2001 Society for Design and Process Science
Printed in the United States of America

AUTOMATIC SYNTHESISOF BEHAVIORAL OBJECT
SPECIFICATIONS FROM SCENARIOS

Ismail Khriss
Codagen Technologies Corporation
Montréal, Québec, Canada

M ohammed Elkoutbi

Rabat, Morocco
Ecole Nationae Supérieure d’ Informatique
et d Anayse des Systémes

Rudolf K. Keler
Zuhlke Engineering AG
Schlieren, Switzerland

The use of scenarios has become a popular technique for requirements elicitation and
specification building. Since scenarios captureonly partial descriptions of systembehavior, an
approach for scenario composition and integration is needed to produce more complete
specifications. The Unified Modeling Language (UML), which hasbecome a standard notation
for object-oriented modeling, providesa suitableframework for scenario acquisition using Use
Casediagramsand Collaboration diagrams and for behavioral specification using Statechart
diagrams; yet it does not propose any specific modeling process, let alone a process for
transforming scenarios into behavioral specifications. In this paper, we suggest a four-step
process for synthesizing behavioral specifications from scenarios. It automatically generates
froma given set of Collaboration diagramsthe Statechart diagrams of all the objectsinvolved.
An automatic analysis of specifications in respect to consistency and completeness is also
provided. Our approach isincremental and is fully compliant with the UML. Furthermore, it
providesan elegant sol ution to the problemof scenariointerleaving. Theunderlying algorithms
have been implemented and validated with several examples, and they are fit for integration
into CASE tools supporting the UML.

1. Introduction

Over the past years, scenarios have received significant attention and have been used for different
purposes such as understanding (Caroll and Rosson, 1992; Potts et d.,1994), human computer interaction
andysis (Monk and Wright, 1990; Nardi, 1992), specification or prototype generation (Angluin, 1987;
Thisresearch was supported by the SPOOL project organized by CSER (Consortium for Software Engineering Research) which

isfunded by Bell Canada, NSERC (Natural Sciencesand Engineering Research Council of Canada), and NRC (Nationa Research
Council Canada). The research was conducted when Rudolf K. Keller wasafull-timefaculty member at University of Montreal .

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, pp. 53-77

Caroll and Rosson, 1992), and object-oriented (OO) analysis and design (Booch, 1994; Jacobson et d.,
1992; Rubin et a., 1992; Rumbaugh et ., 1991).

A typical processfor requirements engineering based on scenariosis composed of five steps. scenario
acquisition, specification generation, specification verification, prototype generation, and specification
validation. The analy<t first begins by acquiring scenarios from end users. Secondly, a specification that
describes a system behavior is generated from scenarios. Thirdly, the analyst verifies the specification to
uncover inconsistencies and incompletenessin scenarios. In case of errors, he or shereturnsto the first
step. Fourthly, a prototype of the expected system is constructed on the basis of the scenarios acquired.
Finaly, in the fifth step, the prototype is used to validate the scenarios with end users. In case of invdid
scenarios, the analyst returnsto the first step and repesat steps until the validation of scenarios. Aslong as
the process is not supported by automated tools, it remains tedious, time-consuming, and error prone.

OO0 analysisand design methods offer agood framework for scenarios. In our work, we have adopted
the Unified Modeling Language, which is emerging as a unified notation for OO anaysis and design. It
directly unifies the methods of Booch (1994), Rumbaugh et d (OMT) (1991), and Jacobson et a.
(OOSE) (1992).

In this paper, we propose an incremental and automatic approach to support the first three steps! of
the requirement engineering process. Our work, in contrast to others such as (Koskimies et d., 1998),
supports UML Collaboration diagrams with al their facets (iteration, condition, and concurrency) for
scenario acquisition and leverages the expressiveness of UML Statechart diagrams (concurrency and
hierarchy) for capturing the resultant specifications.

We also resolve the problem of interleaving between scenarios, which means that the generated
specifications will capture exactly the behavior given in the input scenarios. For example, if two input
scenarios share acommon state, the resultant specification may capture more than the two given scenarios.
for instance, execution may initially follow thefirst scenario; when it reaches the common state, execution
may continue following the second scenario. Our approach precludes the generation of such overly
generd specifications.

The integration of our approach into CASE tools that support the UML will make these tools more
powerful. Thetediousactivities of the process of requirements engineering will become amostly automeatic,
tool-supported activity.

Organization of the paper

Section 2 gives abrief overview of the UML diagrams relevant for our work and introduces arunning
example. Section 3 presents an overview of the four activities of our approach. Section 4 describesin
detail the agorithm underlying the third activity, and Section 5 details the algorithm of the fourth activity.
Section 6 discusses the issue of consistency and completeness of scenarios supported by our approach.
Section 7 addresses related work. Section 8 discusses severa aspects of our work. Finally, Section 9
provides some concluding remarks and points out future work.

2. Unified Modeling L anguage

The UML (Rumbaugh et al., 1999) is an expressive language that can be used for problem
conceptualization, software system specification as well as implementation. It covers a wide range of
issues from use cases and scenarios to state behavior and operation declaration. The UML provides a
syntactic notation to describe al major view of asystem using different kinds of diagrams. In this section,

! Note that a system prototype can also be generated by an extension of our approach (see[11]).

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 54

O <<uses>>

/ Deposit \

i : <<uses>> [: :

User Balance Identify
<<uses>>

O

Withdraw

Fig. 1 UsecaseD of the ATM system.

we first discuss the UML diagrams that are relevant for our approach: Use case diagram (UsecaseD),
Class diagram (ClassD), Collaboration diagram (CollD), and Statechart diagram (StateD). We conclude
the section with an overview of the Object Constraint Language (OCL), which was adopted by the UML
for capturing congtraints. In our approach, OCL isused for complementing ClassDs. Asarunning example,
we have chosen to study apart of an extended version of the Automatic Teller Machine (ATM) described
in (Rumbaugh et ., 1991).

2.1. Use Case diagram

The UsecaseD is concerned with the interaction between the system and actors (objects outside the
system that interact directly with it). It presentsacollection of use cases and their corresponding externa
actors. A use case is a generic description of an entire transaction involving severa objects of the
system. Use cases are represented as ellipses, and actors are depicted as icons connected with solid
lines to the use cases they interact with. One use case can call upon the services of another use case.
Such ardation is called a uses relation and is represented by a directed dashed line. The direction of a
uses relation does not imply any order of execution. Figure 1 shows an example of a UsecaseD
corresponding to the ATM system. In this UsecaseD, we find one actor (‘User’) interacting with four
use cases (‘ldentify’, ‘Withdraw’, ‘ Deposit’, and ‘Balance’). There are also severa uses relations, for
instance, the use case ‘Withdraw’ uses the services of the *Identify’ uses case.

A UsecaseD is helpful in visualizing the context of a system and the boundaries of the system’'s
behavior. A given use caseistypicaly characterized by multiple scenarios.

2.2. Class diagram

The ClassD representsthe static structure of the system. It identifiesall the classesfor aproposed
system and specifiesfor each classitsattributes, operations, and relationshipsto other classes. Relationships
include inheritance, association, and aggregation. The ClassD is the central diagram of a UML model.
Figure 2 depicts the ClassD for the ATM system.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 55

ATM
%cash_available Transaction
screen '&} date_op
%cash_slot carry_out Jl%_ kind
card_slot amount
1 0,*
: -‘-'insert_card() : : create()
; ‘enter_password() e delete()
““enter_operation() 1%
1 on
interact
0.* !
Customer QLACCL
Q}i " number
(= owns % password
name
balance
address
hone ! e
P & check()
| update()
Saving Check

Fig. 2 ClassD of the ATM system.

