
1 PARALLEL TABU SEARCH

TEODOR GABRIEL CRAINIC

Centre de recherche sur les transports
Université de Montréal
and
École des sciences de la gestion
Université du Québec à Montréal
Montreal, Canada

MICHEL GENDREAU

Centre de recherche sur les transports
and
Département d’informatique et de recherche opérationnelle
Université de Montréal
Montreal, Canada

JEAN-YVES POTVIN

Centre de recherche sur les transports
and
Département d’informatique et de recherche opérationnelle
Université de Montréal
Montreal, Canada

1

2 PARALLEL TABU SEARCH

1.1 INTRODUCTION

Like other metaheuristics, Tabu Search (TS) has been the object over the last fifteen
years or so of several efforts aimed at taking advantage of the benefits offered by
parallel computing (see the surveys of Crainic and Toulouse [23, 24], Cunget al.
[28], Holmqvist, Migdalas, and Pardalos [54], and Pardaloset al. [64]). As it is
the case with other metaheuristics, the main goal pursued when resorting to parallel
implementations of TS is to reduce the overall (“wallclock”) time required to solve a
problem instance. This is a particularly important objective when tackling problems
that must be solved in real time, as we shall see in a latter section of this chapter. There
are, however, other possible objectives. Among these, we must mention enhancing
the robustness of the algorithm at hand by performing a broader search of the solution
space. In some cases, this may even lead to a more efficient search scheme, i.e., a
search scheme capable of finding better solutions than the corresponding sequential
search approachfor the same overall computational effort. This may also significantly
reduce the calibration effort required to achieve good results consistently over diverse
sets of problem instances.

The purpose of this chapter is two-fold: first, to describe, discuss, and illustrate
the main strategies that have been used over time to parallelize TS heuristics; second,
to provide an updated survey of the literature in the rapidly moving field of parallel
TS. The remainder of the chapter is organized as follows. In section 1.2, we briefly
recall the main features and components of Tabu Search. Section 1.3 describes
parallelization strategies for TS. Parallel TS implementations from the literature are
then reviewed in section 1.4. This is followed in section 1.5 by a description of
two applications of parallel TS schemes for the real-time management of fleets of
vehicles. Section 1.6 summarizes the main conclusions of the papers and identifies
some interesting research directions for parallel TS.

1.2 TABU SEARCH

Tabu Searchwas introduced by Glover in 1986 in a seminal paper [45] in which
he also coined the termmetaheuristicsand defined these as strategies designed to
guideinner heuristicsaimed at specific problems. TS is an extension of classicallocal
searchmethods typically used to find approximate solutions to difficult combinatorial
optimization problems. As in other local search techniques, TS explores the solution
orsearch spaceby moving at each iteration from the current solution to a neighbouring
one, where the neighbourhood of the current solution is defined by the transformations
of the solution allowed by the specific inner heuristic (also called theneighbourhood
operator). Usually, the next solution is the one that improves the most the objective
function (“best improvement” rule), or the first improving one that is encountered
when exploring the neighbourhood (“first improvement” rule). Traditional local
search techniques rely on the monotonic improvement of the objective function
to guide and control the search and, therefore, they typically end up trapped in
local optima of the neighbourhood operator. The main distinctive feature of TS

TABU SEARCH 3

is that it can overcome local optima and keep the search going. When a local
optimum is encountered, the search moves instead to the best deteriorating solution
in the neighbourhood. To prevent cycling, a history of the search is maintained
in a short-term memoryand moves that would bring the search trajectory back
toward recently visited solutions are said to betabuand are disallowed, unless they
meet some conditions (aspiration criteria). In theory, the search could continue
for ever. Stopping criteria must thus be specified in actual implementations. The
most commonly used are: a fixed CPU time allotment, the total number of iterations
performed, the number of iterations performed without observing an improvement in
the best objective value recorded, etc.

The previous description relates to what could be termedbasic Tabu Search. In
reality, Tabu Search in its full implementation goes much further than that and can be
interpreted globally as the combination of local search principles with the exploitation
of information stored in various types of memories. Two key concepts in TS are
those ofsearch intensificationandsearch diversification. The idea behind search
intensification is that regions of the search space that appear “promising” (usually
because good solutions have been encountered close by) should be explored more
thoroughly in order to make sure that the best solutions in these regions are found.
Intensification is usually based on some type ofintermediate-term memory, such as a
recency memory, in which one would record the number of consecutive iterations that
various “solution components” have been present without interruption in the current
solution. Intensification is typically performed by periodically restarting the search
from the best currently known solution and by “freezing” (fixing) in this solution the
components that seem more attractive. It also often involves switching to a more
powerful neighborhood operator for a short period of time. Search diversification
addresses the complementary need to perform a broad exploration of the search space
to make sure that the search trajectory has not been confined to regions containing only
mediocre solutions. It is thus a mechanism that tries to force the search trajectory into
previously unexplored regions of the search space. Diversification is usually based
on some form oflong-term memory, such as a frequency memory, in which one
would record the total number of iterations (since the beginning of the search) that
various “solution components” have been present in the current solution or have been
involved in the selected moves. There are three major diversification techniques.
The first one, calledrestart diversification, involves introducing some rarely used
components in the current or the best known solution and restarting the search from
this point. The second diversification technique, calledcontinuous diversification,
integrates diversification considerations directly into the regular search process by
biasing the evaluation of possible moves to account for component frequencies. A
third method for achieving diversification is through so-calledstrategic oscillation,
which is a systematic technique for driving the search trajectory into infeasible space
(i.e., to solutions that do not satisfy all the constraints of the problem at hand) and
then back into feasible space in the hope that it will end up into a different region of
the search space.

Readers wishing to learn more about Tabu Search are referred to the several
introductory chapters that have been written on the topic (e.g., [38, 50, 53]) and to

4 PARALLEL TABU SEARCH

the fundamental papers of Glover [46, 47, 48]. The book by Glover and Laguna [51]
is the most comprehensive reference on the topic.

1.3 PARALLELIZATION STRATEGIES FOR TABU SEARCH

Because of its potentially heavy computational requirements, Tabu Search is a natural
candidate for the application of parallel computing techniques. In fact, fairly early
after the introduction of the method in 1986, researchers began to use such techniques
in the development of TS heuristics. Most of these early efforts focused on the
parallelization of the most computationally intensive step of the method, namely the
neighbourhood evaluation, using rather straightforward master-slave schemes (see,
e.g., [18, 60, 73]). It soon became apparent, however, that one could go much further
in the parallelization of TS than suggested by theselow level parallelizationschemes,
which turn out to be only faster versions of sequential TS implementations, but
with the same overall behaviour (i.e., they will produce the same search trajectories
as their sequential counterparts, but in lower wallclock time). In fact, one could
easily envisionhigh level parallelizationapproaches that would display a completely
different algorithmic behaviour; this would be the case, in particular, of algorithmic
schemes relying on severalsearch threadsexploring simultaneously the search space
in a coordinated and purposeful fashion.

1.3.1 A taxonomy

In 1993, Crainic, Toulouse, and Gendreau introduced a taxonomy of parallel TS
approaches (later published in 1997 [27]) that had several objectives: first, to provide
a comprehensive picture of the then existing parallelization strategies for TS; second,
to contribute to a more meaningful analysis and comparison of these methods; third, to
foster a better understanding of the relationships between TS and parallel computing;
and fourth, to identify new potential parallelization strategies and suggest interesting
research avenues. To this date, this taxonomy remains the most comprehensive one
on the topic. We now summarize this taxonomy and the parallelization strategies it
sought to classify, before reviewing the literature using it in the next section.

The taxonomy is based on a three-dimensional classification of algorithmic fea-
tures. The first dimension is calledControl cardinality; it defines whether the search
is controlled by a single process (as in master-slave implementations) or collegially
by several processes that may collaborate or not. In the latter case, each process is
in charge of its own search, as well as of establishing communications with the other
processes, and the global search terminates once each individual search stops. These
two alternatives are respectively identified as1-control (1C)andp-control (pC).

