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Abstract

Combinatorial optimization problems arise commonly in logistics applications. The most

successful approaches to date for solving such problems involve modeling them as integer

programs and then applying some variant of the branch and bound algorithm. Although

branch and bound is conceptually easy to parallelize, achieving scalability can be a chal-

lenge. In more sophisticated variants, such as branch and cut, large amounts of data must

be shared among the processors, resulting in increased parallel overhead. In this paper,

we review the branch and cut algorithm for solving combinatorial optimization prob-

lems and describe the implementation of SYMPHONY, a library for implementing these al-

gorithms in parallel. We then describe a solver for the vehicle routing problem that

was implemented using SYMPHONY and analyze its parallel performance on a Beowulf

cluster.
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1. Introduction

A wide variety of problems arising in logistics applications can be viewed as com-

binatorial optimization problems (COPs). An instance of a COP is defined by a pair
ðE;FÞ and a cost vector c 2 RE, where E is called the ground set and F � 2E is a
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family of subsets of the ground set whose members are called the feasible solutions.

Each feasible solution S has an associated cost given by cðSÞ ¼
P

e2S ce. The objec-

tive is to find a least cost member of F (we assume without loss of generality that the

problem to be solved is one of minimization). Examples of fundamental logistics

problems that can be viewed as COPs are routing problems, packing problems, fa-
cility location problems, scheduling problems, and inventory problems. More elab-

orate models, such as the vehicle routing problem, combine aspects of these

fundamental ones.

Solving large-scale instances of these problems can be extremely difficult in prac-

tice because the set F , although often conceptually easy to enumerate, is usually ex-

tremely large. The most successful approaches to date have utilized integer

programming techniques. To formulate a given COP as an integer program, we as-

sociate an incidence vector with each member of F . The feasible solutions are then
described as the incidence vectors satisfying a given set of linear inequalities. In what

follows, we discuss solution techniques for such integer programs and thus, for the

remainder of the paper, we interpret the members of the set F directly as incidence

vectors rather than as subsets of E.
Although formulating a COP as an integer program is usually an easy exercise,

most interesting COPs are nonetheless in the complexity class NP-hard and it is usu-

ally not possible to explicitly enumerate the member of F . The most common solu-

tion techniques for these integer programs are instead based on implicit enumeration,
usually some variant of the branch and bound algorithm suggested by Land and Doig

[41]. We consider one such variant, known as branch and cut, in which the bounds are

obtained by the solution of a linear programming relaxation augmented by inequal-

ities valid for the set F . Branch and cut uses a divide and conquer strategy and lends

itself naturally to parallelization. However, its effectiveness depends on the sharing of

large amounts of information among processors, namely the valid inequalities used

to augment the LP relaxations, which makes scalability a challenge. This paper dis-

cusses our approach to the parallelization of this algorithm and provides an analysis
of its scalability.

The literature on parallel computation in general and parallel branch and bound

in particular is rich and varied, so we will mention only a few closely related papers

here. Kumar and Gupta provide an excellent general introduction to the analysis of

parallel scalability in [37]. Good overviews and taxonomies of parallel branch and

bound algorithms are provided in both [27,55]. Eckstein et al. [22] also provides a

good overview of the implementation of parallel branch and bound. A substantial

number of papers have been written specifically about the application of parallel
branch and bound to integer programming problems. These include such works as

[11,20,28,46,57].

In the remaining part of the paper, we first describe the vehicle routing problem, a

prototypical logistics application, and then use it to illustrate some of the principles

involved in solving COPs by branch and cut. In Section 4, we discuss the design of

SYMPHONY, our framework for implementing parallel branch and cut. After de-

scribing the framework, we illustrate its use by discussing the implementation of a
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basic VRP solver using SYMPHONY. Finally, we present computational results and

an analysis of SYMPHONY�s scalability.

2. The vehicle routing problem

We consider the classical vehicle routing problem (VRP), introduced by Dantzig

and Ramser [21]. In this problem, a quantity di of a single commodity must be de-

livered to each customer i 2 N ¼ ½1; . . . ; n� ¼ f1; . . . ; ng from a central depot {0}

using k identical delivery vehicles of capacity C. The objective is to minimize total

cost, with cij P 0 denoting the cost of transporting goods from i to j, for 06 i,
j6 n. Note that this cost does not depend on the quantity transported and that

the cost structure is assumed symmetric, i.e., cij ¼ cji and cii ¼ 0.
Conceptually, a solution for this problem consists of a partition fR1; . . . ;Rkg

of N into k routes, each satisfying
P

j2Ri
dj 6C, and a corresponding permutation

ri of each route specifying the service ordering. A number of authors have con-

sidered solution techniques for this problem, e.g., [1,5,12,16,24,25]. Most of

these utilize some form of branch and bound. Numerous classes of valid inequali-

ties, as well as algorithms for generating them in a branch and cut framework,

have also been proposed (see, e.g., [4,6,7,12,14,19,42–44]). An excellent over-

view of the use of branch and cut algorithms for solving the VRP is contained
in [48].

The VRP can be viewed as a combinatorial optimization problem by associating

with it the undirected graph consisting of nodes N [ f0g and edges

E � ffi; jg : i; j 2 N ; i 6¼ jg. The set E is then the ground set and we associate a cost

ce with each edge e 2 E. We define a route in this graph to be a set of nodes R such

that

• R ¼ fi1; i2; . . . ; img,
• ij 6¼ il 8j, l 2 ½1; . . . ;m�, j 6¼ l, and
• EðRÞ ¼ ffij; ijþ1g : j 2 ½1; . . . ;m�g � E where imþ1 is interpreted to be i1.

If R is a route, then we call EðRÞ the edge set of the route. A feasible solution is

then any subset of E that is the union of the edge sets of k routes Ri; i 2 ½1; . . . ; k� with

the following properties:

• Ri \ Rj ¼ f0g, i; j 2 ½1; . . . ; k�, i 6¼ j, and
•

P
j2Ri

dj 6C, 8i 2 ½1; . . . ; k�.

