
1/29

Abstract

Current methods for object-oriented soft-
ware development provide notations for the
specification of models, yet do not suffi-
ciently relate the different model types to
each other, nor do they provide support for
transformations from one model type to
another. This makes transformations a man-
ual activity, which increases the risk of
inconsistencies among models and may lead
to a loss of information.

We have developed and implemented an
algorithm supporting one of the transitions
from analysis to design, the transformation
of scenario models into behavior models.
This algorithm supports the Unified Model-
ling Language (UML), mapping the UML’s
collaboration diagrams into state transition
diagrams. We believe that CASE tools imple-
menting such algorithms will be highly bene-
ficial in object-oriented software
development.

In this paper, we provide an overview of our
algorithm and discuss all its major steps.
The algorithm is detailed in semi-formal
English and illustrated with a number of
examples. Furthermore, the algorithm is
assessed from different perspectives, such as
scope and role in the overall development
process, issues in the design of the algo-
rithm, complexity, implementation and
experimentation, and related work.

Keywords: Object-oriented analysis and
design, model transformation, transforma-
tion algorithm, Unified Modeling Language
(UML), collaboration diagram, state transi-
tion diagram.

1 Introduction

Looking at today’s methods for object-ori-
ented software development, we observe that
the models produced in the various develop-
ment activities are only loosely coupled.
Most methods describe how to specify mod-
els, yet do not sufficiently guide the devel-
oper in the task of transforming one model

Algorithmic Support
for Model Transformation

in Object-Oriented Software Development

Siegfried Schönberger Rudolf K. Keller Ismail Khriss

Département d’informatique et de recherche opérationnelle
Université de Montréal

C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
voice: (514) 343-6782, fax: (514) 343-5834

e-mail: {schoenbe, keller, khriss}@iro.umontreal.ca
http://www.iro.umontreal.ca/~{schoenbe, keller, khriss}

This work was in part supported by the SPOOL project organized by CSER (Consortium Software Engineering Research) which is
funded by Bell Canada, NSERC (National Sciences and Research Council of Canada), and NRC (National Research Council of
Canada). Siegfried Schönberger is funded by an Erwin-Schrödinger scholarship, granted by the Austrian FWF - Fonds zur
Förderung der Wissenschaftlichen Forschung.

2/29

type into another. We see a high need for the
detailed description and automated support
of such transformations.

Recently, scenario-based development
[JCJO92, JK98] has gained a lot of attention.
Scenario models provide a rich vocabulary
for task-centered behavior description. Sce-
nario models are usually specified during
analysis, yet cannot be mapped systemati-
cally onto structural and behavioral class
descriptions required in design. As part of
our work, we have developed an algorithm
for transforming scenario models into state
transition models.

In defining the subject of our research, we
were guided by the fact that certain types of
models are more extensively used in one par-
ticular development phase than in another. In
general, use case models (along with sce-
nario models) are chiefly used during analy-
sis, whereas state transition models are
mostly employed during design.

Figure 1: Main information flows in the object-
oriented development process.

Figure 1 shows the main sequence of models
in which information travels during the anal-
ysis, design and coding phases of an object-
oriented software development process.
Even though such a process will often loop
back in an iterative way, with information
flowing from later stages back to earlier

ones, the principal flow direction is forward.
Scenario diagrams (instances of use cases),
henceforth also called “scenarios”, and other
early specification documents are particu-
larly useful in analysis. Class diagrams
(specifying the structure of classes and
objects; depicted in the figure as a graph of
rectangular nodes) are used in analysis and
subsequently in design, where they are fur-
ther refined. State transition diagrams (speci-
fying the behavior of objects; depicted in the
figure as a graph of oval nodes) are mostly
employed in design.

Class diagrams and state transition diagrams
resulting from the design activity constitute
the main documents from which a system
will be implemented. Scenarios as typical
analysis instruments are no longer consid-
ered for implementation. Otherwise, the job
of translating design documents into code
would grow into a highly complicated and
tedious task considering the extensive over-
laps and redundancies among scenarios
themselves, and between scenarios and class
and state transition diagrams. However, this
procedure bears the risk that invaluable
information contained in the scenarios is not
taken into account for implementation.
Therefore, we have to assure that all relevant
information from scenarios is reflected in
class and state transition diagrams.

The Unified Modeling Language (UML)
[RMH+97] constitutes an attempt to unify
and standardize modern object-oriented
modeling notations. Given the UML’s grow-
ing importance as a standard for object-ori-
ented modeling [Col97], we decided to base
our work upon it. However, we do not mean
to imply that the concepts put forth in this
paper exclusively apply to the UML, but
rather to object-oriented modeling languages
in general, such as Booch [Boo94], Fusion
[CAB+94], OML [RHSL96], OMT
[RBP+91], OOSE [JCJO92], OSA [EKW92],

other
sources

*

scenarios

analysis design coding

code

3/29

Shlaer-Mellor [SM88, SM92], and VOM
[Sch94].

We have implemented our algorithm and
successfully applied it to a number of small
and medium-sized models. We suggest that
CASE tool builders support the systematic
transition from analysis to design models, by
implementing algorithms such as ours into
their respective tools.

In Section 2 of this paper, we give a brief
overview of the UML. Section 3 describes in
more detail the diagram types that are rele-
vant for our work. Section 4 gives an over-
view of the transformation algorithm and
discusses all its major steps. In Section 5, we
situate the algorithm in the overall develop-
ment process, assess it from different per-
spectives, and relate it to the work of others.
Section 6, finally, points out ongoing and
future work and provides some concluding
remarks. Appendices A and B present and
explain the grammars of collaboration dia-
grams and state diagrams, respectively.
These grammars are fundamental for the
transformation algorithm presented in this
paper.

2 Object-Oriented Modeling with
the Unified Modelling Language

Object-oriented modeling methods consist of
two major parts: a notation as the underlying
language for describing the problem and its
solution domain, and a process describing
the steps from an intended system to an
implemented system. Most contemporary
methods focus on the phases of analysis and
design. They put less emphasis on require-
ments specification and implementation.
Moreover, they barely support the transitions
from requirements specification to analysis
and from design to implementation.

In every young and immature field it takes
some time until the community comes to
agree upon common concepts and standards.

As for object-oriented modeling notations,
with the introduction of the UML a consen-
sus seems to become visible.

The UML [RMH+97] is based on the unifi-
cation of the syntactic notations, the seman-
tic models and the diagrams of Booch’s
modeling method [Boo94, Boo96], Rum-
baugh’s OMT [RBP+91] and extensions
thereof [Rum95c, Rum95a, Rum95b], as
well as Jacobson’s use case modeling
[JCJO92]. Further influences on the UML
include Fusion’s operation descriptions and
message numbering [CAB+94], Embley’s
singleton classes and composite objects
[EKW92], and Meyer’s pre- and post-condi-
tions [Mey97]. The UML covers only the
first aspect of a modeling method, the nota-
tion, but does not provide a modeling pro-
cess. There are, however, ongoing attempts
to address process issues in the realm of the
UML [Rat98]. The focus of the UML are
analysis and design tasks.

UML models are represented as diagrams,
which are views of the elements of the
underlying models. Diagrams are the pri-
mary means for the manipulation of models.
A model element may appear in various dia-
grams.

The UML defines eight types of diagrams, of
which the following five types are relevant
for our work:

• class diagrams
• use case diagrams
• sequence diagrams
• collaboration diagrams
• statechart diagrams

A class diagram represents the logical struc-
ture of a system. The elements of a class dia-
gram are classes and objects, together with
relationships between these elements. A
class features attributes, operations and prop-
erties which further characterize the class.
Relationships between classes capture asso-

4/29

ciations, aggregations and inheritance. Fur-
ther concepts supported by class diagrams
include parameterized classes, utilities, and
composite classes.

Use case diagrams represent generic
descriptions of an entire transaction involv-
ing several objects, together with external
actors which interact with the system.

Sequence diagrams and collaboration dia-
grams are collectively called interaction dia-
grams. An interaction diagram describes an
interaction pattern among objects in a sys-
tem, focusing on a specific function. This is
achieved by providing constructs for mes-
sage exchange and for control flow such as
iteration and conditionality. By restricting
general interaction patterns, specific
instances (scenarios) of use cases can be cap-
tured, showing individual executions of a
system. These scenarios help the developer
in understanding the general collaboration
patterns among objects.

Sequence diagrams show interactions among
a set of objects, emphasizing the temporal
flow of behavior. They are similar to
extended Z.120 message sequence charts
[ITU94]. Collaboration diagrams also show
interactions among a set of objects. In addi-
tion, they detail the relationships among the
objects at hand. However, they do not show
time as a separate dimension, nor do they
accommodate all the timing expressions
found in sequence diagrams. In collaboration
diagrams, sequence numbers are used to
show the sequence of messages and concur-
rent threads.

Statechart diagrams, the UML term for state
transition diagrams henceforth used in this
paper, show the evolution of an object over
time by means of states and transitions (cf.
[Har87, HG96]). A state represents a period
of time in an object’s life cycle. Upon entry
and exit of a state, an instantaneous opera-
tion can be executed. While in a state, activi-

ties that take some time to complete can be
executed. A state can also have its proper
state variables. In order to convey high-level
and detailed-level views, a state can be
decomposed into substates, with the possibil-
ity of expressing concurrency.

