
PARALLEL IMPLEMENTATION OF AN ANT COLONY OPTIMIZATION
METAHEURISTIC WITH OPENMP

Pierre Delisle(1), Michaël Krajecki(2, 3), Marc Gravel(1), Caroline Gagné (1)

(1) Département d’informatique et mathématique, Université du Québec à Chicoutimi,

Chicoutimi, Québec, Canada, G7H 2B1
pdelisle@uqac.uquebec.ca, mgravel@uqac.uquebec.ca, caroline_gagne@uqac.uquebec.ca

(2) Université de Reims Champagne-Ardenne, LERI

 BP1039, F-51687 Reims Cedex2
 (michael.krajecki@univ-reims.fr)

(3) Collège Militaire Royal du Canada,

CP 17000, Succursale Forces, Kingston, Ontario, Canada, K7K 7B4

ABSTRACT

This paper presents a parallel implementation of an ant colony optimization metaheuristic for the solution of an
industrial scheduling problem in an aluminum casting center. The usefulness and efficiency of the algorithm, in
its sequential form, to solve that particular optimization problem has already been shown in previous work.
However, even if this method, as well as metaheuristics in general, offers good quality of solution, it still needs
considerable computational time and resources. Moreover, the structure of the algorithm makes it well suited
for parallelization, so a considerable improvement can be achieved that way. In this paper an efficient and
straightforward OpenMP implementation on a shared memory architecture is presented and the main
algorithmic and programming issues that had to be adressed are discussed. The code is written in C and the
application has been executed on a Silicon Graphics Origin2000 parallel machine.

1 INTRODUCTION

In many industrial scheduling situations, exact
optimization algorithms require overlong solutions
times and cannot produce an acceptable or even
feasible solution in the time available. Metaheuristics
have been shown to offer successful solution strategies
for that kind of problems. More specifically, Gravel et
al. [2001] have presented an efficient representation of
a continuous horizontal casting operation, a real
scheduling problem encountered in an aluminium
foundry, using an ant colony optimization
metaheuristic. The algorithm (in its original
sequential form) has been implemented in an
application that is now used in the foundry. However,
even if it has proven to be a viable solution, it is still
very demanding in computational time and resources
and this is particularly true as the problem size
increases. Moreover, the generation and evaluation of
ants (solutions), which are the main parts of the
algorithm and its principal source of computational
cost, offers a low dependancy degree, so the structure
of the algorithm makes it well suited for concurrent
execution. For those reasons, a parallel approach was
justified and an implementation was made to study the
performance in execution time that could be obtained
that way.

We already have shown the interest of using OpenMP
for the parallelization of irregular Applications
(Habbas et al. [2000]). In this previous work we have
studied an exact algorithm for CSP resolution. We
hope to show in this paper that this approach can be
applied to the present Ant Colony Optimization
implementation.

In the first section of this paper the Ant Colony
Optimization algorithm (ACO) is presented. Then, the
choice of using a shared memory model and the
OpenMP environment is explained, the parallel
implementation of the ACO is detailed and some
algorithmic and programming issues that had to be
adressed during the parallelization process are
discussed. Finally, some results are presented to show
the performance of the resulting parallel application.

2 ANT COLONY OPTIMIZATION

ALGORITHM (ACO)

The first ant colony optimization metaheuristic
(ACO), called ant system (Colorni et al. [1991],
Dorigo [1992]), was inspired by studies of the
behavior of ants (Deneubourg et al., [1983];
Deneubourg & Goss, [1989]; Goss et al., [1990]).
Ants communicate among themselves through

mailto:michael.krajecki@univ-reims.fr

NC = 0;
Initialize τij matrix;
Initialize quadtree;
While (NC < NCMax) and (Not Stagnation
Behaviour)
 Initialize ∆τij matrix;
 For each ant k do
 Build a job sequence;
 Evaluate solution k on each objective;
 Update ∆τij matrix according to solution k;
 Insert solution k into the quadtree;
 Update τij matrix according to ∆τij matrix;
 NC = NC + 1;