In this solution, each route corresponds to a set of customers serviced by one of

the k vehicles. By associating a binary variable with each edge in the graph, we ob-

tain the following integer programming formulation of this COP, which has its roots

in [43]:

T.K. Ralphs / Parallel Computing 29 (2003) 607–629 609



min
X

e2E
cexe

s:t:
X

e¼f0;jg2E
xe ¼ 2k ð1Þ

X

e¼fi;jg2E
xe ¼ 2 8i 2 N ð2Þ

X

e¼fi;jg2E
i2T ;j 62T

xe P 2bðT Þ 8T � N ; jT j > 1 ð3Þ

06 xe 6 1 8e ¼ fi; jg 2 E; i; j 6¼ 0 ð4Þ
06 xe 6 2 8e ¼ f0; jg 2 E ð5Þ
xe integral 8e 2 E ð6Þ

For ease of computation, we define bðT Þ ¼ dð
P

i2T diÞ=Ce, an obvious lower bound

on the number of vehicles needed to service the customers in set T . In this formu-

lation, constraint (1) ensures that there are exactly k vehicles, while constraints (2)

ensure that each customer is serviced by exactly one vehicle, as well as ensuring that

the solution is the union of edge sets of routes. Constraints (3) ensure that every

route includes the depot and that no route has total demand greater than the ca-

pacity C.
It is clear from our description that the VRP is closely related to two difficult com-

binatorial problems. By setting C ¼ 1, we get an instance of the multiple traveling

salesman problem and by setting ce ¼ 0 8e 2 E, we get a feasibility version of the

bin packing problem with a fixed number of bins. Because of the combined structure

of these two underlying models, instances of the VRP can be extremely difficult to

solve in practice. In fact, the largest instance of the VRP solved to date (135 custom-

ers) is two orders of magnitude smaller than that of the traveling salesman problem

(15,112 customers). With the aim of solving some of the extremely difficulty VRP in-
stances that have appeared in the literature, we have developed a parallel branch and

cut solver using SYMPHONY. Through parallelism, we have been able to solve

several previously unsolved instances from the literature. Some of these are reported

on in [53].

3. Background

3.1. Branch and bound

Branch and bound is a technique for solving optimization problems that uses a

divide and conquer strategy to partition the solution space into subproblems and then
solves each subproblem recursively. In the processing or bounding phase, we relax the

problem, admitting solutions that are not in the feasible set F . Solving this relax-

ation, which is typically much easier than solving the original problem, yields a lower

bound on the value of an optimal solution. If the solution to this relaxation is a
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member of F , then it is optimal and we are done. Otherwise, we identify p subsets of

F , F 1; . . . ;F p, such that [p
i¼1F i ¼ F . Each of these subsets is called a subproblem;

F 1; . . . ;F p are also sometimes called the children of S. We add the children of F
to the list of candidate subproblems (those that need processing). This is called branch-

ing.
To continue the algorithm, we select one of the candidate subproblems, remove it

from the list, and process it. There are four possible results. If we find a feasible so-

lution better than the current best, then we replace the current best by the new solu-

tion and continue. We may also find that the subproblem is empty, in which case we

say it is infeasible and discard, or prune it. Otherwise, we compare the lower bound to

the upper bound yielded by the current best solution. If it is greater than or equal to

our current upper bound, then we may again prune the subproblem. Finally, if we

cannot prune the subproblem, we are forced to branch and add the children of this
subproblem to the list of candidates. We continue in this way until the list of candi-

date subproblems is empty, at which point our current best solution must be the op-

timal one.

3.2. Branch and cut

In integer programming, the bounding operation is often accomplished using the

tools of linear programming (LP), a technique described in generality, e.g., by Hoff-

man and Padberg [32]. This general class of algorithms is known as LP-based branch

and bound. Typically, the integrality constraints (for example, constraints (6)) of an

integer programming formulation of the problem are relaxed to obtain an LP relax-

ation, which is then solved to derive a lower bound for the problem. We can improve
on this basic idea by using globally valid inequalities (i.e., inequalities satisfied by all

members of the feasible set F ), to strengthen the LP relaxation. Padberg and Rinaldi

[49] called this technique branch and cut. An early implementation of the technique is

described in [29].

To see how this general method can be applied to COPs, consider a combinatorial

optimization problem CP ¼ ðE;FÞ with ground set E, feasible set F , and cost func-

tion c 2 RE. As before, we view the members of F as incidence vectors obeying a gi-

ven set of inequalities. These inequalities are typically the ones we use to form the
initial LP relaxation, as described in Fig. 3. If we let P be the polyhedron obtained

by taking the convex hull of F , then F ¼ P \ f0; 1gjEj and furthermore, the member

of F are the extreme points of the polyhedron P. Hence, the minimum of cx over all

x 2 F is equal to the minimum of cx over all x 2 P.

By Weyl�s Theorem (see [36]), there exists a finite set L of inequalities valid for P
such that

P ¼ fx 2 Rn : ax6 b 8ða; bÞ 2 Lg ð7Þ
The inequalities in L are the potential cutting planes, or cuts, that can be used to

strengthen the LP relaxations as needed. For a given x̂x 2 P, the separation problem is

to find a member of L violated by x̂x. By a result in [30], this problem has the same

computational complexity as the original optimization problem. Hence, it is usually
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difficult, if not impossible, to enumerate all of the inequalities in L. Instead, we use

separation algorithms and heuristics to attempt to generate these inequalities when

they are violated. In Fig. 1, we describe more precisely how the bounding operation
is carried out.

Once we have failed to either prune the current subproblem or separate the cur-

rent relaxed solution from P, we are forced to branch. The branching operation is

accomplished by identifying a polychotomy that can be used to divide the current

subproblem in such a way that

• the current relaxed solution is not feasible for any of the new subproblems and

• the resulting subproblems are disjoint.

