somewhat more
details in Section 1.4.4.

We complete this section with a note bpbrid methods. The term is much used
but its meaning varies widely. In a strict sense, all metarisdcs are hybrids since
they involve at least two methods. Closer to most applicati@ hybrid involves
at least two methods that belong to different methodoldgpgroaches. Thus,
for example, using genetic operators to control the tenipezavolution in a PSA
method yields a hybrid. Notice, however, that by this ddbnit all evolutionary
methods that include an “educational” component, that ig@mncement of new
solutions through a hill climbing, a local search, or eveanlkl§lown meta-heuristic,
are hybrids. Most co-operative parallel strategies coadjbalified as hybrids as
well. Since, other than “more than one method is used”, tire tibes not offer any
fundamental insight into the design of parallel stratefiesneta-heuristics, we do
not use it to qualify the contributions reviewed in this cteap
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1.3 GRAPH COLORING

Graph coloring is a well-studied problem with many appii@as, in particular to the
problem of testing printed circuit boards for unintendedrsitircuits, frequency
assignment in wireless networks, and time tabling. The lijghraneta-heuristic
developments for the problem are, however, very limited.

Given a graph, the problem consists in finding the minimum lpemnof colors
such that an assignment of colors to graph vertices yielddaing where adjacent
vertices display different colors. The problem is known ¢odNP-hard.

The unique parallel meta-heuristic contribution we areraved was proposed by
Kokosinski, Kolodziej, and Kwarciany [82]. The authors posed a co-operative
coarse-grained parallel genetic algorithm, often idesdifin the PGA literature as
the island framework: each process in the co-operation run the same &4,
all subpopulations were of the same dimension. Co-operatias performed by
migrating at fixed intervals, a fixed number of individualerfr one island to all
the other ones. The arriving individuals randomly replatesl same number of
individuals of the receiving subpopulation. Two migratipolicies were proposed:
random and elitist. In the former, the migrating individsialere randomly selected,
while in the latter, the best individuals migrate. Expenirtzg results on benchmark
test problems indicated that the elitist migration apphogerformed better than the
random one. Optimal solutions were obtained rapidly whendlitist migration
strategy was applied between a small number of subpopuotatd®or 5) of size 60.

1.4 GRAPH PARTITIONING

The graph (and hypergraph) partitioning problem may besdtat follows. Given
a graphG = (V, £) with vertex sefy and edge sef), find a partition of the graph
into a number of disjoint subsets of vertices such that saonéitions are satisfied.
Thus, for example, find a-set partition such that the cardinality of thesubsets of
vertices are (nearly) equal.

Graph patrtitioning is a fundamental problem in combinatlooptimization and
graph theory. It appears in many application areas, edpetiacomputer science
(e.g. VLSI design). A significant number of parallel metaistics, involving a
wide array of meta-heuristic methodologies, have beengsegfor the problem.

1.4.1 Fine-grained PGA

Muhlenbein [103] proposed an asynchronous fine-grained RipPoach, where the
individuals were placed on a particular topology (grid) angmall fixed-size neigh-
bourhood was assigned to each individual. This neighbadhsually consisted of
the neighbour individuals on the grid, and the applicatibsetection and crossover
operators was restricted to this neighbourhood. The asthggested that different
hill-climbing strategies could be applied concurrentlyt bid not implement this

strategy.
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Collins and Jefferson [31] developed a fine-grained PGAforhultilevel graph
partitioning problem using the massively parallel ConimecMachine. The main
purpose of this work was to characterize the difference bebtdocal and panmictic
(i.e., at the level of the entire population) selectiongsmver schemes, which are
known to converge on a single peak of multimodal functiongnewhen several
solutions of equal quality exist. Tests were performed amation with two optimal
solutions, and the panmictic approach never found bothtisolst The method
using local selection and crossover consistently foundh loptimal solutions and
appeared more robust. The authors noted that behavioangigamodifications to
the panmictic selection and crossover operators requiaaba to global information,
which they claimed was not suitable for parallelization. eOnay question this
conclusion, given the new co-operation mechanisms prajxisee and the particular
architecture used (that is no longer available).

Talbi and Bessire [146] studied the problem of mapping parallel programs o
parallel architectures. The authors proposed a mathemhatiodel related to the
graph partitioning problem and a fine-grained parallel ¢giersdgorithm. The initial
population was arranged on a torus of transputers such teay &ansputer held
exactly one individual. Each individual thus had four ndigting individuals, and
each of them was selected in turn as the second parent foepiheduction opera-
tion. Each reproduction produced two offsprings, but ormg @f them (randomly
selected) survived to participate to the replacement diper¢hat replaced the in-
dividual with the best of its surviving offsprings. The posgd parallel algorithm
was tested for a pipeline of 32 vertices partitioned intdhegub-sets. Near-linear
speedup was observed. Moreover, the solution quality &ser@ with the population
size. According to the authors, the fine-grained algorithiperformed simulated
annealing and hill-climbing methods.

Maruyama, Hirose, and Konagaya [97] implemented an aspmncius fine-grained
PGA on a cluster of workstations and a Sequent Symmetry ctampuan attempted
to adapt the fine-grained strategy to coarse-grained pacalimputer architectures.
Each processor had an active individual and a buffer of ségsaspended individuals.
Active individuals were sent to all other processors, whighdomly selected one
individual among those received to replace one of the sugzbindividuals according
to the fitness function. Crossover consisted of replacimggfahe active individual
by a part of one of the suspended individuals. Only one afigpwas produced, the
other parts of the active and suspended individuals bejegtesl. Mutation was then
applied and the modified active individual was compareddattspended individuals.
If it could not survive, it was replaced by one of the suspehddividuals according
to the fithess function. Tests were performed with 15 pramsstr the Sequent
Symmetry and 6 processors for the cluster of workstatiorise duthors reported
near linear speed-ups for the same quality of solution oh typtes of coarse-grained
architecture.
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1.4.2 Coarse-grained PGA

Cohooretal. [28] and Cohoon, Martin, and Richards [29, 30] comparedridepen-
dent multi-search PGA (i.e., without migration) and a pC/&&Soperative strategy
where migration operators were applied at regular intervarhe latter strategy
outperformed the independent search approach.

Diekmannet al. [49] proposed a 1C/RS PGA for thepartitioning problem
implemented according to the master-slave model. Nunlegiqzerimentation on
a MIMD machine using up to 64 processors showed sub-linesgdyps. Yet, the
solution quality of the parallel algorithm outperformedtbof the sequential version.
This performance was increasing with the number of proegessbhe authors also
observed a strong dependence of the solution quality onahe\ofp: the larger,
the better.

Lin, Punch, and Goodman [91] presented several coarsaeagraenetic algo-
rithms based on different co-operation schemes, obtaigyedatying the Control
and Communication and the Search Differentiation strategStatic and dynamic
communications have been considered. In the static modeipwnications are
defined by the physical topology, rings, meshes, etc. Themiyon model allows
several degrees of freedom in the choice of the process toncmicate with by, for
example, taking into account the Hamming distance betwleernvwo processes in
the given computer architecture. The migration may be syoradus, after a fixed
number of generations or when a convergence thresholdigsedt, or asynchronous
(elitist). Two Search Differentiation strategies were lerpented: either the same
strategy for all processes or different strategies for dgchiarying the genetic op-
erators, encoding method, an so on. Computational expetimeere conducted for
eight instantiations of the previous PGA model. Subpojurtatwere of equal size,
randomly generated initially, and placed in a ring. Commations were triggered
at fixed intervals. Numerical results indicated that the@®PDS strategy, i.e.,
different GA search strategies with asynchronous mignatioward a subpopulation
dynamically selected based on Hamming distance, offerecb#st performance.
Super-linear speedup was observed for 5, 10, and 25 sulgimms.

Hidalgoet al. [73] studied a graph partitioning problem issued of a pat#iccir-
cuit design application. The authors proposed a two-ldeehichical parallelization.
A pC/KS/MPDS multi-thread co-operative method, which syrenized at regular
intervals to improve the best individual, run at the firsellevi he fithess computation
was performed at the second level in a master-slave impletiem. Experimental
results showed good performance for up to eight proces$bisoverhead due to the
parallelization of the fitness becomes significant for largembers of processors.

1.4.3 Parallel Simulated Annealing

Durand [54] addressed the issue of error tolerance for lehsiinulated annealing
methods that implement 1C/KS strategies with domain deasitipn. In such
strategies, the problem variables (i.e., vertices of tlaglyipartitioning problem) are
partitioned into subsets and distributed among a numbepcggsors. A master-slave
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approach was used on a shared-memory system. To initiagetreh, the master
processor partitioned the vertices into a number of ingiégh, and sent each set to
a processor, together with the initial values for the terapge and the number of
iterations to be executed. Each slave processor then exkitigt simulated annealing
search at the received temperature on its allocated setiables, and sent its partial
configuration of the entire solution to the master proces&urce the information
from all slaves was received, the master processor mergegkitiial solutions into
a complete solution and verified the stopping criterion.h# search continued, it
generated a new partition of the variables such that eaéh difterent from the one
at the previous partition, and sent them to the slave procgsgegether with new
values for the number of iterations and the temperature.atiieor tested different
levels of synchronization to measure the impact on the generated. As expected,
they conclude that 1) the error is small at frequent syndaation levels but the cost
in computation efficiency is high; and 2) the error increaasghe frequency of
synchronizations decreases and the number of processoeases.

An alternative to the decomposition-based strategies mdwee to multi-search
approaches, where each processors runs its own coolingidehelee and Lee
[86, 88, 87] examined a pC/RS independent search model dsas/several co-
operation variants where the SA threads interact synclhusipand asynchronously
at fixed or dynamic intervals. For the graph partitioninghpem, dynamic interval
exchange strategies generally performed best. Asyncheoaond synchronous co-
operative multi-thread SA outperformed the other pariali¢ions in terms of solution
quality and running time. The pC/C strategy, where threadsange asynchronously
through a central memory obtained solutions of equal oebeftiality compared to
the synchronous parallel schemes.

Laursen [83] proposed a different co-operation mechanisioting that several
SA threads form a population, he proposed a scheme baseckeligction and
migration operators of parallel genetic algorithms. Eagltpssor concurrently runs
k simulated annealing procedures for a given number of iterat Processors are
then paired and each processor migrates (copies) its@odutd its paired processor.
Thus, after the migration phase, each processor2kaimitial solutions and this
number is reduced té& by selection. These new solutions become the initial
configurations of thé concurrentsimulated annealing threads, and the seatelntses
on each processor. Pairing is dynamic and depends on thitypaf the parallel
machine. For example, in a grid topology, processors camiti any of their corner
neighbours. Three co-operation strategies were testedigration, global, and local
(stepping-stone). Global migration corresponded to a Kedge Synchronization
strategy: the best states were brought to a given procegsich then chose the best
among the best and broadcast them to all processors. Tdisgtrsuffered a 10% to
20% overhead in communication cost and produced very batisos. As expected,
the independent search (no migration) approach was thesfadtategy but produced
lower quality solutions compared to the local migratiomttgy, which incurred only
a 2% overhead. Because processors are dynamically paicedeaghbourhoods
overlap, in the local co-operation scheme information pgades in the network of
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processors similarly to the stepping-stone coarse-giaimedel for parallel genetic
methods.

1.4.4 Multi-level Co-operation

Toulouse, Thulasiraman, and Glover [158]; see also Toelo@over, and Thu-
lasiraman 1998[157] proposed a new co-operation mechaaisapplied it to
the graph and hypergraph partitioning problems with graatsss (Ouyangt al.
citeo+toulouse+tgd00,0+toulouse+tgd00a. Their apgraacurrently the best avail-
able for this problem.

The mechanism is calledhulti-level co-operative searclbelongs to the pC/KC
with potentially any Search Differentiation strategy (thehors used MPSS), and is
based on the principle of controlled diffusion of infornwati Each search process
works at a different level of aggregation of the originallpieon (one processor works
on the original problem). The aggregation scheme ensuat¢stfeasible solution at
at any level is feasible at the more disaggregated levelgatyet al. [111, 112]
analyze various aggregation operators for the graph joeitig problem.

Each search communicates exclusively with the processesingoon the im-
mediate higher and lower aggregation levels. Improvedtieois are exchanged
asynchronously at various moments dynamically determimeé@ach process ac-
cording to its own logic, status, and search history. Rexksolutions are used to
modify the search at the receiving level. An incoming sotill not be trans-
mitted further until a number of iterations have been penfedl, thus avoiding the
uncontrolled diffusion of information. The approach is weuccessful for graph
partitioning problems and starts now to be applied to otledddi

Banoset al. [7, 6] have also used the multi-level approach as a basisdior ¢
structing a co-operative search, but used a pC/RS/MPSegyramplemented in a
master-slave configuration. Each search thread consi$tedinulated annealing
algorithm, enhanced of a simple tabu search to avoid SAmychnd worked at a
given aggregation level. Periodically, each search thsead its best solution to the
master, which selected the overall best and broadcastadkttb the threads, which
then continued their search. Computational results reteathe parallel algorithm
obtained solutions as good or better that the sequentisiorein shorter computing
times.

1.5 STEINER TREE PROBLEM

The Steiner tree problem, also identified sometimes simplgha Steiner problem

(Verhoeven and Severens [161], or as the Steiner problemajphg or the Steiner

minimal tree (Martins, Ribeiro, and Souza [96], has manyliapflons, including

VLSI design and telecommunication network design (e.gltioast routing).
Consideragrapty = (V, &) with vertex se¥’ and edge se&f), and a non-negative

weight functionw that associates a positive valuge) to every edge: € £. Let

X C Vsuchthaty \ X # (. The Steiner tree problem then consists in finding
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a minimum weighted subtree @ spanning all terminal vertices i&. The set
of non-terminal vertices of the minimum tree are call&@iner Set The Steiner
tree problem is NP-Hard. Many meta-heuristics belongingaous types, e.g.,
tabu search, simulated annealimgrAsP, genetic algorithm, and local search, have
therefore been proposed. A few of these methods have bealhgtiaed.

1.5.1 Parallelcrasp

Martins, Ribeiro, and Souza [96], Martiesal. [95] proposed severalrRASP proce-
dures for the Steiner problem. The parallel versions ofemesthods have also been
proposed. The authors used a pC/RS/MPSS parallelizatmtegy implemented ac-
cording to a master-slave model. Each thread run the samer procedure with a
differentinitial seed for a number of iterations equal togé of the sequential version
divided by the number of available processors. The bestisalwas collected at the
end. The strategy achieved high solution quality for theéofgm instances tested, as
well as good speedups. The Martetsal. [95] implementation achieved comparable
results, in terms of solution quality, compared to the besivkn tabu search with
path-relinking method of Bastos and Ribeiro [10].

