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Abstract

This paper presents a parallel cooperative multi-search method for the vehicle routing problem with time
windows. It is based on the solution warehouse strategy, in which several search threads cooperate by asyn-
chronously exchanging information on the best solutions identi0ed. The exchanges are performed through a
mechanism, called solution warehouse, which holds and manages a pool of solutions. This enforces the asyn-
chronous strategy of information exchanges and ensures the independence of the individual search processes.
Each of these independent processes implements a di2erent meta-heuristic, an evolutionary algorithm or a tabu
search procedure. No attempt has been made to calibrate the individual procedures or the parallel cooperative
method. The results obtained on an extended set of test problems show that the parallel procedure achieves
linear accelerations and identi0es solutions of comparable quality to those obtained by the best methods in
the literature.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Parallel resolution methods o2er the possibility of accelerating computations and, as such, these
methods constitute an interesting 0eld of research for combinatorial optimization. However, classical
parallel approaches, based on functional or data decomposition, do not signi0cantly modify the
search trajectories of meta-heuristics. Thus, they cannot improve the quality of the solution, nor
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do they enhance the robustness of the search when faced with di2erent problem instances than
those which were originally calibrated and applied. Consequently, in recent years, multi-search (or
multi-thread) meta-heuristics, with varying degrees of cooperation, have increasingly been used for
di@cult combinatorial problems and have been shown to both speed up the search and dramatically
improve the robustness and the quality of the solutions obtained (e.g., [1–15]).

The vehicle routing problem with time windows (VRPTW) is one of the central problems in
operations research and combinatorial optimization with numerous practical applications [16]. The
problem is NP-Hard and thus, not surprisingly, classical and modern heuristics have been extensively
studied, with meta-heuristics generally o2ering the best performances (e.g., [16–30] and references
therein).

The parallel cooperative multi-search method based on the solution warehouse strategy has been
successfully applied to a number of di@cult combinatorial problems (e.g., [3,6,31]) but not, at least
at the authors’ knowledge, to the VRPTW. Or, this parallel approach, based on several search threads
that cooperate by asynchronously exchanging information about the best solutions identi0ed so far,
o2ers several advantages: simplicity of design, increased search robustness, the possibility to enhance
performance through enhancement of some of the individual search threads. The objective of this
paper is to explore the applicability of the solution warehouse-based cooperative multi-search method
to VRPTW and determine its competitiveness compared to the current state of the art.

The contributions of this paper are as follows. We present an easy-to-build and e@cient parallel
solution method for the single-depot version of the VRPTW. The method makes use of the existing
search methods without any particular calibration for the parallel cooperative method or the individual
procedures (we use the parameter settings proposed for the sequential methods by the original
authors). Experiments using both the standard benchmark test problems of Solomon [32] and the
more recent one proposed by Homberger and Gehring [10] show that the parallel procedure achieves
solutions of quality comparable to that obtained by the best methods of the literature. The proposed
cooperative search identi0es several new best solutions and 0nds new best cumulative numbers of
vehicles for several problems ranging from 200 to 1000 customers. From a parallel computation
point of view, the proposed method is e@cient as it displays linear accelerations compared to the
sequential methods. The paper also contributes to the general understanding of cooperative parallel
methods by analyzing its behavior when applied to a new problem class and by exploring the impact
of the quality of the individual search threads on the performance of the parallel search.

The paper is organized as follows. Section 2 brieGy reviews the main sequential and parallel meth-
ods proposed to solve the VRPTW. Section 3 presents the cooperative search procedure, its general
design and the methods selected for cooperation. Section 4 presents the computational results and
analyzes them both from the point of view of solving the VRPTW and from that of the performance
of the parallel strategy. Conclusions and perspectives are the subject of the last section.

2. The VRPTW and main solution methods

In this paper, we address the single depot VRPTW. One is given a set of customers with known
positive demands and speci0c time intervals when service can be provided. A Geet of homogeneous
vehicles of known capacity is available at a given depot to perform this service. The objective is to
0nd a set of closed routes (or tours) that start and end at the depot within its opening hours, such
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that the total cost of performing the service is minimized, customers are visited and served during
the speci0ed time windows, and vehicles are not overloaded. In the problem version we address,
cost is a combination of two factors: the number of vehicles (routes) used and the total distance
travelled. A high cost is associated with vehicle utilization to enforce the search towards solutions
with reduced number of vehicles. Each customer is visited only once. A vehicle cannot arrive later
than the customer’s closing time, but is allowed to arrive before the associated opening time, in
which case it waits, without explicit penalty, until the customer is ready. Once the service starts,
it is carried on until completion, even if the service ending time might be later than the expiration
of the time window. The recent review by Cordeau et al. [16], as well as the other reviews indi-
cated in the Introduction, present mathematical formulations, variants, and solution methods for the
problem.

Presenting a comprehensive review of solution methods for the VRPTW is beyond the scope
of this paper, especially since several reviews have appeared recently. In the following, we brieGy
review a number of “successful” sequential and parallel solution approaches that obtained best-known
results for the classical Solomon problem set and on the 200–1000-customer problems. Methods
that are incorporated in the proposed cooperative search are presented in somewhat more detail in
Section 3.2.

E2orts are being dedicated to the development of exact algorithms and most 100-customer VRPTW
problems with a distance-minimization objective have been solved [33–37]. For most problem in-
stances, heuristics and meta-heuristics are required, however. Most such e2orts have addressed the
combined objective of minimizing 0rst the number of vehicles and then the total distance.

Tabu search [38–40] has often been used successfully to address vehicle routing problems including
the VRPTW. Taburoute [41] and the Uni?ed Tabu Search [42] stand out by the quality of the results.
These two methods are used in the proposed framework and are reviewed in Section 3.2.
Hybrids that combine elements of di2erent methodologies appear very promising. Rousseau et

al. (2002) combined constraint programming and variable neighborhood search (VNS) [44–46].
The pruning operators and propagation techniques of constraint programming permit the search of
large neighborhoods. This increases the probability of 0nding a good solution at each iteration
and avoids the need for specialized neighborhood descent procedures. The utilization of constraint
programming also allows additional constraints to be added easily without fundamentally modifying
the methodology.

BrKaysy [47] proposed the reactive variable neighborhood search, a variation on the VNS based on
a four-phase method: initialization, route elimination, total distance minimization by using four new
local search heuristics, and a modi0cation of the objective function to allow escaping from local min-
ima. BrKaysy et al. [48] proposed a multi-start local search method that proceeds in two phases: (1)
production of initial solutions using a fast construction heuristic and an ejection chain-based heuristic
to reduce the number of total routes; (2) two improvement heuristics based on CROSS-Exchanges
[49] to reduce the total distance. BrKaysy and Dullaert [50] proposed the fast evolutionary meta-
heuristic, an hybrid procedure based on evolutionary principles.

