
Privacy-Preserving Boosting

Esma Aı̈meur, Gilles Brassard, Sébastien Gambs and Balázs Kégl ?

Université de Montréal
Département d’informatique et de recherche opérationnelle

C.P. 6128, Succ. Centre-Ville, Montréal (Québec), H3C 3J7 Canada
{aimeur,brassard,gambsseb,kegl}@iro.umontreal.ca

http://www.iro.umontreal.ca/∼{aimeur,brassard,gambsseb,kegl}

Abstract. We present an approach that allows two participants to
implement an algorithm of the boosting family when the dataset is
split between them. Although they are willing to collaborate for the
accomplishment of this task of mutual benefit, the participants wish
to preserve the privacy of their data. For this purpose, we introduce
MABoost (Multiparty Abstention Boost), a distributed and privacy-
preserving boosting-by-abstention algorithm.

1 Introduction

Data mining is a domain on the rise, which is at the crossroads of databases,
statistics and artificial intelligence. Its main goal can be summarized as finding
useful information inside a vast amount of data. In our Information Age, in which
huge databases are increasingly common, data mining has become very popular.
It is now used in a wide range of different areas such as finances, sociology and
astrophysics, to name a few.

Secure multiparty computation is the branch of cryptography that deals with
the realization of distributed tasks in a secure manner, where the definition of
security can take different flavours, depending on the setting considered such as
preserving the privacy of the data or protecting the computation against mali-
cious participants. Typically, secure multiparty computation consists of comput-
ing some function f(x, y), in which input x is in the hands of one participant and
input y is in the hands of the other. For the computation to be considered totally
secure, the two participants should learn nothing after the completion of the task,
except for what can be inferred from the output of the function itself, given their
own input and the a priori information they had concerning the other input. Yao
was the first to describe a technique that enables the implementation of any prob-
abilistic computation between two participants in a secure manner [19]. Later, his
results were generalized to the setting of multiple participants [4, 6]. It must be
mentioned, however, that although universal and general, these methods can be
very inefficient and heavy in terms of communication complexity when the inputs
are large and when the function to compute is relatively complicated to describe.
When this occurs, it is often more desirable to develop an ad hoc solution.
? This research is supported in parts by Canada’s Nserc.



In this paper, we study the encounter of data mining and secure multiparty
computation, when the task is the construction of a classifier. In machine learn-
ing, classification can be defined as the task of accurately predicting the class of
an object from some observations about this object. Consider the following sce-
nario: Alice and Bob are directors of two competing banks. They wish to collabo-
rate in order to perform a task of mutual interest. For example, they might want
to construct a device that is able to give an advice on whether or not a person is a
good candidate for a loan. Each of the two bankers owns a database that contains
all the confidential data concerning their clients, upon which the classifier has to
be built. Clearly, if Alice and Bob were willing to put their data together (e.g. if
Bob would send his database directly to Alice), then the problem of building a
classifier would be greatly simplified as no distributed or security aspect would
have to be taken into account. But this is not the situation since Alice and Bob
would like to protect as much as possible the sensitive information they possess
concerning their clients, even if they are willing to cooperate with each other.
Therefore, they wish to build a classifier based on their respective databases in
a distributed but also confidential manner, meaning that they want to disclose
as little information as possible concerning their respective clients. Notice that,
obviously, the final classifier does leak some information about the clients, as in
the example given above where we want to distinguish between a good payer and
a bad payer, but for the protocol to be considered secure we only require that it
does not reveal more than it is possible to learn by looking directly at the descrip-
tion of the final classifier. The comparison of different types of classifiers, consid-
ering how well and in which sense they preserve privacy [8], is also a relevant and
interesting (and of course complex!) question, which we shall not discuss here.

We introduce a boosting-like algorithm to create the final classifier. We con-
sider a security model in which the participants are semi-honest, also called the
passive or honest-but-curious model, which means that the participants follow
the execution of their prescribed protocols, without any attempt at cheating, but
they try to learn as much information as possible concerning the other partici-
pant’s data by analysing the information exchanged during the protocol [11]. This
model is weaker than if we allowed participants to be malicious and to cheat
actively during the protocol, but it is nevertheless useful and often considered in
privacy-preserving data mining. Once a protocol has been proved secure in this
model, it is natural to attempt upgrading its security towards a stronger model.

The outline of this paper is as follows. First we describe privacy-preserving
data mining in Section 2 and we review the three approaches that cope with this
problem. We briefly review the principles of boosting in Section 3. In Section 4,
we introduce MABoost (Multiparty Abstention Boost), our novel boosting
algorithm with abstention that works in a distributed and secure manner. The
complexity of the algorithm (both communication and computation) and its
security are studied in Sections 5 and 6, respectively. In Section 7, we provide
empirical results on the behaviour of MABoost by using it on a real dataset, and
we compare its performance with the standard AdaBoost algorithm. Finally,
we discuss possible generalizations of our approach in Section 8.



2 Privacy-Preserving Data Mining

Today, the Internet makes it possible to reach and connect sources of information
throughout the world, but at the same time it raises many questions concern-
ing their security and privacy. Privacy-preserving data mining is an emerging
field that studies how data-mining algorithms can affect the privacy of data
and tries to find and analyse new algorithms that will preserve this privacy.
A review of the issues and state-of-the-art of privacy-preserving data mining can
be found in [18], where some of the algorithms are reviewed and three different
trends of approaches for dealing with privacy-preserving issues in data mining
are identified.

