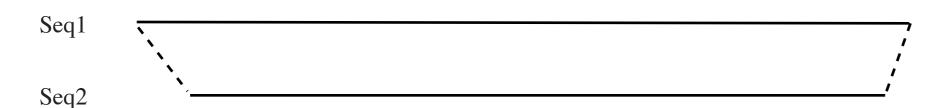
Alignements de séquences

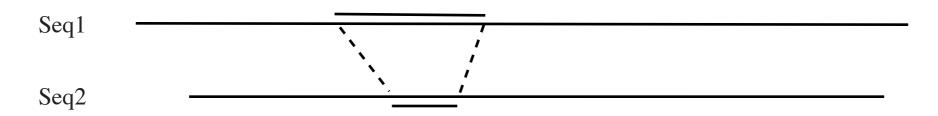
- → Problématique
- → Distance d'édition + calcul d'un alignement optimal
 - → Qu'est-ce qu'une distance
 - → Méthode naïve: énumération de tous les alignements possibles
 - → Programmation dynamique
 - → Alignement global versus local
- → Distance versus similarité
- → Alignements avec trous

Alignement de séquences

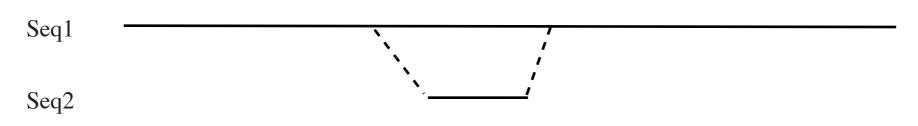
Alignement global: Deux séquences de protéines appartenant à la même famille, études phylogénétiques



Alignement local: Deux séquences de protéines appartenant à des familles différentes mais ayant un ou des domaines communs



Recherche de motif:



Distance d'édition

Pour comparer des séquences, on va définir une distance:

Définition: Une distance D est une relation ayant les propriétés suivantes:

$$D(x,x) = 0$$
 $D(x,y) = D(y,x)$ $D(x,z) \le D(x,y) + D(y,z)$ inégalité du triangle

Distance naturelle: compter le nombre d'insertions, de suppressions et de substitutions nécessaire pour passer d'une séquence à une autre.

Distance d'édition (suite)

Exemple:
$$S_1 = CATAGTG$$

$$S_2 = GTCAGGT$$

Distance d'édition entre S_1 et S_2 : Nombre minimal d'insertions, suppressions et substitutions nécessaire pour transformer S_1 en S_2

Une insertion/suppression est représentée par un tiret '-':

Alignement global

Il existe plusieurs alignements possibles étant donné 2 séquences.

Comment trouver un alignement optimal i.e un alignement ayant une distance d'édition minimal??

Idée naïve: Énumérer tous les alignements possibles pour les 2 séquences et en choisir un dont la distance d'édition est minimal.

Exemple:
$$S_1 = AC$$
 et $S_2 = AGC$

Les alignements possibles ici sont:

$$\begin{cases}
AC- & A-C & -AC & AC-- & AC-- & A--C & A-C- & -A-C \\
ACC' & ACC' & ACC' & -ACC' & A-CC' & -ACC' & ACC-' & ACC-' & ACC-'
\end{cases}$$

Combien d'alignements?

Si f(n,m) est le nombre d'alignements entre une séquence $a=a_1...a_n$ de n lettres et une autre $b=b_1...b_m$ de m lettres alors, on a:

$$f(0,0) = 1$$

 $f(0,m) = 1$
 $f(n,0) = 1$

$$f(n,m) = \begin{bmatrix} & \text{Nombre d'alignements de } a_1 \dots a_{n-1} & a_n \\ & + & \\ & \text{Nombre d'alignements de } a_1 \dots a_{n-1} & a_n \\ & \text{avec } b_1 \dots b_{m-1} & b_m \\ & + & \\ & \text{Nombre d'alignements de } a_1 \dots a_n & \\ & \text{avec } b_1 \dots b_{m-1} & b_m \end{bmatrix}$$

$$\Rightarrow$$
 f(n,m) = f(n-1,m) + f(n-1,m-1) + f(n,m-1)

Combien d'alignements?

$$\Rightarrow$$
 f(n,m) = f(n-1,m) + f(n-1,m-1) + f(n,m-1)