The second dimension (Control and communication type) relates to the type and
flexibility of the search control. As we shall see, it is probably the most important
dimension on which to differentiate parallel TS implementations, and it deserves a
detailed discussion. This control type dimension accounts for the communication
organization, synchronization and hierarchy, as well as the way in which processes

PARALLELIZATION STRATEGIES FOR TABU SEARCH 5

handle and share information. There are four degrees or levels along this dimension;
they correspond to progressively more complex and sophisticated control schemes.
The two first levels cover parallelization schemes that rely onsynchronized com-
munications, i.e., where all processes have to stop and engage in some form of
communication and information exchange at set moments (number of iterations,
time intervals, specified algorithmic stages, etc.) that are exogenously determined,
being either hard-coded or determined by a control (master) process. The first level
(Rigid Synchronization (RS)) refers to situations where little, if any, information takes
place between processes that are at the same level of the communication hierarchy.
This would typically the case in classical1-control master-slave schemes in which
the master process dispatches fixed computing-intensive tasks to the slaves processes,
waits for all these tasks to be completed, and then proceeds with the remainder of the
search (calling again upon the slave processes whenever needed). Another example
of rigid synchronization, but with ap-control control cardinality, is that of the direct
parallelization of independent search processes. In such a case, each individual pro-
cess executes its own search without communicating with the others except at the
very end when the best solutions found by each process are compared to determine
the best overall. The second level along this control type dimension (Knowledge
Synchronization (KS)) corresponds to more sophisticated synchronous paralleliza-
tion schemes. In1-control settings, slaves thus perform on their own more complex
tasks, such as executing a limited number of TS steps on a subset of the search space.
In a p-control environment, the knowledge synchronization mode covers situations
where processes follow independent search trajectories for some time, but stop at
predetermined moments (e.g., after performing a set number of iterations) to engage
into intensive communication to share information between themselves. The third
level along the control type dimension (Collegial (C)) covers situations whereasyn-
chronouscommunications are used; it only makes sense in ap-control context. In
these situations, each search process explores the search space (or sometimes, part
of it) according to its own logic, storing and processing local information as it goes
along. It also communicates with the other processes (all or just a subset of them)
or with a central memory at times dictated by the results of its own search (albeit in
the context of the overall global search): for instance, if a process finds a globally
improving solution, it might broadcast it to all other processes or deposit it in the
central memory; if it finds that its own search is stagnating, it may request a new
solution from the other processes or from the central memory. The fourth and final
level on the control type dimension is calledKnowledge Collegial (KC). It refers
to more advanced asynchronous communication schemes in which the contents of
communications are analyzed to infer additional information concerning the global
search pattern performed so far and/or the characteristics of good solutions. This may
be implemented using global memory structures that can be accessed by the processes
while they conduct their own search. The main difference between the collegial and
the knowledge collegial organizations is that in the former the information recovered
by a process from another is identical to the information sent by that process, while
in the latter case, the information received is richer, thus helping to build a picture of
the overall dynamics of the asynchronous exploration of the search space.

6 PARALLEL TABU SEARCH

The third dimension of the taxonomy pertains toSearch differentiation: do search
threads start from the same or from different initial solutions? Do they use of
the same or different search strategies (parameter settings, memory management
rules, neighbourhood operators, etc.)? These two questions lead to a four-way
classification along this dimension:Same initial Point, Same search Strategy (SPSS);
Same initial Point, Different search Strategies (SPDS); Multiple initial Points, Same
search Strategies (MPSS); Multiple initial Points, Different search Strategies (MPDS).
It should be noted that this dimension had, in fact, been introduced earlier by Voß in
his own attempt to classify parallelization schemes for TS [89].

It should be pointed out that, although it was originally developed for TS, this
taxonomy could apply equally well to several other classes of metaheuristics and
thus possibly constitute a valuable basis for a comprehensive taxonomy of parallel
metaheuristics.

1.3.2 More on cooperative search

As we shall see in the next section, the trend in parallel TS has been to move from the
low-level parallelism (e.g., the 1C/RS methods) of the early implementations toward
more and more complex high-level parallelism schemes. In fact, most recent parallel
TS heuristics implement some form of cooperative search. While cooperation seems
to offer the most promising avenue for superior performance, it also involves the
greatest challenges in terms of algorithm design and it is worth discussing somewhat
further before moving on to the literature review.

Cooperative multi-thread TS methods launch several independentsearch threads
(each defining a trajectory in the search space) and implement information-exchange
mechanisms among these threads. The key challenge in such a context is to ensure
that meaningfulinformation is exchanged in atimely manner between the threads,
to allow the global parallel search to achieve a better performance than the simple
concatenation of the results of the individual threads, where performance is measured
in terms of computing time and solution quality [5, 24].

Toulouse, Crainic, and Gendreau [81] have proposed a list of fundamental issues
to be addressed when designing cooperative parallel strategies for metaheuristics:

• What information is exchanged?

• Between what processes is it exchanged?

• When is information exchanged?

• How is it exchanged?

• How is the imported data used?

It is not our intention to address these issues at this point, but it is useful to bear
them in mind as we survey the literature in the next section.

LITERATURE REVIEW 7

1.4 LITERATURE REVIEW

This literature review is divided into four subsections that cover respectively1-control
heuristics,p-control synchronized methods, asynchronous search approaches, and
hybrid metaheuristics involving parallel TS. This division also roughly corresponds
to a chronological arrangement of the literature, starting with the earliest efforts and
finishing with the most recent ones.

1.4.1 1-control parallel heuristics

As we already mentioned before in this chapter, early parallel implementations of TS
were based on the classical master-slave approach and aimed solely at accelerating
the search, thus lowering computing times. This allowed researchers to tackle more
effectively difficult problems such as thequadratic assignment problem(QAP) [16,
18, 19, 73, 75], thetraveling salesman problem(TSP) [17],vehicle routing problems
(VRP) [33], and thetask scheduling problem on heterogeneous systems[65, 66, 67].

As explained in the previous section, in this type of implementation, a “mas-
ter” process executes a regular sequential TS procedure, but dispatches computing-
intensive tasks to be executed in parallel by “slave” processes. The master receives
and processes the information resulting from the slaves’ computations, selects and
implements moves, updates the search memories, and makes all decisions pertaining
to the activation of search strategies (e.g., deciding when to perform intensification
or diversification) and to the termination of the search. The search step usually
parallelized and assigned to slave processes is the neighbourhood evaluation. At
each iteration, the moves that make up the neighbourhood of the current solution
are partitioned into as many sets as the number of available slave processors and the
evaluation is carried out in parallel by slave processes.

This 1C/RS/SPSS strategy proved quite successful for problems that display large
neighbourhoods and relatively low computing requirements to evaluate and perform
a given move, such as the ones listed above. In implementations with a relatively
small number of processors, near-linear speedups were reported or the same quality
of solutions. This approach also permitted, at the time, to improve the best-known so-
lutions for several problem instances proposed in the literature. In fact, the approach
has not been totally abandoned: in 1999, Randall and Abramson [68] proposed a
general framework for applying to a variety of problem and recently Blazewicz,
Moret-Salvador, and Walkowiak [8] used it to tackle two-dimensional cutting prob-
lems).

In 1995, Crainic, Toulouse, and Gendreau [25] realized a comparative study of
several synchronous TS parallelizations for the location-allocation problem with
balancing requirements. Apart from a straightforward 1C/RS/SPSS approach and
somep-control ones, they also implemented a 1C/KS/SPSS heuristic based on the
sequential fan candidate liststrategy, also known as thelook aheador probing
approach [53, 51]. In this approach, slave processes perform a small number of
(look ahead) TS iterations before synchronization, and the selection of the best
neighbouring solution from which the next iteration is initiated, is based on the

8 PARALLEL TABU SEARCH

value of the objectiveafter the look ahead iterations. Both the 1C/KS/SPSS and
the 1C/RS/SPSS heuristics yielded better solutions than sequential TS on the tested
instances, with the KS one being consistently superior to the RS one. To the best of our
knowledge, this paper is the only ever to report results on a parallel implementation
of the sequential fan candidate list strategy.