Bent and Van Hentenryck [51] presented a two phase method that combines simulated annealing
(SA) and large neighborhood search (LNS). The 0rst phase (SA) utilizes a lexicographic evaluation
function to minimize the number of routes and the delay of the entire solution. The SA explores
the neighborhood with traditional move operators: 2-exchange, or-exchange, and crossover. It also
includes some components often seen in tabu search, such as an aspiration criteria and a bias towards
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good solution in the random selection process. The second phase LNS [52] aims to minimize the
total travel cost by using a branch and bound algorithm.

Many of the most successful meta-heuristics for the large VRPTW instances are based on some
form of parallel computation. Two methodological approaches stand out: the adaptive memory strat-
egy [13,49,53,54] and the combination of tabu search and evolutionary algorithms proposed by
Gehring and Homberger [11], Homberger and Gehring [10].

Rochat and Taillard [53] proposed what may be considered as the 0rst fully developed adaptive
memory-based approach for the VRPTW. It is a cooperative multi-thread method, where the adaptive
memory contains tours of good solutions identi0ed by the tabu search process. The tours are ranked
according to attribute values, including the objective values of their respective solutions. Each tabu
search process then probabilistically selects tours in the memory, constructs an initial solution, im-
proves it, and returns the corresponding tours to the adaptive memory. Despite the fact that it used a
rather simple tabu search, this method produced many new best results at publication time. Taillard
et al. [49] adapted this method for the vehicle routing problem with soft time windows. Late arrival
at a customer is allowed at a penalty. By adjusting the penalty, hard time window cases may also be
addressed. The authors signi0cantly re0ned the tabu search by enriching the neighborhood and the
intensi0cation phase and by adding a post-optimization procedure. Badeau et al. [54] report the 0rst
“true” parallel implementation of this approach for the VRPTW with soft time windows. Another
variant on the adaptive-memory idea may be found in the work of Schulze and Fahle [12]. Here,
the pool of partial solutions is distributed among processes to eliminate the need for a “master”. The
elements of the best solutions found by each thread are broadcast to ensure that each search has
still access to all the information when building new solutions. Implemented on a limited number
of processors (eight), the method performed well.

Gehring and Homberger [11] introduced a cooperative parallel strategy where concurrent searches
are performed with di2erently con0gured two-phase meta-heuristics. The 0rst phase tries to minimize
the number of vehicles by using an evolutionary meta-heuristic, while the second phase aims to
minimize the total travelled distance by means of a tabu search. The evolution strategies are based
on the previous work by Homberger and Gehring [10] and Homberger [55] with much emphasis
on the minimization of the number of vehicles in the evolution strategy. The parallel meta-heuristic
is initiated on di2erent threads with di2erent starting points and values for the time allocated to
each search phase. Threads cooperate by exchanging solutions asynchronously through a master
process. For the 0rst time, results were also presented on new and larger problem instances, generated
similarly to the original Solomon instances, but varying in size from 200 to 1000 customers.

Berger et al. [56] introduced a parallel genetic method where two populations co-evolve, each with
a distinct objective. The 0rst population aims to minimize the total distance, while the second focuses
on minimizing the temporal constraints violation to generate feasible solutions. New feasible solutions
are exchanged between populations. New genetic operators inspired by an insertion heuristic, a large
neighborhood search method and an ant colony system are also used.

To conclude, it is worth noticing that while several solution methods have successfully addressed
several classes of VRPTW problem instances, none can claim to dominate all the others. On the
other hand, in general, the most successful methods combine several methodologies. The method we
propose is also based on combining the search e2orts of di2erent methods, but it follows a principle
not found among the methods reviewed that o2ers a general framework for algorithmic development
for the VRPTW.
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3. Cooperative meta-heuristics for the VRPTW

The multi-thread cooperative parallel search procedure we propose for the VRPTW is based on
the solution warehouse approach. This section describes the general principles and main components
of this solution strategy.

3.1. General design

A number of independent processes (threads) are de0ned and each executes a complete search
through the solution space of the VRPTW (one of them may, as in the present implementation
construct and improve solutions based on classical heuristics). When the same meta-heuristic is used
by several search threads, the initial solution and particular setting of a number of important search
parameters di2erentiates each search thread from the others. Thus, each thread follows a di2erent
search strategy. Full implementation details for the strategies used in the present method are given in
the following sub-sections. Both an independent search method and a cooperative search algorithm
are implemented. In the former, all searches proceed independently and the best solution is collected
at the end. In the latter, it is hoped that by exchanging information among the search threads the
e@ciency of the global search will increase to yield a higher-quality 0nal solution.

The cooperation aspect of the parallelization scheme is achieved through asynchronous exchanges
of information. Information is shared through a solution warehouse or pool of solutions. In this
scheme, whenever a thread desires to send out information, it sends it to the pool. Similarly, when
a thread accesses outside information, it reaches out and takes it from the pool. Communications
are initiated exclusively by the individual threads, irrespective of their role as senders or receivers
of information. No broadcasting is taking place and there is no need for complex mechanisms to
select the threads that will receive or send information and to control the cooperation. The solution
warehouse is thus an e@cient implementation device that allows for a strict asynchronous mode of
exchange, with no pre-determined connection pattern, where no process is interrupted by another for
communication purposes, but where any thread may access at all times the data previously sent out
by any other search thread. The solution warehouse keeps the information in an order appropriate
for the exchange mechanism considered.

To fully characterize the cooperation process, one has to specify (i) the information which is
to be shared; (ii) the particular methods that make up the cooperative search; (iii) the time when
communications occur; (iv) the utilization each thread makes of the imported information [1,4,5,57].
The information exchanged among cooperating procedures has to be meaningful, in the sense

that it has to be useful for the decision process of the receiving threads. Information that gives the
current status of the global search or, at least, of some other searches is, in this sense, meaningful.
In the implementations described in this paper, threads share information about their respective good
solutions identi0ed so far. When a thread improves the imported solution or when it identi0es a
new best solution, it sends out the value of that solution. This scheme is intuitive and simple, and
it satis0es the meaningfulness requirement.

The selection of the methods involved in cooperation was mainly oriented toward obtaining: (i)
Good quality solutions; (ii) A broad diversity of solutions to facilitate the discovery of promising
regions; (iii) The rapid production of intermediate solutions to feed the information exchange mech-
anisms. Tabu search methods and, recently, evolutionary algorithms have provided some of the best
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solutions found so far in the literature. Moreover, evolutionary algorithms may contribute toward
increasing the diversity of solutions exchanged among cooperating methods. It was thus decided to
include tabu search and evolutionary algorithms in the cooperative framework.

