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Abstract

We describe the first multilevel cooperative tabu search for the capacitated multi-
commodity network design problem. Main design challenges are associated to the
specification of the problem instance addressed at each level in cooperation, as well
as to the definition of the cooperation operators. The paper proposes a first approach
to address these challenges and tests it on a set of well-known benchmark problems.
The proposed method appears competitive, particularly when difficult problems with
many commodities are considered. Directions and challenges for future research are
identified and discussed.

Key words: Parallel search, multilevel cooperation, cycle-based tabu search, capac-
itated multicommodity network design

Résumé

Cet article décrit le premier algorithme de recherche tabou parallèle coopérative multi-
niveaux pour le problème de synthèse de réseaux multi-produits avec coûts fixes et
capacités. La spécification des problèmes traités par chaque programme dans la
coopération, ainsi que la définition des opérateurs de coopération comptent parmi
les défis les plus sérieux associés à la conception d’un tel algorithme. Nous proposons
une première approche, que nous testons à l’aide d’un ensemble de problèmes présent
dans la littérature. La méthode proposée offre des résultats intéressants, surtout pour
les problèmes, plus difficiles, avec un nombre élevé de produits. Des directions et défis
de recherche sont également identifiés et discutés.

Mots clés : Recherches parallèles, coopération multi-niveaux, recherche avec tabou
par des cycles, synthèse de réseaux multi-produits avec coûts fixes et capacités.



1 Introduction

The capacitated multicommodity network design (CMND) is a well-known NP -hard
problem (Magnanti and Wong 1984; Minoux 1989). Exact solution methods are
therefore generally excluded when investigating practical approaches to address most
CMND problem instances and heuristics are often the methodology of choice (Bal-
akrishnan, Magnanti, and Mirchandani 1997; Crainic 2000; Gendron, Crainic, and
Frangioni 1998; etc.).

Parallel computing offers the possibility to design procedures that search more
efficiently the solution space of complex problems. This may be achieved through the
acceleration of some tedious computational phases of the algorithm, the decomposi-
tion of the problem domain or search space, or the design of a multi-thread parallel
meta-heuristic where several exact or heuristic methods are applied concurrently to a
given problem instance with various degrees of synchronization and information ex-
changes. Cooperative multi-thread meta-heuristic strategies generally offer the best
performance when compared to sequential methods and other parallelization strate-
gies. They appear to consistently identify better solutions over diverse sets of prob-
lem instances without excessive calibration efforts. Details on parallel meta-heuristic
strategies may be found in the reviews of Crainic (2005), Crainic and Toulouse (1998,
2003), Cung et al. (2002), Holmqvist, Migdalas, and Pardalos (1997), Pardalos et al.
(1995), and Verhoeven and Aarts (1995).

The design of the information exchange mechanism represents a significant chal-
lenge for the development of efficient cooperative multi-thread strategies (Toulouse,
Crainic, and Gendreau 1996; Toulouse, Crainic, and Sansó 2004; Toulouse et al. 1998;
Toulouse, Crainic, and Thulasiraman 2000). The multilevel cooperative search mech-
anism is based on the principles of local interactions among cooperating searches and
controlled diffusion of information within the framework of a multilevel algorithm.
The mechanism has been recently introduced and proved very successful for graph
and hypergraph partitioning problems (Toulouse, Thulasiraman, and Glover 1999;
Toulouse, Glover, and Thulasiraman 1998; Ouyang et al. 2000, 2002).

The development of a multilevel cooperative search algorithm for the capacitated
multicommodity network design problem must address several challenging issues, in
particular those related to the specification of the problem instance solved at each
level and the definition of the cooperation operators. The goal of this paper is to
explore these issues and propose an approach to address them.

The paper makes several contributions. It proposes the first multilevel cooperative
search algorithm for the capacitated multicommodity network design problem. Exper-
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imental results on a set of well-known benchmark problems show that the method is
competitive, particularly when difficult problems with many commodities are consid-
ered. The paper also presents a rather detailed analysis of the main design elements
of the algorithm, providing guidelines for future developments. Finally, the paper
presents for the first time a structured and comprehensive template for multilevel
cooperative search methods.

The paper is structured in the following manner. In Section 2, we recall the
mathematical formulation of the CMND problem and briefly survey the literature.
Section 3 presents the multilevel cooperative search template. Section 4 is dedicated
to the multilevel method for the CMND problem. We identify and discuss the main
design issues and describe a specific implementation. Section 5 reports computational
results and presents a first analysis of the behavior of the multilevel cooperative
method applied to the CMND problem. A number of challenging research directions
are discussed in Sectio 6. We conclude in Section 7.

2 Capacitated, Multicommodity Network Design

Let G = (N ,A) be a network with sets of nodes N and directed arcs A. Without
loss of generality, we assume that all (i, j) ∈ A are design arcs. Denote fij and
uij, the fixed cost and the capacity of arc (i, j), respectively. Let P denote the set
of commodities. For each commodity p, one must move wp units of flow from its
(unique) origin o(p) to its (unique) destination s(p). Denote cp

ij the (variable) cost of
moving one unit flow of commodity p on arc (i, j).

Two sets of decision variables are defined. Design variables yij, (i, j) ∈ A, that
equal 1 if arc (i, j) is selected in the final design (and 0 otherwise), and distribution
variables xp

ij indicating the amount of flow of commodity p ∈ P on arc (i, j). The
arc-based formulation of the CMND can then be written as

Minimize Z(x, y) =
∑

(i,j)∈A

fijyij +
∑

p∈P

∑

(i,j)∈A

cp
ijx

p
ij (1)

subject to
∑

j∈N+(i)

xp
ij −

∑

j∈N−(i)

xp
ji =







wp if i = o(p)
−wp if i = s(p)

0 otherwise.
∀i ∈ N ,∀p ∈ P , (2)

∑

p∈P

xp
ij ≤ uijyij ∀(i, j) ∈ A, (3)

xp
ij ≥ 0 ∀(i, j) ∈ A,∀p ∈ P , (4)

yij ∈ {0, 1} ∀(i, j) ∈ A, (5)
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where N+(i) and N−(i) represent the sets of successor and predecessor nodes of node
i, respectively. The objective function (1) accounts for the total system cost computed
as sum of the fixed costs of the arcs included in the design plus the cost of routing
the product demand on the resulting network. Constraints (2) represent the network
flow conservation relations. The linking constraints (3) state that the total flow (all
commodities) on an open arc (yij = 1) cannot exceed its capacity, while it must be 0
if the arc is closed (yij = 0). Relations (5) and (4) are the usual non-negativity and
integrality constraints for decision variables.

