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Abstract. In this paper, we review parallel metaheuristics for approximating
the global optimal solution of combinatorial optimization problems. Recent
developments on parallel implementation of genetic algorithms, simulated an-
nealing, tabu search, variable neighborhood search, and greedy randomized
adaptive search procedures (GRASP) are discussed.

1. Introduction

Search techniques are fundamental problem-solving methods in computer science
and operations research. Search algorithms have been used to solve many classes
of problems, including path-finding problems, two-player games, and constraint
satisfaction problems. Classical examples of path-finding problems include many
combinatorial optimization problems (e.g. integer programming) and puzzles (e.g.
Rubic’s cube, Eight Puzzle). Chess, backgammon, and Othello belong to the class
of two player games, while a classic example of a constraint satisfaction problem is
the eight-queens problem.

In this paper, we focus on NP-hard combinatorial optimization problems. A
combinatorial optimization problem P in its minimization form can be formulated
as follows. Given a finite set E = {1, 2, . . . , n}, the set of feasible solutions F ⊆ 2E

of P , and an objective function f : 2E → �
, one wishes to find S∗ ∈ F such that

f(S∗) ≤ f(S), ∀S ∈ F , where f(S) is the objective function defined as f(S) =∑
e∈S c(e), where c(e) is the cost of including e ∈ S in the solution S. For a

specific optimization problem, the sets E and F , as well as the function c(e) need
to be defined. For combinatorial optimization problems, exact search algorithms,
such as branch and bound or dynamic programming, may degenerate to complete
enumeration. Because of this, exact approaches limit us to solve only moderately
sized problem instances, due to the exponential increase in CPU time and memory
when problem size increases. Therefore, in practice, heuristic search algorithms are
necessary to find (not necessarily optimal) solutions to these problems. Heuristics
explore a small portion of the solution space, where one believes good solutions can
be found. Most heuristics for combinatorial optimization make use of a basic local
search method called iterative improvement which can be described as in Figure 1
in its minimization form ([59, 74]).
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The initial solution s0 can be produced in many different ways. A solution s′

is “near” another solution s if it is in the set of neighborhood solutions N(s) of s.
Usually, a solution is in the neighborhood of another if it can be obtained from the
other solution by an elementary perturbation or move. The neighborhood is usually
constructed as the set MN(s) of all elementary moves from s. Often the set MN (s)
is too large for a practical algorithm, and one searches in a subset CN (s) ⊂MN (s)
called the candidate set. Iterative improvement proceeds until a locally optimal
solution is found. Once such a solution is found, no further improvement is possible.

Layout of Iterative Improvement

Input: A problem instance P , and a feasible solution s0 ∈ F

Output: A (sub-optimal) solution s ∈ F

1. Initialize s = s0;

2. while (there exists s′ ∈ N(s) such that f(s′) < f(s)) do
(a) Select s′ ∈ CN (s) such that f(s′) < f(s);
(b) Let s = s′;

3. Output s as the (sub-optimal) solution;

Figure 1. Iterative Improvement

One limitation of local search is getting trapped in local optima. To get around
this limitation, several general purpose heuristic strategies have been developed in
the last two decades. For large-scale problems, another limitation is the exponen-
tial computational complexity of iterative improvement [60]. Parallel local search
algorithms are one way to cope with this problem. Parallel implementation can
significantly increase the size of the problems that can be solved. While there is
a large body of work on search algorithms, work on parallel search algorithms is
relatively sparse.

A survey of parallel local search algorithms is given by Verhoeven and Aarts
[118]. They give a review of some concepts that can be used to incorporate par-
allelism into local search. They distinguish between single walk and multiple walk
parallel local search and between asynchronous and synchronous parallelism. In a
single walk algorithm only a single walk in the solution space is carried out, whereas
in a multiple-walk algorithm several walks are performed simultaneously. In the
class of single walk algorithms they distinguish between single step and multiple
step parallel local search. The idea of single step parallelism is to evaluate neighbors
simultaneously and subsequently make a single step. In an algorithm with multiple
steps parallelism, several consecutive steps through the solution space are made
simultaneously. In the class of multiple-walks they distinguish between algorithms
that perform interacting walk and algorithms that perform multiple independent
walks. Finally, both in single walk and multiple walk parallel local search, they
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distinguish between synchronous and asynchronous algorithms. In a synchronously
parallel algorithm one or more steps of the algorithm are performed simultaneously
by all processors, while synchronous parallelism requires a global clocking scheme
that guarantees that communication occurs at fixed points of time. They observed
that multiple-walk parallelism offers promising results to parallel tabu search and
simulated annealing algorithms for a wide range of problems, and single-step par-
allelism can be used for most of the tabu search algorithms.