Generally, a transition is a response to an
external event received by an object which is
in a certain state. A transition is instanta-
neous; that is, it takes zero time to execute
from the model’s point of view. The specifi-
cation of a transition includes the event that
triggers the transition, guard conditions that
must be fulfilled so the transition can be exe-
cuted, events to be sent to other objects,
instantaneous operations on the object, and
timing marks. Further concepts supported by
statechart diagrams are event hierarchies,
branching and merging of concurrent
threads, stubbed transitions and history
states.

3 Framework for the Transforma-
tion Algorithm

In the work presented, we focus on the
UML’s collaboration diagrams and statechart
diagrams, which, among other types of dia-
grams, lie at the core of analysis and design,
respectively. For brevity, we will refer to
them in the rest of this paper as CollDs and
StateDs, respectively. CollDs and sequence
diagrams as defined by the UML are roughly
equivalent in terms of expressiveness. For
our work, we chose collaboration diagrams
because the UML documentation describes
features such as conditionality, iteration,
concurrency mechanisms, and link types in
much more detail than the corresponding
features of sequence diagrams. As target dia-
grams, we chose state transition diagrams
rather than activity diagrams because the
former focus on flows driven by external
events, as opposed to activity diagrams,
which focus on internal events. As CollDs

5/29

primarily show the interaction between
objects, the choice of StateDs is evident.

For a precise description of our transforma-
tion algorithm, a formal definition of both
CollDs and StateDs is required. Therefore,
we use EBNF-grammars for these two types
of diagrams (see Appendices A and B,
respectively). The UML-style formalization
of CollDs and StateDs in [RMH+97, Figures
9 and 10] notwithstanding, we decided to
introduce an EBNF-grammar, in order to
gain conciseness and expressiveness.* Our
grammar does not cover the visual aspects of
the diagrams, i.e., boxes, lines and the like
are not included as symbols, because they
are not relevant for the mechanics of the
transformation algorithm under discussion.

3.1 Collaboration Diagrams

The grammar presented in Figure 12 in
Appendix A is derived from the UML docu-
mentation set [RMH+97]. We have decided
to limit ourselves in this work to the funda-
mental concepts of CollDs, thus introducing
a few simplifications. Note that these simpli-
fications do not compromise the expressive
power of CollDs in any substantial way.
They are detailed in Appendix A.

For sample CollDs, refer to Figures 7, 9, and
11, which have been adapted and extended
from [RMH+97, Figures 37 and 40]. The
example illustrated in Figures 7 and 9 will
serve as a running example for the rest of this
paper.

Figure 7 shows operation displayPosi-

tions(). The purpose of this operation is to
draw a line, consisting of several segments,
in a given window. Each segment is defined
by two points (beads). The object that per-
forms this operation is Wire. Figure 9 is an

* For instance, a|b cannot be adequately expressed in the
UML-style formalization; textual annotations have to be
used instead.

extension of Figure 7, in which predecessor
messages (cf. Appendix A) have been added.

Figure 11 depicts operation start(job) car-
ried out by the object FactoryJobMgr. The
purpose of this operation is to have a robot
remove some item from an oven whose tem-
perature and doors must be controlled appro-
priately. This CollD illustrates the use of
synchronous and asynchronous messages
(depicted by and , respectively) and
concurrent threads (shown by lowercase let-
ters) synchronized by single and multiple
predecessors (cf. Appendix A).

3.2 Statechart Diagrams

The formal syntax of StateDs presented in
Figure 14 in Appendix B is derived from the
UML documentation set [RMH+97]. It cov-
ers only those aspects we depend on in our
work. Concepts that are irrelevant to our dis-
cussion such as timing or history states have
been omitted from the grammar, others, such
as constructs for describing synchronous
events, have been added.

The notion of events, as defined by the UML
for specifying object interactions in StateDs,
is restricted to asynchronous data transmis-
sion, which is inherently unidirectional.
Bidirectional information flows are not sup-
ported. CollDs, on the other hand, support
synchronous events, that is, messages can
have return values (cf. Figure 12 in Appen-
dix A). Hence, to accommodate these fea-
tures, a transformation algorithm such as
ours requires transitions in StateDs to be able
to send synchronous events and receive
results. The necessary extensions are
explained in Appendix B and reflected in the
grammar for StateDs shown in Figure 14 in
Appendix B.

Sample StateDs are presented in Figures 8
and 10. Figure 8 shows the result of applying
our algorithm to the CollD in Figure 7,

6/29

whereas Figure 10 depicts one of the StateDs
generated from Figure 9.

4 Transformation Algorithm

In this section, we introduce our algorithm
for transforming a CollD into StateDs. Refer
to Figures 7 and 8 for an illustration of the
transformation process.

We go on the simplifying assumption that no
StateDs exist when the transformation pro-
cess is started. Rather, they are built up from
scratch during transformation. Note that
CollDs and StateDs are quite often devel-
oped in parallel. A general transformation
algorithm would have to accomplish the
more complex task of integrating informa-
tion originating from several CollDs into
already existing StateDs. This issue is further
discussed in Section 5.2 Transformation
Issues.

In the discussion below, we will refer to
objects in CollDs as home objects and as
linked objects. Given a link, its home object
is the object from which the link is originat-
ing, and the linked object is the object
towards which the link is pointing.

Below, we first provide an overview of the
algorithm. Next, we describe the algorithm
in detail, using semi-formal English. Then,
the algorithm’s fifth and final step, the
Sequencing of Transitions, which is the most
interesting one, is detailed and illustrated.
The section ends with the discussion of a
postprocessing step, the Compressing of
Statechart Diagrams.

4.1 Overview of the Algorithm

The transformation of a CollD into StateDs
is a multi-step process consisting of:

(1) Creating empty StateDs
(2) Creating state variables
(3) Creating transitions for home objects
(4) Creating transitions for linked objects

(5) Sequencing transitions

Step (1) creates a StateD for every distinct
class implied by the objects in the CollD.
Step (2) introduces as state variables all vari-
ables that are not attributes of any of the
objects of the CollD. This concerns all the
variables used as return values of messages,
as well as those referred to in iteration and
conditional expressions.

Applied to the example in Figure 7, Step (1)
creates five empty StateDs (Controller,
Wire, Line, Bead, and Window). Step (2)
introduces i, n, line, r0, and r1 as state
variables for Wire, and window for Line

(see Figure 8).

Step (3) creates transitions for the objects
from which messages are sent (home
objects). This consists of setting the event-
parts, creating auxiliary transitions for transi-
tions that are waiting for more than one
external event, setting the sendClause-parts,
and copying temporary data for use in Step
(5). Step (3) is organized into the twelve sub-
steps (3.1) to (3.12). Note that the created
transitions are not complete from the view-
point of a StateD. At this stage in the trans-
formation process, they are not yet
embedded into a network of states and tran-
sitions; that is, they still lack their fromNode
and toNode information.

Applied to the example in Figure 7, Step
(3.1) creates the transitions identified by the
following sendClause-events: displayPo-

sitions in Controller; position, cre-

ate, and display in Wire; and add in Line.
DrawSegment, being a message to "self", is
not transformed into the StateD of Wire

(Step (3.2)). Steps (3.3) and (3.4) are
skipped, as there are no messages with one
or more predecessors in the example. Steps
(3.5) and (3.6) determine the syncIndica-

tor and the returnValue of the identified
transitions: displayPosition in Con-

troller; r0:= position, r1:=

7/29

position, create, and display in
Wire; and add in Line. Step (3.7) sets the
target of the sendClause of the identified
transitions: wire for displayPositions in
Controller; Line for create, beads(i-
1) and beads(i) for position, and line

for display in Wire; and window for add in
Line. Step (3.8), concerning messages with
multiple predecessors, is not applicable in
this example. Step (3.9) sets the parameters
for the sendClause events, resulting in:
displayPositions(window) in Control-

ler; position(), create(r0, r1), and
display(window) in Wire; and add(self)

in Line. Steps (3.10), (3.11), and (3.12) copy
sequence numbers, recurrence information
as well as "new" flags into the appropriate
transitions for use in Step (5): recurrence
information in Wire which will lead to the
creation of action /initLoop, and the "new"

flag into transition Line.create in Wire

(see Figure 8).

Step (4) creates transitions for the objects to
which messages are sent (linked objects).
This consists of creating the event-part and
returnValue-part of a transition.

Applied to the example in Figure 7, Step (4)
creates transitions redisplay() in Con-

troller; displayPositions(window) in
Wire; create(r0,r1) and display(win-

dow) in Line; position() in Bead; and
add(aLine) in Window (see Figure 8).

The goal of Step (5), the final step of the
algorithm, is to bring for all StateDs the set
of generated transitions into correct
sequences. This involves the creation of the
(empty) states, split bars and merge bars nec-
essary for the proper connection of all the
transitions. As a result of this step, the gener-
ated transitions are connected to states, that
is, their fromNode and toNode attributes are
well-defined.

Applied to the example in Figure 7, Step (5)
creates an initial state and a regular state in

Line and connects them by transition cre-

ate(r0, r1). Furthermore, transition dis-

play(window) is connected with both its
fromNode and toNode being the regular
state. StateDs Controller, Wire, Bead, and
Window are sequenced as well. Note that
Wire comprises a cycle of transitions as well
as a pair of concurrent transitions, as a result
of the iteration instruction and the concurrent
messages, respectively, in the example in
Figure 7.