1.5.2 Parallel Local Search

Verhoeven and Severens [161] proposed sequential andgbévehl search methods
for the Steiner tree problem based on a novel neighborhdbdsuthors claimed
“better” than those known in the literature. The paralledtstgy followed a 1C/KS
model. Computational results indicated that good speedzapld be obtained with-
out loss in solution quality. Actually, the proposed pakdligorithm outperformed
in terms of speedup the parallekasp of Martins, Ribeiro, and Souza [96].

1.6 SET PARTITIONING AND COVERING

Consider a sef of cardinalityn and a collectiol€ = (S1, Sa, - - - Sy, ) of m subsets
of S. A weightc; is associated with each subsgt A partition of S is a subset of
C such that all elements & are included and each of them belongs to exactly one
set of the partition. A cover of is a subset of such that each element Sfare
belongs to at least one subset in the cover. The weight oftéiparor of a cover
is the sum of the weights of the included sets. The set partfiroblem consists of
finding a partition ofS with minimum total weight, while a cover & of minimum
total weight is the goal of the set covering problem.

The set partitioning and covering problems may be also caét-4 linear op-
timization problemsmin},_, , ¢;z; subject toAdz < (=)l andxz; € {0,1},
where line of the matrix corresponds to an element&f each column to a subset
S;, j=1,---,mof C, and each decision variablg, j = 1,---,m indicates if the
corresponding subset is to be part of the optimal partiti@mvér).
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The literature on the set partitioning and covering proldésvery rich. The two
problems appear in many application domains, routing ahdding, location and
design, production, capital investment, image coding sah. Exact, heuristic, and
meta-heuristic solution methods have been proposed dimgjua number of parallel
meta-heuristics summarized in the following.

1.6.1 Set Partitioning Applications

We identified only two contributions aimed at parallel mb&uristics for the set
partitioning problem.

Levine [89] addressed the set-partitioning problem appti the airline crew
scheduling problem and proposed two versions of a coaiseddt, island parallel
genetic algorithm: with (co-operative search) and with@dependent search) mi-
gration. A simple co-operative mechanism was proposedbéisechromosome in a
subpopulation migrates to a neighboring subpopulatiorxatfintervals, while the
chromosome to delete is randomly selected. A MPSS Seartdr@&itiation strategy
was selected, the initial populations for the islands beagdomly and indepen-
dently generated. Numerical results indicated that thepavallel versions generally
offered similar solution quality, with a slight advantagethe method integrating
migration. Both methods outperformed the sequential apgro

Czech [45] has studied a single-depot vehicle routing mmbivhere each route
cannot serve more than a fixed, small number of customersadther formulated the
problem as a set-partitioning problem, and proposed twallghsimulated anneal-
ing algorithms, based on the independent and co-operati-search paradigms,
respectively. The co-operation is of the pC/KS type. The $écpsses transmit
their best solutions every n steps. Each thread then sigaita the search after up-
dating its best solution. The results reported show that patallel methods obtain
better results than the sequential version in terms of isolyfuality. Moreover, the
co-operative method outperformed the independent ntuitiatd search.

1.6.2 Set Covering Applications

We identified four contributions to the parallel meta-hsticifor set covering litera-
ture: two island-based co-operative PGA methods, one émg@nd one proposing
randomized approaches.

Calegariet al. [20] have considered the problem of selecting the best seidid-
transmitter locations such that a maximum covering areh wiit optimal cost (or
minimum number of radio transmitters) is achieved, aneésdtaas a variant of the set
covering problem. The authors proposed a pC/KS co-operafiproach according
to an island model with a small population (two or four indiwals) associated to
each island (and processor). The islands were arranged oniearted ring, and
migrations were only allowed between neighboring islafide authors choose this
arrangement to minimize the amount of migrations and thengonication overload
due to migrations between remote islands. Once a new g@reiatcomputed, a
copy of the best individual of each island was sent to the rsa&ihd on the ring.
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Each island thus received a new individual that replacecdamly selected local
individual. The proposed co-operative multi-thread segrerformed well in terms
of computational time compared to the sequential genggiorathm. The speedup
was almost linear and the efficiency reached 93%.

Solar, Parada, and Urrutia [137] presented a 1C/KS parakthod based on a
coarse-grained genetic algorithm. The authors used amdisteodel, where each
island contains one subpopulation. Initial subpopulati@re independently and
randomly generated. A master-slave scheme was selectaglerent the proposed
approach. Each slave run a standard GA on its island. Aftéopeing the compu-
tations of each generation, each slave sent its best indiltd the master. Once the
master received all the best individuals from the slaveselitcted the overall best
and broadcast it. Each slave replaced its worst local smwtith the individual sent
by the master, and launched again its GA. The authors repoumerical results that
showed that the parallel approach could reach near-opsiohations. Errors ranged
from 3.3% to 10% of the optimal solution value for almost athiplems tested. They
also concluded that the parallel approach is more efficiesm the corresponding
sequential one in the number of generations required tdrobtaertain quality of
solution. The authors claimed that the solution qualityref proposed algorithm
is better than that of both tabu search and simulated amgeadlinfortunately, this
comparison is not very helpful because no details were gegarding the solution
quality versus computational time for each of these appresc

Rahoual, Hadji, and Bachelet [118] presented two parafipt@aches based on
a combination of an ant colony system and a local searchdtgurirhe sequential
method, called AntsLS, consisted in launching the ant $egrand applying a local
search to each solution found. This sequence was repeaikd stopping criterion
based on a convergence threshold was reached. The firsiepamgroach was a
pC/RS independent multi-thread search, where each thueadfintsL S and the best
solutionis collected atthe end. The second method repie$amirect parallelization
of AntsLS according to a 1C/KS strategy in a a master-slaygeémentation. Each
slave holds one ant process. The master synchronizes tichegsaf all ants. Once a
solution is found by every slave, it is sent to the master. &rpmone updating is then
performed by the master. The master also updates the batbsolThe numerical
results show a high performance of the independent appioddith solution quality
and speedup. Not surprisingly, the 1C/RS approach did méaqme well due to high
communication times. It is noteworthy that the two methodsdt parallelize the
same algorithm and cannot therefore be compared.

Fiorenzo Catalano and Malucelli [57] discussed severaégdischemes that lead
to approximate approaches for the Set Covering Problemsélbehemes embed-
ded two constructive heuristics: a greedy algorithm, wlatlkeach iteration added
a set to the partial solution according to associated piibtied, and a randomized
primal-dual approach (Beasley [13]). The authors propagedhronous and asyn-
chronous parallelizations of these schemes. The first sgnolus approach is a
variant of the 1p/KS/MPSS strategy and was used for the raimba primal-dual
method. It was implemented according to a master-slaverseh&he master held
the reduced cost information and updated the Lagragianiptieis, as well as up-
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dates the best solution following synchronization, at tegintervals, when slaves
sent their best solutions. Slaves received from the mas¢einformation required

to run the procedure, but also exchanged and updated infiomragarding recent

set operations. The second synchronous approach follow&dksS scheme where
independent searches regularly exchange informatioradtused with both random-
ized procedures. The authors also proposed a pC/KS/MPRfpemtive procedure
implemented in a master-slave framework.. The mastervedaind updated best
solutions and search information. Each thread run one adéhj@ential randomized
procedure and exchanged with the master. The parallelitdigos performed well.

1.7 SATISFIABILITY PROBLEMS

Satisfiability problems are boolean problems of centralartgnce in various fields
such artificial intelligence, automated reasoning, comipdésign, data base search,
computational complexity, and so on. Loosely speaking,pittdblem consists in
finding an assignment of variables that evaluatee a given formula.

More precisely, consider a set of variables, ..., z, , a set of clause§ , ...,
C,,, and operatorg\. (AND), V (OR), andNOT. A variable may be eitherrUE
or FALSE. A literal is defined as “a variable or its negation”. A clause finite
disjunction of one or more literals. Thus, for example, austawith three literals,
C =x1 V22V NOT z3, Will be true if at least one of the literals is true.

The satisfiability problensaT consists in determining if there is an assignment
of variables that evaluate the formua A Ca A e AC,,, to TRUE. The maximum
satisfiability problempnax-saT, refers to finding a truth assignment of variables
such that the number afrRUE clauses is maximized.

1.7.1 Parallel Genetic Algorithms

Wilkerson and Nemer-Preece [163] proposed two coarse+§@iA, an independent
and a co-operative multi-search. Aninitial sequentialggh@duced the search space
by assigning aRUE or FALSE value to each variable that appeared in the same literal
(positive or negative form) in all the clauses. The remajnmriables were used
to generate the initial populations for an island model viithprocessors, where
p € {2,3,4,5}, represented the highest ranking variables accordingetdehoslaw-
Wang rule. A different assignment aiRUE or FALSE values to the variables was
performed for each processor. Then, an initial populatias vandomly generated
for each processor by considering the rest of the variatilessame genetic algorithm
was used for all islands. A pC/KS co-operation mechanismimaéemented. At
fixed intervals (number of iterations), each processor dizast its best individual
to all other processors, the best new individual replacheyworst individual of
the receiving population. Experimental results showetdl tthe co-operative model
outperformed the independent strategy, achieving supeai speedups on some
problem instances.
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Folino, Pizzuti, and Spezzano [60, 59] proposed a fine-gthiPGA based on a
diffusion model in a Cellular Automata framework. Everylagntained one indi-
vidual and interacted with the neighbour displaying thet ligsess. The offspring
survived to replace the parent and be enhanced through hdeaech (Selman,
Levesque, and Mitchell [131], Selman, Kautz, and Cohen]130it had a better
fitness. Comparative experimentation on hard 3-SAT probl@vtitchell, Selman,
and Levesque [100]) showed that the proposed method oatpeeti the parallel ver-
sion of local search used to enhance surviving offspringdi#a@hal results reported
later (Folino, Pizzuti, and Spezzano [61]) displayed alntiosar speedup and high
quality solutions. Moreover, the parallel GA outperfornree&imulated Annealing
(Spears [139]) and a Genetic Algorithm (Marchiori and R{&4]) developed for the
SAT problem.

1.7.2 Parallel Simulated Annealing

Sohn and Biswas [136] and Sohn [135] proposed a 1C/RS PS/Aoch&ihthe-LsAT
problem, a variant of theaT problem wherd. is the ratio of the number of clauses to
the number of variables. The algorithm was implementedraiicg to a master-slave
scheme. At each temperature and sgefierations were distributed by the master
amongp slaves, one iteration per slave. The master received dlbtdwpted” solu-
tions of the slaves and, in order to avoid errors associatsiitultaneous evaluation
of solution, it kept the solution of the slave with the smstlexdex in the list of
processors. The algorithm was implemented on a large-siistigbuted-memory
multiprocessor machine. The authors reported high qusdiliytions (i.e., , the qual-
ity increasing with the number of processors. Almost linga@edup was reported,
particularly when the processors number was below 100.

1.7.3 Parallelcrasp

Pitsoulis, Pardalos, and Resende [116] proposed indepemndsti-search parallel
GRrRASP method for thevax-saT problem. Different seeds were used for each thread
in the construction phase to favor the exploration of dédférsearch spaces by the
independent threads. The maximum number of iterationsgffiRkssand Feo [123])
was divided among the processors. The authors reportedjpiglity solutions in
almost linear speedups.

1.7.4 Parallel Ant Colony Systems

Assume a positive weight; is associated with each clauseThe weightedviAx-
sAT problem then refers to finding a truth assignment of varigisiech that the
total weight of true clauses is maximized. Drias and lbri][pfbpose a sequential
ant colony system foxax-sat, as well as two parallelizations. Similar to coarse-
grained strategies for population methods, both para#iétins are based on dividing
the colony into several sub-colonies, each assigned tdferelift processor. In the
1C/KS/MPSS strategy, implemented according to the matiee model, each slave
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sent to the master its best solution once its ants finishedtieg. The master then
updated the pheromone and launched a new search phase.

The second parallel followed a pC/KS/MPSS strategy. Eachgss executes the
same ant colony method on its sub-colony. When the searcbeis ib broadcasts
its best solution to all other sub-colonies and requesis therent best solutions. A
“local” synchronization is thus generated within an asynalous-communication en-
vironment. The process then selects the overall best solutpdates the pheromone,
and restarts the search. Numerical tests showed the stifyeoibthe co-operative
strategy over the first approach. Both parallel methodsestdpmed, however,
Moreover, the scatter search proposed by Drias and KhabEiduand the sequen-
tial crasP presented in Resende and Feo [124].

1.8 QUADRATIC ASSIGNMENT

One of the most difficult problem in combinatorial optimimat, the quadratic assign-
ment problem (QAP) may be simply stated as follows. Gideand B, two square ma-
trices ofdimensiom, find apermutatiopto minimized_,_, . >°,_, . Aij Bpiyp)-
The QAP has many applications, facility location problemgarticular. Neighbour-
hoods based on swapping elements in the permutation hang@bgeularly popular,
even though their dimensions grow very fast.

1.8.1 Tabu Search

Among the first parallelizations of tabu search for the QAHoa the other applica-
tions with large neighbourhoods and relatively small cotimguefforts required to
evaluate and perform a given move, one finds the 1C/RS/SP&8gst that targets
the neighbourhood evaluation. At each iteration, the pbssnoves in the neigh-
bourhood of the current solution are partitioned into asyrsmis as the number of
available processors and the evaluation is carried outrialphby slave processes.

Chakrapani and Skorin-Kapov [22, 24, 25] proposed and stuslich algorithms
for the Connection Machine CM-2, a massively parallel SIMBamine. Atthe time,
the authors reported that they either attained or improledest known solutions
for benchmark problems, in a significantly smaller numbeateshtions.

Taillard [142, 144] used a different implementation andrg of 10 transputers.
There was no specific master processor. Following the imtidition of the set of
possible moves and their assignment to different processach processor evalu-
ated the pair-wise interchange moves and identified thedrest It then broadcast
it to all other processors, which then performed all the radrtasks of a “master”
selecting and implementing the move, making the necesshugtanents and up-
dates, partitioning the neighbourhood, etc. Load balanttinough partition of the
neighbourhood was acknowledged as critical, but no ininatas given on how
it was performed. On several problem sets proposed in theafitre (essentially,
the same set used by Chakrapani and Skorin-Kapov, with @mobistances up to
size 100, Taillard reported very good solutions, improwimg best known values of
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many of the problems tested and obtaining suboptimal swisticonjectured but not
proven to be optimal) for problems up to size 64.

Battiti and Tecchiolli [11, 12] proposed an independenttivthread PTS, where
the independent tabu searches started the exploratiore &fdlation domain from
different randomly-generated initial solutions. Eachutaearch was including a
hashing procedure to dynamically modify the length of thrithsts and thus react
to the behaviour of the search. The authors then proceedédrive probability
formulas for the success of this pC/RS/MPDS global searticiwtended to show
that the independent search parallelization scheme wageeffi- the probability
of success increased, while the average success time dedr@#h the number of
processors - provided the tabu procedure did not cycle.