The CMND problem is hard and, for now, exact methods cannot solve realistically-
dimensioned instances (Crainic, Frangioni, and Gendron 2001; Gendron, Crainic, and
Frangioni 1998; Holmberg and Yuan 2000), even though interesting developments are
being proposed (Kim et al. 1999; Armacost, Barnhart, and Ware 2002; Chouman,
Crainic, and Gendron 2003). For capacitated problems of any interesting size, only
specially tailored heuristics have proved of any help. The simplest of these are drop
and add procedures based on reduced cost calculations that determine the marginal
value of including or excluding an arc from the network (Powell 1986, Koskosidis,
Powell, and Solomon 1992), while more sophisticated approaches make use of the
marginal values of paths (Crainic and Rousseau 1986, Farvolden and Powell 1994,
Jarvis and Mejia de Martinez 1977). These heuristics were applied to particular
problem classes, however, and did not attempt to explore past the first local optimum.

Meta-heuristics based on exploring very large neighborhoods have recently been
proposed. Crainic, Gendreau, and Farvolden (2000) proposed a tabu search meta-
heuristic for the path-based formulation of the problem that explores the space of
the path-flow variables by using pivot-like moves and column generation. Very good
results were reported. Crainic and Gendreau (2002) presented a cooperative multi-
search method, where several threads of the path-based tabu search, using different
parameter settings, exchanged solutions through a central memory mechanism. The
cooperative multi-search displayed improved performance compared to the sequential
search.

The cycle-based neighborhood structures for the CMND proposed by Ghamlouche,
Crainic, and Gendreau (2003) explore the space of the arc design variables by re-
directing flow around cycles and closing and opening design arcs accordingly. These
neighborhoods are part of what appears to be the current best meta-heuristic for
the CMND, the path relinking procedure proposed by Ghamlouche, Crainic, and
Gendreau (2004). The Lagrangian relaxation-based slope scaling heuristic proposed
by Crainic, Gendron, and Hernu (2004) opens interesting perspectives but does not
alter the previous statement. Cycle-based neighborhoods are therefore used in the
cooperative method we propose as described in Section 4.3.
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3 A Multilevel Cooperative Search Template

The multilevel cooperative paradigm for the design of parallel meta-heuristics has
been introduced quite recently. Consequently, only a limited number of contributions
on this topic may be found in the literature. Moreover, none of these papers presents
a comprehensive description of the multilevel cooperative mechanism. This section
aims to fill this gap and describes the multilevel cooperative search template.

3.1 Cooperative Parallel Meta-Heuristics

Cooperative multi-thread search methods are parallel meta-heuristics built upon in-
dependent search threads that exchange information. There are essentially two basic
approaches to sharing information among threads, through either global or local in-
teractions.

Global interactions rely on explicit or implicit representations of the state of the
global search to identify and coordinate the sharing of information. Thus, for example,
threads may stop at a number of global synchronization points where best solutions
are exchanged (generally, not a very successful strategy; Crainic and Toulouse 2003).
Alternatively, some central depository is used where information, including but not
restricted to best solutions, is stored and, possibly, processed, and from where it may
be fetched at any time by one of the cooperating search threads. The adaptive (Rochat
and Taillard 1995) and central (Crainic, Toulouse, and Gendreau 1997; Crainic and
Gendreau 2002) memory strategies belong to this class of approaches and have been
successful in addressing a number of difficult problems (e.g., the surveys of Crainic
and Toulouse 2003 and Crainic 2005).

Cooperative search procedures based on local interactions are simpler to imple-
ment. No global point of reference is used by such methods, neither explicit ones such
as synchronization schemes or global control by “higher” algorithms, nor implicit such
as central repositories for exchanged information. In fact, usually, exchanges of infor-
mation based on local interactions take place between two search threads: a sender
and a receiver. In its simplest form, the exchange consists for the former to send a
solution that the receiver uses to restart its search.

It is important to notice, however, that other than the formal exchange of infor-
mation taking place between two locally interacting threads, a broader self-organizing
(self-regulating) system of information exchanges is taking place in cooperative multi-
thread searches based on local interactions. This system supports the diffusion of
information among many threads through long chains of correlated local interactions
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and feedback loops (Toulouse, Crainic, and Thulasiraman 2000; Toulouse, Crainic,
and Sansó 2004). This diffusion process impacts in complex ways the exploration of
the solution space performed by cooperating search threads and appropriate mecha-
nisms must be devised to control its behavior.

The study of Toulouse, Crainic, and Thulasiraman (2000) showed, in particular,
that the same values for subsets (blocks) of decision variables are propagated across
several search threads through chains of correlated local interactions. To illustrate,
consider a thread B that has already interacted with thread A and interacts now with
thread C. Assuming threads A and B are senders, then the two local interactions
overlap because they share a common thread: B. Two local interactions A − B and
B−C are correlated if interaction B−C occurs because of the occurrence of the local
interaction A − B. In this case, blocks of information containing the state of some
decision variables are sent unchanged from thread A to thread C using thread B. The
Toulouse, Crainic, and Thulasiraman (2000) study showed that such duplication of
information is a form of spontaneous global control structure that coordinates the ex-
ploration of the search space performed by cooperating search threads. Unfortunately,
most cooperative search algorithms are not designed to monitor the blocks that get
copied through correlated interactions. Consequently, when “low-quality” blocks get
widely propagated, the overall search focuses on poor regions of the solution space
and its performance declines.

The multilevel cooperative search method is a paradigm to design cooperative
multi-thread algorithms based on local interactions (Toulouse, Thulasiraman, and
Glover 1999; Ouyang et al. 2002). It aims to increase the control on the complex infor-
mation diffusion process generated by chains of correlated local interactions and em-
ulate the spontaneous behavior observed in cooperative search procedures (Toulouse,
Crainic, and Thulasiraman 2000). The method addresses the previously-identified
issues by making explicit the process by which blocks of information containing the
state of decision variables are formed and exchanged by a given cooperative parallel
algorithm. The same blocks are also used to define moves and to decompose the
search space to allow parallel explorations. The next two subsections detail these
ideas.

3.2 Moves, Neighborhoods, and Levels

Consider the set of solutions that may be searched by a given meta-heuristic for a
particular problem. Define a block as a set of decision variables with the same status
relative to the current solution (e.g., value in the solution vector) or search history
(e.g., value in search memory vectors). A decision variable may belong to at most

5



one block. A block-building method, aggregation, variable fixing, etc., is applied to
these variables fixing them for as long as the block is not modified or dismantled. The
coarsening factor specifies the number of decision variables per block. We may then
define a neighborhood as the set of solutions that may be reached from the current
one by a move that modifies all variables in a block.

To illustrate, consider the graph partitioning problem. Let G = (V , E) be a graph,
P = {1, 2, . . . , p} the set of p partitions of G. Define xij the decision variable that
takes value 1 if vertex i ∈ V belongs to partition j ∈ P , and 0 otherwise, and let
X be the solution space. Consider a procedure that builds blocks with a coarsening
factor of 2: “For a feasible solution x ∈ X , aggregate pairs of vertices u 6= v ∈ V
such that u, v are in the same partition j ∈ P”. We may then define a neighborhood
as the set of solutions that may be reached from the current one by transferring all
variables in a block to a different partition. A different neighborhood may be defined
by exchanging (swapping) blocks between two different partitions.