This polychotomy is generically called a branching set or just a branching. We call

a branching with the second property listed above partitive. A typical method for de-

fining a branching with these two properties is to select a valid inequality ax6 b with

integer coefficients (so that the left-hand side value must be an integer for any integer

solution) and an integer right-hand side such that the current left-hand side value is

f 62 Z. Then one can simply branch on the dichotomy

ax6 bf c OR axP df e: ð8Þ
Note that this branching is partitive and that the current relaxed solution is not

feasible for either of the generated subproblem. In the case that the valid inequality

being branched on is a bound constraint for one of the variables, this procedure re-

duces to fixing a variable whose current value is fractional to 0 in one branch and 1

in the other. This branching scheme is easy to implement within the context of LP-

based branch and bound because we have only to add the appropriate additional

Fig. 1. Bounding in the branch and cut algorithm.
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constraints to the LP relaxation of the parent in order to create the children. The

procedure is described more formally in Fig. 2. Fig. 3 gives a high level description

of the generic branch and cut algorithm for combinatorial optimization.

The primary difference between branch and cut and generic LP-based branch and

bound is that the inequalities that are generated at each node of the search tree are

globally valid and can hence be utilized during the processing of subsequent search

tree nodes. This sharing of cuts is accomplished through cut pools that maintain the

‘‘most effective’’ inequalities found so far. This approach has several advantages over
standard LP-based branch and bound. Through prudent maintenance of the cut

pools, we are able to obtain a global picture of which cuts are the ‘‘most important.’’

Since most techniques for generating valid inequalities are heuristic in nature, the cut

pool may actually contain inequalities useful in the current search tree node that

would not have otherwise been found. Most importantly, however, is that we may

be able to greatly reduce or eliminate wasted time spent regenerating cuts that have

already been previously generated. A more in-depth treatment of the concept of

sharing information (cuts) between nodes in the search tree is contained in [52].
Note that, as with cutting planes, the set of variables can also be defined impli-

citly, yielding a similar technique called branch and price in which variables are gene-

rated dynamically (see [9]). When both variables and cutting planes are generated

dynamically during LP-based branch and bound, the technique is known as branch,

cut, and price (BCP). Although SYMPHONY supports the implementation of BCP

algorithms, we assume henceforth that the set of variables remains fixed. Through a

Fig. 2. Branching in the branch and cut algorithm.

Fig. 3. Description of the generic branch and cut algorithm.

T.K. Ralphs / Parallel Computing 29 (2003) 607–629 613



technique called reduced cost fixing, it is sometimes possible to prove that the value

of a particular variable cannot be nonzero in a given search tree node and all of its

descendants. In this case, we delete the variable from the subproblem and consider it

inactive.

3.3. Related software

The branch and bound algorithm described above was first suggested by Land

and Doig in 1960 [41]. In 1970, Mitten [47] abstracted branch and bound into the

theoretical framework we are familiar with today. However, it was another two de-

cades before sophisticated software packages for solving integer programming prob-

lems began to be developed. Most of the software packages developed to date

implement some version of branch and bound. We divide the available software into
two main categories––packages based on general-purpose algorithms for solving

mixed integer programs (MIPs) (without the use of special structure) and those fa-

cilitating the use of special structure by interfacing with user-supplied, problem-spe-

cific subroutines. We call packages in this second category frameworks. There have

also been numerous special-purpose codes developed for use in solving specific types

of combinatorial problems.

Generic MIP solvers such as MINTO [35], MIPO [8], and bc-opt [18] are among

the research codes being offered. Commercial MIP solvers include ILOG�s CPLEX,
IBM�s OSL, and Dash�s XPRESS. Generally speaking, generic MIP solvers are not

capable of solving large instances of difficult combinatorial problems. Such prob-

lems require the use of problem-specific subroutines that take advantage of special

problem structure. Generic frameworks allow the user to take advantage of spe-

cial structure. SYMPHONY, COIN/BCP [51] and ABACUS [23,33,34] are the most

full-featured frameworks available. CONCORDE [2,3], a package for solving the

traveling salesman problem, also deserves mention as the most sophisticated special-

purpose code developed to date.
Numerous software packages implementing parallel branch and bound have also

been developed. The previously mentioned SYMPHONY, COIN/BCP, and CON-

CORDE are all parallel codes that can be run on networks of workstations. Other

related software includes frameworks for implementing parallel branch and bound

such as PUBB [54], BoB [10], PPBB-Lib [56], and PICO [22]. PARINO [45] and

FATCOP [15] are parallel MIP solvers.

4. The SYMPHONY framework

SYMPHONY is a C library for implementing parallel BCP algorithms developed

by the author and Lad�aanyi. The design goal of SYMPHONY is to provide an easy-

to-use framework that can be used to implement a solvers for a wide variety of prob-

lem settings and across a wide variety of architectures. The vast majority of the

subroutines in the branch and cut algorithm––such as those for tree management, LP

solution, and cut pool management, as well as inter-process communication––are

614 T.K. Ralphs / Parallel Computing 29 (2003) 607–629



generic and are internal to the library. The internal library, about which the user

need know nothing, interfaces with the user�s subroutines through a well-defined ap-

plication program interface (API) described in [50]. To implement a state-of-the-art

parallel solver, the user need only provide a few problem-specific methods we de-

scribe below. Full details of the sequential implementation of SYMPHONY are con-
tained in [40,50]. Here, we concentrate only on the details most relevant to the

parallel implementation.

