
2001 Society for Design and Process Science
Printed in the United States of America

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, pp. 53-77

AUTOMATIC SYNTHESIS OF BEHAVIORAL OBJECT
SPECIFICATIONS FROM SCENARIOS

Ismaïl Khriss
Codagen Technologies Corporation
Montréal, Québec, Canada

Mohammed Elkoutbi
Rabat, Morocco
École Nationale Supérieure d’Informatique
et d’Analyse des Systèmes

Rudolf K. Keller
Zühlke Engineering AG
Schlieren, Switzerland

The use of scenarios has become a popular technique for requirements elicitation and
specification building. Since scenarios capture only partial descriptions of system behavior, an
approach for scenario composition and integration is needed to produce more complete
specifications. The Unified Modeling Language (UML), which has become a standard notation
for object-oriented modeling, provides a suitable framework for scenario acquisition using Use
Case diagrams and Collaboration diagrams and for behavioral specification using Statechart
diagrams; yet it does not propose any specific modeling process, let alone a process for
transforming scenarios into behavioral specifications. In this paper, we suggest a four-step
process for synthesizing behavioral specifications from scenarios. It automatically generates
from a given set of Collaboration diagrams the Statechart diagrams of all the objects involved.
An automatic analysis of specifications in respect to consistency and completeness is also
provided. Our approach is incremental and is fully compliant with the UML. Furthermore, it
provides an elegant solution to the problem of scenario interleaving. The underlying algorithms
have been implemented and validated with several examples, and they are fit for integration
into CASE tools supporting the UML.

1. Introduction

Over the past years, scenarios have received significant attention and have been used for different
purposes such as understanding (Caroll and Rosson, 1992; Potts et al.,1994), human computer interaction
analysis (Monk and Wright, 1990; Nardi, 1992), specification or prototype generation (Angluin, 1987;

This research was supported by the SPOOL project organized by CSER (Consortium for Software Engineering Research) which
is funded by Bell Canada, NSERC (Natural Sciences and Engineering Research Council of Canada), and NRC (National Research
Council Canada). The research was conducted when Rudolf K. Keller was a full-time faculty member at University of Montreal.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 54

Caroll and Rosson, 1992), and object-oriented (OO) analysis and design (Booch, 1994; Jacobson et al.,
1992; Rubin et al., 1992; Rumbaugh et al., 1991).

A typical process for requirements engineering based on scenarios is composed of five steps: scenario
acquisition, specification generation, specification verification, prototype generation, and specification
validation. The analyst first begins by acquiring scenarios from end users. Secondly, a specification that
describes a system behavior is generated from scenarios. Thirdly, the analyst verifies the specification to
uncover inconsistencies and incompleteness in scenarios. In case of errors, he or she returns to the first
step. Fourthly, a prototype of the expected system is constructed on the basis of the scenarios acquired.
Finally, in the fifth step, the prototype is used to validate the scenarios with end users. In case of invalid
scenarios, the analyst returns to the first step and repeat steps until the validation of scenarios. As long as
the process is not supported by automated tools, it remains tedious, time-consuming, and error prone.

OO analysis and design methods offer a good framework for scenarios. In our work, we have adopted
the Unified Modeling Language, which is emerging as a unified notation for OO analysis and design. It
directly unifies the methods of Booch (1994), Rumbaugh et al (OMT) (1991), and Jacobson et al.
(OOSE) (1992).

In this paper, we propose an incremental and automatic approach to support the first three steps1 of
the requirement engineering process. Our work, in contrast to others such as (Koskimies et al., 1998),
supports UML Collaboration diagrams with all their facets (iteration, condition, and concurrency) for
scenario acquisition and leverages the expressiveness of UML Statechart diagrams (concurrency and
hierarchy) for capturing the resultant specifications.

We also resolve the problem of interleaving between scenarios, which means that the generated
specifications will capture exactly the behavior given in the input scenarios. For example, if two input
scenarios share a common state, the resultant specification may capture more than the two given scenarios:
for instance, execution may initially follow the first scenario; when it reaches the common state, execution
may continue following the second scenario. Our approach precludes the generation of such overly
general specifications.

The integration of our approach into CASE tools that support the UML will make these tools more
powerful. The tedious activities of the process of requirements engineering will become a mostly automatic,
tool-supported activity.

Organization of the paper
Section 2 gives a brief overview of the UML diagrams relevant for our work and introduces a running

example. Section 3 presents an overview of the four activities of our approach. Section 4 describes in
detail the algorithm underlying the third activity, and Section 5 details the algorithm of the fourth activity.
Section 6 discusses the issue of consistency and completeness of scenarios supported by our approach.
Section 7 addresses related work. Section 8 discusses several aspects of our work. Finally, Section 9
provides some concluding remarks and points out future work.

2. Unified Modeling Language

The UML (Rumbaugh et al., 1999) is an expressive language that can be used for problem
conceptualization, software system specification as well as implementation. It covers a wide range of
issues from use cases and scenarios to state behavior and operation declaration. The UML provides a
syntactic notation to describe all major view of a system using different kinds of diagrams. In this section,

1 Note that a system prototype can also be generated by an extension of our approach (see [11]).

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 55

Fig. 1 UsecaseD of the ATM system.

we first discuss the UML diagrams that are relevant for our approach: Use case diagram (UsecaseD),
Class diagram (ClassD), Collaboration diagram (CollD), and Statechart diagram (StateD). We conclude
the section with an overview of the Object Constraint Language (OCL), which was adopted by the UML
for capturing constraints. In our approach, OCL is used for complementing ClassDs. As a running example,
we have chosen to study a part of an extended version of the Automatic Teller Machine (ATM) described
in (Rumbaugh et al., 1991).

2.1. Use Case diagram

The UsecaseD is concerned with the interaction between the system and actors (objects outside the
system that interact directly with it). It presents a collection of use cases and their corresponding external
actors. A use case is a generic description of an entire transaction involving several objects of the
system. Use cases are represented as ellipses, and actors are depicted as icons connected with solid
lines to the use cases they interact with. One use case can call upon the services of another use case.
Such a relation is called a uses relation and is represented by a directed dashed line. The direction of a
uses relation does not imply any order of execution. Figure 1 shows an example of a UsecaseD
corresponding to the ATM system. In this UsecaseD, we find one actor (‘User’) interacting with four
use cases (‘Identify’, ‘Withdraw’, ‘Deposit’, and ‘Balance’). There are also several uses relations, for
instance, the use case ‘Withdraw’ uses the services of the ‘Identify’ uses case.

A UsecaseD is helpful in visualizing the context of a system and the boundaries of the system’s
behavior. A given use case is typically characterized by multiple scenarios.

2.2. Class diagram

The ClassD represents the static structure of the system. It identifies all the classes for a proposed
system and specifies for each class its attributes, operations, and relationships to other classes. Relationships
include inheritance, association, and aggregation. The ClassD is the central diagram of a UML model.
Figure 2 depicts the ClassD for the ATM system.

Identify

Deposit
<<uses>>

Withdraw

<<uses>>
User Balance

<<uses>>

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 56

Saving Check

ATM
cash_available
screen
cash_slot
card_slot
insert_card()
enter_password()
enter_operation()

Customer
id
name
address
phone

0..*

1

0..*

1
interact

Account
number
password
balance
check()
update()

1..* 1 1..* 1

owns

Transaction
date_op
kind
amount
create()
delete()

0..* 1 0..* 1

carry_out

1

1..*

1

1..*
on

Fig. 2 ClassD of the ATM system.