More than two decision variables may make up a block and many aggregation
rules are possible (e.g., Toulouse, Thulasiraman, and Glover 1999; Ouyang et al.
2000, 2002 for the graph and hypergraph partitioning problems). Each strategy used
to define blocks induces a different neighborhood and, thus, a different search through
the solution space of the given problem. These different neighborhood structures may
then be viewed as a source of parallelism.

Multilevel cooperative meta-heuristics are parallel algorithms that use this source
of parallelism. The name multilevel is derived from the technique used to differenti-
ate neighborhoods, motivated by the goal of controlling the diffusion of information.
The multilevel cooperation mechanism is thus defined by a hierarchical neighborhood
structure for the global, cooperative search, and by a number of operators speci-
fying the local interactions and information exchanges within the hierarchy. These
operators are introduced in the next subsection.

The multilevel hierarchy is obtained by specifying a particular block size for the
neighborhoods used at each level. No aggregation is used at level 0, the block size thus
corresponding to a single decision variable. The number of variables in a block in-
creases with each level, the highest level corresponding to blocks with the largest size.
The number of levels and the coarsening factor are application-specific parameters.
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3.3 Local Interactions and Cooperative Search

Local interactions in a multilevel cooperative search procedure take place only be-
tween adjacent levels in the hierarchical neighborhood structure. Interactions thus
always consist in information being sent by a sender search process to a receiver search
thread that is exactly one level up or down in the hierarchy. This limits the diffusion
of information and simplifies to a great extend how information propagates among
the cooperating search threads. Two main types of local interactions are defined and
implemented through specific operators.

The first type of interaction does not modify the current blocks of the receiver
thread, but it modifies (replaces in the extreme case) the solution from which the
search will continue. Assuming the receiver thread is at level i, an interpolation
operator is associated to information that arrives from a sender above, at level i + 1,
while a reverse interpolation operator is used when information arrives from the level
below (i− 1). The solutions sent from level i + 1 or i− 1 are selected among a set of
elite solutions, defined as the best solutions ever visited by the search thread at the
corresponding level. Once a solution is received, the receiver search thread, at level i,
modifies its current solution and thus continues its search in a region of the solution
space selected strongly based on the solution received from its neighbor.

Notice that, because levels use different neighborhood structures, the search at
the receiver level will proceed along a different trajectory from that followed by the
sender even when the receiver completely replaces its current solution with the new
one and restarts the search. In particular, the neighborhood structure at level i has
more degrees of freedom compared to that of level i + 1: blocks are smaller and
solution neighborhoods are larger. Also notice that restarting using an elite solution
from the level above is reminiscent of initiating an intensification search in the region
identified by the elite solution. On the other hand, the neighborhood structure at
level i has less degrees of freedom compared to level i − 1: blocks are coarser and
neighborhoods are smaller. A restart using an elite solution from the level below may
then be viewed as a somewhat limited diversification of the search from the region
identified by the received elite solution.

The second category of local interactions controls the generation of new blocks of
decision variables. These local interactions use information from level i− 1 to change
the blocks at level i. Two local interaction operators were defined for changing blocks
in the graph partitioning applications: a partitioning operator and a re-coarsening
operator. The former destroys existing blocks, while the latter creates new ones. By
changing blocks at a given level, some regions of the solution space become unreach-
able for the search thread at that level, while new ones become available. New blocks
yield new neighborhoods and search threads may then explore new regions of the
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solution space. Such interactions may therefore be considered major diversification
moves.

Memories collecting information relative to the history of the search at each level
may be used to guide the utilization of the interaction operators. Thus, in the graph
partitioning applications, a frequency vector at level i − 1 governed the application
of the two block-modifying operators at level i. The frequency vectors registered
the state of the decision variables among the best solutions visited (the set of elite
solutions) by the search thread. Decision variables that appeared with the same values
in several elite solutions were considered “settled”. In terms of the search method at
level i, settled variables at level i− 1 can be handled as if they were a single variable.
Therefore, decision variables at level i − 1 with similar frequency values form new
blocks at level i. Similarly, blocks at level i are dismantled if they are composed
of two or more blocks from level i − 1 with frequency values that are substantially
different from one another.

Graph and hypergraph partitioning problems have been the object of intensive
research for quite some time now (e.g., Kernighan and Lin 1970) and several multi-
level algorithms have been proposed (e.g., Hendrickson and Leland 1993; Cong and
Shinnert 2003). Yet, the application of the multilevel cooperative template, combined
to a good local search heuristic (Fiduccia and Matteyses 1982) applied at each level,
has produced superior results (Ouyang et al. 2002). We aim to reproduce this success
for the CMND problem.

4 Multilevel Algorithm for the CMND Problem

This section is dedicated to the presentation of the multilevel cooperative algorithm
proposed for the CMND problem. We start with the definition of levels and the
specification of the initial values. The local interaction operators are defined next,
followed by the description of the cycle-based tabu search used to explore each level.
The algorithm is summed up in the last subsection.

4.1 Level Definition

The first issue one must address when contemplating the development of a multilevel
cooperative search algorithm for the CMND problem is how to define levels. Recall
that the main idea is to define levels by aggregating decision variables. On the other
hand, one has to preserve the characteristics of the initial problem to ensure the
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correctness of the diffused information.

It thus become clear quite rapidly that a straightforward aggregation of the nodes
(and arcs) of the network, similar to that practiced for the graph partitioning problem,
is not appropriate for the CMND. On the one hand, node aggregation makes the
definition of the resulting link and, especially, node fixed costs and capacities awkward
at best. On the other hand, while responding to the goal of the graph partitioning
problem, graph aggregation does not relate to the objectives of a design process:
deciding which arcs to select and which ones to discard.

We therefore define levels by the number of arcs that are fixed, each fixed arc being
either fixed-open or fixed-closed. An arc that is fixed cannot have its status changed
by the tabu search process that proceeds at the corresponding level. In fact, a fixed-
closed arc “disappears” from the graph, while a fixed-open arc “looses” its fixed cost
(appropriate accounting has to be enforced, of course) and cannot be closed. Only
interactions with neighboring levels may yield a modification in the fixed status of
arcs. Thus, the fixed status of an arc reduces the dimension of the design decision
variable vectors and consequently the number of neighbors in the corresponding search
space. The specification for each level of the fixed-open and fixed-closed arcs thus
directly impacts the exploration of the solution space performed by the tabu search
program.

To create the initial set of levels, one needs to fix the size of this set, the number
of levels, as well as the coarsening factors for each level specifying the number of arcs
that are fixed-open and fixed-closed at each level. One also needs a procedure to select
which arcs become fixed-open and fixed-closed at each level. The number of levels
and the coarsening factors are parameters with values obtained through calibration
(Section 5).