4.2 The Algorithm in Detail

The transformation algorithm takes a CollD
as input. Its output is a set of StateDs. In the
semi-formal notation used in this section, we
rely on the following conventions:
symbol>subsymbol:

refers to subsymbol of symbol, assuming
that subsymbol can be directly reached
according to the formal definitions of CollDs
(Figure 12) and StateDs (Figure 14), respec-
tively. If any of symbol or subsymbol is not
specified in a given context, symbol>sub-

symbol is considered unspecified.
Example: object>className
symbol>{subsymbol}:

shortcut notation for the set of all subsym-
bols in symbol.
Example: event>{argument}

“+” sign: string concatenator.

Step (1): Creating empty StateDs
For each object in CollD>{object} do

(1.1): if (StateD for object does not exist),
then

create new StateD for object;
StateD>name:= object>className.

Step (2): Creating state variables
For each link in CollD>{object}>{link}

create state variables for links of type
"local" (2.1), for undeclared result objects
(2.2), and for undeclared variables in
iterations and conditions (2.3):

8/29

(2.1): If link>linktype = "local", then
create new state variable stVar in StateD

of object;
stVar>variableName:=
link>role>roleName;

stVar>className:=
link>linkedObject>className.

(2.2): For each message in link>{message}

do
if message>returnValue not declared in
(class diagram or StateD) of object, then

create new state variable stVar in
StateD of object;

stVar>variableName:= returnValue.

(2.3): For each var occurring in(link>
{message}>sequenceExpression>

recurrence>clause do
if var not declared in (class diagram or
StateD) of object, then

create new state variable stVar for
object;

stVar>variableName:=
var>variableName.

Step (3): Creating transitions for home
objects

For each message in CollD>{object}>

{link}>{message} do (3.1) to (3.11):

(3.1): Create a new transition trans in
StateD of object.

(3.2): If object ≠ link>linkedObject

(sender and receiver objects must be
different), then do (3.3) to (3.9). (3.3) and
(3.4) deal with the event-part, and (3.5) to
(3.9) deal with the sendClause-part of
trans.

event-part of trans (3.3 to 3.4):

(3.3): If the message has exactly one
predecessor, then look for message with
same sequence number as indicated as
predecessor. Its name becomes the event
trigger of the transition:
If number of elements in
message>predecessor = 1 then

find message msg in CollD where msg>
sequenceNumber = message>

predecessor>sequenceNumber;

if msg ∉ object>{link}>{message},then
trans>event>eventName:=
msg>messageName;

trans>event>{parameter}:=
msg>{argument}.

(3.4): If the message has more than one
predecessor, then look for messages with
same sequence numbers as indicated in
predecessor. For each of these messages (in
case they are not sent by object) an
auxiliary transition auxTrans is created. The
auxiliary transitions will merge into a
synchronization bar (mergeBar) which in
turn will be followed by the transition
corresponding to message:

If number of elements in
message>predecessor > 1 then

for each sN in message>predecessor>

{sequenceNumber}do
find message msg in CollD with msg>
sequenceExpression>
sequenceNumber = sN;

if msg ∉ object>{link}>{message},

then
create a new transition auxTrans for
object;

assign a unique name to eventName:
auxTrans>event>eventName:=
msg>messageName +
msg>sequenceNumber;

auxTrans>event>{parameter}:=
msg>{argument};

auxTrans>tempSeqNumber:=
message>sequenceNumber + "-".

Comment: tempSeqNumber as well as
tempRecurrence and tempIsNew (see Steps
(3.11) and (3.12) below, respectively) are
auxiliary variables introduced to preserve the
information necessary for Step (5) of the
algorithm. At the end of Step (5), this data is
discarded. tempSeqNumber is assigned the
concatenation of message>sequence-

Number and "-", indicating that the auxTrans
transitions must be ordered such that they
immediately precede the transition whose
sequence number is sequenceNumber, that is
trans, the transition corresponding to

9/29

message.

sendClause-part of trans (3.5 to 3.9):

(3.5): Map asynchronous messages onto
asynchronous events, and procedure call and
flat message types onto synchronous events
(the UML documentation is not specific in
this respect):
trans>sendClause>syncIndicator:=
message>controlFlowType.

(3.6): If message>returnValue is specified,
then
trans>sendClause>result:=
message>returnValue.

(3.7): Define trans>sendClause>target.

Send the first event to the class of the linked
object (constructor), and any other event to
the object designated by rolename:
If (link>role>"new" is specified or
link>role>"transient" is specified) and
message has the lowest sequence number of
all messages sent from object to
linkedObject, then
trans>sendClause>target:=
link>linkedObject>className;

elsif link>role>roleName is specified,
then
trans>sendClause>target:=
link>role>roleName;

else target remains empty (to be
specified during design).

(3.8): Define eventName. In case
sendClause>event is one out of several
events for which link>linkedObject is
waiting simultaneously (specified by a
message with multiple predecessors), the
sequence number of message is appended to
eventName. In this way, the events for which
link>linkedObject is waiting carry unique
names that match the unique names
produced in Step (3.4). Otherwise,
eventName is defined as message>

messageName:
If there is a message msg in
link>linkedObject>{link}>{message}

for which number of elements in msg>

predecessor > 1 and (message>
sequenceExpression>sequenceNumber ∈
msg>predecessor), then
trans>sendClause>event>eventName:=
message>messageName +
message>sequenceExpression>
sequenceNumber;

else
trans>sendClause>event>eventName:=
message>messageName.

(3.9): trans>sendClause>event>
{parameter}:= message>{argument}.

Temporary data of trans (3.10 to 3.12):

(3.10): trans>tempSeqNumber:=
message>sequenceNumber.

(3.11): trans>tempRecurrence:=message>
sequenceExpression>recurrence.

(3.12): For each link in CollD>{object}>

{link} do
if link>role>"new" is specified, then
trans>tempIsNew:= "new".

Step (4): Creating transitions for linked
objects

(4.1): Create a new transition representing
the start message. Only name, arguments,
result, and sequence number of the start
message are considered; all other
information is ignored:
Create a new transition trans in StateD of
startMessage>object.
trans>event>eventName:=
startMessage>messageName;

trans>event>{parameter}:=
startMessage>{argument};

trans>tempSeqNumber:=
startMessage>sequenceNumber;

if startMessage>returnValue is specified,
then trans>returnValue:=
startMessage>returnValue.

Comment: Giving back the returnValue in
this transition is a design decision made by
our algorithm (cf. Section 5.2
Transformation Issues, Hard-coded Design
Decisions).

(4.2): Create transitions for messages being

10/29

sent to object>link>linkedObject that
are sequential, i.e., messages with no
predecessor, and that are not sent from
object, i.e., no self-messages. Note that
transitions for linked objects for concurrent
messages have already been created in Step
(3.4):
For each message in CollD>{object}>

{link}>{message} do
if message>sequenceNumber ∉ link>
linkedObject>{link}>{message}>

predecessor} and object ≠ link>
linkedObject, then

create a new transition trans in StateD

of object>link>linkedObject;
trans>event>eventName:=
message>messageName;

trans>event>{parameter}:=
message>{argument};

trans>tempSeqNumber:=
message>sequenceNumber;

if message>returnValue is specified,
then
trans>returnValue:=
message>returnValue.

Step (5): Sequencing Transitions

This step brings all transitions generated in
Steps (3) and (4) into correct sequences,
connecting them by states, split bars and
merge bars.

(5.1): Create a transition list from
StateD>{transition} that is ordered by
tempSeqNumber. Transitions whose
tempSeqNumber comprises a trailing ‘-’ are
ordered such that they immediately precede
the one transition comprising the same
tempSeqNumber except for the trailing ‘-’.
These transitions reflect multiple
predecessors of a message (cf. Step (3.4)).

(5.2): Create a regular state curState.

(5.3): If TempIsNew of the first transition in
transition list is specified, create an initial
state. Connect the initial state with the
curState via the first transition in transition
list. Note that TempIsNew indicates that the

transition is a constructor of the object.

For each transition in transition list do
(5.4) and (5.5):

(5.4): Determine type of transition:

sequential, iteration, or thread.

(5.5): If type of transition is sequential,
then

lastToNode:= curState.toNode;

create a regular state curState;

connect lastToNode.toNode to

curState.fromNode via transition;

elsif type of transition is iteration,

then sequence transitions as described in

Section 4.3 Illustration of Step (5),

Iteration;

elsif type of transition is thread,

then sequence transitions as described in

Section 4.3 Illustration of Step (5),

Conditionality and Concurrency.

4.3 Illustration of Step (5)

In this section, we address the transformation
of four particular message types: iteration
messages, conditional messages, concurrent
messages and messages with multiple prede-
cessors. Discussing these aspects of the algo-
rithm in isolation and illustrating them with
examples may help in understanding overall
functioning.

Iteration

A message with an iteration indicator (“*”,
iteration message) is transformed by placing
all messages that belong to the iteration mes-
sage into a loop of states and transitions.

For example, the list of messages below is
transformed into the StateD in Figure 2.

11/29

Figure 2: Transformation of sample iteration
message.