2.3. Collaboration diagram

A scenario shows a particular series of interactions among objects in a single execution of a use case
of a system (execution instance of a use case). Scenarios can be viewed in two different ways through
sequence diagrams (SequenceDs) or CollDs. Both types of diagrams rely on the same underlying
semantics. Conversion from one to the other is possible. For our work, we chose to use CollDs because
the UML specification defines them more precisely than SequenceDs. A SequenceD shows interactions
among a set of objects in temporal order, which is good for understanding timing issues.

A CollD concentrates on the structure of the interaction between objects and their inter-relationships
rather than on the temporal dimensions of a scenario. A CollD is a graph where nodes are objects
participating in the scenario and edges represent structural relations between objects (association,
aggregation, inheritance, etc.). Messages sent between objects are labeled with a text string and a
direction arrow. To a given edge, multiple messages in both directions can be attached.

Each message label includes a sequence number representing the nested procedural calling sequence
throughout the scenario, and the message signature. Sequence numbers contain a list of sequence elements
separated by dots. Each sequence element consists of a number of parts, such as:

• a compulsory number showing the sequential position of the message, and
• a letter indicating a concurrent thread (see messages 8a and 8b in Figure 3(a)), and
• an iteration indicator * indicating that several messages of the same form are sent sequentially to

a single target or concurrently to a set of targets.
Figures 3(a) and 3(b) depict two scenarios (CollDs) of the use case ‘Withdraw’. Figure 3(a) represents

the scenario where the withdrawal is correctly registered (‘regularWithdraw’), and Figure 3(b) represents
the case where the balance account is not sufficient (‘balanceError’).

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 57

 : Customer : ATM

 : Account : Transaction

3: ok:=check_account(pin, passwd)
6: ok:=check_balance(mnt)

7: 7[ok=true]: ok:=deliver_cash(mnt)

8: 8a [ok=true]: update(mnt, kind)
9: 8a[ok=true]: create_transaction(pin, mnt, kind)

1: pin:= insert_card()
2: passwd:=enter_password()

4: 4[ok=true]: kind:=enter_kind()
5: mnt:=enter_amount()

10: 9: get_cash()
11: 10: get_card()

 : Customer : ATM

 : Account

1: pin:= insert_card()
2: passwd:=enter_password()

4: 4[ok=true]: kind:=enter_kind()
5: mnt:=enter_amount()

8: get_cash()

7: 7[ok=false]: ok:=deliver_cash(mnt)

3: ok:=check_account(pin, passwd)
6: ok:=check_balance(mnt)

Fig. 3(a) Scenario regularWithdraw of the use case Withdraw.

Fig. 3(b) Scenario regularWithdraw of the use case Withdraw.

2.4. Statechart diagram

A StateD shows the sequence of states that an object goes through during its life cycle in response to
stimuli. Generally, a StateD may be attached to a class of objects with an interesting dynamic behavior.

The formalism (notation and semantics) used in StateDs is derived from Statecharts as defined by
Harel (1987). Statecharts are an extension of state-event diagrams to include hierarchy and concurrency.
Any state in a Statechart can be recursively decomposed into exclusive states (or-state) or concurrent

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 58

states (and-state). When a transition in a Statechart is triggered (event received and guard condition
tested), the object leaves its current state, initiates the action(s) for that transition and enters a new state.
Any internal or external event is broadcasted to all states of all objects in the system. Transitions between
concurrent states are not allowed, but synchronization and information exchange are possible through
events. An example of StateD is shown in Figure 6(a).

2.5. Object Constraint Language

OCL offers UML modelers a means to describe a system more accurately than with diagrams alone.
OCL is a language in which one can write constraints that contain extra information or restrictions to
UML diagrams. Constraints are semantic conditions on UML model elements.

The OCL was originally developed by IBM and subsequently adopted by the Object Management
Group (OMG) as a part of the UML specification. It is intended to be simple to read and write and easy
to use for non-programmers. The principles of OCL are based on set theory and first order logic, and
many of its concepts borrowed from the formal specification language Z (Wordsworth, 1992). OCL has
a number of fundamental datatypes (such as boolean, string, and numeric) and collection types that are
useful when working with lists of objects.

OCL can be used to specify class invariants, to describe event guard conditions and pre/post class
methods. Furthermore, OCL makes navigation through the class model easy and controllable. In our
approach, OCL is used for enriching ClassDs with pre-and post-condition of class methods (see Figure
6).

3. Overview of the Approach

In this section, we describe the overall process to derive a system behavior specification. This process
provides an automatic way to transform requirements to a formal specification. We consider that the
behavior specification of system is given by the behavior specifications of its constituent objects. The
approach we define here consists of four major activities (see Figure 4):

(1) Requirement acquisition
(2) Generation of partial object specifications
(3) Analysis of partial object specifications
(4) Integration of partial object specifications.

3.1. Requirement acquisition

Scenario modelling is the key technique mostly used in this activity. It is used in OO methodologies
(Booch, 1994; Jacobson et al., 1992; and Rumbaugh et al., 1991) as an approach to requirements
engineering. The UML proposes a suitable framework for scenarios acquisition using UsecaseD for
capturing system functionalities and SequenceDs or CollDs for describing scenarios.

In this activity, the analyst first elaborates the UsecaseD for the system (see Figure 1). Secondly, he
or she elaborates the ClassD of the system (see Figure 2), and for each class of the ClassD, a detailed
analysis is done by identifying attributes and methods and defining pre- and post-conditions. An example
of a detailed class analysis is given in Figure 5. Finally, the analyst acquires scenarios as CollDs for each
use case in the UsecaseD. Figures 3a, and 3b show two sample CollDs corresponding to the use case
‘Withdraw’ of the ATM system.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 59

Requirements
acquis i t ion

Col lDs

C las sD
U s e C a s e D

Generation of part ial
object speci f icat ions
f r o m s c e n a r i o s

S ta t eDs

Integration of partial
objec t spec ifications

Integrated
S ta teDs

Analysis of part ial
object spec i f icat ions

Label led
S ta teDs

Fig. 4 Overview of the approach.

3.2. Generation of partial object specifications

In this activity, we apply repeatedly on each system CollD the GPS algorithm (Generation of Partial
StateDs) (Schönberger et al., 2001) in order to generate automatically partial specifications for all the
objects participating in the input scenarios.

Transforming one CollD into StateDs is a process of five sub-steps. Sub-step 1 creates a StateD for
every distinct class implied by the objects in the CollD. Sub-step 2 introduces as state variables all
variables that are not attributes of the objects of CollD. Sub-step 3 creates transitions for the objects
from which messages are sent. Sub-step 4 creates transitions for the objects to which messages are
sent. Finally, sub-step 5 brings for all StateDs the set of generated transitions into correct sequences,
connecting them by states, split bars and merge bars. The sequencing follows the type of messages in a
CollD: iteration messages, conditional messages, concurrent messages and messages with multiple
predecessors. Applying the GPS algorithm to the scenarios ‘regularWithdraw’ and ‘balanceError’, we
obtain for the object ATM the partial StateDs shown in figures 6(a) and 6(b), respectively.