The algorithms that belong to the first approach are usually based on heuris-
tics that modify the values of selected attributes on individual records in order to
preserve privacy. This technique of selective data modification is called saniti-
zation and has been proven to be NP-hard [3]. When making data sanitization,
one always needs to find an equilibrium between the amount of privacy and the
utility loss resulting from this sanitization process. In order to sanitize data, it
is possible to make different modifications on the data such as altering the value
of an attribute by either perturbing it or replacing it with the “unknown” value,
swapping the values of attributes between individual records, using a coarser
granularity by merging several possible values, using a sampling strategy, etc.

With the second approach, the data is modified again, but in a global
rather than a local manner. By adding noise drawn from a known distribution
(e.g. Gaussian or uniform), it is possible to construct a classifier and to apply a
reconstruction algorithm, which will try to clean up the effect of the noise and
construct a classifier that is as close as possible to the one constructed on the
original distribution [2]. Here also, there will be a trade-off between the level of
privacy (the noise added) and the quality of the reconstruction, which directly
affects the performance of the classifier. This approach can be extended in a
natural way to the problem of density estimation, in which we are trying to
estimate directly the shape of the original distribution rather that building a
classifier based on this distribution. A reconstruction algorithm based on the
principle of Expectation-Maximization (EM), which accurately and efficiently
estimates the shape of the original distribution, is described in [1]. It is also
possible to tune the intensity and the type of added noise in order to adjust the
level of privacy and the quality of the reconstruction.

The third and final approach is very different in spirit from the first two,
as it attacks the problem with a cryptography-based view [7]. After all, any
distributed and privacy-preserving computation can be considered as an instance
of a secure multiparty computation, and privacy-preserving data mining is no
exception. An algorithm that computes a modified version of ID3 in a distributed
and privacy-preserving manner is described in [13]. ID3 is a well established
algorithm that uses an entropy-based metric in order to construct a decision
tree [14]. The decision tree that is computed in [13] is an approximation to what
the original ID3 would have computed. It differs from the exact version by a



factor that is a parameter of the algorithm, and has a direct impact on the level
of privacy.

The algorithm described in this paper has a cryptographic flavour: it belongs
to the third approach. In our case, however, the classifier we are after is not a
decision tree but rather the result of applying a boosting scheme.

3 Boosting

Boosting is a method that enables the creation of an efficient classifier by itera-
tively combining several weak classifiers whose predictions have to be only
slightly better than random guesses. For example, a weak classifier (sometimes
called a weak hypothesis) could be a simple rule that makes a prediction of the
class of an object by looking at the value of a single attribute. Boosting can be
seen as a meta-algorithm because it combines the output of other algorithms.

The idea of boosting originated from research in Probably Approximately
Correct (PAC) Learning [17], which is at the intersection of theoretical computer
science and machine learning. It has recently enjoyed a resurgence as it
became popular in the machine learning community with the introduction of
AdaBoost [10]. This algorithm has been studied extensively both theoretically
and experimentally, and it has been shown to have several interesting proper-
ties. Among them, it has been proven that AdaBoost makes the training error
decrease exponentially fast with the number of iterations, and also that it is
able to make the test error continue to decrease even after the training error has
vanished. To illustrate the concept of boosting, we briefly review how AdaBoost
works.

Formally, a boosting algorithm takes as input a training set and a family of
weak classifiers. It returns as output a final classifier, which is a linear combina-
tion of several weak classifiers. The training set Dn is a collection of data points{
(x1, y1), . . . , (xn, yn)

}
, where each data point (xj , yj) is a pair composed of the

object itself xj and its associated class yj . Object xj is usually represented as a
vector of k attributes, in which x(i)

j denotes the value of attribute i for this par-
ticular object j. For the rest of the paper, we shall limit ourselves to attributes
whose values are real numbers of finite precision, but there are ways of adapting
the algorithm for all kinds of data types, including integers, binary values or even
symbolic values. For the binary classification, the associated class yj belongs to
{−1, +1}, where the label “−1” stands for the negative class and “+1” for the
positive class.

One of the key features of a boosting algorithm is the ability to allocate
weights to the training points, which typically represent how hard the points
tend to be to classify. The higher the weight of a data point, the harder it is to
classify it correctly. Let wj denote the weight of the jth data point. The weights
are normalized:

∑n
j=1 wj = 1. Initially, to indicate that all the data points are

a priori equally difficult (or easy) to classify, the weight of the all the data points
is set to 1/n.



Boosting can be seen as an iterative process that, at each step, tries to find
the optimal weak classifier for the current distribution of the weights on the data
points. By optimal, we mean a weak classifier that minimizes the weighted error
of the current distribution. Let h(t) be the weak classifier of the tth iteration and
w

(t)
j the weight of the jth point at the tth iteration. Minimizing the weighted

error at the tth iteration consists in finding the weak classifier h(t) such that

ε(t) =
n∑

j=1

w
(t)
j I{h(t)(xj) 6= yj} (1)

is minimum, where ε(t) is the weighted error of the tth iteration and I{b} is the
indicator function, which is 1 if b is true and 0 otherwise.

The coefficient of h(t), called α(t), indicates how good are the predictions of
this classifier. It is directly linked to ε(t) by the formula

α(t) =
1
2

ln
1− ε(t)

ε(t)
. (2)

After each iteration, the weights of the data points are updated. If a data point
was correctly classified, we decrease its weight by dividing it by 2(1− ε(t)), but
if it was misclassified, we increase its weight by multiplying it by 1/2ε(t). After
T iterations, AdaBoost outputs a discriminant function of the form

f (T )(·) =
T∑

t=1

α(t)h(t)(·) . (3)

The sign of f (T )(x) is then used as the final classification of x.
There exist numerous versions and extensions of AdaBoost. In this paper,

we shall use a variant proposed by Schapire and Singer [16], which allows the
weak classifier not only to answer “−1” or “+1”, but also to abstain by return-
ing “0”. This variant is a particular instance of a more general algorithm that
allows the classifier to output a real number from the interval [−1, +1]. The
absolute value of the output can be interpreted as the confidence that the clas-
sifier has in its prediction. If the classifier returns “0”, this is considered as an
abstention.