Implementing a branch and cut solver presents difficult challenges. The primary

difficulty is that the number of valid inequalities that may be generated during the

algorithm is limitless for all practical purposes. The list of inequalities needed to fully

describe the convex hull of feasible solutions for even the simplest of combinatorial

problems can easily exceed the combined storage capacity of any modern parallel

computer. Fortunately, we can solve reasonably sized instances of these most prob-
lems with only a small number of ‘‘important’’ inequalities, but determining which

inequalities are contained in this small subset is difficult at best. We must also deal

with the very large search trees that may be generated during the solution process.

This involves not only the important question of how to store the descriptions of

the individual subproblems, but also how to move them between processors during

parallel execution. A final challenge in developing a generic framework is to deal

with these issues in a problem-independent way.

Describing a node in the search tree consists of, among other things, listing the
cuts (and variables) that are initially active in the subproblem. In fact, the vast ma-

jority of the methods in branch and cut that depend on the model are related to gene-

rating, manipulating, and storing the cuts. From the user�s perspective, implementing

a branch and cut algorithm using SYMPHONY consists primarily of specifying

properties of various classes of cuts, such as how to generate them, how to represent

them, and how to realize them within the context of a particular subproblem.

4.1. Data structures and storage

There are three basic types of data that must be stored and shared in parallel

branch and cut––upper bounds, valid inequalities, and search tree nodes. Only the

last two, however, present any real challenge. In addition, we need to able to store

the search tree itself. Because this tree can grow extremely large, we have developed

compact data structures based on the idea of differencing, to be explained below. In

the next two sections, we explain how each of these basic data types are represented

and stored.

4.1.1. Variables and constraints

Both the memory required to store the search tree and the time required to pro-

cess a node are largely dependent on the number of constraints and variables active

in each subproblem. Keeping this active set as small as possible is done using ad hoc

rules that allow us to judge which cuts and variables are ‘‘important’’ in the subprob-

lem and which are not. These rules and other details regarding the management of

the LP relaxations are covered in [40]. Efficient management of the LP relaxation
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is one of the keys to efficiently implementing branch and cut. For this reason, we

need data structures that enhance our ability to efficiently move variables and con-

straints in and out of the active set.

Because we assume the set of variables is fixed a priori, each variable can be rep-

resented simply by a predetermined global index. However, the set of potential con-
straints is not known at the outset, so cuts are manipulated and stored by means of a

user-defined, compact representation that contains information about how to add

them to a particular LP relaxation. Adding a cut to a given LP relaxation consists

of specifying its form with respect to the given set of active variables. This means that

the user must provide a method for converting this representation to a row of the

constraint matrix. The representation includes the associated bounds (in the case

of a variable) or right hand side range (in the case of a constraint) and is also used

to store each cut and to pass it from one processor to another as needed. After gene-
ration, each cut is assigned a global index by which it is referred to throughout the

search tree. Note that this assignment of a global index must be done centrally––this

has repercussions for scalability, as we discuss in Section 5.

4.1.2. Search tree

The description of a search tree node consists primarily of the indices of the cuts

and variables that are active in that node. A critical aspect of implementing branch

and cut is the maintenance of a complete description of the current basis (assuming a
simplex-based LP solver) for each node in order to allow a warm start to the bound

computation (for the definition of a basis and its role in the solution of linear pro-

grams, see [17] or [36]). This basis is either inherited from the parent or computed

during strong branching (see Section 4.4.3). Along with the set of active cuts and

variables, we must also store the identity of the branching set that generated the

node.

Because the set of active inequalities and the description of the basis do not tend

to change much from parent to child, all of these data are stored as differences with
respect to the parent when that description is smaller than the explicit one. This

method of storing the entire tree is highly memory-efficient. The list of nodes that

are candidates for processing is stored in a heap ordered by a comparison function

defined by the search strategy (see Section 4.3). This allows efficient generation of the

next node to be processed.

One way in which we attempt to limit the size of the node descriptions is by allow-

ing the user to specify a problem core consisting of a set of variables and constraints

that are to be active in every subproblem. The core should consist of a set of vari-
ables and constraints that are considered ‘‘important’’ for the given instance, in

the sense that there is a high probability that they will be needed to describe an op-

timal solution. The advantage of specifying a core is that the description of the core

can be stored statically at each of the processors and need not be part of the indivi-

dual node descriptions. This saves both on node set-up costs and communication

costs, as well as making storage of the search tree more efficient. An example of

how the core is specified for an instance of the VRP is given in Section 4.4.1.
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4.2. Parallel implementation

The solver functions are grouped into four independent modules, the master mod-

ule, the node processing (NP) modules (for processing search tree nodes) and two

modules that maintain the global data (one for cuts and one for search tree nodes).
This modular implementation allows for easy and highly configurable paralleliza-

tion. The modules can be compiled as either (1) a single sequential code, (2) a multi-

threaded shared-memory parallel code, or (3) separate processes running over a

distributed network. The modules pass data to each other either through shared

memory (in the case of sequential computation or shared-memory parallelism) or

through a message-passing protocol defined in a separate communications API (in

the case of distributed execution). A schematic overview of the modules is presented

in Fig. 4. Here, we address only a distributed-memory version of SYMPHONY im-
plemented using the PVM message-passing protocol [26].

4.2.1. The master module

The master module performs problem initialization and I/O, as well as helping to

maintain fault-tolerance. This module is not heavily tasked once the computation

has begun, but is kept separated in order to monitor the status of the rest of the pro-

cesses. The functions performed by the master module include the following tasks:

• Read in the parameters from a data file.

• Read in the data for the problem instance.

• Compute an initial upper bound using heuristics (may also be done in parallel).

• Perform problem preprocessing and determine the problem core.

• Initialize the algorithm by sending data for the root node to the tree manager.

• Initialize output devices and act as a conduit for output (the output is usually

minimal).

• Process requests for problem data.
• Receive new solutions and store the best one.

• Receive the message that the algorithm has finished and print out data.

• Ensure that all other modules are still functioning.

4.2.2. The tree manager module

The tree manager controls the overall execution of the algorithm by maintaining

the search tree and distributing the subproblems to be processed to the NP modules.