3.3. Analysis of partial object specifications

The partial StateDs generated in the previous activity are unlabelled, i.e., their states do not carry
names. However, the IPS algorithm (see next section) is state based, requiring labelled StateDs as input.
Furthermore, scenarios acquired may contain errors because of inconsistencies and internal incompleteness.
Thus, the objective of this activity is to check the consistency of the input scenarios and to obtain labelled
StateDs. This is achieved by a new algorithm, called APS (Analysis of Partial StateDs), based on pre-
and post-conditions of class methods (cf. Figure 5). This algorithm is detailed in Section 4.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 60

ATM

cash_available: boolean = true
screen: string = “main”
cash_slot: string = “closed”
card_slot: string = “empty”

insert_card(): string
pre: screen=”main” and cash_slot=”closed” and card_slot=”empty”
post: screen=”enter password” and cash_slot=”closed” and card_slot=”full”

enter_password(): string
pre: screen=”enter password” and cash_slot=”closed” and card_slot=”full”
post: (screen=”enter kind” or screen=”password incorrect”) and cash_slot=”closed” and card_slot=”full”

enter_kind(): character
pre: screen=”enter kind” and cash_slot=”closed” and card_slot=”full”
post: (screen=”deposit” or screen=”withdraw”) and cash_slot=”closed” and card_slot=”full”

enter_amount(): real
pre: (cash_available=true and screen=”withdraw” and cash_slot=”closed” and card_slot=”full”) or
(screen=”deposit” and cash_slot=”closed” and card_slot=”full”)
post: (cash_available=true and (screen=”withdraw in progress” or screen=”insufficient funds”) and
cash_slot=”closed” and card_slot=”full”) or (screen=”deposit in progress” and cash_slot=”closed” and
card_slot=”full”)

deliver_cash(mnt: real): boolean
pre: cash_available=true and scre en=”withdraw in progress” and cash_slot=”closed” and card_slot=”full”
post: (screen=”take cash” or screen=”insufficient funds”) and (cash_slot=”opened” or cash_slot=”closed”)
and card_slot=”full”

get_cash()
pre: screen=”take cash” and cash_slot=”opened” and card_slot=”full”
post: screen=”take card” and cash_slot=”closed” and card_slot=”ejected”

get_card()
pre: screen=”take card” and cash_slot=”closed” and card_slot=”ejected”
post: screen=”main” and cash_slot=”closed” and card_slot=”empty”

display_error(): boolean
pre: screen=” insufficient funds” and cash_slot=”opened” and card_slot=”full”
post: screen=”take card” and cash_slot=”closed” and card_slot=”ejected”

Applying the APS algorithm underlying to the StateD of Figure 6(a), we obtain the StateD shown in
Figure 7(a), annotated with the labels explained in the legend of the figure. Applying the algorithm to the
StateD of Figure 6(b), we obtain the StateD shown in Figure 7(b).

3.4. Integration of partial object specifications

This activity is to integrate for each object of the system all its partial labelled StateDs into one single
StateD. The resultant StateD is then verified in respect to its consistency. This activity is achieved
incrementally by a new algorithm, which is called IPS (Integration of Partial StateDs). This algorithm is
described in Section 5. Figure 8, for instance, shows the resultant StateD of the ATM object after
integrating the two scenarios of the use case ‘Withdraw’.

Figure 5: The ATM class.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 61

A T M
passwd, p in : s t r ing ; ok : Boolean ; k ind :
charac ter ; mnt : rea l

inse r t_card() ^p in
en te r_k ind [ok=t rue]
^ k i n d

{

en te r_password()

^ p a s s w d → o k : =

Account . c h e c k _ a c c o u n t (
p in , pas swd) en te r_amount () ^ mnt

→ ok:=
A c c o u n t . c h e c k _ b a l a n c e (m n t)

[o k = t r u e]
/de l iver_cash() get_cash()

ge t_card()

[o k = t r u e] → T ransac t ion .c rea te
 (p in , mnt , k ind)

[o k = t r u e] → A c c o u n t . u p d a t e (m n t , k i n d)

Fig. 6(a) StateD for the object ATM generating by applying the GPS algorithm on the scenario
regularWithdraw.

ATM
passwd, pin: string; ok: Boolean; kind:
character; mnt: real

insert_card() ^pin enter_kind()[ok=true]
^kind

{

enter_password()
^passwd
→ ok:=Account.
check_account(pin,passwd)

enter_amount() ^ mnt
 → ok:=
Account.check_balance(mnt)

[ok=false] / display_error()

get_card()

Fig. 6(b) StateD for the object ATM generating by applying the GPS algorithm on the scenario
balanceError.

4. Description of the APS Algorithm

The APS algorithm takes as input a description of a class and its unlabeled StateD and outputs a
labeled StateD. The algorithm consists of three sub-steps: checking the consistency of the desciption of
the class, labeling each state of the unlabeled StateD, and checking the consistency of the resultant
StateD. The first and third sub-step will be discussed in Section 6. Before describing the second sub-step
of the algorithm, we first introduce the syntax of the pre- and post-condition of class methods.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 62

ATM
passwd, pin: string; ok: Boolean; kind:
character; mnt: real

insert_card() ^pin
enter_kind [ok=true and
gc 1] ^kind

{

enter_password()

^passwd → ok:=

Account.check_account(
pin, passwd) enter_amount() [gc 2] ^ mnt

→ ok:=
Account.check_balance(mnt)

[ok=true and gc 3]
/deliver_cash()

[ok=true] → Transaction.create
 (pin, mnt, kind)

[ok=true] → Account.update(mnt,kind)

get_cash()

get_card()

S0 S1 S2

S5 S4

S3

Legend:

S0 = screen=”main” and cash_slot=”closed” and card_slot=”empty”
S1 = screen=”enter password” and cash_slot=”closed” and card_slot=”full”
S2 = (screen=”enter kind” or screen=”password incorrect”) and and cash_slot=”closed”
and card_slot=”full”
S3 = (screen=”deposit” or screen=”withdraw”) and cash_slot=”closed” and
card_slot=”full”
S4 = (cash_available=true and (screen=”withdraw in progress” or screen=”insufficient
funds”) and cash_slot=”closed” and card_slot=”full”) or (screen=”deposit in progress
and cash_slot=”closed” and card_slot=”full”)
S5 = screen=”take card” and cash_slot=”closed” and card_slot=”ejected”
gc1 = screen=”enter kind” and cash_slot=”closed” and card_slot=”full”
gc2 = (cash_available=true and screen=”withdraw” and cash_slot=”closed” and
card_slot=”full”) or (screen=”deposit” and cash_slot=”closed” and card_slot=”full”)
gc3 = cash_available=true and screen=”withdraw in progress” and cash_slot=”closed”
and card_slot=”full”)

Fig. 7(a) The labeled StateD obtained from the StateD of Figure 6(a).

4.1. Syntax of pre- and post-condition of the class operations

The pre- and post-conditions of class operations are described using OCL. Let op be a class operation, and
pre(op) and post(op) be the pre- and post-conditions of that operation, respectively. The conditions are expressed
in a disjunctive canonical form, referring to the class attributes. Syntactically, they adhere to the following subset of
OCL:

pre(op) : orExpression.
post(op) := (ifExpression {“or” ifExpression}) | orExpression.
ifExpression := “if” orExpression “then” orExpression “endif”.
orExpression := andExpression {“or” andExpression}.
andExpression := basicExpression {“and” basicExpression}.
basicExpression := identifier (((“=” | “!=” | “<” | “>” | “<=” | “>=”)

(string_literal | character_literal | integer_literal |
floating_point_literal)) | (“=” (“true” | “false”)).

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 63

ATM
Passwd, kind: string; ok: Boolean; kind:
character; mnt: real

insert_card() ^pin enter_kind()
[ok=true and gc1] ^kind

{

enter_password()
^passwd
→ ok:=Account.
check_account(pin,passwd)

enter_amount() [gc2]
/^ mnt → ok:=
Account.check_balance(mnt)

[ok=false and gc4] /
display_error()

get_card()

S0 S1 S2 S3

S 5 S4

Legend:

gc4 = screen=”insufficient funds” and cash_slot”=“opened” and card_slot=”full”

Fig. 7(b) The labeled StateD obtained from the StateD of Figure 6(b).