Taburoute [41] and uni0ed tabu search [42] were the two tabu search-based methods consid-
ered. Two evolutionary algorithms were also included with simple but di2erent, crossover mecha-
nisms. Construction and improvement heuristics were also included to generate an initial population
(pool of solutions) and to perform post-optimization. These methods are described in the follow-
ing sub-sections, together with the corresponding mechanisms for exchanging information with the
solution warehouse and for processing this data.

3.2. The cooperating methods

3.2.1. Taburoute
The Taburoute tabu search method [41] was originally proposed for the vehicle routing problem

with capacities and route length restrictions. In this algorithm, the neighborhood of a solution is
de0ned by considering a sequence of adjacent solutions obtained by repeatedly removing a node from
its current route and reinserting it into another route that contains one of its p nearest neighbors.
Re-insertion is done by means of the generalized insertion (GENI) procedure. The post-optimization
procedure unstringing–stringing (US) attempts to improve the solution by trying to remove and
reinsert each node of a route. The two procedures make up the GENIUS heuristic [58,59]. When
a node is moved, it is tagged as “tabu”, to prevent it from moving back to its original route, for
a number of iterations uniformly drawn from a [inf,sup] interval. Moving to infeasible solutions is
allowed during the course of the algorithm, in order to decrease the likelihood of getting trapped
in local optima, but a penalty term in the objective function is increased when solutions obtained
in the last 10 iterations are infeasible. The diversi0cation strategy penalizes vertices that have been
moved frequently in order to avoid considering similar solutions. A false start is performed at the
beginning by performing a local search on a (usually random) solution to 0nd a good initialization.

In the time window versions of Taburoute and GENIUS developed for the cooperative parallel
method, insertion is only allowed when no time window constraints are violated. The method will
send improving solutions to the central warehouse and require solutions from the warehouse before
diversi0cation. This imported solution will be accepted if it is better than the current one. Otherwise,
the algorithm will proceed from its own solution.

3.2.2. Uni?ed tabu
The uni0ed tabu search heuristic proposed by Cordeau et al. is one of the best tabu search-based

methods for the VRPTW. The uni0ed tabu also solves two important generalizations of the VRPTW:
the periodic and the multi-depot vehicle routing problems with time windows. The major bene0ts of
the approach are its speed, simplicity, Gexibility, as well as the quality of the produced results.

Uni0ed tabu uses several of the features of Taburoute, namely the same neighborhood structure,
GENI insertions, long-term frequency-based penalties. It also di2ers from Taburoute in a number
of ways. The search is applied to a single initial solution, 0xed tabu durations are used and no
intensi0cation phase is included. The method allows intermediate infeasible solutions (similarly to
Taburoute), but modi0es its search parameters at each iteration according to whether the previous
solution was feasible or not with respect to capacity or route duration. The tabu mechanism operates
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on an attribute set B(x)= (i; k): customer vi is visited by vehicle k in solution x. Neighbor solutions
are obtained by removing (i; k) from B(x) and replacing it with (i; k), where k ′ �= k. Attribute (i; k)
is then declared tabu for a number of iterations, and the aspiration criterion is de0ned relative to
attribute (i; k). At the end of n iterations, a GENIUS-based [59] post-optimization is applied to each
route of the best feasible solution found.

To integrate this method into a cooperative mechanism, one has to create moments when commu-
nications are possible (this step is required since neither intensi0cation nor diversi0cation are in the
original design). We decided to stop the method after w iterations and import a solution from the
central warehouse. This solution is then used to re-start the search. On the other hand, improving
feasible solutions are sent to the warehouse.

3.2.3. Evolutionary algorithms
Two evolutionary algorithms also participate in the cooperative global search. Both methods use

the solution warehouse as population. Two parent solutions are chosen randomly and a probabilistic
mutation is performed on a copy of each parent (for each arc, a 1% probability to replace it with a
randomly chosen one). The algorithms di2er by the crossover operator used, either an order crossover
(OX) or an edge recombination (ER) crossover. When required, a repair procedure restores the
feasibility of the solution by re-ordering or re-routing nodes reached after their closing time windows.
The o2spring is sent to the solution warehouse.

The OX operator is based on a path representation on each route and attempts to preserve the
relative order of the customers in the second parent. It copies a sub-chain of the 0rst parent to
the o2spring; the remaining positions are 0lled by customers who are not yet in the o2spring, in
the order that they appear in the second parent. The ER crossover operator aims to preserve the
maximum number of arcs from the parent and to introduce a minimum number of new arcs. An
adjacency table is constructed to represent, for each node, the nodes that are adjacent to it in each
parent. The construction of the o2spring is performed by selecting paths with a minimum number of
arcs between two adjacent nodes that are not yet in the o2spring. A backtrack scheme is performed
when nodes are left with no active arcs.

3.2.4. Post-optimization
The ejection chain principle is mainly used to explore large and complex neighborhoods in tabu

search and correspond in general to chained-movements of solution elements among several solutions.
Two types of ejection chains are used in the VRP literature [43,60–64]. The 0rst type is called a
multi-node exchange process and involves only one route at a time. All node exchanges are performed
within the same route and the last node of the chain takes the position of the 0rst node. The second
type is called a multi-node insert process and involves several routes with exchanges being performed
on two routes at a time. A node is ejected from the 0rst route and inserted into a second one, from
which another node is eventually ejected to be inserted into another route, and so on and so forth
until a certain number of exchanges is attained.

The proposed ejection search procedure is based on the multi-node process and tries to empty a
route, called the origin route, by sequentially ejecting its nodes and inserting them into other routes.
An ejected node does not, however, replace an existing node. Rather, it is simply inserted in a
destination route between two existing nodes. If the insertion of this node causes the receiving route
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to become infeasible, other nodes of this route are ejected until feasibility is regained. This process
is repeated for the subsequent destination routes until the maximum number of exchanges is attained,
at which point the process backtracks to choose alternative destination routes if the route-feasibility
criterion is still not met.

The origin route is chosen according to the shortest tour in distance, the tour with the smallest
number of customer, the tour with the highest residual capacity, or the tour with the smallest sum
of distance to all the distance of each customer to its closest neighbor. The nodes in the chosen
origin tour are ejected one at a time to maximize the total saving in distance (the saving in the
origin tour minus the added detour in the destination tour) and the slack in the available capacity
of the destination route.

The proposed ejection chain search and classical 2-opt, 3-opt, or-opt heuristics [65,66] make up
the post-optimization procedure. They are executed one after the other (ejection search followed
by 2-opt, 3-opt and 0nally or-opt) to improve the solutions received by the solution warehouse as
described in Section 3.3.

3.2.5. Initial solutions
A number of classical heuristics have also been included to generate initial solutions and help

diversify the pool. Four simple construction heuristics from Bentley [67] were adapted for the
VRPTW: (i) least successor; (ii) double-ended nearest neighbor, which starts from a seed node
for each tour and sequentially adds the nearest feasible node on each side of the current tour until
the tour is full; (iii) multiple fragments, which sequentially adds the shortest arcs to form feasible
tours; and (iv) shortest arcs hybridizing, which is similar to the previous heuristic but adds arcs
probabilistically according to their length (shorter length arcs have a greater probability of being
chosen). When required, the repair procedure is applied to the resulting solutions.

