
1

DeepSensing: A Novel Mobile Crowdsensing
Framework with Double Deep Q-Network and

Prioritized Experience Replay
Xi Tao and Abdelhakim Senhaji Hafid, Member, IEEE

Abstract—Mobile crowdsensing (MCS) is a new and promising
paradigm of data collection due to the growing number of mobile
smart devices. It can be utilized in applications of large-scale
sensing by employing a group of mobile users with their smart
devices. Since a large number of mobile users are recruited,
the allocation of sensing tasks to mobile users has a critical
influence on the performance of MCS applications. To efficiently
assign sensing tasks to mobile users, we propose a novel MCS
framework named DeepSensing. This framework consists of six
executive phases, i.e., registration of sensing tasks, announcement
of reward rule, collection of users’ information, task allocation,
execution of sensing activities, and distribution of data and
rewards. Here, the phase of task allocation is a key component,
which directly determines the performance of DeepSensing,
e.g., the platform’s profit. DeepSensing aims to maximize the
platform’s profit by taking into account the various constraints
of sensing tasks and mobile users. Therefore, we propose a deep
reinforcement learning (DRL) method to optimally assign sensing
tasks to mobile users. Specifically, we employ a double deep
Q-network with prioritized experience replay (DDQN-PER) to
address the task allocation problem, which is also formulated
as a path planning problem with time windows. To evaluate
our proposed DDQN-PER solution, three baseline solutions are
provided, i.e., ant colony system (ACS), ε-greedy, and random
solutions. Finally, the results of numerical simulations show
that our proposed DDQN-PER solution outperforms the baseline
solutions in terms of the platform’s profit and it plans better-
organized travelling paths for mobile users.

Index Terms—Mobile crowdsensing, task allocation, deep re-
inforcement learning, double deep Q-network, prioritized expe-
rience replay.

I. INTRODUCTION

MOBILE crowdsensing enables large-scale sensing by re-
cruiting a large number of mobile users with their smart

devices (e.g., smart phones, laptops, and wearables) or vehicles
with embedded sensors (e.g., autonomous cars and unmanned
aerial vehicles). The term mobile crowdsensing was coined by
Ganti et al. [1] and it has already gained significant attention
because of its applicability in data collection [2]. MCS can
provide a flexible and sufficient coverage of sensing tasks
or areas using the mobility of mobile users. In addition, the
human intelligence of mobile users can be used to accomplish
complex sensing tasks. For instance, mobile users can easily
identify a bird and take a picture of it with their smart phones

This research was supported in part by Natural Sciences and Engineering
Research Council (NSERC) of Canada.

X. Tao and A. Hafid are with the Department of Computer Science and
Operations Research, University of Montreal, Montreal, QC H3T 1J4, Canada
(e-mails: xi.tao@umontreal.ca, ahafid@iro.umontreal.ca).

when they are involved in a bird monitoring application. MCS
is also a cost-efficient method of data collection when it
is compared with conventional wireless sensor networks. It
collects data directly from mobile users without infrastructure
cost (e.g., networks and equipment) and the corresponding
maintenance cost. Because of these advantages, MCS is widely
used in a variety of sensing and computing applications, e.g.,
environment monitoring [3], transportation management [4],
and healthcare [5], to name a few.

Although MCS benefits from user participation, the partici-
pation of numerous mobile users does pose many challenges.
First, it is hard to guarantee the quality of collected data
or information [6]. Various types of employed devices may
lead to a fluctuation of data quality. Furthermore, the skills
or knowledge of mobile users also have a influence on
data quality. The second challenge concerns the motivation
of user participation, which is also known as the problem
of incentive mechanism design [7,8]. As such, an efficient
method of determining rewards or payments to mobile users is
critical in a budget-limited MCS application. Finally, the task
allocation problem is another big challenge because of various
requirements and constraints of sensing tasks and mobile users.
Sensing tasks should be carefully assigned to the appropriate
mobile users in order to achieve some specific targets, e.g.,
energy efficiency.

With respect to the task allocation problem, the assignment
mode should be determined first. Generally, there are two
different ways to assign sensing tasks, i.e., platform-centric
and user-centric modes [9,10]. In the platform-centric mode,
the centralized platform has all of the information from sensing
tasks and mobile users. As a result, global optimization
algorithms can be employed to determine the task set assigned
to each mobile user. In the user-centric mode, mobile users
select sensing tasks by themselves and then they submit their
task sets to the platform. The platform only needs to make
a selection among the submitted task sets. Although mobile
users have the autonomy to choose sensing tasks, there are
several drawbacks in the user-centric mode, e.g., competition
and computation issues. The competition among mobile users
makes the sensing tasks with higher rewards much more
popular. That is to say, mobile users have to compete with
each other to win the high-reward tasks. As a consequence,
this competition issue leads to an unbalanced assignment
of sensing tasks. Then, the computation issue means that it
is computationally intractable for mobile users to find their
optimal task sets with their resource-limited devices.