4 MABoost

In general, boosting-like algorithms implicitly assume the whole dataset to be
available in the hands of one person at the beginning. In our case, we make
the assumption that the dataset is split equally between the two participants
and we call DA

n =
{
(xA

1 , yA
1 ), . . . , (xA

n , yA
n )

}
and DB

n =
{
(xB

1 , yB
1 ), . . . , (xB

n , yB
n )

}
the datasets of Alice and Bob, respectively. We wish to design a distributed and
privacy-preserving boosting algorithm able to perform boosting while protecting
the privacy of the data. MABoost (Multiparty Abstention Boost), which is



described in this section, falls in this category. Designing a boosting algorithm
that can abstain on some data was not originally intended, but it naturally
followed from our approach to obtaining a distributed and privacy-preserving
algorithm. Note that this does not mean that every distributed and privacy-
preserving boosting algorithm has to use abstention.

The weak classifiers that we use are decision stumps. A decision stump is a
very simple decision tree with one root and two leaves. For example, it could be
“ if x(i) < θ then x belongs to class C1 else x belongs to class C2 ”. This family
of classifiers may seem very simple a priori but it has been empirically proven
that one could obtain excellent results by using them as weak classifiers with
a boosting algorithm. Formally, decision stumps are defined by the following
formulas. (Note that h

(i)
θ−(x) = −h

(i)
θ+(x).)

h
(i)
θ+(x) =

{
1 if x(i) ≥ θ

−1 otherwise
(4)

h
(i)
θ−(x) =

{
1 if x(i) < θ

−1 otherwise
(5)

MABoost is an iterative algorithm in which each iteration consists of five
steps. See Figure 1 for a description in pseudocode.

Step 1: Finding the Optimal Decision Stump for Each Attribute
(lines 4–10 in Fig. 1). Before trying to agree on a common attribute i, Alice
and Bob first independently compute from their respective databases the opti-
mal decision stump for each attribute. Let hA

(i) be the weak classifier of Alice for
attribute i and let εA

(i) be the weighted error of this classifier on her database;
hB

(i) and εB
(i) are defined similarly for Bob.

Step 2: Agreeing on a Common Attribute (lines 11–13 in Fig. 1; Fig. 2).
Alice and Bob are now searching for an attribute i such that εA

(i) < 1
2 and εB

(i) < 1
2

simultaneously. If such an attribute does not exist, they want to be aware of
that, and if there are several such attributes, they want to find one determined
at random among them.

To make this problem intuitively easier to understand, we rephrase it into
a totally equivalent well-studied problem. Suppose Alice and Bob each have a
agenda with a list of k time slots. Associated with each time slot is a binary value
0 or 1 indicating if this time slot is already filled or if it is still free. If there is one
or more time slot that is free for both, they want to find one chosen at random
among all the possibilities, and if there is no time slot where they are both free,
they want to detect this situation. The problem of Alice and Bob is that they do
not trust each other to the point where one could simply send his or her entire
agenda to the other. In fact, they do not wish to disclose any unnecessary infor-
mation about their agenda while they proceed. This problem calls for a solution
based on a secure multiparty computation, in which the function f(x, y) that



MABoost(DA
n , DB

n , T )

1 wA ← (1/2n, . . . , 1/2n) . weights are normalized uniformly
2 wB ← (1/2n, . . . , 1/2n)
3 for t ← 1 to T
4 for i ← 1 to k
5 hA

(i) ← Alice’s best decision stump for attribute i

6 if εA
(i) < 1

2
then ai ← 1

7 else ai ← 0
8 hB

(i) ← Bob’s best decision stump for attribute i

9 if εB
(i) < 1

2
then bi ← 1

10 else bi ← 0
11 i ← RandomRendezVous((a1, . . . , ak), (b1, . . . , bk))
12 if i = “you will never be able to meet each other” then

13 return f (t−1)(·) =

t−1∑
j=1

α(j)h(j)(·) . previous combined classifier

14 h(t)(x) =

{
hA(x) if hA(x) = hB(x)

0 otherwise
. merged classifier

15 ε+ =

n∑
j=1

wA
j I{h(t)(xA

j )=yA
j } +

n∑
j=1

wB
j I{h(t)(xB

j )=yB
j } . correct rate

16 ε− =

n∑
j=1

wA
j I{h(t)(xA

j )=−yA
j } +

n∑
j=1

wB
j I{h(t)(xB

j )=−yB
j } . error rate

17 ε0 = 1− ε+ − ε− . abstention rate
18 α(t) ← 1

2
ln ε+/ε− . coefficient of h(t)

19 for X ← A, B ; for j ← 1 to n . weight update

20 wX
j

(t+1)
= wX

j

(t) ×





1

2ε−+ε0
√

ε−/ε+
if h(t)(xX

j ) = −yX
j . errors

1

2ε++ε0
√

ε+/ε−
if h(t)(xX

j ) = yX
j . good points

1
ε0+2

√
ε+ε−

if h(t)(xX
j ) = 0 . abstentions

21 return f (T )(·) =

T∑
t=1

α(t)h(t)(·) . final combined classifier

Fig. 1. Pseudocode for the MABoost algorithm. DA
n , and DB

n are Alice’s and Bob’s
training sets, respectively, and T is the number of iterations

they want to compute takes x (the agenda of Alice) and y (the agenda of Bob) as
input and returns the index i of a time slot if a common free time slot exists or
“you will never be able to meet each other” if there is no such time slot. We call
this task the “random rendez-vous problem”. In the area of communication com-
plexity, this problem was proposed and analysed in [12]: it was proved that it
requires Θ(n) bits of communication on the average. That paper, however, was
concerned only about the issue of minimizing communication, but it was not in-
terested in confidentiality or security aspects. Nevertheless, any distributed and
privacy-preserving protocol has to use at least as many bits of communication
as the best non privacy-preserving distributed protocol. Therefore, any privacy-



preserving protocol for this task needs to have a communication complexity of
at least Ω(n) bits, but possibly more since security usually comes with a price.