De Falcoet al [47] proposed a pC/KS co-operative approach. At each iterat
each search thread performed alocal search from its besitsolBest solutions were
then exchanged between searches that run on neighboudoggsors. Local best
solutions were replaced with imported ones only if the fast@utions were better.
The authors experimented on several architectures andteepat they obtained
better solutions when cooperation was included comparad independent thread
strategy. Super-linear speedups were reported.

Talbi, Hafidi and Geib [147] (see also Talidial. [149] and Talbi, Hafidi and Geib
[148]) presented independent multi-thread strategiesdas tabu search hybridized
with simulated annealing for the intensification phase. #teriesting feature of this
contribution was the dynamic-loading mechanism, whiobvedld to use the available
resources of a heterogeneous network of single and multigsisors computers. The
computational results showed very promising performarfitiesoproposed dynamic
loading mechanism in terms of the scheduling overhead. l@aerwas low (0.09%)
comparing to the total execution time. Moreover, the awghgdaimed very high
solution quality compared to the literature.

1.8.2 Genetic Algorithm

Muhlenbein [101, 101] proposed a fine-grained PGA for the Qidividuals were
arranged into two equal subsets placed on two rings, suthdleh individual had two
neighbours on each ring. A hill-climbing heuristic was apglo individuals and GA
operators were applied to the resulting local optimum. inisresting to recall that
this work was part of a larger body of contributions wheré-tlimbing heuristics
were embedded into genetic algorithms to improve (“edutatdividuals and the
impact of this hybridization on GA behaviour and performam@s addressed (e.g.,
Muhlenbein, Gorges-Schleuter, andidrer [106, 107], Mhlenbein[102, 104, 105]).

1.8.3 Simulated annealing

Boissin and Lutton [17] developed a parallel SA that usesraaio decomposition
strategy on a massively parallel computer. Experimenfepaed on a 16K Connec-
tion Machine produced interesting performances. Laur88hdpplied to the QAP
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the same co-operation mechanism described in Section T AeSstrategy suffered
a 10% to 20% communication overhead and produced very batsu.

1.8.4 Parallelcraspr

Li, Pardalos, and Resende [90] and Pardalos, PitsoulisRasdnde [115] proposed
the same pC/RS/MPSS parallelization strategy for larggeSQAP that will later be
applied to the Steiner problem (i.e., Martins, Ribeiro, &wiza [96] and Martins
et al. [95]; see Section 1.5.1). Recall that the strategy callsetpral distribution
of a maximum number of iterations among the availatste sp threads. Numerical
experiments revealed almost linear speedup, around 62fpratessors.

Pardalos, Li, and Murthy [113] proposed a pC/RS/MPSS inddpert multi-search
method. Computational results on benchmark problem iosshowed that best
known solutions were generally found. The speedup resuts wiore varied.

1.8.5 Parallel Scatter Search

Cunget al. [44] introduced the first parallel scatter search methodtlier QAP.
The authors proposed an independent multi-thread scaiects, where the differ-
ent searches used different parameter settings. The catignal results showed
encouraging speedups, but no improvement in solution tyuaimpared to the se-
guential algorithm. According to the authors, the main oeabat could explain this
is the rapid convergence of the small-sized subpopulafi@ach search.

1.8.6 Parallel Ant Colony Systems

According to our best knowledge, the first parallel impletagion of an ant colony
system for the QAP was proposed by Tabal. [150, 151]. The method consisted in
a 1C/KS parallelization of ANTabu, which is a combinatioraafant colony system
and tabu search. In a master-slave implementation, theemkspt and updated
the pheromone matrix and the best solution. At each itarative master spread
the current pheromone matrix among all the ants. Each ambrpeed its search
to construct a complete solution, launched a tabu searcmpooive that solution,
and sent the final solution to the master. Computationas teshducted with 10
ants indicated the method offered good performances, mst@f solution quality,
compared to the independent multi-thread tabu search pegdny Talbi, Hafidi, and
Geib [147].

1.9 LOCATION PROBLEMS

Location problems may be defined in continuous or discregeesitwo dimensions
are generally used, but not always) or on graphs. The obgeigito select, locate,
a number of points to cover optimally given zones or pointsilevsatisfying var-
ious constraints (topological, demand, capacity, and sarezhso forth). Location
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problems are broadly applied from marketing and econonsiearch, topolitical dis-
tricting, from transportation and logistics to telecomnmations and production. We
present in this section parallel meta-heuristics propdsethree particular classes
of location problems.

1.9.1 Simple Plant Location Problem

The Simple Plant Location Problem is a classical discreedtlon problem. We
are given a set of customer points with known demands andat petential plant
(or warehouse) locations. A fixed cost for opening the faci§ associated to each
potential plant site. Transportation costs are assoctatedch customer-plant site
pair. The objective is to select the plant locations such tiatomer demand is
satisfied at minimum total system, opening and transportatiost.

Kohlmorgern, Schmeck, and Haase [81] proposed two finargdaparallel ver-
sions based on the island and the diffusion models for thapagitated warehouse
location problem. The initial population was divided intp4, 16, 64, 256, and
1024 islands on a parallel machine with 16K processors, pamtessor holding one
individual. Individuals were arranged in a two-dimensiagrad and had eight neigh-
bours. In the first version, a sequential GA was launched @ ésland (for each
sub-population). Individuals were exchanged between ®ighboring island after
a pre-determined number of iterations. The migration ras fixed as well. The
second model was based on selecting partners at given cistaitach processor
selected a neighboring partner according at the givenrdistén one of the eight
possible directions A wheel selection rule was used. Erpantal results indicated
that the performance of the second model increased withuh#ar of neighbors.
Best results were found when an elitist selection proceda® used. No results
were given for the island model.

1.9.2 Location with Balancing requirements

The multicommodity location problem with balancing reguirents emerged in
the design of intermodal transportation systems. We areng& set of vehi-
cle/commodities, a set of potential locations for vehicépats and two sets of
"customers", one that supply and another that requestsikgaantities of given ve-
hicle types. Commodity-specific transportation costs aspaiated to the customer-
to-depot, depot-to-customer, and depot-to-depot movéengthrere are no customer-
to-customer movements). The latter are more efficient (shipments) and cost
less that the other two. Fixed opening costs characterzedpot locations. The
objective is to design the system such that the total cosirismized while satisfying
requests at supply and demand points. The problem is NP-&fatds represented
as a fixed-cost, mixed-integer formulation with a multicoouity network structure.

The problem served to illustrate the parallel tabu seancbnemy introduced by
Crainic, Toulouse, and Gendreau [41], as well as a thoroogiparison of various
parallelization strategies based on this taxonomy (Cecaifoulouse, and Gendreau
[40, 39]).
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The authorsimplemented and compared a 1C/RS/SPSS and 8/BRP&S method.
In a master-slave implementation, the first method had slavaluate candidate
moves only, while in the second, calletbbing slaves also performed a few local
search iterations. The second strategy performed malgivetter. However, both
methods were outperformed by p-Control implementatioasdattempt a more thor-
ough exploration of the solution space. A decompositiomaggh, which partitioned
the vector of decision variables and performed a search@dns#set, was also part
of the study (Crainic, Toulouse, and Gendreau [40]). It genied poorly, mainly
because of the nature of the class of problems considerdticammmodity location
with balancing requirements requires a significant contpri&ffort to evaluate and
implement moves, resulting in a limited number of moves thay be performed
during the search.

As far as we can tell, Crainic, Toulouse, and Gendreau [4dp@sed the first co-
operative central memory strategy for tabu search as paheaftaxonomy. Other
than this pC/KC/MPDS strategy, the authors also implenteated compared an
independent multi-thread pC/RS/MPDS approach, pC/KSteymmous co-operations
(varying the synchronization mechanisms and the SeardbrBiftiation strategies),
and broadcast-based asynchronous pC/C co-operativegsesit The authors report
that the parallel versions achieved better quality sohgithan the sequential ones
and that, in general, asynchronous methods outperformechsynous strategies.
The independent multi-search and the asynchronous caiyeapproaches offered
the best performance.

Crainic and Gendreau [34] report the development of a hybekch strategy
combining the co-operative multi-thread parallel taburceanethod of Crainic,
Toulouse and Gendreau [39] with a genetic engine. The gealgtorithm initiates
its population with the first elements from the central meymufrthe parallel tabu
search. Asynchronous migration (migration rate = 1) subsetly transfers the best
solution of the genetic pool to the parallel tabu searchreéntemory, as well as
solutions of the central memory towards the genetic pofmulafThe hybrid appears
to perform well, especially on larger problems where the kaswn solutions are
improved. It is noteworthy that the genetic algorithm alarees not performing well
and that it was the parallel tabu search procedure thatifaehthe best results once
the genetic method contributed to the quality of the cemir@inory.

The multicommodity location-allocation problem has alsei used to study
the impact of co-operation on the global behaviour of thedeéToulouseet al.
[155], Toulouse, Crainic, and Samfl53, 154], Toulouse, Crainic, and Thulasiraman
[156]). The authors showed that co-operative meta-héesisith unrestricted access
to shared knowledge may experience serious premature écgence” difficulties,
especially when the shared knowledge reduces to one solotily (the overall best
or the new best from a given thread). This is due to a comhinatifactors: There is
no global history or knowledge relative to the trajectorytaf parallel search and thus
each process has a (very) partial view of the entire seatufeatls often use similar
criteria to access the (same) “best” solution; Each proeessbroadcast a new best
solution after a few moves only and thus disseminate inftionavhere only part
of the solution has been properly evaluated. The contentbarfed data tend then
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to become stable and biased by the best moves of the mostméarépthreads and
one observes a premature convergence of the dynamic seaogsp. Moreover, the
phenomenon may be observed whether one initializes thérdweaories following
the import of an external solution or not.

This study explains several of the anomalies reported ititdr@ture. It has also
been the motivation for the development of more advancespewation concepts, in
particular the central memory and the multi-level diffusém-operation mechanisms.

Gendron, Potvin, and Soriano [67] proposed a co-operativé-thread parallel
meta-heuristic for the capacitated version of the multiodity location problem
with balancing requirements. The method combined variabighborhood descent
(VND), a version of VNS, and slope scaling (SS). The centrahmary-based co-
operation was implemented via a master-slave archite@ndeconsisted of two
phases. In the first phase, the slaves performed SS prosddyparallel and sent
the best solutions to the SS and VND memories located in th&alememory.
In the second phase, a certain proportion of slaves run a Véddch, while the
others run SS heuristics. VND processes started from SS nyeand fed the VND
memory, while SS processes started from VND memory and E28&memory. The
computational tests revealed that the proposed paralietisavas more diversified
and thus performed better with an increase in the numbeaweésl

1.9.3 Thep-median Problem

Given a set of potential locations fprfacilities and a set of locations for their many
users, thep--median problem is to locate simultaneously thacilities in order to
minimize the total transportation cost for satisfying th@ménd of the users, each
supplied from its closest facility. The-median problem is one of the fundamental
models in (discrete) location theory and a classical coatbial optimization for-
mulation with a broad application range, including clustealysis, data mining, and
so on. Despite the apparent simplicity of its mathematigptession, the-median
problem is difficult to solve. It belongs to the NP-hard claproblems and exact
solution methods cannot address realistically sized prabhstances in most cases
of interest.

1.9.3.1 Parallel Variable Neighbourhood SearchGarda-Lopezet al. [62] pro-
posed the first parallelizations for themedian problem and among the first for VNS
in general. The authors introduced and compared threegteat The first approach
was a 1C/RS parallelization that attempted to reduce caatipattime by paralleliz-
ing the local search phase within a sequential VNS. The skooe implemented
an independent multi-search strategy, pC/RS/MPSS, whitlan independent VNS
procedure on each processor, the best solution being tallat the end. The third
method applied a pC/RS synchronous co-operation mechahismgh a classical
master-slave approach. The master processor run a sejuéNt. The current
solution was sent to each slave processor that modifies doraly to obtain an
initial solution from which local search was started. Thiigons were passed on
to the master that selected the best and continued the talgoriThe authors tested
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their methods using thespLiB problem instances with 1400 customers only. Not
surprisingly, the last two strategies found better sohgjowith the third approach
using marginally less iterations than the second one.

Crainicet al. [36] presented a pC/C/MPSS co-operation mechanism troatedi
each individual search access to the current overall bégiaowithout disturbing
its normal proceedings. The parallel procedure was imptéatsn an asynchronous
master-slave scheme and may be summarized as follows.idodIWNS processes
communicated exclusively with a central process catledtral memonryor master
There were no communications among individual VNS procestbe master kept,
updated, and communicated the current overall best salutiSolution updates
and communications were performed following messages frenindividual VNS
processes. The master also initiated and terminated tloeithlg. To initiate the
process, a parallel reduced VNS (no local search phase)xeasted until a number
of unsuccessful trials were observed.

Each search process implemented the same VNS meta-he(listal search
used First Improvement, Fast Interchange, &pd,. = p). It proceeded with the
“normal” VNS exploration for as long as it improved the sadut When the solution
was not improved, it was communicated to the master (if béten the one at the
last communication) and the overall best solution was rstgaefrom the master.
The search was then continued starting from the best owamfaition in the current
neighborhood. Computational resultsTspLIB problem instances with up to 11849
customers showed that the co-operative strategy yieldmifisiant gains in terms of
computation time without loosing on solution quality. Theatjty of the solutions
obtained was, in fact, comparable to that of the best resulise literature (when
available).

1.9.3.2 Parallel Scatter SearchGarda-Lopezet al. [63] proposed three parallel
scatter search methods for themedian problem. The first parallelization was a
1C/RS synchronous parallel scatter search, where thelna@igbod was divided into
several disjoints subsets that were assigned to processmsubset per processor.
Each processor run a local search on its correspondingtsaiideeturned the result
to the master running the sequential scatter search. Thedgarallelization, called
Replicated combination scatter search (RCSS), also leagntime reductions. It
consisted of partitioning the reference set and runningrsde scatter searches on
each one of them. The third parallelization follows an inglegeent multi-search
strategy by running the scatter search in parallel for séympulations. According
to the reported computational results, the simple 1C/R%@ligdization achieved
super-linear speedup, while the best values were found dyntthependent multi-
search procedure.