2

In MCS applications, sensing tasks are generally located at
specific points or areas [11]. Therefore, mobile users have to
reach these locations to perform their assigned tasks. Since
the order of performing the tasks is significantly important
for each mobile user [12], the task allocation problem can
be considered as a path planning problem. However, the path
planning problem is computationally intractable even with
only one mobile user [10]. To plan travelling paths for mobile
users, the platform makes decisions regarding sensing tasks
to mobile users in a sequential manner. From the perspective
of decision making, reinforcement learning (RL) is known
as a powerful tool to solve such a problem [13]. Then, the
platform is regarded as the agent of RL. The status of sensing
tasks and mobile users represents the environment of RL.
Thus, RL is promising when applied to the task allocation
problem. However, conventional RL methods (e.g., Q-learning
[14]) suffer from a slow convergence speed and a request for
big data storage when the state and action spaces are huge.
To overcome this issue, deep reinforcement learning (DRL)
introduces deep learning methods into RL, which has already
achieved great improvements in playing video games [15] and
Go [16].

In this paper, we propose a novel framework of MCS,
i.e., DeepSensing, which is based on the platform-centric
mode. There are six executive phases of DeepSensing. At
the very beginning, data requesters publish their sensing tasks
with the associated information (e.g., locations, time windows
and budgets) in the platform. Second, the platform needs
to determine and announce a reward rule to mobile users.
Third, mobile users register in the platform if they accept
the reward rule and then provide their private information
(e.g., participation time) to the platform. Next, the platform
solves the task allocation problem and plans travelling paths
for the recruited mobile users. In the fifth phase, the re-
cruited mobile users move along the planned paths to perform
their assigned tasks and then upload the collected data to
the platform. The last step is that the platform verifies the
collected data and sends the data to the corresponding data
requesters. Meanwhile, the platform distributes rewards to the
recruited mobile users. In existing studies, the platform and
data requesters are frequently considered to have consistent
interests, e.g., data quality and sensing cost. However, the
top priority of a commercial platform is its profit. Thus, the
objective of DeepSensing is to maximize the platform’s profit.
To achieve this objective, we propose a solution, i.e., double
deep Q-network with prioritized experience replay (DDQN-
PER), to the task allocation problem. In addition, we consider
three baseline solutions, i.e., ant colony system (ACS), ε-
greedy, and random solutions, for performance comparison.
Finally, we evaluate our proposal with the baseline solutions
via simulations.

The contributions of our paper can be summarized as
follows:
• We propose a novel framework of MCS, i.e., DeepSens-

ing, as a complete system to efficiently recruit mobile
users and accomplish sensing tasks. DeepSensing effi-
ciently plans travelling paths for mobile users to perform
their assigned sensing tasks and achieve specific targets.

• We propose a deep reinforcement learning method to
solve the task allocation problem in DeepSensing. Specif-
ically, we are the first to use a double deep Q-network
with prioritized experience replay to address the task
allocation problem of MCS.

• We propose three baseline solutions (i.e., ant colony sys-
tem, ε-greedy, and random solutions) and conduct various
simulations with different numbers of mobile users to
evaluate the performance of DeepSensing. The results
show that our proposed DDQN-PER solution outperforms
the baseline solutions, in terms of the platform’s profit,
and plans better-organized travelling paths for mobile
users.

The remainder of this paper is organized as follows. Sec-
tion II presents related work. Section III describes the structure
of DeepSensing and the formulation of the task allocation
problem. Section IV presents details of DDQN-PER solution
and three baseline solutions. Section V evaluates our proposal
via simulations. Finally, Section VI concludes the paper.

II. RELATED WORK

In this section, we overview related work with respect to
task allocation of MCS and deep reinforcement learning in
networking.

A. Task Allocation of MCS

The task allocation problem of MCS has already been
studied from many perspectives [17]–[19]. Existing solutions
focus on two metrics: data quality and sensing cost. Although
data quality has different definitions depending on various re-
quirements in MCS applications, it is commonly defined as the
coverage of sensing tasks or areas. Zhang et al. [20] proposed
a user selection framework, called CrowdRecruiter, where a
probabilistic coverage is used. The probabilistic coverage is
defined as the ratio of covered cell towers in a time frame.
CrowdRecruiter leverages historical records of mobile users
to predict their phone calls. Then, sensing tasks are assigned
based on the prediction. A large-scale real-world dataset is
used to evaluate the performance of CrowdRecruiter and the
results did show that it can recruit a small number of mobile
users to satisfy the coverage requirement. Xiong et al. [21]
proposed a generic MCS task allocation framework, called
iCrowd. In iCrowd, a spatial-temporal coverage, called k-depth
coverage, is used. k-depth coverage is defined as the maximum
number of desired data samples in one subarea. iCrowd also
leverages historical records of mobile users to predict their
mobility and hence efficiently recruit them. To address the
online recruitment problem, Liu et al. [22] proposed a dynamic
user recruitment strategy to maximize the expected number
of completed tasks under the budget and time constraints. In
addition to the coverage, data quality is alternatively defined
as a value or utility, which is related to the total number of
data samples [10,23]. Although data quality improves with the
increasing number of data samples, the total number of data
samples is limited by a budget of sensing tasks. For instance,
He et al. [23] assumed a maximum number of data samples
for each sensing task and we also considered a diminishing

3

marginal increase of data quality [10] to meet a requirement
of the budget.