For a comprehensive overview of parallel search algorithms the reader is referred
to [22, 80, 31, 32, 90, 16].

Macready et al. [71] report on some interesting investigations of the effect of
local search on combinatorial optimization. Although they accept that local search
methods constitute one of the most successful approaches to combinatorial opti-
mization problems, they demonstrate that for a wide class of search techniques,
increasing parallelism leads to better solution faster, but only to a certain point.
At some degree of parallelism, the quality of solution abruptly degrades to that of
random sampling.

In this paper, we explore different approaches of parallel heuristic search for solv-
ing combinatorial optimization problems. We focus on issues of parallelization of
genetic algorithms, simulated annealing, tabu (or taboo) search, variable neighbor-
hood search, and GRASP (greedy randomized adaptive search procedures). These
heuristic methods are often called metaheuristic since they are general purpose op-
timization schemes that can be adapted to address specific optimization problems.
These metaheuristics have been used to approximately solve a wide spectrum of
combinatorial optimization problems [98].

Portions of this paper are based on Pardalos, Mavridou, Pitsoulis, and Resende
[94].

2. Parallel Variable Neighborhood Descent

Variable neighborhood descent (VND) is a metaheuristic recently proposed by
Hansen and Mladenović [45, 46, 47, 48, 49, 50, 51]. The approach is a local improve-
ment heuristic as described in the previous section, with the difference that instead
of utilizing a single neighborhood structure, several neighborhood structures are
used. These extended neighborhoods allow searching for improving solutions that
are “further” from the current solution, thus allowing the method to escape local
optima with respect to a smaller neighborhood.

Let N1, N2, . . . , Np be p neighborhood structures such that Nk(s) is the set of
solutions in the k-th neighborhood of s. One usually assumes that neighborhood
Nk+1 is larger than neighborhood Nk. Figure 2 illustrates variable neighborhood
descent. The while loop (2) is repeated while k < p. During each iteration of the
loop, a random starting solution s′ in the k-th neighborhood of s is generated and
local search is applied using neighborhood N1. Let s′′ be the local optimal solution.
If an improvement is found with local search, then s = s′′ and the search restarts
with k = 1. If no improvement is found in the local search, the search proceeds
with k = k + 1.

Since VND is relatively new, it has not been investigated much from a paral-
lelization point of view. Martins [75] outlined how parallel implementations of VND
can be accomplished. In a low-level parallelization, each search of the neighborhood
Nk(s) could be done in parallel. Nk(s) would be divided between the processors
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Layout of Variable Neighborhood Descent

Input: A problem instance P , a feasible solution s0 ∈ F , and
neighborhoods N1, N2, . . . , Np.

Output: A (sub-optimal) solution s ∈ F

1. Initialize s = s0; Improve = true;

2. while (Improve == true) do
(a) Improve = false;
(b) k = 1;
(c) while k ≤ p do

(i) Generate s′ at random Nk(s);

(ii) Apply local search using N1 and s′ as the
initial solution. Let s′′ be the local optimum;

(iii) if f(s′′) < f(s) then do
Let s = s′′;
Improve = true;
break;

else k = k + 1;
3. Output s as the (sub-optimal) solution;

Figure 2. Variable Neighborhood Descent

and each would return an improving neighbor in its partition. The best neighbor
would be chosen as the current solution. In another strategy, Nk(s) would again be
partitioned and each processor would search for the best neighbor in its partition.
Again, the best neighbor of the best would be chosen as the current solution. In a
multi-search thread strategy, the processors would execute independent sequential
VNDs and in the end, the best solution found would be output.

3. Parallel Genetic Algorithms

In the 1960’s, biologists began to use digital computers to perform simulations
of genetic systems. Although these studies were aimed at understanding natural
phenomena, some were not too distant from the modern notion of a genetic algo-
rithm (GA). Genetic algorithms, as they are used today, were first introduced by
Holland [52]. Genetic algorithms try to imitate the development of new and better
populations among different species during evolution, just as their early biological
predecessors. Unlike most standard heuristic algorithms, GAs use information of
a population of individuals (solutions) when they conduct their search for better
solutions as opposed to only information from a single individual. GAs have been
applied to a number of problems in combinatorial optimization. In particular, the
development of parallel computers has made this an interesting approach.