Another major parallelization strategy that has been implemented using1-control
schemes issearch space decomposition. The basic idea behind this approach is
to divide the search space of the problem into several (usually disjoint, but not
necessarily exhaustive) sets and to run TS (or any other heuristic or metaheuristic) on
each subset, thus accelerating the global search. The approach can be implemented
in two fairly different fashions: in the first, all search threads consider complete
solutions to the problem, while in the second, they handle partial ones, in which
case a complete solution has to be reconstructed at some point. It must stressed,
however, that in both cases each search process has only access to a restricted of
portion of the search space. Furthermore, the decomposition of the search space
is often non-exhaustive, i.e., the union of the search space subsets considered by
the slave processes at a given point in time may be significantly smaller than the
complete search space. Therefore, to increase the thoroughness of the search and
allow all potential solutions to be examined, the decomposition is modified at regular
intervals and the search is then restarted using this new decomposition. This strategy
is naturally implemented using 1C/KS master-slave schemes (with either an MPSS or
MPDS search differentiation strategy): the master process determines the partition,
synchronizes slave processes, reconstructs solutions (if required), and determines
stopping conditions, while slave processes perform the search on their assigned search
space subset. This approach has proved quite successful for problems for which a
large number iterations can be performed in a relatively short time and restarting the
method with a new decomposition does not require an unreasonable computational
effort (see, e.g., Fiechter [31] for the TSP and Laganière and Mitiche [57] for image
filtering). An extension of this strategy was used by Gendreau, Laporte, and Semet
[43] to solve efficiently in real time several variants of the same problem instance;
their method is described in detail in subsection 1.5.1.

1.4.2 p-control synchronized parallel heuristics

Independentmulti-searches were also among the earliest parallel TS strategies im-
plemented. Most implementations launch several independent search processes from
different, often randomly generated, initial solutions. No communications take place
between the multiple search threads running in parallel, except once once all pro-
cesses have stopped, when the best overall solution is identified. As mentioned in
subsection 1.3.1, these approaches clearly belong to the pC/RS class of the taxonomy.
Note, however, that, in most implementations, a designated processor verifies that the
others have completed their search and collects the information. While these proce-
dures, like 1C/RS ones, essentially amount to repeated sequential TS heuristics, they
turn out to be effective, simply because of the sheer quantity of computing power they
allow one to apply to a given problem. This was indeed established empirically by

LITERATURE REVIEW 9

several papers, including those of Battiti and Tecchiolli [7] for the QAP, and Taillard
[76] for job shop scheduling problems, in which excellent results were obtained when
compared to the best existing heuristics at the time. This parallelization of the classic
sequential multi-start heuristic is also very easy to implement and remains popular
for this reason [10, 79].

As was mentioned in the taxonomy, pC/KS strategies attempt to take advantage
of the parallel exploration of the search space by synchronizing search processes
at predetermined intervals. They are also generally implemented in a master-slave
configuration, in which the designated master process collects information from the
other processes at synchronization instants and usually restarts the search from the
best solution found so far (see Maleket al. [60] for the TSP, and Rego and Roucairol
[70] and Rego [69] for the VRP using ejection chains). De Falcoet al. [30] and
De Falco, Del Balio, and Tarantino [29] attempted to overcome the limitations of the
master-slave setting, by allowing processes, when they terminate their local search
phase, to synchronize and exchange information (best solutions) with processes
running on neighbouring processors.

A more sophisticated pC/KS approach was proposed in 1997 by Niar and Fréville
[61]. In this pC/KS/MPDS scheme, a master process controlsp slaves processors
executing synchronous parallel TS threads by dynamically adjusting their respective
search strategy parameters according to the results they have obtained so far. Com-
putational results reported for the 0-1 Multi-dimensional Knapsack Problem show
that this dynamic adjustment of search parameters is indeed beneficial.

Authors generally report good performance and results, but synchronous co-
operative implementations tend to show a poorer performance when compared to
asynchronous and even independent searches (see Crainic, Toulouse, and Gendreau
[25, 26, 27]), especially when synchronization points are predetermined (as in most
existing implementations). This is mainly due to the large computation overheads
that must be incurred at synchronization instants when all processes need to wait for
the slowest of them. Furthermore, the predefinition of synchronization points makes
these strategies less reactive to the progress of the search on any given problem
instance than asynchronous approaches. This being said, synchronous cooperative
implementations are quite simple to implement and they have yielded good results
on several problems.

As pointed out by Crainic [20], there are two other issues that merit further
discussion in connection with these pC/KS strategies. The first has to do with the
way in which memories are handled in them. In the implementations reported in
the literature, memories are emptied at synchronization instants before restarting the
search. Considering the central role played my memories in TS, one may wonder
whether any precious information is lost when doing so. It might thus be interesting
to conduct an investigation to determine if any useful information could be passed
from one search phase to the next, how it could be used, and how it might impact
on the overall performance of these methods. The second issue concerns specifically
pC/KS/SPDS strategies. It has to do with the fact that in those strategies, the new
searches that are launched after synchronization usually all restart from the same best
known solution, thus concentrating the search in the same region of the search. It is

10 PARALLEL TABU SEARCH

well known, however, that the main weakness of TS is its tendency to explore a too
limited region of the search space, i.e., the search lacks breadth, unless systematic
and effective diversification schemes are used. pC/KS/SPDS strategies may therefore
end up exaggerating this weakness. Because they use different solutions to restart
the search, pC/KS/MPSS and pC/KS/MPDS may be less prone to this problem, but
it is not obvious that they do not also suffer from it in an attenuated fashion. This
issue would certainly be worth investigating too.

Search space decomposition (see subsection 1.4.1) may also be implemented in a
pC/KS framework, as in Taillard’s early TS heuristic for the VRP [74, 75]. In this
implementation, customers are partitioned on a geographical basis and vehicles are
allocated to the resulting regions to create smaller VRP instances. Each subproblem
is then solved by an independent TS procedure. These independent search processes
stop after a number of iterations that varies according to the total number of iterations
already performed. The partition is then modified by an information exchange phase,
during which tours, undelivered cities, and empty vehicles are exchanged between
processes handling adjacent regions. Taillard’s results at the time were excellent, but
his approach did require considerable computing time (in fact, he did not even report
computing times, but these are known to be quite substantial). This is not surprising
considering the fact that, as the other pC/KS strategies described above, it had to
incur the inherent overhead stemming from synchronization.

1.4.3 Asynchronous methods

Historically, independent and synchronous cooperative methods were the first multi-
thread search approaches to be developed. However, because of the shortcomings
of these methods, which we have discussed at length in the previous subsections,
researchers have increasingly turned their attention to asynchronous procedures,
which now largely define the “state-of-the-art” in parallel multi-thread search. These
asynchronous procedures all follow the same general pattern: starting from possibly
different initial solutions and using possibly different tabu (or other) search strategies,
p threads explore simultaneously the search space. As indicated in subsection 1.3.1,
they belong either to the pC/C or to the pC/KC class of the taxonomy, the main
difference between the two being whether or not any “new” knowledge is inferred on
the basis of the information exchanged between the search threads.

A key issue in the development of asynchronous procedures is the definition of
effective mechanisms to allow the asynchronous exchange of information between
the search threads. The simplest scheme for achieving this is simply by having threads
engage in communication when some triggering events occur, such as the discovery
of a globally improving solution. One may implement, for instance, a “broadcast and
replace” strategy: when a search thread improves the global best solution, this solution
is broadcast to all other processes that then their own exploration and restart it from
this new solution (alternatively, processes might broadcast every locally improving
solution, but this clearly increases significantly the communication overhead). This
type of approach was applied successfully to complex vehicle routing problems by
Attanasioet al. [2] and Caricatoet al. [14].

LITERATURE REVIEW 11

Crainic [20] observes that these methods in which the “local” exploration phase
of processes can be interrupted do not always yield good results. In fact, as he
correctly points out, cooperative metaheuristics with unrestricted access to shared
knowledge may experience serious premature “convergence”, especially when the
shared knowledge reduces to one solution only (the overall best or the new best from
a given thread): eventually, all threads end up exploring the same restricted region
of the search space, thus forfeiting one of the main potential of parallel cooperative
search, that is, search breadth. For a more detailed discussion of these issues, see
[84, 82, 83, 85].