Let (1.2) be the transition derived from the
message with sequence number 1.2. Then,
the iteration specification of message msg2()
is temporarily stored in transition (1.2) (in
tempRecurrence; see Step (3.11) of the
algorithm). In Step (5), the shaded area of
Figure 2 is generated which substitutes tran-
sition (1.2) and msg2(), and which is embed-
ded between the two transitions stemming
from msg1() and msg5(). Message msg2() is
transformed into transitions initTrans, loop-
Trans, incTrans, and endTrans, and into states
checkState, startState, and endState. The mes-
sages belonging to the iteration message
(msg3() and msg4()) are transformed into the
loop’s body.

Step (5) uses the information in tempRecur-

rence of transition (1.2) to check if it indi-
cates an iteration (“*”) and to set the
following conditions:

[loopVar <= upperBnd] in loopTrans
[loopVar > upperBnd] in endTrans

An iteration message in context, together
with its transformation, can be found in Fig-
ures 7 (→ 1.1*[i:=1..n]: drawSegment(i)) and 8
(StateD of class Wire), respectively.

An iteration message that is sent to another
object is transformed essentially in the same
way as a message that is sent to "self" (see
example in Figure 7). The entire loop infra-
structure (initTrans, loopTrans, incTrans, and
endTrans) is generated for the object that
sends out the iteration message. All mes-
sages that are subordinate to the iteration
message are transformed in the same way as
regular messages.

Conditionality and Concurrency

We make the observation that conditional
and concurrent messages are quite similar in
nature. Both represent a branch of control
emerging from a state. The difference is that
concurrent branches are executed simulta-
neously whereas conditional branches are
mutually exclusive, i.e., only one of them is
executed. Therefore, the algorithm handles
conditional and concurrent messages in simi-
lar ways.

We define a conditional message group as a
group consisting of a message with a condi-
tional recurrence clause (conditional mes-
sage) and of all its subordinate messages. We
transform such a group into sequences of
transitions and place them into concurrent
substates. One concurrent substate is created
for every conditional message group. The
first transition of each of these sequences
emerges from a common split bar (short
heavy line). Similarly, the last transition of
each of these sequences joins a common
merge bar (short heavy line). Each condi-
tional message group is placed into a concur-
rent substate.

Messages
1.1 msg1()
1.2 * [loopVar:=lowerBnd..upperBnd]: msg2()
1.2.1 msg3()
1.2.2 msg4()
1.3 msg5()

end
State

check
State

inc
Trans

end
Trans

msg1()

msg5()

/initLoop

msg3() msg4()

init
Trans

start
State

loop
Trans

/increment

12/29

Figure 3: Transformation of sample conditional
messages.

Figure 3 outlines how a group of sample con-
ditional messages and their subordinate mes-
sages is transformed into a StateD. The
shaded area, embedded between transitions
msg1() and msg5(), shows the result of the
transformation of “threads” a and b.

The transition nullTrans is executed if
none of the conditions of the conditional
messages holds. The condition-part of
nullTrans is constructed by negating all the
conditions of the conditional messages and
logically combining them with AND.

A group of conditional messages in context,
together with their transformation, can be
found in Figures 9 (→ 1.1a [window.dis-
play=#on] : drawSegment, → 1.1b [window.dis-
play=#off] : flashBorder()) and 10,
respectively. Note that, in contrast to the
drawSegment message shown in Figure 7, the
drawSegment message of Figure 9 does not
represent an iteration.

We transform messages that belong to a con-
current thread (concurrent messages) into

sequences of transitions and place them into
concurrent substates. One concurrent sub-
state is created for each different thread indi-
cator. The first transition of each of these
sequences emerges from a common split bar
(short heavy line). Similarly, the last transi-
tion of each of these sequences joins a com-
mon merge bar (short heavy line). Each
thread is placed into a concurrent substate.

Figure 4 shows the transformation of a sam-
ple set of messages forming two concurrent
threads into a StateD. There are two initial
messages 1.2.1a and 1.2.1b, distinguished
by their thread indicators a and b, which
spawn the two concurrent threads 1.2.1a -
1.2.1a.1 - 1.2.1a.2 and 1.2.1b - 1.2.1b.1, respec-
tively. The shaded area, embedded between
transitions msg1() and msg7(), shows the
result of the transformation of these
threads.

Figure 4: Transformation of sample concurrent
threads.

For examples within context, refer to the
concurrent messages of Figures 7 (→ 1.1.1a:
r0:=position(), → 1.1.1b: r1:=position()) and 9

[x>0] msg2() msg3()

[x<-2] msg4()

msg5()

msg1()

Messages
1.1 msg1()

[x>0] 1.2.1a msg2()
1.2.2a msg3()

[x<-2] 1.2.1b msg4()
1.3 msg5()

[NOT (x>0) AND NOT (x<-2)]

nullTrans

msg2()

msg3()
msg4()

msg5() msg6()

msg7()

msg1()

Messages
1.1 msg1()
1.2.1a msg2()
1.2.1a.1 msg3()
1.2.1a.2 msg4()
1.2.1b msg5()
1.2.1b.1 msg6()
1.3 msg7()

13/29

(→ 1.1a.1a: r0:=position(), → 1.1a.1b: r1:=posi-
tion()), and their transformations in Figures 8
(StateD of class Wire) and 10, respectively.

Handling conditionality in the same way as
concurrency, i.e., as concurrent substates,
might appear as an overly expensive
approach. However, in order to obtain effi-
cient code from a StateD with conditionality,
a code generator would simply place the exe-
cution of the first branch whose condition
evaluates to true onto the main thread. In
case there are further branches whose condi-
tions evaluate to true, those branches would
be placed onto additional threads.

Multiple Predecessors

Predecessors of a message are specified in
message>predecessor. They indicate
sequence numbers of other messages that
must have been sent before the message can
be sent. For each element in a message’s
predecessor field (designating a message
sent by a foreign object*), a new transition to
a subsequent synchronization bar (merge
bar) is created. The only specified part of
such a transition is event, which is set to the
message name of the message whose
sequence number corresponds to the respec-
tive sequence number in predecessor. To
distinguish homonymous messages, the
event name is concatenated with the
sequence number of the respective message.

* Currently, the algorithm does not handle certain types of
predecessors of messages, such as predecessors that refer
to messages on a parallel thread of the same object.

Figure 5: Transformation of multiple predeces-
sors of sample message.

Figure 5 exemplifies this transformation
scheme. [1.7a,1.6b] 2 msg2() is the message to
be transformed into a StateD. As there are
two predecessors 1.7a and 1.6b, two transi-
tions msg11.7a and msg11.6b are created
which subsequently merge into transition
msg2. The transitions referring to messages
1.7a and 1.6b are required to send events
msg11.7a and msg11.6b, respectively.

An example of a message with multiple pre-
decessors can be found in Figure 11 (→
[1.1.2b.2a, 1.1.2b.3b] 1.1.3a: takeMaterial). Its
transformation into a StateD has not been
reproduced in this paper.

4.4 Compressing Statechart Dia-
grams

As a postprocessing step, a transformation
algorithm may implement various techniques
for obtaining StateDs with a reduced number
of states and transitions. In its current form,
our algorithm implements the following two
techniques:

• merge an event-only-transition with a
subsequent sendClause-only transition
If a transition contains only sendClauses
(and/or actions and/or a returnValue) and
its preceding transition contains only an
event (and/or a guard condition), with the
intermittent state being empty, then these
two transitions are collapsed into one,
thus eliminating the state that has con-
nected them. For an example, refer to the
StateD of class Wire in Figure 8. The tran-

msg11.7a

msg11.6b
msg2

Messages
1.7a msg1()
1.6b msg1()

[1.7a,1.6b] 2 msg2()

14/29

sition displayPositions(window) /initLoop is
the result of applying this technique to the
two original transitions displayPosi-
tions(window) and /initLoop.

• eliminate duplicate transitions
If two transitions that connect the same
states contain identical events, guard con-
ditions, actions, sendClauses, and return-
Values (“duplicate transitions”), then one
of them is removed. For an example, refer
to the StateD of class Bead in Figure 8.
Applying this technique to the two origi-
nal transitions position() ^r0 and position()
^r1 results in the single transition position()
^r0. Note that the transitions in this exam-
ple lead back to the same state from
which they originate.

We have identified a number of further tech-
niques, which are currently not implemented
in our algorithm, including:

• move sendClauses into a state
If a transition connecting two empty
states contains only sendClauses (and/or
actions), then the states that are connected
by this transition are collapsed into one,
and the sendClauses (and/or actions)
become actions of this state. For an exam-
ple, refer to the StateD of class Wire in
Figure 8. Applying this technique to tran-
sition → line := Line.create(r0,r1) would col-
lapse its connected states into one, and the
transition would become the action of that
state.

• collapse sequences of sendClause-only
transitions into single transitions
A sequence of sendClause-only (and/or
action-only) transitions, with the intermit-
tent states being empty, is collapsed into
one single transition comprising the list of
all sendClauses (and/or actions) involved
in the sequence. For an example, refer to
the StateD of class Wire in Figure 8.
Applying this technique would move the
two sendClauses → line := Line.create(r0,r1)
and → line.display(window) along with the

action increment into one single transition
comprising all three of these items.