3.3. The cooperation mechanism

The solution warehouse is the core of the cooperation mechanism. It keeps good, feasible solu-
tions and is dynamically updated by the independent search processes. The pool of solutions forms
therefore an elite population from which the independent procedures will require solutions at vari-
ous stages of execution. Path representation is used to keep solutions in solution warehouse. These
solutions are ordered 0rst by the number of vehicles (in increasing order) and then according to the
weighted sum of the corresponding travel time, total distance, waiting time and residual time for all
customers (see Section 4).

The solution warehouse is divided into two sub-populations: in-training and adult. All solutions
received from the independent processes are placed in the in-training part. The post-optimization
procedure is then applied and the resulting solution is moved to the adult sub-population. Du-
plicate solutions are eliminated. All requests for solutions initiated by the independent processes
are satis0ed by the adult sub-population. Solutions are selected randomly according to probabil-
ities biased toward the best based on the same function used to order solutions in the solution
warehouse.

In the collaboration diagram depicted in Fig. 1, each independent method (the construction heuris-
tics are grouped together) is encapsulated in an MPI process. An MPI process contains the partic-
ular algorithm, a communication mechanism for exchanging solutions, and a control mechanism for
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E.A.Tabu SearchConstructors

Post-Opt

Solution Warehouse

Fig. 1. Collaboration diagram.

parameter setting, initialization, termination, and solution acceptance. The cooperative method works
through the solution warehouse, which is the central point of communication. It provides starting
and diversi0cation solutions to tabu search procedures and parents to the evolutionary algorithms
(EA). The population size in the solution warehouse is 0xed to a value related to the problem
size (10∗size) and the worst results are eliminated as needed. No direct communications take place
between processes thus enforcing their independence and the asynchronous mode of exchange. This
scheme makes the cooperation design simpler and, eventually, allows easy modi0cation of the parallel
system by adding new methods or dropping ine@cient ones.

4. Computational experiments

The experimental study had a dual objective: (i) to compare the proposed warehouse cooperative
parallel meta-heuristic to the best performing methods proposed in the literature for the VRPTW
and, thus, to validate our claim that the proposed method o2ers comparable performance in terms
of both solution quality and computation e2ort; (ii) to evaluate the role of cooperation and the
contribution of the individual methods involved in the cooperation, in particular the impact of the
quality of individual methods on the performance of the global search. The ultimate objective of the
cooperative search is to show that by combining o2-the-shelf methods, robustness can be attained
with linear speedup and no calibration.

We start by indicating the problem data sets used, the settings of the individual and global searches,
and the computing environment. Results are then presented, compared, and analyzed. Finally, we
present a brief analysis of the behavior of the parallel cooperative search.

4.1. Experimental setting

A di2erent search method is run on each of the four processors (two for tabu search and two for
evolutionary algorithm). The solution warehouse, the post-optimization, and the construction methods
are run on another processor for a total of 0ve processors in this study.

Experimentations were performed on two versions of the cooperative search to study the inGuence
of the individual methods on the global performance and the interaction between the methods when
used in cooperation. The 0rst experimentation (identi0ed LC02 in the following) consists of two
Taburoute methods (TS1 and TS2) and the two evolutionary algorithms (OX and ER). In the second
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experiment (LC03), the uni0ed tabu (UT1) replaces the second Taburoute method. The evolutionary
algorithms do not change.

Two sets of parameters were de0ned for the Taburoute search threads based on those indicated in
the original paper for the VRP [41]. Both sets used a tabu tag length of [5,10] iterations. Each set
used a di2erent seed as well as di2erent p-neighborhood dimensions (15% and 20% of the nodes
are evaluated in the 0rst and second tabu search, respectively), initial solutions (the best solution
out of 15 and 20 false starts), and penalty factors for frequently moved vertices (1 and 0.5). The
parameters for the value function presented in the initial article by Cordeau, Laporte, and Mercier
([42]: 
 = 1; � = 1; � = 1) were used for the uni0ed tabu search thread. Finally, an arc mutation
probability of 1=100 was used on temporary copies of the parents for the crossovers used by the
evolutionary algorithms.

Tests have been carried out on the standard set of test problems proposed by Solomon [32] and
used by all authors. The set contains 56 problems of 100 customers each. We also used the extended
set produced by Homberger and Gehring [10] with 300 problem instances that vary from 200 to
1000 customers.

The Solomon standard and extended problems are divided into six categories, named C1, C2,
R1, R2, RC1, and RC2. For all problem instances, customers are distributed in a [0,100] square
unit. The customers in sets C are clustered together, while those in sets R are distributed randomly.
Problems in sets RC combine the two characteristics. Time windows at the depot are relatively small
for problems of type 1, to allow less customers to be served by each route; time windows are larger
for problems of type 2. The service time is of 10 units by customer for problems of type R and
RC, and of 90 units for class C.

Solutions in the adult sub-population of the solution warehouse are sorted, 0rst by the number
of vehicles, second by a weighted sum, C(p), of attributes: the total time required to serve all
customers, the associated total distance and total waiting time at customers, and the sum of the
slack left in each time window:

C(p) =W1 ∗ totalTime +W2 ∗ totalDistance +W3 ∗ totalWait +W4 ∗ totalSlack;

W1–W4 were set to 1 in all the reported experiments. This measure combined with the number
of vehicles gives us an overall idea of the solution quality (totalTime and totalDistance) and
Gexibility (totalWait and totalSlack). The two last measures indicate how much slack there exists
in the solution and how easily feasible neighboring solutions may be explored.

Runs of 12 min wall clock time are performed by the cooperative meta-heuristic for each of the
100 city problems, while 50 min are given to the sequential runs of the independent algorithms.
Longer running times, equal to those reported by Homberger and Gehring [10] were allowed for the
larger problem instances. These times go up to 50 min wall clock time for the 1000 city problem.