In addition to data quality, sensing cost is another aspect
of interest in MCS applications. Generally, sensing cost is
considered as energy cost. To reduce energy consumption
of task allocation, several energy-efficient paradigms have
been proposed, e.g., piggyback crowdsensing (PCS) and com-
pressive crowdsensing (CCS). PCS leverages opportunities of
phone activities to collect data with low-energy cost [24]. This
paradigm has been used by a number of MCS frameworks
to achieve energy efficiency [20,21,25,26]. In EMC3 [25]
and EEMC [26], the energy consumption of data transfer
is reduced by leveraging phone calls of mobile users. CCS
employs compressive sensing [27,28] to reconstruct a global
data distribution from sparsely collected data and further
reduce energy cost. For instance, CCS is used to minimize
the number of sensed subareas in each sensing cycle and
infer the data of unvisited subareas to meet a requirement of
probabilistic data accuracy [29]. Liu et al. [30] proposed a
CCS-based recovery scheme, called UniTask, to improve the
overall utility of MCS applications, e.g., coverage, latency,
and accuracy. In MCS applications, travelling distance is
another cost metric used [10,23,31]. Guo et al. [31] proposed
a worker selection framework, called ActiveCrowd. It takes
into account travelling distance of each mobile user and two
types of sensing tasks (i.e., time-sensitive and delay-tolerant
tasks) in the process of task allocation. In addition, data
uploading cost is also important in MCS applications. Wang et
al. [32] proposed an efficient prediction-based user recruitment
strategy to reduce uploading cost by relaying uploaded data
among mobile users.

In existing studies, data quality and sensing cost are consid-
ered from the perspective of mobile users. However, the plat-
form’s concern is omitted. In commercial MCS applications,
the platform’s objective is to make a profit by its interme-
diary services. Therefore, in this paper, we consider the task
allocation problem of MCS from the platform’s perspective
and aim to maximize its profit. In addition, the relationship
between travelling time and distance is not clearly defined in
existing studies. For instance, although a maximum travelling
distance is proposed for the path of each mobile user in [23],
the travelling time along the path is not known. This is a
serious issue when time-sensitive tasks are considered in MCS
applications. To clarify the relationship between travelling time
and distance, we define a travelling speed for each mobile user
and we also consider time windows of sensing tasks.

B. Deep Reinforcement Learning in Networking

Reinforcement learning enables the learning process of an
agent by interacting with its environment [13]. The agent can
improve its decisions during the learning process. However,
the learning process has a slow convergence speed when the
state and action spaces are huge. To tackle this issue, deep
learning [33] is leveraged to enhance reinforcement learning
as deep reinforcement learning (DRL) [34,35]. DRL has been
already applied in many areas [15,16]. In DRL methods, deep
Q-network (DQN) is widely used to approximate Q-values and

it replaces the Q-value table in conventional RL methods. To
further improve the performance of DQN, various techniques
are proposed, e.g., double deep Q-network [36] and prioritized
experience replay [37].

Recently, DRL has been applied in the area of networking
as an emerging tool to address some problems and challenges
[38,39]. In [39], Xiong et al. illustrated the potential of DRL
to be an efficient solution to many networking problems, e.g.,
computation offloading, edge caching, and network slicing. In
particular, they proposed a DRL-based scheme for network
slicing. The scheme is then compared, via simulations, with
the baseline schemes (e.g., conventional Q-learning, greedy,
and random schemes). The results show that the DRL-based
scheme outperforms the conventional communication resource
allocation schemes. DRL is also used in vehicular networks
to solve a joint edge computing and caching problem to
maximize system utility [40]. In addition, Dai et al. [41] inte-
grated DRL with blockchain to provide a secure and intelligent
resource sharing system. They presented an example of content
caching system. First, they used a consortium blockchain to
create a secure environment and then they leveraged DRL to
address the content caching problem to maximize the utility
of caching resources.

Since DRL has the ability to solve optimization problems
in the area of networking, we desire to leverage this emerging
method to solve the task allocation problem of MCS [42].
As far as we know, we are the first to solve the task allo-
cation problem of MCS by using a double deep Q-netwrok
with prioritized experience replay. We propose to use deep
neural networks (DNNs) in RL for function approximation,
because conventional RL methods (e.g., Q-learning, Monte
Carlo method, and dynamic programming) cannot satisfy the
requirements of computation and storage when state and
action spaces are huge. In addition, we employ double Q-
learning method to achieve an unbiased action estimation
during the training process. We also use prioritized experience
replay to accelerate the convergence of the training process.
In conclusion, our proposed method, i.e., double deep Q-
network with prioritized experience replay, performs better in
terms of efficiency and convergence when it is compared with
conventional RL methods.