Most asynchronous implementations of parallel TS do, however, handle informa-
tion exchange rather differently in order to avoid the pitfall mentioned above. In these
approaches, communications arecontrolled, i.e., they occur rather infrequently and
only at well-specified stages of the exploration conducted by the individual threads.
Exchanges of information take place through some form ofmemory(or blackboard)
that is used to store various information on solutions and/or solution components. In
most cases, the main information stored in the memory is a list of best known orelite
solutions. The memory is then often referred to as thecentral memory, thesolution
pool, thesolution warehouseor, even, thereference set. In other cases, only partial
solutions are recorded and the memory is then referred to as theadaptive memory.
This terminology was coined in 1995 by Rochat and Taillard in a seminal paper [71],
in which they proposed (sequential) TS heuristics for the classical Vehicle Routing
Problem and the Vehicle Routing Problem with time windows (VRPTW) that are
still among the most effective ones for both problems. The main idea in the adaptive
memory approach is to record in a structure the individual components (in routing
problems, the vehicle routes) making up elite solutions as they are found. These
components are kept sorted in the adaptive memory with respect to the objective
function value of the solution they belong to. When the search stagnates and needs to
be restarted from a new solution, this solution is constructed by combining randomly-
selected routes from the adaptive memory. In almost all cases, the new solution will
be made up of routes from different elite solutions (in what could be interpreted, in
genetic algorithms terminology, as a multi-parent crossover operation), thus induc-
ing a powerful diversification effect. For more on adaptive memory concepts, see
Glover [48] and Taillardet al. [78]. The adaptive memory approach is eminently
amenable to parallelization, since the search threads can all feed a single, common
adaptive memory from which new solutions that naturally combine information from
different search threads can be constructed. It has been applied very successfully to
the VRPTW by Badeauet al. [3] and to real-time vehicle routing and dispatching
by Gendreauet al. [40]; this latter application is described in more detail in the next
section. A similar approach was used with good results by Schulze and Fahle [72] to
solve the VRPTW: all the routes generated by the TS threads are collected in a pool,
but they are recombined by solving a set covering heuristic whenever a new solution
is needed.

Badeauet al. [3] also report a number of other interesting findings. First, the
performance of their method with respect to the quality of the solution is almost
independent of the number of search processes (as long as this number remains

12 PARALLEL TABU SEARCH

within reasonable bounds) for a fixed computational effort (measured in terms of the
overall number of calls to the adaptive memory by all search threads). Second, while
traditional parallelization schemes rely on a one-to-one relationship between actual
processors and search processes, it turned out that their method did run significantly
faster when using more search processes than the number of available processors,
because this allowed to overcome the bottlenecks created when several threads were
trying to access simultaneously the processor on which the adaptive memory was
located. Furthermore, computational evidence showed that it is not, in general, a
good idea to run a search thread concurrently with the adaptive memory management
procedure on the same processor. These are lessons that should be kept in my mind
when developing asynchronous multi-thread procedures, whether they use adaptive
memory or not.

To the best of our knowledge, Crainic, Toulouse, and Gendreau were the first, in
1995, to propose a central memory approach for asynchronous TS in their heuristics
for multi commodity location with balancing requirements [26]. In their method,
individual TS record their current solution into central memory whenever it improves
on theirlocal bestsolution (i.e., the best solution found up to that point by the same
thread), but they only import a solution from the central memory when they are
about to undertake a diversification phase. If the imported solution is better than the
current local best one, it replaces it. Diversification then proceeds from the (possibly
modified) local best solution. It is important to note that the memories local to search
threads are never re-initialized. Five strategies for retrieving a solution from the pool
when requested by an individual thread were tested. When few (4) processors were
used, the strategy that returns the overall best solution produced the best results.
When the number of processors was increased, the best performance was achieved
by a probabilistic procedure that selects solutions on the basis of their the rank in the
pool. The parallel procedure improves the quality of the solution and also requires
less (wallclock) computing time compared to the sequential version, particularly
for large problems with many commodities. The same approach was applied to the
fixed cost, capacitated, multi commodity network design problem with similar results
[22]. Over the last few years, several other authors have implemented fairly similar
approaches to a variety of problems, including the partitioning of integrated circuits
for logical testing [1], two-dimensional cutting [8], the loading of containers [11],
and labor constrained scheduling [15].

Another attempt to overcome the problems stemming from the uncontrolled
sharing of information is the so-calledmulti-level cooperative searchproposed by
Toulouse, Thulasiraman, and Glover [87, 86]. This approach is based on the principle
of the controlled diffusion of information, which is achieved by having search pro-
cesses work at different aggregation levels of the original problem and by allowing
communications only between processes at immediately adjacent aggregation levels.
These communications consists in asynchronous exchanges of improving solutions
at various moments dynamically determined by each process according to its own
logic, status, and search history. Communications are further limited by the fact that
an imported solution will not be transmitted further until a number of iterations have

LITERATURE REVIEW 13

been performed. The approach has proved very successful for graph partitioning
problems [62, 63].

1.4.4 Hybrids involving parallel Tabu Search

In his 2001 review of recent advances in TS, Gendreau [37] mentioned that hybrid
metaheuristics, which combine principles from two or more families of metaheuris-
tics, were probably one of the most exciting developments in the field. The main
motivation for developing such hybrid methods is that it is hoped they will display
the desirable properties of all the original “pure” methods that they draw upon. For
instance, one may replace the mutation operator of aGenetic Algorithm(GA), thus
creating a GA-TS hybrid, with the objective of achieving simultaneously search ag-
gressiveness (the TS component) and breadth (the GA component) in the exploration
of the search space. Hybrids involving parallel TS and other metaheuristics are not
as recent as our earlier statement may suggest. In fact, a method combining the
principles of TS and ofHopfield-Tank neural networksto solve simple plant location
problems on massively parallel architectures was proposed by Vaithyanathan, Burke,
and Magent [88] as early as 1996, and they may have been earlier parallel TS hybrids.

Broadly speaking, hybrid metaheuristics can be divided into three main classes.
The first class is made up of methods that sequentially apply metaheuristics of
different families to a given problem. The two-phase approach of Gehring and
Homberger for the VRPTW [34, 35, 36] is a typical example of such a method:
it first applies an evolution strategy to reduce the number of vehicles required by
a solution and then TS to minimize total travel distance. The parallelization is a
multi-thread cooperative one in which each process executes the two-phase heuristic
(possibly with different parameters) and information exchanges take place according
to the asynchronous central memory strategy of the previous subsection. Bastos
and Ribeiro [6] describe a somewhat different two-phase hybrid for the Steiner
problem: in their approach, a parallel multi-thread reactive TS phase (using again the
asynchronous central memory strategy) is followed by a distributedPath Relinking
(PR) [49, 51, 52] phase, i.e., all processes switch from TS to PR simultaneously.

In the second class of hybrid metaheuristics, the algorithmic elements of the
original methods are assembled into a single (monolithic), complex algorithmic
design, as in the example provided at the beginning of this subsection. An illustration
of this class of methods is provided in the TS-PR hybrid of Gallego, Romero, and
Monticelli [32] for transmission network expansion planning. In this heuristic, the
diversification step of a parallel multi-thread TS is implemented, in some situations,
by applying PR instead of rather simple modifications of solutions. Other hybrids
of this class include those of Talbiet al. [80], which applies Simulated Annealing
(SA) principles in the intensification step of a multi-start TS procedure for the QAP,
of Jozefowiez, Semet, and Talbi [56], which integrates evolutionary algorithms and
parallel TS to solve multi-objective vehicle routing problems, and of Baños et al.
[4], which combines TS, SA, and multi-level cooperative search to tackle graph
partitioning problems.