Because the tree manager�s primary job is to maintain the list of candidate subprob-
lems, it can be considered simply as a database for node descriptions. This database

can be queried by the NP modules (to be described below) for tasks to be performed.

A large part of the work the tree manager performs can be considered overhead since

it involves the sharing of data among processors, a task that can be performed at a

very low cost in a sequential implementation. Note that in SYMPHONY, there is

only one tree manager and hence once list of candidate subproblems. This design

decision also has ramifications for scalability, as we discuss in Section 5. Functions

performed by the tree manager module are
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• Receive data for the root node and place it on the list of candidates for processing.
• Handle requests from NP modules to release a subproblem for processing.

• Receive branching set information, set up data structures for the children, and

add them to the list of candidate subproblems.

• Receive queries from NP modules and decide whether or not they should dive.

• Keep track of the global upper bound and notify all node processing modules

when it changes.

Node Processor

+ monitor other processes

+ perform branching

+ store problem data

+ service requests for data

+ compute initial upper bound

+ store best solution

+ handle i/o

Master

root node

new cuts

LP solution

violated cuts

Cut Pool

+ maintain a list of

+ return all cuts violated by a
  particular LP solution

re
qu

es
t d

at
a

fe
as

ib
le

  s
ol

’n

se
nd

 d
at

a

upper bound

parameters request data

send data

node descriptions

  "effective" cuts

+ process subproblems

+ generate cuts 

+ check feasibility

+ send cuts to cut pool

+ select branching sets

Tree Manager
+ maintain search tree

+ track upper bound

+ service requests for
   node descriptions

The Modules of Branch and Cut

Fig. 4. Schematic overview of the branch and cut algorithm.
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• Write current state information out to disk periodically to allow a restart in the

event of a system crash.

• Keep track of run data and send it to the master program at termination.

4.2.3. The node processing module

The job of each NP module is to receive and process search tree nodes, using lin-

ear programming to perform the bounding and branching operations. These opera-

tions are, of course, central to the performance of the algorithm and comprise a large

part of the ‘‘useful’’ work done in the parallel algorithm. Search tree nodes are pro-

cessed in an iterative manner, as described in Fig. 1. First, the initial LP relaxation is

solved, then cuts are generated based on that solution, then the relaxation is solved

again. This generally continues until no more new cuts can be generated, at which

point branching occurs. Branching is accomplished by choosing one or more cuts
or variables and partitioning the range of allowable values by changing the associ-

ated bounds or right-hand side range. Functions performed by the NP module are:

• Inform the tree manager when a new subproblem is needed.

• Receive a subproblem and process it in conjunction with the cut pool.

• Decide which cuts should be sent to the global pool to be made available to other

NP modules.

• If necessary, choose a branching set and send its description back to the tree man-
ager.

• Perform the fathoming operation.

4.2.4. The cut pool module

As we have already mentioned, the concept of a cut pool was first suggested by

Padberg and Rinaldi [49], based on the observation that inequalities generated while

processing a a given node in the search tree may potentially be useful at other nodes.

Since generating these cuts is sometimes a relatively expensive operation, the cut pool
maintains a list of the ‘‘best’’ or ‘‘strongest’’ cuts found in the tree thus far for use in

processing future subproblems. Hence, the cut pools are essentially databases that

can be queried by the NP modules for cuts to be added to the current LP relaxation.

Note that although we have only one node pool (candidate list), multiple cut pools

can be used. In the case of multiple pools, each one services a separate subtree. More

explicitly, the functions of the cut pool module are

• Receive cuts generated by other modules and store them.
• Receive a solution and return a set of cuts eligible to enter the current LP relax-

ation.

• Periodically purge ‘‘ineffective’’ and duplicate cuts to control the size of the pool.

4.3. Overview of the algorithm

As already discussed, SYMPHONY implements a single-pool branch and cut al-

gorithm. The term single-pool refers to the fact that there is a single central list of
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candidate subproblems to be processed, maintained by the tree manager. Most se-

quential implementations use such a single-pool scheme; however, this has significant

ramifications for parallel performance, as we discuss in Section 5. The unit of work

in our implementation is a single subproblem, which is processed by a NP module in

an iterative manner, as described above.
The master module begins by reading in the parameters and problem data. After

initial I/O is completed, subroutines for finding an initial upper bound and construct-

ing the root node are executed. During construction of the root node, the user must

designate the core, as well as the initial set of active cuts and variables, after which

the data for the root node are sent to the tree manager to initialize the list of candi-

date nodes. The tree manager in turn sets up the cut pool module(s) and the NP

module(s). All node processing modules are marked as idle. The algorithm is now

ready for execution.
In the steady-state, the tree manager controls the algorithm by maintaining the

central list of candidate subproblems and sending them to the node processing mod-

ules as they become idle. The NP modules receive nodes from the tree manager, pro-

cess them, branch (if required), and send back the identity of the chosen branching

set to the tree manager, which in turn generates the children and places them on the

list of candidates to be processed. The order in which the nodes are processed, deter-

mined by the search strategy, can have a significant effect on the behavior of the

algorithm. This effect is even greater in a parallel implementation, so we describe
the basic options in some detail.

