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Abstract

We present a framework for a guided parallel cooperative search for combinatorial op-
timization based on the central memory multi-thread cooperative search concept. The
proposed mechanism endows cooperative search with capabilities to create new informa-
tion and guide the global search. Based on patterns shared by several of the solutions
exchanged among the search threads, information is sent to individual meta-heuristics
about promising and unpromising patterns of the solution space. This process results
in a better coordination between the individual methods and the possibility to guide
the diversification and intensification of the global search. We apply this method to the
Vehicle Routing Problem with Time Windows. Experimental results on an extended set
of benchmark problem sets illustrate the benefits of the proposed methodology.

Keywords : parallel computation, parallel cooperative search, Vehicle Routing Prob-
lem with Time Windows
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1 Introduction

Efficiency and robustness are the primary qualities of good meta-heuristics and parallel
computing may significantly enhance these characteristics. Three forms of parallelism
can be applied to meta-heuristics: (i) Division of computer-intensive tasks at a low al-
gorithmic level, (ii) Explicit domain decomposition of the solution or search space, (iii)
Multi-thread search. An independent multi-thread search produces the best solution
among those found by each independent method. Multi-thread cooperative search im-
plements a mechanism that allows information (e.g., solutions) to be exchanged among
the search threads. Several such mechanisms have been proposed in the literature and
in many cases cooperative multi-search offered superior performance in terms of better
solutions and shorter resolution times (Crainic and Toulouse 2003).

While all parallelization strategies may speed up the resolution, cooperative search
methods may also increase the robustness of the global search (Crainic and Toulouse
2003). Cooperative search combines the efforts of several independent meta-heuristics
by using a so-called solution warehouse (according to the information stored, the names
“adaptive” and “central memory” are also used). This device receives “good” solutions
from the search threads and, on demand and according to their own internal logic, pro-
vides them in return with solutions to, for example, diversify the search. This simple
mechanism allows the asynchronous communication and exchange of solutions that in-
fluences the search trajectory of each method. Enhanced with simple extraction rules for
the returned solutions, simple cooperation was successfully used to address a number of
difficult combinatorial problems: network design, multi-commodity location-allocation
(Crainic, Toulouse and Gendreau 1995), circuit partitioning and Vehicle Routing Prob-
lem with Time Windows (VRPTW) (Le Bouthillier and Crainic 2005).

From a conceptual point of view, the solution warehouse contains useful indirect
information for the global search. Thus, for example, the history of solution discovery
and the frequency of appearance of certain attributes in solutions of particular quality
can be used to create new information about the search space. This process of infor-
mation creation can transform the solution warehouse in an intelligent data warehouse
that holds more complex information and guides individual methods towards promising
or unexplored regions.

The goal of this paper is to present a mechanism that endows cooperative search
with capabilities to create new information and guide the global search. The proposed
identification pattern mechanism sends information to individual meta-heuristics about
promising and unpromising patterns of the solution space. By fixing or prohibiting
specific solution attribute values in particular search methods, we can focus the search
to desired regions. This mechanism may thus be applied to enforce a better coordination
between the individual methods and control the diversification and intensification of the
global search. We apply this mechanism to the Vehicle Routing Problem with Time
Windows (VRPTW). Experimental results on an extended set of benchmark problem
sets illustrate the benefits of the proposed methodology.
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Figure 1: Abstract Framework of a Cooperative Search

The main contribution of this paper is the introduction of an enhanced cooperative
search mechanism that creates new information from exchanged solutions and perform
global intensification and diversification phases. The proposed framework does not
suppose any specific problem structure and may thus be applied to a wide range of
combinatorial problems. The paper also reports very good solutions on benchmark
problem sets for the VRPTW: 139 best known results found and a new best known
average on the problems of size 200 and 1000.

The paper is organized as follow. Section 2 briefly presents a framework of cooper-
ative search. Section 3 introduces the pattern identification mechanism and the global
search phases. Section 4 details the implementation of a guided cooperative search ap-
plied to the VRPTW. Section 5 presents the computational results and analyzes them
both from the point of view of solving the VRPTW and from that of the performance
of the parallel strategy. Conclusions and perspectives are the subject of the last section.