pheromone, a substance they deposit on the ground in
variable amounts as they move about. It has been
observed that the more ants use a particular path, the
more pheromone is deposited on that path and the
more it becomes attractive to other ants seeking food.
If an obstacle is suddenly placed on an established
path leading to a food source, ants will initially go
right or left in a seemingly random manner, but those
choosing the side that is in fact shorter will reach the
food more quickly and will make the return journey
more often. The pheromone on the shorter path will
therefore be more strongly reinforced and will
eventually become the preferred route for the stream
of ants. The works of Colorni et al. [1991], Dorigo et
al. [1991], Dorigo et al. [1996], Dorigo &
Gambardella, [1997], Dorigo & Di Caro, [1999] offer
detailed information on the workings of the algorithm
and the choice of the values of the various parameters.

In the multiple-objective scheduling problem treated
in this paper, we must determine the processing
sequence for a set of orders where setup times are
sequence-dependent. Our formulation is based on the
well-known traveling salesman problem (TSP). Each
order to be processed is represented as a “city” in the
TSP network. When an ant moves from city i to city
j, it will leave a trail analogous to the pheromone on
the edge (ij). The trail records information related to
the previous use of edge (ij) and the higher this use
has been, the greater is the probability of choosing it
once again. For the scheduling problem, the
pheromone trail will contain information based on the
number of times ants chose to make jobs (ij) adjacent.
We will explain later how the trail is initialized and
modified.

At time t, from an existing partial job sequence, each
ant k chooses the next job to append using a
probabilistic rule ()tp k

ij based on visibility (ηij) and

on the intensity of the pheromone trail (τij(t)). For the
scheduling problem, the visibility is defined by a
matrix that aggegates information on each of the four
objectives to minimize. This matrix represent the
visibility information analogous to the D matrix in the
TSP. At initialization of the algorithm, the trail
intensity for all job pairs (ij) is initialized to a small
positive quantity τ0. Parameters α and β are used to
vary the relative importance of the trail intensity and
the visibility. To ensure that a job that already been
placed in the sequence being constructed is not again
selected, a tabu list is maintained. Each ant k will
have its own tabu list tabuk recording the ordered list
of jobs already selected.

At any given time, more than one ant constructs a job
sequence and a cycle is completed when each of the m
ants has completed their construction. The version of

the algorithm proposed in this paper carries out an
updating of the trail intensity at the end of each cycle.
This allows us to update the trail according to the
evaluation of the solutions found in the cycle. Let the
evaluation on the most important objective (h’) found
by the kth ant be Lk

h'. The contribution to the update
of the pheromone trail for ant k is the calculated as
follows: k

ijτ∆ (t) = Q/ Lk
h'(t), where Q is a system

parameter. The updating of the trail is also influenced
by an evaporation factor (1-ρ) that diminishes the trail
present during the previous cycle.

The reader may consult Gravel et al. [2001] for the
details of these adaptations to the original ACO to
make it fit to the actual industrial problem. To treat
the multiple-objective optimization problem, all
nondominated solutions found by the metaheuristic
are stored in a quadtree (Finkel & Bentley, [1974]). If
a solution is dominated, it will be eliminated during
the quadtree insertion process, and if it dominates
other solutions already in the quadtree, then the
insertion process will remove them before the solution
is inserted in its correct position.

Then, for clarity issues regarding the next section, the
ACO algorithm can be formulated (see figure 1) in the
following way, which is less formal than the original
specification, but simpler and closer to the way it has
been implemented.

Figure 1 Sequential implementation of the ACO

3 PARALLEL IMPLEMENTATION OF THE

ACO

As far as we know, few references can be found about
parallel implementations of the ACO at this time.
Moreover, work that has been done in this field is
mostly related to message passing MIMD
architectures, which presents different issues
compared to shared memory architectures.

Bullnheimer et al. [1998] have proposed a
synchronous parallel implementation of the Ant
System for the message passing model. The authors
outline the considerable cost of communications
encountered and the existence of a synchronization
procedure that cannot be neglected. Talbi et al. [1999]
have developed a similar parallel ACO algorithm that
is combined with a local tabu search to solve the
quadratic assignment problem (QAP).

In this paper we hope to show that a design for a
shared memory model is more accurate in order to
reduce the cost of the parallelization altough the
synchronization procedure cannot be avoided.