To solve the random rendez-vous problem, Alice and Bob encode their agen-
das as bit strings a and b, respectively, where a and b ∈ {0, 1}k and k is the
number of time slots in their agenda. For 1 ≤ i ≤ k, ai = 1 if Alice is available
during the ith time slot and ai = 0 otherwise; bi is defined similarly for Bob.
Suppose that Alice and Bob are given Yao’s protocol ORBAN (for the OR of
all Bitwise ANd) [19], which can securely compute the function

∨k
i=1(ai ∧ bi),

where
∨

denotes the usual “or”, which is true if one or more of its arguments
are true, and ∧ denotes the “and” function, which is true only if both of its ar-
guments are true. For simplicity, we shall consider “1” and “0” to be equivalent
to “true” and “false”, respectively. Protocol ORBAN(a,b) returns 1 if Alice and
Bob have a common time slot and 0 otherwise.

RandomRendezVous(A, B)

1 v ← ORBAN((a1, . . . , ak), (b1, . . . , bk))
2 if v = 0 then
3 return “you will never be able to meet each other”
4 else
5 Permute A and B using same random permutation
6 i ← 1
7 p ← k ÷ 2 . binary search of a common time slot
8 while p ≥ 1 do
9 v ← ORBAN((ai, . . . , ai+p−1), (bi, . . . , bi+p−1))

10 if v = 0 then
11 i ← i + p . search in the other half of the space
12 p ← p÷ 2
13 return i . return the index of a random common free time slot

Fig. 2. Pseudocode for the RandomRendezVous algorithm. A and B are encodings
of Alice’s and Bob’s agendas respectively

Figure 2 gives a formal description of the RandomRendezVous protocol.
We can assume without loss of generality that the total number of time slots
k is a power of 2. (If this is not the case, it is always possible to add some
virtual “I’m unavailable” time slots in order to enforce this condition.) First,
Alice and Bob use ORBAN with their entire agendas to determine if they have
an available time slot in common. If this is the case, they can search for this time
slot by applying a procedure similar to binary search, which tries to locate an
empty common slot by putting aside half of the search space at each iteration.
Therefore, in lg k iterations, they find a common empty time slot. For this time
slot to be chosen at random among all the possible free time slots, Alice and Bob
initially randomize their inputs by both applying the same random permutation
on the indices of their time slots. By doing so, they avoid always finding the
common free time slot whose index is the lowest.



Imagine now that we use the RandomRendezVous protocol not with an
agenda, but rather with a list in which a slot is set to 1 if the participant was
able to find a weak classifier with weighted error below 1/2 for the attribute
associated to this slot, and to 0 otherwise. If Alice and Bob each make such a
list and then apply the RandomRendezVous protocol, they are able to discover
a common attribute for which they both have a weak classifier with error smaller
than 1/2, provided such an attribute exists. Otherwise, they find out that such an
attribute does not exist. In the latter case, they stop the execution of MABoost
and return as output the final classifier f (t−1)(·).

Step 3: Merging the Weak Classifiers (line 14 in Fig. 1). Once Alice and
Bob have agreed on an attribute i, they merge the two weak classifiers they
each computed for this attribute, which only described their own data, into a
classifier that covers the whole dataset. Let hA and hB be Alice’s and Bob’s weak
classifiers, respectively. The merged classifier h will abstain on objects that hA

and hB classify differently, and it will take the commonly predicted class when
hA and hB agree.

h(x) =

{
hA(x) if hA(x) = hB(x)
0 otherwise

(6)

The training error 1 of AdaBoost converges to zero if the weighted error of every
weak classifier is strictly less than 1/2. If abstention is allowed, convergence is
guaranteed provided the weighted error of each weak classifier is less than the
weighted rate of correctly classified points. Said otherwise, the error must be
less than 1/2 on the subset of the points on which the weak classifier does not
abstain.

We now proceed to show that if hA and hB are optimal on their respective
datasets and if they satisfy the convergence criterion of AdaBoost, then the
merged classifier satisfies the convergence criterion of AdaBoost with absten-
tion. By optimality, we mean that

hA = arg min
h∈H

n∑

j=1

wA
j I{h(xA

j ) = −yA
j } (7)

and

hB = arg min
h∈H

n∑

j=1

wB
j I{h(xB

j ) = −yB
j } , (8)

where H is the set of weak classifiers on which Alice and Bob have agreed
(decision stumps over the ith attribute in our case). For a formal description, let

εA
− =

n∑

j=1

wA
j I{hA(xA

j ) = −yA
j } and εA

+ =
n∑

j=1

wA
j I{hA(xA

j ) = yA
j } (9)

1 The number of training points (xi, yi) on which sign(f (T )(xi)) 6= yi.



be the weighted error and the weighted rate of correctly classified points, respec-
tively, of Alice’s classifier hA, and let εB

− and εB
+ be defined similarly for Bob.