Clusters of 0ve Pentium III computers were used for both versions of the cooperative search. The
0rst version (LC02) was run on 500 MHz CPUs with 128 MB of RAM under Windows. The second
version (LC03) was run on 850 MHz CPUs with 512 MB of RAM under Linux. Communications
were managed by Voyager and MPICH for version LC02 and LC03, respectively. Computations of
distances have been carried out in double precision. The second implementation (LC03) is machine
independent and can be run with MPICH on Unix, Windows, or Linux.
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Table 1
Internal comparisons

Class UT1 TS1 TS2 ER OX

R1 12.08 12.17 12.17 12.25 12.49
1210.14 1211.10 1215.45 1211.38 1218.79

C1 10.00 10.00 10.00 10.00 10.00
828.38 828.38 828.38 828.38 828.38

RC1 11.50 11.50 11.67 11.88 11.74
1389.78 1388.24 1384.65 1394.28 1380.29

R2 2.73 2.94 2.96 2.94 3.02
969.57 955.18 958.95 966.78 954.32

C2 3.00 3.00 3.00 3.00 3.00
589.86 589.86 589.86 589.86 589.86

RC2 3.25 3.25 3.25 3.38 3.31
1134.52 1145.29 1147.00 1118.63 1144.13

4.2. Computational results

Average results for each set of problem instances are given in this section. Complete results are
presented in the Appendix for LC03 and in Le Bouthillier and Crainic [68] for LC02. Tables display
average values for the total number of vehicles and the total distance (just below the number of
vehicles) for each problem class and, globally, for each meta-heuristic. Best results are indicated in
bold characters. Tables 3–9 also display the cumulative number of vehicles (CNV) and cumulative
total distance (CTD) for each procedure. Unless otherwise indicated, results were obtained on the
classical Solomon data set with 100 customers.

First, a comparison is made between the sequential methods involved in the cooperative search.
Results are displayed in Table 1. The 0ve meta-heuristics equally solve the problems of type C
that have clustered customers. This is not surprising since it is easy to assign distant customers to
distinct routes which belong to the optimal solution. Problems with randomly positioned customers
and large time windows are more di@cult to solve. There is no clear winner, although the uni0ed
tabu search slightly outperforms our version of Taburoute and the evolutionary algorithms.

Table 2 displays results for the cooperative (LC02 and LC03) and independent (LCIND) parallel
methods. In the independent runs, there is no communication between the individual searches and
the solution warehouse serves only to report the best solution of all the four methods (UT1, TS1,
ER, OX). It is worth recalling that each independent method runs for 50 min and the parallel method
runs for 12 min for each 0ve processors (one for each method and one for the solution warehouse)
and that consequently there is speedup superior to three when comparing the total clock time of the
two parallel methods.

The results indicate that cooperation increases the robustness of the search, without an increase in
computation cost. The cooperative search is able to produce better results than the best independent
method. Furthermore, even accounting for a signi0cant speedup, the cumulative number of vehicles
is reduced by two for LC02 when compared to the independent method and by an additional two
vehicles for LC03. With only one 0fth of the time available when running in sequential mode,
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Table 2
Cooperative versus independent methods

Class LCIND LC02 LC03

R1 12.08 12.17 12.08
1210.14 1209.27 1209.19

C1 10.00 10.00 10.00
828.38 828.38 828.38

RC1 11.50 11.50 11.50
1388.24 1389.22 1386.38

R2 273 2.82 2.73
969.57 965.91 960.95

C2 3.00 3.00 3.00
589.86 589.86 589.86

RC2 3.25 3.25 3.25
1134.52 1143.70 1133.30

individual methods bene0t from the cooperation and are thus able to obtain the same or better
solution quality than in sequential (with only one exception out of 356 problems—R205—with
0.49% more distance for LC03). On average the cooperative method shows better total distance for
each class of problems compared to the independent approach.

To assess the performance of the cooperative parallel meta-heuristic, we compared the results
of the two variants (LC02 and LC03) to those of the best methods (published or not) for the
VRPTW, reviewed in Section 2: Rochat and Taillard ([53]—RT), Homberger and Gehring
([10]—GH99), Taillard et al. ([69]—TB), Rousseau et al. ([43]—RGP), Cordeau et al. ([42]—
CLM), BrKaysy, Hasle, and Dullaert ([48]—BHD), Homberger ([55]—H99), BrKaysy and Dullaert
([50]—EA2), Gehring and Homberger ([11]—GH01), BrKaysy ([47]—B01), and Bent and Henten-
ryck ([51]—BVH). Table 3 displays the results on the standard 100-customer problem sets (the
only set addressed by all). The table also presents the CNV, the CTD for each method, and the
experiment settings (CPU time, number of runs and minutes for each run).

The performance of the two versions of the proposed cooperative are competitive even if no
particular calibration has been performed. The solution quality is comparable to the best of the
sequential and parallel methods (LC03 is in 7th position with regard to the CNV), while computation
times are reasonable, even when we take into account the 0ve processors used.

We also compared our results to those in the literature on the extended data sets provided by
Homberger and Gehring [10]. Table 9 shows the total CNV and CTD for all 300 problems of the
extended set. Average results by problem size and class can be found in Tables 4–8. Detailed results
by problem and class can be found in Tables 12–16 in the Appendix. For each problem size and
class, each table displays the CNV, the CTD, and the CPU time for each method.

Results are again very satisfying. The quality of results and the computation e2ort are on a par
with the best methods available. Five new best solutions are found:

R1-2-3 18 3164,41,
RC2-2-6 4 3086,76,
C1-4-7 39 7668,33,
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Table 3
Comparison of average results on 100-customer problems

Author R1 R2 C1 C2 RC1 RC2 CNV/CTD Experiment

RT 12.25 2.91 10.00 3.00 11.88 3.38 415 SG. 100 MHz
1208.50 961.72 828.38 589.86 1377.39 1117.44 57231 1 run, 92:2 min

GH99 12.42 2.82 10.00 3.00 11.88 3.25 415 4 P200 MHz,
1198 947 829 590 1356 1144 56946 1 run, 5 min

TB 12.17 2.82 10.00 3.00 11.50 3.38 410 Sun 10
1209.27 980.27 828.385 589.86 1388.24 1140.42 57521 1 run, 248 min

LC02 12.17 2.82 10.00 3.00 11.50 3.25 409 5 P500 MHz
1209.27 965.91 828.38 589.86 1 389.22 1143.70 57573 1 run, 12 min

RGP 12.00 2.82 10.00 3.00 11.50 3.38 408 Sun U10
1203.38 950.77 828.38 589.86 1 366.45 1093.46 56752 n/a

CLM 12.08 2.73 10.00 3.00 11.50 3.25 407 n/a
1210.14 969.57 828.38 589.86 1389.78 1134.52 57555 Sun U2 300 MHz

LC03 12.08 2.73 10.00 3.00 11.50 3.25 407 5xP850 MHz,
1209.19 963.62 828.38 589.86 1389.22 1143.70 57412 1 run, 12 min

BHD 12.00 2.73 10.00 3.00 11.50 3.25 407 AMD 700 MHz,
1239.77 1016.86 832.06 590.68 1417.79 1199.95 59210 1 run, 2:6 min

H99 11.92 2.73 10.00 3.00 11.63 3.25 406 P200 MHz,
1228.06 969.95 828.38 589.86 1 392.57 1144.43 57876 10 runs, 13 min