The strategy to select the initial arcs in fixed-open and fixed-closed blocks should
aim to select arcs that are likely to have the the status “open” or “closed” in good
network designs. We considered two methods to estimate this likelihood. The first
makes use of the FC ratio defined as fixed cost

capacity
. A small FC ratio may be interpreted

as a signal that the corresponding arc might be open in good designs since it brings
capacity to the network with a relatively limited increase in fixed cost. Symmetrically,
a large FC ratio is taken to indicate that the corresponding arc may not appear in
good designs.

The second heuristic consists in selecting blocks of decision variables based on
an initial exploration of the solution space. In this case, the multilevel cooperative
search starts as a parallel independent search made up of l independent sequential
cycle-based tabu search procedures, where l is the number of levels in the multilevel
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procedure. Each independent search uses the same initial solution (all arcs are open).
Because the cycle-based tabu search selects neighbors randomly, the independent
searches eventually diverge in their exploration of the solution space.

To each level i is associated a set of elite solutions as well as a frequency memory.
The elite set contains the best solutions found at level i. The size of this set is a
pre-defined parameter. The frequency memory is an integer vector V of size equal
to the number of decision variables. Each entry V [a] records the number of times
the corresponding decision variable ya, a = (i, j), i, j ∈ A, had the status open in
solutions that either belonged to the elite set or had objective values close (less than
a given threshold) to those of the worst solutions in the elite set.

The initial blocks of fixed-open and fixed-closed arcs for each level i are created
once the cycle-based tabu search has failed to improve the best known solution for a
pre-defined number of iterations. At that point, the coarsening factors pre-selected
for level i are used to determine the size of each block. The decision variables with
the highest frequency values in the frequency memory become fixed-open while those
with the lowest frequency values become fixed-closed.

Once the blocks are generated at all levels, the search proceeds according to the
multilevel cooperative idea: at each level the cycle-based tabu search attempts to
improve the current solution given the blocks of fixed variables, while local interactions
are executed by each level with its neighbor levels above and below in the multilevel
structure. Search threads proceed asynchronously. At each level, the information
required for cooperating with neighbor levels, the elite set and the frequency memory,
is available at all time, therefore a level does not have to wait for the neighbor levels
to initiate cooperation.

4.2 The Local Interaction Operators

Several local interaction operators have been considered to support cooperation among
levels. Three have been retained: interpolation, re-coarsening, and reverse interpo-
lation. Note that the two interpolation operators, the reverse interpolation one in
particular, indirectly destroy blocks.

The interpolation operator is used to replace the current solution of the sequential
cycle-based tabu search at level i based on an elite solution from level i + 1 and start
the search in the new region identified by the imported solution. The interpolation
operation is initiated from level i by requesting one of the solutions in the elite set
of level i + 1 that has not already been sent to level i. The open (closed) status of
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some of the decision variables in the imported solution from level i + 1 may conflict
with the status of some of the fixed decision variables at level i, however. Thus, for
example, some arcs may be part of the network design at level i + 1, while being
fixed-closed at level i. In order to restart the search at level i using the imported elite
solution from level i+1, the fixed-closed status is canceled for all the arcs that conflict
with the imported solution. This makes sure that the search in level i will proceed
freely in the region identified by the imported elite solution. Indeed, removing the
fixed status of arcs at a given level has the effect of a block-destroying operator in
the sense that it increases the number of neighbors of solutions at level i. Denote Yi

the vector Yi[a] that gives the status of arc a at level i. If Yi[a] = 1, then arc a is
part of the fixed-open variables. If Yi[a] = 0, a is part of the fixed-closed variables.
If Yi[a] = 2, arc a is a design variable. The pseudo-code of the interpolation operator
is given in Figure 1.

Interpolation(Yi);
Get an elite solution ȳi+1 from level i + 1
for (a = 1; a ≤ n; a + +)

if arc ȳi+1[a] is opened then Yi[a] = 2;
return Yi;
Restart search at level i with ȳi+1 as initial solution;

Figure 1: Interpolation Operator

The reverse interpolation operator is similar to the interpolation operator, except
that it propagates information up, from lower to higher levels. It uses the same elite
set as the interpolation operator. At regular intervals, level i requests from level i−1
the best elite solution that has not yet been sent to level i. Upon receiving this elite
solution, the fixed-closed status is removed at level i for all arcs that conflict with their
status in the imported elite solution. Similar to the interpolation operator, reverse
interpolation potentially reduces the size of the fixed-closed block, which increases
the density of the neighborhood structure at level i. Figure 2 describes this operator.

The re-coarsening operator proceeds as follows. At regular intervals, i.e., after
a predetermined number of iterations of the cycle-based tabu search method, level
i = 1, . . . , l − 1 makes a request to obtain a copy of the frequency memory Vi−1 from
level i − 1. The blocks of fixed-open and fixed-closed decision variables at level i
are then modified based on the frequency memory Vi−1. Decision variables with a
high frequency in Vi−1 have their status changed to fixed-open while those with low
frequency have their status changed to fixed-closed. The re-coarsening operator is also
used to bring the number of arcs with fixed status in line with the figures associated
to the coarsening factors for level i.
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Reverse Interpolation(Yi);
Get an elite solution ȳi−1 from level i − 1
for (a = 1; a ≤ n; a + +)

if arc ȳi−1[a] is opened then Yi[a] = 2
return Yi;
Restart search at level i with ȳi−1 as initial solution;

Figure 2: Reverse Interpolation Operator

The re-coarsening operator is described in Figure 3. The input variables cfoi and
cfci represent the block sizes of fixed-open and fixed-closed variables, respectively,
according to the coarsening factors for level i. The frequency memory Vi−1 is scanned
to sort decision variables in decreasing order of their frequency values (the for loop
of line 1). B[k] = p indicates that decision variable p has the kth highest frequency.
The vector Yi is then updated according to the frequency memory Vi−1 (for loops of
lines 2 and 3).

4.3 Cycle-based Tabu Search

The search space of each level is explored by a cycle-based tabu search (Ghamlouche,
Crainic, and Gendreau 2003). The basic neighborhood defines moves that may explic-
itly take into account the impact on the total design cost of potential modifications
to the flow distribution of several arcs and commodities simultaneously. The funda-
mental idea is that one may move from one solution to another by 1) Identifying two
points in the network together with two paths connecting these points, thus closing a
cycle; 2) Deviating the flow from one path to another such that at least one currently
open arc becomes empty; 3) Closing all previously open arcs in the cycle that are
empty following the flow deviation and, symmetrically, opening all previously closed
arcs that now have flow.