Furthermore, let

ωA
− =

n∑

j=1

wA
j I{h(xA

j ) = −yA
j } and ωA

+ =
n∑

j=1

wA
j I{h(xA

j ) = yA
j } (10)

be the weighted error and the weighted rate of correctly classified points,
respectively, of the merged classifier h on Alice’s data points, and let ωB

− and
ωB

+ be defined similarly for Bob. (Please note the subtle difference between the
definitions of εA

± and ωA
±. The former uses Alice’s classifier hA whereas the latter

uses the merged classifier h.) Finally, let

ε− = ωA
− + ωB

− , ε+ = ωA
+ + ωB

+ (11)

and

ε0 =
n∑

j=1

wA
j I{h(xA

j ) = 0} +
n∑

j=1

wB
j I{h(xB

j ) = 0} (12)

be the weighted error, the weighted rate of correctly classified points, and the
weighted abstention rate, respectively, of the merged classifier h. (Note that
ε− + ε+ + ε0 = 1.) Then the following holds.

Lemma 1. If H is closed under multiplication by −1 and if hA and hB are
optimal, then ε− ≤ ε+. Furthermore, ε− = ε+ only if −hA is optimal on Bob’s
dataset DB

n and −hB is optimal on Alice’s dataset DA
n .

Proof. The main observation of the proof is that ωA
− ≤ ωA

+, otherwise the clas-
sifier −hB would have a lower error on Alice’s dataset DA

n than Alice’s chosen
classifier hA, which would violate the optimality of hA. To see this, first note
that by the definition (6) of the merged classifier h, −hB(x) agrees with hA(x)
on objects x on which h abstains, and they disagree otherwise. Thus, the error
of −hB on DA

n is the sum of 1) the error of hA on the subset of DA
n where h

abstains, that is, (εA
− − ωA

−), and 2) the rate of correctly classified points of hA

on the subset of DA
n where h does not abstain, that is, ωA

+. Hence, if ωA
+ < ωA

−,
then the error (εA

− − ωA
− + ωA

+) of −hB is less then the error εA
− of hA, which

violates the optimality of hA. It can be shown in a similar way that ωB
− ≤ ωB

+ ,
and the first statement of the Lemma follows. The second statement is also easy
to see by observing that ωA

− ≤ ωA
+, ωB

− ≤ ωB
+ and ε− = ε+ imply ωA

− = ωA
+ and

ωB
− = ωB

+ , so the error of −hB on DA
n is (εA

− − ωA
− + ωA

+) = εA
−, and, similarly,

the error of −hA on DB
n is εB

−. ut

Remark 1. If H is closed under multiplication by −1, then εA
− ≤ εA

+ (the error
εA
−
′ of −hA is equal to εA

+ and hence hA would not be optimal if εA
− > εA

+ = εA
−
′).

Moreover, if −hA is optimal, then εA
− = εA

+ can happen only if we have equality
for all weak classifiers, in which case AdaBoost must be stopped. The same
thing happens in MABoost if Alice and Bob pick exactly the same classifier but



with opposite signs. If we add to the protocol that in this case other attributes
should be examined, then MABoost has to be stopped only if Alice and Bob
pick exactly opposite classifiers for all attributes.

Remark 2. The optimality of hA and hB is crucial for the lemma. It is easy to
find an example of a non-optimal hA for which εA

− < εA
+, yet ε− > ε+. Such an

hA would be admissible for AdaBoost if Alice were playing alone, but it would
make the merged classifier fail in MABoost.

Remark 3. The generality of the lemma allows us to consider any kind of weak
classifier class. In the extreme case, Alice and Bob could find the best classifier
over the whole class. In this case they would not need the RandomRendezVous
protocol to find the best attribute; they would only need to exchange their best
classifiers at each iteration. In general, they could divide the weak classifier class
into k (not necessarily disjoint) subclasses, as we did in the particular case of
decision stumps. The only algorithmic design issue here is that they should be
able to minimize the training error over each of the subclasses. This general
version also gives us more flexibility for the cryptographic design.

Step 4: Computing the Coefficient of the Merged Classifier (lines 15–18
in Fig. 1). The coefficient α(t) of the merged classifier h(t) depends only on ε−
and ε+. It is formally defined as

α(t) =
1
2

ln
ε+

ε−
. (13)

Intuitively, the smaller the error ε− of h(t), the larger its coefficient α(t) with
which it participates in the final vote. In order to avoid a singularity when ε−
becomes too small, Schapire and Singer [16] suggest to use instead

α(t) =
1
2

ln
ε+ + δ

ε− + δ
, (14)

where δ is a small appropriate constant.

Step 5: Updating the Weight of the Data Points (lines 19 and 20 in
Fig. 1). Updating the weights of the data points can be made independently
by Alice and Bob once they know the description of the merged classifier h, as
well as its weighted error ε−, its weighted rate of correctly classified points ε+

and its weighted abstention rate ε0. In general, we increase slightly the weights
of points on which h abstains, increase the weight of misclassified points, and
decrease the weights of correctly classified points.

Once Step 5 is completed, Alice and Bob can choose to start a new itera-
tion or to stop the algorithm and output f (T )(·). The number T of iterations of
MABoost they choose to perform can be decided in advance or chosen adap-
tively depending on some criteria such as the performance of the classifier they
currently have. The number of iterations also influences the description length
of the final classifier, and therefore it is possible to play with this parameter in
order to tune the level of privacy.



5 Complexity

When studying a distributed protocol, one can be interested in two different
measures of complexity: its communication complexity, which is the number
of bits exchanged during the execution of the protocol, and its computational
complexity, which considers the processing time required from the participants.

