Il arrive souvent que pour analyser la complexité d'un algorithme on doive résoudre une récurrence.

Exemple: Dans le cas du produit de deux entiers de n chiffres et de l'algorithme diviser-pour-régner, on avait:

$$T(n) = \begin{cases} 1 & \text{si } n = 1 \\ 3T(\lceil \frac{n}{2} \rceil) + n & \text{sinon} \end{cases}$$

Comment résoudre?

Solution 1: Intuition ou conjecture

- Étape 1: Calculer les premières valeurs de la récurrence
- Étape 2: Regarder pour des "patterns" ou régularités
- Étape 3: Trouver une forme générale
- Étape 4: Démontrer que cette forme est correcte

Récurrences linéaires homogènes à coefficients constants:

Soit la récurrence R

$$a_0t_n + a_1t_{n-1} + \ldots + a_kt_{n-k} = 0$$

Voici les étapes de la résolution:

- 1) Trouver le polynôme caractéristique P(x) de la récurrence R
- 2) Trouver les racines de P(x)

Si ces racines sont distinctes

- 3) La solution générale est de la forme $t_n = \sum_{i=1}^{\kappa} c_i r_i^n$
- 4) Résoudre le système d'équations linéaires donné par les conditions initiales pour trouver la valeur des constantes c_1, c_2, \ldots, c_k
- 5) Écrire la solution t_n en fonction de ces constantes c_i

Récurrences linéaires homogènes à coefficients constants:

Soit la récurrence R

$$a_0t_n + a_1t_{n-1} + \ldots + a_kt_{n-k} = 0$$

Voici les étapes de la résolution:

- 1) Trouver le polynôme caractéristique P(x) de la récurrence R
- 2) Trouver les racines de P(x)

Si ces racines ne sont pas toutes distinctes

- 3) La solution générale est de la forme $t_n = \sum_{i=1}^{\ell} \sum_{j=0}^{m_i-1} c_{ij} n^j r_i^n$ où on a ℓ racines r_i de multiplicité m_i
- 4) Résoudre le système d'équations linéaires donné par les conditions initiales pour trouver la valeur des constantes c_1, c_2, \ldots, c_k
- 5) Écrire la solution t_n en fonction de ces constantes c_i

Récurrences linéaires non-homogènes à coefficients constants:

Soit la récurrence R

$$a_0t_n + a_1t_{n-1} + \ldots + a_kt_{n-k} = b^n p(n)$$

où b est une constante et p(n) un polynôme de degré d

Voici les étapes de la résolution:

- 1) On commence par transformer cette récurrence en une récurrence homogène
- 2) Résoudre R^* (cas homogène) comme d'habitude mais en s'assurant que les conditions initiales satisfont aussi l'équation de départ

$$a_0t_n + a_1t_{n-1} + \ldots + a_kt_{n-k} = b^n p(n)$$

Changement de variables:

- Il arrive qu'il soit plus facile de commencer par faire un changement de variables lorsque l'on veut résoudre une récurrence
- ullet Par exemple, soit $T(n) = 4t(n/2) + n^2$. En faisant le changement de variables $t_i = T(2^i)$ on obtient la récurrence linéaire non-homogène $t_i 4t_{i-1} = 4^i$
- On résout cette récurrence de la façon habituelle et ensuite on exprime la solution obtenue pour les t_i en fonction des T(n) en utilisant le fait que $n=2^i$ et donc que $i=\log_2 n$

Théorème:

Soient $n_0 \ge 1$, $\ell \ge 1$, $b \ge 2$ et $k \ge 0$ des entiers et soit $c \in \mathbb{R}^+$.

Soit $T: \mathbb{N} \longrightarrow \mathbb{R}^+$ une fonction éventuellement non décroissante telle que

$$T(n) = \ell T(\frac{n}{b}) + cn^k, \forall n > n_0,$$

où $\frac{n}{n_0}$ est une puissance de b. Alors,

$$T(n) \in \begin{cases} \Theta(n^k) & \text{si } \ell < b^k \\ \Theta(n^k \log_b n) & \text{si } \ell = b^k \\ \Theta(n^{\log_b \ell}) & \text{si } \ell > b^k \end{cases}$$