III. FRAMEWORK STRUCTURE AND PROBLEM
FORMULATION

In this section, we present the structure of DeepSensing.
Then, we formulate the task allocation problem of MCS as
a path planning problem, and then analyze its complexity.
Table I shows notations that are used in the rest of the paper.

A. Structure of DeepSensing

There are six executive phases in DeepSening, i.e., registra-
tion of sensing tasks, announcement of reward rule, collection
of users’ information, task allocation, execution of sensing
activities, and distribution of data and rewards. Fig. 1 shows
the structure of DeepSensing.

4

TABLE I
NOTATION DEFINITIONS.

Notations Definitions
V Set of sensing tasks
V ′ Set of assigned tasks
B Set of tasks’ budgets

[gsi , g
e
i] Time window of task vi

t(vi) Complete time of task vi
W Set of mobile users
W ′ Set of recruited users
qj Reward to user wj

Pj Travelling path of user wj

d(Pj) Travelling distance of path Pj

λj Reward per distance unit of user wj

[hsj , h
e
j] Participation time of user wj

fj Travelling speed of user wj

τ(Pj) Waiting time of user wj along path Pj

u Platform’s Profit

1) Registration of Sensing Tasks: During the first step,
data requesters publish their sensing tasks in the platform
and deposit the associated budgets to the platform as re-
wards to mobile users. Meanwhile, detailed information of
the sensing tasks, e.g., locations, is sent to the platform. The
set of the sensing tasks is denoted by V = {v1, v2, ..., vm}
and the associated set of their budgets is represented by
B = {b1, b2, ..., bm}. We assume that each sensing task vi ∈ V
is time-sensitive and it can only be accomplished within a time
window [gsi , g

e
i].

2) Announcement of Reward Rule: Once receiving the
information of the sensing tasks, the platform announces a
reward rule to mobile users. The reward rule is a method to
determine the amount of the reward to each mobile user. The
set of mobile users is represented by W = {w1, w2, ..., wn}.
For each mobile user wj ∈W , the reward is determined by

qj = λj · d(Pj) (1)

where Pj is the planned path for mobile user wj . d(Pj)
is a function to measure the travelling distance of path Pj
and λj is the reward per distance unit that mobile user wj
desires. It is worth noting that different reward rules can be
used in MCS applications according to their requirements. For
instance, energy cost can be involved in the reward rule with
computationally intensive sensing tasks. In this paper, energy
cost is not considered in the reward rule because we only have
light-weighted sensing tasks with little energy consumption,
e.g., photo taking. However, our proposed framework can be
easily adapted to work with different reward rules.

3) Collection of Users’ Information: Mobile users need to
make decisions to whether to participate in upcoming sensing
activities based on the reward rule and their status. If they are
willing to participate, they provide their private information
(e.g., participation time and travelling speed) to the platform.
For each mobile user wj ∈ W , the participation time is
denoted by [hsj , h

e
j] and the travelling speed is denoted by fj .

Here, the travelling speed is strongly influenced by the method
of travel, e.g., walking, cycling, and driving. In addition,
mobile user wj needs to inform the platform of the initial
location and the desired reward per distance unit (i.e., λj).

4) Task Allocation: In DeepSensing, the platform acts as
an intermediary between data requesters and mobile users. It

Framework

1. Registration of Sensing Ta...

2. Announcement of Reward Rule

3. Collection of Users' Informa...

4. Task Allocation

5. Execution of Sensing Activi...

6. Distributions of Data and Rewa...

Data Requesters User Task Reward Data

Fig. 1. Structure of DeepSensing.

earns a profit from its brokerage service by assigning sensing
tasks to mobile users. The platform’s profit is the difference
between the total budget of the sensing tasks deposited by
their data requesters and the total reward to the mobile users.
We define the platform’s profit u as follows:

u =
∑

wj∈W ′

(∑
vi∈Pj

bi − qj
)

(2)

where
∑
vi∈Pj

bi is the total budget of the selected sensing
tasks along path Pj and qj is the corresponding reward to
mobile user wj . W ′ represents the set of the recruited mobile
users.