EA2 12.00 2.73 10.00 3.00 11.50 3.25 406 AMD 700 MHz
1220.14 977.57 828.38 589.86 1 397.44 1140.06 57870 3 runs, 9:1 min

GH01 12.00 2.73 10.00 3.00 11.50 3.25 406 4 P400 MHz,
1217.57 961.29 828.63 590.33 1395.13 1139.37 57641 5 runs, 13:5 min

B01 11.92 2.73 10.00 3.00 11.50 3.25 405 P200 MHz,
1222.12 975.12 828.38 589.86 1389.58 1128.39 57710 1 run, 82:5 min

BVH 12.18 2.73 10.00 3.00 11.50 3.25 405 Sun U10 440 MHz
1231.08 954.18 828.38 589.86 1 384.17 1124.47 57 272 5 run, 120 min

RC2-8-6 15 19744,73, and
RC2-10-5 18 29352,08.
New best-known CNV and CTD measures for the 200-customer problem set and six new best

averages for RC1-100, R2-200, RC2-200, RC2-400, RC2-600, and RC2-1000 customers problem
class are also reported in bold in Tables 4–8. These results are a clear indicator of the robustness
of the proposed cooperative search, which also seems to perform better than the other on the RC2
problem class.

4.3. Solution warehouse evolution

The results presented in the preceding sub-section emphasize the interest of cooperation. We now
turn to the issue of the behavior of the cooperation.

Table 10 displays the distribution of the number of solutions sent to the solution warehouse by
each individual method for problem instance RC204 for methods LC02 and LC03, respectively. For
the 0rst version, the Taburoute methods identify the largest number of good solutions, with the 0rst
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Table 4
Average results 200-customers

Class GH99 GH01 BVH GES LC02 BHD LC03

R1 18.20 18.20 18.20 18.20 18.40 18.20 18.20
3705 3855.03 3677.96 3618.68 3716.36 3718.30 3676.95

R2 4.00 4.00 4.10 4.00 4.00 4.00 4.00
3055 3032.49 3023.62 2942.92 2986.01 3014.28 2986.01

C1 18.90 18.90 18.90 18.80 19.30 18.90 18.90
2782 2842.08 2726.63 2717.21 2757.36 2749.83 2743.66

C2 6.00 6.00 6.00 6.00 6.00 6.00 6.00
1846 1856.99 1860.17 1833.57 1837.02 1842.65 1836.10

RC1 18.00 18.10 18.00 18.00 18.00 18.00 18.00
3555 3674.91 3279.99 3221.34 3449.71 3329.62 3449.71

RC2 4.30 4.40 4.50 4.40 4.30 4.40 4.30
2675 2671.34 2603.08 2519.79 2627.31 2585.89 2613.75

CNV 694 696 697 694 700 695 694
CTD 176 180 179 328 171 715 168 573 173 738 172 406 173 061

Computer P200 P400 Sun U10 P2000 P500 AMD700 P850
CPU Min 4 × 10 4 × 2:1 n/a 1 × 8 5 × 10 2.4 5 × 10

Table 5
Average results 400-customers

Class GH99 GH01 BVH GES LC02 BHD LC03

R1 36.40 36.40 36.40 36.30 36.70 36.40 36.50
8925 9478.22 8713.37 8530.03.05 8851.55 8692.17 8839.28

R2 8.00 8.00 8.00 8.00 8.20 8.00 8.00
6502 6650.28 6959.75 6209.94 6249.05 6382.63 6437.68

C1 38.00 38.00 38.00 37.90 38.00 37.90 37.90
7584 7855.82 7220.96 7148.27 7651.18 7230.48 7447.09

C2 12.00 12.00 12.00 12.00 12.30 12.00 12.00
3935 3940.19 4154.40 3840.85 3890.24 3894.48 3940.87

RC1 36.10 36.10 36.10 36.00 36.00 36.00 36.00
8763 9294.99 8330.98 8066.44 8704.82 8305.55 8652.01

RC2 8.60 8.80 8.90 8.80 8.70 8.90 8.60
5518 5629.43 5631.70 5243.06 5447.28 5407.87 5511.22

CNV 1390 1392 1393 1389 1398 1391 1390
CTD 412270 428 489 410 112 390 386 409 741 399 132 408 281

Computer P200 P400 Sun U10 P2000 P500 AMD700 P850
CPU Min 4 × 20 4 × 7:1 n/a 1 × 17 5 × 20 7.9 5 × 20
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Table 6
Average results 600-customers

Class GH99 GH01 BVH GES LC02 BHD LC03

R1 54.50 54.50 55.00 54.50 54.80 54.50 54.80
20854 21864.47 19308.62 18358.68 20624.85 19081.18 19869.82

R2 11.00 11.00 11.00 11.00 11.20 11.00 11.20
13335 13656.15 14855.43 12703.52 13097.70 13054.83 13093.97

C1 57.90 57.70 57.80 57.80 58.00 57.80 57.90
14792 14817.25 14357.11 14003.09 14523.65 14165.90 14205.58

C2 17.90 17.80 17.80 17.80 18.00 18.00 17.90
7787 7889.96 8259.04 7455.83 7704.85 7528.73 7743.92

RC1 55.10 55.00 55.10 55.00 55.20 55.00 55.20
18411 19114.02 17035.91 16418.63 18012.52 16994.22 17678.13

RC2 11.80 11.90 12.40 12.10 11.80 12.10 11.80
11522 11670.29 11987.89 10677.46 11189.75 11212.36 11034.71

CNV 2082 2079 2091 2082 2090 2084 2088
CTD 867010 890121 808646 796172 851553 820372 836261

Computer P200 P400 Sun U10 P2000 P500 AMD700 P850
CPU Min 4 × 30 4 × 12:9 n/a 1 × 40 5 × 30 16.2 5 × 30

Table 7
Average results 800-customers

Class GH99 GH01 BVH GES LC02 BHD LC03

R1 72.80 72.80 72.70 72.80 73.10 72.80 73.10
34586 34653.88 33337.91 31918.47 33552.40 32748.06 33552.40

R2 15.00 15.00 15.00 15.00 15.20 15.00 15.00
21697 21672.85 24554.63 20295.28 20158.94 21170.15 21157.56

C1 76.70 76.10 76.10 76.20 76.30 76.30 76.30
26528 26936.68 25391.67 25132.27 26278.74 25170.88 25668.82

C2 24.00 23.70 24.40 23.70 24.20 24.20 24.10
12451 11847.92 14253.83 11352.29 12056.74 11648.92 11985.11

RC1 72.40 72.30 73.00 73.00 72.30 73.00 72.30
38509 40532.35 30500.15 30731.07 37722.62 30005.95 37722.62

RC2 16.10 16.10 16.60 15.80 15.80 16.30 15.80
17741 17941.23 18940.84 16729.18 17464.30 17686.65 17441.60

CNV 2770 2760 2778 2768 2769 2776 2766
CTD 1515 120 1535 849 1469 790 1373 662 1472337 1384 306 1475 281

Computer P200 P400 Sun U10 P1500 P500 AMD700 P850
CPU Min 4 × 40 4 × 23:2 n/a 367.1 5 × 40 26.2 5 × 40