ATM

Passwd, pin: string,; ok: Boolean; kind: character,; mnt: real
scenarioList={regularWithdraw, balanceError}
dynamicScenarioList=scenarioList
transScenarioList=[{regularWithdraw, balanceError}, {regularWithdraw,
balanceError}, {regularWithdraw, balanceError}, {regularWithdraw,
balanceError}, {regularWithdraw}, {regularWithdraw}, {regularWithraw},
{regularWithdraw}, {balanceError}, {regularWithdraw, balanceError}]

T1=insert_card() [sc]

/sa ^pin

T3=enter_kind [ok=true
and gc 1 and sc] /sa ^kind

T 2=enter_password()
[sc] /sa ^passwd

→ ok:=Account.
check_account(pin,
passwd) T4=enter_amount() [gc 2 and sc

] /sa
^ mnt → ok:=
Account.check_balance(mnt)

T5=[ok=true and
gc3 and sc]

/deliver_cash() /sa

T6=[ok=true and sc] /sa
→ Transaction.create (pin, mnt, kind)

T7=[ok=true and sc] /sa

 → Account.update(mnt,kind)

T8=get_cash() [sc]
/sa

T10=get_card() [sc] /ra

S0 S1 S2

S5 S 4

S3

T10=display_error() [ok=false and gc 4 and sc] /sa

Fig. 8 The resultant StateD for the ATM object after integration of the two scenarios of the
use case Withdraw.

4.2. Labeling states of the StateD

The objective of the second sub-step is to label each state of the unlabeled StateD. The algorithm
consists to traverse the transitions of the StateD (see the pseudo-code below). Note that the transitions
are constructed by the GPS algorithm and sorted following the order of message sequencing of the
corresponding scenario2 . For each transition trans, the algorithm begins by computing the value of two
conditions c1 and c2. These conditions constitute the basis of the labeling sub-step. Two cases are
considered.

The first case occurs when the post-condition of the event of trans is an orExpression, c1 is equal to
the pre-condition of the event of ‘trans’, c2 to the post-condition of ‘trans’. The second case occurs when
the post-condition of the event of ‘trans’is equal to if pre1 then post1 endif or …. Or if pren then postn
endif then the algorithm tries with the first ifExpression and c1 is equal to pre1 and c2 to post1. The other
ifExpression (i.e. if pre2 then post2 endif or …or if pren then postn) are saved in the array
backtrackingElements. The purpose of backtracking Elements is explained below. The fromNode state
of ‘trans’ is labeled with c1 and toNode state with c2. For instance in Figure 9, the post-condition of the

2 Concurrent messages are sorted following the alphabetical order of the letters contained in their corresponding sequence
numbers. For example if a CollD contains the messages 1, 3, 2a.1, 2b and 2a.2, the messages will be sorted as 1, 2a.1, 2a.2, 2b,
3.

 boolean labelStates(aClass: Class; VAR stateD: StateD)
 begin
 bool := true
 transList := stateD.{transition}
 i := 1
 while (i<size(translist) do
 /* label one transition */
 computeValueOFC1AndC2(aClass, I, stated, c1, c2, backTrackingElements)
 if not (trans.fromNode is a merge bar or a split bar) then
 /* merge bar and split bar are not labeled */
 trans.fromNode.name := c1
 endif
 if not (trans.toNode is a merge bar or a split bar) then
 /* merge bar and split bar are not labeled */
 trans.toNode.name := c2
 endif
 /* end label one transition */
 if (i<=size(transList) – 1) then
 /* check if nextTrans is consistent with its fromNode and toNode states */
 bool := transitionConsistencyChecking(transList[i+1], aClass)
 if (not bool) then
 /* look for the last transition that has still elements in the array
 backTrackingElements */
 i := lookForIndexOfBackTracking(backTrackingElements, transList)
 else
 i := i + 1
 endif
 endif
 endwhile
 retourn bool
 end labelStates

Pseudo-code of the state labeling sub-step.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 64

C
a1: integer
a2: integer

e1()
pre: a1 ≤0 and a2≤ 1
post: if a1=0 and a2 =1 then a1=1
and a2=2 endif or if a1<0 and a2<1
then a1>2 and a2>3 endif
e2()
pre: a1 =3 and a2=4 or a1>3 and
a2>4
post: a 1=2 and a2= 3

C

T1=e1 () T2=e2 ()

C

T1 =e1 ()

T2 =e2()

S 1 S2

C

T1= e1()

T2= e2()

S3 S 4

S 5

Legend:

S 1 = a1=0 and a 2 =1 S 2 = a1=1 and a 2=2
S 3 = a1<0 and a 2 <1 S 4 = a1>2 and a 2>3
S 5 = a1=2 and a 2 =3

event of ‘T1’ (i.e. ‘e1()’) contains an IfExpression then c1 is equal to ‘a1=0 and a2=1’, c2 to ‘a1=1 and
a2=2’. The fromNode state of ‘T1‘ is equal to c1 and toNode state to c2.

Then the algorithm verifies whether the next transition ‘nextTrans’ remains consistent with their
fromNode and toNode states (see definition 2, 4 and 10 in Section 6). If ‘nextTrans’ is consistent, the
algorithm process ‘nextTrans’ as ‘trans’. Otherwise, the algorithm backtracks and looks for the last
transition that has still elements to process in the array backTrackingElements. In the example of Figure
9, ‘T2‘ is not consistent with its fromNode state (i.e. ‘S2’). The algorithm backtracks to ‘T1‘ and retries
with another ifExpression, c1 is now equal to ‘a1<0 and a2<1’, c2 to ‘a1>2 and a2>3’. The fromNode and
toNode states of ‘T1‘ becomes repectively ‘S3‘ and ‘S4’. ‘T4‘ is now consistent with its fromNode (i.e.
‘S4’). The post-condition of the event of ‘T2‘ (i.e. ‘e2()’) is an orExpression then c1 is equal to ‘a1>2 and
a2>3’ and c2 to ‘a1=2 and a2=3’. The fromNode state of ‘T2‘ has been already labeled by ‘T1‘ and its
toNode state is labeled by c2 (i.e. ‘S5’).

5. Description of the IPS Algorithm

This activity consists to integrate for each object of the system all its partial labeled StateDs into one
single StateD. The resultant StateDs are then verified in respect to their consistency. The integration

Fig. 9 StateD labeling (a) labeling failed (T2 is not consistent with its fromNode state) (b)
labeling succeded (T2 is consistent with its fromNode state).

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 65

algorithm is incremental, and consists of five sub-steps: state checking, state merging, transition merging,
suppressing the interleaving problem and checking the consistency of the resultant StateD. The five sub-
steps will be discussed in Section 6.

5.1. State checking

Before merging states of two StateDs, the algorithm checks if the same state appears at different
levels of hierarchy3 into the two StateDs. Suppose that the algorithm has to mere the object ‘Obj’, the
StateD ‘sd1‘ and the StateD ‘sd2‘ given in Figure 10. The following errors will be detected:

The state d appears at different levels in sd 2 (in levels Obj and c).
The state e is not at the same level in sd 1 (level c) and sd 2 (level Obj).

The analyst must fix the detected errors before continuing the scenario integration activity.

5.2. State merging

When no errors are detected in the state checking sub-step, the algorithm proceeds to merge states of
the two StateDs level by level from top to bottom. The state merging sub-step for a given level depends
on the type and the initial states (see the pseudo-code below). Three cases are considered:

(1) Case where the same levels in the two StateDs are of type OR (or-state): if their initial states
are equal, an operation of union between states of these levels is done. This is the case, for
example, of level ‘c’ in ‘sd1’ and ‘sd2‘ of Figure 11, which has the same initial state ‘c1’. If the
initial states are distinct, the algorithm merges the two initial states into a state of type AND
(and-state). This is the case of the level ‘Obj’ that has a as initial state in ‘sd1’ and ‘g’ in ‘sd2’.
An and-state is then created as shown in Figure 11(c). For the rest of states, a union operation
is performed.