To tackle the path planning problem, i.e., the task allocation
problem of MCS, the platform needs to carefully plan paths
for the recruited mobile users. The objective is to maximize
the platform’s profit. Currently, there are three constraints that
need to be considered. The first one is that mobile users
can only perform their assigned sensing tasks within their
participation time. Second, their assigned tasks can only be
performed within the associated time windows. Finally, each
sensing task can only be assigned to at most one mobile user.
According to the objective and constraints, the task allocation
problem is formulated as follows:

max. u (3a)

s.t. hsj +
d(Pj)

fj
+ τ(Pj) ≤ hej ,∀wj ∈W ′ (3b)

gsi ≤ t(vi) ≤ gei ,∀vi ∈ V ′ (3c)∑
wj∈W ′

1(vi ∈ Pj) ≤ 1,∀vi ∈ V ′. (3d)

Here, the objective function is defined in (3a). Constraint (3b)
indicates that each recruited mobile user wj ∈W ′ must finish
the planned path before the end of the participation time,
where d(Pj)

fj
is the travelling time of mobile user wj along path

Pj and τ(Pj) is the waiting time of mobile user wj along path
Pj . The waiting time arises when mobile users arrive at the
locations of the assigned sensing tasks before the starts of the
time windows. It is worth mentioning that we omit the time of
performing sensing tasks, because it does not take a long time
to accomplish the light-weighted tasks that are considered in

5

DeepSensing. For instance, it may only take seconds to send
a message or take a photo by smartphones. Constraint (3c)
guarantees that each assigned sensing task vi ∈ V ′ can be
performed within the corresponding time window, where V ′ is
the set of the assigned sensing tasks and t(vi) is the time when
sensing task vi is finished. At last, constraint (3d) indicates that
each assigned sensing task vi ∈ V ′ is performed by at most
one recruited mobile user, where 1(·) is an indicator function
and it equals 1 when the condition in the function argument
is satisfied.

5) Execution of Sensing Activities: In this phase, the re-
cruited mobile users move along their planned paths to per-
form the assigned sensing tasks. Once they finish the paths,
they upload the collected data to the platform, which can apply
certain techniques (e.g., machine learning methods) to verify
and evaluate the uploaded data. Then, a reputation system can
be built to rank mobile users based on the quality of their
collected data. This reputation is a good indicator for future
task allocation.

6) Distribution of Data and Rewards: This is the last phase
of the current sensing cycle. The platform sends the collected
data to data requesters and distributes rewards to the recruited
mobile users. Then, the platform starts the next cycle of
sensing activities.

B. Computational Hardness of Task Allocation Problem

Next, we analyze the computational complexity of the
formulated task allocation problem.

Theorem 1. The task allocation problem in (3) is NP-hard.

Proof. We reduce a known NP-hard problem, i.e., the orien-
teering problem [43], to an instance of our formulated problem
in (3). The orienteering problem is defined in a game context.
A player in this game needs to plan a tour to visit a number
of tasks that are associated with certain locations and game
points. The objective is to maximize the total points collected
by the player with a limit on the travelling distance. This game
is also called the orienteering problem with time windows,
when the player can only perform a task within a specific time
period to gain points [44]. The orienteering problem (with time
windows) is already proved to be NP-hard [43,44].

Let us construct an instance of the task allocation problem
to solve the orienteering problem. We assume that there is only
one mobile user in this scenario, who acts as the player in the
orienteering problem. This mobile user has a predetermined
travelling speed and participation time. That is to say, the
mobile user has a maximum travelling distance, which is
mapped to the travelling distance limit in the orienteering
problem. In our instance, the time windows of all sensing tasks
are open during the user’s tour. The reward to the user for
accomplishing the assigned tasks is set to 0. As a result, the
platform’s profit equals the total budget of the finished tasks
according to (2) and it is mapped to the final game points in
the orienteering problem. Hence, this constructed instance of
the task allocation problem is, in fact, an orienteering problem.
We conclude that the task allocation problem in (3) generalizes
the orienteering problem and it is also NP-hard.

Platform

Environment

1

2

1 3
3

1

4

2

Action

State, Reward

Fig. 2. Task allocation as reinforcement learning.

IV. SOLUTIONS TO TASK ALLOCATION PROBLEM

In this section, we first consider the task allocation problem
of MCS from the perspective of reinforcement learning (RL)
and then we propose a solution based on double deep Q-
network with prioritized experience replay (DDQN-PER). To
evaluate the proposed solution, we also provide three baseline
solutions as benchmarks, including ant colony system (ACS),
ε-greedy, and random solutions.

A. DDQN-PER Solution

From the perspective of RL, the platform is regarded as
the agent and the environment is represented by the status of
sensing tasks and mobile users (see Fig. 2). Then, the task
allocation problem can be considered as a Markov decision
process (MDP) and represented by a tuple (S,A,Z,R). S is
a finite set of states and each state is simply defined by paths
of mobile users at the current moment. The other variables of
the environment (e.g., assignments of sensing tasks, current
locations of mobile users, and travelling distances of mobile
users) can be calculated based on the current paths of mobile
users and the initial state of the environment. A is a finite set of
actions and each action is an assignment between one sensing
task and one mobile user. Z is the transition function, which
turns the current state s to the next state s′ with the selected
action a, i.e., s′ = Z(s, a). R is the reward function and it
returns the reward of the selected action under the current
state, which is also the platform’s profit obtained from the
selected assignment. Then, the task allocation problem can be
solved by finding the optimal policy π for the platform, i.e.,
a = π(s).