1.10 NETWORK DESIGN

Network design problems are a generalization of locatiamfdations. They are
defined on graphs containing nodes, connected by linksgraithdirected edges or
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directed arcs. Links may have various characteristicd) ssdength, capacity, and
cost. In particular, fixed costs may be associated to sonlElimks, signaling that as
soon as one chooses to use that particular arc, one has tdtiedixed cost, in excess
of the utilization cost which is in most cases related to tlame of traffic on the link.
Recall that when the fixed costs are associated to nodesptaie®the formulation
of a location problem. Such representations are genera#ig to model the cost
of constructing new facilities, offering new services, ddang capacity to existing
facilities. In network design problems, the aim is to chdases in a network, along
with capacities, eventually, in order to enable demand to fietween their origin
and destination at the lowest possible system cost, ietothl fixed cost of selecting
the links plus the total variables cost of using the netwdtitwork design has a wide
variaty of applications in transportation, logistics,emmmunication, production,
and so on.

We found few parallel-meta-heuristic developments forfthelamental network
design formulations. Most contributions are dedicatedhious aspects of telecom-
munication network design as illustrated in this section.

1.10.1 Multicommodity Network Design

Crainic and Gendreau [35] proposed a pC/KS/MPDS co-operatulti-thread par-
allel tabu search for the fixed cost, capacitated, multicoaiity network design
(CMND) problem. In their study, the individual tabu seartheiads differed in
their initial solution and parameter settings. Commuinicet were performed asyn-
chronously through a central memory device. The authorgeoed five strategies
of retrieving a solution from the pool when requested by atividual thread. The
strategy that always returns the overall best solutionlajsal the best performance
when few (4) processors were used. When the number of prarsasas increased,
a probabilistic procedure, based on the rank of the solutigdhe pool, appeared to
offer the best performance. The parallel procedured imgsdlie quality of the so-
lution and also required less (wall clock) computing timenpared to the sequential
version, particularly for large problems with many comniidi (results for problems
with up to 700 design arcs and 400 commodities are report€dg experimental
results also emphasized the need for the individual threagsoceed unhindered
for some time (e.g., until the first diversification move) dref initiating exchanges
of solutions. This ensures that local search histories eaadtablished and good
solutions can be found to establish the central memory aditencandidateset. By
contrast, early and frequent communications yielded dyotandom search that was
ineffective. The co-operative multi-thread procedure astperformed an indepen-
dent search strategy that used the same search parametstarded from the same
initial points.

Crainic, Toulouse, and Li [42] proposed a multi-level défon parallel algorithm
for the CMND problem. Each individual search thread invdlirecooperation made
use of the cycle-based tabu search proposed by Crainic,r€andand Ghamlouche
[68], and explored a given level of aggregation of the gragkggregation was
performed by variable fixing. Sets of elite solutions werdttat each level and
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local memories recorded the frequency of variables in slieitions. Exchanges
occurred at regular intervals and involved solutions, ak agecontext information
(e.g., memories). Computational results on a set of bendhprablem instances
indicated that this approach yielded good quality solgi@omparable to those
obtained by the current best meta-heuristics for the proble

1.10.2 Telecommunication Network Design

Sleemet al. [134] studied the design of cost-effective ATM networks toyide low
end-to-end delays and such that link are well used withiir t@pacity limitations.
A 1C/RS/MPSS parallelization strategy was implemented disiibuted (network
of workstations) and a multi-processor computer. A first GAsvapplied to an
initial population. The resulting population was dividedd subpopulations, one
per processor, and a second GA was applied to each subgopuld@he resulting
subpopulations were then returned to the master procesetimnstituted the whole
population and restarted the process. Surprisingly, nizadeesults indicated better
performance on the distributed network than on the paraithine. The general
performance of the parallel algorithm, compared to theatarethod, was mediocre
due to the overhead associated to exchanging large geamtftilata (subpopulations).

Flores, Cegla, and Caceres [58] proposed parallel GA metlfadthe multi-
ojective telecommunication network design. The authooppsed a pC/RS/MPSS
co-operative coarse-grained island strategy. Each sulbgiiqgm performed its own
evolutionary algorithm. Following each generation, ateatnigration was triggered
from each subopopulation to all other subpopulations. Timaarical experimen-
tation was used exclusively to compare this parallel sisatgpplied to two GA,
SPEA (Strenght Pareto Evolutionary Algorithm) and NSGA i(Ntbminated Stor-
ing Genetic Algorithm) that differed in the fithess evaloatprocudure. The former
dominated the latter.

Ribeiro and Rosseti [125, 126, 127] proposed pC/RS/MPS&lphzation strate-
gies for acrasp procedure for the 2-path network design. This problem appea
often in telecommunication network design. It aims to idfgrd minimum cost
design that includes a path with at most two edges for eagmediestination pair in
the network. The authors made use of the same pC/RS/MPSI&fzation strategy
that was applied for quadratic assignment, Steiner, aretf ptioblems (e.g., Sections
1.5.1 and 1.8.4). The authors compared several parallsiorer of the sequential
GRASP on a set of small-sized problem instances. They concludsdltle version
integrating a two-way path-relinking improvement phasgqgrened best. The re-
sults also showed that versions that include the pathkiainimprovement phase
outperformed a "pureRASP.

1.10.3 Mobile Network Design

A core problem in the design of wireless networks is the sielemf the best set
of radio transmitter locations to maximize the covered atea minimum cost (or
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minimum number of transmitters). The problem may be fornadas a set covering
problem.

Calegariet al. [20] proposed a co-operative PGA based on the island framiewo
with small subpopulation size. Numerical results on datanfa real-life problem,
showed that the parallel algorithm performed well, in teohsomputational time,
in comparison with the sequential genetic algorithm (theeslup was almost linear
and the efficiency is high).

Tongcheng and Chundi [152] propose a co-operative coaesregl parallel ge-
netic algorithm for the same problem, and implemented itwad different topolo-
gies: ring, bi-oriented ring, and torus. Each thread run agBBhanced with a local
search applied to 20% of the population after each generatitigration involves
neighboring nodes which exchange their best chromosoreh ifacess sent its best
chromosome to all its neighboring nodes, where it replalcedvorst individual. The
proposed strategy performed well on the torus topologyrims$eof solution quality
and number of generations to reach a good solution. The esjpleoformed a limited
comparison between their algorithm implemented with 16sphlation of size 10
and the method proposed by €gériet al. [20] applied to 40 subpopulation of size
4. The results were close with a slight advantage to therlateghod. The authors
concluded that their approach performed well even when timeber of processors
and individuals was small.

Towhidul Islam, Thulasiraman, and Thalasiram [159] préagrarallel ant colony
algorithm for the all-pair routing problem in a wirelesswetk with mobile nodes
(MANET). In MANET, nodes are mobile and can instantaneoasig dynamically
form a network as needed. The topology of the nodes can thssastially change
during a short period of time. This makes the problem of deiteing the best route
for data between all pairs of nodes very difficult. The mogt#icant applications
of this type of network appear in the military domain and injonalisaster situa-
tions. According to our knowledge, this is the first time thgtarallel meta-heuristic
is applied to the all-pair routing problem (the recent stofyGunes, Sorges, and
Bouazizi [72] does not address the all-pair routing probéem does not use parallel
computing). The parallel ant colony system proposed by Tdwhslam, Thulasir-
aman, and Thalasiram applied a domain-decompositioregiyafThe network was
decomposed into subgraphs. Each ant was assigned to 'tk#gsor and received a
subgraph on which to search for the shortest paths betwepaied of nodes. The
ants communicated during their searches. Unfortunatelyetails were given on
how this communication was realized. It was reported, h@rethat it required
between 93% and 97% of the total runtime. A speedup of 7 cdddiever, be
reached when 10 computers were used.

1.11 THE TRAVELING SALESMAN PROBLEM

A well-known, even outside of scientific circles, and fundartal problem in graph
theory and combinatorial optimization, the Traveling Sadan Problem (TSP) may
be summarized as follows. Given a set of points and distanewgeen all pairs of
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points, find a Hamiltonian tour through all points. The TSPegrs prominently in
many applications, transportation, distribution, loigist telecommunications, pro-
duction planning, and so on. The TSP is NP-Hard. In recensybawever, advances
in mixed-integer programmoing have resulted in codes tret atddress very large
probleminstances. Yet, itis still interesting to survey fiarallel meta-heuristic field,
since the TSP has offerred a rich environment for developsnerany of which were
later applied to other problems. Moreover, it often appaara subproblem in many
applications where meta-heuristics are the solution netfichoice.

The next subsections examine parallel meta-heuristicsh#oiT SP according to
the basic methodology. The last subsection group the tanions to a variant of
the problem, the Traveling Purchaser Problem.

1.11.1 Parallel Simulated Annealing

Felten, Karlin, and Otto [55] proposed a 1C/KS/MPSS stratesed on the domain
decomposition idea, and experimented with 64 cities uspngou64 processors of
a hypercube computer. An initial tour was randomly generated partitioned into

p subsets of adjacent cities. Each subset was then assigredrazessor, which
performed local swaps on adjacent cities for a number oétimns. This was

followed by a synchronization phase where cities were edt@mong processors.
Parallel moves did not interact due to the spatial decontipasof the decision

variables. Moreover, each synchronization ensured tlegiiity of the global state.

Hence, there was no error and almost linear speedups wesevels

Similar developments were proposed by Allwright and Catgef2], but com-
munication overhead impaired performances. Jeong and Rém77] improved the
performance by working on the implementation to reducedkerhead. Numerical
results showed their method to be ten times faster than #aéqus one. A differ-
ent approach, based on parallelizing the speculative ctatipo method of Witte,
Chamberlain and Franklin [164, 165] was presented by NahhdrZzomaya [109].
The authors managed to reduce the overhead by communicaiypthe moves ac-
tually performed rather than whole solutions. The methadipced modest results,
however.

Bevilacqua [16] proposed an adaptive strategy to paraiaimulating annealing
methods and used the TSP as benchmark. According to ths stiette search, the
adaptive strategy executes eittigterations of the sequential SA 8k iterations of
an independent multi-search SA, witta parameter to be calibrated. Computational
results indicated the proposed method may yield high quabtutions. For the
instances tested, deviation of the order of 1% to 2.5% fraofitimal solution were
observed.

Sanvicente-8nchez and Frausto-$©[129] proposed a pC/C/MPSS strategy that
decomposed the the sequential SA along temperature lin€sA was launched at
each temperature. Once its iterations are finished, a SAepsdaroadcast its best
solution to all processes working at lower temperature. €neiving a solution,
a process verified if it was better than its best. In the affiiveait restarted its
search from the imported solution. It continued, otherwildee algorithm was tested
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on a network of workstations with few machines on a few tesbf@m instances.
Computation times were reduced, for the same solution tyualbmpared to the
sequential version. It would be surprising if such an apphozould perform on a
larger number of processors.

Diekmann, liling, and Simon [48] proposed a synchronous pC/KS/MPSS co-
operative multi-search. The parallel method performedebsag the sequential SA
in terms of solution quality, while achieving a speedup ob88r 121 processors on
a parallel machine (OCCAM-2) with 320 transputers. The argmoticed that the
solution quality was independant of the numebr of processor

Ram, Sreenivas, and Subramaniam [119] proposed two vanéapC/RS/MPDS
synchronous multi-search strategy and applied it to the &i8Pthe Jop-Shop prob-
lem. The first parallel approach was a directimplementatfdie strategy according
to a master-slave model. Slaves run different simulate@aling threads and syn-
chronized at predefined moments to exchange informatione sHtond parallel
approach consisted in executing a sequential geneticitidgofirst, and then to start
the previous PSA, each thread starting from a differenviddil (solution) from the
last generation of the GA. Experimental tests were condumbea limited number of
processors and the two parallel procedures performed amlpared to the sequential
SA, in terms of both solution quality and computation timesing the GA to initiate
the parallel search seemed to be beneficial.

Miki et al. [99] presented a different SA-GA combination within a phaial
scheme. The authors proposed pC/RS independent multksgtaategy, where each
thread corresponds to a SA, where an adaptive temperatde is controled by
a genetic algorithm. Computational results showed gooddyges (from 20 to 26.60
on 32 processors).

1.11.2 Parallel Genetic Algorithms

1.11.2.1 Fine-grained Methods Mihlenbein, Gorges-Schleuter, andikrer [106,
107] proposed a fine-grained parallel GA for the TSP. Theviddals of the pop-
ulation were placed on a planar grid, each on a processor.s€goiently, each
individual had thus 4 neighbours and neighbourhoods oppédd allowing diffusion
of informaiton. This work was part of the effort to study tiroduction into the GA
framework of individual enhancement procedures (a fasgiwerof the 2-opt local
search procedure in this case).

Knight and Wainwright [80] and Mutalilet al. [108] proposed a pC/KS/MPSS
coarse-grained co-operative GA, called HYPERGEN, wheréndial population
was evenly distributed among the processors of a hyperddlggation occurred at
predetermined moments. The proposed algorithm was testéel¥ (three) TSP test
problems, but with different parameter settings: popafasize, migration rate, and
interval migration. The authors observed that, on theipasblems, implementations
with large subpopulations needed less interaction (mmratxchanges) than those
with smaller subpopulations, for equivalent solution gyalThe achieved solution
quality was comparable to the best known solutions at the.tim
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Logar, Corwin, and English [92] developed a massively palrgénetic algorithm
on a MasPar MP-1 parallel computer for the TSP. The 2048 geaes of the SIMD
machine were arranged in a toroidal grid. Each processod6d(B memory and
8 neighboring processors. The authors used all 2048 proxsetsscreated an equal
number of islands with 10 individuals each. They compardfémint migration
strategies for their pC/MPSS method. The variant that éigd migration at each
generation offered the best performance with a no-so-iggire speedup of 145.

Chen, Flann and Watson [26] proposed a massively parafjetighm for a GA
thatincluded a simulated annealing method to determingthéving offspring. The
method is similar to a cellular GA, except that mating is imitied to neighbouring
individuals. According to the authors, one of the most stgkremarks was the
inversely proportional relationship between the numbeprotessors and the time
needed to reach a near-optimal solution.

Kohlmorgern, Schmeck, and Haase [81] focused on studiesdiag the capabil-
ity of different processor topologies to prevent demes af-finained parallel genetic
algorithms to be dominated by the genotype of strong indizis. The population
was distributed, one individual per processor, on the emes of a massively parallel
computer 16k processing elemengssubpopulations of 1, 4, 16, 64, 256, and 1024
were defined for the purpose of the study. The authors notiwdsolution quality
increased with the number of subpopulations. They alsateggood speedups, but
slow convergence.

1.11.2.2 Coarse-grained MethodsSena, Megherbi, and Isern [132] discussed a
parallel implementation of PGA that combined strict symetization and population
decomposition ideas. A master-slave platform was useddiizecthis implemen-
tation. Slaves run the same GA on subpopulations that werdoraly generated
initially. After every generation, slaves sent their bedtuions to the master. The
master synchronized and controlled the operations. l{p&ddhe search when the
best solution reached a certain threshold. The master edgddstop or let continue
slaves evolve their populations, depending on the quafigotution received. Ex-
perimental results pointed to relations between the pdpulaize and the number
of slave GA processes. Indeed, an optimum combination sg:éonexist between
these two parameters for best performance. The authorseali®ed that as the size
of the population increases, the performance of the prapB&A improved with an
increase in the number of slaves. Performances were posmfalt population sizes
due to communication overhead.