5 The Algorithm in Perspective

The transformation algorithm presented in
this paper performs the transformation from
CollDs to StateDs, one of the key transitions
from analysis to design. In this section, we
first place this particular transformation into
the landscape of the overall development
process, addressing a number of other trans-
formations that need to be performed. Next,
we assess our algorithm from a number of
perspectives, addressing issues such as com-
pleteness and extensibility. Then, we discuss
its complexity as well as our implementation
and experiences. Finally, we review related
work.

5.1 Transformations in the Develop-
ment Process

The information flows in the object-oriented
development process as indicated in Figure 1
suggest a number of transformations. Recall
that in the UML, scenarios are captured in
interaction diagrams, which can be either
sequence diagrams or CollDs. The following
transformations need to be performed:

• sequence diagrams to class diagrams,
• sequence diagrams to StateDs,
• CollDs to class diagrams,
• CollDs to StateDs, and
• class diagrams and StateDs to code.

The transformation from interaction dia-
grams to a class diagram consists of two
parts. First, all associations between objects
in the interaction diagrams must be properly
reflected in the class diagram, either as
attributes of the respective classes or as class
variables. Second, all the messages that an
object receives must be added to the opera-
tions compartment of the object.

The transformation from interaction dia-
grams to StateDs is more complex. Scenarios

15/29

typically show several objects interacting
with each other. The challenge is to pick all
the right pieces of information that concern
one specific class and build a StateD for this
class.

After design has been completed, class dia-
grams and StateDs are transformed into
code. This transformation is comparatively
straightforward. The distribution of struc-
tural and behavioral information in class dia-
grams and StateDs largely corresponds to the
distribution in code: classes and objects in
class diagrams and StateDs are transformed
into classes and objects in code. A class dia-
gram describes a number of classes. A
StateD describes one class. These diagrams
can directly be mapped into appropriate units
of code.

Note that the complete development process
involves more transformations than those
depicted in Figure 1. For instance, in early
analysis, use case models might be produced
with the ensuing need of transforming them
into the analysis models of Figure 1. Another
example is the transformation of model parts
within one particular development phase,
e.g., from class diagrams to StateDs. Fur-
thermore, in the context of an iterative devel-
opment process, the transformation from
design models back to analysis models
becomes of particular interest. Finally, when
taking a system architecture point of view,
further views and transformations may come
into play, as described in [Kru95].

5.2 Transformation Issues

The issues addressed in this section concern
the transformation from CollDs to StateDs.
However, due to their general nature, they
should be considered in most other types of
transformations as well.

Incompleteness

The transition from interaction diagrams to
class diagrams and StateDs is not a one-to-
one mapping process. StateDs describe a
system in a general way, thus holding more
information than interaction diagrams, which
are employed to show specific scenarios. It is
important to see that the transformation pro-
cess only yields a first yet fundamental draft
of a StateD for subsequent refinement. Dur-
ing work on StateDs, detailed design infor-
mation that cannot be derived from scenarios
is added.

Due to the fact that StateDs potentially con-
tain more information than CollDs, some
parts of StateDs cannot be filled during the
transformation process and remain empty.
An example are states: our algorithm pro-
duces nameless states because CollDs pro-
vide no information for assigning
meaningful names. Another example are
actions: Actions describe the internal behav-
ior of an object. As CollDs show the external
behavior of objects (interactions), they do
not provide any data that can systematically
be used to specify actions of transitions or
states. Note that an exception to this latter
example are the “pseudo-actions” initLoop
and increment which result from the transfor-
mation of iteration messages (cf. Figure 2).

Architectural considerations are another ele-
ment that is generally not reflected in analy-
sis models. A system’s architecture (with
respect to issues such as communication
mechanisms or inheritance relationships) is
built during design, adding fundamental
information to design models. Such informa-
tion can usually not be derived from
sequence diagrams and CollDs.

Uninteresting StateDs

During design, StateDs of certain classes
may be discarded. Often, such classes
merely provide services that do not require a

16/29

specific sequence of their functions. In this
case, state transition diagrams are not neces-
sary. Keep in mind, however, that an uninter-
esting StateD in one application domain may
well be of interest in another domain.

Hard-coded Design Decisions

Once the complete information in a CollD is
carried over into StateDs, there is some free-
dom in constructing the individual StateDs.
This is mainly due to the different view-
point that is assumed in a StateD (compo-
nent-centered in a StateD versus task-
centered in a CollD). In designing the algo-
rithm, we were guided by our desire for sim-
plicity and readability. At various points, the
resulting StateDs reflect design decisions
that are encoded in the algorithm.

For instance, a message in a CollD may wait
for a result. There is more than one possibil-
ity of transforming this setting into a StateD.

Figure 6: Two possibilities of transforming a
message.

Consider the four messages in Figure 6,
belonging to two different objects, objectA
and objectB. msg1 is sent by objectA, whereas
msg2, msg3, and msg4 are sent by objectB.
Figure 6 also shows two possible StateDs for
objectB.

The StateD shown in the upper part reasons
that all messages that are subordinate (in
terms of their sequence number) to a mes-
sage that is waiting for a result have to be
sent before the result can be returned to the
sender. In our example, objectA sends msg1 to
objectB, waiting for result. objectB waits for
event msg1, then sends msg2, msg3, and
msg4, before returning result to objectA.

The lower StateD shows an alternative trans-
formation of these messages. objectB waits
for event msg1, then sends msg2 and returns
result. Only thereafter does it send msg3 and
msg4.

Based on the information contained in
CollDs, it is difficult to decide at which point
a result should be returned. Our algorithm
implements the latter approach.

Another example of a hard-coded design
decision is the way we deal with multiple
predecessors (see Section 4.3 Illustration of
Step (5), Multiple Predecessors). Finally, the
techniques discussed in Section 4.4 Com-
pressing Statechart Diagrams also constitute
hard-coded design decisions.

Extensibility

It should be noted that our algorithm can eas-
ily be extended to cover the grammatical
concepts of CollDs we left out for simplicity
(cf. Appendix A), and to cope with future
extensions of UML CollDs. This claim is
substantiated by the fact that we have devel-
oped the algorithm in an incremental way,
initially supporting only subsets of CollDs
and StateDs. Moreover, we had to update the
algorithm on several occasions, in order to
comply with the current version 1.1 of the
UML, departing from version 0.8. These var-
ious updates could be done with only limited
effort, although some of the changes affect-
ing CollDs and StateDs had been quite sub-
stantial.

Messages
objectA: 1.1 result := objectB.msg1()
objectB: 1.1.1 msg2()

1.1.2 msg3()
1.1.3 msg4()

msg1()
→ msg2() → msg3() → msg4()

^ result

msg1()
→ msg2()

^ result
→ msg3() → msg4()

objectB

objectB

17/29

Transforming multiple CollDs and integrat-
ing StateDs

In the presented algorithm, StateDs that may
already exist for a given class are not taken
into account. However, a more general algo-
rithm should also accomplish the task of
merging newly generated information with
already existing StateDs. This is required for
two reasons. Firstly, there are typically a
number of CollDs describing operations of
one class. The resulting StateDs overlap and
therefore have to be merged. Secondly, in
practice, CollDs and StateDs are often devel-
oped in parallel. Again, the algorithm has to
merge existing with new information.
Extending the algorithm into this direction is
the subject of ongoing work (see below).

5.3 Complexity of the Algorithm

For the discussion of the worst-case com-
plexity C of the algorithm, let No be the
number of objects in the CollD, Nl the num-
ber of links, and Nm the number of mes-
sages. Since the algorithm consists of 5
steps, C is the sum of C1, C2, C3, C4, and C5,
providing that Ci represents the complexity
of Step (i). Step (1) creates a StateD for
every distinct class in the CollD. C1 is there-
fore O(No). Step (2) creates state variables
based on information from links, as well as
from the return values, iteration expressions,
and conditional expressions found in mes-
sages. C2 is therefore O(max(No, Nl, Nm)).
Step (3) creates transitions for all the objects
from which messages are sent, so there are
no more than Nm messages to be processed.
The processing of each message is O(Nm),
since this step includes a method that tries to
find for each message a message with a given
sequence number (see Step (3.4) in Section
4.2 The Algorithm in Detail). C3 is therefore

O(Nm
2). The same applies to Step (4) which

creates transitions for all the objects to which

messages are sent. C4 is therefore O(Nm
2).

Step (5) puts all transitions into sequence. A
transition list is used whose size does not
exceed Nm. Sequencing first sorts the transi-
tion list and then processes each transition of
the list. The sorting algorithm has a com-
plexity of O(Nm * log2Nm). The processing
of a single transition involves finding other
transitions in the transition list and is O(Nm).
Therefore, the processing of all transitions is

O(Nm
2), and C5 is O(Nm

2). Consequently,
the overall worst-case complexity of the

algorithm is O(Nm
2).

5.4 Implementation of the Algorithm
and Experiences

Our algorithm has been implemented as a
system of 15 Java classes and some 2100
lines of code. We defined a textual input for-
mat for CollDs and a textual output format
for StateDs.

Not surprisingly, the implementation
revealed several errors in the original version
of the algorithm. It also helped us in adapting
and validating the algorithm for the various
UML versions, in that tedious manual walk-
throughs could be replaced by sessions with
the interactive Java debugger. Moreover, it
facilitated the development of the compres-
sion techniques considered for the postpro-
cessing step of the algorithm.