2.3. Collaboration diagram

A scenario shows a particular series of interactions among objects in asingle execution of ause case
of asystem (execution instance of ause case). Scenarios can be viewed in two different ways through
sequence diagrams (SequenceDs) or CollDs. Both types of diagrams rely on the same underlying
semantics. Conversion from one to the other is possible. For our work, we chose to use CollDs because
the UML specification defines them more precisely than SequenceDs. A SequenceD showsinteractions
among a set of objects in tempord order, which is good for understanding timing issues.

A CollD concentrates on the structure of the interaction between objects and their inter-rel ationships
rather than on the temporal dimensions of a scenario. A CallD is a graph where nodes are objects
participating in the scenario and edges represent structural relations between objects (association,
aggregation, inheritance, etc.). Messages sent between objects are labeled with a text string and a
direction arrow. To a given edge, multiple messages in both directions can be attached.

Each message label includes a sequence number representing the nested procedural calling sequence
throughout the scenario, and the message signature. Sequence numbers contain alist of sequence elements
separated by dots. Each sequence element consists of a number of parts, such as:

a compulsory number showing the sequential position of the message, and

aletter indicating a concurrent thread (see messages 8a and 8b in Figure 3(a)), and
aniteration indicator * indicating that several messages of the same form are sent sequentially to
asingle target or concurrently to a set of targets.

Figures 3(a) and 3(b) depict two scenarios (CollDs) of the use case * Withdraw’ . Figure 3(a) represents
the scenario where the withdrawal is correctly registered (‘ regularWithdraw’), and Figure 3(b) represents
the case where the balance account is not sufficient (‘ balanceError’).

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 56

: Customer

1: pin:= insert_card()
2: passwd:=enter_password()
4[ok=true]: kind:=enter_kind()
5: mnt:=enter_amount()
9: get_cash()
10: get_card()

—>

7[ok=true]: ok:=deliver_cash(mnt)
e

A

LATM

8a[ok=true]: create_transaction(pin, mnt, kind)

: Transaction

3: ok:=chefk_account(pin, passwd)
6: ok:F¥check_balance(mnt)
' 8a [okdtrue]: update(mnt, kind)

}

: Account

Fig. 3(a) Scenario regular Withdraw of the use case Withdraw.

: Customer

1: pin:= insert_card()

2: passwd:=enter_password()
4[ok=true]: kind:=enter_kind()

5: mnt:=enter_amount()
8: get_cash()

—

7[ok=falsg]: ok:=deliver_cash(mnt)
—

L ATM

3: ok:=chpck_account(pin, passwd)
6: ok:Fcheck_balance(mnt)

J

—Account

Fig. 3(b) Scenario regular Withdraw of the use case Withdraw.

2.4. Statechart diagram

A StateD shows the sequence of states that an object goes through during itslife cyclein responseto
stimuli. Generaly, a StateD may be attached to a class of objects with an interesting dynamic behavior.
The formaism (notation and semantics) used in StateDs is derived from Statecharts as defined by
Harel (1987). Statecharts are an extension of state-event diagramsto include hierarchy and concurrency.
Any state in a Statechart can be recursively decomposed into exclusive states (or-state) or concurrent

Transactions of the SDPS

SEPTEMBER 2001, Vol. 5, No. 3, 57

states (and-state). When a transition in a Statechart is triggered (event received and guard condition
tested), the object leavesits current state, initiates the action(s) for that transition and enters anew state.
Any internal or external event isbroadcasted to al states of al objectsin the system. Transitions between
concurrent states are not allowed, but synchronization and information exchange are possible through
events. An example of StateD is shown in Figure 6(a).

2.5. Object Constraint Language

OCL offersUML modelers ameansto describe a system more accurately than with diagrams aone.
OCL is alanguage in which one can write constraints that contain extra information or restrictions to
UML diagrams. Constraints are semantic conditions on UML modd elements.

The OCL was originaly developed by IBM and subsequently adopted by the Object Management
Group (OMG) asapart of the UML specification. It isintended to be ssimple to read and write and easy
to use for non-programmers. The principles of OCL are based on set theory and first order logic, and
many of its concepts borrowed from the formal specification language Z (Wordsworth, 1992). OCL has
anumber of fundamental datatypes (such as boolean, string, and numeric) and collection types that are
useful when working with lists of objects.

OCL can be used to specify class invariants, to describe event guard conditions and pre/post class
methods. Furthermore, OCL makes navigation through the class model easy and controllable. In our
approach, OCL is used for enriching ClassDs with pre-and post-condition of class methods (see Figure
6).

3. Overview of the Approach

In this section, we describe the overall processto derive asystem behavior specification. This process
provides an automatic way to transform requirements to a formal specification. We consider that the
behavior specification of system is given by the behavior specifications of its constituent objects. The
approach we define here consists of four major activities (see Figure 4):

(1) Requirement acquisition

(2) Generation of partial object specifications
(3) Anaysisof partial object specifications
(4) Integration of partial object specifications.

3.1. Requirement acquisition

Scenario modelling is the key technique mostly used in this activity. It is used in OO methodologies
(Booch, 1994; Jacobson et d., 1992; and Rumbaugh et al., 1991) as an approach to requirements
engineering. The UML proposes a suitable framework for scenarios acquisition using UsecaseD for
capturing system functionalities and SequenceDs or CollDs for describing scenarios.

In this activity, the analyst first elaborates the UsecaseD for the system (see Figure 1). Secondly, he
or she elaborates the ClassD of the system (see Figure 2), and for each class of the ClassD, a detailed
anaysisisdone by identifying attributes and methods and defining pre- and post-conditions. An example
of adetailed classanalysisisgiven in Figure 5. Finally, the analyst acquires scenarios as CollDs for each
use case in the UsecaseD. Figures 3a, and 3b show two sample CollDs corresponding to the use case
‘Withdraw’ of the ATM system.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 58

Requirements Clasen EE—E w>%
iciti ass
acquisition UseCaseD){9@\
N /

N
Generation of partial
object specifications
from scenarios ‘?:F‘ Q,I;, q,l;, ‘?:F‘ ‘?:F‘ Q:;‘
| | | | | |

Analysis of partial ‘ ‘ ‘ ‘ ‘ ‘
object specifications

vl I A > S © i P ¥
~—

StateDs

\ / /
Integration of partial
object specifications

[a)e—{ 2] (ale-a] (A e 2] [r)e—~]
Integrated AA = = A

StateDs [~

Fig. 4 Overview of the approach.

3.2. Generation of partial object specifications

In this activity, we apply repeatedly on each system CollD the GPS agorithm (Generation of Partia
StateDs) (Schonberger et a., 2001) in order to generate automatically partial specifications for al the
objects participating in the input scenarios.

Transforming one CollD into StateDs is a process of five sub-steps. Sub-step 1 creates a StateD for
every digtinct class implied by the objects in the CollD. Sub-step 2 introduces as state variables al
variables that are not attributes of the objects of CollD. Sub-step 3 creates transitions for the objects
from which messages are sent. Sub-step 4 creates transitions for the objects to which messages are
sent. Finally, sub-step 5 brings for al StateDs the set of generated transitions into correct sequences,
connecting them by states, split bars and merge bars. The sequencing follows the type of messagesin a
ColID: iteration messages, conditional messages, concurrent messages and messages with multiple
predecessors. Applying the GPS agorithm to the scenarios ‘regularWithdraw’ and ‘balanceError’, we
obtain for the object ATM the partid StateDs shown in figures 6(a) and 6(b), respectively.