There is also an issue about concurrent update of the
information that emerges when using a shared
memory model but it can be easily resolved so it is
possible to achieve good performances in this
environment. With the availiability of OpenMP
(OpenMP [1998]) it is possible to experiment this
approach and the parallelization of the existing
sequential C code can be made in an easy,
straightforward way.

The reader may notice that our goal in this paper is to
improve the execution time of the algorithm without
altering its behavior. Improvement of the quality of
the solutions found by the ACO with parallel
mechanisms is another part of this project and will not
be detailed in this paper.

3.1 The “natural” parallelism of the ACO

As we can see in Figure 1 the “for loop” is the main
part of the algorithm and the source of its complexity
(the standard ACO algorithm is O(n3)). In fact, the
generation of one solution is of complexity O(n2) (n is
the number of jobs) and since we are in a real
scheduling environment, the evaluation has to
simulate the industrial process for each solution so it is
considerably more time consuming than, for example,
the computing of a TSP tour. Besides, these two
operations are independant for each ant of a given
cycle so they can be easily parallelized.

3.2 Message passing model vs. shared memory

model

Figure 2 shows the behavior of an implementation of
the ACO based on the parallel synchronous Ant
System in a message passing model.

At the beginning of the algorithm, a master process
initializes the information, spawns k processes (one
for each ant k), and broadcasts the information. At the
beginning of a cycle the τij matrix (the pheromone
trail) is sent to each process and the computations

(generation and evaluation of solutions) are done in
parallel. Then, the solutions and their evaluations are
sent back to the master, the τij matrix is updated and a
new cycle begins by the broadcasting of the updated
τij matrix.

Figure 2 Parallel ACO in a message passing model

As shown by Bullnhe
aside the communicatio
strategy implies an op
there are enough proce
to each processing el
cannot be neglected
communication opera
unpacking messages, s
idle times) are cau
efficiency.

With the recent res
memory parallel com
OpenMP, which perm
existing sequential C
experiment a shared m
ACO to solve our indu
model where explicit
needed it may be
performances with min

3.3 Synchronization
ττττij matrix

At the end of each c
updated for the ants of
implementation there

Ant k Ant 1
Generate solution k
Evaluate Solution k

Send D matrix
Send τij matrix

. . .

Send k, lk

Generate solution k
Evaluate Solution k

Update τij matrix
Send k, lk
Send τij matrix
Update τij matrix
...
Initialize τij matrix

 NC = 0

 NC = 1
 NC = 2
imer et al. [1998], if we put
n overhead, this parallelization
timum speedup assuming that

ssors available to assign one ant
ement. However, this factor
 as the high number of
tions needed (packing and
ending and receiving packets,
sing a considerable loss in

urgence of powerful shared
puters and the availability of
its the parallelization of the
program, it is interesting to
emory implementation of the

strial scheduling problem. In a
communications are no longer
 possible to obtain good
imal changes to the algorithm.

issue with the updating of the

ycle, the τij matrix has to be
 the next cycle. Even if in our
 is no need of explicit

communications before the updating procedure, the
master thread still have to wait for all the processes
(ants) of the current cycle to compute and evaluate
their job sequences, so this synchronization barrier is
independent of the model used and cannot be avoided
without altering the original method. In future work
we will study the possibility of modifying the
algorithm and the frequency of these updates in order
to achieve better efficiency without losing searching
performance.

3.4 Sharing the load between processors

A first step in the parallelization process could be to
naively affect the generation and evaluation of each
ant to a different processor (with a #pragma omp
parallel statement where Number of threads =
Number of ants) and by keeping the ∆τij matrix and
the quadtree updatings outside the parallel region
since there would be a concurrent update conflict if
they were inside. We could also include the updates
in the parallel region, in the shared memory, but in a
critical zone where only one update at a time could be
done. However, in both cases synchronization causes
a great loss in efficiency.