2 A Cooperative Search Framework

Figure 1 illustrates the cooperative search framework made up of a number of inde-
pendent processes (threads) of possibly different types, which communicate through
the solution warehouse. A search thread either heuristically constructs new solutions,
or executes a neighborhood-based improving meta-heuristic through the search space,
or implements a population-based meta-heuristic (e.g., evolutionary algorithms, Scat-
ter Search, Path relinking), or performs post-optimization procedures (e.g., intensive
local search) on solutions in the solution warehouse. Improving meta-heuristics, such
as Tabu search, aggressively explore the search space, while population-based methods
contribute toward increasing the diversity of solutions exchanged among the cooperating
methods. When the same meta-heuristic is used by several search threads, the initial
solution and particular setting of a number of important search parameters differentiate
each search thread from the others.

The cooperation aspect of the parallelization scheme is achieved through asynchro-
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nous exchanges of information. Information is shared through a solution warehouse or
pool of solutions. In this scheme, whenever a thread desires to send out information
(e.g., when a new local optimum is identified), it sends it to the pool. Similarly, when a
thread accesses outside information (to diversify the search, for example), it reaches out
and takes it from the pool. Communications are initiated exclusively by the individual
threads, irrespective of their role as senders or receivers of information. No broadcasting
is taking place and there is no need for complex mechanisms to select the threads that
will receive or send information and to control the cooperation. The solution warehouse
is thus an efficient implementation device that allows for a strict asynchronous mode of
exchange, with no predetermined connection pattern, where no process is interrupted
by another for communication purposes, but where any thread may access at all times
the data previously sent out by any other search thread.

The solution warehouse keeps the information in an order appropriate for the ex-
change mechanism considered. To fully characterize the cooperation process, one has
to specify (i) the information which is to be shared; (ii) the particular methods that
makeup the cooperative search; (iii) when and how communications occur; (iv) the uti-
lization each thread makes of the imported information (Crainic and Toulouse 2003).
The information exchanged among cooperating procedures has to be meaningful, in the
sense that it has to be useful for the decision process of the receiving threads. Informa-
tion indicative of the current status of the global search or, at least, of some individual
meta-heuristic is, in this sense, meaningful.

Two main classes of cooperation mechanisms are found in the literature, based on
partial and complete solutions, respectively. Adaptive memory methods (Rochat and
Taillard 1995) store partial elements of good solutions and combine them to create new
complete solutions that are improved then by the cooperating threads. Central mem-
ory approaches exchange complete elite solutions among neighborhood and population-
based meta-heuristics (Crainic, Toulouse, Gendreau 1995, Crainic and Toulouse 2003,
Le Bouthillier and Crainic 2005).

In a simple central memory cooperation scheme (e.g., Le Bouthillier and Crainic
2005), threads share information about their respective good solutions identified so far.
When a thread improves the imported solution or when it identifies a new best solution,
it sends it to the solution warehouse. This scheme is intuitive and simple, and it satisfies
the meaningfulness requirement. The selection of the methods involved in cooperative
search should be oriented toward obtaining: (i) Good quality solutions; (ii) A broad
diversity of solutions to facilitate the discovery of promising regions; (iii) The rapid
production of intermediate solutions to feed the information exchange mechanisms; (iv)
A mechanism that combine various solutions to create diversity; (v) A mechanism that
has the ability to escape local optima.

The solution warehouse is thus the core of the cooperation mechanism. It keeps
good solutions and is dynamically updated by the independent search processes. The
pool of solutions forms an elite population from which the independent procedures
require solutions at various stages of execution. Solutions are ordered according to a
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predetermined utility measure that quantifies the solution quality. The solution utility
can be its objective value or a combined measure of solution’s properties.

Independent methods send their improved solutions to the post-optimization algo-
rithms. Theses solutions are considered in-training until they have been post-optimized
and sent as Adult solutions to the solution warehouse. Duplicate solutions received in
the solution warehouse are eliminated.