RL problems can be addressed in various ways, e.g., dy-
namic programming, Monte Carlo methods, and temporal dif-
ference methods. The temporal difference methods are widely
used, given that they are model-free and learn directly from
unfinished episodes. Q-learning is a representative of temporal
difference methods with a Q-value table to record the quality
of each state-action pair, i.e., Q : S×A→ R. For state st ∈ S
and action at ∈ A at the step t, the Q-value of this state-action
pair is estimated by

Qnew(st, at)←(1− α) ·Q(st, at)

+ α ·
(
rt + γ ·max

a
Q(st+1, a)

)
(4)

where α is the learning rate. γ is the discount factor and rt is
the reward obtained when the state moves from st to st+1 by
taking action at.

However, if state space S and action space A are huge, the
conventional RL methods become infeasible due to the steep

6

requirement of computation and storage. To address this issue,
deep Q-network introduces deep neural networks to effectively
approximate Q-values. Given state st, DQN outputs a vector
of action values Q(st, ·; θ), where θ are parameters of a DNN
(i.e., policy network). In DQN, two important concepts are
used, i.e., target network and experience replay. The target
network, with parameters θ−, has the same structure as the
policy network. Its parameters are copied from the policy
network every C steps, and kept constant at other steps. With
respect to the experience replay, there is a memory bank to
store observed transitions during the learning process. The
stored transitions are uniformly sampled at each step to update
the policy network. Then, the Q-value in DQN is updated by

Qnew(st, at; θ)←(1− α) ·Q(st, at; θ)

+ α ·
(
rt + γ ·max

a
Q(st+1, a; θ

−)
)
. (5)

The max operator in DQN selects overestimated values
and results in overoptimistic value estimates. To decouple
the selection from the evaluation, double deep Q-network
is proposed in [36]. In DDQN, the policy network is used
to greedily select actions, and the target network is used to
estimate their values. DDQN updates the Q-value by

Qnew(st, at; θ)← (1− α) ·Q(st, at; θ)

+ α ·
(
rt + γ ·Q

(
st+1, argmax

a
Q(st+1, a; θ); θ

−)). (6)

In DQN, the experience replay is used to stabilize the train-
ing of DNNs. The transitions in replay memory are sampled
uniformly at random. However, the sampled transitions are not
equally important to the learning process. Therefore, priori-
tized experience replay (PER) is proposed in [37] and it sets a
priority for each transition according to temporal-difference
(TD) error. The TD error can indicate how unexpected a
transition is. The transitions with larger TD error are more
likely to be selected from replay memory during the learning
process. As a result, the platform learns more efficiently from
the sampled transitions. For each transition zi ∈ Z ′, the TD
error is represented by δi. Here, the set of the stored transitions
is denoted by Z ′. The priority of transition zi is computed by

xi = |δi|+ ζ (7)

where ζ is a small positive constant to guarantee that each
transition can be sampled even with the TD error of zero.

Next, a stochastic sampling method is leveraged in the
prioritized experience replay. The selection probability of a
transition is monotonic with the priority. Specifically, the
probability of sampling transition zi is calculated by

X(zi) =
xβi∑

zk∈Z
xβk

(8)

where β indicates how much prioritization is used. It is worth
mentioning that a novel data structure named SumTree is used
to implement the replay memory [37]. It is a binary tree, where
the value of each node is equal to the sum of values associated
with the nodes in its left and right subtrees.

Algorithm 1: DDQN-PER solution.
Input: V (tasks), W (users), N (capacity of replay

memory), ε (probability of random selection), M
(maximum number of episodes with no
improvement), γ (discount factor), C (frequency
of updating target network)

Output: u (platform’s profit), {Pj : ∀wj ∈W}
(travelling paths of mobile users)

1 Initialize policy network Q with parameters θ
2 Initialize target network Q̂ with parameters θ− = θ
3 Initialize replay memory D with capacity of N
4 u← −∞ // global maximum profit
5 k ← 0 // number of episodes with no improvement
6 while k < M do
7 uk ← 0 // local profit in current episode
8 st ← s0 // initialize state
9 while st 6= se do // st is not terminal state

10 Randomly select at with probability ε; otherwise,
select at = argmaxaQ(st, a; θ)

11 Execute at to observe rt and st+1

12 Store (st, at, rt, st+1) in D
13 Sample a minibatch of transitions D′ from D

according to (7) and (8)
14 for ∀zi = (si, ai, ri, si+1) ∈ D′ do
15 if st+1 6= se then // st+1 is not terminal state
16 yi =

ri+γ·Q
(
si+1, argmaxaQ(si+1, a; θ); θ

−)
17 else
18 yi = ri

19 Perform gradient descent with respect to θ
20 Compute and record TD error {δi : ∀zi ∈ D′}
21 Reset Q̂← Q every C steps
22 st ← st+1 // go to next step
23 uk = uk + rt // update local profit
24 Update status of tasks and users

25 if uk > u then
26 u = uk // update global maximum profit
27 Record paths {Pj : ∀wj ∈W}
28 k = 0 // reset k with improvement

29 else
30 k = k + 1 // increase k without improvement

31 return u and {Pj : ∀wj ∈W}

With respect to the probability of action selection at each
step, it is a good strategy to use a large one at the beginning to
widely explore the solution space and then gradually reduce to
a small probability at the end, in order to exploit the best policy
that has been found. In this case, the probability of random
selection ε starts with a large value εmax and then decays
exponentially towards a small value εmin. A decay factor η
controls the decay rate. Then, ε is determined as follows:

ε = εmin + (εmax − εmin) ∗ e−k/η (9)

where k indicates the current episode.