5.1 Communication Complexity

To define the quantity of communication used in one iteration of MABoost, we
need to quantify the number of bits exchanged during this iteration. First, it is
easy to observe that the only steps that require communication between Alice
and Bob are the second, the third and the fourth. During the first step, Alice
and Bob compute independently their optimal weak classifiers for each attribute
and therefore they do not need to talk to each other. The same situation occurs
during the fifth step, when they do not need to engage in a dialog in order
to reweigh their data points. In fact, the only step that has a significant cost
in terms of communication is the second one, when they have to agree on a
common attribute. Let k be the number of attributes for an object. Alice and
Bob use the random rendez-vous protocol to find the common attribute upon
which they build the classifier h. This protocol requires lg k calls to the protocol
ORBAN in the worst case and one call to ORBAN at best if it turns out that
they will not be able to agree on a common attribute. In this latter case, they
stop MABoost and return directly f (T )(·). This situation can be considered
marginal as it happens at most once.

The computational complexity of the random rendez-vous protocol is in
Θ(complexity of ORBAN protocol × log k). There exists more than one way of
implementing the ORBAN protocol, but if we use in a straightforward manner
the technique described in [19], its complexity is in Θ(k). The overall complex-
ity of the RandomRendezVous protocol is therefore in Θ(k log k). During the
third and fourth steps, some communication also occurs, but the cost of this
communication is constant because the exchange of the descriptions of hA and
hB necessary for the creation of h and the communication of εA

+, εA
−, εB

− and εB
+

can be done with a number of bits that is constant for a fixed finite precision.
Thus, the cost of Steps 3 and 4 is negligible compared to Step 2, and the domi-
nance of the latter implies that the overall cost of one iteration of MABoost is
in Θ(k log k). The cost of the whole protocol is therefore in Θ(Tk log k), where
T is the total number of iterations of MABoost.

5.2 Computational Complexity

The only moment at which Alice and Bob require some work from their re-
spective computers is at the beginning of the iteration, during the first step,
when they both have to compute the optimal weak classifier for each attribute.
The näıve way to find the best weak classifier for an attribute is to first sort
the objects according to this attribute and then to find the optimal threshold



by looking at the objects in order to find the threshold at which the weighted
error is minimized. The most costly operation is the sorting of objects, which
can be done in Θ(n log n) if we are only concerned by one attribute, the rest of
the operations being negligible compared to this cost. As the sorting has to be
repeated for each attribute, the global cost for the k attributes is in Θ(kn log n)
for the first iteration. Note that it is enough to sort once the objects for each
attribute during the first iteration as it is possible to store the results in order
to use them for the remaining iterations. The storage of these values has a space
complexity of Θ(kn). Computing the error of the classifier h and reweighing the
points can be done in Θ(n) as it only requires looking at each individual data
point once in order to perform both tasks. Therefore we have a computational
complexity in Θ(kn log n) for the first iteration because of the sorting process
and a complexity of Θ(kn) for the remaining iterations. The overall time com-
plexity of MABoost is a function of T , the number of iterations, and is in the
order of Θ((T + log n)kn). This complexity increases linearly with the number
of attributes. If there are too many attributes, the processing time of MABoost
could be prohibitive.

6 Security of the Protocol

A multiparty protocol can be considered totally secure if its execution does not
reveal more information than the output of the protocol itself. In cryptography,
this is formalized with the simulation paradigm [11]. Intuitively, this means that
if the view that each participant has of the protocol can be efficiently simulated
solely based on his input and the output of the protocol, then the different
participants learn nothing from the execution of the protocol other than its
output.

Imagine a simulator that has access to the input of Alice (her database)
and to the output of the protocol (the final classifier). Would it be possible for
this simulator to create a transcript of the execution of the protocol that would
be indistinguishable from a real transcript of the execution of the protocol?
If we can answer this question positively, then we can assert that the protocol
privately computes f , in particular in the sense of the simulation paradigm.
For the analysis of the security of the protocol, we only have to concentrate on the
second, third and fourth steps as they are the only steps in which communication
takes place. It is important to observe that in the case of MABoost, the process
of creating the final classifier is iterative and that the information exchanged in
the clear between Alice and Bob during Steps 3 and 4 is explicitly contained
inside the description of this final classifier. This observation gives us for “free”
the security aspect of these two steps. Indeed, why care to protect the privacy
of some information during the execution of the protocol when this information
is going to be revealed at the end of the protocol anyway? Therefore, the only
step we have to be careful about for the analysis of the security of the protocol
is the second step.



The second step consists of the random rendez-vous protocol, which heavily
relies on the ORBAN protocol as a subroutine. For this step to be considered
secure, Alice and Bob must learn nothing other than the index i of a common
attribute for which they both have a weak classifier with weighted error smaller
than 1/2. Suppose we use a secure ORBAN protocol, as in [19]. The first call
to ORBAN only reveals to Alice and Bob whether or not they can agree on a
common attribute. If it is not the case, then they stop the protocol and they
have learned no extra information. On the other hand, if Alice and Bob are
able to continue with the protocol, they select half of the attributes and make
another call to ORBAN. From this call, they will learn whether or not there
is at least one attribute they can agree upon in this half of the attribute space.
If ORBAN returns 1, they learn that there is at least one potential attribute
in the part of the attribute space but nothing else about the other half of the
space. But if ORBAN returns 0, they learn that there is no attribute they can
agree upon on the considered part of the attribute space and that there is at
least one such attribute in the other part of the space. In this latter case, the
protocol has leaked one bit of additional information. As there will be lg k calls
to ORBAN at the most, the protocol reveals O(log k) bits of extra information
before the two parties agree on a common attribute. This cannot be considered
a totally privacy-preserving protocol, and we must acknowledge that a small
amount of information will leak. To which extend could someone do something
useful with this kind of information is still an open question. Note that it would
be possible to design a totally secure protocol by using more complicated and
sophisticated protocols, which solve the set intersection problem [9], but this
would come with a significant increase of the communication cost. Would this
additional cost be warranted given that we cannot prevent the final classifier
from leaking information anyway?