	0	1	2	3	4	5
0	1	1	1	1	1	1
1	1	3	5	7	9	11
2	1	5	13	25	41	61
3	1	7	25	63	129	231
4	1	9	41	129	321	681

En fait, on peut montrer que

$$f(n,n) \sim (1 + \sqrt{2})^{2n+1} \cdot \sqrt{n}$$

 $\Rightarrow f(1000, 1000) \sim 10^{764}$

Programmation dynamique

Pour résoudre un problème, commencer par résoudre tous les sousproblèmes. Pour ne pas calculer deux fois les mêmes sous-problèmes, conserver les valeurs dans une table m X n

Étant donné 2 séquences, $S = s_1 s_2 \dots s_m$ et $T = t_1 t_2 \dots t_n$, on définit

D(i,j): distance d'édition entre le préfixe de taille i de $S, S_1 \dots S_i$, et le préfixe de taille j de $T, t_1 \dots t_j$.

D définit une matrice de taille (m+1) X (n+1) qu'on appelle la matrice de programmation dynamique

L'idée est alors d'exprimer D(i,j) en fonction des valeurs de D pour des paires d'indices plus petits que (i,j)

Une matrice de programmation dynamique:

T D C G G T 7 2 3 4 5 6 0 1 C S 1 2 Α T 3 (i-1,j-1) (i-1,j) (i,j)Α 4 (i,j-1)G 5 Т 6 G D(m,n)

© notes de cours de Nadia El-Mabrouk

Calculer D(i,j) à partir des 3 cases (i-1,j), (i, j-1) et (i-1,j-1):

1. L'alignement se termine par la suppression de S_i

Alignement optimal de
$$s_1 \dots s_{i-1}$$
 s_i avec $t_1 \dots t_j$ $t_i \in D(i-1,j)$

2. L'alignement se termine par l'insertion de t_j

Alignement optimal de
$$s_1 \dots s_i$$
 avec $t_1 \dots t_{j-1}$ t_j

3. L'alignement se termine par l'alignement de s_i avec t_j

Alignement optimal de
$$s_1 \dots s_{i-1}$$
 t_j avec $t_1 \dots t_{j-1}$ t_j t_j

Remplissage de la table

Conditions initiales:
$$D(i,0)=i, \quad \forall i \quad 0 \leq i \leq m$$

$$D(0,j)=j, \quad \forall j \quad 0 \leq j \leq n$$

Relation de récurrence pour i, j > 0:

$$D(i,j) = \min \begin{cases} D(i-1,j) & +1 \\ D(i,j-1) & +1 \\ D(i-1,j-1) + \delta(i,j) \end{cases},$$

Où $\delta(i,j) = 0$ si $x_i = y_j$ et 1 sinon.

Complexité: Pour remplir chaque case de la table, on examine 3 cases. Il y a O(nm) cases et donc complexité en temps de O(nm)

Trouver un alignement optimal

Au cours du remplissage de la table, garder des pointeurs:

- de (i,j) à (i-1,j) si D(i,j) = D(i-1,j) + 1
- de (i,j) à (i,j-1) si D(i,j) = D(i,j-1) + 1
- de (i,j) à (i-1,j-1) si D(i,j) = D(i-1,j-1) +
$$\delta(i,j)$$

Un alignement optimal: Commencer à la case (m,n) et suivre des pointeurs jusqu'à la case (0,0).

Une case peut contenir plusieurs pointeurs: plusieurs alignements optimaux possibles

D		G	T	C	Α	G	G	Т
	†0 \	1 +	⁻ 2 ≒	-3 ←	-4 ←	- 5 ←	-6 ←	⁻ 7
С	1	1-	-2	2-	- 3 -	-4 ←	-5 -	- 6
Α	[†] 2	2	2 -	3	2 -	-3-	-4 -	- 5
Т	[†] 3 ,	3	2 -	3	3	3+	4	4
Α	14 ⋅	4	3	3,	,3 ←	4 ,	4 :	5
G	[†] 5	4	4	4	4	3	4 :	5
T	_† 6 \	5	4	5	5	4	4	4
G	7	6	5	5	6	5	4	5

C A T - A G T G - G T C A G - G T

Distance versus similarité

Plutôt que de mesurer la différence entre 2 séquences, mesurer leur degré de similarité