Baraglia, Hidalgo, and Perego [8] started from a GA enhangitd a Lin-
Kernighan heuristic for “educating” new individuals an@posed a coarse-grained
parallelization. The population was partitioned into a fmpopulations, each of
which evolved in parallel on different processors. An slitnigration occurred at
predefined period between all subpopulations. Accordinth¢oauthors, the pro-
posed algorithm performed well on a number of TSP benchmdtksquired less
iterations to reach the optimal solution than the sequiergigion.

Katayama, Hibarayashi, and Narihisa [78, 79] studied thgaichon island-based
parallel genetic algorithms of crossover and selectiorsatprs. The pC/KS/MPSS
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strategy had the initial population partitioned into supplations and the same local
search (2-opt) enhance GA run starting from each. Co-operaias performed by
elit migration at fixed intervals defined as a number of iier&t. Numerical results
(first paper) showed that the proposed PGA was robust relattithe three crossover
operators MPX, ERX, and CSEX, but that the PGA using CSEX daited the
others. The results (second paper) also showed that therperfice of the parallel
approach is more sensitive to the choice of crossover apetfan to that of the
selection operators.

1.11.3 Tabu search

Malek et al. [93] proposed a pC/KS/MPDS co-operative parallel stratedygre
the individual search threads were tightly synchronizete &uthors implemented
acording to a master-slave model. Their method proceedtitd amie master that
controled the co-operation and four slaves that run setl search algorithms with
different tabu conditions and parameters. Slaves werg@stbpfter a specified time
interval, solutions were compared, bad areas of solutiacespvere eliminated, and
the searches were restarted with a good solution and an daiptylist. Note that
long-term diversification memories were disabled in ordesttictly implement this
strategy. This implementation was part of a comparativeysti serial and parallel
simulated annealing and tabu search algorithms for the Tt&Pauthors reported that
the parallel tabu search implementation outperformedeéhialone and consistently
produced comparable or better results than sequentiataltglaimulated annealing.

Chakrapani and Skorin-Kapov [23] proposed the same geh€fRS/SPSS strat-
egy used for the QAP (Chakrapani and Skorin-Kapov [22, 24, 3&ction 1.8.1)
based on distributing the neighbourhood evaluation. Then€ction Machine was
again used for experimentation. The authors reportedftivdahe same quality of so-
lution as the sequential version, near-linear speedupsaatieved using a relatively
small number of processors.

De Falcoet al [47] also applied to the TSP their pC/KS co-operative apghoa
used for QAP. Recall that the authors implemented a muléath strategy, where
each process performed a local search from its best solufihien done, processes
synchronized to exchange best solutions with processe¢suheaon neighbouring
processors. Local best solutions were replaced with inepashes only if the latter
were better. The authors indicated that better solution® wétained when co-
operation was included compared to an independent threaiggy. Super-linear
speedups were reported.

Fiechter [56] proposed pC/KS/MPSS co-operative methodHerTSP that in-
cluded an intensification phase during which each procetimiaes a specific slice
of the tour. At the end of the intensification phase, procesgachronized to re-
combine the tour and modify (shift part of the tour to a pred®ined neighbouring
process) the partition. To diversify, each process detezthfrom among its subset
of cities a candidate list of most promising moves. The psses then synchronized
to exchange these lists, so that all build the same final dateliist and apply the
same moves. A master-slave model was used for implementdtiechter reported



30 PARALLEL META-HEURISTICS APPLICATIONS

near-optimal solutions to large problems (500, 3000, arfiQWertices) and almost
linear speedups (less so for the 10000 vertex problems).

1.11.4 Parallel Ant Colony Systems

Stutzle [140] implemented an independent multi-searchrRSIMPSS approach,
where each thread was an enhanced ant colony system (Santtleloos 1997).
For a similar total run time, i.e., the parallel method run floe time of the se-
guential method divided by the number of processors, thisagrh achieved high
performance on a number of TSP instances.

Bullnheimer, Kotsis, and Straul3 [19] presented for the M&Harallel ant colony
systems: synchronous and partially asynchronous algoesithThe 1p/KS parallel
synchronous method was implemented in a master-slavepiativhere each slave
held one ant. After each iteration, each slave sent its todrtle trace trail to the
master. After updating the trails, the master sent the néwrrimation back to the
slaves, which restarted the seach. In order to reduce thencaication overhead, a
partially asynchronous strategy was also proposed. lapgpsoach, a certain number
of ants was assigned to each slave, which performed theicts@zdependently of
other slaves. The master triggered the trail updating byhbajlsynchronization of
all slaves at regular intervals (number of iterations).

In 2000, Middendorf, Reischle, and Schmeck [98] discusskedination exchange
strategies for multi-colony ant algorithms. They focused® impact of information
exchange on running time and solution quality. Coloniesevegrdifferent sizes and
each was assigned to one processor arranged in a ring. $yixdtion took place
after several generations and the best ants were exchardpgslis a very simple
co-operation mechanism and, not surprisingly, the autregrsrted that the solution
quality was better when the colonies did not exchange todrmformation.

Randall and Lewis [120] examined several parallelizativatsgies, including
multi-colony co-operation: Parallel Independent Ant Ciés (pC/RS/MPDS), Par-
allel Interacting Ant Colonies (pC/KS/MPDS), Parallel Ai(1C/KS), Parallel Evalu-
ation of Solution Elements (1C/RS), and Parallel Combarabif Ants and Evaluation
of Solution Elements (1C/KS). A simple synchronizationhwitoadcasting was used
as co-operation mechanism in the second strategy. Theraghlected Parallel Ants
for the experiments dedicated to the TSP. he authors implerdehis approach ac-
cording to a master-slave model. Each slave launched arardisseparately from
other ants. The master received information from slavesr@hone, solutions),
updated pheromones, and restart ed the search for eachrentomputational tests
revealed that the performance, in terms of speedup andeeftigiwas acceptable for
larger problems (number of cities > 200). However, one ofdisadvantages of the
approachis the large amount of communication required intaiaing and updating
the pheromone matrix.
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1.12 VEHICLE ROUTING PROBLEMS

The vehicle routing problem (VRF} one of the central problems in operations
research and combinatorial optimization with numeroudiegions in the fields
of transportation, telecommunications, production plagnetc. The VRP may
be briefly described as follows. Given one or more depots, & ¢ vehicles,
homogeneous or nor, and a set of customers with known ordstetemands, find
a set of closed routes, originating and ending at one of tipdtdeto service all
customers at minimum cost, while satisfying vehicle andoleppacity constraints.
Other constraints may be added to this core problem, entg, ristrictions, yielding

a rich set of problem variants. Most VRP problems are NP-Haidlexact solution
methods address limited-size problem instances only.

1.12.1 Parallel Meta-heuristics for the VRP

Rego and Roucairol [121] proposed a tabu search approach€dfRP based on
ejection chains and an independent multi-thread paratiedion where each thread
used a different set of parameter settings but started fremsame solution. The
method was implemented in a master-slave setting, where glagce executed a
complete sequential tabu search. The master gathered ltit@®ss found by the
threads, selected the overall best, and reinitialized hineatls for a new search.
Low-level parallelism was used to accelerate the move atialus of the individual
searches, as well as in a post-optimization phase. Expetinsbowed the method
to be competitive on a set of standard VRP problems (ChrisfiMingozzi, and
Toth, [27]).

Ochiet al. [110] (see also Drummond, Ochi, and Vianna [52, 53]) propase
pC/KS/MPSS coarse-grained PGA based on the island modeldaehicle routing
problem with heterogeneous fleet. A petal decompositiocgrtore was used to
build the initial population. The population was then di&tdinto several disjoint
subpopulations. Each GA thread evolves a subpopulationtriggkrs migration
when subpopulation renewal is necessary. An island in #s gvould broadcast its
need and receive the best individual of every other islafd ificoming individuals
would replace the worst individuals of the receiving pogiola Computational tests
show encouraging results in terms of solution quality andating effort.

Alba and Dorronsoro [1] addressed the VRP in which the robtes to be
limited by a predefined travel time and proposed a fine-gdhioellular PGA. The
population was arranged in a 2 dimentional toroidal gridtheiadividual having 4
neighbors. Binary tournament selection was applied whéetseg the mate for
the first parent. Crossover was applied for these parerds, rifutation and local
search for the offspring. Two local search procedures vested, 2-opt and 2-opi+
Interchange, with\ € {1, 2}. Elitist replacement was used. The authors compared
their algorithm to classical heuristics, the tabu searcRathat and Taillard [128],
the genetic algorithms of Prins and Taillard [117] and Berged Barkaoui [15],
the ant algorithms of Bullnheimer, Hartl, and Strau3[18} &eimann, Doerner,
and Hartl [122]. Computational results on benchmark probiestances showed
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high performance quality for both local search versionssterformance (solution
quality and rapidity) was observed for 2-optinterchange.

1.12.2 Vehicle Routing with Time Constraints

Also known as thé/ehicle Routing Problem with Time Windows (VRPTYis
problem specifies that service at customer sites must talee plithin given time
intervals. Most time constraints specify that service cdrregin before a certain
moment (but vehicles may wait "outside", in most cases) anstive over by a given
deadline. In soft-constrainted versions, the time limitg/rbe violated at a penalty.

Czech and Czarnas [46] proposed a pC/KS/MPSS co-operatiltethread PSA
implemented on a master-slave platform. The master semitied solution to the
salves. It was also in charge of controlling the annealimgcpdure temperature
schedule, collecting the best local solution from eacheskaftern? iterations for
each temperature leveh (was the number of customers), and updating the global
best solution. Each slave run a SA algorithm with the samamaters. Each
slavej co-operated with slaves— 1 andj + 1 (slave 1 co-operated with slave 2
only) by exchanging best solutions. Co-operation was &iigd everyn iterations.
Computational tests with few (five) showed good performairceerms of solution
quality, compared to the best-known solutions of the Sololmenchmarks.

Berger and Berkaoui [14] presented a low-level parallelrity@ A that used two
population. The first one aimed to minimize of the total ttadedistance, while the
second aimed to minimize the violation of the time window stoaints. A different
fitness function was associated with each population. A enatave platform was
applied, where the master controled the execution of theritihgn and coordinated
the genetic operations. The slave concurrently executedeiproduction and muta-
tion operators. Computational tests were conducted onseclof heterogeneous
machines (19 computers). The authors compared their #igotd the best-known
methods in the literature for Solomon’s benchmark. Thesults showed that the
proposed technique was very competitive.

Taillard [143] proposed a pC/KS/MPSS parallel tabu seam@betd on domain
decomposition. The domain was partitioned and vehiclegwa#ocated to the re-
sulting regions. Once the initial partition was performedgch subproblem was
solved by an independent tabu search. All processors diopfper a number of
iterations that varies according to the total number ofiiens already performed.
The partition was then modified by an information exchangasphduring which
tours, undelivered cities, and empty vehicles were exchdbgtween adjacent pro-
cessors (corresponding to neighbouring regions). Thiscggh did allow to address
successfully a number of problem instances. The synchatioizinherent in the
design of the strategy hindered its performance, however.

Rochat and Taillard [128] proposed what may be considereith@dirst fully
developed adaptive memory-based approach for the VRPT®aitlhptive memory
contained tours of good solutions identified by the tabude#iireads. The tours
were ranked according to attribute values, including thipailve values of their
respective solutions. Each tabu search process then plietiedly selected tours
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in the memory, constructed an initial solution, improveditd returned the corre-
sponding tours to the adaptive memory. Despite the factttlhiged a rather simple
tabu search, this method produced many new best resultblatqtion time. Taillard

et al. [145] and Badeawet al. [5] refined this method by enriching the neighbour-
hood and the intensification phase and by adding a post-atiion procedure. The
authors reported 14 new best solutions for the standardsdat&olomon 1987).

Gehring and Homberger [64] (see also Homberger and Gehribiy proposed
a pC/KS/MPDS co-operative parallel strategy where comeursearches were per-
formed with differently configured two-phase meta-heigsst The first phase tried
to minimize the number of vehicles by using an evolutionastarheuristic, while
the second phase aimed to minimize the total traveled aisty means of a tabu
search. The parallel meta-heuristic was initiated on difiié threads with different
starting points and values for the search time availabl&é®first and second search
phases. Threads co-operated by exchanging solutionstasyrmsly through a mas-
ter process. For now, this approach has produced, on avehagleest solution for
the Solomon problems with respect to, first, the number ofcketiand, second, the
total distance. Results were also presented on largenitessagenerated similarly to
the original Solomon problems, but varying in size from 26000 customers. It
is worth mentioning, however, that this method is ratheetmonsuming compared
to other meta-heuristics, tabu search in particular.

Le Bouthiller and Crainic [85] proposed a central memory0®MPDS parallel
meta-heuristic where several tabu search and geneticithlgothreads co-operate.
In this model, the central memory constituted the popufatiommon to all genetic
threads. Each genetic algorithm had its own parent seteatid crossover operators.
The offspring were returned to the pool to be enhanced bydim $earch procedures.
The central memory followed the same rules as in the work afr@r and Gendreau
[35]. Experimental results show that without any partic@alibration, the parallel
meta-heuristic obtained solutions whose quality is coraiplarto the best meta-
heuristics available, in almost linear speedups.

1.12.3 Dynamic Problems

Gendreau, Laporte, and Semet [66] addressed the deploymudriem for a fleet of
emergency vehicles and proposed a parallel tabu searct bagbmain decompo-
sition. A master-slave implementation was performed wieach slave addressed a
sub-problem associated to a vehicle. Computation testgesthbigh solution quality
as indicated by territory coverage measures.

Attanasioet al. [3] addressed the multi-vehicle dial-a-ride-problem amd-p
posed two parallel strategies based on a multi-thread tdmels. a pC/C/SPDS and
pc/C/MPSS strategies. In the pC/C/SPMS approach, eaclegsocrun a different
tabu search strategy from the same initial solution. Oncemagssor found a new
best solution, it broadcast it. Re-initilization searche&se then launched. Every
iterations, a diversification procedure was applied to tf fialf of the processors,
while an intensification was run on the remaining ones. Th&KBOMPSS strategy
consists of running various tabu search algorithms frorfedifit starting points.
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Each processor run the same tabu search algorithm with #ikbewn parameter
settings. Moreover, every iterations, processors exchanged information in order
to perform a diversification procedure. According to the patational results, both
the pC/C/SPMS and pC/C/MPSS strategies outperformed theesgal tabu search
of Cordeau and Laporte [32].