Besides, in this situation the chosen number of ants,
which is a parameter of the ACO, is limited by the
number of processors we have at our disposal, which
could be problematic since we could need more ants
for bigger problems and we want the application to
run on smaller parallel machines. It is then better to
share the load between processors in a way to give
more than one ant to each processor (with a #pragma
omp parallel for statement where Number of threads <
Number of ants). For this load balancing matter, we
can use the static and dynamic solutions provided by
OpenMP. This way we get a more efficient
implementation and further improvement can be
achieved by parallelizing the update of the ∆τij matrix
and of the quadtree, which means having the whole
for loop parallelized.

3.5 Updating the ∆∆∆∆ττττij matrix concurrently

The most important structures that are used by the
ACO are the τij matrix, the D matrix, the ∆τij matrix
and the quadtree. The τij matrix is updated once each
cycle and cannot be parallized without changing the
behaviour of the algorithm so it stays in the shared
memory during the execution. It is accessed in read
mode by the generation function and its update is done
by the master thread at the end of each cycle, after the
end of the parallel region.

The D matrix is constructed at the beginning of the
execution and is never updated, so it stays in the
shared memory, as well as all the other parameter

variables and structures which are accessed in read
mode during the execution of the algorithm.

In the original sequential implementation of the ACO,
as well as in the first parallel implementation that was
made, the ∆τij matrix is in the shared memory and is
updated by one ant (i.e by an OpenMP thread) at a
time (in a critical section of the parallel region) with
O(n) operations (where n is the number of jobs). With
a memory cost, we can improve execution time by
creating one matrix for each thread, i.e. for each
independant group of ants. The only use of this
matrix is to update the τij matrix at the end of the
cycle, so we can merge all the ∆τij matrices (the
computationnal complexity of this operation is O(n2))
in parallel after the main parallel region and before the
updating of the τij matrix without altering the behavior
of the algorithm.

3.6 Updating the quadtree concurrently

A similar issue had to be adressed with the updating of
the quadtree. Originally there is only one tree
structure that is updated sequentially or in a critical
construct, but with another memory cost it is possible
to create multiples trees (one quadtree for each
processor) and merge them outside the parallel region.
The merging procedure can be done after the
execution of all the cycles and not at each cycle as
with the ∆τij matrix since the tree is a storing structure
and not an information structure that is needed by
other parts of the algorithm.

However, there may be a drawback in performance
due to the fact that the management of the quadtree is
done by dynamic memory allocation, i.e. each
insertion procedure implies dynamic creation and
destruction of nodes. Even if pointers are private for
each quadtree, private dynamic memory allocation is
not supported by OpenMP at this time and all the
quadtrees are part of the same shared memory heap.
This issue and its consequences on the performance of
the parallel implementation will be adressed in future
work.

With the modifications mentioned above being done,
we obtain a parallel implementation of the ACO as
shown in Figure 3.

4 RESULTS

The implementation strategy mentioned in section 3
has been experimented by starting from an already
existing sequential implementation written in C,
adding the appropriate OpenMP directives in it and
making the necessary changes that have been
discussed.

NC = 0;
NumThreads = p;
Initialize τij matrix;
Initialize the p quadtrees;
While (NC < NCMax) and (Not Stagnation Behaviour)
 Initialize the p ∆τij matrices;
 Parallel for with p threads
 For each ant k do
 Build a job sequence;
 Evaluate solution k on each objective;
 Update ∆τij[p] matrix according to the solution k;
 Insert solution k into the quadtree[p];
 Merge the p ∆τij matrices in parallel;
 Update τij matrix according to ∆τij matrix;
 NC = NC + 1;
Merge the p quadtrees;

Figure 3 Parallel implementation of the ACO

Tables 1, 2, 3, and 4 shows the performance of the
parallel implementation when 1, 2, 4, 8 and 16
processors are used to process order books of size 50
and 80 with 2 sets of parameters. The number of ants
(k) has been set to 1000. Figure 4 is a graphical
representation of execution times of Table 3.

