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ABSTRACT 
 
This paper presents a parallel implementation of an ant colony optimization metaheuristic for the solution of an 
industrial scheduling problem in an aluminum casting center.  The usefulness and efficiency of the algorithm, in 
its sequential form, to solve that particular optimization problem has already been shown in previous work.  
However, even if this method, as well as metaheuristics in general, offers good quality of solution, it still needs 
considerable computational time and resources.  Moreover, the structure of the algorithm makes it well suited 
for parallelization, so a considerable improvement can be achieved that way.  In this paper an efficient and 
straightforward OpenMP implementation on a shared memory architecture is presented and the main 
algorithmic and programming issues that had to be adressed are discussed.  The code is written in C and the 
application has been executed on a Silicon Graphics Origin2000 parallel machine. 
 
 
1  INTRODUCTION 
 
In many industrial scheduling situations, exact 
optimization algorithms require overlong solutions 
times and cannot produce an acceptable or even 
feasible solution in the time available.  Metaheuristics 
have been shown to offer successful solution strategies 
for that kind of problems.  More specifically, Gravel et 
al. [2001] have presented an efficient representation of 
a continuous horizontal casting operation, a real 
scheduling problem encountered in an aluminium 
foundry, using an ant colony optimization 
metaheuristic.  The algorithm (in its original 
sequential form) has been implemented in an 
application that is now used in the foundry.  However, 
even if it has proven to be a viable solution, it is still 
very demanding in computational time and resources 
and this is particularly true as the problem size 
increases.  Moreover, the generation and evaluation of 
ants (solutions), which are the main parts of the 
algorithm and its principal source of computational 
cost, offers a low dependancy degree, so the structure 
of the algorithm makes it well suited for concurrent 
execution.  For those reasons, a parallel approach was 
justified and an implementation was made to study the 
performance in execution time that could be obtained 
that way. 

We already have shown the interest of using OpenMP 
for the parallelization of irregular Applications 
(Habbas et al. [2000]).  In this previous work we have 
studied an exact algorithm for CSP resolution.  We 
hope to show in this paper that this approach can be 
applied to the present Ant Colony Optimization 
implementation. 
 
In the first section of this paper the Ant Colony 
Optimization algorithm (ACO) is presented.  Then, the 
choice of using a shared memory model and the 
OpenMP environment is explained, the parallel 
implementation of the ACO is detailed and some 
algorithmic and programming issues that had to be 
adressed during the parallelization process are 
discussed.  Finally, some results are presented to show 
the performance of the resulting parallel application. 
 
 
2  ANT COLONY OPTIMIZATION 

ALGORITHM (ACO) 
 
The first ant colony optimization metaheuristic 
(ACO), called ant system (Colorni et al. [1991], 
Dorigo [1992]), was inspired by studies of the 
behavior of ants (Deneubourg et al., [1983]; 
Deneubourg & Goss, [1989]; Goss et al., [1990] ).  
Ants communicate among themselves through 
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NC = 0; 
Initialize τij matrix; 
Initialize quadtree; 
While (NC < NCMax) and (Not Stagnation 
Behaviour) 
  Initialize ∆τij matrix; 
  For each ant k do 
     Build a job sequence; 
     Evaluate solution k on each objective; 
     Update ∆τij matrix according to solution k; 
     Insert solution k into the quadtree; 
  Update τij matrix according to ∆τij matrix; 
  NC = NC + 1; 

pheromone, a substance they deposit on the ground in 
variable amounts as they move about.  It has been 
observed that the more ants use a particular path, the 
more pheromone is deposited on that path and the 
more it becomes attractive to other ants seeking food.   
If an obstacle is suddenly placed on an established 
path leading to a food source, ants will initially go 
right or left in a seemingly random manner, but those 
choosing the side that is in fact shorter will reach the 
food more quickly and will make the return journey 
more often.  The pheromone on the shorter path will 
therefore be more strongly reinforced and will 
eventually become the preferred route for the stream 
of ants.  The works of Colorni et al. [1991], Dorigo et 
al. [1991],  Dorigo et al. [1996], Dorigo & 
Gambardella, [1997], Dorigo & Di Caro, [1999] offer 
detailed information on the workings of the algorithm 
and the choice of the values of the various parameters. 
 