All requests for solutions initiated by the independent processes are sent to the
solution warehouse that responds by sending an Adult solution. Solutions are selected
randomly according to probabilities biased toward the best based on the same function
used to order solutions in the solution warehouse.

The population size in the solution warehouse is set relatively to the problem size
and the worst results are eliminated as needed. No direct communications take place
between processes thus enforcing their independence and the asynchronous mode of
exchange. This scheme makes the cooperation design simpler and, eventually, allows
easy modification of the parallel system by adding new methods or dropping inefficient
ones. Moreover, it does not assume any specific problem, which makes it equally relevant
for problems where solution components may be easily defined (e.g., the routes in vehicle
routing problems) and for problems where such structures are much less apparent (e.g.,
network design). The goal now is to improve upon this simple cooperating scheme by
extracting new knowledge from the information exchanged, to yield a more efficient
global search.

3 Pattern Identification Mechanism and Global Search

In this section, we introduce a mechanism to extract knowledge from the information
exchanged and guide each search method towards promising or unexplored regions of
the solution space. It uses a pattern identification mechanism on the solutions present
in the solution warehouse that is then used to fix or prohibit specific solution attributes
(e.g., arcs in network-based problems) for part of the search performed by particular
individual meta-heuristics. One may therefore constrain the search space of particular
meta-heuristics in cooperation and thus perform global intensification and diversification
phases to guide the exploration of the solution space and control the quality and diversity
of the solution warehouse population.

To enhance the clarity of the presentation, we focus in the following on problems that
may be described in terms on inclusion/exclusion of arcs in given networks. Network
design, traveling salesman, and vehicle routing problems are important combinatorial
problem classes that belong to this category. We emphasize, however, that the con-
cepts presented in this section may be extended to any problem definition and solution
attribute.
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3.1 Pattern definition

For the class of problems described above, a very simple and general pattern definition
may be based on the inclusion of arcs in particular solutions.

Consider the frequency of inclusion of arcs in a given subset of the solution warehouse.
In particular, this subset may be the entire population, an elite (e.g., with solution in
the 10% best), average (between the 10% and 90% best) or worst (the last 10%) group
of solutions. An arc with a high frequency in a given group signals that the meta-
heuristics participating to the cooperation have often produced solutions that include
that arc. Tagging solutions to identify the last algorithm that sent it, one may induce
similar information by subset of participating algorithms as well. When the frequency
of inclusion of several arcs is considered, patterns emerge among the solutions of the
solution warehouse or the specific group examined.

We define a pattern of length n as a subset of arcs of cardinality n = 1, 2, . . .,
maximum number of arcs in the problem definition. A frequent (infrequent) pattern
relative to a set of arcs is built of arcs with high (low) frequency of appearance in the
solutions of the set. High (low) frequency arcs are selected sequentially in decreasing
from the highest (increasing from the lowest) frequency value.

We may select patterns from specific subpopulations (e.g., elite, average, and worst)
and compare the rate of appearance of a specific pattern between them. These compar-
isons form the basis of the guidance mechanism proposed in this paper.

3.2 Comparing pattern-appearance frequencies among subpop-

ulations

We define an in-pattern as a pattern that actually appears in at least one solution of the
subset of solutions considered, as opposed to a statistical pattern that does not appear
in any solution of the subset. A statistical pattern is thus only a consequence of the
statistical process of accounting for the frequency of individual arcs

Consider an in-pattern of length n common to the three sets of elite, average, and
worst solution groups. Two meaningful situations can occur with respect to the fre-
quency of appearance of the pattern in these sets as one move from the elite to the
average to the worst subpopulation: The frequency is either increasing or it is stable or
decreasing. We call the in-pattern unpromising in the first case and promising in the
latter.

Promising and unpromising patterns may then be used to constrain for a certain
time the search space of particular methods in the cooperation and thus induce global
intensification and diversification phases, as described in the next subsection.
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3.3 Using pattern identification - Global search

Global search intensification and diversification phases may be triggered by fixing (in-
cluding) or prohibiting (excluding) arcs in the solutions a given meta-heuristic explores
during a certain period.