Cycle-based neighborhoods are huge and an optimization-based implicit explo-
ration method is used. The goal is to identify moves that lead to a significant mod-
ification of the flow distribution, such as moves that close at least one arc and open
new paths for a group of commodities. To close an arc (i, j), one must be able to
deviate all its flow. Let the residual capacity of a cycle denote the maximum flow
one can deviate around the cycle. The residual capacity of any cycle that includes
(i, j) must then be at least equal to the total flow on arc (i, j). Consequently, cycles
of interest are those that display a residual capacity equal to one of the values in the
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Re-coarsening(Yi, cfoi, cfci);
int A,C,B[1..n];
get the frequency vector Vi−1 from level i − 1

1. for (k = 1; k ≤ n; k + +)
A = 0;
for (p = 1; p ≤ n; p + +)

if ((Vi−1[p] ≥ A)&(Vi−1[p] 6= ∞)) then

A = Vi−1[p];
C = p;

B[k] = C; Vi−1[C] = ∞;
2. for (k = 1 to cfci)

Yi+1[B[k]] = 1;
3. for (k = n − 1 down to cfoi)

Yi[B[k]] = 0;
return Yi;

Figure 3: The Re-coarsening Operator

set of the total (strictly positive) volumes on the open arcs.

Let (ȳ, x∗(ȳ) represent the current solution, where the design decision ȳ assigns
a value of 0 or 1 to each design variable, while x∗(ȳ) stands for the optimal flow of
the corresponding minimum cost capacitated multicommodity network flow problem
(CMCF). Cycles are then identified on residual networks of A(ȳ) defined according

to Γ(ȳ) =
{

∑

p∈P xp∗
ij > 0 : (i, j) ∈ A(ȳ)

}

, where A(ȳ) stands for the set of arcs

included in the design ȳ. The best move in the neighborhood of ȳ is then identified
by the cycle leading to the network modification that yields the largest improvement
(smallest deterioration, eventually) in the objective function (1). The “best” cycle for
each candidate link is identified by an optimization heuristic based on a modification
of the shortest path label-correcting algorithm that avoids getting trapped in negative
directed cycles.

To reduce the computational burden, cycles are identified and evaluated for a set
of candidate links C ⊆ A. Let C(γ) ⊆ C include all arcs (i, j) ∈ C that can support a
movement of γ units of flow. A closed arc may belong to C(γ) only if its capacity is at
least γ, while for an open arc, either its flow or its residual capacity must be at least
γ units. Intensification moves aim to refine the search by implementing moves that
result from the deviation of the flow of one commodity at a time. The corresponding
neighborhoods are obtained by by instantiating the set Γ for each commodity, denoted
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Γp =
{

xp
ij > 0 : (i, j) ∈ A(ȳ)

}

.

A more comprehensive description and computational analysis of cycle-based
neighborhoods and associated meta-heuristics may be found in Ghamlouche, Crainic
and Gendreau (2003, 2004). Figure 4 illustrates the cycle-based tabu search used at
each level i, while Figure 5 displays the sequence of tabu search and interaction oper-
ators (Section 4.4). The tabu search procedure thus accepts as input the best solution
and its value BestSolution, as well as the current solution, and its value CurrentSolu-
tion, obtained by the application of an interaction operator (including any mending
required to obtain a feasible solution - see Ghamlouche, Crainic and Gendreau 2003).
The current EliteSet, the vector Yi[j], giving the fixed status of the design arcs, and
the frequency memory Vi are also input. To simplify the representation, the level
index i is generally not used in Figure 4.

The network is modified initially according to the fixed status of the design arcs.
Then, at each iteration, the best non-tabu move in the neighborhood is determined
and implemented, whether it improves the overall solution or not. A short-term
tabu memory is used to record characteristics of visited solutions to avoid cycling.
Moves may generate infeasible solutions detected through the use of artificial arcs. A
mending phase is then undertaken, by restricting the sets C and Γ to the artificial arcs
with positive flow. When a particularly good solution is encountered, the search may
be intensified using the intensification neighborhood and accepting improving moves
only. A solution is considered particularly good when it either improves the best
overall solution or is close to it by at least a pre-defined percentage. Intensification is
performed at levels 0 and 1 only. At higher levels, the network is too aggregated for
intensification to be meaningful. The last steps are dedicated to the eventual update
of the elite set (worst solution is replaced), the memory vector (solution is within
threshold of the worst solution in elite set), and the best solution.

4.4 The Multilevel Algorithm for the CMND Problem

Each level of the multilevel cooperative algorithm explores the solution space ac-
cording to the neighborhood structure imposed by the two blocks of fixed decision
variables. The iterations of the cycle-based tabu search procedures are interrupted to
communicate with adjacent levels using one the three interaction operators. Interac-
tions are local and take place asynchronously. All the tabu procedures are identical
for all the levels except for levels 0 and 1 where intensification may be performed
to explore more thoroughly the regions of the solution space identified as “promis-
ing” by higher levels. Our stopping criterion is a pre-defined number of cycle-based
tabu search iterations, including the iterations executed to obtain the initial blocks
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Initialization.

If Yi[j] = FixedClose, then delete arc (i, j) from the network;

If Yi[j] = FixedOpen, then delete the fixed cost of arc (i, j).

Main local search loop. While a stopping criterion is not met

1. Determine sets C, Γ(ȳ), and C(γ) for the current solution ȳ;

2. Determine the best cycle over all (i, j) ∈ C(γ), γ ∈ Γ(ȳ)

For each γ ∈ Γ(ȳ)

Build the γ-residual network;

For each arc (i, j) ∈ C(γ)

Find the lowest cost cycle using the network optimization pro-
cedure;

Select the best move;

3. Move to the new solution by opening and closing the appropriate arcs;

4. Evaluate the new CurrentSolution by solving exactly the associated
CMCF;

5. Assign a tabu status to each complemented arc;

6. Trim (close arcs with no flow);

7. If the solution is infeasible, perform a Mending phase;

8. If level i is 0 or 1, perform an Intensification phase if:

CurrentSolution − BestSolution

BestSolution
≤ IntensGap;

9. If CurrentSolution < WorstEliteSolution update the EliteSet ;

10. If
CurrentSolution − WorstEliteSolution

WorstEliteSolution
≤ EliteGap

update the frequency memory Vi;

11. If CurrentSolution < BestSolution update BestSolution.

Figure 4: Tabu Search with Cycle-based Neighborhoods at Level i
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of fixed-open and fixed-close arcs. The number of tabu iterations is the same for all
levels.