A GA aims at computing sub-optimal solutions by letting a set of random so-
lutions undergo a sequence of unary and binary transformations governed by a
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selection scheme biased towards high-quality solutions. Solutions to optimization
problems can often be encoded to strings of finite length. GAs work on these strings
[52]. The encoding is done through the structure named chromosomes, where each
chromosome is made up of units called genes. The values of each gene are binary,
and are sometimes called alleles. The problem is encoded by representing all its
variables in binary form and placing them together in a single chromosome. A
fitness function evaluates the quality of a solution represented by a chromosome.

There are several critical parts which strongly affect the success of genetic algo-
rithms:

• Representation of the solutions.
• Generation of the initial population.
• Selection of the individuals in an old population that will be allowed to affect

the individuals of a new population. In terms of evolution, this relates to the
selection of suitable parents in the new population.
• Genetic operators, such as crossover and mutation. That is, how to recombine

the genetic heritage from the parents in the previous generation.

If P (t) denotes the population at time t, the GA can be described as in Figure (3).

Layout of Genetic Algorithm

Input: A problem instance

Output: A (sub-optimal) solution

1. t = 0, initialize P (t), evaluate fitness of individuals in P (t);

2. while (termination condition is not satisfied) do
(a) t = t+ 1;
(b) Select P (t), recombine P (t) and evaluate P (t);

3. Output the best solution among all the population as
the (sub-optimal) solution;

Figure 3. Layout of Genetic Algorithm

P (0) is usually generated at random. The evaluation of a population P (t) in-
volves computing the fitness of the individuals and checking if the current popula-
tion satisfies certain termination conditions. Types of termination rules include:

• A given time limit which is exceeded.
• The population is dominated by a few individuals.
• The best objective function value of the populations is constant over a given

number of generations.

Due to their inherent parallel properties, GAs have been successfully imple-
mented on parallel computers, introducing this way a new group of GAs, Parallel
Genetic Algorithms (PGAs). In a PGA the population is divided into subpop-
ulations and an independent GA is performed on each of these subpopulations.



6 M. G. C. RESENDE, P. M. PARDALOS, AND S. DUNI EKŞIOG̃LU

Furthermore, the best individuals of a local population are transferred to the other
subpopulations. Communication among the subpopulations is established to facil-
itate the operations of selection and recombination. There are two types of com-
munication [86]: (1) among all nodes, where the best string in each subpopulation
is broadcast to all the other subpopulations, and (2) among the neighboring nodes,
i.e. only the neighboring subpopulations receive the best strings.

The most important aspects of PGAs, which result in a considerable speedup
relative to sequential GAs, are the following [58]:

• Local selection, i.e. a selection of an individual in a neighborhood is intro-
duced, in contrast with the selection in original GAs which is performed by
considering the whole population.
• Asynchronous behavior which allows the evolution of different population

structures at different speeds, possibly resulting in an overall improvement
of the algorithm in terms of CPU time.
• Reliability in computation performance, i.e. the performance of one processor

does not affect the performance of the other processors.

Jog et al. [58] consider two basic categories of parallel genetic algorithms:

1. Coarse-grained PGAs, where subpopulations are allocated to each processor
of the parallel machine. The selection and recombination steps are performed
within a subpopulation.

2. Fine-grained PGAs, where a single individual or a small number of individuals
are allocated to each processor.

In the same reference, a review of parallel genetic algorithms applied to the traveling
salesman problem (TSP) is presented. A PGA developed by Suh and Gucht [113],
has been applied to TSPs of growing size (100-1000 cities). PGAs without selec-
tion and crossover, so called independent strategies, were used. These algorithms
consist of running an “unlimited” number of independent sequential local searches
in parallel. PGAs with low amount of local improvement were used and performed
better in terms of quality solution than the independent strategies. In terms of
computational time, the PGA showed nearly a linear-speedup for various TSPs,
using up to 90 processors. The algorithms were run on a BBN Butterfly.

Another implementation of a PGA applied to the TSP can be found in [41],
where an asynchronous PGA, called ASPARAGOS, is presented in detail. An ap-
plication of ASPARAGOS was also presented by Muhlenbein [85] for the quadratic
assignment problem (QAP) using a polysexual voting recombination operator. The
PGA was implemented on QAPs of size 30 and 36 and for TSPs of size 40 and 50
with known solutions. The algorithm found a new optimum for the Steinberg prob-
lem (QAP of size 36). The numbers of processors used to run this problem were
16, 32, and 64. The 64 processor implementation (on a system with distributed
memory) gave by far the best results in terms of computational time.