(2) Case where the same levels in the two StateDs are of type AND (and-state): the algorithm
performs a union operation between states of the threads that have the same initial states. This
is the case of the level ‘e’ that has the same initial state ‘e1’ in ‘sd1‘ and ‘sd2’. Threads that have

Obj

a b

e f

g h

c

Obj

e d

e d

i j

c

a

StateD stateD1 StateD stateD2

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 66

3 A level is related to a state. The level obj of sd1 (see Figure 10), which is an or-state , contains the states a, b and c. The
level c of sd1 is an and-state and contains the states e, f, g and h.

Fig. 10 Examples of detected errors in the state checking sub-step.

 StateD stateMerging (sd1, sd2: StateD)
 begin
 /* first case */
 if (sd1 is an or-state and sd2 is an or-state) then
 sd1.{substate} := sd1.{substate} ∪ sd2.{substate}
 if (initialState(sd1) != initialState(sd2)) then
 sd1.createANDState(initialState(sd1), initialState(sd2))
 endif
 endif
 /* second and third case */
 if (sd1 is an and-state) then
 threadList1 := sd1.{substate}
 if (sd2 is an and-state) then threadList2 := sd2.{substate}
 else threadList2 := sd2
 endif
 for (i:=1 to threadList2.size()) do
 thread2 := threadList2[i]
 thread1 := threadList1.lookForThreadWithSameInitialState(thread2)
 if (thread1 != null) thread1 := thread1 ∪ thread2
 else threadList1.addThread(thread2)
 endif
 endfor
 endif
 /* process low levels */
 substateList1 := sd1.{substate}
 substateList2 := sd2.{substate}
 for (i:=1 to substateList1.size()) do
 substate1 := substateList1[i]
 substate2 := substateList2.lookForSubstateWithSameName(substate1)
 if (substate1 is a composite state or substate2 is a composite state) then
 stateMerging(substate1, substate2)
 endif
 endfor
 return sd1

Pseudo-code of the state merging sub-step.

a b
O b j

c 1 c 2
c

d 1 d 2
d

e 1 e2
e

e 3 e4

f1 f 2
f

f3 f4

g b
O b j

c1 c3
c

d 3 d 4
d

e 1 e5
e

e6 e 7

f 5 f6
f

a b
O b j

c 1 c 2
c

d 1 d 2
d

f1 f 2
f

f 3 f4

d 3 d 4

c3

f 5 f 6

e 1 e 2
e

e3 e 4

e 6 e 7

e5

(a) (b)

(c)

Fig. 11 State merging: (a) StateD sd1, (b) StateD sd2, (c) merged StateD sd.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 67

not the same initial states are added in the resultant StateD. This is the case of the second
threads of level ‘e’ in ‘sd1’ and ‘sd2’.

(3) Case where the same levels in the two StateDs have different types: this case is similar to the
previous one. The level of type OR is considered as of type AND with one thread of control.
This is the case of the level ‘f’ that is of type AND in ‘sd1‘ and of type OR in ‘sd2’. Result of
merging is shown in Figure 11(c).

5.3. Transition merging

In this sub-step, the algorithm looks in the two StateDs to be merged for a pair of transitions having
the same quintuplet fromNode, toNode, event field, {/action}, and {sendClause} field. The guard condition
of the merged transition becomes the disjunction of the guard conditions of the two conditions.

5.4. Solving the interleaving problem

In general, after integrating several scenarios, the resulting specification will capture more than the
initial scenarios. Figure 12 provides an example illustrating this problem (scenarios are represented as
StateDs). Suppose we merge the two scenarios ‘Sc1‘ and ‘Sc2’. Then the resultant specification ‘Sc’ will
not only capture ‘Sc1’ and ‘Sc2’, but also two new scenarios, corresponding to transaction sequences (T1,
T2, T7, T8) and (T5, T6, T3, T4), respectively.

To solve this problem, we have defined three composition variables: scenarioList, dynamicScenarioList
and transScenarioList. scenarioList is a set of scenario names (see Figure 8), it keeps scenario names
that the StateD captures. dynamicScenarioList is also a set of scenario names. It is initialized to scenarioList
and can change during the execution of the StateD. At each time of execution, it saves scenario names
that remain possible in the next execution. transScenarioList is an array of sets of scenario names. It
keeps the scenario names concerned by each transition of the StateD.

For each transition in a StateD, we introduce a special condition sc which is equal to
[(transScenarioList[tr] ∩ dynamicScenarioList)≠ ∅] (tr is the index of a transition); and a special
action sa which is equal to dynamicScenarioList:= dynamicScenarioList ∩ transScenarioList[tr]

b c d e
T1 T2 T3 T4

fa c g e
T5 T6 T7 T8

a
Sc1

Sc2

c e

T1 T2
b dT3 T4

f gT5 T6 T7 T8

Sc
a

Fig. 12 Interleaving problem between Sc1 and Sc2.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 68

excepting for transitions that end one scenario where we introduce a re-initialization action ra which is
equal to dynamicScenarioList:= scenarioList.

In Figure 8, after the execution of transitions ‘T1’, ‘T2’, ‘T3’ and ‘T4’, the dynamicScenarioList
variable stays equal to the variable ‘scenarioList = {regularWithdraw, balanceError}’. If ‘T9’ occurs
after ‘T4’, the dynamicScenarioList variable will be updated by the action ‘sa:= dynamicScenarioList ∩
transScenarioList[T9] = {regularWithdraw, balanceError} ∩ {balanceError} = {balanceError}’.

6. Verification Issues

Two major issues arise in the process of the verification of user requirements acquired as scenarios:
consistency and completeness. In this section, we discuss how the APS and IPS algorithms address
these issues. But first we give a set of definitions that help understand the verification process. As object
specifications generated from scenarios are described with StateDs, most of the verification operations
are performed on StateDs.

Recall that a state of an object is defined as a condition over its attributes. We also introduce conditions
on equality between states and conditions, or-states and and-states in order to be consistent with the
spirit of UML.

6.1. Definitions

Definition 1. Let c be a condition of type orExpression over a set of variables4 vi. Eval(c) is a function
that returns a set of tuples of values of the variables vi that verifies the condition c.

Definition 2. Two conditions of type orExpression c1 and c2 are equal if and only if Eval(c1) is equal
to Eval(c2).

Definition 3. Two states s1 and s2 are equal if and only if their conditions c(s1) and c(s2) are equal.

Definition 4. A condition of type orExpression c1 refines a condition of type orExpression c2 if and
only if Eval(c1) ⊆ Eval(c2).

Definition 5. A state s is an or-state if and only if “ssi sub-state of s: ssi verifies the conditions:
(1) ∀i, 1≤i≤n c(ssi) refines c(s) and

(2) ∀i, j, 1≤i≤n, 1≤j≤n and i≠j: Eval(ssi) ∩ Eval(ssj) = ∅.

Definition 6. A state s is an and-state if and only if s contains n concurrent sub-states ssk (n≥2) such
as ∀i, j, 1≤i≤n, 1≤j≤n and i≠j: c(ssi) does not refine c(ssj), c(ssj) does not refine c(ssi) and Eval(ssi) ∩

 Eval(ssj) = ∅.

Definition 7. A condition c of type orExpression is consistent if and only if Eval(c) ≠ ∅.

Definition 8. A condition c of type ‘if pre1 then post1 endif or … or if pren then postn endif’ (prei and
posti, for 1≤i≤n are all orExpression) is consistent if and only if ∀i, 1≤i≤n, Eval(prei) ≠ ∅ and Eval(posti)
≠ ∅.