Gendrealet al. [65] proposed a co-operative multi-thread parallel tabarce
method for real-time routing and vehicle dispatching peots. The authors followed
and adaptive memory approach. In an interesting developrtem authors also
exploited parallelism within each search thread by decaimgothe set of routes
along the same principles proposed in Taillard’s work [14&ry good results were
obtained. This line of research is continuing very strongly

1.13 SUMMARY

We have presented a survey of parallel meta-heuristic rdsthpplied to a rather
broad set of problems: graph coloring and partitioningjrigtetree problems, set
covering and partitioning, satisfiability and max-sat penfs, quadratic assignment,
location and network design, traveling salesman and vehatlting problems.

This survey it is certainly not comprehensive. Importargi¢s could not be
covered and not all published contributions in the topiogeced could be surveyed.
The scope of the chapter is sufficiently broad, however, ltawalis to draw some
conclusions and share a number of thoughts on the subjearaligl meta-heuristic
applications.

The survey illustrates the richness of contributions todéxeelopment of parallel
meta-heuristics as well as that of their applications to yrierportant problems in
science and practice. It also illustrate the fact that tldkrress notwithstanding,
one finds only a somewhat limited number of fundamental las regarding how
to design parallel meta-heuristic procedures. We summdrizese principles in
the taxonomy section presented at the beginning of the ehapfo sum up, it
appears that asynchronous co-operation enhances therpanfce of parallel meta-
heuristics independently of the methodology used in thialrsequential method.
This conclusion is strongly supported by the results oletiny multi-thread co-
operative strategies.

The survey also illustrate that not all application fieldgénlaeen studied with com-
parable fervor. Indeed, many important topics have segnafdw of contributions.
Even for topics for which the number of contributions is motenerous, these are
not evenly distributed among meta-heuristic classes. &uittrying to completely
explain the phenomenon, one may observe correlations batthe methodologies
selected and the scientific field of most of the researchatshive addressed it.
Interesting research avenues and promising developmertshus go unexplored,
and appropriate tools may be missing in some areas. It stieuddchallenge of the
profession to explore as comprehensively as possible agpnablem types as possi-
ble. While taking up this challenge, one should make surtantiethods are compared
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across methodological approaches and that such compaaserperformed fairly,
that is, all algorithmic developments are at the same Iei@bphistication.

To conclude, parallel meta-heuristics offer versatile powerful tools to address
large and complex problems. Many fascinating researchumseare open. Some
address issues related to the design of parallel metastieari Others concern
the application of these designs to specific problems andedlestion of the most
appropriate. We hope that this chapter has contributetigridte these opportunities
and challenges.

Acknowledgments

Funding for this project has been provided by the Naturati®ms and Engineering Council
of Canada, and by the Fonds FQRNT of the Province dilfga.

REFERENCES

1. Alba, E. and Dorronsoro, B. Solving the vehicle routingdem by using cellular
genetic algorithms. 1EVOCOR pages 11-20, 2004.

2. Allwright, J.R.A. and Carpenter, D.B. A Distributed Inephentation of Sim-
ulated Annealing for the Travelling Salesman ProbleRarallel Computing
10:335-338, 1989.

3. Attanasio, A., Cordeau, J.F., Ghiani, G., and LaporteP&allel tabu search
heuristics for the dymanic multi-vehicle dial-a-ride pledn. Parallel Comput-
ing, 30:377-387, 2004.

4. Azencott, R.Simulated Annealing Parallelization Techniquedohn Wiley &
Sons, New York, NY, 1992.

5. Badeau, P., Guertin, F., Gendreau, M., Potvin, J.-Y. Tailthrd, E.D. A Parallel
Tabu Search Heuristic for the Vehicle Routing Problem withnd Windows.
Transportation Research C: Emerging Technologh2):109-122, 1997.

6. Banos, R., Gil, C., Ortega, J., and Montoya, F.G. A PdrMidtilevel Meta-
heuristic for Graph Partitioninglournal of Heuristics10(4):315-336, 2004.

7. Banos, R., Gil, C., Ortega, J., and Montoya, F.G. Paraltlristic Search in
Multilevel Graph Partitioning. IfProceedings of the 12th Euromicro Conference
on Parallel, Distributed and Network-Based Processipgges 88-95, 2004.

8. Baraglia, R., Hidalgo, J.I., and Perego, R. A Parallel tity/bleuristic for the
TSP. In Boers, E.J.W., Cagnoni, S., Gottlieb, J., Hart, GBndi, P.L., Ginther,
R., Smith, R., and Tijink, H., editorg&pplications of Evolutionary Computing.
Proceeding of EvoCOP, EvoFlight, EvolASP, EvolLearn, and=H¥M volume



36

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

PARALLEL META-HEURISTICS APPLICATIONS

2037 ofLecture Notes in Computer Sciengages 193-202. Springer-Verlag,
Heidelberg, 2001.

. Barr, R.S. and Hickman, B.L. Reporting Computational &kmpents with Par-

allel Algorithms: Issues, Measures, and Experts Opinid@R®SA Journal on
Computing5(1):2-18, 1993.

Bastos, M.P. and Ribeiro, C.C. Reactive Tabu SearchReith-Relinking for the
Steiner Problem in Graphs. In S. Vo3, S. Martello, C. Rowtaand Osman,
I.H., editors Meta-Heuristics 98: Theory & Applicationpages 31-36. Kluwer
Academic Publishers, Norwell, MA, 1999.

Battiti, R. and Tecchiolli, G. Parallel Based Search @Gmmbinatorial Opti-
mization: Genetic Algorithms and TABWIlicroprocessors and Microsystems
16(7):351-367,1992.

Battiti, R. and Tecchiolli, G. The Reactive Tabu SearédDRSA Journal on
Computing 6(2):126-140, 1994.

Beasley, J.E. Randomized Heuristic Schemes for the 8etridg Problem.
Naval research Logistic87:151-164, 1990.

J. Berger and M. Barkaoui. A Parallel Hybrid Genetic Alton for the Vehicle
Routing Problem with Time Windows.Computers & Operations Research
31(12):2037-2053, 2004.

Berger, J. and Barkaoui, M. A hybrid genetic algorithm fioe capacitated
vehicle routing problem. In E. Cantu-Paz, editGCCO03 pages 646—656.
Springer-Verlag, 2003.

Bevilacqua, A. A Methodological Approach to Parallein8lated Annealing.
Journal of Parallel and Distributed Computin§2:1548-1570, 2002.

Boissin, N. and Lutton, J.L. A Parallel Simulated AnmegAlgorithm. Parallel
Computing 19(8):859-872, 1993.

Bullnheimer, B., Hartl, R., and Strauf3, C. An Improved Sgstem Algorithm
for the Vehicle Routing ProblemAnnals of Operations Researd9:319-328,
1999.

Bullnheimer, B., Kotsis, G., and Straul3, C. Parall¢limastrategies for the ant
system.Applied Optimization24:87-100, 1998.

Cakgari, P. , Guidec, F., Kuonen, P., and Kuonen, D. ParalhtsBased Ge-
netic Algorithm for Radio Network Desigrilournal of Parallel and Distributed
Computing47(1):86-90, 1997.

Canii-Paz, E. A Survey of Parallel Genetic Algorithn@alculateurs Parakles,
Réseaux et Syisnes epartis 10(2):141-170, 1998.



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

SUMMARY 37

Chakrapani, J. and Skorin-Kapov, J. A ConnectionistrApph to the Quadratic
Assignment Problem.Computers & Operations Research9(3/4):287-295,
1992.

Chakrapani, J. and Skorin-Kapov, J. Connection Machimgementation of a
Tabu Search Algorithm for the Traveling Salesman Probldournal of Com-
puting and Information Technolog¥(1):29-36, 1993.

Chakrapani, J. and Skorin-Kapov, J. Massively Pardiddu Search for the
Quadratic Assignment ProblemAnnals of Operations Researchl:327-341,
1993.

Chakrapani, J. and Skorin-Kapov, J. Mapping Tasks tod&sors to Minimize
Communication Time in a Multiprocessor System. Tlhe Impact of Emerg-
ing Technologies of Computer Science and Operations Resqgages 45—-64.
Kluwer Academic Publishers, Norwell, MA, 1995.

Chen, H., Flann, N.S., and Watson, D.W. Parallel Geis#tiwlated Annealing:
A Massively Parallel SIMD Algorithm. IEEE Transactions on Parallel and
Distributed System®(2):126-136, 1998.

Christofides, N., Mingozzi A., and Toth, P. The VehicleuRog Problem. In
N. Christofides, Mingozzi A., P. Toth, and C. Sandi, edita@@®mbinatorial
Optimization pages 315-338. John Wiley, New York, 1979.

Cohoon, J., Hedge, S., Martin, W., and Richards, D. Ruatetl Equilibria:
A Parallel Genetic Algorithm. In J.J. Grefenstette, ediftnoceedings of the
Second International Conference on Genetic Algorithmsthaat Applications
pages 148-154. Lawrence Erlbaum Associates, Hillsdalel 98 .

Cohoon, J., Martin, W., and Richards, D. Genetic Aldgwnitand Punctuated
Equilibriain VLSI. In Schwefel, H.-P. and &hner, R., editor®arallel Problem
Solving from Naturgvolume 496 ofLecture Notes in Computer Scienpages
134-144. Springer-Verlag, Berlin, 1991a.

Cohoon, J., Martin, W., and Richards, D. A Multi-PopigdatGenetic Algorithm
for Solving the k-Partition Problem on Hyper-Cubes. In RB€lew and L.B.
Booker, editorsProceedings of the Fourth International Conference on Gene
Algorithms pages 134-144. Morgan Kaufmann, San Mateo, CA, 1991b.

Collins, R.J. and Jefferson, D.R. Selection in Masgirdrallel Genetic Al-
gorithms. In R.K. Belew and L.B. Booker, editoiBroceedings of the Fourth
International Conference on Genetic Algorithrmpages 249-256. Morgan Kauf-
mann, San Mateo, CA, 1991.

Cordeau, J.F. and G. Laporte, G. A Tabu Search Heurfstithe Static multi-
vehicle Dial-a-ride ProblemTransportation Research Part, Bages 579-594,
2003.



38 PARALLEL META-HEURISTICS APPLICATIONS

33. Crainic, T.G. Parallel Computation, Co-operation,ur8earch. In C. Rego and
B. Alidaee, editorsAdaptive Memory and Evolution: Tabu Search and Scatter
Search Kluwer Academic Publishers, Norwell, MA, 2004.

34. Crainic, T.G. and Gendreau, M. Towards an Evolutionaeyidd - Cooperating
Multi-Thread Parallel Tabu Search Hybrid. In S. Vo3, S. MHat C. Roucairol,
and Osman, |.H., editordJleta-Heuristics 98: Theory & Applicationpages
331-344. Kluwer Academic Publishers, Norwell, MA, 1999.

35. Crainic, T.G. and Gendreau, M. Cooperative ParallelBdarch for Capacitated
Network Design.Journal of Heuristics8(6):601-627, 2002.

36. Crainic, T.G., Gendreau, M., Hansen, P., and MladéndVi Cooperative Par-
allel Variable Neighborhood Search for theMedian. Journal of Heuristics
10(3):293-314, 2004.

37. Crainic, T.G. and Toulouse, M. Parallel Metaheuristiés T.G. Crainic and
G. Laporte, editorsi-leet Management and Logistigsages 205-251. Kluwer
Academic Publishers, Norwell, MA, 1998.

38. Crainic, T.G. and Toulouse, M. Parallel Strategies fatéheuristics. In F.
Glover and G. Kochenberger, editoktandbook in Metaheuristicpages 475—
513. Kluwer Academic Publishers, Norwell, MA, 2003.

39. Crainic, T.G., Toulouse, M., and Gendreau, M. Parallgychronous Tabu
Search for Multicommodity Location-Allocation with Baleimg Requirements.
Annals of Operations ReseardB:277-299, 1995.

40. Crainic, T.G., Toulouse, M., and Gendreau, M. Synchusritabu Search Par-
allelization Strategies for Multicommodity Location-Altation with Balancing
RequirementsOR Spektruml7(2/3):113-123, 1995.

41. Crainic, T.G., Toulouse, M., and Gendreau, M. Towardax@momy of Parallel
Tabu Search AlgorithmdNFORMS Journal on Computing(1):61—-72, 1997.

42. Crainic, T.G., Toulouse, M., and Li, Y. A Simple CooparatMultilevel Algo-
rithm for the Capacitated Multicommodity Network Desigrnulication CRT-
2004-, Centre de recherche sur les transports, UnigatsiMonteal, Montgal,
QC, Canada, 2004.

43. Cung, V.-D., Martins, S.L., Ribeiro, C.C., and Rouchi®. Strategies for
the Parallel Implementations of Metaheuristics. In C.(GhdRio and P. Hansen,
editors Essays and Surveysin Metaheuristpages 263—-308. Kluwer Academic
Publishers, Norwell, MA, 2002.

44. Cung, V.-D., Mautor, T., Michelon, P., and Tavares, A. &ater Search Based
Approach for the Quadratic Assignment Problem on EvolaignComputa-
tion and Evolutionary Programming. In T. Baeck, Z. Michailezy and X. Yao,



SUMMARY 39

editors Proceedings of the IEEE International Conference on Evohary Com-
putation pages 165-170. IEEE Press, 1997.

45. Czech, Z.J. A Parallel Genetic Algorithm for the Seti®arting Problem. IrBth
Euromicro Workshop on Parallel and Distributed Processipgges 343-350,
2000.

46. Czech, Z.J. and Czarnas, P. Parallel simulated angdalirthe vehicle rout-
ing problem with time windows. Irl0th Euromicro Workshop on Parallel,
Distributed and Network-based Processipgges 376—383, 2002.

47. De Falco, I., Del Balio, R., Tarantino, E., and Vaccaro)mRproving Search
by Incorporating Evolution Principles in Parallel Tabu &#a In Proceedings
International Confonference on Machine Learnjipgges 823-828, 1994.

48. R. Diekmann, R. lling, and J. Simon. Problem Independent Distributed Sim-
ulated Annealing and its Applications. In R.V.V. Vidal, #ati Lecture Notes
in Economics and Mathematical Systewslume 396, pages 17—44. Springer
Verlag, Berlin, 1993.

49. Diekmann, R., liling, R., Monien, B., and Saner, C. Combining Helpful Sets
and Parallel Simulated Annealing for the Graph-PartitigriProblem.Interna-
tional Journal of Parallel Programming8:61-84, 1996.

50. Drias, H. and Ibri , A. Parallel ACS for Weighted MAX-SAIh Mira, J. and
Alvarez, J., editorsArtificial Neural Nets Problem Solving Methods - Proceed-
ings of the 7th International Work-Conference on Artifi@ald Natural Neural
Networks volume 2686 of_ecture Notes in Computer Scienpages 414—-421.
Springer-Verlag, Heidelberg, 2003.