Consider an unpromising pattern of length n. To intensify the search around solu-
tions with “good” attributes, one prohibits the arcs defining the pattern. On the other
hand, fixing these arcs for a number of iterations will diversify the search relative to
the current set of “good” attribute values. Symmetrically, given a promising pattern of
length n, one intensifies the search by fixing the arcs in the pattern, while prohibiting
them diversifies it.

We define the global search as the cumulative search effort of the individual methods.
To prevent individual methods from converging too rapidly, we favor diversification by
prohibiting arcs during the initial phases of the global search. Later on, we encourage
intensification by fixing promising arcs to enforce the exploration of theses promising
regions of the solution space. We also vary the length of the patterns as a mean of
modulating the intensity of global diversification and intensification phases and thus
influence the evolution of the diversity and quality of solutions in the solution warehouse.

At the beginning of the search there is not sufficient information gathered as the
solution space is insufficiently explored. Therefore, the solution warehouse cannot be
considered representative of the search of the individual meta-heuristic, even when the
population is diverse. Consequently, initially, we build patterns of increasing length from
the average subpopulation only, in order to identify more rapidly promising ones. As the
search progresses, patterns from elite and worst subpopulations are built as described
above. When a statistical pattern is found, we reduce the length of the pattern until an
in-pattern is obtained.

Several modifications must be made to the initial framework presented in the pre-
vious section. The solution warehouse now includes a process to identify and manage
patterns. This process includes decisions on when to compute particular patterns and
to what individual meta-heuristic to send them. It becomes, in fact, the “new” global
meta-heuristic corresponding to the global guided cooperative search. As for the solution
warehouse, it now contains solutions and pattern information, thus a data warehouse.
Communications from the solution warehouse to the individual meta-heuristics are mod-
ified as well. The appropriate pattern and instructions on fixing or prohibiting arcs are
sent along with the solution (selected according to the original criteria). With respect to
the individual meta-heuristics, each needs to be modified to cope with the instructions
relative to fixing or prohibiting arcs. Figure 2 illustrates the guided cooperative search
framework as applied to the VRPTW.
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Figure 2: Guided Cooperative Search applied to VRPTW

4 Guided Cooperative Search for the VRPTW

To illustrate the mechanism described in the previous sections, we developed a guided
cooperative search for the Vehicle Routing Problem with Time Windows (VRPTW).
The application is described in this section. Experimental results are discussed in the
next section.

The VRPTW is a well-known combinatorial problem that has been extensively stud-
ied and is thus well suited for benchmarking. We address the single depot VRPTW,
as illustrated in Figure 3, where one is given a set of customers with known positive
demands and specific time intervals when service can be provided. A fleet of homoge-
neous vehicles of known capacity is available at a given depot to perform this service.
The objective is to find a set of closed routes (or tours) that start and end at the depot
within its opening hours, such that the total cost of performing the service is minimized,
customers are visited and served during their specified time windows, and vehicles are
not overloaded.

In the problem version we address, cost is a combination of two factors: the number
of vehicles (routes) used and the total distance traveled. A high cost is associated
with vehicle utilization to enforce the search towards solutions with reduced number of
vehicles. Each customer is visited only once. A vehicle cannot arrive later than the
customer’s closing time, but is allowed to arrive before the associated opening time,
in which case it waits, without explicit penalty, until the customer is ready. Once the
service starts, it is carried on until completion, even if the service ending time might
be later than the expiration of the time window. Cordeau et al. (2002) review problem
variants, formulations, and solution methods for the VRPTW.

Le Bouthillier and Crainic (2005) presented a cooperative parallel method for the
VRPTW based on the simple solution warehouse mechanism presented in Section 2.
The cooperation involved two Tabu search methods that perform well sequentially, the
Unified Tabu (Cordeau, Laporte, and Mercier 2001) and Taburoute (Gendreau, Hertz,
and Laporte 1994), two simple evolutionary algorithms with Order and Edge Recombi-
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Figure 3: Best known solution for problem C1-6-4

nation Crossover, respectively, as well as a number of post-optimization methods (2-opt,
3-opt, or-opt, and Ejection Chains) that were used to reduce the number of vehicles and
the total traveled distance. Four simple construction algorithms were used to provide
initial solutions to the population.