1700 A.L. Bouthillier, T.G. Crainic / Computers & Operations Research 32 (2005) 1685–1708

Table 8
Average results 1000-customers

Class GH99 GH01 BVH GES LC02 BHD LC03

R1 91.90 91.90 92.80 92.10 92.20 92.10 92.20
57186 58 069.61 51193.47 49281.48 55280.49 50025.64 55176.95

R2 19.00 19.00 19.00 19.00 19.20 19.00 19.20
31930 31873.62 36736.91 29860.32 30951.07 31458.23 30919.77

C1 96.00 95.40 95.10 95.10 95.30 95.80 95.30
43273 43392.59 42505.35 41569.67 44061.43 42086.77 43283.92

C2 30.20 29.70 30.30 29.70 30.10 30.60 29.90
17570 17574.72 18546.13 16639.54 17365.26 17035.88 17443.50

RC1 90.00 90.10 90.20 90.00 90.00 90.00 90.00
50668 50950.14 48634.15 45396.41 49711.36 46736.92 49711.36

RC2 19.00 18.50 19.40 18.70 18.50 19.00 18.50
27012 27175.98 29079.78 25063.51 26309.10 25994.12 26001.11

CNV 3461 3446 3468 3446 3453 3465 3451
CTD 2276 390 2290 367 2266 959 2 078 110 2236 787 2133 376 2225 366

Computer P200 P400 Sun U10 P2000 P500 AMD700 P850
CPU Min 4 × 50 4 × 30:1 n/a 1 × 600 5 × 50 39.6 5 × 50

Table 9
Cumulative results 200–1000-customers

GH99 GH01 BVH GES LC02 BHD LC03

CNV 10397 10373 10427 10383 10410 10411 10389
CTD 5246970 5324154 5176616 4851217 5144136 4909592 5 118250

Table 10
Number of best solutions found by methods LC02 and LC03 for RC204

Method LC02 LC03

Construction 24 0
TB1 44 11
TB2 21
UT 24
ER 9 4
OX 3 2

thread, which has the set of parameters recommended by the authors, contributing the largest number.
The uni0ed tabu search contributes the largest number of best solutions in the second version,
the Taburoute thread taking second place. It is noteworthy that for both versions, all processes
contribute solutions to the warehouse and, as the comparison to the independent search method shows
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Fig. 2. Evolution of solutions for RC204 by independent search.

(Table 2), these solutions are important in order for the performance of the cooperative method in
terms of solution quality.

This insight is also supported by the evolution of the cooperative meta-heuristic, as illustrated by
the evolution of the best solution kept in the solution warehouse, and its comparison to the evolution
of the independent search method. Figs. 2–4 display this behavior for a typical problem (RC204)
for the Independent, LC02, and LC03 search methods, respectively. In these 0gures, the best value
of the objective function is plotted in time (in seconds) and the individual method that generated
each solution is identi0ed. The best sequential method value indicated in Figs. 3 and 4 corresponds
to the last solution identi0ed by thread TB1 in Fig. 2. These 0gures clearly indicate that, after a
warm-up period, all methods contribute to the improvement of the solution. One also notices that
the cooperative search 0nds better solutions faster than the independent search, and that it does so
in the early stages of the resolution. This indicates that cooperation impacts the search early on
in the process. Even in the case were a method like the uni0ed tabu search 0nds better solutions
more often, the other methods have a positive inGuence and can lead to better solutions as shown in
Fig. 4: while the uni0ed tabu search was not able to 0nd this best solution when run independently,
it yielded better solutions at the beginning of the cooperative search, which signi0cantly reduced
the warm-up period. Figs. 3 and 4 also illustrate how cooperation may allow to get out of a local
minimum and continue the search toward a signi0cantly improved solution.

On a general note, one uni0ed tabu search cooperating with one Taburoute were able to perform
better than two Taburoute version, mainly due to the quality of solution produced by the uni0ed
tabu search. This indicates that the quality of the individual methods in cooperation has an impact
on the global performance of the method. However, as illustrated by the performance of LC02, the
cooperative search will produce good results for as long as the individual threads produce reasonably
good solutions.
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The results also indicate that cooperation changes the behavior of each method by inducing new
information. This property strongly suggests that cooperative search should be considered a method
by itself and be studied as such. With respect to the VRPTW in particular, the solution warehouse
cooperation between the tabu search and the evolutionary mechanisms allows excellent quality so-
lutions in very reasonable computing times.

5. Conclusions

We have presented a new parallel cooperative meta-heuristic for the VRPTW. The proposed
meta-heuristic displays very good performance in terms of solution quality, computational e2ort, and
robustness over the broad range of problem instances. Linear speedups have been attained and results
are comparable to the best in the literature. The cooperative framework is simple to implement and
expand, and shows great promise in addressing di@cult combinatorial problems, the VRPTW in
particular.
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Table 11
Detail results LC03, 100 customers

# R1 R2 C1 C2 RC1 RC2

01 19.00/1650.79 4.00/1253.26 10.00/828.94 3.00/591.56 14.00/1696.94 4.00/1406.94
02 17.00/1487.60 3.00/1197.66 10.00/828.94 3.00/591.56 12.00/1554.75 3.00/1407.52
03 13.00/1294.24 3.00/942.64 10.00/828.06 3.00/591.17 11.00/1262.98 3.00/1073.39
04 10.00/982.72 2.00/855.21 10.00/824.78 3.00/590.60 10.00/1135.48 3.00/798.46
05 14.00/1377.11 3.00/1013.47 10.00/828.94 3.00/588.88 13.00/1643.38 4.00/1326.83
06 12.00/1253.23 3.00/932.47 10.00/828.94 3.00/588.49 11.00/1427.13 3.00/1158.81
07 10.00/1113.69 2.00/837.20 10.00/828.94 3.00/588.29 11.00/1230.54 3.00/1062.05
08 9.00/964.38 2.00/734.85 10.00/828.94 3.00/588.32 10.00/1139.82 3.00/832.36
09 11.00/1199.63 3.00/916.47 10.00/828.94
10 10.00/1125.04 3.00/963.37
11 10.00/1104.83 2.00/923.80
12 10.00/957.04
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Appendix A

Appendix A contains detailed results obtained by the LC03 cooperative search meta-heuristic.
Table 11 displays detailed results for the standard 100-customer problem instances. Tables 12–16
display detailed results for the extended set of problems, from 200 to 1000 customers with best-known
results outlined in bold face (as of 2003/08/31 from the Sintef web site: http://www.sintef.no/static/
am/opti/projects/top/).