14 PARALLEL TABU SEARCH

The third class of hybrids exploits differently the hybridization concept by relying
on parallel multi-agent search architectures in which individual agents run “pure”
methods, but exchange information among themselves. Crainic and Gendreau [21]
proposed such a hybrid search strategy by adding a GA thread to their asynchronous
multi-thread TS heuristic for multicommodity location-allocation with balancing
requirements [26]. This distinct GA thread is launched when a certain number of
elite solutions have been recorded in the central memory of the parallel TS, using these
solutions as its initial population. Asynchronous migration subsequently transfers
the best solution of the genetic pool to the parallel TS central memory, as well
as solutions of the central memory toward the genetic population. This strategy
did perform well, especially on larger instances. An interesting observation of this
study was that the best overall solution was never found by the GA thread, but
that its inclusion allowed the TS threads to find better solutions. It is hypothesized
that this superior performance stemmed from a more effective diversification of the
search. This scheme was recently further refined by Le Bouthillier and Crainic
[59] who combined several different GA (i.e., with different parent selection and
crossover operators) and TS threads in their hybrid metaheuristic for the VRPTW.
In this implementation, there is one central memory that is common to all threads.
Computational results show that, without any particular calibration, the parallel
metaheuristic is competitive with the best metaheuristics available, and demonstrates
almost linear speedups.

The hybridization of parallel TS approaches with population-based methods such
as GA, PR, and Scatter Search [49, 51, 52, 58] appears very promising, because
it addresses what is probably the greatest weakness of TS, namely its tendency to
remain confined in a too small area of the search space. The third class of hybrids
seems particularly attractive with respect to the benefits it has to offer for a relatively
low implementation effort.

1.5 TWO PARALLEL TABU SEARCH HEURISTICS FOR REAL-TIME
FLEET MANAGEMENT

Real-time fleet management problems are found in numerous transportation and lo-
gistics applications. In the following, we describe two parallel TS heuristics for
dispatching fleets of vehicles in the context of emergency services and courier ser-
vices, respectively. Given that fast response times are required in these cases, parallel
implementations are particularly indicated since they allow for more optimization
work to be performed within the allotted time.

1.5.1 Real-time ambulance relocation

In the work of Gendreau, Laporte, and Semet [43], a real-time redeployment problem
for a fleet of ambulances is addressed. Basically, when a call is received, an ambulance
is first assigned to it. This assignment is done through the application of relatively
simple dispatching rules. Then, the remaining available ambulances can be relocated

TWO PARALLEL TABU SEARCH HEURISTICS FOR REAL-TIME FLEET MANAGEMENT 15

to other waiting sites to provide a better coverage of the demand. The latter problem
is tackled with a TS heuristic that moves ambulances between potential waiting
sites. The objective is to maximize the proportion of demand covered by at least
two vehicles within a given (time) radius, minus relocation penalties. The problem-
solving approach exploits a TS heuristic previously developed for a static ambulance
location problem by the same authors [42].

As life or death dispatching and relocation decisions must be taken under consid-
erable time pressure in the real-time context, a parallel implementation is proposed to
speed up the decision process. Basically, the available time between two emergency
calls is exploited to precompute possible scenarios. More precisely, for each site
currently occupied by an available ambulance, a relocation plan is computed with TS
by assuming that an ambulance from this site will be assigned to the next incoming
call. When a new call occurs, an ambulance is assigned according to a given dis-
patching rule and the precomputed redeployment scenario associated with the site
of this ambulance is then directly applied. If there is not enough time to compute
a complete solution before the next call, then no redeployment takes place after the
ambulance assignment.

The parallel algorithm is based on a pure master-slave scheme. The master
manages global data structures with precalculated information on each ambulance
and sends the relocation problems associated with each occupied site to the slaves.
The CPU time allotted to each slave for solving a problem is strictly controlled by
fixing the number of iterations in TS. This number is based on the frequency of
calls (e.g., low frequency implies that more CPU time can be alloted to the search).
When every problem has been solved once, a new attempt to improve the solutions
is performed, using a larger number of iterations.

This algorithm has been implemented on a network of SUN UltraSparc work-
stations, using simulated data based on real-life call distributions on the island of
Montreal, Canada. The results that were obtained demonstrate the suitability of this
algorithm. In the simulations, every call was serviced within the required time range
of 15 minutes and 98% of urgent calls were serviced within 7 minutes, with an aver-
age of 3.5 minutes (the current practice in Montreal requires that 90% of the urgent
calls should be responded to within 7 minutes). Furthermore, in 95% of the cases,
the algorithm succeeded in precomputing a complete redeployment strategy before
the occurrence of the next call.

1.5.2 Real-time vehicle routing and dispatching for courier services

The problem considered by Gendreauet al. [40] is motivated from courier services
where customer requests for the transportation of small items (e.g., letters, small
parcels) must be accommodated in real-time and incorporated into the current planned
routes of a fleet of vehicles. A planned route here corresponds to the sequence of
requests that have been assigned to a given vehicle but have not been serviced yet.
Due to the presence of soft time constraints for servicing a customer, the problem
is modeled as an uncapacitated Vehicle Routing Problem with Soft Time Windows
(VRPSTW). The objective function to be minimized relates to the total distance

16 PARALLEL TABU SEARCH

traveled (or total travel time) for servicing the customers plus penalties for lateness
at customer locations.

As in subsection 1.5.1, the problem-solving approach exploits a TS heuristic
previously developed for a static version of the problem, where all customer requests
are known in advance [77]. Thus, a series of static problems are solved over time,
based on the current planned routes. A new static problem is defined each time an
input update occurs, due to the arrival of a new request, and TS is applied on this
problem until the next input update.

The general problem-solving framework, within which the TS heuristic is em-
bedded, is described below. In this description, it is assumed that a certain number
of “static” requests are known at the start of the day (those have been received the
previous day, but too late to be accommodated the same day). These requests are
incorporated into initial planned routes that are used to start the search process.

** Initialization **

1. Generate different initial solutions with the static requests using a constructive
(insertion) heuristic.

2. Apply the TS heuristic to these solutions and store the resulting routes in
adaptive memory.

** Search algorithm **

3. For a number of iterations do:

3.1 Construct a starting solution by combining routes in adaptive memory.

3.2 For a number of iterations do:

- Decompose the set of planned routes in the current solution into
disjoint subsets of routes.

- Apply TS to each subset of routes.
- Merge the resulting routes to create the new current solution.

3.3 Apply a post optimization procedure to each individual route.

3.4 Add the resulting routes to the adaptive memory (if the solution is good
enough).

As we can see, an adaptive memory stores the best solutions found during the
search. The routes in these solutions are then used to feed the TS with new starting
points. The optimization is performed by the latter by moving customers between
routes. It should be noted that search space decomposition takes place and that a
distinct TS is applied to each subset of routes in the current decomposition. These
subsets are then merged together to form a complete solution. After a number of
decompositions, each individual route in the final solution is further improved with a
specialized heuristic for the Traveling Salesman Problem with Time Windows [41].

A two-level parallelization scheme is proposed to implement this problem-solving
framework.

TWO PARALLEL TABU SEARCH HEURISTICS FOR REAL-TIME FLEET MANAGEMENT 17

1. The so-called “Search algorithm” is launched in parallel on multiple pro-
cessors, thus implementing a multi-thread search. At this upper level, we
have asynchronous cooperative threads that communicate through a common
adaptive memory, as they all feed and fetch solutions from this memory. In
the taxonomy, this approach corresponds to a pC/KC/MPSS parallelization
scheme.

2. Within each search thread, search space decomposition is realized in parallel
through a master-slave implementation, where each slave runs a TS on a
different subset of routes. After a given number of search iterations, each slave
returns its best (partial) solution. The partial solutions are then merged together
to obtain a complete solution. At the end, the best solution found is sent for
possible inclusion in the adaptive memory. We thus have a 1C/KS/MPSS
parallelization scheme at this level.

This algorithm has been run in a coarse-grained parallel environment, namely a
network of SUN Sparc workstations. The results on simulated data have shown that
the TS-based optimization procedure provides substantial benefits over simpler dis-
patching approaches. Through an appropriate adaptation of the basic neighborhood
operator that moves customers between routes, it is possible to exploit this framework
to solve either problems where a customer request involves a single location or both
a pick-up and a delivery location [39].