We applied the proposed cooperation framework to the parallel method of Le Bouthillier
and Crainic (2005). In the VRPTW context, the definition of an in-pattern of length n

is straightforward. The problem is defined on a network, where an arc corresponds to
a possible movement between two customers or between a customer and a depot. The
procedures introduced in the previous section were used to define patterns.

Fixing and prohibiting arcs in the solutions explored by the four meta-heuristics is
straightforward as well. Fixing (including) arcs always leads to a non empty solution
space that, at the most extreme, may reduce to a single solution that represents a
very (too) long pattern. Prohibiting (excluding) patterns may lead to an empty feasible
solution space when patterns are too long. To avoid both situations and strike a balance
between the number of feasible solutions and the size of the constrained solution space,
we limit the pattern length to 25% of the size of the problem.

The computing time allocated to the cooperative method is divided into four phases:
Two phases of diversification at the beginning to broaden the search, followed by two
intensification phases to focus the search around promising regions. The four phases
proceed as follows:

• Phase I. Built unpromising in-patterns of frequent arcs in the average subpopula-
tion and prohibit them in the independent meta-heuristics;

• Phase II. Prohibit arcs from frequent unpromising in-patterns from the worst
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subpopulation;

• Phase III. Work with the average subpopulation and fix arcs from frequent promis-
ing in-patterns;

• Phase IV. Build frequent promising in-patterns from the elite sub-population and
fix the arcs for the meta-heuristic searches.

Pattern lengths are explored in decreasing length in the first two phases and in
increasing length in the last two phases, by increments of 1 unit.

5 Computational Experiments

The experimentation has a dual objective. On the one hand, we aim to compare the
guided cooperative search to the simple version and to the best performing methods
proposed in the literature for the VRPTW and, thus, to validate our claim that the
proposed method offers competitive performance in terms of both solution quality and
computational effort. On the other hand, we also aim to evaluate the impact of guiding
the search toward or away from specific patterns and performing diversification and
intensification to control the entropy of the population.

A different search method, Taburoute, an Unified Tabu Search algorithm, and two
evolutionary algorithms (OX and ER), is run on each of the four processors. The solution
warehouse, the post-optimization procedures, the pattern identification method, and the
construction methods are run on another processor for a total of five processors in this
study.

For Taburoute we use the parameter settings indicated in the original paper for the
VRP (Gendreau, Hertz, and Laporte 1994). Tabu tags were set to a length varying
between 5 and 10 iterations, 15% of the nodes were evaluated in the p-neighborhood
dimensions, the initial solution was selected out of 15 initial generated solutions and a
solution from the solution warehouse, a penalty of 1 was used for frequently moved. The
parameters for the value function presented in the initial article by Cordeau, Laporte,
and Mercier (Cordeau, Laporte, and Mercier 2001) (alpha:=1; beta=1; gamma=1) were
used for the Unified Tabu. Finally, an arc mutation probability of 1 percent was used on
temporary copies of the parents for the crossovers used by the evolutionary algorithms.

Tests have been carried out on the standard set of test problems proposed by Solomon
(1987). The set contains 56 problems of 100 customers each. We also used the extended
set produced by Homberger and Gehring (1999) with 300 problem instances that vary
from 200 to 1000 customers. The Solomon and extended problems are divided into six
categories, named C1, C2, R1, R2, RC1, and RC2. For all problem instances, customers
are distributed in a [0,100] square unit. The customers in sets C are clustered together,
while those in sets R are distributed randomly. Problems in sets RC combine the two
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characteristics. Time windows at the depot are relatively small for problems of type
1, to allow fewer customers to be served by each route; time windows are larger for
problems of type 2. The service time is of 10 units by customer for problems of type R
and RC, and of 90 units for class C.