In the multiple-objective scheduling problem treated 
in this paper, we must determine the processing 
sequence for a set of orders where setup times are 
sequence-dependent.  Our formulation is based on the 
well-known traveling salesman problem (TSP).  Each 
order to be processed is represented as a “city” in the 
TSP network.   When an ant moves from city i to city 
j, it will leave a trail analogous to the pheromone on 
the edge (ij).  The trail records information related to 
the previous use of edge (ij) and the higher this use 
has been, the greater is the probability of choosing it 
once again.  For the scheduling problem, the 
pheromone trail will contain information based on the 
number of times ants chose to make jobs (ij) adjacent.  
We will explain later how the trail is initialized and 
modified. 
 
At time t, from an existing partial job sequence, each 
ant k chooses the next job to append using a 
probabilistic rule ( )tp k

ij  based on visibility (ηij) and 

on the intensity of the pheromone trail (τij(t)).  For the 
scheduling problem, the visibility is defined by a 
matrix that aggegates information on each of the four 
objectives to minimize.  This matrix represent the 
visibility information analogous to the D matrix in the 
TSP.  At initialization of the algorithm, the trail 
intensity for all job pairs (ij) is initialized to a small 
positive quantity τ0.  Parameters α  and β  are used to 
vary the relative importance of the trail intensity and 
the visibility.  To ensure that a job that already been 
placed in the sequence being constructed is not again 
selected, a tabu list is maintained.  Each ant k will 
have its own tabu list tabuk recording the ordered list 
of jobs already selected. 
 
At any given time, more than one ant constructs a job 
sequence and a cycle is completed when each of the m 
ants has completed their construction.  The version of 

the algorithm proposed in this paper carries out an 
updating of the trail intensity at the end of each cycle.  
This allows us to update the trail according to the 
evaluation of the solutions found in the cycle.  Let the 
evaluation on the most important objective (h’) found 
by the kth ant be Lk

h'.  The contribution to the update 
of the pheromone trail for ant k is the calculated as 
follows: k

ijτ∆ (t) = Q/ Lk
h'(t), where Q is a system 

parameter.  The updating of the trail is also influenced 
by an evaporation factor (1-ρ) that diminishes the trail 
present during the previous cycle.   
 
The reader may consult Gravel et al. [2001] for the 
details of these adaptations to the original ACO to 
make it fit to the actual industrial problem.  To treat 
the multiple-objective optimization problem, all 
nondominated solutions found by the metaheuristic 
are stored in a quadtree (Finkel & Bentley, [1974]).  If 
a solution is dominated, it will be eliminated during 
the quadtree insertion process, and if it dominates 
other solutions already in the quadtree, then the 
insertion process will remove them before the solution 
is inserted in its correct position. 
 
Then, for clarity issues regarding the next section, the 
ACO algorithm can be formulated (see figure 1) in the 
following way, which is less formal than the original 
specification, but simpler and closer to the way it has 
been implemented. 
 
Figure 1  Sequential implementation of the ACO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3  PARALLEL IMPLEMENTATION OF THE 

ACO 
 
As far as we know, few references can be found about 
parallel implementations of the ACO at this time.  
Moreover, work that has been done in this field is 
mostly related to message passing MIMD 
architectures, which presents different issues 
compared to shared memory architectures.  



Bullnheimer et al. [1998] have proposed a 
synchronous parallel implementation of the Ant 
System for the message passing model.  The authors 
outline the considerable cost of communications 
encountered and the existence of a synchronization 
procedure that cannot be neglected.  Talbi et al. [1999] 
have developed a similar parallel ACO algorithm that 
is combined with a local tabu search to solve the 
quadratic assignment problem (QAP). 
 
In this paper we hope to show that a design for a 
shared memory model is more accurate in order to 
reduce the cost of the parallelization altough the 
synchronization procedure cannot be avoided. 
 
