
THE RECURSIVE LOGIT MODEL

TUTORIAL

August 2017

CIRRELT SEMINAR

MAELLE ZIMMERMANN∗, TIEN MAI∗,
EMMA FREJINGER∗

CIRRELT and Université de Montréal, Canada

Ecole Polytechnique de Montréal, Canada

TUTORIAL GOALS

I The recursive logit model is a random utility model for the
choice of path in a network with no restriction on the choice
set. It is based on dynamic discrete choice theory.

I This tutorial is focused on theory and practice and aims to
I describe the problem, the model and its advantages
I familiarize the reader with the open-source Matlab code

intermodal.iro.umontreal.ca |Page 2/46

PREREQUISITES

We assume the reader is familiar with discrete choice theory and
refer to the textbook of Ben-Akiva and Lerman for insights on this
topic.

I Ben-Akiva, M. and Lerman, S. R. Discrete Choice Analysis:
Theory and Application to Travel Demand. MIT Press,
Cambridge, Massachusetts, 1985.

intermodal.iro.umontreal.ca |Page 3/46

OUTLINE

I Introduction
I Theory

I Route choice modeling approaches
I Recursive logit model formulation
I Maximum likelihood estimation

I Practice
I Matlab
I Code structure
I Data files
I A first example

intermodal.iro.umontreal.ca |Page 4/46

1 Introduction: the problem

2 Theory: the models

3 Practice: making it work

intermodal.iro.umontreal.ca |Page 5/46

ROUTE CHOICE MODELING

The problem

I Given an origin and destination in a transport network, which
route does a traveler choose?

I Travelers do not always choose the shortest path in terms of
distance

I Other attributes affect the choice through a generalized cost
function

intermodal.iro.umontreal.ca |Page 6/46

MODELING FRAMEWORK

Discrete choice framework
I Analyst observes path choices but has imperfect

knowledge of travelers’ generalized cost and perception of
network

I Parameters to be estimated on such data describe
individuals’ preferences for attributes

I The estimated models define choice probability
distributions over alternative paths

intermodal.iro.umontreal.ca |Page 7/46

OBJECTIVES

A model that can be

I Consistently estimated in reasonable time using path choice
data collected in real large-scale networks

I used for accurately predicting path choices in short
computational time (e.g. in a traffic simulation context)

intermodal.iro.umontreal.ca |Page 8/46

WHY IT IS DIFFICULT

The choice set problem

I We don’t know what alternatives individuals consider and
there are infinitely many paths connecting each OD pair

The correlation problem

I Many paths overlap in a real network and overlapping paths
probably share unobserved attributes

intermodal.iro.umontreal.ca |Page 9/46

1 Introduction: the problem

2 Theory: the models

3 Practice: making it work

intermodal.iro.umontreal.ca |Page 10/46

ROUTE CHOICE MODELS

Route choice models can be categorized according to the way they
deal with choice sets.

Choice sets

Consideration sets Universal choice sets

Sampling of
alternatives

Recursive logit

I Generated choice sets treated
as true ones

I Parameter estimates differ
depending on choice set

I Issues with prediction
I Consistent

estimates

I Issues with
prediction

I Consistent
estimates

I Straightforward for
prediction

intermodal.iro.umontreal.ca |Page 11/46

”CONSIDERATION SETS” APPROACH

•O • D

I Choice of path modeled as selection
from a discrete set of routes

I Since the set of feasible routes
between O and D cannot be
enumerated, the modeler generates a
subset of path alternatives.

I The generated choice set is treated as
the true one.

I Problem: Parameter estimates may
significantly vary depending on the
choice set definition!

intermodal.iro.umontreal.ca |Page 12/46

ANOTHER APPROACH

Recursive logit model

I Proposed by Fosgerau, Frejinger and Karlström, (2013). A
link-based network route choice model with unrestricted
choice set, Transportation Research Part B 56(1):7080.