Solutions in the solution warehouse are sorted, first by the number of vehicles, second
by a weighted sum, C(p), of attributes: the total time required to serve all customers, the
associated total distance and total waiting time at customers, and the sum of the slack
left in each time window: C(p)=W1*totalTime + W2*totalDistance + W3*totalWait
+ W4*totalSlack.

Parameters W1 to W4 were set to 1 in all the reported experiments. This measure
combined with the number of vehicles gives us an overall idea of the solution quality
(totalTime and totalDistance) and flexibility (totalWait and totalSlack). The last two
measures indicate how much slack there exists in the solution and how easily feasible
neighboring solutions may be explored.

In previous research (Le Bouthillier and Crainic 2005), cooperative search was found
to provide faster results of equivalent or better quality that each of its independent
searches. We therefore compare only simple and guided parallel cooperative searches.

Runs of 12 min wall-clock time were performed by the cooperative meta-heuristics
for each of the 100 city problems. Longer running times, equal to those reported by
Homberger and Gehring (1999) were allowed for the larger problem instances. These
times go up to 50 min wall-clock time for the 1000 city problem. To be able to compare to
the wall-clock time of the simple cooperative search, we created virtual machines under
VMware and forced their CPU clocks to emulate the machines used for the previous
study (Le Bouthilllier and Crainic 2005). Using faster virtual or physical machines
will only decrease the wall-clock time for the same results. A virtual cluster of five
Pentium III 850MHz CPU computers with 512MB of RAM under Linux was used.
Computations of distances were carried out in double precision. The implementation is
machine independent and can be run with MPICH on Unix, Windows, or Linux.

The four global phases that prohibit or fix arcs were each allocated 1/4 of the total
wall-clock execution time. In-pattern lengths were at most 25% of the problem size.

Tables 1 and 2 display the average results per class for the cumulative number of
vehicles (CNV) and distance (CTD) for the standard Solomon problems and for extended
set of problems, respectively. Best results are shown in bold face and, in Table 1, authors
are presented in decreasing CNV/CTD value.

Results of the simple Cooperative Search (LC03) and Guided Cooperative Search
(LCK05) are compared to those of the best methods (published or not) for the VRPTW
on the benchmark site of SINTEF (http://www.sintef.no/static/am/opti/projects/top/)
on February 15, 2005: The unified Tabu Search of Cordeau, Laporte and Mercier (2001,
denoted CLM), the evolutionary algorithm of Homberger and Gehring (1999, denoted
HG), the two stage hybrid local search of Bent and Van Hentenryck (2001, denoted
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Author R1 R2 C1 C2 RC1 RC2 CNV/CTD Experiment
RT 12.25 2.91 10.00 3.00 11.88 3.38 415 SG. 100MHz

1 208.50 961.72 828.38 589.86 1 377.39 1 117.44 57 231 1 run, 92.2 Min
CLM 12.08 2.73 10.00 3.00 11.50 3.25 407 n/a

1 210.14 969.57 828.38 589.86 1 389.78 1 134.52 57 555 Sun U2 300MHz
LC03 12.08 2.73 10.00 3.00 11.50 3.25 407 5xP850 MHz,

1 209.19 963.62 828.38 589.86 1 389.22 1 143.70 57412 1 run, 12 Min
H99 11.92 2.73 10.00 3.00 11.63 3.25 406 P200 MHz,

1 228.06 969.95 828.38 589.86 1 392.57 1 144.43 57 876 10 runs, 13 Min
GH01 12.00 2.73 10.00 3.00 11.50 3.25 406 4 P400 MHz,

1 217.57 961.29 828.63 590.33 1 395.13 1 139.37 57 641 5 runs, 13.5 Min
B01 11.92 2.73 10.00 3.00 11.50 3.25 405 P200 MHz,

1 222.12 975.12 828.38 589.86 1 389.58 1 128.39 57 710 1 run, 82.5 Min
LCK05 11.92 2.73 10.00 3.00 11.50 3.25 405 5xP850 MHz,