3.3. Analysis of partial object specifications

The partial StateDs generated in the previous activity are unlabelled, i.e., their states do not carry
names. However, the | PS algorithm (see next section) is state based, requiring labelled StateDs asinput.
Furthermore, scenarios acquired may contain errors because of incons stenciesand internal incompl eteness.
Thus, the objective of thisactivity isto check the consistency of the input scenarios and to obtain labelled
StateDs. Thisis achieved by a new agorithm, called APS (Anaysis of Partial StateDs), based on pre-
and post-conditions of class methods (cf. Figure 5). This agorithm is detailed in Section 4.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 59

ATM

cash_available: boolean = true
screen: string = “main”
cash_dlot: string = “closed”
card_dot: string = “empty”

insert_card(): string

pre: screen="main” and cash_slot="closed” and card_d ot="empty”

post: screen="enter password” and cash_slot="closed” and card_slot="full”

enter password(): string

pre: screen="enter password” and cash_slot="closed” and card_slot="full”

post: (screen="enter kind” or screen="password incorrect”) and cash_slot="closed” and card_slot="full”

enter_kind(): character
pre: screen="enter kind” and cash_slot="closed” and card_slot="full”
post: (screen="deposit” or screen="withdraw”) and cash_dot="closed” and card_slot="full”

pre: (cash_available=true and screen="withdraw” and cash_slot="closed” and card_slot="full") or
(screen="deposit” and cash_slot="closed” and card_slot="full")

post: (cash_available=true and (screen="withdraw in progress’ or screen="insufficient funds”) and
cash_dlot="closed” and card_slot="full") or (screen="deposit in progress’ and cash_slot="closed” and
card_slot="full")

pre: cash_available=true and screen="withdraw in progress’ and cash_slot="closed” and card_dot="full”
post: (screen="take cash” or screen="insufficient funds’) and (cash_slot="opened” or cash_dlot="closed")
and card_slot="full”

get_cash()
pre: screen="take cash” and cash_slot="opened” and card_slot="full”

post: screen="take card” and cash_dlot="closed” and card_slot="¢jected”
get_card()

pre: screen="take card” and cash_dot="closed” and card_dlot="¢gjected”
post: screen="main" and cash_slot="closed” and card_dlot="empty”

display_error(): boolean
pre: screen=" insufficient funds’ and cash_dot="opened” and card_slot="full”
post: screen="take card” and cash_dlot="closed” and card_slot="¢jected”

Figure5: The ATM class.

Applying the APS agorithm underlying to the StateD of Figure 6(a), we obtain the StateD shown in
Figure 7(a), annotated with the labels explained in the legend of the figure. Applying the algorithm to the
StateD of Figure 6(b), we obtain the StateD shown in Figure 7(b).

3.4. Integration of partial object specifications

This activity isto integrate for each object of the system dl its partial l1abelled StateDs into one single
StateD. The resultant StateD is then verified in respect to its consistency. This activity is achieved
incrementally by a new agorithm, which is called IPS (Integration of Partid StateDs). Thisagorithmis
described in Section 5. Figure 8, for instance, shows the resultant StateD of the ATM object after
integrating the two scenarios of the use case ‘Withdraw’.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 60

passwd, pin: string; ok: Boolean; kind:
character; mnt: real

\

\

insert_card() “pin

enter_password()

enter_kind [ok=true]

» ~passwd ® ok:=

__J
A

get_card()

get_cash()

I ~kind
|-

e J
Account. check_account()

pin, passwd)

e J

[ok=true] ® Transaction.create
(pin, mnt, kind)

A

enter_amount() » mnt
® ok:=
Account.check_balance(mn{)

[ok=true]

/deliver_cash() ﬁ

[)=
N

A

[ok=true] ® Account.update(mnt,kind)

L

_/

Fig. 6(a) StateD for the object ATM generating by applying the GPS algorithm on the scenario

regular Withdraw.

/ ATM

passwd, pin: string; ok: Boolean; kind:
character; mnt: real

enter_password()

D insert_card() “pin

enter_kind()[ok=true]

. Apasswd [~kind
® ok:=Account. i

~

check_account(pin,passwd)

enter_amount() » mnt
® ok:=
Account.check balance(mft)

[ok=false] / display_error()

- =/

Fig. 6(b) StateD for the object ATM generating by applying the GPS algorithm on the scenario
balanceError.

4. Description of the APS Algorithm

The APS agorithm takes as input a description of a class and its unlabeled StateD and outputs a
labeled StateD. The agorithm consists of three sub-steps. checking the consistency of the desciption of
the class, labeling each state of the unlabeled StateD, and checking the consistency of the resultant
StateD. Thefirst and third sub-step will be discussed in Section 6. Before describing the second sub-step
of the algorithm, we first introduce the syntax of the pre- and post-condition of class methods.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 61

passwd, pin: string; ok: Boolean; kind:
ATM character; mnt: real

enter_password() enter_kind [ok=true and

ot e "o X
s |eneaddon o f g) passwd ® ok S, ?01] kind o s,

Account.check_account(
pin, passwd) enter_amount() [gc 2] » mnt
get_card() ® ok=
Account.check_balance(mnt)
[ok=true] ® Transaction.create
< (pin, mnt, kind) [ok=true and gc] <
get_cash() /deliver_cash() |'—
s Je s
dal
)l
[ok=true] ® Account.update(mnt,kind)
L egend:

So = screen="main" and cash_slot="closed” and card_slot="empty”

S1 = screen="enter password” and cash_slot="closed” and card_slot="full”

S2 = (screen="enter kind” or screen="password incorrect”) and and cash_slot="closed”
and card_slot="full”

Ss = (screen="deposit” or screen="withdraw”) and cash_slot="closed” and
card_slot="full”

S4 = (cash_available=true and (screen="withdraw in progress” or screen="insufficient
funds”) and cash_slot="closed” and card_slot="full") or (screen="deposit in progress
and cash_slot="closed” and card_slot="full")

Ss = screen="take card” and cash_slot="closed” and card_slot="¢jected”

gcL = screen="enter kind” and cash_slot="closed” and card_slot="full”

gc = (cash_available=true and screen="withdraw” and cash_slot="closed” and
card_slot="full") or (screen="deposit” and cash_slot="closed” and card_slot="full")
gcs = cash_available=true and screen="withdraw in progress’ and cash_slot="closed”
and card_slot="full")

Fig. 7(a) The labeled StateD obtained from the StateD of Figure 6(a).

4.1. Syntax of pre- and post-condition of the class operations

The pre- and post-conditions of class operations are described using OCL. L et op be aclass operation, and
pre(op) and post(op) bethe pre- and post-conditions of that operation, respectively. The conditions are expressed
inadisjunctive canonical form, referring to the class attributes. Syntactically, they adhereto the following subset of
OCL:

pre(op) : orExpression.

post(op) := (ifExpression {“or” ifExpression}) | orExpression.

ifExpression :=“if” orExpression “then” orExpression “endif”.

orExpression := andExpression {“or” andExpression} .

andExpression := basicExpression {“and” basicExpression}.

basicExpression ;= identifier (((“="|“!="|“<" |“>" | “<=" | “>=")
(string_literal | character_literal | integer_literal |
floating_point_literal)) | (“=" (“true” | “false”)).