51. Drias, H. and Khabzaoui, M. Scatter Search with Randotk Btaategy for SAT
and Max-SAT Problems. In L. Monostori,&cza, J., and A. Moonis, editors,
Proceedings of the 14th International Conference on Indalsind Engineering
Applications of Artificial Intelligence and Expert SystehssA/AIE 2001) pages
35-44. Springer-Verlag, 2001.

52. Drummond, L.M.A., Ochi, L.S., and Vianna, D.S. A parhitigbrid evolutionary
metaheuristic for the period vehicle routing problem. woé1586 ofLecture
Notes in Computer Sciengeages 183-191. 1999.

53. Drummond, L.M.A., Ochi, L.S., and Vianna, D.S. An asymious parallel
metaheuristic for the period vehicle routing probleRuture Generation Com-
puter Systemd7:379-386, 2001.

54. Durand, M.D. Parallel Simulated Annealing: Accuracy S8peed in Placement.
IEEE Design & Test of Computer§(3):8—34, 1989.

55. Felten, E., Karlin, S., and Otto, S.W. The Traveling Salen Problem on a
Hypercube, MIMD Computer. IfProc. 1985 of the Int. Conf. on Parallel
Processingpages 6-10, 1985.



40 PARALLEL META-HEURISTICS APPLICATIONS

56. Fiechter, C.-N. A Parallel Tabu Search Algorithm forg@afravelling Salesman
Problems Discrete Applied Mathematic5§1(3):243-267, 1994.

57. Fiorenzo Catalano, M.S. and Malucelli, F. Randomizedriséc Schemes for
the Set Covering Problem. In M. Paprzyky, L. Tarricone, an¥ang, editors,
Practical Applications of Parallel Computingages 23—38. Nova Science, 2003.

58. Flores, S.D., Cegla, B.B., and Caceres, D.B. Teleconmwation Network De-
sign with Parallel Multi-objective Evolutionary Algoriths. InIFIP/ACM Latin
America Networking Conference 20@2303.

59. Folino, G., Pizzuti, C., and Spezzano, G. CombiningutaliGenetic Algorithms
and Local Search for Solving Satisfiability ProblemsPmceedings of the Tenth
IEEE International Conference on Tools with Artificial Iltgence pages 192—
198. IEEE Computer Society Press, 1998.

60. Folino, G., Pizzuti, C., and Spezzano, G. Solving thesfalility Problem by a
Parallel Cellular Genetic Algorithm. IRroceedings of the 24th EUROMICRO
Conferencepages 715-722. IEEE Computer Society Press, 1998.

61. Folino, G., Pizzuti, C., and Spezzano, G. Parallel HyMethod for SAT that
Couples Genetic Algorithms and Local SeardBEE Transactions on Evolu-
tionary Computationpages 323—-334, 2001.

62. Garéa-Lopez, F., Melan-Batista, B., Moreno#tez, J.A., and Moreno-Vega,
J.M. The Parallel Variable Neighborhood Search for thsledian Problem.
Journal of Heuristics8(3):375-388, 2002.

63. Garéa-Lopez, F., Melan-Batista, B., Moreno#tez, J.A., and Moreno-Vega,
J.M. Parallelization of the Scatter Search for fh&ledian Problem.Parallel
Computing 29:575-589, 2003.

64. Gehring, H. and Homberger, J. A parallel two-phase neetastic for routing
problems with time windows.Asia-Pacific Journal of Operational Research
18(1):35-47,2001.

65. Gendreau, M., Guertin, F., Potvin, J.-Y., and Taill&d). Tabu Search for Real-
Time Vehicle Routing and Dispatchingransportation Scien¢&3(4):381-390,
1999.

66. Gendreau, M., Laporte , G., and Semet, F. A dynamic moxe! marallel
tabu search heuristic for real-time ambulance relocatiéarallel Computing
27(12):1641-1653, 2001.

67. Gendron, B., Potvin, J.-Y., and Soriano, P. A Parallebtity Heuristic for the
Multicommodity Capacitated Location Problem with BalargRequirements.
Parallel Computing29:591-606, 2003.



SUMMARY 41

68. Ghamlouche, I., Crainic, T.G., and Gendreau, M. Cyesel Neighbourhoods
for Fixed-Charge Capacitated Multicommodity Network @gsi Operations
Research51(4):655-667, 2003.

69. Glover, F. and Laguna, Mabu SearchKluwer Academic Publishers, Norwell,
MA, 1997.

70. Greening, D.R. Asynchronous Parallel Simulated Aringalectures in Com-
plex System$8:497-505, 1990.

71. Greening, D.R. Parallel Simulated Annealing Techrsgihysica D 42:293—
306, 1990.

72. Gunes, M., Sorges, U., and Bouazizi, |. ARA - The Ant Cgl8ased Routing
Algorithm for MANETSs. In Proceedings of the International Conference on
Parallel Processingpages 79-85, 2002.

73. Hidalgo, J.l., Prieto, M., Lanchares, J., Baraglia, R:ado, F., and Garnica,
O. Hybrid Parallelization of a Compact Genetic Algorithmn Proceedings
of the 11th uromicro Conference on Parallel, Distributeddaetwork-Based
Processingpages 449-455, 2003.

74. Holmgqvist, K., Migdalas, A., and Pardalos, P.M. Patfiakal Heuristics for Com-
binatorial Search. In A. Migdalas, P.M. Pardalos, and Scdyt@ditorsParallel
Computing in Optimizatiorpages 269-294. Kluwer Academic Publishers, Nor-
well, MA, 1997.

75. Homberger, J. and Gehring, H. Two Evolutionary Metalstias for the Vehicle
Routing Problem with Time WindowdNFOR, 37:297-318, 1999.

76. Jeong, C.-S. and Kim, M.-H. Parallel Algorithm for thePf& SIMD Machines
Using Simulated Annealing. IRroceedings of the International Conference on
Application Specific Array Processozages 712—-721, 1990.

77. Jeong, C.-S. and Kim, M.-H. Fast Parallel Simulated Aating Algorithm for
TSP on SIMD Machines with Linear InterconnectionBarallel Computing
17:221-228,1991.

78. Katayama, K., Hirabayashi, H., and Narihisa, H. Perforae Analysis for
Crossover Operators of Genetic AlgorithrBystems and Computers in Japan
30:20-30, 1999.

79. Katayama, K., Hirabayashi, H., and Narihisa, H. Analysi Crossovers and
Selections in a Coarse-grained Parallel Genetic Algoritiviathematical and
Computer Modelling38:1275-1282, 2003.

80. Knight, R.L. and Wainwright, R.L. HYPERGEN" - A Distritked Genetic Al-
gorithm on a Hypercube. IRroceedings of the 1992 IEEE Scalable High



42

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

PARALLEL META-HEURISTICS APPLICATIONS

Performance Computing Conferengemges 232—-235. IEEE Computer Society
Press, Los Alamitos, CA, 1992.

Kohlmorgen, U., Schmeck, H., and Haase, K. Experiendts kine-grained
Parallel Genetic AlgorithmsAnnals of Operations Resear@0:203-219, 1999.

Kokosinski, Z., Kolodziej, M., and Kwarciany, K. PaeliGenetic Algorithm
for Graph Coloring Problem. In Bubak, M., van Albada, G.DndaSloot,
P.M.A., editors,International Conference on Computational Scienegume
3036 ofLecture Notes in Computer Sciengages 215-222. SpringerVerlag,
Heidelberg, 2004.

Laursen, P.S. Problem-Independent Parallel Simukateetaling Using Selec-
tion and Migration. In Davidor, Y., Schwefel, H.-P., andakher, R., editors,
Parallel Problem Solving from Nature Ill, Lecture Notes io@puter Science
866, pages 408—-417. Springer-Verlag, Berlin, 1994.

Laursen, P.S. Parallel Heuristic Search — Introdustenmd a New Approach.
In A. Ferreira and P.M. Pardalos, editoBplving Combinatorial Optimization
Problems in Parallel, Lecture Notes in Computer Sciencetlpages 248-274.
Springer-Verlag, Berlin, 1996.

Le Bouthillier, A. and Crainic, T.G. A Cooperative Pé&hMeta-Heuristic for
the Vehicle Routing Problem with Time Window<omputers & Operations
Research32(7):1685-1708, 2005.

Lee, K-G. and Lee, S-V. Efficient Parallelization of Slatad Annealing Using
Multiple Markov Chains: An Application to Graph Partitiowg. In Mudge,
T.N., editor,Proceedings of the International Conference on Parall@d&ssing
volume I1I: Algorithms and Applications, pages 177-180.CRress, 1992a.

Lee, K-G. and Lee, S-Y. Synchronous and AsynchronouallBaSimulated
Annealing with Multiple Markov Chains. volume 1027 tEcture Notes in
Computer Scienc@ages 396—408. Springer-Verlag, Berlin, 1995.

Lee, S.-Y. and Lee, K.-G. Asynchronous CommunicatioMaftiple Markov
Chains in Parallel Simulated Annealing. In Mudge, T.N.tediProceedings
of the International Conference on Parallel Processiaglume IlI: Algorithms
and Applications, pages 169-176. CRC Press, Boca Rator,992b.

D. Levine. A parallel genetic algorithm for the set gaotiing problem. In I.H.
Osman and J.P. Kelly, editors]eta-Heuristics: Theory & Applicationpages
23-35. Kluwer Academic Publishers, Norwell, MA, 1996.

Li, Y., Pardalos, P.M., and Resende, M.G.C. A Greedy Rarizkd Adaptive
Search Procedure for Quadratic Assignment ProblerIMACS Implementa-
tion Challenge, DIMACS Series on Discrete Mathematics armebietical Com-

puter Sciencevolume 16, pages 237-261. American Mathematical Society,

1994.



91.

92.

93.

94.

95.

96.

97.

98.

99.

SUMMARY 43

Lin, S.-C., Punch, W., and Goodman, E. Coarse-GrainllBla&enetic Algo-
rithms: Categorization and New Approach Sixth IEEE Symposium on Parallel
and Distributed Processingages 28—-37. IEEE Computer Society Press, 1994.

Logar, A.M., Corwin, E.M., and English, T.M. Implemetita of Massively Par-
allel Genetic Algorithms o the MasPar MP-1. Pnoceedings of the 1992 IEEE
ACM/SIGAPP Symposium on Applied Computing: Technolo@liballenges of
the 1990’s pages 1015-1020. ACM Press, Kansas City, Missouri, 1992.

Malek, M., Guruswamy, M., Pandya, M., and Owens, H. $eama Parallel
Simulated Annealing and Tabu Search Algorithms for the &liag Salesman
Problem.Annals of Operations Researcil:59-84, 1989.

Marchiori, E. and Rossi, C. A Flipping Genetic Algorithfior Hard 3-SAT
Problems. In Banzhaf, W., Daida, J., Eiben, A.E., Garzor{ MHonavar, V.,
Jakiela, M., and Smith, R.E., edito®roceedings of the Genetic Evolutionary
Computation Conferengpages 393—400. Morgan Kaufmann, San Mateo, CA,
1999.

Martins, S.L., Resende, M.G.C., Ribeiro, C.C., anddems, P.M. A Parallel
Grasp for the Steiner Tree Problem in Graphs Using a HybridalL&earch
Strategy.Journal of Global Optimizationl7:267-283, 2000.

Martins, S.L., Ribeiro, C.C., and Souza, M.C. A PardBBRASP for the Steiner
Problem in Graphs. In A. Ferreira and J. Rolim, editd*mceedings of IR-
REGULAR’98 - 5th International Symposium on Solving Irfegy Structured

Problems in Parallelvolume 1457 of_ecture Notes in Computer Scienpages
285-297. Springer-Verlag, 1998.

T. Maruyama, T. Hirose, and A. Konagaya. A Fine-Grainathiel Genetic
Algorithm for Distributed Parallel Systems. In S. Forresdjtor, Proceedings
of the Fifth International Conference on Genetic Algorithmages 184-190.
Morgan Kaufmann, San Mateo, CA, 1993.

Middendorf, M., Reischle, F., and Schmeck, H. Informatxchange in multi
colony ant algorithms. volume 1800 dafcture Notes in Computer Science
Springer-Verlag, Heidelberg, 2000.

Miki, M., Hiroyasu, T., Wako, J., and Yoshida, T. Adagtilemperature Schedule
Determined by Genetic Algorithm for Parallel Simulated &ating. INCEC’03

- The 2003 Congress on Evolutionary Computatiamiume 1, pages 459-466,
2003.

100. Mitchell, D., Selman, B., and Levesque, H. Hard and Esiribution of SAT

Problems. In Rosenbloom, P. and Szolovits, P., edins;eedings of the Tenth
National Conference on Artificial Intelligenc@ages 459-465. AAAI Press,
Menlo Park, CA, 1992.



44 PARALLEL META-HEURISTICS APPLICATIONS

101. H. Mihlenbein. Parallel Genetic Algorithms, Population Gersednd Combi-
natorial Optimization. In J.D. Schaffer, edit®roceedings of the Third Interna-
tional Conference on Genetic Algorithmsages 416-421. Morgan Kaufmann,
San Mateo, CA, 1989.

102. Mithlenbein, H. Evolution in Time and Space - The Parallel Gerdgorithm.
In G.J.E. Rawlins, editoFoundations of Genetic Algorithm & Classifier Systems
pages 316—338. Morgan Kaufman, San Mateo, CA, 1991.

103. Mithlenbein, H. Asynchronous Parallel Search by the Par&léietic Algo-
rithm. In V. Ramachandran, editdProceedings of the Third IEEE Symposium
on Parallel and Distributed Processingages 526—-533. IEEE Computer Society
Press, Los Alamitos, CA, 1991c.

104. Muhlenbein, H. Parallel Genetic Algorithms in Combinatb@gatimization. In
O. Balci, R. Sharda, and S. Zenios, edit@@®mputer Science and Operations
Research: New Developments in their Interfapages 441-456. Pergamon
Press, New York, NY, 1992,

105. Mithlenbein, H. How Genetic Algorithms Really Work: Mutatiand Hill-
Climbing. In R. Manner and B. Manderick, editorBarallel Problem Solving
from Nature, 2 pages 15—-26. North-Holland, Amsterdam, 1992a.

106. Muhlenbein, H., Gorges-Schleuter, M., andékrer, O. New Solutions to the
Mapping Problem of Parallel Systems - the Evolution Applodarallel Com-
puting, 6:269-279, 1987.

107. Muhlenbein, H., Gorges-Schleuter, M., andakrer, O. Evolution Algorithms
in Combinatorial OptimizationParallel Computing7(1):65—-85, 1988.