7

Algorithm 2: ACS solution.
Input: V (tasks), W (users), N (number of ants), ε

(probability of random selection), M (maximum
number of episodes with no improvement)

Output: u (platform’s profit), {Pj : ∀wj ∈W}
(travelling paths of mobile users)

1 u← −∞ // global maximum profit
2 k ← 0 // number of episodes with no improvement
3 Initialize pheromone
4 while k < M do
5 uk ← −∞ // local profit in current episode
6 for p from 1 to N do // for each ant
7 up ← 0 // profit of ant
8 for ∀vi ∈ V do // for each task
9 if there exist feasible users for task vi then

10 Random selection with probability ε;
otherwise, greedy selection (pheromone)

11 Get profit of this assignment as ui
12 up ← up + ui // update profit of ant
13 Update status of tasks and users

14 Locally update pheromone
15 if up > uk then
16 uk = up // update local profit
17 Record paths {Pj : ∀wj ∈W} of current ant

18 Globally update pheromone
19 if uk > u then
20 u = uk // update global maximum profit
21 Record paths {Pj : ∀wj ∈W} in current episode
22 k = 0 // reset k with improvement

23 else
24 k = k + 1 // increase k without improvement

25 return u and {Pj : ∀wj ∈W}

Based on DDQN in (6), PER in (7) and (8), and decayed ex-
ploration in (9), we propose a DDQN-PER solution to the task
allocation problem in DeepSensing. Alg. 1 shows details of
the DDQN-PER solution. Lines 1-3 initialize policy network,
target network, and replay memory, respectively. The replay
memory is a cyclic buffer to record transitions. Line 4 sets
a variable to record the global maximum profit. The learning
process ends when it cannot improve the global maximum
profit within a certain number of continuous episodes. A
variable (i.e., k) is used to count episodes with no improvement
in line 5. Line 6 indicates that the learning process continues
if k does not reach a predefined threshold (i.e., M). In each
episode, a local profit and start state are initialized first in
lines 7-8. If the current state is not a terminal state (line 9),
a ε-greedy strategy is applied to select an action based on the
policy network (line 10). In the ε-greedy strategy, a random
action is selected with probability ε; Otherwise, the platform
greedily selects the action with the largest Q-value. By execut-
ing the selected action, the reward and next state are observed
by the platform (line 11). Then, the complete transition is also
stored in the replay memory (line 12). During each learning
step, the platform samples a minibatch of transitions (line 13)

Algorithm 3: ε-greedy solution.
Input: V (tasks), W (users), ε (probability of random

selection), M (maximum number of episodes
with no improvement)

Output: u (platform’s profit), {Pi : ∀wi ∈W}
(travelling paths of mobile users)

1 u← −∞ // global maximum profit
2 k ← 0 // number of episodes with no improvement
3 while k < M do
4 uk ← 0 // local profit in current episode
5 for ∀vi ∈ V do // for each task
6 if there exist feasible users for task vj then
7 Random selection with probability ε;

otherwise, greedy selection (profit)
8 Get profit of this assignment as ui
9 uk ← uk + ui // update local profit

10 Update status of tasks and users

11 if uk > u then
12 u = uk // update global maximum profit
13 Record paths {Pj : ∀wj ∈W}
14 k = 0 // reset k with improvement

15 else
16 k = k + 1 // increase k without improvement

17 return u and {Pj : ∀wj ∈W}

to update the policy network according to (6) (lines 14-18).
Next, a gradient descent step on

∑
zi∈D′

(
yi −Q(si, ai; θ)

)2
is performed in line 19 with respect to parameters θ. Line 20
indicates that the TD error is also computed and stored. The
target network is periodically replaced by the policy network
after a certain number of learning steps (line 21). Line 22
updates the current state. Line 23 credits the reward to local
profit. Line 24 updates the environment. If the local profit
improves the global maximum profit (line 25), the global
maximum profit is updated in line 26. Meanwhile, the paths of
mobile users are recorded in line 27, and variable k is set to 0
in line 28. Otherwise, variable k is added by 1 (lines 29-30).
Finally, line 31 returns the final result.

B. Baseline Solutions

For performance comparison, we propose three baseline
solutions to the task allocation problem, i.e., ant colony system
(ACS), ε-greedy, and random solutions.