7 Empirical Results

In order to test and illustrate the MABoost algorithm in practice, we chose to
observe its behaviour on the “ionosphere” dataset, which can be found among the
benchmarks of the repository of the University of California at Irvine (UCI) [5].
In particular, this dataset was used in the original paper about confidence-rated
boosting [16]. This dataset is concerned with the classification of radar data
from the ionosphere, collected in Goose Bay, Labrador. “Good” data are those
showing evidence of some type of structure in the ionosphere; “Bad” data are
those that do not.

The ionosphere dataset contains 351 examples, each consisting of 34 con-
tinuous attributes and one class attribute. The class attribute has only two
possible values (“Good” or “Bad”), which makes this dataset well suited for
binary classification. For MABoost, we decided to split the dataset into three
sets: the training set of Alice (40%), the training set of Bob (40%) and the
test set (20%). We ran a simulation of MABoost on these sets in order to
observe how the training error on Alice’s set, the training error of Bob’s set and



Ionosphere

0

0,05

0,1

0,15

0,2

0,25

0,3

1 51 101 151

Number of iterations

E
rr

o
r 

ra
te

Alice's training error Bob's training error Test error

Fig. 3. Evolution of Alice’s training error, Bob’s training error and the test error on
200 iterations

Ionosphere 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

1 51 101 151 201 251 301 351 401 451

Number of iterations

E
rr

o
r 

ra
te

Training error
Test error

Fig. 4. Evolution of the training error and the test error on 500 iterations



Io
n

o
sp

h
er

e 
ru

n
 1

0

0,
050,
1

0,
150,
2

0,
250,
3

0,
350,
4

1
51

10
1

15
1

N
u

m
b

er
 o

f 
it

er
at

io
n

s

Error rate

T
ra

in
in

g 
er

ro
r

T
es

t e
rr

or

Io
n

o
sp

h
er

e 
ru

n
 2

0

0,
050,
1

0,
150,
2

0,
250,
3

0,
350,
4

1
51

10
1

15
1

N
u

m
b

er
 o

f 
it

er
at

io
n

s

Error rate

T
ra

in
in

g 
er

ro
r

T
es

t e
rr

or

Io
n

o
sp

h
er

e 
ru

n
 3

0

0,
050,
1

0,
150,
2

0,
250,
3

0,
35

1
51

10
1

15
1

N
u

m
b

er
 o

f 
it

er
at

io
n

s

Error rate

T
ra

in
in

g 
er

ro
r

T
es

t e
rr

or

Io
n

o
sp

h
er

e 
ru

n
 4

0

0,
050,
1

0,
150,
2

0,
250,
3

0,
35

1
51

10
1

15
1

N
u

m
b

er
 o

f 
it

er
at

io
n

s

Error rate

T
ra

in
in

g 
er

ro
r

T
es

t e
rr

or

Fig. 5. Training error and test error during four different runs of MABoost on the
ionosphere dataset



the test error evolve with the number of iterations. Figures 3 and 4 illustrate
the results when we carry out 200 and 500 iterations, respectively. (We illus-
trate both Alice’s and Bob’s training errors separately in Figure 3, whereas
we illustrate the average training error of Alice and Bob in Figure 4.) The
most important observation is that MABoost inherits a crucial property from
AdaBoost: the training error decreases exponentially with the number of iter-
ations. Our data is not sufficient to conclude that the test error continues to
decrease even after the training error has vanished (another crucial property of
AdaBoost), but some of the runs shown in Figure 5 indicate that this may be
the case.

One important difference between the two algorithms is that AdaBoost
is deterministic (because it always chooses the best attribute for which the
weighted error of the weak classifier is minimal), whereas MABoost is prob-
abilistic (because it chooses an attribute at random among all those whose
weighted error is less than 1/2 both for Alice and for Bob). It follows that the
behaviour of MABoost could vary even if we run it twice on the same dataset.
Figure 5 illustrates four different runs of MABoost on the ionosphere dataset.
Although it can be observed that the training error does not always vanish
after the same number of iterations, and that the test error does not decrease
with the same intensity and the same speed each time, these differences do not
seem to be really significant. Moreover, if we compare the convergence speed
of AdaBoost in the original paper [16] with that of MABoost, no significant
differences can be observed. These preliminary results indicate the possibility
that boosting can be performed in a distributed and privacy-preserving manner
without incurring a severe adverse effect on the performance of the final classi-
fier. However, more experiments are needed before a conclusive statement can
be made.

8 Possible Generalizations and Conclusion

In this paper, we have presented a protocol that performs a boosting-like algo-
rithm in a distributed and nearly privacy-preserving manner in the restricted
case that we only deal with two semi-honest participants, where the weak clas-
sifiers have the form of decision stumps. There are at least two natural ways
of generalizing this protocol, first by allowing the number of participants to be
greater than 2, and also by looking at other families of weak classifiers such as
more complex decision trees or neural networks with a few units in the hidden
layer.

To extend this protocol to the case of m participants, with m ≥ 2, we could
define at each iteration a classifier h that carries out a majority vote from the
individual weak classifiers h1, h2, ..., hm of the different participants. The clas-
sifier could return the vote of the majority of the classifiers, for example, when
this majority is above a threshold set to 1

2 + δ and abstain otherwise, δ being
a well-chosen constant between 0 and 1/2 whose value can be tuned in order to



increase the confidence of the classifier h in its prediction. The protocol described
in this paper is a particular instance of this more general method.