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 62

Passwd, kind: string; ok: Boolean; kind:
ATM character; mnt: real

) s enter_password() enter_kind()
insert_card() ~pin Sl ApaSSVVd =[SZ } [ok=true and gc1] ~kind 53
® ok:=Account. {

check_account(pin,passwd)

enter_amount() [gc2]
~mnt ® ok:=
get_card() Account.check balance(mnt)

[ok=false and gc4] /
display_error() S,
4

L egend:

\\gm = screen="insufficient funds” and cash_slot”="opened” and card_slot="full” ‘/

Fig. 7(b) Thelabeled StateD obtained from the StateD of Figure 6(b).

Passwd, pin: string,; ok: B oolean; kind: character,; mnt: real
scenarioList={ regularWithdraw, balanceError}
ATM dynamicScenarioList=scenarioL ist
transScenarioList=[{ regularWithdraw, balanceError}, { regularWithdraw,
(=]
1

balanceError}, { regularWithdraw, balanceError}, { regularWithdraw,
balanceError}, { regularWithdraw}, { regularWithdraw}, { regularWithraw},
{regularWithdraw}, { balanceError}, {regularWithdraw, balanceError}]

T 2=enter_password()

Ti=insert_card() [sc] S [sc] /sa ~passwd
— » 1
/sa™pin ® ok:=Account.

check_account(pin,

passwd) T4=enter_amount() [gc2 and|sc
Tio=get_card() [sc] /ra]/sa
getcard() [rmnt ® ok:=
Account.check_balance(mnf)

Te=[ok=true and sc] /sa
® Transaction.create (pin, mnt, kind)

< Ts=[ok=true and v
TE:QGT_IC??"'() [sc] < ges and sc] r—s
< » /deliver_cash() /sa

T7=[ok=true and sc] /sa
® Account.update(mnt,kind)

Tao=display_error() [ok=false and gc4 and sc] /sa

Fig. 8 Theresultant StateD for the ATM object after integration of the two scenarios of the
use case Withdraw.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 63

bool ean | abel States(ad ass: dass; VAR stateD SateD

begi n
bool :=true
transList := stateD {transition}

i =1
while (i<size(translist) do
/* label one transition */
conput eVal ueCFC1And(ad ass, |, stated, cl, c¢2, backTracki ngH enents)
if not (trans.fron\bde is a nerge bar or a split bar) then
/* nerge bar and split bar are not |abel ed */
trans. fronbde. nane : = cl
endi f
if not (trans.toNode is a nerge bar or a split bar) then
/* nerge bar and split bar are not |abeled */
trans. toNode. nane : = c2
endi f
/* end | abel one transition */
if (i<=size(transList) — 1) then
/* check if nextTrans is consistent with its from\bde and toNode states */

bool := transitionQonsi stencyChecki ng(transList[i+1], ad ass)
if (not bool) then
/* look for the last transition that has still elenents in the array

backTr acki ngH enents */
i =1 ookFor | ndexI BackTr acki ng(backTr acki ngEl enents, transList)
el se
=i+l
endi f
endi f
endwhi | e
retourn bool
end | abel S ates

Pseudo-code of the state labeling sub-step.

4.2. Labeling states of the StateD

The objective of the second sub-step isto label each state of the unlabeled StateD. The agorithm
consists to traverse the transitions of the StateD (see the pseudo-code below). Note that the transitions
are congtructed by the GPS algorithm and sorted following the order of message sequencing of the
corresponding scenario?. For each transition trans, the algorithm begins by computing the value of two
conditions ¢, and c,. These conditions constitute the basis of the labeling sub-step. Two cases are
considered.

Thefirst case occurs when the post-condition of the event of transisan orExpression, ¢, isequal to
the pre-condition of the event of “trans’, c, to the post-condition of ‘trans'. The second case occurs when
the post-condition of the event of ‘trans'isequal to if pre, then post, endif or Or if pre, then post,
endif then the algorithm trieswith thefirstifExpression and ¢, isequa to pre; and c, to post,. The other
ifExpression (i.e. if pre, then post, endif or ...or if pre then post) are saved in the array
backtrackingElements. The purpose of backtracking Elementsis explained below. ThefromNode state
of ‘trans’ islabeled with ¢, and toNode state with c,. For instance in Figure 9, the post-condition of the

2 Concurrent messages are sorted following the alphabetical order of the letters contained in their corresponding sequence

numbers. For example if a CollD contains the messages 1, 3, 2a.1, 2b and 2a.2, the messages will be sorted as 1, 2a.1, 2a.2, 2b,
3.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 64

a1 integer
az: integer

ex() C] Ti=e10 C] T2=e2()
pre: a£0 and a2£1 G

post: if a1=0 and a=1 then a;=1
and a;=2 endif or if &1<0 and a;<1
then a;>2 and a>>3 endif \ /
()

pre: a1=3 and a2=4 or a1>3 and
>4

post: a1=2 and a;=3

L egend:
S;=a=0and az=1 S; =a=1landaj=2
S3 = ar<0 and az2<1 Ss=a1>2anda2>3

S =a=2 and a»=3

Fig. 9 StateD labeling (a) labeling failed (T, is not consistent with its fromNode state) (b)
labeling succeded (T, is consistent with its fromNode state).

eventof ‘T’ (i.e. ‘g/()’) contains an IfExpression then ¢ isequd to ‘a=0and a,=1", ¢, to ‘a=1 and
a,=2'. The fromNode state of ‘T,* isequal to ¢, and toNode state to c,.

Then the agorithm verifies whether the next transition ‘nextTrans remains consistent with their
fromNode and toNode states (see definition 2, 4 and 10 in Section 6). If ‘nextTrans' is consistent, the
algorithm process ‘nextTrans as ‘trans. Otherwise, the algorithm backtracks and looks for the last
trangition that has still elementsto process in the array backTrackingElements. In the example of Figure
9, ‘T," isnot consstent with its fromNode state (i.e. ‘S,’). The algorithm backtracksto ‘T,* and retries
with another ifExpression, ¢, isnow equd to‘a <0 and a,<I’, ¢, to ‘a >2 and a,>3'. ThefromNode and
toNode states of ‘T,* becomes repectively ‘S," and‘S,’. ‘T " is now consistent with its fromNode (i.e.
‘S,’). The post-condition of theevent of ‘T,* (i.e.‘e,()’) isan orExpression then ¢, isequal to‘a>2 and
a,>3 andc, to ‘a=2 and a,=3'. The fromNode state of ‘T,* has been already labeled by ‘T, and its
toNode state islabeled by ¢, (i.e. ‘S,').

5. Description of the | PS Algorithm

This activity consists to integrate for each object of the system al its partia labeled StateDs into one
single StateD. The resultant StateDs are then verified in respect to their consistency. The integration

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 65

StateD stateD: StateD stateD»

Fig. 10 Examples of detected errorsin the state checking sub-step.

agorithm isincremental, and consists of five sub-steps: state checking, state merging, transition merging,
suppressing the interleaving problem and checking the consistency of the resultant StateD. The five sub-
steps will be discussed in Section 6.

5.1. State checking

Before merging states of two StateDs, the algorithm checks if the same state appears at different
levels of hierarchy® into the two StateDs. Suppose that the algorithm has to mere the object ‘Obyj’, the
StateD ‘sd* and the StateD ‘sd,* given in Figure 10. The following errors will be detected:

The state d appears at different levelsin sd, (in levels Obj and c).
The state eis not at the same level in sd, (level c) and sd,, (level Obyj).

The anayst must fix the detected errors before continuing the scenario integration activity.