108. Mutalik, P. P., Knight, L. R., Blanton, J. L., and Waingitt, R. L. Solving
Combinatorial Optimization Problems Using Parallel Siateti Annealing and
Parallel Genetic Algorithms. IRroceedings of the 1992 IEEE ACM/SIGAPP
Symposium on Applied Computing: Technological Challerajehe 1990's
pages 1031-1038. ACM Press, Kansas City, Missouri, 1992.

109. Nabhan, T.M. and Zomaya, A.Y. A Parallel Simulated Aalimg Algorithm with
Low Communication OverheadEEE Transactions on Parallel and Distributed
Systems6(12):1226-1233, 1995.

110. Ochi, L.S., Vianna, D.S., Drummond, L.M.A., and Vigté«.0. A Parallel
Evolutionary Algorithm for the Vehicle Routing Problem WwiHeterogeneous
Fleet. Future Generation Computer Systerhd(3):285-292, 1998.

111. Ouyang, M., Toulouse, M., Thulasiraman, K., Glovey,dnd Deogun, J.S.
Multi-Level Cooperative Search: Application to the Ndtk$/pergraph Par-
titioning Problem. InProceedings of International Symposium on Physical
Design pages 192-198. ACM Press, 2000.



SUMMARY 45

112. Ouyang, M., Toulouse, M., Thulasiraman, K., Glovey,dnd Deogun, J.S.
Multilevel Cooperative Search for the Circuit/Hypergragartitioning Problem.
IEEE Transactions on Computer-Aided Desigt(6):685-693, 2002.

113. Pardalos, P.M., Li, Y., and Murthy, K.A. Computatiofdperience with Par-
allel Algorithms for Solving the Quadratic Assignment Pievh. In O. Balci,
R. Sharda, and S. Zenios, editoBymputer Science and Operations Research:
New Developments in their Interfacpages 267-278. Pergamon Press, New
York, NY, 1992.

114. Pardalos, P.M., L. Pitsoulis, T. Mavridou, and ResehMd&.C. Parallel Search
for Combinatorial Optimization: Genetic Algorithms, Sitated Annealing,
Tabu Search and GRASP. In A. Ferreira and J. Rolim, edifens;eedings of
Workshop on Parallel Algorithms for Irregularly Structutdé’roblems, Lecture
Notes in Computer Scienceolume 980, pages 317-331. Springer-Verlag,
Berlin, 1995.

115. Pardalos, P.M., Pitsoulis, L., and Resende, M.G.C. ialRAGRASP Imple-
mentation for the Quadratic Assignment Problem. In A. Fearand J. Rolim,
editors,Solving Irregular Problems in Parallel: State of the Apages 115-130.
Kluwer Academic Publishers, Norwell, MA, 1995.

116. L. Pitsoulis, Pardalos, P.M., and Resende, M.G.C. AlRAGRASP for MAX-
SAT. In Wasniewski J., Dongarra, J., Madsen, K., and OleBereditors,Third
International Workshop on Applied Parallel Computing, iisttial Computation
and Optimizationvolume 1180 ofLecture Notes in Computer Sciengages
575-585. Springer-Verlag, Berlin, 1996.

117. Prins, C. and Taillard.D. A Simple and Effective Evolutionary Algorithm for
the Vehicle Routing ProblenComputers & Operations Resear@1(12):1985—
2002, 2004.

118. Rahoual, M., Hadji, R., and Bachelet, V. Parallel Argt8yn for the Set Covering
Problem Source. IfProceedings of the Third International Workshop on Ant
Algorithms pages 262-267. Springer-Verlag, London, UK, 2002.

119. Ram, D.J., Sreenivas, T.H., and Subramaniam, K.GlI®anulated Anneal-
ing Algorithms. Journal of Parallel and Distributed Computin@7:207-212,
1996.

120. Randall ,M. and Lewis, A. A parallel implementation of eclony optimisation.
Journal of Parallel and Distributed Computin§2:1421-1432, 2002.

121. Rego, C. and Roucairol, C. A Parallel Tabu Search AflgoriUsing Ejection
Chains for the VRP. In I.H. Osman and J.P. Kelly, editdvieta-Heuristics:
Theory & Applicationspages 253-295. Kluwer Academic Publishers, Norwell,
MA, 1996.



46 PARALLEL META-HEURISTICS APPLICATIONS

122. Reimann, M., Doerner, K., and Hartl, R. D-ants: SaviBgsed Ants Divide
and Conquer the Vehicle Routing ProbleBomputers & Operations Research
31:563-591, 2004.

123. Resende, M.G.C. and Feo, T.A. A GRASP for Satisfiability Trick, M.A.
and Johnson, D.S., editor§he Second DIMACS Implementation Challenge,
DIMACS Series on Discrete Mathematics and Theoretical GaergScience
volume 26, pages 499-520. American Mathematical Socié§6.1

124. Resende, M.G.C. and Feo, T.A. Approximative Solutibieighted MAX-
SAT Problems Using GRASRiscrete Mathematics and Theoretical Computer
Science35:393-405, 1997.

125. Ribeiro, C.C. and Rosseti, |. A Parallel GRASP Heurfsti the 2-path Network
Design Problem. 4 jouge ROADEF, Paris, February 20-22, 2002.

126. Ribeiro C.C. and Rosseti, I. A Parallel GRASP Heurifdicthe 2-path Net-
work Design Problem. Third Meeting of the PAREO Euro Worki@goup,
Guadeloupe (France), May, 2002.

127. Ribeiro C.C. and Rosseti, |. Parallel grasp with patrking heuristic for the
2-path network design problem. AIRO’2002, L'Aquila, Itaeptember, 2002.

128. Rochat, Y. and Taillar.D. Probabilistic Diversification and Intensification in
Local Search for Vehicle Routinglournal of Heuristics1(1):147-167, 1995.

129. Sanvicente#chez, H. and Frausto-$glJ. . Mpsa: A methodology to paral-
lelize simulated annealing and its application to the tiagesalesman problem.
volume 2313 of ecture Notes in Computer Scien&pringer-Verlag Heidelberg,
2002.

130. Selman, B., Kautz, H. A., and Cohen, B. Noise Stratefgietmproving Lo-
cal Search. InProceedings of the Twelfth National Conference on Artificia
Intelligence pages 337-343, 1994.

131. Selman, B., Levesque, H., and Mitchell, D. A New Method$olving Hard
Satisfiability Problems. In Rosenbloom, P. and Szolovitgditors Proceedings
of the Tenth National Conference on Atrtificial Intelligengages 440-446.
AAAI Press, Menlo Park, CA, 1992.

132. Sena, G.A., Megherbi, D., and Isern, G. Implementatfom Parallel Genetic
Algorithm on a Cluster of Workstations: Traveling SalesnPanblem, a Case
Study. Future Generation Computer Systerhg:477-488, 2001.

133. Shonkwiler, R. Parallel Genetic Algorithms. In S. sty editorProceedings
of the Fifth International Conference on Genetic Algoritirpages 199-205.
Morgan Kaufmann, San Mateo, CA, 1993.

134. Sleem, A., Ahmed, M., Kumar, A., and Kamel, K. Compaststudy of
Parallel vs. Distributed Genetic Algorithm Implementatfor ATM Networking



SUMMARY 47

Environment. InFifth IEEE Symposium on Computers and Communications
pages 152-157, 2000.

135. Sohn, A. Parallel Satisfiability Test with Synchron@isiulated Annealing
on Distributed Memory MultiprocessorJournal of Parallel and Distributed
Computing 36:195-204, 1996.

136. Sohn, A. and Biswas, R. Satisfiability Tests with Sypnabus Simulated An-
nealing on the Fujitsu AP1000 Massively-parallel Multipessor. InProceed-
ings of the International Conference on Supercompuytieges 213-220, 1996.

137. Solar, M., Parada, V., and Urrutia, R. A Parallel Genglgorithm to Solve the
Set-Covering ProblemComputers & Operations Researc?9(9):1221-1235,
2002.

138. Solomon, M.M. Time Window Constrained Routing and Sictiag Problems.
Operations Resear¢l35:254-265, 1987.

139. Spears, W.M. Simulated Annealing for Hard Satisfigbiiroblems, in Clique,
Coloring and Satisfiability. In Johnson, D.S. and Trick, M.&ditors,Cliques,
Coloring, and Satisfiabilityvolume 26, pages 533-558. American Mathematical
Society, 1996.

140. Stutzle, T. Parallelization Strategies for Ant Colddgtimization. In Eiben,
A.E., Back, T., Schoenauer, M., and Schwefel, H.-P., egliteroceedings of
Parallel Problem Solving from Nature, Volume 1498 of ecture Notes in Com-
puter Sciencgpages 722-731. Springer-Verlag, Heidelberg, 1998.

141. Stutzle, T. and Hoos, H. Improvements on the Ant Systértroducing the
MAX-MIN Ant System. In Smith, G.D., Steele, N.C., and Albkec R.F.,
editors,Proceedings of Artificial Neural Nets and Genetic Algorithirecture
Notes in Computer Science, pages 245-249. Springer-\étkidelberg, 1997.

142. Taillard, E.D. Robust Taboo Search for the Quadratic Assignment Enobl
Parallel Computing17:443-455, 1991.

143. Taillard,E.D. Parallel Iterative Search Methods for Vehicle Roufirgblems.
Networks 23:661-673, 1993.

144. Taillard, E.D. Recherches @ratives dirigees parakles PhD thesis,Ecole
Polytechnique Ederale de Lausanne, 1993.

145, Taillard E.D., Badeau, P., Gendreau, M., Guertin, F., and Potvi¥, 4. Tabu
Search Heuristic for the Vehicle Routing Problem with Sofn& Windows.
Transportation Scien¢81(2):170-186, 1997.

146. Talbi, E-G. and Begsie, P. A Parallel Genetic Algorithm for the Graph Par-
titioning Problem. InProceedings of the ACM International Conference on
Supercomputing ICS9pages 312-320, 1991a.



48 PARALLEL META-HEURISTICS APPLICATIONS

147. Talbi, E.-G., Hafidi, Z., and Geib, J.-M. Parallel AdapiTabu Search Approach.
Parallel Computing24:2003-2019, 1998.

148. Talbi, E.-G., Hafidi, Z., and Geib, J.-M. Parallel Tabea&h for Large Op-
timization Problems. In S. VoR3, S. Martello, C. RoucairaideOsman, |.H.,
editors,Meta-Heuristics 98: Theory & Applicationpages 345-358. Kluwer
Academic Publishers, Norwell, MA, 1999.

149. Talbi, E.-G., Hafidi, Z., Kebbal, D., and Geib, J.-M. Aulalolerant Parallel
Heuristic for Assignment ProblemsFuture Generation Computer Systems
14:425-438, 1998.

150. Talbi, E.-G., Roux, O., Fonlupt, C., and Robillard, ré&lel Ant Colonies
for Combinatorial Optimization Problems. In J.D.P. Rolitmaé, editor,11th
IPPS/SPDP’99 Workshopgolume 1586 of ecture Notes in Computer Science
pages 239-247. 1999.

151. Talbi, E.-G., Roux, O., Fonlupt, C., and Robillard, ré&lel Ant Colonies
for the Quadratic Assignment ProbleAuture Generation Computer Systems
17:441-449, 2001.

152. Tongcheng, G. and Chundi, M. Radio Network Design U§ingrse-Grained
Parallel Genetic Algorithms with Different Neighbor Topgly. InProceedings
of the 4th World Congress on Intelligent Control and Autdoratvolume 3,
pages 1840-1843, 2002.

153. Toulouse, M., Crainic, T.G., and San8. An Experimental Study of Systemic
Behavior of Cooperative Search Algorithms. In S. Vol3, S.telar, C. Roucairol,
and Osman, I.H., editordleta-Heuristics 98: Theory & Applicationpages
373-392. Kluwer Academic Publishers, Norwell, MA, 1999.

154. Toulouse, M., Crainic, T.G., and San8. Systemic Behavior of Cooperative
Search AlgorithmsParallel Computing21(1):57—-79, 2004.

155. Toulouse, M., Crainic, T.G., SansB., and Thulasiraman, K. Self-Organization
in Cooperative Search Algorithms. Froceedings of the 1998 IEEE Interna-
tional Conference on Systems, Man, and Cyberngti@ges 2379-2385. Omni-
press, Madisson, Wisconsin, 1998.

156. Toulouse, M., Crainic, T.G., and Thulasiraman, K. @ldbptimization Prop-
erties of Parallel Cooperative Search Algorithms: A SirtiataStudy.Parallel
Computing 26(1):91-112, 2000.

157. Toulouse, M., Glover, F., and Thulasiraman, K. A Mdtale Cooperative
Search with an Application to Graph Partitioning. Repodh&ol of Computer
Science, University of Oklahoma, Norman, OK, 1998.

158. Toulouse, M., Thulasiraman, K., and Glover, F. Muktvel Cooperative Search:
A New Paradigm for Combinatorial Optimization and an Apation to Graph



49

Partitioning. In P. Amestoy, P. Berger, M. Dagd. Duff, V. Frays§, L. Giraud,
and D. Ruiz, editorgth International Euro-Par Parallel Processing Conferenc
volume 1685 of_ecture Notes in Computer Scienpages 533-542. Springer-
Verlag, Heidelberg, 1999.

159. Towhidul Islam, M., Thulasiraman, P., and Thalasir&K. A Parallel Ant
Colony Optimization Algorithm for All-Pair Routing in MANEs. InProceed-
ings of the International Parallel and Distributed Process SymposiumEEE,
2003.

160. Verhoeven, M.G.A. and Aarts, E.H.L. Parallel Localr8aaJournal of Heuris-
tics, 1(1):43-65, 1995.

161. Verhoeven, M.G.A. and Severens, M.M.M. Parallel Ld8ahrch for Steiner
Trees in GraphsAnnals of Operations Researcd#0:185-202, 1999.

162. Vo3, S. Tabu Search: Applications and Prospects. [A.[Dd and P.M. Parda-
los, editors Network Optimization Problemgages 333-353. World Scientific
Publishing Co., Singapore, 1993.

163. Wilkerson, R. and Nemer-Preece, N. Parallel Genetjothm to Solve the
Satisfiability Problem. IProceedings of the 1998 ACM symposium on Applied
Computing pages 23—-28. ACM Press, 1998.

164. Witte, E.E., Chamberlain, R.D., and Franklin, M.A. &l Simulated Anneal-
ing using Speculative Computation. Rroceedings of the 19th International
Conference on Parallel Processingages 286—290, 1990.

165. Witte, E.E., Chamberlain, R.D., and Franklin, M.A. &l Simulated Anneal-
ing using Speculative ComputatioiiEE Transactions on Parallel & Distributed
Systems2(4):483-494, 1991.