Definition 9. Let op be an operation of a class C and pre(op) and post(op) are respectively a pre- and
post-condition of the operation. post(op) is consistent with pre(op) if and only if post(op) is an orExpression
or post(op) is equal to ‘if pre1 then post1 endif or … or if pren then postn endif’ (prei and posti, for 1≤i≤n
are all orExpression) and ∀i, 1≤i≤n prei refines pre(op).

4A variable may be a class attribute, an operation parameter of a class or a variable of a StateD.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 69

Definition 10. Let trans be a condition of a StateD. trans is consistent with its fromNode and toNode
states if and only if the pre-conditon of the trans event refines c(fromNode) and c(toNode) refines the
post-condition of the trans event.

Definition 11. A StateD exhibits a non-deterministic behavior if and only only if there exists two
transitions trans1 equal to ’fromNode1 event1 [guardCondition1] {/action1} {sendClause1} ̂ returnValue1
toNode1’ and trans2 equal to ’fromNode2 event2 [guardCondition2] {/action2} {sendClause2} ̂ returnValue2
toNode2‘ such as c(fromNode1) refines c(fromNode2) or c(fromNode2) refines c(fromNode1), event1 =
event2, guardCondition1 and guardCondition2 are not exclusive (i.e. Eval(guardCondition1) ∩
Eval(guardCondition2) ≠ ∅) and:

(1) ({/action1} ≠ {/action2} or {sendClause1} ≠ {sendClause2}) and toNode1 = toNode2, or
(2) ({/action1} = {/action2} or {sendClause1} = {sendClause2}) and toNode1 ≠ toNode2.

Definition 12. A StateD of a class C is consistent if and only if it satisfies the conditions below:
(1) Guard conditions of all its transitions are consistent,
(2) It does not exhibit a non-deterministic behavior,
(3) All its or-states satisfy Defintion 5,
(4) All its and-states satisfy Definition 6.

Proposition 1. If a StateD exhibits a non-deterministic behavior caused by the existence of a set of
transitions that satisfies the condition (2) of Definition 12, and the toNode states of these transitions are
at the same hierarchical level and satisfy the condition of Definition 6, then the non-determinism can be
resolved.

To resolve this non-determinism, we create an and-state that contains all toNode states of these
transitions; and we keep only one transition. The newly created and-state , which satisfies Definition 6
becomes the toNode state of the kept transition.

6.2. Consistency

Three operations are defined for the verification of scenario consistency: class description consistency,
consistency of a transition with its fromNode and its toNode states, and StateD consistency. Note that
when a StateD captures one scenario, checking the consistency of a StateD means that we check
whether the corresponding scenario is consistent; and when a StateD integrates several scenarios, we
check the consistency between those scenarios.

Class description consistency
The objective of this operation is to check the consistency of the description of a given class

(such as in Figure 5). This operation looks for all pre- and post-conditions of the class methods. These
conditions must be consistent (see definitions 7 and 9) and the post-condition of each method must be
consistent with its pre-condition (see Definition 9). In case of errors, the algorithm invites the analyst to
make correction on the description of the given class.

Consistency of a transition with its fromNode and toNode states
This operation checks whether a transition remains consistent with its fromNode and toNode states

(see Definition 10). This kind of inconsistency may be caused by inconsistent or incomplete description
of a given scenario. In the two cases, the algorithm invites the analyst to make correction on the description
of the scenario. For example, if we assume that in the description of the scenario ‘regularWithdraw’ (see
Figure 3(a)), the message 2:passwd:=enter_password()→ was omitted, the generated StateD of the
ATM class would be as described in Figure 13. During the activity of partial object specifications analysis,
the APS algorithm would detect that T2 is not consistent with its fromNode state labeled by ‘S1’.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 70

ATM
Passwd, pin: string; ok: boolean,; kind:
character; mnt: real

 T 1= insert_card() ^pin

→ ok:= Account. check_account(pin, passwd)

T2=enter_kind [ok=true] ^kind

enter_amount() ^ mnt
→ ok:=
Account.check_balance(mnt)

[ok=true]
/deliver_cash()

[ok=true] → Transaction.create
 (pin, mnt, kind)

[ok=true] → Account.update(mnt,kind)

get_cash()

get_card()

S0

Legend:

S 0 = screen=”main” and cash_slot=”closed” and card_slot=”empty”
S 1 = screen=”enter password” and cash_slot=”closed” and card_slot=”full”

S1

Fig. 13 StateD for the class ATM generated from an altered description of the scenario given
in Figure 3(a).

StateD consistency
This operation checks if a given StateD is consistent (see Definition 12). Two cases are considered.

If the conditions (1), (3) and (4) have caused the StateD inconsistency then the algorithm invites the
analyst to make correction on the scenarios that causes the inconsistency. Otherwise, i.e. the inconsistency
is caused by the fact that the StateD is not deterministic, the algorithm proposes when possible (see
Proposition 1), a new StateD where the non-determinism is resolved and invites the analyst to confirm
the result (since non-determinism often hides dangerous incompleteness).

6.3. Completeness

There are several possible ways to define a complete specification. Indeed, a complete specification
can be defined as one that contains all the behaviors required by the users. Another definition is that a
complete specification is one that contains all the aspects about the described system even those that are
not defined in user requirements. Our approach adheres to the first definition, as specifications are
automatically generated from scenarios. Furthermore, a consistency check may reveal incomplete scenarios
caused by errors in their descriptions. For the second kind of completeness, we can use guidelines
provided by Heimdahl and Leveson (1996). Specifically, they check the completeness of a given
specification in respect to a set of criteria related to robustness, that is, a response is specified for every
possible input. For a StateD, robustness implies the following rules:

(1) Every state must have a behavior, that is, a transition for every possible input.
(2) The logical OR of the conditions on every transition out of any state must form a tautology.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 71

(3) Every state must have a behavior, i.e. a transition, defined in case there is no input for a given
period of time (time-out).

7. Related Work

In this section, we review related work in the area of scenario integration and verification of
requirements. Table 1 shows a comparison between our approach and eleven other approaches in respect
to the following seven criteria: vision, notation, range of support, degree of support, basis of integration,
interleaving problem and verification.

In the realm of OO development the work of Koskimies and Mäkinen (1998), Mäkinen and Systä
(2000), and Whittle and Schumann (2000) comes closed to ours. All these approaches aim to derive a set
of specifications for the system objects from scenarios, whereas all other approaches are interested in
synthesizing one specification for the whole system.

The various approaches differ in the notations that they support for the description of scenarios and
specifications. Some, such as Dano et al. (1997) and the SCR method (1998), use a tabular notation for
capturing scenarios, whereas others, such as Whittle and Schumann and ourselves, use SequenceDs or
CollDs. In contrast, Deharnais et al. (1998) describe scenarios with relations. For the specification
description, a variety of notations are used. For example, StateDs are supported by our approach and by
Koskimies and Mäkinen, whereas Petri nets are used by Elkoutbi and Keller (2000) and by Lee et al.
(1998).

One of the most prominent features of our approach is that it supports many kinds of scenarios
(sequential, iterative and concurrent), whereas most of the other approaches can handle only sequential
scenarios. Note that Somé et al. (1996) are more interested in timing issues in describing scenarios.
These kinds of scenarios are not supported by our approach.

Most of the related approaches are semi-automatic since they require that states are determined
manually, whereas in our approach, they are synthesized from the sequence of messages in scenarios as
well as from pre- and post-conditions of class operations corresponding to those messages.

Similarly to our approach, most of the other approaches are state-based in the process of scenario
integration. In contrast, Koskimies et al. (Koskimies et al., 1998) as well as Mäkinen and Systä (2000)
address synthesis as an inductive problem basing their algorithm on the method of Biermann and
Krishnaswamy (1976) for the former and on Angluin’s framework (1987) for the latter. Desharnais et al.
(1998) view scenario integration as a composition of scenario relations. Lee et al. (1998) use Constraint-
based Modular Petri Nets for capturing use cases where shared places and transitions are used to
synchronize between these use cases.

