

THE RECURSIVE LOGIT MODEL TUTORIAL

CIRRELT SEMINAR August 2017

> MAELLE ZIMMERMANN*, TIEN MAI*, EMMA FREJINGER*

CIRRELT and Université de Montréal, Canada Ecole Polytechnique de Montréal, Canada

TUTORIAL GOALS

- The recursive logit model is a random utility model for the choice of path in a network with no restriction on the choice set. It is based on dynamic discrete choice theory.
- ▶ This tutorial is focused on theory and practice and aims to
 - describe the problem, the model and its advantages
 - familiarize the reader with the open-source Matlab code

PREREQUISITES

We assume the reader is familiar with discrete choice theory and refer to the textbook of Ben-Akiva and Lerman for insights on this topic.

 Ben-Akiva, M. and Lerman, S. R. Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge, Massachusetts, 1985.

OUTLINE

- Introduction
- Theory
 - Route choice modeling approaches
 - Recursive logit model formulation
 - Maximum likelihood estimation
- Practice
 - Matlab
 - Code structure
 - Data files
 - A first example

1 Introduction: the problem

- 3 Practice: making it work

ROUTE CHOICE MODELING

The problem

- Given an origin and destination in a transport network, which route does a traveler choose?
- Travelers do not always choose the shortest path in terms of distance
- Other attributes affect the choice through a generalized cost function

MODELING FRAMEWORK

Discrete choice framework

- Analyst observes path choices but has imperfect knowledge of travelers' generalized cost and perception of network
- Parameters to be estimated on such data describe individuals' preferences for attributes
- The estimated models define choice probability distributions over alternative paths

OBJECTIVES

A model that can be

- Consistently estimated in reasonable time using path choice data collected in real large-scale networks
- used for accurately predicting path choices in short computational time (e.g. in a traffic simulation context)

WHY IT IS DIFFICULT

The choice set problem

We don't know what alternatives individuals consider and there are infinitely many paths connecting each OD pair

The correlation problem

Many paths overlap in a real network and overlapping paths probably share unobserved attributes

ROUTE CHOICE MODELS

Route choice models can be categorized according to the way they deal with **choice sets**.

"CONSIDERATION SETS" APPROACH

- Choice of path modeled as selection from a discrete set of routes
- Since the set of feasible routes between O and D cannot be enumerated, the modeler generates a subset of path alternatives.
- The generated choice set is treated as the true one.
- Problem: Parameter estimates may significantly vary depending on the choice set definition!

ANOTHER APPROACH

Recursive logit model

- Proposed by Fosgerau, Frejinger and Karlström, (2013). A link-based network route choice model with unrestricted choice set, Transportation Research Part B 56(1):7080.
- Choice of path is formulated as a sequence of link choices
- ► A specific case of dynamic discrete choice

DYNAMIC DISCRETE CHOICE

- Horizon T, steps t = 1, ..., T
- Individuals make sequential decisions over horizon
- ► A state s_t describes all the information relevant for the individual at step t
- ► An action a_t is the decision taken at step t, affecting the value of future state s_{t+1}
- Instantaneous **utility** $u(a_t|s_s)$ of choosing action a_t
- ► A Markov transition density function F(s_{t+1}|a_t,s_t) describes the evolution of future states

DYNAMIC DISCRETE CHOICE

- **Unobserved** state variables ε_t , **observed** state variables x_t
- \mathcal{E}_t is an i.i.d. extreme value type I random variable
- Utility separable in $u(a_t|s_t) = v(a_t|x_t) + \varepsilon_t$
- $v(a_t|x_t)$ parametrized by β to be **estimated**
- Markov transition function becomes $F(\varepsilon_{t+1})F(x_{t+1}|a_t,x_t)$
- Individual chooses action a_t which maximizes instantaneous and future utility
- Expected maximum utility at state x_t given by integrated Bellman's equation

$$V(x_t) = E_{\varepsilon} \left[\max_{a_t} \left(v(a_t | x_t) + \varepsilon_t + \int V(x_{t+1}) dF(x_{t+1} | a_t, x_t) \right) \right]$$

RECURSIVE LOGIT MODEL

A dynamic discrete choice model for the choice of path

- The network is represented by a graph G = (A, V)
- A state $k \in A$ is a **link** in the network
- An action $a \in A(k)$ is an **outgoing link** at the sink node of k
- Infinite horizon but absorbing link d with no successor corresponding to destination.
- ▶ A path is a sequence of states $k_0, ..., k_I$ with $k_{i+1} \in A(k_i) \quad \forall i$ and $k_I = d$

ATTRIBUTES

- We denote x(a|k) the attributes of the **link pair** (k,a)
- Parameters β describe individual preferences regarding attributes
- u(a|k) is the random utility of link a given current link k
- ▶ $u(a|k) = v(a|k) + \mu \varepsilon(a), \varepsilon(a)$ i.i.d EV type I
- $\blacktriangleright v(a|k) = \beta^T x(a|k)$
- Attributes must be link-additive and deterministic