In the work reported above, the current destination of each vehicle was not in-
cluded in the planned routes and could not be moved by the neighborhood operator.
Hence, a vehicle in movement had to reach its planned destination. In a more recent
development, Ichoua, Gendreau, and Potvin [55] included the current destination of
each vehicle in planned routes. Upon request arrival, it is thus possible for TS to
insert the new request between the current position of a given vehicle and its planned
destination, thus redirecting (ordiverting) the vehicle to serve the new request. As
the current destination of every vehicle can now be freely moved around by TS,
the solution obtained can also modify the current destination of other vehicles, if it
leads to a better solution. The proposed algorithm thus implements a generalized
form of diversion that might involve more than one vehicle. As vehicles are moving
fast, exploiting redirection opportunities when new requests occur must be realized
under considerable time pressure. A parallel implementation is thus particularly
appropriate in this context.

The interested reader will find in Attanasioet al. [2] the description of another
parallel TS heuristic for a real-time vehicle routing and dispatching problem. The
algorithm is developed in the context of a dial-a-ride system where people are trans-
ported. Different issues related to real-time vehicle routing and parallel computing
can also be found in the recent paper of Ghiani, Guerriero, and Laporte [44].

18 PARALLEL TABU SEARCH

1.6 PERSPECTIVES AND RESEARCH DIRECTIONS

Parallel Tabu Search has come a long way since its early beginnings fifteen years ago
when parallel implementations of TS almost exclusively focused on the paralleliza-
tion of the neighbourhood evaluation step. The main trend is now clearly toward
asynchronous cooperative multi-thread methods and hybrids, which attempt to bring
to bear on a given problem all the algorithmic machinery that is at hand. Throughout
this evolution, our understanding of the key features that make a particular imple-
mentation successful has significantly deepened (for instance, most experimented
researchers in the area are now keenly aware of the efficiency loss inherent in syn-
chronous search models), but a lot of a research is still required in order to fully
understand the subtle interactions that occur when using complex cooperative strate-
gies, whether in a “pure” TS scheme or in a hybrid one. One step in that direction
would be the definition and collection of relevantperformance measures and statis-
tics. Such measures are acutely needed to track down what really takes places in
complex cooperative schemes. Furthermore, if used at execution time, they could
help improve their efficiency. For instance, unproductive search threads could be
identified and then terminated or redirected. Statistics could also be attached to
the elite solutions in the pool (e.g., measures related to the quality of the solutions
visited by search threads starting from these elite solutions) to better target the most
promising regions of the search space.

Apart from the questions related to the design of effective search strategies, the
evolution toward complex parallel TS schemes has created formidable challenges
with respect to the actual implementation of the methods. To be quite honest,
implementing from scratch any of the heuristics described in the latter parts of our
survey requires considerable programming skills. Fortunately, over the last few years,
one has witnessed the emergence of dedicated environments for the development
of parallel TS algorithms and hybrids (e.g., [9, 13]). These environments provide
skeletons(templates) orframeworksthat one may instantiate to obtain an algorithm for
tackling a specific problem with a given search strategy. In all cases, a strict separation
between the generic and the problem-specific parts of algorithm is enforced. We
believe that these environments are an essential step in the further development of
parallel TS approaches and we expect to see more of them being proposed in the
coming years.

As a final remark, we would like to recall that parallel TS has proved over time
to be an extremely effective metaheuristic for tacking a large variety of very difficult
combinatorial optimization problems, especially in a real-time context. With the
exciting recent developments in the field, it should remain so for many years.

Acknowledgments

Funding for this project has been provided by the Natural Sciences and Engineering Council
of Canada and by the Fonds FQRNT of the Province of Québec.

PERSPECTIVES AND RESEARCH DIRECTIONS 19

REFERENCES

1. R. M. Aiex, S. L. Martins, C. C. Ribeiro, and N. R. Rodriguez. Cooperative
Multi-Thread Parallel Tabu Search with an Application to Circuit Partitioning.
In Proceedings of IRREGULAR’98 - 5th International Symposium on Solving
Irregularly Structured Problems in Parallel, Lecture Notes in Computer Science,
volume 1457, pages 310–331, 1998. Springer-Verlag.

2. A. A. Attanasio, J.-F. Cordeau, G. Ghiani, and G. Laporte. Parallel Tabu Search
Heuristics for the Dynamic Multi-Vehicle Dial-a-Ride Problem.Parallel Com-
puting, 30:377–387, 2004.

3. P. Badeau, F. Guertin, M. Gendreau, J.-Y. Potvin, andÉ. D. Taillard. A Parallel
Tabu Search Heuristic for the Vehicle Routing Problem with Time Windows.
Transportation Research C: Emerging Technologies, 5(2):109–122, 1997.

4. R. Bãnos, C. Gil, J. Ortega, and F. G. Montoya. Cooperative Parallel Tabu Search
for Capacitated Network Design.Journal of Heuristics, 10(3):315–336, 2004.

5. R. S. Barr and B. L.Hickman. Reporting Computational Experiments with
Parallel Algorithms: Issues, Measures, and Experts Opinions.ORSA Journal on
Computing, 5(1):2–18, 1993.

6. M. P. Bastos and C. C. Ribeiro. Reactive tabu search with path-relinking for the
Steiner problem in graphs. In C. C. Ribeiro and P. Hansen, editors,Essays and
Surveys in Metaheuristics, pages 39–58, 2001. Kluwer Academic Publishers.

7. R. Battiti and G. Tecchiolli. Parallel Based Search for Combinatorial Opti-
mization: Genetic Algorithms and TABU.Microprocessors and Microsystems,
16(7):351–367, 1992.

8. J. Blazewicz, A. Moret-Salvador, and R. Walkowiak. Parallel tabu search ap-
proaches for two-dimentional cutting.Parallel Processing Letters, 14(1):23–32,
2004.

9. M. J. Blesa, L. Hernàndez, and F. Xhafa. Parallel Skeletons for Tabu Search
Method Based on Search Strategies and Neighborhood Partition. In R. Wyrzy-
kowski, J. Dongarra, M. Paprzycki, and J. Waniewski, editors,Parallel Pro-
cessing and Applied Mathematics : 4th International Conference (PPAM 2001),
Lecture Notes in Computer Science, volume 2328, pages 185–193, Naleczow,
Poland, 2002. Springer-Verlag.

10. S. Bock and O. Rosenberg. A New Parallel Breadth First Tabu Search Tech-
nique for Solving Production Planning Problems.International Transactions in
Operational Research, 7(6):625–635, 2000.

11. A. Bortfeldt, H. Gehring, and D. Mack. A parallel tabu search algorithm for
solving the container loading problem.Parallel Computing, 29:641–662, 2003.

20 PARALLEL TABU SEARCH

12. W. Bozejko and M. Wodecki. Solving the flow shop problem by parallel tabu
search. InProceedings, International Conference on Parallel Computing in
Electrical Engineering, PARELEC ’02, pp. 189–194, 2002.

13. S. Cahon, N. Melab, and E.-G. Talbi. ParadisEO: A Framework for the Reusable
Design of Parallel and Distributed Metaheuristics.Journal of Heuristics, 10(3):
357–380, 2004.

14. P. Caricato, G. Ghiani, A. Grieco, and E. Guerriero. Parallel tabu search for
a pickup and delivery problem under track contention.Parallel Computing,
29:631-639, 2003.

15. C. C. B. Cavalcante, V. C. Cavalcante, C. C. Ribeiro, and C. C. de Souza. Parallel
Cooperative Approaches for the Labor Constrained Scheduling Problem. In C. C.
Ribeiro and P. Hansen, editors,Essays and Surveys in Metaheuristics, pages 201–
225, 2001. Kluwer Academic Publishers.

16. J. Chakrapani and J. Skorin-Kapov. A Connectionist Approach to the Quadratic
Assignment Problem.Computers & Operations Research, 19(3/4): 287–295,
1992.

17. J. Chakrapani and J. Skorin-Kapov. Connection Machine Implementation of a
Tabu Search Algorithm for the Traveling Salesman Problem.Journal of Com-
puting and Information Technology, 1(1):29–36, 1993.

18. J. Chakrapani and J. Skorin-Kapov. Massively Parallel Tabu Search for the
Quadratic Assignment Problem.Annals of Operations Research, 41:327–341,
1993.

19. J. Chakrapani and J. Skorin-Kapov. Mapping Tasks to Processors to Minimize
Communication Time in a Multiprocessor System. InThe Impact of Emerging
Technologies of Computer Science and Operations Research, pages 45–64, 1995.
Kluwer Academic Publishers.