5.2. State merging

When no errors are detected in the state checking sub-step, the algorithm proceeds to merge states of
the two StateDs level by level from top to bottom. The state merging sub-step for a given level depends
on the type and the initial states (see the pseudo-code below). Three cases are considered:

(1) Case where the same levelsin the two StateDs are of type OR (or-state): if their initid States
are equal, an operation of union between states of these levels is done. This is the case, for
example, of level ‘¢’ in*sd’ and *sd,* of Figure 11, which has the same initid state ‘c,’. If the
initial states are distinct, the agorithm merges the two initial states into a state of type AND
(and-state). Thisisthe case of the level ‘Obj’ that hasaasinitial statein ‘sd’ and ‘g’ in‘sd,’.
An and-state is then created as shown in Figure 11(c). For the rest of states, a union operation
is performed.

(2) Case where the same levels in the two StateDs are of type AND (and-state): the algorithm
performs a union operation between states of the threads that have the same initial states. This
isthecase of thelevel ‘€ that hasthe sameinitial state‘e;" in‘sd* and *sd,’. Threadsthat have

® Alevel isrelated to astate. The level obj of sd, (see Figure 10), which is an or-state,, contains the states a, b and c. The
level c of sd, isan and-state and contains the states e, f, g and h.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 66

StateD stateMerging (sdl, sd2: StateD)
begi n
/* first case */
if (sdlis an or-state and sd2 is an or-state) then
sdl. {substate} := sdl.{substate} E sd2.{substate}
if (initial State(sdl) !=initial State(sd2)) then
sdl. createANDState(initial State(sdl), initial State(sd2))
endi f
endi f
/* second and third case */
if (sdl is an and-state) then
threadListl := sdl. {substate}
if (sd2 is an and-state) then threadList2 := sd2.{substate}
el se threadList2 := sd2
endi f
for (i:=1 to threadList2.size()) do
thread2 : = threadList2[i]
threadl : = threadList1.|ookFor ThreadWthSanel ni tial St at e(t hr ead2)
if (threadl != null) threadl := threadl E thread2
el se threadLi st 1. addThr ead(t hr ead2)
endi f
endf or
endi f
/* process low | evels */
substateListl := sdl. {substate}
substat eLi st2 : = sd2. {subst at e}
for (i:=1 to substateListl. size()) do
substatel := substateListi[i]
substate2 : = subst at eLi st 2. | ookFor Subst at eW t hSameNane(subst at el)
if (substatel is a conposite state or substate2 is a conposite state) then
st at eMer gi ng(subst at el, substate2)
endi f

endf or

Pseudo-code of the state merging sub-step.

Fig. 11 State merging: (a) StateD sd, (b) StateD sd,, (c) merged StateD sd.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 67

Fig. 12 Interleaving problem between Sc, and Sc,.

not the same initia states are added in the resultant StateD. This is the case of the second
threads of level ‘€ in‘sd’ and ‘sd,’.

(3) Case where the same levelsin the two StateDs have different types: this case is similar to the
previous one. The level of type OR is considered as of type AND with one thread of control.
Thisisthe case of the level *f’ that is of type AND in ‘sd* and of type OR in ‘sd,’. Result of
merging is shown in Figure 11(c).

5.3. Transition merging

In this sub-step, the agorithm looks in the two StateDs to be merged for a pair of transitions having
the same quintupl et fromNode, toNode, event fidd, {/action}, and { sendClause} fied. The guard condition
of the merged transition becomes the digunction of the guard conditions of the two conditions.

5.4. Solving the interleaving problem

In generd, after integrating severa scenarios, the resulting specification will capture more than the
initial scenarios. Figure 12 provides an example illustrating this problem (scenarios are represented as
StateDs). Suppose we merge thetwo scenarios‘Sc,* and ‘ Sc,’. Thenthe resultant specification* Sc' will
not only capture‘ Sc,” and *Sc,’, but also two new scenarios, corresponding to transaction sequences (T,
T, T,T)and (T, T, T,T,), respectively.

To solvethisproblem, we have defined three composition variables: scenarioList, dynamicScenariolist
and transScenarioList. scenarioList isa set of scenario names (see Figure 8), it keeps scenario names
that the StateD captures. dynamicScenarioList isalso aset of scenario names. Itisinitialized to scenarioList
and can change during the execution of the StateD. At each time of execution, it saves scenario names
that remain possible in the next execution. transScenarioList is an array of sets of scenario names. It
keeps the scenario names concerned by each transition of the StateD.

For each transition in a StateD, we introduce a special condition sc which is equal to
[(transScenarioList[tr] C dynamicScenarioList)! A (tr isthe index of atransition); and a specia
action sa which is equa to dynamicScenarioList:= dynamicScenarioList C transScenarioList[tr]

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 68

excepting for transitions that end one scenario where we introduce a re-initialization action ra which is
equal to dynamicScenarioList:= scenarioList.

In Figure 8, after the execution of trangtions *T,’, *T,’, ‘T," and ‘T,’, the dynamicScenarioList
variable stays equal to the variable ‘scenariolist = {regularWithdraw, balancekrror}’. If “T;’ occurs
after ' T,’, the dynamicScenarioL ist variable will be updated by the action * sa= dynamicScenarioList C
transScenarioList[T,] = { regularWithdraw, balanceError} C {balanceError} = { balanceError}’.

6. Verification I ssues

Two magjor issues arise in the process of the verification of user requirements acquired as scenarios.
consistency and completeness. In this section, we discuss how the APS and IPS algorithms address
theseissues. But first we give aset of definitions that help understand the verification process. As object
specifications generated from scenarios are described with StateDs, most of the verification operations

are performed on StateDs.
Recall that a state of an object is defined asacondition over itsattributes. We aso introduce conditions

on equality between states and conditions, or-states and and-states in order to be consistent with the
spirit of UML.

6.1. Definitions

Definition 1. Let ¢ beacondition of type orExpression over aset of variables® v.. Eval(c) isafunction
that returns a set of tuples of values of the variables v, that verifies the condition c.

Definition 2. Two conditions of type orExpression ¢, and ¢, are equa if and only if Eval(c)) is equal
to Eval(c,).

Definition 3. Two states s, and s, are equal if and only if their conditions ¢(s,) and c(s,) are equal.

Definition 4. A condition of type orExpression ¢, refines a condition of type orExpression ¢, if and
only if Eva(c) | Eval(c,).

Definition 5. A dtate sisan or-state if and only if “ss sub-state of s: ss verifies the conditions.

(1) " i, 1EiEn c(ss) refines c(s) and

9 "ij,1EiEn, 1EjEnandit j: Eval(ss) G Eval(ss) = /E

Definition 6. A state sis an and-state if and only if s contains n concurrent sub-states s, (n® 2) such
as" i,j, 1EiEn, 1I£jEn and i j: o(ss) does not refine ¢(ss), c(ss) does not refine ¢(ss) and Eval(ss) C

Eval(ss) = A

Definition 7. A condition c of type orExpression is consigtent if and only if Eval(c) 1 A

Definition 8. A condition c of type ‘if pre, then post, endif or ... or if pre, then post endif’ (pre and
post, for 1EiEn aredl orExpression) isconsigtent if and only if * i, 1£i£n, Eval(pre) * Azand Eval(post)
1 AE

Definition 9. Let op be an operation of aclass C and pre(op) and post(op) are respectively apre- and
pogt-condition of the operation. post(op) is consistent with pre(op) if and only if post(op) isan orExpression
or post(op) isequal to ‘if pre, then pogt; endif or ... or if pre, then post, endif’ (pre and post, for 1£i£n
aredl orExpression) and " i, 1£iEn pre refines pre(op).