The algorithm was tested on a number of
small and medium-sized examples, with the
most complex CollDs comprising 10 objects
and some 50 messages. For all test cases, the
runtime performance of the algorithm was
excellent (less than a second). As test cases,
all the examples described in the UML docu-
mentation set [RMH+97] were used, as well
as examples known from the literature, for
instance, the traffic-light controller presented
by Rumbaugh et al. [RBP+91] and further
discussed in [KM94], and an extended ver-

18/29

sion of the library application described in
[EP98].

All example CollDs presented in this paper
were processed by our algorithm. The dia-
grams of the resulting StateDs were drawn
manually, based on the textual descriptions
generated by the algorithm.

5.5 Related Work

The need for algorithmic support for trans-
formations between different development
stages has long been recognized. However,
there has been little work for addressing this
issue in object-oriented development. Below,
we will discuss relevant work in this and
related domains.

Arguably one of the first groups addressing
program synthesis from example traces are
Biermann and Krishnaswamy [BK76]. They
have developed an algorithm that takes as
input sample sequences of primitive actions
(like assignments) and assertions and gener-
ates a corresponding program.

Koskimies and Mäkinen, leveraging off the
work by Biermann and Krishnaswamy,
devise a synthesis algorithm for state transi-
tion diagrams [KM94], henceforth referred
to as KM-algorithm. The KM-algorithm is
tailored to OMT [RBP+91] which they
extend by “algorithmic scenario diagrams.”
These diagrams follow the notation of
OMT’s event trace diagrams, but also com-
prise graphical notations for conditionality
and repetition, as well as constructs for
assertions and subscenarios. Note that these
extended scenario diagrams can be expanded
into simple scenario diagrams. Furthermore,
they introduce actions and states into their
scenario diagrams in order to facilitate the
reverse engineering part of their work, that
is, the transition from OMT state diagrams
back to scenario diagrams.

The expressive power of UML CollDs, the
input to our algorithm, is similar to that of
their algorithmic scenario diagrams, with the
notable exception that CollDs also support
concurrency, and less importantly, multiple
predecessors and synchronicity aspects.
CollDs comprise neither actions nor states,
and we refrained from introducing these or
any further concepts in order to respect the
focus of scenario diagrams: scenario dia-
grams are meant to merely show the
exchange of messages between objects,
whereas state transition diagrams are meant
to capture both the internal and external
behavior of an object [RBP+91, RMH+97].

The KM-algorithm synthesizes scenario dia-
grams into OMT state diagrams. UML
StateDs, the output of our algorithm, are
very similar to OMT state diagrams. In con-
trast to the KM-algorithm, our algorithm
makes extensive use of the concurrency con-
structs of UML StateDs, in order to process
concurrency as found in UML CollDs.

Being rooted in the algorithm of Biermann
and Krishnaswamy [BK76], the KM-algo-
rithm uses backtracking to keep the number
of generated states at a minimum. Our algo-
rithm does not guarantee a minimum number
of states; however, we have developed a
number of techniques for StateD compres-
sion (see Section 4.4 Compressing Statechart
Diagrams). Due to backtracking, the KM-
algorithm has exponential complexity in the
worst case. In contrast, the complexity of our
algorithm is polynomial. The KM-algorithm
is incremental, allowing for the merging of
scenario diagrams into previously generated
state transition diagrams, whereas our algo-
rithm is not incremental yet (see below).
Finally, the two algorithms differ in some of
the design decisions taken. As an example,
the KM-algorithm maps some events of sce-
nario diagrams to state actions and others to
transitions; our algorithm transforms them a
priori into sendClauses associated with tran-

19/29

sitions, and only post-processing may con-
vert them into state actions.

Koskimies and his group have developed the
SCED tool [KMST96, KSTM98], which cur-
rently supports state transition diagram syn-
thesis (“design by example”) based on the
KM-algorithm as well as “design by anima-
tion.” At the core of design by animation is
the symbolic execution of state transition
diagrams and the generation of execution
traces in the form of scenario diagrams. Note
that this approach is being successfully
applied in other domains, for instance, in
real-time system development with SDL
[OFMP+94], where tools such as SDT
[Tel95] allow for the interactive simulation
and validation of SDL behavior specifica-
tions and the recording of the simulation and
validation runs as message sequence charts
[ITU94]. Design by animation in SCED
allows the developer to complement scenar-
ios by playing the role of a missing object
and/or by specifying events to be sent by
existing objects. Specifically, each time
when SCED is unable to continue the sym-
bolic execution of an incomplete state transi-
tion diagram, it prompts the developer for
input. Such input not only leads to more
comprehensive scenario diagrams, but
allows SCED to complete existing state tran-
sition diagrams and to generate new state
transition diagrams. As a consequence of its
design by animation feature, SCED can also
be used for certain reverse engineering tasks
(see [KSTM98]).

SCED certainly qualifies as a blueprint for a
CASE tool supporting our algorithm. It pro-
vides graphical editors for scenario diagrams
and state transition diagrams, and imple-
ments the two design techniques mentioned
above. SCED demonstrates how transforma-
tion algorithms, once implemented and
embedded in an interactive environment,
may lead to powerful design tools.

In the realm of object-oriented development,
the algorithmic work of Koskimies et al.
comes probably closest to ours. It should be
stressed that the value and strength of such
an algorithmic transformation approach may
heavily depend on the particular context.
Whereas Koskimies et al. and ourselves
strongly advocate the transformation of
interaction models into behavior models,
Bordeleau and Buhr, for instance, explicitly
refrain from such an approach in their UCM-
ROOM design method [BB96]. Their method
provides guidance for manual mapping of
use case maps (UCMs), which capture high-
level system behavior, into Z.120 message
sequence charts [ITU94], which in turn may
be mapped into ROOM system structures
[SGW94]. ROOM system structures are sets
of actors whose communication is governed
by contracts. According to Bordeleau and
Buhr, the expressiveness of their intermedi-
ate representation, the Z.120 message
sequence charts, is insufficient to warrant the
generation of “good actor behavior models.”

In certain domains, for instance in real-time
system development based on synchronous
specification and programming languages
such as LUSTRE [HLR92], the role of state
transition models may be quite different
from that in object-oriented development.
Rather than being an important instrument
for system design, they may become mere
implementation artifacts. Using synchronous
languages, systems are specified as objects
that communicate via events and messages.
Such specifications, being more generic and
more comprehensive than the scenario mod-
els normally produced in object-oriented
analysis, allow for direct code generation.
Ironically, the generated code typically
implements quite complex state transition
diagrams. Recall, however, that scenario
models in object-oriented development do
not capture general system behavior. There-
fore, direct code generation from scenario

20/29

models does not make sense; rather, general
behavior models such as represented in state
transition diagrams must be built to move
towards implementation.

The idea of transforming trace and scenario
diagrams is also being pursued in domains
other than object-oriented development.
Somé et al. [SDV96], for instance, devise
such a synthesis algorithm for requirements
engineering. Their algorithm builds upon
operation semantics (preconditions, postcon-
ditions, and “withdrawn” conditions), and
generates parts of system specifications
based on information from scenario descrip-
tions and related domain-specific informa-
tion. Another example from the domain of
requirements engineering is the work of Hsia
et al. [HSG+94]. They formalize a user view
(corresponding to several scenarios) as a sce-
nario tree which they transform into a regular
grammar and subsequently into a state tran-
sition diagram. Note that in their approach,
the states of the resulting diagram are manu-
ally identified by the analyst when building
the scenario tree. Finally, as an example from
the telecommunications domain, the research
by Ichikawa et al. [IIK+91] may be men-
tioned. They introduce a language for mes-
sage sequence description as a basis for
protocol synthesis. Such descriptions may
automatically be transformed into descrip-
tions of communicating processes that
implement the sequences.

6 Conclusion and Future Work

The algorithm presented in this paper
addresses one of the key transformations in
object-oriented development, the transforma-
tion of scenario models into behavior mod-
els. It is embedded in the UML, the
emerging standard notation for object-ori-
ented analysis and design. The algorithm
supports the transformation of CollDs into
StateDs, covering all major concepts of
CollDs.

A prototype implementation of the algorithm
and the subsequent test on a number of small
and medium-sized examples makes us
believe that the algorithm is fit for provision
in CASE tools. We therefore suggest tool
builders to implement it, together with other,
complementary transformation algorithms
(see Section 5.1 Transformations in the
Development Process), in their tools.

An area of ongoing work is the extension of
our approach for accommodating multiple
CollDs as input and integrating existing
StateDs. Rather than extending the algorithm
presented in this paper, we decided to apply
it as is to each of the CollDs given as input.
Notably, we do not want the developer to
clutter the input CollDs with extra informa-
tion, e.g., state names, just for the sake of
subsequent integration. Rather, we have the
developer intervene after applying our algo-
rithm for tasks such as labelling states and
refining the structure of the StateDs. Once
the StateDs are processed in this way, an
algorithm is applied that generates integrated
StateDs, one for each class at hand. This
approach, together with a preliminary imple-
mentation, is described in [KEK98].

An area of future work is the adaptation of
the algorithm for conducting consistency
checks. Of interest are both checks that ver-
ify the consistency between related scenar-
ios, and checks that verify the consistency
between scenarios on the one hand, and
StateDs on the other hand. Clearly, the provi-
sion of such consistency checks will be
highly relevant in tool implementations.