P(a,b): score de l'appariement (a,b). Positif si a=b et ≤ 0

V(i,j): valeur de l'alignement optimal entre $S_1 \dots S_i$ et $t_1 \dots t_j$

Conditions initiales:
$$V(i,0) = \sum_{1 \le k \le i} P(s_k,-), \quad V(0,j) = \sum_{1 \le k \le j} P(-,t_k),$$

Relation de récurrence:

$$V(i,j) = \max \begin{cases} V(i,j-1) & +P(-,t_j) \\ V(i-1,j) & +P(s_i,-), \\ V(i-1,j-1) + P(s_i,t_j) \end{cases}$$

Algorithme de Needleman-Wunch

Distance d'édition avec pondération des opérations

Associer un score à chaque opération

- d pour une insertion ou suppression d > 0
- r pour une substitution r > 0
- m pour un match $m \le 0$ (généralement m = 0)

Relations de récurrence:

$$D(i,0) = i \times d$$
 $D(0,j) = j \times d$

$$D(i,j) = \min \begin{cases} D(i-1,j) & +d \\ D(i,j-1) & +d \\ D(i-1,j-1) + \delta(i,j) \end{cases}$$

où
$$\delta(i,j)$$
= m si $s_i=t_j$ et r sinon.

Attention: Il faut que r < 2d, sinon jamais de substitutions

Distance d'édition généralisée

Le score p dépend des caractères. Par exemple, remplacer une purine par une pyrimidine plus coûteux que remplacer une purine par une purine.

Relations de récurrence:
$$D(0,j) = \sum_{1 \le k \le j} p(-,t_k)$$

$$D(i,0) = \sum_{1 \le k \le i} p(s_k, -)$$

$$D(i,j) = \min \begin{cases} D(i-1,j) & +p(s_i,-) \\ D(i,j-1) & +p(-,t_j) \\ D(i-1,j-1)+p(s_i,t_j) \end{cases}$$

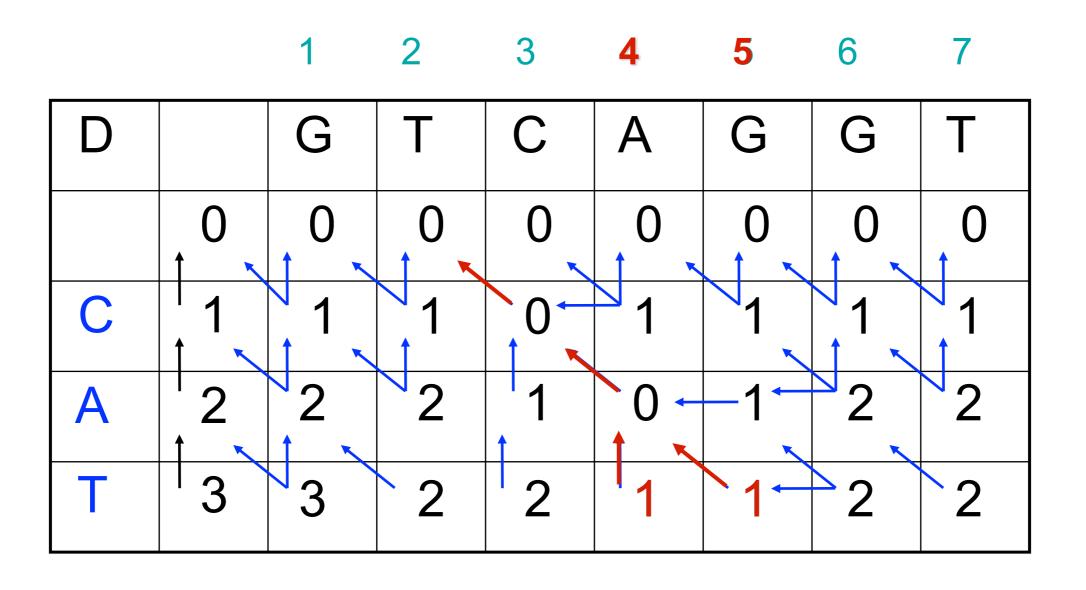
Recherche approché d'un motif

Problème: On a un "petit" motif P de taille m et une "longue" séquence T de taille n et on veut trouver toutes les occurrences approximatives de P dans T (moins de k erreurs).