4A variable may be aclass atribute, an operation parameter of aclass or avariable of a StateD.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 69

Definition 10. Let trans be a condition of a StateD. transis consistent with its fromNode and toNode
states if and only if the pre-conditon of the trans event refines c(fromNode) and c(toNode) refines the
post-condition of the trans event.

Definition 11. A StateD exhibits a non-deterministic behavior if and only only if there exists two
trandtions trans, equal to 'fromNode, event, [guardCondition,] {/action } {sendClause,} "“returnVaue,
toNode,, and trans, equal to’fromNode, event, [guardCondition,] {/action,} { sendClause,} “returnVaue,
toNode," such as c(fromNode,) refines c(fromNode,) or c(fromNode,) refines c(fromNode,), event, =
event,, guardCondition, and guardCondition, are not exclusive (i.e. Eval(guardCondition,) C
Eva (guardCondition,) * AE) and:

(1) ({/action} * {/action} or {sendClause} ! {sendClause,}) and toNode, = toNode,, or
(2 ({/action} ={/action,} or {sendClause} ={sendClause}) and toNode, 1 toNode,.

Definition 12. A StateD of aclass Cis consstent if and only if it satisfies the conditions below:
(1) Guard conditions of all itstransitions are consistent,
(2) 1t doesnot exhibit a non-deterministic behavior,
(3) Allitsor-states satisfy Defintion 5,
(4) All itsand-states satisfy Definition 6.

Propodition 1. If a StateD exhibits a non-deterministic behavior caused by the existence of a set of
transitions that satisfies the condition (2) of Definition 12, and the toNode states of these transitions are
at the same hierarchical level and satisfy the condition of Definition 6, then the non-determinism can be
resolved.

To resolve this non-determinism, we creste an and-state that contains al toNode states of these
trangitions; and we keep only one transition. The newly created and-state, which satisfies Definition 6
becomes the toNode state of the kept transition.

6.2. Consistency

Three operations are defined for the verification of scenario consistency: class description consistency,
consistency of atransition with its fromNode and its toNode states, and StateD consistency. Note that
when a StateD captures one scenario, checking the consistency of a StateD means that we check
whether the corresponding scenario is consistent; and when a StateD integrates severa scenarios, we
check the consistency between those scenarios.

Class description consistency

The objective of this operation is to check the consistency of the description of a given class
(such asin Figure 5). This operation looks for al pre- and post-conditions of the class methods. These
conditions must be consistent (see definitions 7 and 9) and the post-condition of each method must be
consigtent with its pre-condition (see Definition 9). In case of errors, the adgorithm invites the anayst to
make correction on the description of the given class.

Consistency of a transition with its fromNode and toNode states

This operation checks whether a transition remains consistent with its fromNode and toNode states
(see Definition 10). Thiskind of inconsistency may be caused by inconsistent or incomplete description
of agiven scenario. Inthetwo cases, the algorithm invitesthe analyst to make correction on the description
of the scenario. For example, if we assume that in the description of the scenario ‘ regularWithdraw’ (see
Figure 3(a)), the message 2:passwd:=enter_password()® was omitted, the generated StateD of the
ATM classwould be asdescribed in Figure 13. During the activity of partial object specificationsanalyss,
the APS agorithm would detect that T, is not consistent with its fromNode state labeled by ‘S’

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 70

Passwd, pin: string; ok: boolean,; kind:

ATM character; mnt: real
Ti=insert card() “pin T2=enter_kind [ok=true] ~kind
S _card() "p S
® ok:= Account. check_account(pin, passwd)
enter_amount() ~ mnt
® ok:=
t d
get_card() Account.check_balance(mnf)
[ok=true] ® Transaction.create
P (pin, mnt, kind) [ok=trug]
get_cash() [/deliver_cash()
< <
¢
[ok=true] ® Account.update(mnt,kind)
L egend:

So = screen="main” and cash_slot="closed” and card_slot="empty”
S1 = screen="enter password” and cash_slot="closed” and card_slot="full”

Fig. 13 StateD for theclassATM generated from an altered description of the scenario given
in Figure 3(a).

SateD consistency

This operation checks if a given StateD is consistent (see Definition 12). Two cases are considered.
If the conditions (1), (3) and (4) have caused the StateD inconsistency then the agorithm invites the
analyst to make correction on the scenarios that causestheinconsistency. Otherwise, i.e. theinconsi stency
is caused by the fact that the StateD is not deterministic, the algorithm proposes when possible (see
Proposition 1), a new StateD where the non-determinism is resolved and invites the anayst to confirm
the result (sSince non-determinism often hides dangerous incompl eteness).

6.3. Completeness

There are several possible ways to define a complete specification. Indeed, a complete specification
can be defined as one that contains all the behaviors required by the users. Another definition is that a
complete specification isonethat contains all the aspects about the described system even those that are
not defined in user requirements. Our approach adheres to the first definition, as specifications are
automaticaly generated from scenarios. Furthermore, aconsistency check may revea incomplete scenarios
caused by errors in their descriptions. For the second kind of completeness, we can use guidelines
provided by Heimdahl and Leveson (1996). Specificaly, they check the completeness of a given
specification in respect to a set of criteriarelated to robustness, that is, aresponse is specified for every
possible input. For a StateD, robustness implies the following rules:

(1) Every state must have a behavior, that is, atransition for every possible input.
(2) Thelogica OR of the conditions on every transition out of any state must form a tautology.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 71

(3) Every state must have a behavior, i.e. atrangition, defined in case there is no input for a given
period of time (time-out).

7. Related Work

In this section, we review related work in the area of scenario integration and verification of
requirements. Table 1 shows acomparison between our approach and eleven other approachesin respect
to the following seven criteria: vision, notation, range of support, degree of support, basis of integration,
interleaving problem and verification.

In the realm of OO development the work of Koskimies and M&kinen (1998), M&kinen and Systa
(2000), and Whittle and Schumann (2000) comes closed to ours. All these approaches aim to derive a set
of specifications for the system objects from scenarios, whereas al other approaches are interested in
synthesizing one specification for the whole system.

The various approaches differ in the notations that they support for the description of scenarios and
specifications. Some, such as Dano et a. (1997) and the SCR method (1998), use a tabular notation for
capturing scenarios, whereas others, such as Whittle and Schumann and ourselves, use SequenceDs or
CallDs. In contrast, Deharnais et a. (1998) describe scenarios with relations. For the specification
description, avariety of notations are used. For example, StateDs are supported by our approach and by
Koskimies and M&kinen, whereas Petri nets are used by Elkoutbi and Keller (2000) and by Lee et d.
(1998).

One of the most prominent features of our approach is that it supports many kinds of scenarios
(sequentidl, iterative and concurrent), whereas most of the other approaches can handle only sequential
scenarios. Note that Somé et a. (1996) are more interested in timing issues in describing scenarios.
These kinds of scenarios are not supported by our approach.

Most of the related approaches are semi-automatic since they require that states are determined
manually, whereas in our approach, they are synthesized from the sequence of messagesin scenarios as
well as from pre- and post-conditions of class operations corresponding to those messages.

Similarly to our approach, most of the other approaches are state-based in the process of scenario
integration. In contrast, Koskimies et d. (Koskimies et ., 1998) as well as M&kinen and Systé (2000)
address synthesis as an inductive problem basing their agorithm on the method of Biermann and
Krishnaswamy (1976) for the former and on Angluin’sframework (1987) for the latter. Desharnaiset d.
(1998) view scenario integration as a composition of scenario relations. Lee et al. (1998) use Constraint-
based Modular Petri Nets for capturing use cases where shared places and transitions are used to
synchronize between these use cases.