We would like to suggest that a major con-
sideration for designing future modeling
methods be the ease of transformation and
the coherence among the models of the
method. Within the software development
community, there is a growing consensus for
employing the same modeling notation for
analysis as well as for design. However,

21/29

given the constant evolution of modeling
methods, new concepts are added, such as
use cases, distribution and real-time issues,
which do not always integrate easily into the
notation of the method. To further consis-
tency, traceability, automation, and tool sup-
port in software development, method
designers should pay special attention to the
issues of coherence and ease of transforma-
tion.

Acknowledgments

We would like to thank the associate editor
and the anonymous referees for their detailed
and informed comments and suggestions for
improving this paper. We are grateful to
Aonix for providing us the Software-
ThroughPictures CASE tool, supporting us
in the experimental part of our research.

References
[BB96] Francis Bordeleau and Ray J. A. Buhr.

The UCM-ROOM design method: From
use case maps to communicating state
machines. Technical report, Carleton
University, Ottawa, Canada, September
1996. submitted for publication.

[BK76] Alan W. Biermann and Ramachandran
Krishnaswamy. Constructing programs
from example computations. IEEE
Transactions on Software Engineering,
2(3):141–153, March 1976.

[Boo94] Grady Booch. Object Oriented Analysis
and Design with Applications. Ben-
jamin/Cummings Publishing Company
Inc., Redwood City, CA, 1994. Second
edition.

[Boo96] Grady Booch. Object Solutions: Manag-
ing the Object-Oriented Project. Addi-
son-Wesley, 1996.

[BR95] Grady Booch and James Rumbaugh.
Unified method for object-oriented de-
velopment, documentation set version
0.8 (white paper). Rational Software
Corporation, Santa Clara, CA, 1995.

[CAB+94] Derek Coleman, Patrick Arnold,
Stephanie Bodoff, Chris Dollin, Helena
Gilchrist, Fiona Hayes, and Paul Jere-
maes. Object-Oriented Development:

The Fusion Method. Prentice-Hall, Inc.,
1994.

[Col97] Derek Coleman(moderator). UML: The
language of software blueprints? In Pro-
ceedings of the Conference on Object-
Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’97),
pages 201-205, Atlanta, GA, October
1997.

[EKW92] David W. Embley, B. D. Kurtz, and
S. N. Woodfield. Object-Oriented Sys-
tems Analysis - A Model Driven Ap-
proach. Prentice-Hall, Inc., 1992.

[EP98] Hans-Erik Eriksson and Magnus Penker.
UML-Toolkit. John Wiley and Sons,
1998.

[Har87] David Harel. Statecharts: A visual for-
malism for complex systems. Science of
Computer Programming, 8:231–274,
June 1987.

[HG96] David Harel and Eran Gery. Executable
object modeling with statecharts. In Pro-
ceedings of the Eighteenth International
Conference on Software Engineering,
pages 246–257, Berlin, Germany. IEEE,
1996.

[HLR92] Nicolas Halbwachs, Fabienne Lagnier,
and Christophe Ratel. Programming and
verifying real-time systems by means of
the synchronous data-flow language
LUSTRE. IEEE Transactions on Soft-
ware Engineering, 18(9):785-793, Sep-
tember 1992.

[HSG+94] Pei Hsia, Jayarajan Samuel, Jerry Gao,
David Kung, Yasufumi Toyoshima, and
Cris Chen. Formal approach to scenario
analysis. IEEE Software, 11(2):33-41,
March 1994.

[IIK+91] Haruhisa Ichikawa, Masaki Itoh, June
Kato, Akira Takura, and Masashi Shiba-
saki. SDE: Incremental specification
and development of communications
software. IEEE Transactions on Com-
puters, 40(4):553–561, April 1991.

[ITU94] ITU. Z.120 MSC. Message Sequence
Charts, 1994. Geneva, Switzerland.

[JCJO92] I. Jacobson, M. Christerson, P. Jonson,
and G. Overgaard. Object-Oriented Soft-
ware Engineering, A Use Case Driven
Approach. Addison-Wesley, 1992.

[JK98] Matthias Jarke and Reino Kurki-Suonio
(editors). Special issue on scenario man-
agement. IEEE Transactions on Soft-

22/29

ware Engineering, 24, 1998. Expected
publication date: Fall 98.

[KEK98] Ismail Khriss, Mohammed Elkoutbi, and
Rudolf K. Keller. Automating the syn-
thesis of UML statechart diagrams from
multiple collaboration diagrams. Tech-
nical Report GELO-84, Université de
Montréal, Montreal, Quebec, Canada,
March 1998.

[KM94] Kai Koskimies and Erkki Mäkinen. Au-
tomatic synthesis of state machines from
trace diagrams. Software — Practice &
Experience, 24(7):643–658, July 1994.

[KMST96] Kai Koskimies, Tatu Männistö, Tarja
Systä, and Jyrki Tuomi. SCED: A tool
for dynamic modelling of object systems.
Technical Report A-1996-4, Department
of Computer Science, University of
Tampere, 1996.

[Kru95] Philippe B. Kruchten. The 4 + 1 view
model of architecture. IEEE Software,
12(6):42-50, November 1995.

[KSTM98] Kai Koskimies, Tarja Systä, Jyrki
Tuomi, and Tatu Männistö. Automated
support for modeling oo software. IEEE
Software, 15(1):42-50, January/Febru-
ary 1998.

[Mey97] Bertrand Meyer. Object-Oriented Soft-
ware Construction. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, second edition,
1997.

[OFMP+94] Anders Olsen, Ove Faergemand, B. Mol-
ler-Pedersen, R. Reed, and J. R. W.
Smith. Systems Engineering using SDL-
92. North-Holland, 1994.

[Rat98] Rational Software Corporation. Rational
O bjectory Process 4.1 - your UML pro-
cess, February 1998. Santa Clara, CA.
Available at <http://www.rational.com/
support/techpapers/>.

[RBP+91] James Rumbaugh, Michael Blaha, Will-
iam Premerlani, Frederick Eddy, and
William Lorensen. Object-oriented
Modeling and Design. Prentice-Hall,
Inc., 1991.

[RHSL96] G. Rasmussen, Brian Henderson-Sellers
and G. C. Low. An object-oriented anal-
ysis and design notation for distributed
systems. Journal of Object-Oriented Pro-
gramming, 9(6): pages 14-27, October
1996.

[RMH+97] Rational Software Corporation, Micro-
soft, Hewlett-Packard, Oracle, Sterling,

MCI, Unisys, ICON, IntelliCorp, i-
Logix, IBM, ObjecTime, Platinum,
Ptech, Taskon, Reich Technologies,
Softeam. UML Notation Guide, version
1.1. Rational Software Corporation, San-
ta Clara, CA,

[Rum95a] James Rumbaugh. OMT: The dynamic
model. Journal of Object-Oriented Pro-
gramming, 8(2): pages 6–12, February
1995.

[Rum95b] James Rumbaugh. OMT: The functional
model. Journal of Object-Oriented Pro-
gramming, 8(3): pages 10–14, March
1995.

[Rum95c] James Rumbaugh. OMT: The object
model. Journal of Object-Oriented Pro-
gramming, 8(1): pages 21–27, January
1995.

[Sch94] Siegfried Schönberger. VOM - Visual
Object Modelling. Ph.D. thesis, Jo-
hannes-Kepler-University, Linz, Aus-
tria, 1994.

[SDV96] Stéphane Somé, Rachida Dssouli, and
Jean Vaucher. Toward an automation of
requirements engineering using scenari-
os. Journal of Computing and Informa-
tion (JCI), 2(1):1110–1132, January
1996.

[SGW94] Bran Selic, Garth Gullekson, and Paul
Ward. Real-Time Object-Oriented Mod-
eling. John Wiley and Sons, 1994.

[SKS97] Reinhard Schauer, Rudolf K. Keller, and
Siegfried Schönberger. Extending state
diagrams for higher expressiveness and
more general applicability. Technical
Report DIRO-1065, Université de Mon-
tréal, Montreal, May 1997.

[SM88] Sally Shlaer and Stephen J. Mellor. Ob-
ject-Oriented Systems Analysis. Model-
ing the World in Data. Yourdon Press
Computing Series, 1988.

[SM92] Sally Shlaer and Stephen J. Mellor. Ob-
ject Lifecycles: Modeling the World in
States. Prentice-Hall, Inc., 1992.

[Tel95] TeleLOGIC, Malmo, Sweden. SDT 3.0
Reference Manual, 1995.

23/29

Figure 7: Sample collaboration diagram (adapted from [RMH+97], Figure 37).

wire:Wire

left:Bead

:Window:Controller

:Line {new}

right:Bead

redisplay() → window

«parameter» window

wire

«local» line

contents {new}

«self»

↓ 1.1.1b: r1:=position()↓ 1.1.1a: r0:=position()

↓ 1.1*[i:=1..n]: drawSegment(i)

↓ 1: displayPositions(window)
↑ 1.1.3.1: add(self)

1.1.2: line:=create(r0,r1) →
1.1.3: display(window) →

beads(i-1) beads(i)

24/29

Figure 8: State diagrams resulting from transformation process applied on collaboration diagram in Figure 7.