Generate the initial sets of fixed-open and fixed-closed blocks;

while (stopping criterion not satisfied) do

1. Perform cycle-based tabu search iterations;

2. All levels i = 0, . . . , l − 1, perform Interpolation;

3. Perform cycle-based tabu search iterations;

4. All level i = 1, . . . , l, perform Re-coarsening ;

5. Perform cycle-based tabu search iterations;

6. All level i = 1, . . . , l, perform Reverse interpolation;

Figure 5: Core of the Multilevel Cooperative Algorithm for the CMND Problem

The three interaction operators, interpolation, reverse interpolation, and re-coarsening,
support cooperation among the cycle-based tabu search programs. Each level exe-
cutes the sequence of steps describes in Figure 5. Steps 2, 4, and 6 state the sequence
of calls to specific interaction operators. This particular sequence has been set using
the following logic: The first interaction operator is a restart of the cycle-based tabu
search program at level i, i = 0, . . . , l− 1 using an elite solution from level i+1. This
usually takes place once the cycle-based tabu search has exhausted its search at level
i. Relative to level i + 1, the search that follows an interpolation is a form of intensi-
fication performed with the help of the less coarsened neighborhood structure of level
i. Once the tabu search has explored the region of the solution space identified by
the interpolation operator, Step 4 calls the re-coarsening operator. The re-coarsening
operator permits to explore again the region identified by interpolation, but using a
new neighborhood provided by the frequency memory of level i − 1. Step 6 is also a
restart, but using an elite solution from the lower level. Chances are, the imported
elite solution from level i−1 is a local optimum or comes from the basin of attraction
from which the search at level i − 1 failed to escape. The restart of this exploration
in the more coarsened neighborhood of level i should help to cross barriers toward
promising regions. With reference to level i − 1, the search that follows a reverse
interpolation is a form of diversification performed with the help of a more coarsened
neighborhood structure.
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5 Computational Results

This section is dedicated to the presentation and analysis of the results of the ex-
periments performed with the simple multilevel cooperative design presented in the
previous section. This is the first study of a multilevel cooperative strategy applied
to the CMND problem. It is also one of the very few studies so far of the multilevel
cooperative parallel strategy for meta-heuristics. Hence, in analyzing the results, we
focus both on the capability of the multilevel design to yield high quality solutions for
the CMND problem and on the understanding of the multilevel cooperation mecha-
nism. This explains the somewhat lengthier than usual discussion on the calibration
results.

To ensure meaningful comparisons, we experimented on the same problem in-
stances used by Ghamlouche, Crainic, and Gendreau (2003, 2004). Problem instances
are general transshipment networks with no parallel arcs. Each commodity corre-
sponds to a single origin-destination pair. On each arc, routing costs are the same
for all commodities. Problem instances have been generated to offer for each net-
work size a variety of fixed-to-routing-cost and capacity-to-demand ratios. A detailed
description of problem instances is given in Crainic, Frangioni, and Gendron (2001;
see also Gendron and Crainic 1994, 1996). The problem generators as well as the
problem instances can be obtained from the authors.

The multilevel cooperative meta-heuristic has been coded in C++. The exact
evaluations of the capacitated multicommodity network flow problems were performed
using the linear programming solver of cplex version 7.5. The parameters used
for the cycle-based tabu search are those indicated in Ghamlouche, Crainic, and
Gendreau (2003). Tests were conducted on a Sun Enterprise 10000 with 64 400
MHz clock processors and 64 Gb of RAM. The parallel programming model for the
multilevel procedure was shared memory using Pthreads under Solaris 2.7.

5.1 Parameter Calibration

Initial experiments were performed to determine values for a number of key param-
eters and design features. Calibration tests were conducted using eight problem in-
stances with 20 nodes and 300 design arcs with different number of commodities
(40 and 200) and various combinations of fixed-versus-variable-cost ratio and capac-
ity tightness measures. Our previous work on developing meta-heuristics for design
problems indicates that these problems offer a reasonable sample of characteristics
and difficulty. The following parameters were studied using these problem instances:
1) Number of levels; 2) Coarsening factors, that is, the size of the fixed-open and
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fixed-closed blocks at each level; 3) Number of tabu iterations between activations of
the interaction operators; 4) Dimension of the elite solutions set; 5) Updating of the
frequency memory; 6) Selection of initial arcs to be fixed.

The number of levels and the coarsening factors are closely related. On the one
hand, a large number of levels increases the level of parallelism and, potentially, the
performance of the global search. On the other hand, when coarsening factors increase
substantially from one level to the next, the corresponding dimension of the solution
space tends to decrease rapidly. Consequently, a high number of levels comes at the
cost of low coarsening factor values, which yield small blocks and conduct to weak
interactions and low-impact parallelism, a behavior one aims to avoid. A compromise
between large coarsening factor values and a high number of levels must therefore be
established.

This compromise is particularly difficult to find for most CMND problems of in-
terest, where the planned capacity is relatively tight with respect to the total demand
(problem instances with almost no slack capacity or, at the other extreme, with al-
most unlimited capacity are significantly easier to solve). For such problems, increas-
ing the number of fixed-closed variables rapidly yields infeasible instances. Moreover,
this characteristic is independent of problem dimensions, which contrasts to other
combinatorial problems, such as graph partitioning, where increasing the number of
decision variables generally permits to increase the number of levels and the values
of the coarsening factors. We decided therefore to fix the number of levels for all
problem instances based on the number of design decision variables in the smallest
problem instances tested (100 arcs). Experimentally, eight levels appeared as the
maximum level of parallelism we could achieve for those instances and this number
was used for all calibration and experimentation activities.

To calibrate the coarsening factors, one must consider that fixed-open and fixed-
closed arcs do not have the same impact on the exploration of the solution space.
During the neighborhood exploration performed by the cycle-based tabu search, cycles
that contain fixed-closed arcs are automatically eliminated. On the other hand, a
cycle with fixed-open arcs may generate a move if this move does not involve changes
to the status of the fixed-open arcs in the cycle. In other words, a fixed-closed status
impacts in a more stringent manner the exploration of the solution space than the
fixed-open status. Consequently, we considered smaller block sizes for fixed-closed
arcs. We tested increasing the total number of arcs per level by 3%, 6%, and 9%,
respectively, and coarsening factors with a ratio 1/3 for the fixed-closed and 2/3 for
the fixed-open blocks, respectively. A coarsening factor of 9% per level, with 3% of
the arcs fixed closed and 6% of the arcs fixed open, offered the best results for the
calibration tests.

18



For this first multilevel cooperative algorithm for the CMND problem, we adopted
the simple strategy of activating the local interaction operators after a pre-defined
number of cycle-based tabu iterations. We tested the values 5, 10, 20, and 50. A
value of 20 offered the best performance on the restricted calibration problem set and
was used throughout the experimentation phase.

The calibration tests indicated that, in general, differences in the cardinality of
the elite solution sets did not impact significantly the solution performance. It also
appeared, however, that this cardinality should not be “too high” and that using elite
sets that include several solutions dominates elite sets of size one. The rational seems
to be the following. When single-elite-solution sets are used, the elite set would be
updated significantly less frequently than when larger sets are used. Consequently, the
interpolation and reverse interpolation operators would tend to send the same solution
to neighbor levels. On the other hand, large elite sets might contain low-quality
solutions which, when transmitted to neighboring levels, would send the exploration
at those level astray. A cardinality of 4 for the elite sets appeared a reasonable
compromise.