The best-first strategy always chooses the node with the smallest lower bound to

be processed. The advantage of this strategy is that it will, in theory, minimize the

overall size of the search tree by preventing the processing of nodes whose lower

bound is greater than or equal to the optimal solution value. A depth-first approach,

on the other hand, always chooses the node that is deepest in the tree to be processed

next. This approach has several advantages over best-first. First, it minimizes the size

of the candidate list (and hence conserves memory). It also tends to find feasible so-
lutions quickly, which may be important in some applications. Most importantly,

however, this strategy retains work generated locally whenever possible and thus

can help to reduce communication overhead in a parallel implementation. We call

the search strategies that attempt to retain locally generated work when possible div-

ing strategies. The main disadvantage of these strategies is that they may result in the

processing of nodes whose lower bounds turn out to be above the optimal solution

value. These nodes are called redundant and their processing is one of the contribu-

tors to parallel overhead. This phenomena is described below in Section 5.
An hybrid strategy is a compromise between these two extremes. In such a stra-

tegy, we continue to dive as long as certain conditions are satisfied. These conditions

are chosen to try to maximize the retention of local work, while minimizing the pro-

cessing of redundant nodes. Typically, we require that the lower bound in one of the

children is ‘‘close’’ to the lower bound of the best node otherwise available, where

‘‘close’’ is defined by a chosen parameter. This rule has good performance in practice,

but note that the decision about whether to dive or not requires global information

and hence can only be made centrally. This also has repercussions for scalability.
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4.4. VRP solver

We now illustrate what is involved in implementing a solver using the SYM-

PHONY framework by describing some details of the implementation of our VRP

solver. The solver described here is the publicly available version distributed with
SYMPHONY 3.0. Source code and datasets used in this paper are available for

download at www.branchandcut.org. Note that this solver does not contain

the full complement of separation procedures from the literature. Nonetheless,

through the use of parallelism, it was the first to solve several difficult instances from

the literature (see [53]). Note again that we describe here only problem-specific meth-

ods that must be implemented by the user, with emphasis on those most relevant to

parallelizing the algorithm.

4.4.1. Initialization

The first task accomplished by the master process is the determination of the

upper bound. In our solver, this can be accomplished using a heuristic procedure that

can also be run in parallel. However, to avoid mixing the effects of the scalability of

this heuristic solver with that of our branch and cut solver, we took the optimal so-

lution value as the initial upper bound for the results reported below. The next task is

to determine the problem core. Regardless of the instance, the core constraints are

always taken to be constraints (1) and (2). Note that we cannot include constraints
(3) in the core because there are exponentially many of them and they must be gene-

rated dynamically. The core variables can be determined either by (1) taking the un-

ion of the edge sets of solutions found during the heuristic procedure or by (2) taking

the k shortest edges incident to each non-depot node in the graph, plus all the edges

incident to the depot. Taking k to be approximately 0:1jN j yields a set of edges that

usually contains the edge set of some optimal solution.

4.4.2. Cut generation and representation

For the results shown, we generate only the inequalities (3). A description of the

methods used to generate these inequalities is contained in [53]. An inequality of the

form (3) can be represented compactly simply as a set T of customer nodes that can

be stored in a bit array of length jN j. To add such a constraint to a given LP relax-

ation, it suffices to check, for each active variable, whether the endpoints of the cor-

responding edge are either both members of T or both members of V n T . If not, then
the variable has a coefficient of one in the resulting inequality and if so, it has a co-

efficient of zero. In this way, we are able to store each cut compactly and independent
of any particular set of active variables.

4.4.3. Branching

The branching sets consist of the bound constraints corresponding to variables

that are fractional in the current relaxed solution, as described in Section 3.2. To se-

lect the branching set, we have taken advantage of SYMPHONY�s built-in strong
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branching capability. Using this technique, several candidates for branching are

‘‘pre-solved’’ by performing a limited number of iterations of the simplex algorithm

and the final branching variable is chosen based on the resulting estimate of the

bound in each of the resulting children. This scheme has proven extremely effective

for the VRP and typically results in a more than 90% reduction in running time when
employed. For the computational results reported here, we chose to evaluate seven

branching candidates.

5. Performance and scalability

To study the behavior of our basic approach, we have tested the performance of

our solver on a Beowulf cluster with 48 dual-processor nodes (1 GHz PIII). The ope-
rating system was Red Hat Linux 7.2 with OSL 3.0 used to solve the linear program-

ming relaxations. In the next two sections, we describe how we measured

performance and present the computational results.

5.1. Performance measures

Scalability is defined generally as the ability of a parallel system (a parallel algo-

rithm plus a parallel architecture) to take advantage of increased computing re-
sources (in this case, additional processors). We are therefore interested in

comparing the running time of the best sequential algorithm, denoted T0, with that

of the parallel algorithm running on p processors, denoted Tp. We define the speedup

(Sp) as the ratio T0=Tp and the parallel efficiency (Ep) as the ratio Sp=p of speedup to

number of processors. If an algorithm has an efficiency of one or more for a given

number of processors, we say it has achieved linear speedup. In theory, it is not pos-

sible to achieve an efficiency of more than one, but this can happen in practice (see

[13] for an examination of this phenomena).
When an algorithm has an efficiency less than one, we can compute the parallel

overhead as Op ¼ pTp � T0. The parallel overhead has three basic components:

• Idle time. Time spent idle while waiting for information requested from another
module.

• Performance of redundant work. Time spent performing work that would not have

been performed in the sequential algorithm.

• Communication overhead. Time spent performing work related to sending and re-

ceiving information from other modules.

To achieve high efficiency, we must limit the occurrence of this overhead. In the

analysis below, we assess the impact and root causes of each of these sources through

direct (when possible) or indirect performance measures.
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5.2. Performance analysis

To assess performance, we explicitly measured the idle time and the time spent

performing tasks associated with communication. We also tracked the number of

nodes in the search tree as an indirect measure of redundant work. In parallel branch
and cut, the size of the search tree is subject to a good deal more random fluctuation

than would be expected in parallel branch and bound, due to the added randomness

inherent in heuristic cut generation. To eliminate the effect of these inevitable ran-

dom fluctuations on the analysis, we have done two things. First, we performed three

identical runs of each experiment. The numbers that appear in the tables of results

are averages over these three runs. Second, we consider the timing information on

a ‘‘per node’’ basis. This results in a much more consistent view of the trends as

the number of processors increases.
We report here on two sets of experiments. We first tested the code ‘‘out of the

box’’ with the default settings used when running sequentially. These results are

shown in Table 1. We then changed the settings to try to improve scalability (the set-

tings that were changed will be described below). These results are reported in Table