It could be interesting also to test this algorithm with other types of weak
classifiers and to compare the results. In particular, it would be interesting to
observe empirically how the choice of the type of weak classifiers, the num-
ber of bits required to describe these classifiers (which in a sense is a measure
of their complexity), and the number of iterations influence the convergence
speed of MABoost. For example, it is conceivable that with a richer family of
weak classifiers such as decision trees generated by the algorithm C4.5 [15], one
can obtain an identical or better performance than with the decision stumps
in fewer iterations, meaning that the convergence would be faster. However,
this would come at the price of communicating more bits at each iteration
because the decision trees inferred by C4.5 require a greater (and possibly
unbounded) number of bits for their description. One could define a crite-
rion to take into account at the same time the number of iterations and the
expected size needed to describe the weak classifiers, which would be able to
compare two possible choices of families of weak classifiers even in case of
equal performance. Intuitively, we are searching for weak classifiers that can
be described with few bits, but which at the same time yield a good perfor-
mance after a “sensible” number of iterations of MABoost. This would make
it possible to bound directly the number of bits exchanged during the protocol
and therefore give an upper bound on the quantity of information that has been
communicated.

For some families of weak classifiers, there must exist ways of merging weak
classifiers without requiring the resulting classifier h to abstain on a part of the
dataset. Being able to merge two or more weak classifiers into a weak classifier
that does not abstain would allow us to apply the original AdaBoost algorithm
directly in a distributed manner. Potentially, the convergence could be a little
faster in practice in this case.

We are also investigating the privacy-preserving part of Step 2 in Section 4.
In particular, we are working on a more efficient randomized version of the
set intersection problem. An even more promising direction would be to find
an efficient privacy-preserving technique to determine the weak classifier that
minimizes the weighted error over the entire dataset shared between Alice and
Bob. This would make MABoost as discriminating as the non-distributed
AdaBoost.

The work we have described in this paper is still in progress. It is certainly not
sufficient to test our algorithm on the sole ionosphere dataset. More experimen-
tation is needed in order to compare MABoost with the original AdaBoost
in terms of performance and convergence speed. In particular, it is important to
study the behaviour of the test error once the training error has vanished. This
will allow us to make a more convincing evaluation of how much the preservation
of privacy has an adverse influence on the performance of the final classifier, if
at all.



References

1. D. Agrawal and C. C. Aggarwal, “On the design and quantification of privacy pre-
serving data mining algorithms”, Proceedings of the 20th ACM Symposium of Prin-
ciples of Databases Systems, pp. 247 – 255, 2001.

2. R. Agrawal and R. Ramakrishnan, “Privacy-preserving data mining”, Proceedings
of the ACM SIGMOD on Management of Data, pp. 439 – 450, 2000.

3. M. J. Atallah, E. Bertino, A. K. Elmagarmid, M. Ibrahim and V. S. Verykios,
“Disclosure limitations of sensitive rules”, Proceedings of the IEEE Knowledge and
Data Engineering Workshop, pp. 45 – 52, 1999.

4. M. Ben–Or, S. Goldwasser and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation”, Proceedings of the 20th
ACM Annual Symposium on the Theory of Computing, pp. 1 – 10, 1988.

5. C. L. Blake and C. J. Merz, “UCI Repository of machine learning databases”,
Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html, Irvine, CA:
University of California, Department of Information and Computer Science, 1998.

6. D. Chaum, C. Crépeau and I. Damg̊ard, “Multiparty unconditionally secure
protocols”, Proceedings of the 20th ACM Annual Symposium on the Theory of
Computing, pp. 11 – 19, 1988.

7. C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin and M.Y. Zhiu, “Tools for privacy
preserving distributed data mining”, SIGKDD Explorations 4(2):28 – 34, 2002.

8. E. Evfimievski, J. E. Gehrke and R. Srikant, “Limiting privacy breaches in pri-
vacy preserving data mining”, Proceedings of the 22nd ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Databases Systems, pp. 211 – 222, 2003.

9. M. Freedman, K. Nissim and B. Pinkas, “Efficient private matching and set inter-
section”, Proceedings of Eurocrypt’04, pp. 1 – 19, 2004.

10. Y. Freund and R. Schapire, “A decision-theoretic generalization of on-line learn-
ing and an application to boosting”, Journal of Computer and System Sciences
55(1):119 – 139, 1997.

11. O. Goldreich, Foundations of Cryptography, Volume II: Basic Applications, Cam-
bridge University Press, 2004.

12. B. Kalyanasundaran and G. Schnitger, “The probabilistic communication of set
intersection”, Proceedings of the 2nd Annual IEEE Conference on Structure in
Complexity Theory, pp. 41 – 47, 1987.

13. Y. Lindell and B. Pinkas, “Privacy preserving data mining”, Journal of Cryptology
15:177 – 206, 2002.

14. J.R. Quinlan, “Induction of decision trees”, Machine Learning 1(1):81 – 106, 1986.
15. J.R. Quinlan, “Bagging, boosting and C4.5”, Proceedings of the 13th National Con-

ference on Artificial Intelligence, pp. 725 – 730, 1996.
16. R. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated

predictions”, Machine Learning 37(7):297 – 336, 1999.
17. L. Valiant, “A theory of the learnable”, Communications of the ACM

27(11):1134 – 1142, 1984.
18. V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin and Y. Theodor-

idis, “State-of-the-art in privacy preserving data mining”, SIGMOD Record
33(1):50 – 57, 2004.

19. A.C.-C. Yao, “How to generate and exchange secrets”, Proceedings of the 27th
IEEE Symposium on Foundations of Computer Science, pp. 162 – 167, 1986.