The goal of the frequency vectors is to accumulate information about the status of
decision variables in good solutions. Similarly to the elite set cardinality calibration,
a compromise must also be reached in this case. Restricting “good” solutions to those
that are very close (less than 5%, say) to the overall best solution enforces the elite
characteristic of the frequency vector, but yields procedures where applications of
the re-coarsening operator have little impact on coarsening. On the other hand, the
update of the frequency vectors based on “poor”-quality solutions implies driving the
search (through the re-coarsening operator) into possibly uninteresting regions of the
solution space. A maximum value of 5% less than the cost of the worst solution in
the elite set at the corresponding level gave the best performance.

We tested also the two approaches described in Section 4.1 for determining the
initial variables to be fixed. The approach based on the frequency memory appeared
superior to that based on the FC ratio. In the frequency-memory approach, the
initial coarsening takes place once the cycle-based tabu search has failed to improve
the best known solution for a number of iterations. We tested values of 20, 50, and
100 for this parameter and a value of 100 performed best. We impose, however, a
limit (fixed at 200) for the maximum number of iterations the search at each level
may run in independent mode. Consequently, a level switches to cooperation mode
either when it has failed to improve its best solution during the last 100 iterations or
when it has reached the 200-iteration limit.
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5.2 Result Analysis

Table 1 displays the results of the computational experiments. Problem instances are
identified, in the first column, by a number plus their characterization in terms of the
number of nodes, arcs, and commodities, as well as the fixed cost and capacity type: a
relatively high or low fixed cost relative to the routing cost is signaled by the letter F

or V, respectively, while letters T and L indicate respectively if the problem is tightly
or somewhat loosely capacitated compared to the total demand. Column mlevel

reports the results obtained for one run of the multilevel cooperative algorithm for
600 iterations.

The four next columns display comparisons to the best and the average solu-
tion out of three repetitions for the cycle-based tabu search executed for 400 iter-
ations, columns tc and av.tc respectively (Ghamlouche, Crainic, and Gendreau
2003), and the path relinking approach, columns pr and av.pr, respectively (Gham-
louche, Crainic, and Gendreau 2004). To standardize the presentation, gaps have been
computed relative to the corresponding value achieved by the multilevel cooperative
algorithm. Consequently, positive entries indicate better performance in terms of so-
lution quality obtained by the multilevel algorithm. The last line of entries displays
the corresponding averages.

The results are very encouraging. Compared to the sequential cycle-based tabu
search, the multilevel cooperative method obtained consistently higher-quality so-
lutions, for 93% of the problem instances tested, for an average improvement gap
of 2.38%. Moreover, the method is very competitive when compared to the path
relinking procedure, the best current meta-heuristic for the CMND problem. The
objective function values of the solutions identified by the multilevel method are of-
ten equal or better than those obtained by the path relinking, for an overall average
gap improvement of 1%. Moreover, all other problem characteristics being kept con-
stant, the multilevel appears to perform better when the number of commodities is
increased (which, normally, increases the difficulty of the problem). Gains are even
more impressive when comparisons to average results of the tabu search

Comparing computing times is a very difficult task, because various results have
been obtained on different architectures at different time periods. In the following,
we give a rough estimation. The tabu search and path relinking methods were each
run three times for 400 iterations. The multilevel cooperative algorithm run, that is,
each level run once for 600 iterations. Thus, the differences in the iteration definition
between methods notwithstanding, the wall-clock time of the parallel method is a
little over half the total computing time of the three runs of the sequential method.

To gain insight into the behavior multilevel cooperation mechanism applied to the
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prob mlevel tc av. tc pr av. pr

C1(25,100,10,V,L) 14712 0 0.39 0 0
C2(25,100,10,F,L) 14941 0 0 0 0.94
C3(25,100,10,F,T) 49937 1.19 1.37 -0.08 0.43
C4(25,100,30,V,T) 365385 0 0 0 0
C5(25,100,30,F,L) 37607 -0.25 2.83 0.13 0.26
C6(25,100,30,F,T) 86461.3 1.00 1.89 -0.04 0.04
C7(100,400,10,V,L) 28553 0.82 0.99 -0.24 -0.08
C8(100,400,10,F,L) 24022 0 0 0 0
C9(100,400,10,F,T) 66284 1.36 1.65 -1.52 -1.12
C10(100,400,30,V,T) 385282 0.06 0.06 -0.09 -0.03
C11(100,400,30,F,L) 50456 2.73 3.41 1.72 2.81
C12(100,400,30,F,T) 145721 1.01 1.21 -2.99 -1.59
C33(20,230,40,V,L) 426702 0.92 0.95 -0.54 -0.45
C35(20,230,40,F,T) 652894 -0.02 0.75 -1.13 -1.00
C36(20,230,40,V,T) 371475 0.28 0.38 0.09 0.19
C37(20,230,200,V,L) 98582 1.44 2.94 1.85 2.93
C38(20,230,200,F,L) 143150 3.43 4.07 3.38 5.73
C39(20,230,200,V,T) 102030 4.74 5.45 2.61 3.50
C40(20,230,200,F,T) 141188 4.27 4.73 4.51 4.86
C41(20,300,40,V,L) 429837 0.51 0.54 -0.10 -0.07
C42(20,300,40,F,L) 593544 1.46 1.77 -0.53 0.18
C4320,300,40,V,T) 466004 0.02 0.12 -0.32 -0.25
C44(20,300,40,F,T) 619203 -0.61 -0.38 -1.49 -1.49
C45(20,300,200,V,L) 78209.5 4.04 5.09 -0.03 1.13
C46(20,300,200,F,L) 121951 0.26 1.06 1.28 2.44
C47(20,300,200,V,T) 77251 4.00 4.50 2.09 2.54
C48(20,300,200,F,T) 111173 2.50 3.75 2.17 3.11
C49(30,520,100,V,L) 55754 1.52 1.74 -1.53 -1.27
C50(30,520,100,F,L) 99817 3.85 5.47 2.24 4.41
C51(30,520,100,V,T) 53512 1.76 1.92 -0.93 -0.56
C52(30,520,100,F,T) 102477 2.59 5.28 3.57 4.98
C53(30,520,400,V,L) 115671 6.05 6.58 3.24 3.42
C54(30,520,400,F,L) 156601 4.81 5.66 4.16 4.33
C55(30,520,400,V,T) 120980 1.39 1.84 -0.67 -0.18
C56(30,520,400,F,T) 160217 5.80 6.29 2.16 2.94
C57(30,700,100,V,L) 48869 2.40 2.52 -0.30 0.05
C58(30,700,100,F,L) 63756 1.29 1.64 -1.04 -0.50
C59(30,700,100,V,T) 47457 1.52 1.67 -0.52 -0.36
C60(30,700,100,F,T) 56910 1.26 2.11 -0.59 -0.18
C61(30,700,400,V,L) 102631 4.97 5.68 2.42 2.70
C62(30,700,400,F,L) 143988 4.35 4.81 0.72 2.71
C63(30,700,400,V,T) 99194.9 2.58 3.95 2.03 2.95
C64(30,700,400,F,T) 138266 4.76 6.10 1.99 2.30

Average 2.38 3.25 1.00 1.15

Table 1: Computational Results: Relative Gaps (%) Relative to mlevel21



CMND problem, we analyzed the search patterns of several problem instances, and
compared them to those of an independent parallel method with the same number of
threads (8 - threads were differentiated through the random exploration of the neigh-
borhoods) and number of iterations (600). We may sum up our observations as follows
(see Crainic, Toulouse, and Li 2004 for additional details and illustrations of search
trajectories). All methods, sequential, parallel independent, and multilevel coopera-
tive, behaved in essentially the same way during the early stages of the search, since
the multilevel search proceeds as an independent parallel search during initialization.
As expected, levels 0 and 1 of the two parallel methods displayed steeper descents
due to the intensification phases that help find better solutions. The behavior of the
two methods diverged once the cooperation mechanism become active.