Battiti and Tecchiolli [9] presented parallelization schemes of genetic algorithms
and tabu search for combinatorial optimization problems and in particular for qua-
dratic assignment and N-k problems giving indicative experimental results.

Tanese [115] presents a parallel genetic algorithm implemented on a 64-processor
NCUBE/six hypercube. Each processor runs the algorithm on each own subpop-
ulation (coarse-grained PGA), and sends in an adjustable frequency a portion of
good individuals to one of its neighboring processors. Each exchange takes place
along a different dimension of the hypercube. The PGA is applied to a function
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optimization problem and its performance is compared with the corresponding GA,
which is found to be similar. In addition, the PGA achieves comparable results with
near linear speedup.

Pettey et al. [101] proposed an “island model” that restricts the communication
among the subpopulations to some adjacent interconnected subpopulations [69].
The PGA was tested on four of DeJong’s testbed of functions [24]. Population
sizes of 50 to 800 were used, with the best answer in terms of quality solution, cor-
responding to size 50, which is approximately the theoretical optimal population
size. The algorithm was implemented on an Intel iPSC, a message-based multipro-
cessor system with a binary n-cube interconnection network.

More recently, Lee and Kim [69] developed PGAs, based on the island model,
for solving job scheduling problems with generally weighted earliness and tardiness
penalties (GWET), satisfying specific properties, such as the V-shaped schedule
around the due date. A binary representation scheme is used to code the job sched-
ules into chromosomes. A GA is developed by parallelizing the population into
subgroups, each of which keeps its distinct feasible schedules. The initial popula-
tion is constructed so that the resulting genotype sequence satisfies the V-shaped
schedule. Two different reproduction methods are employed, the roulette wheel se-
lection and the N-best selection method. Also, the crossover and mutation operators
are implemented in parallel. Several instances of problems with subpopulations of
30 chromosomes (jobs) and total population size of 100 to 200 where used to evalu-
ate the efficiency of the PGA. The authors report that the roulette wheel selection
scheme performs far better than the N-best selection in terms of quality solution,
though the N-best selection gives good results in terms of CPU time. The muta-
tion operator seems to improve the performance of the PGA. The paper concludes,
showing the superior performance of the parallel algorithm when compared to the
sequential GA. In terms of CPU time, the parallelization of the population into
several groups speeds up the convergence of the GAs as the size of the problem
increases.

Parallel genetic algorithms have been applied to the graph partition problem [68],
scheduling problems [19], and global optimization problems [111].

4. Parallel Simulated Annealing

The simulated annealing method (SA) was proposed in 1983 by Kirkpatrick et
al. [62], based on the pioneering work of Metropolis et al. [79]. Since then, much
research has been accomplished regarding its implementation (sequential and par-
allel) to solve a variety of difficult combinatorial optimization problems. Simulated
annealing is based on the analogy between statistical mechanics and combinato-
rial optimization. The term annealing derives from the roughly analogous thermal
process of melting at high temperatures and then lowering the temperature slowly
based on an annealing schedule, until the vicinity of the solidification temperature
is reached, where the system is allowed to reach the ground state (the lowest en-
ergy state of the system). Simulated annealing is a simple Monte Carlo approach
to simulate the behavior of this system to achieve thermal equilibrium at a given
temperature in a given annealing schedule. This analogy has been applied in solv-
ing combinatorial optimization problems. Given an objective function f(x) over a
feasible domain D, a generic simulated annealing algorithm for finding the global
minimum of f(x) is given in Figure 4.
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Layout of Simulated Annealing

Input: A problem instance

Output: A (sub-optimal) solution

1. Generate initial solution at random and initialize temperature T ;

2. while (T > 0) do
(a) while (thermal equilibrium not reached) do

(i) Generate a neighbor state at random and evaluate
the change in energy level ∆E;

(ii) If ∆E < 0 update current state with new state;

(iii) If ∆E ≥ 0 update current state with new state

with probability e
−∆E
KB T ;

(b) Decrease temperature T according to annealing schedule;

3. Output the solution having the lowest energy;

Figure 4. Layout of Simulated Annealing

An introduction to general concepts of parallel simulated annealing techniques
can be found in Aarts and Korst [1]. Several parallel algorithms based on SA have
been implemented for a variety of combinatorial optimization problems [3, 70, 63].
In the context of annealing, a parallel implementation can be presented in two forms
[108]: (1) functional parallelism, which uses multiple processors to evaluate different
phases of a single move, (2) data parallelism, which uses different processors or group
of processors to propose and evaluate moves independently. The second form has
the advantage of “easily scaling the algorithm to large ensembles of processors.”