The problem of scenario interleaving is discussed by Mäkinen and Systä (2000). Elkoutbi and Keller
(2000) and ourselves present solutions to that problem.

Finally, many approaches, including our own, support the verification of scenario consistency and
completeness. Note that two of these approaches focus on the verification aspect. Heimdahl and Leveson
(1996) propose a tool for automatically analyzing state-based requirements for some aspects of
completeness and consistency. Thus, their tool can analyze our generated StateDs. Their work scales up
to large systems by decomposing the specification into smaller, analyzable parts and then using functional
composition rules to ensure that verified properties hold for the entire specification. In contrast, our
approach handles the issue of scalability by analyzing each scenario partially, and by analyzing the integrated
specification incrementally. Some of the composition rules defined by Heimdahl and Leveson (1996) are
also identified in our approach. For instance, a rule for union composition stating that no two transitions
out of the same state can be satisfied at the same time, is also identified by us (see Definition 19). Note

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 72

 Criteria

Approaches

Vision Notation Range
of

support

Degree of
support

Basis of

integration

Interlea
ving

Verific
ation

Our approach Object CollD +
StateD

Seq1 +
Iter2 +

Concur3

Automatic State Yes Yes

Dano et al.
(1997)

System Table +

Petri net

Seq + Iter
+ Concur

Semi-
automatic

State No No

Deharnais et al.
(1998)

System Relation Seq Semi-
automatic

Composition No No

Elkoutbi et al.
(2000)

System Sequence
D + Petri

net

Seq + Iter
+ Concur

Semi-
automatic

State Yes No

Heimdahl and
Leveson (1996)

System StateD N/A4 N/A N/A N/A Yes

Koskimies et al.
(1998)

Object Sequence
D +

StateD

Seq Automatic Inference No No

Lee et al. (1998) System Table +
Petri net

Seq +
Concur

Semi-
automatic

Synchronizat
ion

No Yes

Mäkinen and
Systä (2000)

Object Sequence
D +

StateD

Seq Semi-
automatic

Inference Yes No

Heitmeyer et al.
(1998)

System Table +
FSM

Seq Semi-
automatic

State No Yes

Somé et al.
(1996)

System Table +
Timed

automata

seq +
Time
based

Automatic State No Yes

Harel et al.
(1990)

System StateD N/A N/A N/A N/A Yes

Whittle and
Schumann (2000)

Object Sequence
D +

StateD

Seq Automatic State No No

 Table 1: Comparison between approaches

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 73

that their work assumes that if a guard condition consists of a set of predicates where some of these
conditions are dependent, these dependencies must be specified explicitly.

Harel et al. (1990) have developed STATEMATE, a commercial tool, which provides automatic code
generation as well as system simulation for verification purposes, such as reachability, non-determinism
and deadlock. We consider STATEMATE as a complementary tool in respect to our approach. In fact,
StateDs synthesized by a tool such as ours may be passed to STATEMATE for simulation and further
analysis.

8. Discussion of Approach

Below, we discuss our approach in respect to some interesting aspects: restriction over conditions,
interleaving problem, complexity of algorithms, evaluation and relevance of the approach in the development
process.

Restriction over conditions
We have seen that the syntax of a condition (i.e. pre- and post-condition of an operation) is restricted

to a subset of OCL (see Section 4). This restriction has not a big impact on the generality of our approach.
Indeed, a large number of systems can be supported by our work and our assumption is less restrictive
than that of other works (for instance, the work of Heimdahl and Leveson (1996) described above).

Also, this restriction allows us to perform many operations on conditions such as equality between
conditions (see Definition 2) and refines operation (see Definition 4) in a polynomial time. In contrast,
Heimdahl and Leveson have indicated that such operations are exponential (1996). In fact, in our approach
these operations are performed using the function Eval (see Definition 1), which has a polynomial
complexity. For the work of Heimdahl and Leveson, these operations are performed using the prepositional
calculus.

 Problem of interleaving between scenarios
In this work, we have solved the problem of interleaving between scenarios by defining and introducing

composition variables, without changing the syntax and semantic of StateDs. Note that sometimes
interleaving is needed to capture scenarios that are not already considered. By executing or not executing
sub-step 4 of the IPS algorithm, one has the choice of allowing or preventing the interleaving between
scenarios.

Problem of interleaving between scenarios
Our approach is supported by three algorithms the GPS algorithm, the APS algorithm and the IPS

algorithm. Let NM be the number of messages in a CollD. The worse-case complexity of the GPS
algorithm is O(NM

2) (see (Schönberger et al., 2001)). For the discussion of the worst-case complexity CA
of the APS algorithm, let NO be the number of operations in the description of a class, NT the number of
transitions in a StateD, NS the number of states in a StateD and NOR the maximum number of ifExpression
that may contain a post-condition of an operation. Since the algorithm consists of three sub-steps, CA is
the sum of CA1, CA2, and CA3, providing that CAi represents the complexity of Sub-step i. Sub-step 1
checks the consistency for all operations in a class. CA1 is therefore O(NO). Sub-step 2 labels each
transition of a StateD. It consists to traverse, with backtracking, all transitions of the StateD in order to
find the right sequence of the post-condition ifExprssion of the operations of the corresponding event
transitions. CA2 is therefore O(NOR NT). Sub-step 3 checks the consistency of the resultant labeled StateD,
which consists to check the coherence of the guard condition of all transitions, the existence of a non-
determinism behavior, and the coherence between sub-states of each composite states of the StateD.
CA3 is therefore O(NT+NT

2+NS
2). Consequently CA is O(NOR NT).

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 74

Note that the exponential complexity of the APS algorithm has no effect because the algorithm
processes partial StateDs where the transitions number is not high since each of these StateDs specifies
only one scenario.

For the discussion of the worst-case complexity CI of the IPS algorithm, which integrates two StateDs,
let NT1 (respectively, NT2) be the number of transitions in the first StateD (respectively, the second
StateD), NS1 (respectively, NS2) be the number of states in the first StateD (respectively, the second
StateD). Since the algorithm consists of five sub-steps, CI is the sum of CI1, CI2, CI3, CI4 and CI5 providing
that CIi represents the complexity of Sub-step i. Sub-step 1 checks the existence of conflicts between
states of the two StateDs. CI1 is therefore O(NS1 * NS2). Sub-step 2 merges states of the two StateDs
level by level. CI2 is therefore O(max(NS1

2, NS2
2)). Sub-step 3 merges transitions of the two StateDs. CI3

is therefore O(NT1 * NT2). Sub-step 4 introduces three composition variables in the two StateDs. CI4 is
therefore O(max(NT1, NT2)). Sub-step 5 checks the consistency of the integrated StateD. CI5 is equal to
CA3 and therefore is O(max(NT1 , NT2) + max NT1, NT2)2 + max(NS1, NS2)

2). Consequently CA is
O(max(NT1, NT2)

2+max(NS1, NS2)
2).

Validation of approach
The three algorithms that constitute the basis of our approach have been implemented with a system

of 22 classes and about 6000 lines of code in the Java language (comments not included). For validation
purposes, we have adopted a textual format for scenario acquisition and the presentation of the resulting
specifications.

Our approach has been successfully applied to a number of examples such as the ATM system
presented in this paper, a library system, a gas station simulator (Coleman et al., 1994) and a filing system
(Derr, 1996).

Relevance of approach in the development process
Current OO CASE tools support various graphical notations for modeling a system from different

views, but lack the possibility of automatic transformation between models and analysis of models. The
incorporation of our work into such CASE tools will ease the activity of scenario-based requirements
engineering.