LINK CHOICE SITUATION

- ► Traveler chooses next link *a* given current state *k*
- ► Next state k_{t+1} is given with certainty by the action a_t since $k_{t+1} = a_t$
- ► Traveler chooses action a ∈ A(k) that maximizes sum of u(a|k) and expected maximum utility to destination V^d(a), denoted the Value function

LINK CHOICE PROBABILITIES

Value function to destination given by Bellman's equation

$$V^{d}(k) = E_{\varepsilon} \left[\max_{a \in A(k)} \left\{ v(a|k) + V^{d}(a) + \mu \varepsilon(a) \right\} \right]$$
(1)

Link choice probability given by logit model

$$P^{d}(a|k) = \frac{e^{\frac{1}{\mu}v(a|k) + V^{d}(a)}}{\sum_{a' \in A(k)} e^{\frac{1}{\mu}v(a'|k) + V^{d}(a')}}.$$
(2)

SOLVING THE VALUE FUNCTION

▶ The exponential of the Value function in (1) can be rewritten

$$e^{\frac{1}{\mu}V(k)} = \begin{cases} \sum_{a \in A} \delta(a|k) e^{\frac{1}{\mu}(v(a|k) + V(a))} & \text{if } k \in A, \\ 1 & \text{if } k = d. \end{cases}$$

 The Value function is obtained by solving a system of linear equations

$$z = Mz + b \Leftrightarrow z = (I - M)^{-1}b$$

where

$$z_k = e^{\frac{1}{\mu}V(k)}$$

$$b_k = 0 \quad \forall k \in A, \ b_d = 1$$

$$M_{ka} = \delta(a|k)e^{\frac{1}{\mu}v(a|k)}$$

PATH CHOICE PROBABILITIES

▶ Path $\sigma = k_0, ..., k_I$ where $k_I = d$ with choice probability

$$P(\sigma) = \prod_{i=0}^{I-1} P^d(k_{i+1}|k_i)$$

= $\frac{e^{\frac{1}{\mu}\sum_{i=0}^{l-1}v(k_{i+1}|k_i)}}{e^{\frac{1}{\mu}V^d(k_0)}}$
= $\frac{e^{\frac{1}{\mu}v(\sigma)}}{\sum_{\sigma' \in \mathscr{M}} e^{\frac{1}{\mu}v(\sigma')}}.$

► The RL model is equivalent to a static multinomial logit model with universal choice set *U*

WHY IS THE RL BETTER?

Advantages over path-based models

- Avoids generating choice sets of paths both for estimation and prediction
- Parameter estimates are consistent
- Efficient for prediction

MAXIMUM LIKELIHOOD ESTIMATION

- ▶ Data of observed **path choices** σ_n , n = 1,...N.
- Maximum likelihood estimation problem

$$\max_{\beta} \sum_{n=1}^{N} \ln P(\sigma_n; \beta)$$

- Estimation requires to combine inner and outer algorithm, e.g. Nested Fixed Point (NFXP) algorithm
 - ► Outer algorithm: solves the non-linear optimization problem
 - Inner algorithm: solves the Value functions

MAXIMUM LIKELIHOOD ESTIMATION

PREDICTION

Depending on applications, it may be useful to

- Sample a path from the estimated distribution (e.g. applications with scenarios)
- Predict expected link flows assuming a fixed demand (e.g. traffic assignment applications)

Advantages of RL model

- Allows path sampling without choice set generation
- Paths sampled according to the true estimated probabilities
- Possibility to fastly compute expected link flows without repeated path sampling

PREDICTION

Path sampling

► Sequentially sample arcs k₀, k₁,... until reaching arc d according to estimated link choice probabilities P^d(a|k) ∀k, a ∈ A in (2)

Expected link flows

- ▶ P^d : link choice probabilities $\forall k, a \in A$
- ▶ G^d : demand originating at $a \in A$ and ending at d
- F^d : expected flow towards d on $a \in A$ obtained by solving

$$F^{d}(a) = G^{d}(a) \sum_{k \in A} P^{d}(a|k) F(k)$$
(3)

LINK SIZE ATTRIBUTE

- Similar to Path Size attribute for path-based models
- Heuristically corrects utility of overlapping paths

Computing the LS attribute

- Choose utility with parameters $\tilde{\beta}$
- ► For each OD pair, compute expected link flow F^{OD} with (3) where G is zero-valued except for G(O) = 1.
- Link size attribute is expected link flow

$$LS^{OD} = F^{OD}$$

Note: the LS attribute is origin-destination specific!

- 2 Theory: the models
- 3 Practice: making it work

MATLAB

- The implementation of the RL model is in MATLAB
- Matlab documentation reference: https://www.mathworks.com/help/matlab/

GET THE CODE

- The Recursive logit code is available on GitHub here: https://github.com/maitien86/RL-Tutorial
- You can clone the following repository

\$ git clone git://github.com/maitien86/RL-Tutorial

DESCRIPTION

- This tutorial is aimed at users who want to use the code to estimate a path choice model with their own data
- We will go through the type of input data needed and the main functions of the code
- ► We will show how the code works on an illustrative dataset

QUICK OVERVIEW

- You will need to handle the following files
 - loadData.m Loads the network data and observations given in the Input folder.
 - initializeOptStruct.m Tunes estimation algorithm and model parameters.
 - RLoptimizer.m Begins the maximum likelihood estimation algorithm and returns estimates.