Table 12
Detail results LC03, 200 customers

# R1 R2 C1 C2 RC1 RC2

01 20/4 829.21 4/4 502.17 20/2 708.61 6/1 931.44 18/3 946.11 6/3 136.85
02 18/4 362.31 4/3 703.86 18/2 972.24 6/1 863.16 18/3 468.85 5/2 827.45
03 18/3 164.41 4/2 976.64 18/2 775.40 6/1 775.11 18/3 203.68 4/2 637.41
04 18/3 141.02 4/2 034.20 18/2 672.45 6/1 742.00 18/2 963.00 4/2 084.89
05 18/4 213.56 4/3 417.98 20/2 702.05 6/1 879.01 18/3 902.58 4/3 087.98
06 18/3 659.9 4/2 959.14 20/2 701.04 6/1 857.75 18/3 632.80 4/3 086.76
07 18/3 175.75 4/2 532.95 20/2 723.11 6/1 849.46 18/3 456.98 4/2 550.56
08 18/2 999.35 4/1 872.11 19/2 778.82 6/1 824.43 18/3 277.21 4/2341.34
09 18/3 889.96 4/3 115.60 18/2 739.33 6/1 832.04 18/3 385.56 4/2291.43
10 18/3 334.02 4/2 745.45 18/2 663.50 6/1 806.60 18/3 260.31 4/2 092.74

Table 13
Detail results LC03, 400 customers

# R1 R2 C1 C2 RC1 RC2

01 40/10 709.18 8/9 403.89 40/7 152.06 12/4 116.14 36/9 438.51 11/7 019.89
02 36/9 266.18 8/7 811.05 37/7 517.45 12/4 048.07 36/8 587.76 10/6 579.41
03 36/8 551.10 8/6 474.06 36/8 035.08 12/4 179.01 36/8 032.76 8/6 579.41
04 37/7 421.58 8/4 338.61 36/7 340.59 12/3 929.24 36/7 460.19 8/3 882.74
05 36/10 139.75 8/7 633.26 40/7 152.06 12/3 941.05 36/9 372.21 9/6 292.63
06 36/8 881.72 8/6 182.17 40/7 153.46 12/3 877.65 36/9 285.81 8/6 054.46
07 36/8 023.67 8/5 378.68 39/7 668.33 12/3 894.13 36/8 867.02 8/5 727.01
08 36/7 464.09 8/4 349.54 38/7 211.43 12/3 803.17 36/8 686.80 8/5 093.18
09 36/9 343.73 8/6 711.32 37/8 198.38 12/3 924.39 36/8 536.53 8/4 745.35
10 36/8 585.78 8/6 094.22 36/7 042.09 12/3 695.85 36/8 252.50 8/4 418.64

Table 14
Detail results LC03, 600 customers

# R1 R2 C1 C2 RC1 RC2

01 59/21875.04 11/18 833.86 60/14 095.64 18/7 776.16 56/18 295.89 15/13 275.93
02 55/20 131.27 11/15 412.26 56/14 332.05 18/8 106.79 55/17 413.64 12/12 071.40
03 55/18 517.45 12/12122.38 56/14 376.87 18/8 189.67 56/16 422.98 11/10 446.72
04 55/16 656.90 11/8 896.13 56/14 063.21 18/7 637.67 55/15 847.45 11/8 016.95
05 54/21 580.31 12/15 854.63 60/14 104.35 18/7 578.67 55/19 769.65 13/12324.05
06 54/20 291.10 11/13 164.53 60/14 093.83 18/7 500.99 55/18 482.75 12/10 700.42
07 54/18 570.23 11/10 697.64 60/14 295.01 18/7 761.43 55/18 286.55 11/11 852.97
08 54/17 030.55 11/8 473.53 59/14 259.39 18/7 483.18 55/17 598.42 11/11108.08
09 54/23 250.86 11/14 379.54 56/14 387.23 18/7 380.21 55/17 228.39 11/10 602.84
10 54/20 794.47 11/13 105.21 56/14 048.18 17/8 024.43 55/17 435.59 11/9 927.76

http://www.sintef.no/static/am/opti/projects/top/
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Table 15
Detail results LC03, 800 customers

# R1 R2 C1 C2 RC1 RC2

01 80/37 666.58 15/293 83.35 80/25 030.36 24/11 677.72 73/33 213.55 20/20 869.21
02 73/35 472.29 15/23 942.54 75/25 518.17 24/13 724.04 72/39 696.20 17/18 672.43
03 73/31 690.97 15/19 050.31 72/27 341.54 24/12369.05 72/35 577.87 15/15 711.84
04 73/29 711.21 15/14 423.95 72/26 111.68 24/11 932.64 72/32 654.10 15/12 314.59
05 72/38 633.08 15/25 837.8 80/25 167.67 24/11 559.98 73/32 860.34 16/19 639.76
06 72/33 388.80 15/21 720.99 80/25 167.00 24/11 418.93 73/32 701.01 15/19 744.73
07 72/30 737.79 15/17 810.47 80/25 514.25 24/11 791.88 72/43 829.43 15/17 964.11
08 72/29 282.40 15/13 741.92 77/25 802.26 25/11 410.32 72/43 694.60 15/16 939.31
09 72/34 976.41 15/23 734.84 74/25 569.05 24/11 736.54 72/41 816.70 15/16 767.66
10 72/33 964.51 15/21 929.44 73/25 466.2 24/12230.00 72/41182.44 15/15 792.31

Table 16
Detail results LC03, 1000 customers

# R1 R2 C1 C2 RC1 RC2

01 100/54 724.64 19/43 975.28 100/42 478.95 30/16889.95 90/51 529.12 22/31 457.37
02 92/56 362.29 19/35 901.41 93/44 459.70 30/18606.36 90/48 146.09 19/28 071.59
03 92/50 604.26 20/27 169.56 90/44 000.84 30/17801.03 90/46 201.21 18/22 680.56
04 92/46 017.14 19/20 002.45 90/42 373.79 29/19662.83 90/44 072.32 18/17 449.25
05 91/70 838.01 20/37 656.48 100/42 549.13 30/16586.46 90/52 780.36 18/29 352.08
06 91/54 952.03 19/32167.55 100/42 479.15 30/16473.14 90/52 842.71 18/28 797.14
07 91/50 040.50 19/25 261.34 100/42 689.28 31/17662.34 90/51 230.16 18/27 202.21
08 91/46 554.80 19/19 294.61 97/43 302.82 29/17219.59 90/50 648.85 18/26 037.65
09 91/61 862.40 19/35 146.70 92/45 372.21 30/16984.60 90/50 354.98 18/25 115.60
10 91/59 813.39 19/32 622.36 91/43 133.33 30/16548.74 90/49 307.75 18/23 847.69
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