Furthermore, our incremental-based approach enables us to have an iterative process for scenario-
based requirements engineering. In case of changes in some scenarios that have already been integrated,
new partially labeled StateDs are generated after reapplication of the activities two and three of our
approach. The integration algorithm (activity four) is then reapplied over the partially labeled StateDs
corresponding to the unchanged scenarios and the new ones.

9. Conclusion and Future Work

The work presented in this paper proposes an automatic approach for generating and analyzing a
system specification from scenarios. Scenarios are acquired as UML CollDs. These CollDs are
transformed into partial object specifications through an existing algorithm. Then, the resultant specifications
are analyzed and merged using the two algorithms detailed above. These algorithms also support
requirements verification in respect to consistency and completeness aspects.

The most interesting features of our approach can be summarized in two points. The first point
concerns the form of integration, which in our case is quite general, addressing not only sequential
integration but also concurrency and hierarchy. The second point consists in solving the problem of
interleaving between scenarios in the resulting specification.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 75

As future work, we plan to investigate how we can adapt our approach in order to support real-time
systems. On the practical side, we aim to integrate the prototype implementation of our algorithms into a
commercial CASE tool.

10. References

Anderson, J.S. and Durney, B., 1993, “Using Scenarios in Deficiency-driven Requirements Enginee-
ring,” Proceedings of the Conference on Requirements Engineering 1993, IEEE Computer Society Press,
pp. 134-141.

Angluin, D., 1987, “Learning Regular Sets from Queries and Counterexamples,” Information Computing,
Vol. 75, pp. 87-106

 Biermann, A.W. and Krishnaswamy, R., 1976, “Constructing Programs from Example Computations,”
IEEE Transactions on Software Engineering, Vol. 2 Num 3, pp. 141-151.

Booch, G., 1994, “Object Oriented Analysis and Design with Applications,” Benjamin/Cummings
Publishing Company Inc., Redwood City, CA.

Caroll, J.M. and Rosson, M.B., 1992, “Getting around the Task-Artifact Cycle: How to Make Claims
and Design by Scenario,” ACM Transactions on Information Systems, Vol. 10 Num. 2, 181-212.

Coleman, D., Arnold, P., Bodoff, S., Dollin, Ch., Gilchrist, H., Hayes, F. and Jeremaes, P., 1994,
“Object-Oriented Development: The Fusion Method,” Prentice-Hall, Inc.

 Dano, B., Briand, H. and Barbier, F., 1997, “An Approach Based on the Concept of Use Cases to
Produce Dynamic Object-Oriented Specifications,” Proceedings of the Third IEEE International Sym-
posium on Requirements Engineering 1997, Annapolis, pp. 56-64.

Desharnais, J., Frappier, M., Khédri, R. and Mili, A., 1998, “Integration of Sequential Scenarios,”
IEEE Transactions on Software Engineering, Vol. 24 Num. 9, pp. 695-708.

Derr, K.W., 1996, “Applying OMT: A practical step-by-step guide to using the Object Modeling
Technique,” SIGS BOOKS/Prentice Hall.

Elkoutbi, M. and Keller, R.K., 2000, “ User Interface Prototyping based on UML Scenarios and
High-level Petri Nets,” Application and Theory of Petri Nets 2000 (Proc. of 21st Intl. Conf. on ATPN),
Aarhus, Denmark, June 2000. Springer. LNCS 1825, pp. 166-186.

Elkoutbi, M, Khriss, I. and Keller, R.K., 1999, “Generating User Interface Prototypes from Scenarios,”
Proceedings of the Fourth IEEE International Symposium on Requirements Engineering (RE’99), pages
150-158, Limerick, Ireland.

Harel, D., Lachover, H., Naamad, A., Pnueli, A., Polit, M., Sherman, R. and Shtull-Tauring, A., 1990,
“STATEMATE: A Working Environment for the Development of Complex Reactive Systems,” IEEE
Transactions on Software Engineering, Vol. 16 Num. 4, pp. 403-414.

Harel, D., 1987, “A Visual Formalism for Complex Systems,” Science of Computer Programming,
Vol. 8, pp. 231-274.

Heimdahl, M.P.E. and Leveson, N.G., 1996, “Completeness and Consistency in Hierarchical State-
Based Requirements,” IEEE Transactions on Software Engineering, Vol. 22 Num. 6, pp. 363-377.

Heitmeyer, Kirby, J., Labaw, B. and Bharadwaj, R., 1998, “SCR*: A Toolset for Specifying and
Analyzing Software Requirements,” Procedings of the 10th Annual Conference on Computer-Aided
Verification, (CAV’98), Vancouver, Canada, pp. 526-531.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 76

Hsia, P., Yuang, T.A., 1998, “Screen-based Scenario Generator: A Tool for Scenario-based Prototyping,”
Proceedings of the twenty-first Annual Hawaii International Conference 1998, IEEE Computer Society,
pp. 455-461.

Jacobson, I., Christerson, M., Jonson, P and Overgaard, G., 1992, “Object-Oriented Software Engi-
neering: A Use Case Driven Approach,” Addison-Wesley.

Koskimies, K., Systä, T., Tuomi, J. and Mannisto, T., 1998, “Automatic Support for Modeling OO
Software,” IEEE Software, Vol. 15 Num. 1, pp. 42-50.

Lee, W.J., Cha, S.D., Kwon, Y.R., 1998, “Integrating and Analysis of Use Cases Using Modular Petri
Nets in Requirements Engineering,” IEEE Transactions on Software Engineering, Vol. 24 Num. 12, pp.
1115-1130.

Mäkinen, E. and Systä, T., 2000, An Interactive Approach for Synthesizing UML Statechart Diagrams
from Sequence Diagrams,” Proceedings of OOPSLA 2000 Workshop: Scenario-based round-trip
engineering, pp. 7-12.

Monk, A.F., Wright, P.C., 1990, “Observations and Inventions: New Appraoches to the Study of
Human Computer Interaction,” Interacting With Computers, Vol. 3 Num. 2, pp. 204-216.

Nardi, B.A., 1992, “The Use Of Scenarios In Design,” SIGCHI Bulletin, Vol. 24 Num. 4.

Potts, C., Takahashi, K. and Anton, A., 1994, “Inquiry-Based Scenario Analysis of System Requirements,
“ Technical Report GIT-CC-94/14, Georgia Institute of Technology.

Rubin, K.S. and Goldberg, A., 1992, “Object Behavior Analysis,” Communications of the ACM, Vol.
35 Num. 9, pp. 48-62.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W., 1991, “Object-oriented Modeling
and Design,” Prentice-Hall, Inc.

Rumbaugh, J., Jacobson, I. and Booch, G., 1999, “The Unified Modeling Language Reference Manu-
al,” Addison Wesley, Inc.

Somé, S., Dssouli, R., Vaucher, J., 1996, “Towards an Automation of Requirements Engineering using
Scenarios,” Journal of Computing and Information, Vol. 2 Num. 1, pp. 1110-1132.

Schönberger, S., Keller, R.K. and Khriss, I., 2001, “Algorithmic Support for Transformations in Object-
Oriented Software Development,” Concurrency and Computation: Practice and Experience, 13(5):351-
383, April 2001. Object Systems Section. John Wiley and Sons.

Whittle, J. and Schumann, J., 2000, “Generating Starechart Designs from Scenarios,” Proceedings of
the 22nd International Conference on Software Engineering (ICSE 2000), Limerick, Ireland, ACM Press,
pp. 314-323.

Wordsworth, J.B. 1992, “Software Development with Z: A Practical Approach to Formal Methods in
Software Engineering,” Addison-Wesley, Inc.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 77