The standard-cell approach is a semi-custom designing method in which func-
tional building blocks called cells are used to construct a part of, or an entire,
VLSI chip [108]. Two basic approaches have been applied to the placement prob-
lem [108] – constructive methods and iterative methods. The SA technique belongs
to the second group, as an approach that uses probabilistic hill climbing to avoid
local minima. The TimberWolf program has been proposed as a version of SA im-
plemented for the cell placement problem. It has been shown to provide enormous
chip area savings compared to the already existed standard methods of cell lay-
out. Jones and Banerjec [61] developed a parallel algorithm based on TimberWolf,
where multiple cell moves are proposed and evaluated by using pairs of proces-
sors. The algorithm was implemented on a iPSC/1 Hypercube. Rose et al. [106]
presented two parallel algorithms for the same problem. The Heuristic Spanning
approach replaces the high temperature portion of simulated annealing, assigning
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cells to fixed sub-areas of the chip. The Section Annealing approach is used to
speed-up the low temperature portion of simulated annealing. The placement here
is geographically divided and the pieces are assigned to separate processors. Other
parallel algorithms based on SA and implemented for the cell placement problem
can be found in [15, 108, 119].

Greening [42] examines the asynchronous parallel SA algorithm in relation with
the effects of calculation errors resulting from the parallel implementation or an
approximate cost function. More analytically, the relative work analyzes the effects
of instantaneous and accumulated errors. The first category contains the errors
which result as the difference between the true and inaccurate costs computed at a
given time. An accumulated error is the sum of a stream of instantaneous errors.
The author proves a direct connection between the accumulated errors measured
in previous research work, and annealing properties.

Most recently, Boissin and Lutton [10] proposed a new SA algorithm that can
be efficiently implemented on a massively parallel computer. A comparison to
the sequential algorithm has been presented by testing both algorithms on two
classical combinatorial optimization problems: (1) the quadratic sum assignment
problem and (2) the minimization of an unconstrained 0 − 1 quadratic function.
The numerical results showed that the parallel algorithm converges to high-quality
suboptimal solutions. For the problem of minimization of quadratic functions with
1000 variables, the parallel implementation on a 16K Connection Machine was 3.3
times faster than the sequential algorithm implemented on a SPARC 2 workstation,
for the same quality of solution.

SA general purpose software packages are provided for public use. Ingber pro-
vides an ASA-package (adaptive SA) [57] and Carter provides a straightforward,
simulated annealing algorithm as a public available package [14]. A parallel simu-
lated annealing library parSA can be found on [64].

5. Parallel Tabu Search

Tabu search (TS), first introduced by Glover [37, 38, 40], is a heuristic procedure
to find good solutions to combinatorial optimization problems. A tabu list is a
set of solutions determined by historical information from the last t iterations of
the algorithm, where t is fixed or is a variable that depends on the state of the
search, or a particular problem. At each iteration, given the current solution x
and its corresponding neighborhood N(x), the procedure moves to the solution
in the neighborhood N(x) that most improves the objective function. However,
moves that lead to solutions on the tabu list are forbidden, or are tabu. If there
are no improving moves, TS chooses the move which least changes the objective
function value. The tabu list avoids returning to the local optimum from which the
procedure has recently escaped. A basic element of tabu search is the aspiration
criterion, which determines when a move is admissible despite being on the tabu
list. One termination criterion for the tabu procedure is a limit in the number of
consecutive moves for which no improvement occurs. A more detailed description
of the main features, aspects, applications and extensions of tabu search, can be
found in [39]. Several implementations of parallel algorithms based on TS have
been developed for classical optimization problems, such as TSP and QAP, which
will be discussed below. Given an objective function f(x) over a feasible domain
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D, a generic tabu search for finding an approximation of the global minimum of
f(x) is given in Figure 5.