Table 1 Results of parallel execution with 50 jobs,
100 cycles and 1000 ants

Number of
processors

Execution
time (sec)

Speedup Efficiency

1 572 - -
2 309 1.85 0.93
4 167 3.43 0.86
8 112 5.11 0.64

16 125 4.58 0.29

Table 2 Results of parallel execution with 50 jobs,
200 cycles and 1000 ants

Number of
processors

Execution
time (sec)

Speedup Efficiency

1 1136 - -
2 634 1.79 0.90
4 349 3.25 0.81
8 231 4.91 0.61

16 267 4.25 0.26

Table 3 Results of parallel execution with 80 jobs,
100 cycles and 1000 ants

Number of
processors

Execution
time (sec)

Speedup Efficiency

1 1111 - -
2 564 1.97 0.98
4 305 3.64 0.91
8 187 5.94 0.74

16 204 5.45 0.34

Table 4 Results of parallel execution with 80 jobs,
200 cycles and 1000 ants

Number of
processors

Execution
time (sec)

Speedup Efficiency

1 2181 - -
2 1152 1.89 0.95
4 613 3.56 0.89
8 381 5.72 0.72

16 429 5.08 0.32

Figure 4 Execution time with 80 jobs, 100 cycles

and 1000 ants

Regarding problem size, Tables 1 and 3 show that we
get better efficiency with 80 jobs than with 50, as we
supposed, when the same parameters are applied
(Figure 5 shows efficiency with 8 different sizes of
order books). We believe that we would need bigger
order books to properly see the benefits that can be
gained from parallelism, but actual program
limitations (mostly the complex industrial evaluation
process) hinders the use of bigger order books. A first
step in this project was to study feasibility and
performance on existing and studied big problems, so
in future work we will expand the application to
process more than 80 jobs.

0
200
400
600
800

1000
1200

0 2 4 6 8 10 12 14 16 18

Nomber of processors

Ex
ec

ut
io

n
tim

e

Figure 5 Efficiency with 4 processors, 100 cycles,
1000 ants and order books varying from
10 to 80

Another issue that we wanted to adress in this work is
the penalty in efficiency that is caused by the
synchronizations due to the updating of the τij matrix.
For this matter the application was executed with
variations to the number of cycles while keeping the
same other parameters. Results show that when NC is
increased for the same problem, which implies more
updatings of the τij matrix and more synchronizations,
there is a loss in efficiency.

Overall results shows that our parallel implementation
of the ACO for this problem leads to the obtention of
significant speedups. However, experiments are not
as convincing as we expected, especially with 8 and
more processors. The degration of efficiency obtained
when increasing the number of processors is faster
than we expected and the loss of performance
associated with the increase of the number of cycles is
smaller. That statement is also true as we increase the
number of ants. In fact, when we increase the number
of ants to 10 000, which is a high number compared to
the usual chosen one, we get better efficiency, but not
as high as one could expect when 8 and 16 processors
are used (0.99 for 2 processors, 0.92 for 4, 0.76 for 8
and 0.36 for 16).

Further experiments and studies will lead us to
understand better the mechanisms of the
implementation, the effects of modifying the
algorithm parameters and the influence of software
and hardware elements that were used for the
development. The main issues that we may adress in
short term work are :

• The effects of dynamic memory allocation in
parallel with OpenMP

• The SGI Origin2000 computer, its CC-NUMA
architecture, the data structures used in the
application and the way the memory is used

• Better knowledge of the OpenMP environment
and of the use of its directives

• The design of the actual application code
• More extensive experimentations with different

parameter settings

5 CONCLUSION

In this paper we have presented a shared memory
parallel implementation of an Ant Colony
Optimization metaheuristic that is applied to an
industrial scheduling problem and we have shown the
main issues that had to be adressed during the
parallelization process. The nature of the ACO and
the functionnality offered by OpenMP made the
transition from sequential to parallel easier and
straightforward while some changes had to be made to
the algorithm and to the program to obtain the level of
efficiency that we achieved.

Our aim was to increase the execution time of the
algorithm. The resulting implementation has shown
that is was possible to design an efficient parallel Ant
Colony Optimization metaheuristic in a shared
memory model with OpenMP. It also has shown
some limitations as we increased the number of
processors used in the application and the causes of
those drawbacks should be analysed in near future.

In an another part of this project we plan to exploit
parallelism potential of the ACO in a way that will
improve its solution searching capabilities without
increasing its execution time. It is likely that this goal
will imply a model of co-evolution of many ant
colonies, which means a higher level of
parallelization, the possible use of a message passing
model and a resulting implementation that mixes MPI
and OpenMP.