I Choice of path is formulated as a sequence of link choices

I A specific case of dynamic discrete choice

intermodal.iro.umontreal.ca |Page 13/46

DYNAMIC DISCRETE CHOICE

I Horizon T , steps t = 1, ...,T
I Individuals make sequential decisions over horizon

I A state st describes all the information relevant for the
individual at step t

I An action at is the decision taken at step t, affecting the
value of future state st+1

I Instantaneous utility u(at |ss) of choosing action at

I A Markov transition density function F(st+1|at ,st)
describes the evolution of future states

intermodal.iro.umontreal.ca |Page 14/46

DYNAMIC DISCRETE CHOICE

I Unobserved state variables εt , observed state variables xt

I εt is an i.i.d. extreme value type I random variable

I Utility separable in u(at |st) = v(at |xt)+ εt

I v(at |xt) parametrized by β to be estimated

I Markov transition function becomes F(εt+1)F(xt+1|at ,xt)

I Individual chooses action at which maximizes instantaneous
and future utility

I Expected maximum utility at state xt given by integrated
Bellman’s equation

V (xt) = Eε

[
max

at

(
v(at |xt)+ εt +

∫
V (xt+1)dF(xt+1|at ,xt)

)]

intermodal.iro.umontreal.ca |Page 15/46

RECURSIVE LOGIT MODEL

A dynamic discrete choice model for the choice of path

I The network is represented by a graph G = (A,V)

I A state k ∈ A is a link in the network

I An action a ∈ A(k) is an outgoing link at the sink node of k
I Infinite horizon but absorbing link d with no successor

corresponding to destination.

I A path is a sequence of states k0, ...,kI with ki+1 ∈ A(ki) ∀i
and kI = d

intermodal.iro.umontreal.ca |Page 16/46

ATTRIBUTES

I We denote x(a|k) the attributes of the link pair (k,a)
I Parameters β describe individual preferences regarding

attributes

I u(a|k) is the random utility of link a given current link k
I u(a|k) = v(a|k)+µε(a),ε(a) i.i.d EV type I

I v(a|k) = β T x(a|k)
I Attributes must be link-additive and deterministic

intermodal.iro.umontreal.ca |Page 17/46

LINK CHOICE SITUATION

• •

•
V d(a1)

•

D
k

a1

a|A(k)|

A(k)
d

I Traveler chooses next link a given current state k
I Next state kt+1 is given with certainty by the action at since

kt+1 = at

I Traveler chooses action a ∈ A(k) that maximizes sum of u(a|k)
and expected maximum utility to destination V d(a), denoted
the Value function

intermodal.iro.umontreal.ca |Page 18/46

LINK CHOICE PROBABILITIES

• •

•
V d(a1)

•

D
k

a1

a|A(k)|

A(k)
d

I Value function to destination given by Bellman’s equation

V d(k) = Eε

[
max

a∈A(k)

{
v(a|k)+V d(a)+µε(a)

}]
(1)

I Link choice probability given by logit model

Pd(a|k) = e
1
µ

v(a|k)+V d(a)

∑a′∈A(k) e
1
µ

v(a′|k)+V d(a′)
. (2)

intermodal.iro.umontreal.ca |Page 19/46

SOLVING THE VALUE FUNCTION

I The exponential of the Value function in (1) can be rewritten

e
1
µ

V (k) =

{
∑a∈A δ (a|k)e

1
µ
(v(a|k)+V (a)) if k ∈ A,

1 if k = d.

I The Value function is obtained by solving a system of linear
equations

z = Mz+b⇔ z = (I−M)−1b

where

zk = e
1
µ

V (k)

bk = 0 ∀k ∈ A, bd = 1

Mka = δ (a|k)e
1
µ

v(a|k)

intermodal.iro.umontreal.ca |Page 20/46

PATH CHOICE PROBABILITIES

I Path σ = k0, ...,kI where kI = d with choice probability

P(σ) =
I−1

∏
i=0

Pd(ki+1|ki)

=
e

1
µ ∑

l−1
i=0 v(ki+1|ki)

e
1
µ

V d(k0)

=
e

1
µ

v(σ)

∑σ ′∈U e
1
µ

v(σ ′)
.

I The RL model is equivalent to a static multinomial logit
model with universal choice set U

intermodal.iro.umontreal.ca |Page 21/46

WHY IS THE RL BETTER?

Advantages over path-based models

I Avoids generating choice sets of paths both for estimation and
prediction

I Parameter estimates are consistent

I Efficient for prediction

intermodal.iro.umontreal.ca |Page 22/46

MAXIMUM LIKELIHOOD ESTIMATION

I Data of observed path choices σn, n = 1, ...N.