1 214.20 954.32 828.38 589.86 1 385.30 1 129.43 57 360 1 run, 12 Min
BVH 12.18 2.73 10.00 3.00 11.50 3.25 405 Sun U10 440Mhz

1 231,08 954.18 828.38 589.86 1 384.17 1 124,47 57 272 5 run, 120 Min

Table 1: Comparison of average results on 100-customer problems

BVH), the Active Guided Evolution Strategies of of Mester and Bräys (2004, denoted
MB), Rochat and Taillard (1995, denoted RT), Gehring and Homberger (2001, denoted
GH01), and Bräysy (2003, denoted B01). We refer the reader to Le Bouthillier, Crainic,
and Kropf (2005 ) for detailled results on standard and extended Solomon’s benchmark
sets of problems.

The proposed method, LCK05, yields very good results. It appears in second place
in both tables according to the CNV/CTD ratio. Relative to the standard Solomon
problems, the method we propose yields a total number of vehicles of 405, which is the
lowest number obtained so far and makes the guided cooperative serach one of the best
meta-heuristics currently available for the VRPTW.

We observe that, compared to the simple cooperative search, the new method reduced
the number of vehicles by 2 and the distance by 52.38 units. We found 24 of the best
known results and report the best known CNV. The guided cooperative search reports
a new best average for the R1 problem class. For C1 and C2 problem classes of 100
customers, almost all methods found the best known average number of vehicles and
the total distance. For the other classes of problems, we found the best known number
of vehicles in all instances and at most 0.16% of increase in distance when compared to
the other methods.

Problem MB LC03 LCK05 HG
CNV CTD CNV CTD CNV CTD CNV CTD

200 total 694 168573 694 173061,631 694 169958,49 694 173312,32
400 total 1389 390386 1390 410329,98 1389 396611,15 1388 409763,38

600 total 2082 796172 2088 840582,74 2086 809493,46 2076 851680,33

800 total 2765 1361586 2766 1475435,14 2761 1443399,01 2755 1479801,56

1000 total 3446 2078110 3451 2225366,13 3442 2133644,57 3439 2236582,89

Total 10376 4794827 10389 5124775,621 10372 4953106,68 10352 5151140,48

Table 2: CNV/CTD for 200-1000 customers

Table 2 displays the results for the cumulative number of vehicles (CNV) and distance
(CTD) aggregated by problem size for the extended set of problems. There are not
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many authors that addressed the entire problem set, which explains the limited number
of entries in the table (the best methods were selected).

We observe that we obtain a new best known CTD value for problems of size 200.
For the other problem classes, the difference to the other methods is less than 0.48% in
terms of the cumulative number of vehicles. In all cases, we improved upon the simple
cooperative search. Since we report a slightly higher total number of vehicles compared
to HG, we also report a reduction in the total cumulative distance by 3.94% for all
classes.

6 Conclusions and Perspectives

We presented an enhanced cooperative search mechanism that creates new information
from exchanged solutions and thus performs global intensification and diversification
phases. The proposed framework does not suppose any specific problem structure,
even though we illustrated the methodology in the context of problems defined by the
inclusion/exclusion of arcs in particular networks. We also applied this methodology to
the VRPTW and report very good solutions on the extended benchmark problem sets:
139 best known results found and the best known average on the problems of size 200
and 1000.

Experimental results showed that pattern identification method yields good informa-
tion to guide the global search. Patterns of attributes may be constructed independently
of particular solution structures and applied to a wide range of combinatorial problems.
Patterns of attributes could then be used in various sequential and parallel methods to
orient the search.

Cooperative search is thus quite simple to implement (represents less than 10% of
the project in line of code) and the pattern identification method provides an easy
mechanism to constrain the search within promising regions of the search space or
away from unpromising regions. Very good quality solutions were found in linear speed
up by combining good off-the-shelf methods without any particular parameter tuning.
The quality of the individual methods influences the global search quality. Improved
solutions may be found, however, by generating new information from the frequency of
pattern appearance in the best solutions visited and by using the new information to
guide the global search.
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