The problem of scenario interleaving is discussed by M&kinen and Systé (2000). Elkoutbi and Keller
(2000) and ourselves present solutions to that problem.

Finaly, many approaches, including our own, support the verification of scenario consistency and
completeness. Note that two of these approaches focus on the verification aspect. Heimdahl and Leveson
(1996) propose a tool for automatically analyzing state-based requirements for some aspects of
completeness and consistency. Thus, their tool can analyze our generated StateDs. Their work scales up
to large systems by decomposing the specification into smaller, analyzable parts and then using functional
composition rules to ensure that verified properties hold for the entire specification. In contrast, our
gpproach handlestheissue of scalability by analyzing each scenario partidly, and by analyzing the integrated
specification incrementally. Some of the composition rules defined by Heimdahl and Leveson (1996) are
asoidentified in our approach. For instance, arule for union composition stating that no two transitions
out of the same state can be satisfied at the same time, isa so identified by us (see Definition 19). Note

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 72

Table 1: Comparison between approaches

Criteria | Vision | Notation | Range | Degree of Basis of Interlea | Verific
of support integration ving ation
support
Approaches
Our approach Object CollD + Seqgt + Automatic State Yes Yes
StateD Iter® +
Concur®
Dano et al. | System | Table+ | Seq+ Iter Semi - State No No
(1997) Petri net + Concur | automatic
Deharnais et al. | System | Relation Seq Semi - Composition No No
(1998) automatic
Elkoutbi et al. | System | Sequence | Seq + Iter Semi - State Yes No
(2000) D + Petri | + Concur | automatic
net
Heimdahl and | System | StateD N/A* N/A N/A N/A Yes
Leveson (1996)
Koskimies et al. Object | Sequence Seq Automatic Inference No No
(1998) D+
StateD
Lee et al. (1998) System | Table+ Seq + Semi - Synchroni zat No Yes
Petri net Concur automatic ion
Makinen and | Object | Seguence Seq Semi - Inference Yes No
Systa (2000) D+ automatic
StateD
Heitmeyer et al. | System | Table+ Seq Semi - State No Yes
(1998) FSM automatic
Somé et al. | System | Table+ seq + Automatic State No Yes
(1996) Timed Time
automata based
Harel et al. | System StateD N/A N/A N/A N/A Yes
(1990)
Whittle and | Object | Sequence Seq Automatic State No No
Schumann (2000) D+
StateD

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 73

that their work assumes that if a guard condition consists of a set of predicates where some of these
conditions are dependent, these dependencies must be specified explicitly.

Hard et d. (1990) have developed STATEMATE, acommercid tool, which provides automatic code
generation as well as system simulation for verification purposes, such as reachability, non-determinism
and deadlock. We consider STATEMATE as a complementary tool in respect to our approach. In fact,
StateDs synthesized by atool such as ours may be passed to STATEMATE for simulation and further
anayss.

8. Discussion of Approach

Below, we discuss our approach in respect to some interesting aspects. restriction over conditions,
interleaving problem, complexity of agorithms, eval uation and relevance of the gpproach in the devel opment
process.

Restriction over conditions

We have seen that the syntax of a condition (i.e. pre- and post-condition of an operation) is restricted
to asubset of OCL (see Section 4). Thisrestriction has not abig impact on the generality of our approach.
Indeed, alarge number of systems can be supported by our work and our assumption is less restrictive
than that of other works (for instance, the work of Heimdahl and Leveson (1996) described above).

Also, this regtriction alows us to perform many operations on conditions such as equality between
conditions (see Definition 2) and refines operation (see Definition 4) in a polynomial time. In contrast,
Heimdahl and Leveson haveindicated that such operationsare exponential (1996). Infact, in our approach
these operations are performed using the function Eval (see Definition 1), which has a polynomial
complexity. For thework of Heimdahl and L eveson, these operations are performed using the prepositional
calculus.

Problem of interleaving between scenarios

Inthiswork, we have solved the problem of interleaving between scenarios by defining and introducing
composition variables, without changing the syntax and semantic of StateDs. Note that sometimes
interleaving is needed to capture scenariosthat are not already considered. By executing or not executing
sub-step 4 of the IPS agorithm, one has the choice of alowing or preventing the interleaving between
scenarios.

Problem of interleaving between scenarios

Our approach is supported by three agorithms the GPS agorithm, the APS agorithm and the IPS
agorithm. Let N, be the number of messages in a CollD. The worse-case complexity of the GPS
agorithmis O(N,,?) (see (Schonberger et a., 2001)). For the discussion of the worst-case complexity C
of the APS agorithm, let N be the number of operationsin the description of aclass, N, the number of
trangitionsin aStateD, N the number of statesin aStateD and N, the maximum number of ifExpression
that may contain a post-condition of an operation. Since the agorithm consists of three sub-steps, C, is
the sum of C,,, C,,, and C,,, providing that C,, represents the complexity of Sub-step i. Sub-step 1
checks the consistency for all operations in a class. C,, is therefore O(N,). Sub-step 2 labels each
transition of a StateD. It consists to traverse, with backtracking, all transitions of the StateD in order to
find the right sequence of the post-condition ifExprssion of the operations of the corresponding event
trangtions. C,, istherefore O(N .). Sub-step 3 checksthe consistency of the resultant labeled StateD,
which consists to check the coherence of the guard condition of al transitions, the existence of a non-
determinism behavior, and the coherence between sub-states of each composite states of the StateD.

C,, istherefore O(N,+N_>+N_?). Consequently C, is O(N, 7).

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 74

Note that the exponential complexity of the APS agorithm has no effect because the agorithm
processes partial StateDs where the transitions number is not high since each of these StateDs specifies
only one scenario.

For the discussion of theworst-case complexity C, of the IPS agorithm, which integrates two StateDs,
let N, (respectively, N.,) be the number of trangitions in the first StateD (respectively, the second
StateD), N, (respectively, N,) be the number of states in the first StateD (respectively, the second
StateD). Since the algorithm consists of five sub-steps, Cl isthesumof C,,C ,,C,,,C , and C ; providing
that C. represents the complexity of Sub-step i. Sub-step 1 checks the existence of conflicts between
states of the two StateDs. C | istherefore O(Ng, * N,). Sub-step 2 merges states of the two StateDs
level by level. C , istherefore O(max(Ng, %, N,?)). Sub-step 3 mergestransitions of the two StateDs. C ,
istherefore O(N,, * N.,). Sub-step 4 introduces three composition variables in the two StateDs. C , is
therefore O(max(N,,, N.,)). Sub-step 5 checks the consistency of the integrated StateD. C ; isequal to
C,; and therefore is O(max(N,,, N;,) + max N, N,)? + max(Ng, Ng)?). Consequently CA is
O(max(N,,, N,)>+max(Ng,, Ng,)?).

T’

validation of approach

The three agorithms that constitute the basis of our approach have been implemented with a system
of 22 classes and about 6000 lines of code in the Java language (comments not included). For validation
purposes, we have adopted atextual format for scenario acquisition and the presentation of the resulting
specifications.

Our approach has been successfully applied to a number of examples such as the ATM system
presented in this paper, alibrary system, agas station simulator (Coleman et d., 1994) and afiling system
(Derr, 1996).

Relevance of approach in the development process

Current OO CASE tools support various graphica notations for modeling a system from different
views, but lack the possibility of automatic transformation between models and analysis of models. The
incorporation of our work into such CASE tools will ease the activity of scenario-based requirements
engineering.