There is also an issue about concurrent update of the 
information that emerges when using a shared 
memory model but it can be easily resolved so it is 
possible to achieve good performances in this 
environment.  With the availiability of OpenMP 
(OpenMP [1998]) it is possible to experiment this 
approach and the parallelization of the existing 
sequential C code can be made in an easy, 
straightforward way.   
 
The reader may notice that our goal in this paper is to 
improve the execution time of the algorithm without 
altering its behavior.  Improvement of the quality of 
the solutions found by the ACO with parallel 
mechanisms is another part of this project and will not 
be detailed in this paper. 
 
3.1  The “natural” parallelism of the ACO 
 
As we can see in Figure 1 the “for loop” is the main 
part of the algorithm and the source of its complexity 
(the standard ACO algorithm is O(n3)).  In fact, the 
generation of one solution is of complexity O(n2) (n is 
the number of jobs) and since we are in a real 
scheduling environment, the evaluation has to 
simulate the industrial process for each solution so it is 
considerably more time consuming than, for example, 
the computing of a TSP tour.  Besides, these two 
operations are independant for each ant of a given 
cycle so they can be easily parallelized. 
 
3.2  Message passing model vs. shared memory 

model 
 
Figure 2 shows the behavior of an implementation of 
the ACO based on the parallel synchronous Ant 
System in a message passing model. 
 
At the beginning of the algorithm, a master process  
initializes the information, spawns k processes (one 
for each ant k), and broadcasts the information.  At the 
beginning of a cycle the τij matrix (the pheromone 
trail) is sent to each process and the computations 

(generation and evaluation of solutions) are done in 
parallel.  Then, the solutions and their evaluations are 
sent back to the master, the τij matrix is updated and a 
new cycle begins by the broadcasting of the updated 
τij matrix. 
 
Figure 2   Parallel ACO in a message passing model 
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communications before the updating procedure, the 
master thread still have to wait for all the processes 
(ants) of the current cycle to compute and evaluate 
their job sequences, so this synchronization barrier is 
independent of the model used and cannot be avoided 
without altering the original method.  In future work 
we will study the possibility of modifying the 
algorithm and the frequency of these updates in order 
to achieve better efficiency without losing searching 
performance. 
 
3.4  Sharing the load between processors 
 
A first step in the parallelization process could be to 
naively affect the generation and evaluation of each 
ant to a different processor (with a #pragma omp 
parallel statement where Number of threads = 
Number of ants) and by keeping the ∆τij matrix and 
the quadtree updatings outside the parallel region 
since there would be a concurrent update conflict if 
they were inside.  We could also include the updates 
in the parallel region, in the shared memory, but in a 
critical zone where only one update at a time could be 
done.  However,  in both cases synchronization causes 
a great loss in efficiency. 
 
Besides, in this situation the chosen number of ants, 
which is a parameter of the ACO, is limited by the 
number of processors we have at our disposal, which 
could be problematic since we could need more ants 
for bigger problems and we want the application to 
run on smaller parallel machines.  It is then better to 
share the load between processors in a way to give 
more than one ant to each processor (with a #pragma 
omp parallel for statement where Number of threads < 
Number of ants).  For this load balancing matter, we 
can use the static and dynamic solutions provided by 
OpenMP.  This way we get a more efficient 
implementation and further improvement can be 
achieved by parallelizing the update of the ∆τij matrix 
and of the quadtree, which means having the whole 
for loop parallelized. 
 
3.5  Updating the ∆∆∆∆ττττij matrix concurrently 
 
The most important structures that are used by the 
ACO are the τij matrix, the D matrix, the ∆τij matrix 
and the quadtree.  The τij matrix is updated once each 
cycle and cannot be parallized without changing the 
behaviour of the algorithm so it stays in the shared 
memory during the execution. It is accessed in read 
mode by the generation function and its update is done 
by the master thread at the end of each cycle, after the 
end of the parallel region.   
 