20. T. G. Crainic. Parallel Computation, Co-operation, Tabu Search. In C. Rego and
B. Alidaee, editors,Metaheuristic Optimization via Memory and Evolution: Tabu
Search and Scatter Search, 2004 (forthcoming). Kluwer Academic Publishers.

21. T. G. Crainic and M. Gendreau. Towards an Evolutionary Method – Cooperating
Multi-Thread Parallel Tabu Search Hybrid. In S. Voß, S. Martello, C. Roucairol,
and I. H. Osman, editors,Meta-Heuristics 98: Theory & Applications, pages
331–344, 1999. Kluwer Academic Publishers.

22. T. G. Crainic and M. Gendreau. Cooperative Parallel Tabu Search for Capacitated
Network Design.Journal of Heuristics, 8(6):601–627, 2002.

23. T. G. Crainic and M. Toulouse. Parallel Metaheuristics. In T. G. Crainic and
G. Laporte, editors,Fleet Management and Logistics, pages 205–251, 1998.
Kluwer Academic Publishers.

PERSPECTIVES AND RESEARCH DIRECTIONS 21

24. T. G. Crainic and M. Toulouse. Parallel Strategies for Meta-heuristics. In F.
Glover and G. Kochenberger, editors,Handbook of Metaheuristics, pages 475–
513, 2003. Kluwer Academic Publishers.

25. T. G. Crainic, M. Toulouse, and M. Gendreau. Synchronous Tabu Search Par-
allelization Strategies for Multicommodity Location-Allocation with Balancing
Requirements.OR Spektrum, 17(2/3):113–123, 1995.

26. T. G. Crainic, M. Toulouse, and M. Gendreau. Parallel Asynchronous Tabu
Search for Multicommodity Location-Allocation with Balancing Requirements.
Annals of Operations Research, 63:277–299, 1995.

27. T. G. Crainic, M. Toulouse, and M. Gendreau. Towards a Taxonomy of Parallel
Tabu Search Algorithms.INFORMS Journal on Computing, 9(1):61–72, 1997.

28. V.-D. Cung, S. L. Martins, C. C. Ribeiro, and C. Roucairol. Strategies for the
Parallel Implementations of Metaheuristics. In C. C. Ribeiro and P. Hansen,
editors,Essays and Surveys in Metaheuristics, pages 263–308, 2001. Kluwer
Academic Publishers.

29. I. De Falco, R. Del Balio, and E. Tarantino. Solving the Mapping Problem
by Parallel Tabu Search. Report, Istituto per la Ricerca sui Sistemi Informatici
Paralleli-CNR, 1995.

30. I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro. Improving Search
by Incorporating Evolution Principles in Parallel Tabu Search. InProceedings
International Confonference on Machine Learning, pages 823–828, 1994.

31. C.-N. Fiechter. A Parallel Tabu Search Algorithm for Large Travelling Salesman
Problems.Discrete Applied Mathematics, 51(3):243–267, 1994.

32. R. A. Gallego, R. Romero, and A. J. Monticelli. Tabu Search Algorithm for
Network Synthesis. IEEE Transactions on Power Systems, 15(15):490–495,
2000.

33. B. L. Garcia, J.-Y. Potvin, and J.-M. Rousseau. A Parallel Implementation of
the Tabu Search Heuristic for Vehicle Routing Problems with Time Window
Constraints.Computers & Operations Research, 21(9):1025–1033, 1994.

34. H. Gehring and J. Homberger. A Parallel Hybrid Evolutionary Metaheuristic
for the Vehicle Routing Problem with Time Windows. In K. Miettinen, M. M.
Mäkelä and J. Toivanen, editors,Proceedings of EUROGEN99 – Short Course
on Evolutionary Algorithms in Engineering and Computer Science, pages 57–64,
Jyväskylä, Finland, 2002.

35. H. Gehring and J. Homberger. Parallelization of a Two-Phase Metaheuristic for
Routing Problems with Time Windows.Asia-Pacific Journal of Operational
Research, 18:35–47, 2001.

22 PARALLEL TABU SEARCH

36. H. Gehring and J. Homberger. Parallelization of a Two-Phase Metaheuristic for
Routing Problems with Time Windows.Journal of Heuristics, 8(3):251–276,
2002.

37. M. Gendreau. Recent Advances in Tabu Search. In C. C. Ribeiro and P. Hansen,
editors,Essays and Surveys in Metaheuristics, pages 369–377, 2001. Kluwer
Academic Publishers.

38. M. Gendreau. An Introduction to Tabu Search. In F. Glover and G. A. Kochen-
berger, editors,Handbook of Metaheuristics, pages 37–54, 2003. Kluwer Aca-
demic Publishers.

39. M. Gendreau, F. Guertin, J.-Y. Potvin, and R. Séguin. Neighborhood Search
Heuristics for a Dynamic Vehicle Dispatching Problem with Pick-ups and De-
liveries. Technical Report CRT-98-10, Centre de recherche sur les transports,
Universit́e de Montŕeal, 1998.

40. M. Gendreau, F. Guertin, J.-Y. Potvin, andÉ. D. Taillard. Tabu Search for Real-
Time Vehicle Routing and Dispatching.Transportation Science, 33(4):381–390,
1999.

41. M. Gendreau, A. Hertz, G. Laporte, and M. Stan. A Generalized Insertion
Heuristic for the Traveling Salesman Problem with Time Windows.Operations
Research, 46:330–335, 1998.

42. M. Gendreau, G. Laporte, and F. Semet. Solving an Ambulance Location Model
by Tabu Search.Location Science, 5:75–88, 1997.

43. M. Gendreau, G. Laporte, and F. Semet. A Dynamic Model and Parallel Tabu
Search Heuristic for Real-Time Ambulance Relocation.Parallel Computing,
27:1641–1653, 2001.

44. G. Ghiani, G. Guerriero, G. Laporte, and R. Musmanno. Real-Time Vehicle
Routing: Solution Concepts, Algorithms and Parallel Computing Strategies.
European Journal of Operational Research, 151:1–11, 2003.

45. F. Glover. Future Paths for Integer Programming and Links to Artificial Intelli-
gence.Computers & Operations Research, 1(3):533–549, 1986.

46. F. Glover. Tabu Search – Part I.ORSA Journal on Computing, 1(3):190–206,
1989.

47. F. Glover. Tabu Search – Part II.ORSA Journal on Computing, 2(1):4–32, 1990.

48. F. Glover. Tabu Search and Adaptive Memory Programming – Advances, Ap-
plications and Challenges. In R. Barr, R. Helgason, and J. Kennington, editors,
Interfaces in Computer Science and Operations Research, pages 1–75, 1996.
Kluwer Academic Publishers.

PERSPECTIVES AND RESEARCH DIRECTIONS 23

49. F. Glover. A Template for Scatter Search and Path Relinking. In J. K. Hao, E.
Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors,Artificial Evolution,
Lecture Notes in Computer Science, volume 1363, pages 13–54, 1997. Springer
Verlag.

50. F. Glover and M. Laguna. Tabu Search. In C. Reeves, editor,Modern Heuris-
tic Techniques for Combinatorial Problems, pages 70–150, 1993. Blackwell
Scientific Publications.

51. F. Glover and M. Laguna.Tabu Search, 1997. Kluwer Academic Publishers.

52. F. Glover, M. Laguna, and R. Martı́. Fundamentals of scatter search and path
relinking. Control and Cybernetics, 39(3):653–684, 2000.

53. F. Glover,É. D. Taillard, and D. de Werra. A User’s Guide to Tabu Search.
Annals of Operations Research, 41:3–28, 1993.

54. K. Holmqvist, A. Migdalas, and P. M. Pardalos. Parallelized Heuristics for
Combinatorial Search. In A. Migdalas, P. Pardalos, and S. Storoy, editors,
Parallel Computing in Optimization, pages 269–294, 1997. Kluwer Academic
Publishers.

55. S. Ichoua, M. Gendreau, and J.-Y. Potvin. Diversion Issues in Real-Time Vehicle
Dispatching.Transportation Science, 34:426–438, 2000.