Layout of Tabu Search

Input: A problem instance

Output: A (sub-optimal) solution

1. Initialization:
(a) Generate an initial solution x and set x∗ = x;
(b) Initialize the tabu list T = ∅;
(c) Set iteration counters k = 0 and l = 0;

2. while (N(x) \ T 6= ∅) do
(a) k = k + 1; l = l + 1;
(b) Select x as the best solution from set N(x) \ T ;
(c) If f(x) < f(x∗) then update x∗ = x and set l = 0;
(d) If k = k or if l = l go to step 3;

3. Output the best solution found x∗;

Figure 5. Layout of Tabu Search

Taillard [114] presents two implementations of parallel TS for the quadratic as-
signment problem. Computational results on instances of size up to 64 are reported.
The form of TS considered is claimed to be more robust than earlier implementa-
tions, since it requires less computational effort and uses only the basic elements of
TS (moves to neighboring solutions, tabu list, aspiration function). The neighbor-
hood used is a 2-exchange neighborhood. The tabu list is made up of pairs (i, j) of
interchanged units both of which are placed at locations they had occupied within
the last s iterations, where s is the size of tabu list. The size s changes its value
randomly in an interval during the search. The aspiration criterion is introduced
to allow the tabu moves to be chosen, if both interchanged units are assigned to
locations they have not occupied within the t most recent iterations. In the first
method, the neighborhood is divided into p parts of approximately the same size.
Each part is distributed for evaluation to one of p different processors. Using a
number of processors proportional to the size of the problem (precisely p = n/10),
the complexity is reduced by a factor of n, where n is the size of the problem. More-
over, the computational results showed improvement to the quality of solution for
many large problems and the best published solutions of other problems have been
found. The second method performs independent searches, each of which starts
with a different initial solution. The parallel algorithm was implemented on a ring
of 10 transputers (T800C-G20S). The computational complexity of this algorithm
is less than that of earlier TS implementations for QAP by a factor n.
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Another parallel tabu search algorithm for solving the quadratic assignment
problem has been developed by Chakrapani and Skorin-Kapov [17]. The algorithm
includes elements of TS, such as aspiration criterion, dynamically changing tabu
list sizes and long-term memory [37]. A new intensification strategy is proposed,
based on the intermediate term memory, restricting the searches in a neighborhood.
This results in less amount of computational effort during one iteration since the
procedure does not examine the entire neighborhood. A massively parallel imple-
mentation was tested on the Connection Machine CM-2 for large QAPs of size
ranging from n = 42 to 100, using n2 processors. The new tabu strategy gave good
results in terms of quality of solutions. For problems up to size 90, it obtained the
best known solutions or close to those. For size n = 100, every previously best
solution found, was improved upon.

Battiti and Tecchiolli [9] describe a parallelization scheme for tabu search called
reactive tabu scheme, and apply it to the quadratic assignment problem and the
N -k problem with the objective of achieving a speedup in the order of the number
of processors. In the reactive tabu search, each processor executes an independent
search. Furthermore, the same problems are solved by a parallel genetic algorithm
in which the interaction between different search processes is strong because the
generation of new candidate points depends on the consideration of many members
of the population.

A tabu search for the traveling salesman problem has been proposed by Fiechter
[33], and was tested on instances having 500 to 10000 vertices. A new estimation
of the asymptotic normalized length of the shortest tour through points uniformly
distributed in the unit square is given. Numerical results and speedups obtained by
the implementation of the algorithm on a network of transputers show the efficiency
of the parallel algorithm.

6. Parallel GRASP

A GRASP [28, 30] is an iterative process for finding approximate solutions to
combinatorial optimization. Let, as before, f(x) denote the objective function to
be minimized over a feasible domain D. A generic layout of GRASP is given in
Figure 6. The GRASP iterations terminate when some stopping criterion, such as
maximum number of iterations, is satisfied. Each iteration consists of a construc-
tion phase, and a local search phase. If an improved solution is found, then the
incumbent is updated. A high-level description of these two phases is given next.

In the construction phase, a feasible solution is built up, one element at a time.
The choice of the next element to be added is determined by ordering all elements in
a candidate list with respect to a greedy function. An element from the candidate
list is randomly chosen from among the best candidates in the list, but is not
necessarily the top candidate. Figure 7 displays a generic layout for the construction
phase of a GRASP. The solution set S is initially made empty, and the construction
iterations are repeated until the solution is built. To do this, the restricted candidate
list is setup. This candidate list contains a subset of candidates that are well ordered
with respect to the greedy function. A candidate selected from the list at random
is added to the solution. The greedy function is adapted to take into account the
selected element.
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Layout of GRASP

Input: A problem instance

Output: A (sub-optimal) solution

1. Initialization: set x∗ =∞;
2. while (stopping criterion not satisfied) do

(a) Construct a greedy randomized solution x;
(b) Find local minimum x̃ in neighborhood N(x) of x;
(c) If f(x̃) < f(x∗) then update x∗ = x̃;

3. Output the best solution found x∗;

Figure 6. Layout of GRASP

Layout of GRASP Construction Phase

Input: A problem instance and pseudo random number stream

Output: A (sub-optimal) solution

1. Initialization: set solution S = ∅;
2. while (solution construction not done) do

(a) Using greedy function, make restricted candidate list (RCL);
(b) At random, select element s from RCL;
(c) Place s in solution, i.e. S = S ∪ {s};
(d) Change greedy function to take into account updated S;

3. Output the solution x corresponding to set S;

Figure 7. Layout of GRASP Construction Phase

The solutions generated in the construction are not guaranteed to be locally
optimal and therefore local search is applied to produce a locally optimal solution.
Figure 8 illustrates a generic local search procedure.