The D matrix is constructed at the beginning of the 
execution and is never updated, so it stays in the 
shared memory, as well as all the other parameter 

variables and structures which are accessed in read 
mode during the execution of the algorithm. 
 
In the original sequential implementation of the ACO, 
as well as in the first parallel implementation that was 
made, the ∆τij matrix is in the shared memory and is 
updated by one ant (i.e by an OpenMP thread) at a 
time (in a critical section of the parallel region) with 
O(n) operations (where n is the number of jobs).  With 
a memory cost, we can improve execution time by 
creating one matrix for each thread, i.e. for each 
independant group of ants.  The only  use of this 
matrix is to update the τij matrix at the end of the 
cycle, so we can merge all the ∆τij matrices (the 
computationnal complexity of this operation is O(n2)) 
in parallel after the main parallel region and before the 
updating of the τij matrix without altering the behavior 
of the algorithm. 
 
3.6  Updating the quadtree concurrently 
 
A similar issue had to be adressed with the updating of 
the quadtree.  Originally there is only one tree 
structure that is updated sequentially or in a critical 
construct, but with another memory cost it is possible 
to create multiples trees (one quadtree for each 
processor) and merge them outside the parallel region.  
The merging procedure can be done after the 
execution of all the cycles and not at each cycle as 
with the ∆τij matrix since the tree is a storing structure 
and not an information structure that is needed by 
other parts of the algorithm. 
 
However, there may be a drawback in performance 
due to the fact that the management of the quadtree is 
done by dynamic memory allocation, i.e. each 
insertion procedure implies dynamic creation and 
destruction of nodes.  Even if pointers are private for 
each quadtree, private dynamic memory allocation is 
not supported by OpenMP at this time and all the 
quadtrees are part of the same shared memory heap.  
This issue and its consequences on the performance of 
the parallel implementation will be adressed in future 
work. 
 
With the modifications mentioned above being done, 
we obtain a parallel implementation of the ACO as 
shown in Figure 3. 
 
 
4  RESULTS 
 
The implementation strategy mentioned in section 3 
has been experimented by starting from an already 
existing sequential implementation written in C, 
adding the appropriate OpenMP directives in it and 
making the necessary changes that have been 
discussed.  



NC = 0; 
NumThreads = p; 
Initialize τij matrix; 
Initialize the p quadtrees; 
While (NC < NCMax) and (Not Stagnation Behaviour) 
   Initialize the p ∆τij matrices; 
   Parallel for with p threads 
   For each ant k do 
     Build a job sequence; 
     Evaluate solution k on each objective; 
     Update ∆τij[p] matrix according to the solution k; 
     Insert solution k into the quadtree[p]; 
  Merge the p ∆τij matrices in parallel; 
  Update τij matrix according to ∆τij matrix; 
  NC = NC + 1; 
Merge the p quadtrees; 

Figure 3  Parallel implementation of the ACO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tables 1, 2, 3, and 4 shows the performance of the 
parallel implementation when 1, 2, 4, 8 and 16 
processors are used to process order books of size 50 
and 80 with 2 sets of parameters.  The number of ants 
(k) has been set to 1000.  Figure 4 is a graphical 
representation of execution times of Table 3. 
 

Table 1   Results of parallel execution with 50 jobs, 
100 cycles and 1000 ants   

Number of 
processors 

Execution 
time (sec) 

Speedup Efficiency 

1 572 - - 
2 309 1.85 0.93 
4 167 3.43 0.86 
8 112 5.11 0.64 

16 125 4.58 0.29 
 

Table 2   Results of parallel execution with 50 jobs, 
200 cycles and 1000 ants   

Number of 
processors 

Execution 
time (sec) 

Speedup Efficiency 

1 1136 - - 
2 634 1.79 0.90 
4 349 3.25 0.81 
8 231 4.91 0.61 

16 267 4.25 0.26 
 
 
 

Table 3   Results of parallel execution with 80 jobs, 
100 cycles and 1000 ants   

Number of 
processors 

Execution 
time (sec) 