2. Both tables are organized according to the number of NP modules used, since these

Table 1

Computational results with default settings

Instance Tree size Ramp-up Ramp-

down

Idle

(Nodes)

Idle

(Cuts)

CPU sec Wallclock

A-n37–k6 10,463 2.83 1.45 9.42 24.84 790.67 211.53

A-n39–k5 466 2.55 0.04 0.39 1.41 60.02 16.44

A-n39–k6 434 1.70 0.03 0.28 0.45 21.36 6.17

A-n44–k6 2646 3.03 0.39 2.62 7.92 328.89 87.29

A-n45–k6 1028 3.13 0.09 0.78 2.25 150.02 39.97

A-n46–k7 53 3.65 0.07 0.10 0.06 6.83 2.76

A-n48–k7 3768 5.10 0.60 3.94 11.16 529.27 139.39

A-n53–k7 3858 4.47 0.58 4.07 14.67 511.85 136.04

A-n55–k9 5527 4.61 1.06 6.30 10.70 809.72 211.53

A-n65–k9 18,871 12.11 6.13 26.00 105.88 5646.64 1463.16

B-n45–k6 877 2.17 0.13 0.74 1.04 76.81 20.85

B-n51–k7 461 2.13 0.08 0.38 0.30 39.44 11.06

B-n57–k7 3346 5.54 0.47 3.12 4.27 325.36 87.64

B-n64–k9 99 3.89 0.15 0.12 0.05 11.22 3.99

B-n67–k10 16,853 10.19 3.07 18.82 77.83 2192.39 586.56

4 NPs 68,753 67.10 14.33 77.08 262.82 11,500.49 3024.37

Per node 0.0010 0.0002 0.0011 0.0038 0.1673 0.1760

8 NPs 69,616 189.34 16.50 79.72 372.15 11,532.37 1551.67

Per node 0.0027 0.0002 0.0011 0.0053 0.1657 0.1783

16 NPs 76,294 481.83 22.39 88.11 817.67 12,921.04 913.80

Per node 0.0063 0.0003 0.0012 0.0107 0.1694 0.1916

32 NPs 75,123 1119.90 49.91 92.32 3171.67 12,487.33 538.50

Per node 0.0149 0.0007 0.0012 0.0422 0.1662 0.2294
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modules perform the vast majority of the useful work (the other modules are simply

storing shared data). Full results are shown for the runs with four NP modules and
only summary results for other runs. Note that the scale of these experiments is rela-

tively small, but we can nonetheless draw important conclusions from them.

We have already described generally the main sources of overhead in parallel

branch and bound. The results in Tables 1 and 2 break these sources down further

into specific identifiable components that were significant to performance. In the

tables, Tree Size is the number of nodes in the search tree; Ramp-up and Ramp-down

are as described below; Idle (Nodes) is the idle time spent by each NP module waiting

for a new node description to be sent from the tree manager; Idle (Cuts) is the idle
time spent by each NP module waiting for cuts to be sent by the cut pool; CPU

sec is the total CPU time of all modules; and Wallclock is the actual running time.

Examining the computational results, we can be more specific about the causes of

parallel overhead.

5.2.1. Ramp-up and Ramp-down

Ramp-up time is the total idle time occurring at the beginning of the algorithm

when there are not enough units of work available to employ all processors.

Table 2

Computational results with settings to minimize overhead

Instance Tree size Ramp-up Ramp-

down

Idle

(Nodes)

Idle

(Cuts)

CPU sec Wallclock

A-n37–k6 14,305 1.70 2.02 12.31 40.06 1067.49 286.37

A-n39–k5 483 0.81 0.05 0.35 1.30 54.17 14.49

A-n39–k6 739 0.90 0.06 0.45 1.10 37.45 10.25

A-n44–k6 3733 1.58 0.55 3.62 11.64 453.45 119.35

A-n45–k6 493 0.59 0.05 0.42 1.06 65.09 17.10

A-n46–k7 176 0.96 0.01 0.15 0.79 25.69 7.02

A-n48–k7 4243 1.14 0.77 4.31 15.54 593.36 155.05

A-n53–k7 2808 1.32 0.48 2.95 9.44 385.68 100.98

A-n55–k9 6960 2.07 1.46 8.12 15.31 913.35 237.30

A-n65–k9 18,165 1.41 5.83 25.89 105.84 5190.83 1335.60

B-n45–k6 1635 0.72 0.21 1.39 2.09 131.13 34.92

B-n51–k7 348 0.36 0.03 0.32 0.37 25.35 6.88

B-n57–k7 4036 0.76 0.39 3.21 5.52 494.13 131.87

B-n64–k9 100 0.58 0.01 0.08 0.19 15.49 4.22

B-n67–k10 16,224 2.95 2.54 17.85 64.88 2351.30 618.73

4 NP�s 74,451 17.87 14.45 81.42 275.11 11,803.97 3080.12

Per Node 0.0002 0.0002 0.0011 0.0037 0.1585 0.1655

8 NP�s 82,488 67.12 17.07 89.54 370.96 11,834.68 1569.27

Per node 0.0008 0.0002 0.0011 0.0045 0.1435 0.1522

16 NP�s 97,078 203.54 41.19 110.36 1045.95 12,881.44 908.68

Per node 0.0021 0.0004 0.0011 0.0108 0.1327 0.1498

32 NP�s 98,991 640.74 49.09 135.74 3320.88 13,044.33 545.73

Per node 0.0065 0.0005 0.0014 0.0335 0.1318 0.1764
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Ramp-up time can be a serious problem when either (1) the time to process a node is

substantial or (2) the number of children generated by branching is small. Because of

the iterative bounding scheme we employ in branch and cut, the time to process a

node can be significant and our branching scheme generates only two children. From

Table 1, it is evident that ramp-up time is one of the most serious scalability prob-
lems we face, as the idle time per processor due to ramp-up is increasing. In [31],

Henrich studies this problem and offers some alternatives to what is presented here.