Parallel implementation of GRASP is straightforward. Two general strategies
have been proposed. In search space decomposition, the search space is partitioned
into several regions and GRASP is applied to each in parallel. An example of
this is the GRASP for maximum independent set [29, 104] where the search space
is decomposed by fixing two vertices to be in the independent set. In iteration
parallelization, the GRASP iterations are partitioned and each partition is assigned
to a processor. See [87, 94, 95, 96, 103] for examples of parallel implementations
of GRASP. Some care is needed so that different random number generator seeds
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Layout of GRASP Local Search Phase

Input: A problem instance, solution x, neighborhood N(x)

Output: A locally-optimal solution x̃

1. while (x not locally optimal) do
(a) Find x̃ ∈ N(x) with f(x̃) < f(x);
(b) Update x = x̃;

3. Output the locally optimal solution x̃;

Figure 8. Layout of GRASP Local Search Phase

are assigned to the different iterations. This can be done by running the random
number generator through an entire cycle, recording all Ng seeds in a seed array.
Iteration i is started with seed(i). GRASP has been implemented on distributed
architectures. In [96] a PVM-based implementation is described. Two MPI-based
implementations are given in [6, 76]. Alvim [6] proposes a general scheme for MPI
implementations. A master process manages seeds for slave processors. It passes
blocks of seeds to each slave processor and awaits the slaves to indicate that they
have finished processing the block and need another block. Slaves also pass back
to the master the best solution found for each block of iterations.

Aiex et al. [2] study the probability distribution of solution time to a sub-optimal
target value for GRASP. They conclude that the solution time to a sub-optimal
target value fits a two-parameter exponential distribution, which shows that it
is possible to approximately achieve linear speed-up by implementing GRASP in
parallel. The same behavior is observed in a number of metaheuristics such as SA
[26, 89], Iterative Improvement for the TSP [116], and Tabu search [9, 114].

7. Parallel Computing Environments

The development of efficient and user friendly software tools, together with the
availability of a wide range of parallel machines with large processing capacities,
high reliability, and low costs, have brought parallel processing into reality as an
efficient way for implementing techniques to solve large scale optimization problems.
A good choice of the programming environment is essential to the development of
a parallel program.

Parallel environments are composed of programming tools, performance eval-
uation tools, debuggers, and optimization libraries. Parallel programs consist of
a number of processes working together. The processes are executed on parallel
machines, based on different memory organization methods, as shared memory or
distributed memory. In shared memory machines, all processors are able to ad-
dress the whole memory space. The computers communicate through operations
performed by the parallel tasks on the shared memory. Each task shares a com-
mon address space, which they can asynchronously access. The advantage of this
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approach is that the communication can be easy and fast. However, there is a limi-
tation to this approach, system stability is limited by the number of paths between
the memory and the processors. To overcome this disadvantage, local memory is
added to each processor. An alternative to the shared memory organization is the
distributed memory organization. In the framework of the distributed memory
organization, the memory is physically distributed among the processors. Each
processor can only access its own memory, and communication between processors
is performed by messages passed through the communication network. Networks of
workstations are an example of this architecture. A drawback of this architecture is
that the control of the memory access that is required to maintain the consistency
of the data has to be done by the programmer.

The parallel programming tools used in shared or distributed memory organiza-
tion, are usually sequential languages augmented by a set of special system calls.
The calls provide primitive message passing, process synchronization, process cre-
ation, mutual exclusion, and other functions.

In developing parallel programs, two types of parallelism can be used: data par-
allelism and functional parallelism [34, 67, 82]. Data parallelism programs apply
the same instruction set to different items of a data structure. Programming lan-
guages called data-parallel programming have been developed to help with data
parallelism. One of these languages is HPF. Functional parallelism is based on
partitioning the program into cooperative tasks. Each task executes a different
set of functions/codes and the tasks run asynchronously. The application of each
technique depends on the characteristics of the problem to be solved. However,
functional and data parallelism are complementary techniques and sometimes can
be applied together to different parts of the same problem.