I Maximum likelihood estimation problem

max
β

N

∑
n=1

lnP(σn;β)

I Estimation requires to combine inner and outer algorithm,
e.g. Nested Fixed Point (NFXP) algorithm

I Outer algorithm: solves the non-linear optimization problem
I Inner algorithm: solves the Value functions

intermodal.iro.umontreal.ca |Page 23/46

MAXIMUM LIKELIHOOD ESTIMATION

β0 get V (β)

update βConverged?β̂

•

Outer loop:
2nd order

optim. algo.

Inner loop:
Bellman equation

no

yes

intermodal.iro.umontreal.ca |Page 24/46

PREDICTION

I Depending on applications, it may be useful to
I Sample a path from the estimated distribution (e.g.

applications with scenarios)
I Predict expected link flows assuming a fixed demand (e.g.

traffic assignment applications)

Advantages of RL model

I Allows path sampling without choice set generation

I Paths sampled according to the true estimated probabilities

I Possibility to fastly compute expected link flows without repeated
path sampling

intermodal.iro.umontreal.ca |Page 25/46

PREDICTION

Path sampling

I Sequentially sample arcs k0,k1, ... until reaching arc d
according to estimated link choice probabilities Pd(a|k)
∀k,a ∈ A in (2)

Expected link flows

I Pd : link choice probabilities ∀k,a ∈ A
I Gd : demand originating at a ∈ A and ending at d
I Fd : expected flow towards d on a ∈ A obtained by solving

Fd(a) = Gd(a) ∑
k∈A

Pd(a|k)F(k) (3)

intermodal.iro.umontreal.ca |Page 26/46

LINK SIZE ATTRIBUTE

I Similar to Path Size attribute for path-based models

I Heuristically corrects utility of overlapping paths

Computing the LS attribute

I Choose utility with parameters β̃

I For each OD pair, compute expected link flow FOD with (3)
where G is zero-valued except for G(O) = 1.

I Link size attribute is expected link flow

LSOD = FOD

I Note: the LS attribute is origin-destination specific!

intermodal.iro.umontreal.ca |Page 27/46

1 Introduction: the problem

2 Theory: the models

3 Practice: making it work

intermodal.iro.umontreal.ca |Page 28/46

MATLAB

I The implementation of the RL model is in MATLAB

I Matlab documentation reference:
https://www.mathworks.com/help/matlab/

intermodal.iro.umontreal.ca |Page 29/46

GET THE CODE

I The Recursive logit code is available on GitHub here:
https://github.com/maitien86/RL-Tutorial

I You can clone the following repository

$ git clone git://github.com/maitien86/RL-Tutorial

intermodal.iro.umontreal.ca |Page 30/46

DESCRIPTION

I This tutorial is aimed at users who want to use the code to
estimate a path choice model with their own data

I We will go through the type of input data needed and the
main functions of the code

I We will show how the code works on an illustrative dataset

intermodal.iro.umontreal.ca |Page 31/46

QUICK OVERVIEW

I You will need to handle the following files
I loadData.m

Loads the network data and observations given in the Input
folder.

I initializeOptStruct.m

Tunes estimation algorithm and model parameters.
I RLoptimizer.m

Begins the maximum likelihood estimation algorithm and
returns estimates.

intermodal.iro.umontreal.ca |Page 32/46

ILLUSTRATIVE DATASET

3 4 9 12 15

6 7

16

10 13

17

5 8 11 14

1

2

12

21 22

3 5 8 11

6 9

14 16 18

25

24

26 27

28
29

23

4 7 10

13 15 17 20

1

2

Figure: Example network labeled with link IDs

intermodal.iro.umontreal.ca |Page 33/46

DATA FILES

I The code requires the following data files to be placed in the
Input folder:

I LinkAttributes.txt

A file containing attributes values for all links
I Incidence.txt

The matrix representation of the graph G
I Observations.txt

Link-by-link descriptions of observed itineraries

intermodal.iro.umontreal.ca |Page 34/46

LINK ATTRIBUTES
I This file describes the attributes of each network link. It

consists of several columns containing each an attribute value.
The first three columns should indicate

I The link ID,
I The ID of the front node,
I The ID of the end node.

I In practice for real networks such a file can often be obtained
from GIS data.

Figure: Link attributes file for example network

intermodal.iro.umontreal.ca |Page 35/46

LINK ATTRIBUTES

I The LinkAttributes matrix can be read from the link
attributes file

Reading the link attributes file

file_linkAttributes=’./Input/LinkAttributes.txt’;

linkAttributes = csvread(file_linkAttributes,1,0);

intermodal.iro.umontreal.ca |Page 36/46

INCIDENCE MATRIX

I This file describes the incidence matrix of the graph G.