WIRE

BEAD

LINE

create(r0,r1)

WINDOW

CONTROLLER

→ r0:=beads(i-1)
.position()

→ r1:=beads(i)
.position()

→ line:=
Line.create(r0,r1)

→ line.
 display(window)

/ increment

[NOT i<=n]

i,n:
line: Line
r0,r1:

redisplay()
→ wire.displayPositions(window)

display(window)
→ window.add(self)

position()
^ r0 add(aLine)

[i<=n]

window: Window

displayPositions
(window)
/ initLoop

25/29

Figure 9: Sample collaboration diagram with conditional messages (extension of example in Figure 7).

Figure 10: State diagram for class Wire resulting from transformation process applied on collaboration dia-
gram in Figure 9.

→ line:=Line
.create(r0,r1)

WIRE

→ r0:=beads(x)
.position

→ r1:=beads(y)
.position

displayPositions
(window)

[window.display=#off]
→ window.flashBorder()

[window.display=#on]
→ line

.display(window)

line: Line
r0,r1:

[NOT window.display=#on AND
NOT window.display=#off]

wire:Wire

left:Bead

:Window:Controller

:Line {new}

right:Bead

redisplay() → window

«parameter» window

wire

«local» line

contents {new}

«self»

↓ 1.1a.1b: r1:=position()↓ 1.1a.1a: r0:=position()

↓ 1: displayPositions(window)
↑ 1.1a.3.1: add(self)

1.1a.2: line:=create(r0,r1) →
1.1a.3: display(window) →

beads(x) beads(y)

«parameter» window

↑ 1.1b
[window.display=#off]:

flashBorder()

↓ 1.1a
[window.display=#on]:

drawSegment()

26/29

Figure 11: Sample collaboration diagram comprising synchronous and asynchronous messages and concurrent
threads synchronized by single and multiple predecessors (adapted and extended from [RMH+97],
Figure 40).

Factory
Scheduler

Factory
JobMgr

Factory
JobMgr

1: start(job)1.2: completed(job)

1.1.1b: start(job)1.1.1a: start(job)

1.1.3b:
completed(job)

1.1.6a:
completed(job)

OvenMgr

OvenDoorRobotArm

RobotMgr 1.1.2b.2a: doorOpen 1.1.2b.3b: tempLow

1.1.5a: done

↓ 1.1.2b.2a, 1.1.2b.3b /
1.1.3a: takeMaterial

↓ 1.1.2a: moveTo(location)

↓ 1.1.4a: removeArm()

↓ 1.1.2b.1a: openDoor()

↓ 1.1.5a /
1.1.2b.3a: closeDoor()

↓ 1.1.5a /
1.1.2b.4b: setTemp(tempHigh)

↓ 1.1.2b.1b: setTemp(tempLow)

↑ 1.1.2b.2b: tempReached

27/29

App. A: Grammar of Collaboration
Diagrams

Figure 12 shows the grammar for collabora-
tion diagrams, as derived from the UML
documentation set [RMH+97].

CollD = startMessage {object}.
startMessage = message object.
object =

["new" | "destroyed" |
"transient"]
[objectName] [":" packageName]
[":" className]
{attributeName "=" value}
{link}.

link =
linkedObject [role] {message}.

linkedObject =
<reference to object>.

role =
["new" | "destroyed" |
"transient"] roleName.

linkType =
"association" | "global" |
"local" | "parameter" | "self".

message =
controlFlowType
[predecessor]
[sequenceExpression]
[returnValue ":="]
messageName ["("
[argument {"," argument}] ")"].

controlFlowType =
procedureCall | flatFlow |
asynchronousFlow.

predecessor =
sequenceNumber
{"," sequenceNumber } "/".

sequenceExpression =
sequenceNumber [recurrence] ":".

sequenceNumber =
integer {("." integer) | char }.

recurrence =
["*" ["||"]] clause.

argument =
<format not prescribed by UML>

clause =
<format not prescribed by UML>

Figure 12: Grammar for collaboration diagrams.

The symbols objectName, packageName,

className, attributeName, roleName,

returnValue, messageName, and
sequenceName are all strings. They are
introduced as separate symbols for better
readability.

The vocabulary provided by CollDs for spec-
ifying an operation consists of three basic
elements: objects, links, and messages.
Objects are connected to each other by links.
Messages can be attached to links to show
communication between objects.

An object may show the following details:

• name of the object
• class of the object
• list of attributes

A link may show the following details:

• linked object
• role
• list of messages

A link is a unidirectional connection
between two objects. Several messages can
be attached to a link, all of which are sent to
the linked object. If the modeling problem
requires a bidirectional connection between
two objects, two links - one in each direction
- have to be established.

A full-fledged message may show the fol-
lowing details (see Figure 13):

• control flow type (procedure call,
flat (synchronous), or asynchronous
message)

• predecessor (to indicate sequencing, as
for instance in Figure 11)

• sequence expression
• recurrence (to indicate iteration or condi-

tional message)
• return values
• message name and arguments

28/29

Figure 13: Structure of a sample message in a
collaboration diagram.

Limiting ourselves in this work to the funda-
mental concepts of CollDs, we have intro-
duced a few simplifications. For one thing,
we do not support timing marks. Likewise,
multiplicity indicators for objects within an
enclosing composite class are not handled.
Distribution issues like location, migration
and dynamic classification of objects are left
out as well.

The diagram from which Figure 7 has been
adapted [RMH+97, Figure 37], shows quali-
fiers and rolenames separate from each other.
However, for simplicity, we decided to
merge qualifiers into rolenames. Figure 7, for
instance, shows an association between Wire

and Bead which is qualified with i-1. This
means that an object Wire, together with the
qualifier i-1, refers to an object Bead. Usu-
ally, an associated object is being made
known to an object by a rolename. In our
example, rolename beads is assigned to a set
of objects of class Bead. Therefore, to
uniquely identify one particular object, we
merge rolename and qualifier into beads(i-

1). In conclusion, we presume that a role-
name contains all pertinent information.

App. B: Grammar of Statechart Dia-
grams

The grammar of StateDs (Figure 14) is
derived from the UML documentation set
[RMH+97]. It comprises only those aspects
on which we depend in our work.

StateD =
className
{stateVariableDecl}
{transition}.

stateVariableDecl =
stateVariable ":" [className]
["=" initValue].

fromNode, toNode =
<reference to node>.

node =
state | splitBar | mergeBar.

state =
initialState |
regularState |
terminalState.

regularState =
[name]
{stateVariableDecl}
["entry" action]
["do" action]
["exit" action]
{subState}.

transition =
fromNode
[event]
[guardCondition]
{"/" action}
{sendClause}
["^" returnValue]
toNode.

subState = StateD.
event =

eventName "("
[parameter {"," parameter}] ")".

guardCondition =
"[" booleanExpression "]".

sendClause =
syncIndicator
[result ":="]
target "." event.

syncIndicator =
" " | " ".

target =
className | objectName.

action =

→ 1.A2 / 1.B1: *[i=1..n] res := position()

sequence
number

recurrence

return

message
name and

control
flow type

predecessor arguments

value

29/29

actionName "("
[argument {"," argument}] ")".

Figure 14: Grammar for statechart diagrams.

The symbols className, stateVari-
able, eventName, result, objectName,

and actionName are all strings. The symbols
initValue, returnValue, and argument
are all expressions in the sense of program-
ming languages.

Local variables can be used at the top level
of a StateD. They are also called state vari-
ables, as the whole StateD is contained in a
nameless state. Thus, a StateD consists of a
name, a set of state variables, a set of nodes,
and a set of transitions.

The splitBar and mergeBar symbols indi-
cate splitting and merging of concurrent
threads, respectively. They are represented as
short heavy lines that are connected to states
and transitions (for examples, see Figures 4,
5, 8, and 10).

As CollDs define different kinds of control
flow types, we distinguish between synchro-
nous and asynchronous events in StateDs as
well. To this end, we propose a synchronicity
indicator [Sch94, SKS97]: synchronous
events are indicated with a full arrowhead →,
whereas asynchronous events are shown with
a half arrowhead . This notation is based
on the control flow type notation of CollDs.
It replaces the ^ indicator, which merely
serves as a separator in the original syntax of
StateDs.

In the synchronous case (in the asynchro-
nous case, replaces →), transitions may
take on the following form:

event
[guardCondition]
/ action
→ result := target.event
^ returnValue

result specifies where the result of a syn-
chronous event should be stored. result

may either be a state variable or an attribute
of the object at hand. Note that result can
only occur in the synchronous case.

Introducing constructs that allow an object to
send a synchronous event and to receive a
result requires appropriate constructs for the
object which is to receive this event. We
therefore provide, as an additional element
for the specification of a transition, the
returnValue, together with the preceding
delimiter “^”. The receiver may set return-
Value from within action, by sending a
synchronous event to a third object, or by
simply indicating an attribute of the object.

Figure 15: Sending an event in a statechart dia-
gram (excerpt from Figure 8).

Figure 15 illustrates how a synchronous
event is sent and a result is received. Sender
Wire sends event position() to receiver beads(i)
which is of class Bead. Event position() trig-
gers a transition in the receiver, and beads(i)
returns its attribute pos in response. This
example is drawn from Figure 8 and is fur-
ther discussed in Section 4 Transformation
Algorithm.

Bead

Wire
→ r1:= -- result

beads(i). -- target

 position() -- event

position() -- event

^ pos -- returnValue