56. N. Jozefowiez, F. Semet, and E.-G. Talbi. Parallel and Hybrid Models for Multi-
objective Optimization: Application to the Vehicle Routing Problem. In J. J.
Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacañas, and
H.-P. Schwefel, editors,Parallel Problem Solving from Nature - PPSN VII: 7th
International Conference, Lecture Notes in Computer Science, volume 2439,
Granada, Spain, 2002. Springer-Verlag.

57. R. Laganìere and A. Mitiche. Parallel Tabu Search for Robust Image Filtering.
Proceedings of IEEE Workshop on Nonlinear Signal and Image Processing,
volume 2, pages 603–605, Greece, 1995.

58. M. Laguna and R. Martı́. Scatter Search: Methodology and Implementations in
C, 2003. Kluwer Academic Publishers.

59. A. Le Bouthillier and T. G. Crainic. A Cooperative Parallel Meta-Heuristic for
the Vehicle Routing Problem with Time Windows.Computers & Operations
Research, 2004.

60. M. Malek, M. Guruswamy, M. Pandya, and H. Owens. Serial and Parallel
Simulated Annealing and Tabu Search Algorithms for the Traveling Salesman
Problem.Annals of Operations Research, 21:59–84, 1989.

61. S. Niar and A. Fréville. A Parallel Tabu Search Algorithm For The 0-1 Mul-
tidimensional Knapsack Problem. In11th International Parallel Processing
Symposium (IPPS ’97), Geneva, Switzerland, 1997.

24 PARALLEL TABU SEARCH

62. M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, and J. S. Deogun. Multi-
Level Cooperative Search: Application to the Netlist/Hypergraph Partitioning
Problem. InProceedings of International Symposium on Physical Design, pages
192–198, 2000. ACM Press.

63. M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, and J. S. Deogun. Multi-
level Cooperative Search for the Circuit/Hypergraph Partitioning Problem.IEEE
Transactions on Computer-Aided Design, 21(6):685–693, 2002.

64. P. M. Pardalos, L. Pitsoulis, T. Mavridou, and M. G. C. Resende. Parallel Search
for Combinatorial Optimization: Genetic Algorithms, Simulated Annealing,
Tabu Search and GRASP. In A. Ferreira, and J. Rolim, editors,Proceedings of
Workshop on Parallel Algorithms for Irregularly Structured Problems, Lecture
Notes in Computer Science, volume 980, pages 317–331, 1995. Springer-Verlag.

65. S. C. S. Porto, J. P. F. W. Kitajima, and C. C. Ribeiro. Performance Evaluation
of a Parallel Tabu Search Task Scheduling Algorithm.Parallel Computing,
26:73–90, 2000.

66. S. C. S. Porto and C. C. Ribeiro. Parallel Tabu Search Message-Passing Syn-
chronous Strategies for Task Scheduling Under Precedence Constraints.Journal
of Heuristics, 1(2):207–223, 1996.

67. S. C. S. Porto and C. C. Ribeiro. A Case Study on Parallel Synchronous Im-
plementations of Tabu Search Based on Neighborhood Decomposition.Investi-
gación Operativa, 5:233–259, 1996.

68. M. Randall and D. Abramson. General Parallel Tabu Search Algorithm for Com-
binatorial Optimisation Problems In W. Cheng and A. Sajeev, editors,PART99:
Proceedings of the 6th Australasian Conference on Parallel and Real Time Sys-
tems, pages 68–79, Singapore, 1999. Springer-Verlag.

69. C. Rego. Node Ejection Chains for the Vehicle Routing Problem: Sequential
and Parallel Algorithms.Parallel Computing, 27:201–222, 2001.

70. C. Rego and C. Roucairol. A Parallel Tabu Search Algorithm Using Ejection
Chains for the VRP. In I. H. Osman and J. P. Kelly, editors,Meta-Heuristics:
Theory & Applications, pages 253–295, 1996. Kluwer Academic Publishers.

71. Y. Rochat and́E. D. Taillard. Probabilistic Diversification and Intensification in
Local Search for Vehicle Routing.Journal of Heuristics, 1(1):147–167, 1995.

72. J. Schulze and T. Fahle. A Parallel Algorithm for the Vehicle Routing Problem
with Time Window Constraints.Annals of Operations Research, 86:585–607,
1999.

73. É. D. Taillard. Robust Taboo Search for the Quadratic Assignment Problem.
Parallel Computing, 17:443–455, 1991.

PERSPECTIVES AND RESEARCH DIRECTIONS 25

74. É. D. Taillard. Parallel Iterative Search Methods for Vehicle Routing Problems.
Networks, 23:661–673, 1993.

75. É. D. Taillard. Recherches itératives diriǵees parall̀eles. Ph.D. dissertation,
École Polytechnique F́ed́erale de Lausanne, 1993.

76. É. D. Taillard. Parallel Taboo Search Techniques for the Job Shop Scheduling
Problem.ORSA Journal on Computing, 6(2):108–117, 1994.

77. É. D. Taillard, P. Badeau, M. Gendreau, and J.-Y. Potvin. A Tabu Search Heuristic
for the Vehicle Routing Problem with Soft Time Windows.Transportation
Science, 31(2):170–186, 1997.

78. É. D. Taillard, L. M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adaptive
memory programming: a unified view of metaheuristics.European Journal of
Operational Research, 135:1–16, 1997.

79. E.-G. Talbi, Z. Hafidi, and J.-M. Geib. Parallel adaptive tabu search approach.
Parallel Computing, 24:2003–2019, 1998.

80. E.-G. Talbi, Z. Hafidi, D. Kebbal, and J.-M. Geib. A fault-tolerant parallel heuris-
tic for assignment problems.Future Generation Computer Systems, 14:425–438,
1998.

81. M. Toulouse, T. G. Crainic, and M. Gendreau. Communication Issues in Design-
ing Cooperative Multi Thread Parallel Searches. In I. H. Osman and J. P. Kelly,
editors,Meta-Heuristics: Theory & Applications, pages 501-522, 1996. Kluwer
Academic Publishers.

82. M. Toulouse, T. G. Crainic, and B. Sansó. An Experimental Study of Systemic
Behavior of Cooperative Search Algorithms. In S. Voß, S. Martello, C. Roucairol,
and I. H. Osman, editors,Meta-Heuristics 98: Theory & Applications, pages
373-392, 1999. Kluwer Academic Publishers.

83. M. Toulouse, T. G. Crainic, and B. Sansó. Systemic Behavior of Cooperative
Search Algorithms.Parallel Computing, 21(1):57-79, 2004.

84. M. Toulouse, T. G. Crainic, B. Sansó, and K. Thulasiraman. Self-Organization in
Cooperative Search Algorithms. InProceedings of the 1998 IEEE International
Conference on Systems, Man, and Cybernetics, pages 2379–2385, Madison,
Wisconsin, 1998. Omnipress.

85. M. Toulouse, T. G. Crainic, and K. Thulasiraman. Global Optimization Proper-
ties of Parallel Cooperative Search Algorithms: A Simulation Study.Parallel
Computing, 26(1):91–112, 2000.

86. M. Toulouse, F. Glover, and K. Thulasiraman. A Multi-Scale Cooperative Search
with an Application to Graph Partitioning. Report, School of Computer Science,
University of Oklahoma, Norman, OK, 1998.

26

87. M. Toulouse, K. Thulasiraman, and F. Glover. Multi-Level Cooperative Search:
A New Paradigm for Combinatorial Optimization and an Application to Graph
Partitioning. In P. Amestoy, P. Berger, M. Daydé, I. Duff, V. Fraysśe, L. Giraud,
and D. Ruiz, editors,5th International Euro-Par Parallel Processing Confer-
ence, Lecture Notes in Computer Science, volume 1685, pages 533–542, 1999.
Springer-Verlag.

88. S. Vaithyanathan, L. I. Burke, and M. A. Magent. Massively parallel analog
tabu search using neural networks applied to simple plant location problems.
European Journal of Operational Research, 93(2):317–330, 1996.

89. S. Voß. Tabu Search: Applications and Prospects. In D.-Z. Du and P. Pardalos,
editors,Network Optimization Problems, pages 333–353, 1993. World Scientific
Publishing.