I In practice it can be directly generated from the
LinkAttributes matrix.

Generate incidence matrix

nLinks = length(LinkAttributes(:,1));

A = LinkAttributes(:,3);

B = LinkAttributes(:,2);

Incidence = sparse(nLinks,nLinks);

for i = 1:nLinks

U = find(B == A(i));

Incidence(i,U) = 1;

end

intermodal.iro.umontreal.ca |Page 37/46

INCIDENCE MATRIX

I The Incidence matrix should also include dummy links for
each observed destination

I In the illustrative example we have 29 network links and we
consider a single destination corresponding to node 17

I An absorbing link (here labeled 30) should be added to the set
of network links

I An added column should be added to the Incidence matrix,
of final size 29×30

intermodal.iro.umontreal.ca |Page 38/46

INCIDENCE MATRIX

I The Incidence matrix can be saved as a text file so it can be
easily loaded for future use

Save and load the incidence matrix

[i,j,val] = find(Incidence);

data_dump = [i,j,val];

save(’IncidenceMatrix.txt’,’data_dump’,’-ascii’);

file_incidence=’./Input/IncidenceMatrix.txt’;

Incidence = spconvert(load(file_incidence));

intermodal.iro.umontreal.ca |Page 39/46

OBSERVATIONS

I This file describes observed trajectories in terms of sequences
of link IDs.

I The destination link should be repeated at the beginning of
the sequence.

Sample of observations in example network

Obs. dest. orig. links

1 30 1 3 14 6 26 30
2 30 1 3 5 8 11 29 30
3 30 1 3 5 8 28 30
4 30 1 3 5 8 28 30
5 30 1 12 21 25 30

intermodal.iro.umontreal.ca |Page 40/46

OBSERVATIONS

I In practice data processing steps may be required to obtain
observed data in the desired format

I Similarly to the Incidence matrix, observations should be
saved as a text file that can be loaded as a sparse matrix Obs

Save and load observation matrix

[i,j,val] = find(Obs);

data_dump = [i,j,val];

save(’Observations.txt’,’data_dump’,’-ascii’);

file_incidence=’./Observations.txt’;

Obs = spconvert(load(file_observations));

intermodal.iro.umontreal.ca |Page 41/46

SPECIFYING ATTRIBUTES

Attributes are specified in the loadData.m file. Since the RL
model requires link pairs attributes, this require several steps.

1. extract from the LinkAttributes matrix the attribute
columns to be included in the model specification,

2. transform link attributes vectors into link pair attributes
matrices,

3. store each attribute matrix into the Atts ObjArray variable.

intermodal.iro.umontreal.ca |Page 42/46

EXAMPLE SPECIFICATION

I In the illustrative example, we specify 3 link pair attributes
I Link length
I Presence of traffic signal
I Link constant

I Attributes are defined for link pairs (k,a) and may be
independent of state k (e.g. link length of a) or dependent on
both states (e.g. turn angle between links k and a)

intermodal.iro.umontreal.ca |Page 43/46

SETTING PARAMETERS

I Parameters are set in the initializeOptStruct.m file

I The first set of parameters to tune is related to the estimation
algorithm.

Op.OptimMethod Whether to use a line search or trust region method
Op.HessianApprox Whether to use a BFGS or BHHH Hessian approximation
Op.maxIter The maximum number of iterations of the algorithm

I The second set consists of model parameters.

Op.n The number of attributes in the utility specification
Op.LinkSize A boolean to include or not a Link Size attribute

intermodal.iro.umontreal.ca |Page 44/46

RUNNING THE ESTIMATION ALGORITHM

I The main file RLoptimizer.m starts the model estimation
procedure

I The files loadData.m and initializeOptStruct.m are
called within this file

I Details of each iteration are reported

I The value of estimated parameters and standard deviation are
displayed at the end and can optionally be saved in the
Results folder

intermodal.iro.umontreal.ca |Page 45/46

EXAMPLE OUTPUT

Figure: Output of model estimation for illustrative example

intermodal.iro.umontreal.ca |Page 46/46

	Introduction: the problem
	Theory: the models
	Practice: making it work