Furthermore, our incremental-based approach enables us to have an iterative process for scenario-
based requirements engineering. In case of changesin some scenariosthat have already been integrated,
new partidly labeled StateDs are generated after reapplication of the activities two and three of our
approach. The integration algorithm (activity four) is then reapplied over the partidly labeled StateDs
corresponding to the unchanged scenarios and the new ones.

9. Concluson and FutureWork

The work presented in this paper proposes an automatic approach for generating and analyzing a
system specification from scenarios. Scenarios are acquired as UML CollDs. These CollDs are
transformed into partia object specificationsthrough an existing dgorithm. Then, the resultant specifications
are analyzed and merged using the two algorithms detailed above. These algorithms also support
regquirements verification in respect to consistency and compl eteness aspects.

The most interesting features of our approach can be summarized in two points. The first point
concerns the form of integration, which in our case is quite general, addressng not only sequentia
integration but also concurrency and hierarchy. The second point consists in solving the problem of
interleaving between scenarios in the resulting specification.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 75

As future work, we plan to investigate how we can adapt our approach in order to support real-time
systems. On the practica side, we aim to integrate the prototype implementation of our agorithmsinto a
commercia CASE tool.

10. References

Anderson, J.S. and Durney, B., 1993, “Using Scenariosin Deficiency-driven Requirements Enginee-
ring,” Proceedings of the Conference on Requirements Engineering 1993, | EEE Computer Society Press,
pp. 134-141.

Angluin, D., 1987, “Learning Regular Setsfrom Queriesand Counterexamples,” Information Computing,
Val. 75, pp. 87-106

Biermann, A.W. and Krishnaswamy, R., 1976, “ Congtructing Programs from Example Computations,”
|EEE Transactions on Software Engineering, Vol. 2 Num 3, pp. 141-151.

Booch, G., 1994, “Object Oriented Anaysis and Design with Applications,” Benjamin/Cummings
Publishing Company Inc., Redwood City, CA.

Caroll, JM. and Rosson, M.B., 1992, “ Getting around the Task-Artifact Cycle: How to Make Claims
and Design by Scenario,” ACM Transactions on Information Systems, Vol. 10 Num. 2, 181-212.

Coleman, D., Armold, P., Bodoff, S, Dallin, Ch., Gilchrigt, H., Hayes, F. and Jeremaes, P., 1994,
“Object-Oriented Development: The Fusion Method,” Prentice-Hall, Inc.

Dano, B., Briand, H. and Barbier, F., 1997, “An Approach Based on the Concept of Use Cases to
Produce Dynamic Object-Oriented Specifications,” Proceedings of the Third IEEE International Sym-
posium on Requirements Engineering 1997, Annapoalis, pp. 56-64.

Desharnais, J., Frappier, M., Khédri, R. and Mili, A., 1998, “Integration of Sequentia Scenarios,”
|EEE Transactions on Software Engineering, Vol. 24 Num. 9, pp. 695-708.

Derr, K.W., 1996, “Applying OMT: A practical step-by-step guide to using the Object Modding
Technique,” SIGS BOOK S/Prentice Hall.

Elkoutbi, M. and Kdler, RK., 2000, “ User Interface Prototyping based on UML Scenarios and
High-level Petri Nets,” Application and Theory of Petri Nets 2000 (Proc. of 21st Intl. Conf. on ATPN),
Aarhus, Denmark, June 2000. Springer. LNCS 1825, pp. 166-186.

Elkoutbi, M, Khriss, |. and Keller, R K., 1999, “ Generating User Interface Prototypes from Scenarios,”
Proceedings of the Fourth |EEE International Symposium on Requirements Engineering (RE’99), pages
150-158, Limerick, Ireland.

Hardl, D., Lachover, H., Naamad, A., Pnudli, A., Palit, M., Sherman, R. and Shtull-Tauring, A., 1990,
“STATEMATE: A Working Environment for the Development of Complex Reactive Systems,” |EEE
Transactions on Software Engineering, Vol. 16 Num. 4, pp. 403-414.

Hardl, D., 1987, “A Visual Formaism for Complex Systems,” Science of Computer Programming,
Val. 8, pp. 231-274.

Heimdahl, M.P.E. and Leveson, N.G., 1996, “ Completeness and Consistency in Hierarchica State-
Based Requirements,” |EEE Transactions on Software Engineering, Vol. 22 Num. 6, pp. 363-377.

Heitmeyer, Kirby, J.,, Labaw, B. and Bharadwgj, R., 1998, “SCR*: A Toolset for Specifying and
Anayzing Software Requirements,” Procedings of the 10th Annua Conference on Computer-Aided
Verification, (CAV’ 98), Vancouver, Canada, pp. 526-531.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 76

Hsia P., Yuang, T.A., 1998, “ Screen-based Scenario Generator: A Tool for Scenario-based Prototyping,”
Proceedings of the twenty-first Annual Hawaii International Conference 1998, |EEE Computer Society,
pp. 455-461.

Jacobson, 1., Christerson, M., Jonson, P and Overgaard, G., 1992, “ Object-Oriented Software Engi-
neering: A Use Case Driven Approach,” Addison-Wedey.

Koskimies, K., Systd, T., Tuomi, J. and Mannisto, T., 1998, “Automatic Support for Modeing OO
Software,” IEEE Software, Vol. 15 Num. 1, pp. 42-50.

Lee, W.J,, Cha, SD., Kwon, Y.R., 1998, “Integrating and Anaysis of Use Cases Using Modular Petri
Nets in Requirements Engineering,” |EEE Transactions on Software Engineering, Vol. 24 Num. 12, pp.
1115-1130.

Makinen, E. and Systa, T., 2000, An Interactive Approach for Synthesizing UML Statechart Diagrams
from Sequence Diagrams,” Proceedings of OOPSLA 2000 Workshop: Scenario-based round-trip
engineering, pp. 7-12.

Monk, A.F., Wright, P.C., 1990, “Observations and Inventions. New Appraoches to the Study of
Human Computer Interaction,” Interacting With Computers, Vol. 3 Num. 2, pp. 204-216.

Nardi, B.A., 1992, “The Use Of Scenarios In Design,” SIGCHI Bulletin, Vol. 24 Num. 4.

Potts, C., Takahashi, K. and Anton, A., 1994, “Inquiry-Based Scenario Analysisof System Requirements,
“ Technicd Report GIT-CC-94/14, Georgia Ingtitute of Technology.

Rubin, K.S. and Goldberg, A., 1992, “Object Behavior Andysis,” Communications of the ACM, Val.
35 Num. 9, pp. 48-62.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W., 1991, “ Object-oriented Modeling
and Design,” Prentice-Hall, Inc.

Rumbaugh, J., Jacobson, |. and Booch, G., 1999, “ The Unified Modeling Language Reference Manu-
a,” Addison Wedey, Inc.

Somé, S., Dssouli, R., Vaucher, J., 1996, “ Towards an Automation of Requirements Engineering using
Scenarios,” Journal of Computing and Information, Vol. 2 Num. 1, pp. 1110-1132.

Schonberger, S., Kdler, RK. and Khriss, I., 2001, “ Algorithmic Support for Transformationsin Object-
Oriented Software Development,” Concurrency and Computation: Practice and Experience, 13(5):351-
383, April 2001. Object Systems Section. John Wiley and Sons.

Whittle, J. and Schumann, J., 2000, “ Generating Starechart Designs from Scenarios,” Proceedings of
the 22" International Conference on Software Engineering (ICSE 2000), Limerick, Ireland, ACM Press,
pp. 314-323.

Wordsworth, J.B. 1992, * Software Devel opment with Z: A Practical Approach to Formal Methodsin
Software Engineering,” Addison-Wedey, Inc.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 77