		G	T	C	A	G	G	• • •
	0	0	0	0	0	0	0	•••
C	1							
A	2							
T	3							

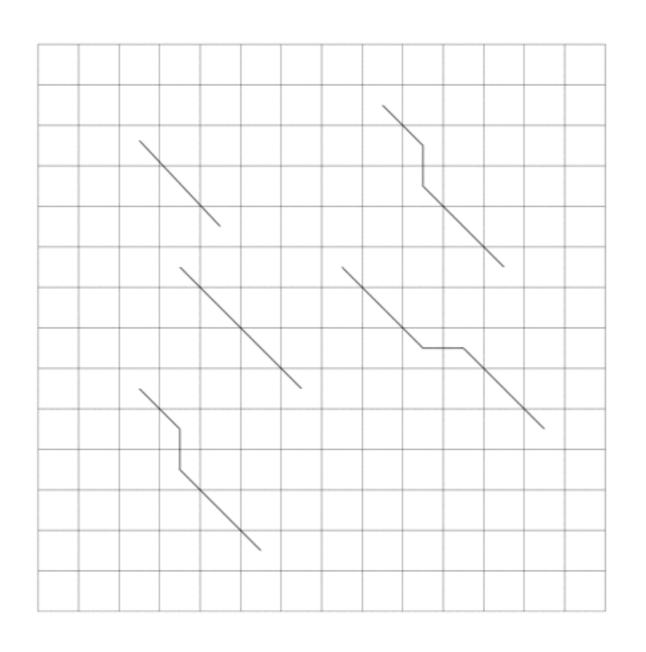
- initialiser la première ligne à 0
- même relations de récurrence que pour l'alignement global de séquences
- rechercher à la ligne m toutes les cases contenant des valeurs plus petites ou égales à k
- pour trouver un alignement, suivre les pointeurs jusqu'à la première ligne

Recherche de P = ``CAT'' à 1 erreur près



Alignement local - Algorithme de Smith-Waterman

Similarité locale entre deux séquences: Valeur maximale d'un alignement entre deux facteurs des deux séquences.



Alignement local - Algorithme de Smith-Waterman

Relations de récurrence: V(0,j) = 0

$$V(i,0) = 0$$

$$V(i,j) = \max \begin{cases} 0 \\ V(i-1,j) + p(s_i,-) \\ V(i,j-1) + p(-,t_j) \\ V(i-1,j-1) + p(s_i,t_j) \end{cases}$$

- Le 0 dans la récurrence permet d'ignorer un nombre quelconque de caractères en début de séquence
- Pour trouver un alignement local de score maximal:
 - On remplie la table
 - On recherche une case c contenant la valeur maximale de la table
 - De cette case c, on suit les pointeurs jusqu'à une case contenant la valeur 0

Alignement local

Score 2 pour match, -1 pour mismatch ou insertions/suppressions

D		G	Т	С	Α	G	G	Т
	0	0	0	0	0	0	0	0
С	0	0	0	2 -	_1	0	0	0
Α	0	0	0	1	4 🛨	- 3	−2 ←	-1
G	0	2 -	_ 1	0	3	6 +	5	_4
Т	0	1	4 ←	- 3 ←	2	5	5	7
Т	0	0	3	3 -	2	4	4	7
Α	0	0	2	2	5	-4 ←	3	6
G	0	2 ←	□ 1 ←	<u> </u>	4	7 —	_ 6 ←	5

...G T T A G C A G T T ... C A G - T ...
G T C A G... ...C A G G TC A G G T

Considérer les trous

Gap: Suite maximale de blancs dans l'une des deux séquences alignées. Possiblement réduit à un seul espace.

Contient 4 gaps, 7 espaces, 5 match et 1 mismatch.

Score particulier pour les trous: influence la distribution des espaces d'un alignement optimal.

Modèles de pondération

Pondération constante: Score d'un gap indépendant de sa taille; Constante W_t .