ILLUSTRATIVE DATASET

Figure: Example network labeled with link IDs

DATA FILES

- The code requires the following data files to be placed in the Input folder:
 - LinkAttributes.txt
 A file containing attributes values for all links
 - Incidence.txt
 The matrix representation of the graph G
 - Observations.txt
 Link-by-link descriptions of observed itineraries

LINK ATTRIBUTES

- This file describes the attributes of each network link. It consists of several columns containing each an attribute value. The first three columns should indicate
 - The link ID,
 - The ID of the front node,
 - The ID of the end node.
- In practice for real networks such a file can often be obtained from GIS data.

Figure: Link attributes file for example network

LINK ATTRIBUTES

The LinkAttributes matrix can be read from the link attributes file

Reading the link attributes file

file_linkAttributes='./Input/LinkAttributes.txt'; linkAttributes = csvread(file_linkAttributes,1,0);

INCIDENCE MATRIX

- ► This file describes the incidence matrix of the graph G.
- In practice it can be directly generated from the LinkAttributes matrix.

Generate incidence matrix

```
nLinks = length(LinkAttributes(:,1));
A = LinkAttributes(:,3);
B = LinkAttributes(:,2);
Incidence = sparse(nLinks,nLinks);
for i = 1:nLinks
    U = find(B == A(i));
    Incidence(i,U) = 1;
end
```

CN CHAIR ON INTERMODAL TRANSPORTATION

INCIDENCE MATRIX

- The Incidence matrix should also include dummy links for each observed destination
- ► In the illustrative example we have 29 network links and we consider a single destination corresponding to node 17
- An absorbing link (here labeled 30) should be added to the set of network links
- ► An added column should be added to the Incidence matrix, of final size 29 × 30

INCIDENCE MATRIX

The Incidence matrix can be saved as a text file so it can be easily loaded for future use

Save and load the incidence matrix

[i,j,val] = find(Incidence); data_dump = [i,j,val]; save('IncidenceMatrix.txt','data_dump','-ascii');

file_incidence='./Input/IncidenceMatrix.txt'; Incidence = spconvert(load(file_incidence));

OBSERVATIONS

- This file describes observed trajectories in terms of sequences of link IDs.
- The destination link should be repeated at the beginning of the sequence.

Obs.	dest.	orig.			links			
1	30	1	3	14	6	26	30	
2	30	1	3	5	8	11	29	30
3	30	1	3	5	8	28	30	
4	30	1	3	5	8	28	30	
5	30	1	12	21	25	30		

Sample of observations in example network

OBSERVATIONS

- In practice data processing steps may be required to obtain observed data in the desired format
- Similarly to the Incidence matrix, observations should be saved as a text file that can be loaded as a sparse matrix Obs

Save and load observation matrix

```
[i,j,val] = find(Obs);
data_dump = [i,j,val];
save('Observations.txt','data_dump','-ascii');
```

file_incidence='./Observations.txt';
Obs = spconvert(load(file_observations));

SPECIFYING ATTRIBUTES

Attributes are specified in the loadData.m file. Since the RL model requires link pairs attributes, this require several steps.

- extract from the LinkAttributes matrix the attribute columns to be included in the model specification,
- 2. transform link attributes vectors into link pair attributes matrices,
- 3. store each attribute matrix into the Atts ObjArray variable.

EXAMPLE SPECIFICATION

- ▶ In the illustrative example, we specify 3 link pair attributes
 - Link length
 - Presence of traffic signal
 - Link constant
- Attributes are defined for link pairs (k, a) and may be independent of state k (e.g. link length of a) or dependent on both states (e.g. turn angle between links k and a)

SETTING PARAMETERS

- Parameters are set in the initializeOptStruct.m file
- The first set of parameters to tune is related to the estimation algorithm.

Op.OptimMethod
Op.HessianApprox
Op.maxIterWhether to use a line search or trust region method
Whether to use a BFGS or BHHH Hessian approximation
The maximum number of iterations of the algorithm

The second set consists of model parameters.

Op.n Op.LinkSize

The number of attributes in the utility specification A boolean to include or not a Link Size attribute

RUNNING THE ESTIMATION ALGORITHM

- The main file RLoptimizer.m starts the model estimation procedure
- The files loadData.m and initializeOptStruct.m are called within this file
- Details of each iteration are reported
- The value of estimated parameters and standard deviation are displayed at the end and can optionally be saved in the Results folder

EXAMPLE OUTPUT

```
The algorithm stops, due to RELATIVE GRADIENT
The attributes are
[Iteration]: 15
    LL = 2.381999
     x =
        -2.358565e\pm00
        -3.327645e-01
         2.640459e-02
     norm of step = 0.000150
     radius = 0.000601
    Norm of grad = 0.000002
     Norm of relative gradient = 0.000000
     Number of function evaluation = 20,000000
 Number of function evaluation 20
 Estimated time 5.739890e-01
```

Figure: Output of model estimation for illustrative example