The trajectory of the multilevel cooperative method displayed a marked drop in
the best solution value following the iteration when the initial blocks of fixed decision
variables are generated and inter-level cooperations are activated. This drop was
noticeable at all levels, though more accentuated at levels 0, 1, and 2 where the search
has more degrees of freedom (smaller blocks). The marked improvement brought by
the initiation of cooperation was followed by a more gradual improvement in the best-
solution value, punctuated by more significant movements following the interaction
phases (in the current implementation, these occur at fixed intervals). This behavior
has been observed for all problem instances and is a clear indication of the impact of
the cooperation mechanism.

A significant difference was observed between the multilevel cooperative parallel
search and the other methods. Each thread participating to the parallel independent
search was a cycle-based tabu search. Consequently, the trajectories of each inde-
pendent thread was similar to that of the sequential method and, as expected, the
best solutions identified by these threads were approximately of the same quality and
were similar to those found by the sequential method. The situation was different
for the multilevel cooperative method, where the best solutions were found almost
exclusively at the lowest levels of the hierarchy, levels 0 to 2, while levels 3 and 4
sometimes obtained solutions close to the best ones, and levels 6 and 7 contributed
few very good solutions due to the large number of fixed arcs. This observation does
not mean that higher levels are not useful. On the contrary, they contribute to di-
versify the search towards solutions which, once worked on by lower-level moves, will
provide the good solutions. This characteristic of the multilevel cooperative search
cannot be reproduced by parallel independent search methods and follows from the
combined effect of the local interactions, the hierarchical structure of neighborhoods,
and the tabu search intensification phases used at levels 0 and 1.

A second difference between the independent and multilevel cooperative parallel
methods appeared in the behavior of the evolution of the best solution values of the
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participating searches: the graphic representations of these trajectories crossed each
other significantly less for multilevel cooperative strategy than for the independent
one. The frequency of trajectory crossings is generally taken to indicate the degree
of overlapping of the corresponding search threads. One may thus infer that the
multilevel cooperative neighborhood structure based on increasing sizes of blocks is
relatively successful at preventing overlaps among parallel explorations of the solution
space. Moreover, the gradual improvement observed once the cooperation is active
supports the claim that cooperation by local interactions among levels is successful
in driving levels 0 and 1 towards good regions of the solution space.

6 Perspectives

The development of this first multilevel cooperative parallel meta-heuristic for the
CMND problem, together with the results of the numerical experiments that were
performed, pointed to a number of research issues that should conduct to an enhanced
methodology. While addressing these issues is beyond the scope of the present paper,
we briefly discuss them as guidelines for future research.

A number of issues have been highlighted by the experiments. For example, a
relatively high number of infeasible solutions were being generated. Also, searches
proceeding at high levels (e.g., levels, 5, 6, and 7) were not very productive in terms of
generating good solutions. We also noticed that the searches at the various levels did
not always proceed at the same pace, and produced networks with dissimilar designs.
We believe that one of the main reasons behind these behavior is the very (probably,
too) simple and stringent definition of the cooperation mechanism, particularly the
coarsening operation and factors.

Indeed, the cycle-based neighborhood definition is prone to yield moves that bring
the search to infeasible solutions (see the example in Ghamlouche, Crainic, and Gen-
dreau 2003). Fixing arcs, particularly fixing them closed, reduces the search space
and increases the likelihood of such moves, especially for the problem instances tested,
characterized by a tight total capacity compared to total demand. Then, when large
coarsening factors are used for high levels, the search space becomes too constrained
and many moves conduct to infeasible solutions. On the other hand, fixing arcs mod-
ifies the problem instance and thus the behavior of the tabu search. Thus, when
computing cycles, the cost of moving flow on a fixed-open arc is equal to the variable
cost, while this cost is weighted by a linearization of the fixed cost when the arc is
undecided. This may bias the search towards using the fixed arcs and not allow a
thorough exploration of the neighborhood.
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One must also recall that, for CMND problems, the search proceeds in the space
of the design variables only. The feasibility of the design resulting from a move as
well as the associated value of the design and flow distribution must therefore be
computed by solving a rather complex capacitated, multicommodity minimum-cost
network flow problem. The impact of aggregating variables in blocks to define levels is
therefore much more difficult to determine than, for example, in the case of the graph
partitioning problem. Block building may thus set the search in a not-so-interesting
region of the solution space of the original problem and many interactions may be
required before the search moves toward a more interesting region.

A challenging research direction corresponds therefore to the study of coarsening
operators. The ones presented in this paper are quite simple, as they are based on
characteristics of individual arcs. More elaborated ones could exploit the character-
istics of the multicommodity network design problem, e.g., the paths or trees used
to move commodities. The relations between the problem characteristics, in terms of
dimensions and capacity, on the one hand, and the number of levels and coarsening
operators and factors, on the other hand, should also be part of this study.

A second, and complementary, research direction concerns the flexibility of the
cooperation structure. Currently, the mechanism is quite strict. The operators are
invoked at regular intervals, in strict order. The literature on parallel meta-heuristics
indicates, however, that introducing flexibility in the algorithms is beneficial. Thus,
while the strict mechanism used in the present paper yields very good results, we plan
to study more advanced mechanisms that would allow the exploration to dynamically
adapt to the problem instance and the state of the search.

Exploring in this direction brings up issues related to the utilization of memories
in cooperation. Simple memories are already included in the algorithm and used by
the interaction operators. More advanced memories may be built. Indeed, similar to
solution values, other solution and exploration attributes may be put into memories
and associated to interaction operators. Such data may even be part of the informa-
tion diffusion process. The utilization of this diffusion to create or approximate at
each level an image of the status of the entire search is a fascinating challenge.

7 Conclusions

We presented the first multilevel cooperative parallel tabu search algorithm for the
capacitated multicommodity network design problem. Computational results on a set
of benchmark problem instances show that this approach yields good quality solutions
comparable to those obtained by the current best meta-heuristics for the problem.
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These results are very encouraging but they also emphasize the need for more
research to understand better the interplay between the CMND problem, the cycle-
based tabu search, and the multilevel strategy for cooperative parallel search, and to
develop the next generation of algorithms. We are currently undertaking this research
and hope to report in the near future.
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