Many programming tools are available to implement parallel programs, each of
them being suitable for specific problem types. Examples of programming tools
are:

• PVM (Parallel Virtual Machine) [36] is an extensively used message passing
library that supports the development of parallel programs on interconnected
heterogeneous machines.
• MPI (Message Passing Interface) [34, 83, 84, 43, 44] is a proposal for the

standardization of a message passing interface for distributed memory parallel
machines, to enable program portability among different parallel machines.
• Linda [12, 13] is a language that offers a collection of tools for process creation

and communication, based on the concept of an associative shared memory.
• HPF (High Performance FORTRAN) [53, 65, 66, 78] extends FORTRAN 90

with parallel construct and data placement features.
• Threads are a general operating systems concept, not specifically related to

parallel programming. However, their understanding is essential to a parallel
programmer, because of the support they provide in concurrent programming.
In 1995, IEEE defined a standard Application Program Interface (API) for
programming with threads, known as POSIX threads or Pthreads [56].

In the process of evaluating the performance of a parallel implementation, it is
important to collect suitable and reliable data. There are three basic categories of
data collectors: profilers, counters, and event traces.

Profilers record the amount of time spent in different parts of a program, usually
in subroutines. This information is often obtained by sampling the program counter
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and generating a histogram of the execution frequencies. These frequencies are used
to estimate the amount of time spent in different program components. Gprof is a
commercial tool provided by IBM to profile parallel programs developed using the
IBM MPI library. Gprof shows execution times of the subroutines executed by each
processor.

Counters record the time a specific event occurs. Counters are used to record
global events of the program, such as the number of procedure calls, the number of
messages exchanged between pairs of processors, etc. This information cannot be
obtained by profilers.

Event traces record each occurrence of specific events. They can be used to
investigate relationships between communications and determine sources of idle
time and communication bottlenecks. Some of the public domain and commercial
packages available for event traces are:

• AIMS (Automated Instrumentation and Monitoring System) [120, 121] is
a public domain package that can be downloaded from http://science.nas
.nasa.gov/Software/AIMS/.
• Paradyn [81] handles the interactive run-time analysis for parallel programs

using message passing libraries such as PVM and MPI. Paradyn can be down-
loaded from http://www.cs.wisc.edu/paradyn/.
• The Pablo performance analysis environment [25, 105] is a public domain

package that consists of several components for instrumenting and tracing
parallel MPI programs. It can be downloaded from http://vibes.cs. uiuc.edu/.
• VAMPIR (Visualization and Analysis of MPI resource) [35, 88] is a commer-

cial trace visualization tool from Pallas GmbH. Information about this tool
is available at http://www.pallas.de/pages/vampir.htm.
• VT (Visualization Tool) can be used for post-mortem trace visualization or

for on-line performance monitoring of parallel programs developed with the
IBM implementation of MPI. It is a commercial tool provided by IBM and
can only be used on the IBM SP parallel environment.
• XPVM is a public domain software that provides a graphical console and

monitor for PVM. It is available from http://www.netlib.org/pvm3/xpvm.

A common way to debug a parallel program is by inserting instructions in the
code to print relevant information. However, often the output data lacks temporal
information, since the information is not necessarily printed in the same order as
generated by the parallel program, due to data buffering in the processors.

PVM and LAM public domain implementation of MPI allow the programmer to
launch debuggers on remote nodes. Sometimes this kind of technique may interfere
with the execution of the parallel program, making it behave differently from the
way it runs. Total View is a commercial debugger developed by Etnus Inc. [27] that
can be used to debug MPI, PVM, HPF, and multi-threaded programs. Tuplescope
[109] is a debugging tool for Linda programs.

Optimization libraries consist of a set of subroutines that can be used to solve
large optimization problems. These libraries include functions that solve linear and
mixed-integer programming problems, provide important features such as control
variables, debugging capabilities, file reading and writing etc. CPLEX [21] and
OSL provide parallel implementations of their libraries. For an extensive review of
parallel computing environments refer to [77, 8].
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8. Concluding Remarks

Since the 1980’s, we have witnessed an explosion and availability of parallel,
multiprocessing computers. At the same time, we have also seen the development
of new, powerful, metaheuristics for combinatorial optimization. Since most of the
interesting combinatorial optimization problems are NP-hard, it is quite natural to
consider implementing algorithms on such environments. In this brief survey, we
summarized recent developments in parallel implementations of several classes of
new heuristics for combinatorial optimization.
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