Speedup Efficiency 

1 1111 - - 
2 564 1.97 0.98 
4 305 3.64 0.91 
8 187 5.94 0.74 

16 204 5.45 0.34 

 

Table 4   Results of parallel execution with 80 jobs, 
200 cycles and 1000 ants   

Number of 
processors 

Execution 
time (sec) 

Speedup Efficiency 

1 2181 - - 
2 1152 1.89 0.95 
4 613 3.56 0.89 
8 381 5.72 0.72 

16 429 5.08 0.32 
 
 
Figure 4  Execution time with 80 jobs, 100 cycles 

and 1000 ants 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Regarding problem size, Tables 1 and 3 show that we 
get better efficiency with 80 jobs than with 50, as we 
supposed, when the same parameters are applied 
(Figure 5 shows efficiency with 8 different sizes of 
order books).  We believe that we would need bigger 
order books to properly see the benefits that can be 
gained from parallelism, but actual program 
limitations (mostly the complex industrial evaluation 
process) hinders the use of bigger order books.  A first 
step in this project was to study feasibility and 
performance on existing and studied big problems, so 
in future work we will expand the application to 
process more than 80 jobs. 
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Figure 5  Efficiency with 4 processors, 100 cycles, 
1000 ants and order books varying from 
10 to 80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another issue that we wanted to adress in this work is 
the penalty in efficiency that is caused by the 
synchronizations due to the updating of the τij matrix.  
For this matter the application was executed with 
variations to the number of cycles while keeping the 
same other parameters.  Results show that when NC is 
increased for the same problem, which implies more 
updatings of the τij matrix and more synchronizations, 
there is a loss in efficiency. 
 
Overall results shows that our parallel implementation 
of the ACO for this problem leads to the obtention of 
significant speedups.  However, experiments are not 
as convincing as we expected, especially with 8 and  
more processors.  The degration of efficiency obtained 
when increasing the number of processors is faster 
than we expected and the loss of performance 
associated with the increase of the number of cycles is 
smaller.  That statement is also true as we increase the 
number of ants.  In fact, when we increase the number 
of ants to 10 000, which is a high number compared to 
the usual chosen one, we get better efficiency, but not 
as high as one could expect when 8 and 16 processors 
are used (0.99 for 2 processors, 0.92 for 4, 0.76 for 8 
and 0.36 for 16). 
 
Further experiments and studies will lead us to 
understand better the mechanisms of the 
implementation, the effects of modifying the 
algorithm parameters and the influence of software 
and hardware elements that were used for the 
development.  The main issues that we may adress in 
short term work are : 
 

• The effects of dynamic memory allocation in 
parallel with OpenMP 

• The SGI Origin2000 computer, its CC-NUMA 
architecture, the data structures used in the 
application and the way the memory is used 

• Better knowledge of the OpenMP environment 
and of the use of its directives 

• The design of the actual application code 
• More extensive experimentations with different 

parameter settings  
 
 
5  CONCLUSION 
 
In this paper we have presented a shared memory 
parallel implementation of an Ant Colony 
Optimization metaheuristic that is applied to an 
industrial scheduling problem and we have shown the 
main issues that had to be adressed during the 
parallelization process.  The nature of the ACO and 
the functionnality offered by OpenMP made the 
transition from sequential to parallel easier and 
straightforward while some changes had to be made to 
the algorithm and to the program to obtain the level of 
efficiency that we achieved. 
 
Our aim was to increase the execution time of the 
algorithm.  The resulting implementation has shown 
that is was possible to design an efficient parallel Ant 
Colony Optimization metaheuristic in a shared 
memory model with OpenMP.  It also has shown 
some limitations as we increased the number of 
processors used in the application and the causes of 
those drawbacks should be analysed in near future. 
 
In an another part of this project we plan to exploit 
parallelism potential of the ACO in a way that will 
improve its solution searching capabilities without 
increasing its execution time.  It is likely that this goal 
will imply a model of co-evolution of many ant 
colonies, which means a higher level of 
parallelization, the possible use of a message passing 
model and a resulting implementation that mixes MPI 
and OpenMP. 
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