To control ramp-up time, we have implemented a ‘‘quick branching’’ strategy in

which branching occurs after a fixed number of iterations in the NP module, regard-

less of whether or not new cuts have been generated. This continues until all proces-

sors have useful work to do, after which the usual algorithm is resumed. The results

of applying this scheme with an iteration limit of five are shown in Table 2. Although

the ramp-up time did decrease, as expected, the effect was negated by a correspond-
ing increase in the total number of search tree nodes processed. This is due to the fact

that the LP relaxations were weaker at the time strong branching occurred and hence

the branching decisions were less effective. Note that using an iteration limit less than

five results only magnified this effect.

Ramp-down time is the idle time occurring at the end of the algorithm when there

is not enough useful work for all processors to be employed. From Table 1, we can

see that ramp-down time is not a very serious problem. In theory, ramp-down could

be controlled in much the same way as ramp-up––by reverting to ‘‘quick branching’’
scheme whenever the number of nodes in the candidate list falls below a certain

threshold. However, we have not yet implemented this strategy.

We would like to briefly mention that during the preparation of this paper, we also

experimented with solving the traveling salesman problem, which we have already ob-

served is closely related to the VRP. One big difference between the TSP and the VRP

from a computational standpoint is that a great deal more is known about solving the

separation problem for the TSP. Hence, although the TSP is a much easier problem to

solve in practice, the time to process a single search tree node is usually much longer.
In our preliminary experiments, we found that the ramp-up time was therefore a

much more serious problem for the TSP. In fact, even for small- to medium-sized in-

stances, we could not achieve linear speedup. Any attempt to eliminate this ramp-up

time using the quick branching scheme we have described resulted in much larger

search trees. Our tentative conclusion is that achieving parallel efficiency is actually

more difficult when more is known about the structure of the convex hull of feasible

solutions. Eliminating ramp-up time in these cases without introducing additional

overhead is a challenging problem that requires significant further study.

5.2.2. Idle time (Handshaking)

The second major contributor to parallel overhead is time spent by the NP mod-

ules waiting for requests to be serviced by another module (either the tree manager or

the cut pool).

• Tree manager (Node pool). Requests to the tree manager can be of three types: (1)

request for a new node description, (2) a request for a decision about whether to
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dive or not or (3) a request for a list of indices to be assigned to newly generated

cuts. Note that because of the differencing scheme we use to store the search tree,

reconstructing the node descriptions needed to service requests of type (1) can in-

volve some computational effort. Because there is only one tree manager module

to service all of these requests, this is obviously a scalability issue when large num-
bers of processors are used. However, for up to 32 processors, we have found that

the tree manager does not become a bottleneck. The time waiting for information

of types (2) and (3) is insignificant and not shown in the tables of results, while

time spent waiting for node descriptions (seen in the column Idle (Nodes)), when

pro-rated per processor remains relatively constant. However, it should be

pointed out that this would obviously not be the case when running on very large

numbers of processors.

• Cut pool. Requests to the cut pool can involve significant computational effort,
since a large list of cuts must be checked for violation and the pools can grow

quite large. This can cause the pool to become a significant bottleneck. In addi-

tion, we currently send each violated cut back in a separate message in order to

allow the NP module to receive the cut as quickly as possible. This seems to in-

crease latency significantly and is probably responsible for a large part of the wait-

ing time shown in the Idle (Cuts) column. This idle time can be dealt with through

the use of multiple cut pools servicing different parts of the search tree. We have

implemented this scheme and the results are shown in Table 2. There is a decrease
in the idle time, but the idle time per node still goes up significantly as the number

of processors increases.

5.2.3. Communication overhead

Time spent packing and unpacking messages, is of course also an issue. However,

our results have shown that this type of communication overhead is insignificant

compared to the first two sources.

5.2.4. Redundant work

Finally, we must concern ourselves with whether or not we are performing redun-

dant work in the parallel version of the algorithm. Based on our experiments, the

number of nodes in the search tree remains relatively constant as the number of pro-

cessors is increased. Furthermore, after removing the effect of the previously des-

cribed sources of parallel overhead, the total processing time of the algorithm also

remains constant as the number of nodes increases. Both of these are solid indicators

that little or no redundant work is being performed. However, it should be empha-
sized that this is possible primarily because of the single-pool approach, which allows

a complete global picture of the available work.

6. Conclusions

In this paper, we described an algorithmic framework and an associated software

library called SYMPHONY that can be used for the solution of a wide variety of
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combinatorial optimization problems arising in logistics applications. In computa-

tional experiments with the software, we found that the occurrence of parallel over-

head is due mainly to two sources: (1) the need for the processors to frequently query

the node pool and the cut pools and (2) the ramp-up/ramp-down time needed to em-

ploy all processors. For relatively small numbers of processors, we can control these
sources of overhead effectively. However, it is important to note that this is due pri-

marily to two important factors. First, we described solution of a problem for which

separation is quick and node processing times are relatively short. In such cases,

ramp-up time, although still an issue, is significantly reduced over problems where

the node processing times are much larger. Currently, we do not know how to con-

trol ramp-up time for problems with large node processing times. Second, the single-

pool nature of our algorithm allowed us to successfully control the performance of

redundant work often occurring in parallel branch and bound. However, it is clear
that for very large numbers of processors, the single-pool nature of our algorithm

will be a scalability issue.

To address these and other issues, we have already begun designing a next gener-

ation framework for branch, cut, and price algorithms that will allow massively par-

allel computation. The design of this framework is described in [38,39] and will be

available for download from the Common Optimization Interface for Operations

Research (COIN-OR) repository site (www.coin-or.org).
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