ACKNOWLEDGEMENT

This work was partly supported by the Centre Lorrain
de Calcul à Hautes Performances (Centre Charles
Hermite : CCH) and by the Centre Informatique
National de l'Enseignement Supérieur (CINES).

REFERENCES

Bullnheimer B., Kotsis G., Strauss C. [1998],
Parallelization Strategies for the Ant System. In R. De
Leone, A. Murli, P. Pardalos, and G. Toraldo, editors,
High Performance Algorithms and Software in
Nonlinear Optimization, volume 24 of Applied
Optimization, pages 87-100. Kluwer : Dordrecht.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

Number of jobs

Ef
fic

ie
nc

y

Colorni A., Dorigo M., Maniezzo V. [1991],
Distributed optimization by ant-colonies, in
Proceedings of the European Conference on Artificial
Life (ECAL'91), edited by F. Varela and P. Bourgine,
134-142, Cambridge, Mass, USA, MIT Press.

Colorni A., Dorigo M., Maniezzo V., Trubian M.
[1994], Ant system for job-shop scheduling, Belgian
Journal of Operations Research (JORBEL), Statistics
and Computer Science, 34, 1, 39-53.

Deneubourg J.L., Pasteels J.M., Verhaeghe J.C.
[1983], Probabilistic behaviour in ants: A strategy of
errors?, Journal of Therical Biology, 105, 259-271.

Deneubourg J.L., Goss S. [1989], Collective patterns
and decision-making, Ethology & Evolution, 1, 295-
311.

Dorigo M. [1992], Optimization, learning and natural
algorithms, Ph.D. Thesis, Politecnico di Milano, Italy.

Dorigo M., Di Caro G. [1999], The Ant Colony
Optimization Meta-Heuristic', In: D. Corne, M.
Dorigo and F. Glover Editors, New Ideas in
Optimization, McGraw-Hill.

Dorigo M., Gambardella L.M. [1997], Ant colonies for
the traveling salesman problem, BioSystems, 43, 73-
81.

Dorigo M., Maniezzo V., Colorni A. [1991], Positive
feedback as a search strategy, Technical Report No
91-016, Politecnico di Milano, Italy, 20 pages.

Finkel, R. A., Bentley, J. L. [1974], Quad trees, a data
structure for retrieval on composite keys, Acta
Informatica 4, 1-9.

Goss S., Beckers R., Deneubourg J.L., Aron S.,
Pasteels J.M. [1990], How trail laying and trail
following can solve foraging problems for ant
colonies, In: Behavioural Mechanisms of Food
Selection, R.N. Hughes ed., NATO-ASI Series, vol.
G20, Berlin: Springler-Verlag.

Gravel M., Price W., Gagné C. [2001], Scheduling
continuous casting of aluminum using a multiple-
objective ant colony optimization metaheuristic,
Document de Travail no. 2001-004, Faculté des
Sciences de l’Administration, Université Laval,
Québec, Canada. (submitted for publication)

Habbas Z., Krajecki M., Singer D. [2000], Domain
Decomposition for Parallel Resolution of Constraint
Satisfaction Problems with OpenMP, In: Proceedings
of The Second European Workshop on OpenMP,
Edinburgh, Scotland, 1-8.

OPENMP ARCHITECTURE REVIEW BOARD
[1998], OpenMP C and C++ Application Program
Interface Version 1.0, http://www.openmp.org.

Talbi E-G., Roux O., Fonlupt C., Robillard D. [1999],
Parallel ant colonies for combinatorial optimization
problems, BioSP3 Workshop on Biologically Inspired
Solutions to Parallel Processing Systems, in IEEE
IPPS/SPDP'99 (Int. Parallel Processing Symposium /
Symposium on Parallel and Distributed Processing,
edited by Jose Rolim, Lecture Notes in Computer
Science Vol., Springer-Verlag, San Juan, Puerto Rico,
USA.

http://www.openmp.org/

	ABSTRACT
	1 INTRODUCTION
	3 PARALLEL IMPLEMENTATION OF THE ACO
	4 RESULTS
	5 CONCLUSION