Score d'un alignement entre S et T contenant k trous:

$$\sum_{i=1}^{l} P(s_i, t_i) - kW_t$$

Exemple:

$$Score = 3P(C,C) + 2P(A,A) + 2P(A,T) - 2W_T$$

Modèles de pondération (suite)

<u>Pondération affine</u>: Généralisation de la pondération constante. Modèle de pondération le plus utilisé

 W_t : initiation d'un trou

 W_e : extension d'un trou

Score d'un trou de taille q: $\omega(q) = W_t + qW_e$

Score d'un alignement de taille l contenant k trous et q espaces:

$$\sum_{i=1}^l P(s_i, t_i) - kW_t - qW_e$$

Exemple:

$$Score = 3P(C,C) + 2P(A,A) + 2P(A,T) - 2W_t - 5W_e$$

Modèles de pondération (suite)

Pondération convexe: Chaque espace supplémentaire est moins pénalisé que le précédent

Exemple: Score d'un gap de taille q, $\omega(q) = W_t + \log_e(q)$

Pondération quelconque: Fonction quelconque de la taille du gap.

Recherche d'un alignement optimal: pondération quelconque

Trois alignements possibles de S[1..i] et T[1..j]:

- 1. Alignement de S[1..i] et T[1..j-1] suivit de $(-,t_j)$.
- 2. Alignement de S[1..i-1] et T[1..j] suivit de $(s_i, -)$.
- 3. Alignement de S[1..i-1] et T[1..j-1] suivit de (s_i,t_j) .

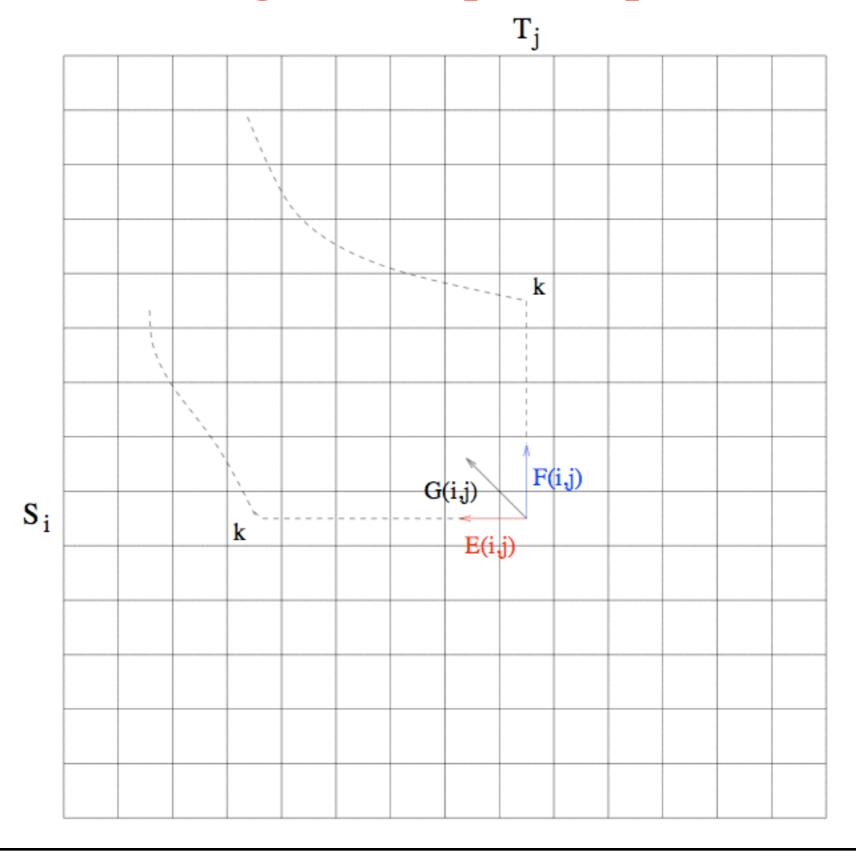
E(i,j): valeur maximale d'un alignement de type 1.

F(i,j): valeur maximale d'un alignement de type 2.

G(i, j): valeur maximale d'un alignement de type 3.

$$V(i, j): \max[E(i, j), F(i, j), G(i, j)]$$

Recherche d'un alignement optimal: pondération quelconque



Recherche d'un alignement optimal: pondération quelconque

Conditions initiales:

$$V(i,0) = F(i,0) = -\omega(i); \ V(0,j) = E(0,j) = -\omega(j)$$

Relations de récurrence:

$$G(i,j) = V(i-1,j-1) + P(s_i,t_j)$$

$$E(i,j) = \max_{0 \le k \le j-1} [V(i,k) - \omega(j-k)]$$

$$F(i,j) = \max_{0 \le k \le i-1} [V(k,j) - \omega(i-k)]$$

Valeur optimale: V(m, n)