Ant colony system is a swarm intelligence method that has
been successfully applied to many combinatorial optimization
problems, e.g., the travelling salesman problem [45,46]. ACS
is a bio-inspired algorithm that imitates the behavior of real
ants when they search for food. Each ant follows a path to its
destination and releases a chemical, called pheromone, along
the path. The pheromone, a communication medium, is used
to guide other ants to find their paths. Since the pheromone
evaporates over time, the path to a food source is frequently
associated with the high-level pheromone and the ants are
more likely to follow the path. Finally, the positive feedback
of the pheromone leads to the optimal path for the ants.

8

Alg. 2 shows ACS solution to the task allocation prob-
lem. Lines 1-3 initialize the global maximum profit, number
of episodes without improvement, and pheromone. Line 4
indicates that the searching process ends when there is no
improvement found within M episodes. In each episode, a
local profit is initialized in line 5. For each ant (line 6), there
is an associated profit (line 7) and it sequentially selects actions
(line 8) if there exist feasible ones (line 9). Here, the sensing
tasks are ordered based on a rule of “first-arrive-first-assign”.
Then, the action selection follows the ε-greedy strategy in line
10. The profit of the selected assignment is added to the profit
of the ant (lines 11-12). Line 13 updates the environment. The
pheromone is locally updated for each ant in line 14. Lines
15-17 record the best result in the current episode. Then, the
pheromone is globally updated for each episode in line 18.
There are two types of updates for the pheromone, i.e., local
and global updates. More details concerned with updating the
pheromone can be found in [45]. Lines 19-24 record the best
result in all episodes and update variable k. Line 25 returns
the final result.

In existing studies, greedy-based solutions are widely used
[47,48]. Hence, we consider ε-greedy solution as a baseline,
where the platform randomly selects mobile users with prob-
ability ε; Otherwise, the mobile user with the largest profit is
selected. Alg. 3 shows details of ε-greedy solution.

In addition, we propose random solution as another baseline,
which changes the ε-greedy selection (see line 7 in Alg. 3) to
a pure random selection.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we evaluate the performance of DDQN-PER
solution and the baseline solutions via simulations.

A. Simulation Settings

We set up the sensing region as a square area with side
length of 100 meters. Then, 50 sensing tasks and 15 mobile
users are uniformly distributed in this area. There are three dif-
ferent scenarios with 5, 10, and 15 mobile users respectively,
shown in Fig. 3. Euclidean distance is used. The travelling
speed of each mobile user is 1 meter per second (i.e., normal
walking speed of people) and the reward per meter (i.e., λj
in (1)) is 0.1 unit currency. Mobile users randomly appear in
the sensing area between 0 and 30 (time unit is second). Their
participation time lasts for 90 seconds. For each sensing task,
the start time ranges from 0 to 60 (in seconds) and the length
of the time window is 60 seconds. The budget of each sensing
task is 3 unit currency.

The simulations end when there are 1000 episodes without
improvement. In DDQN-PER solution (see Alg. 1), the ca-
pacity of replay memory is 10000. The probability of random
selection starts at 0.9 and then gradually decays to 0.05 with
a decay factor of 200. The target network is replaced by the
policy network every 100 learning steps. The discount factor
is set to 0.9. Both the policy network and the target network
are DNNs with one hidden layer. Here, rectified linear unit
(ReLU) is used in the DNNs. The dimensions of input layer
and output layer depend on the numbers of sensing tasks and

TABLE II
SIMULATION PARAMETERS.

Parameter Value

Sensing area 100× 100
Number of sensing tasks 50
Number of mobile users 5, 10, 15
Starts of tasks’ time windows 0-60
Duration of tasks’ time windows 60
Budgets of tasks 3
Starts of users’ participation time 0-30
Duration of users’ participation time 90
Travelling speeds of users 1
Rewards per distance unit of users 0.1
Number of episodes without improvement 1000
Capacity of replay memory in Alg. 1 10000
Start probability of random selection in (9) 0.9
End probability of random selection in (9) 0.05
Decay factor in (9) 200
Steps to update target network in Alg. 1 100
Discount factor in Alg. 1 0.9
Size of hidden layer in Alg. 1 128
Size of minibatch in Alg. 1 128
Number of ants in Alg. 2 10
Probability of random selection in Alg. 2 0.05
Probability of random selection in Alg. 3 0.05

mobile users, while the size of the hidden layer is set to 128.
The number of sampled transitions in a minibatch is also 128.
In ACS solution (see Alg. 2), the number of ants is 10. The
probabilities of random selection in both ACS solution and
ε-greedy solution (see Alg. 3) are 0.05. Lastly, the settings of
all simulation parameters can be found in Table II.

B. Platform’s Profit

The platform’s profit is the objective of the task allocation
problem in (3). Thus, it is the most important indicator of the
performance. Fig. 4 shows the maximum platform’s profits
over episodes, i.e., the largest profit found before the current
episode. We can see that DDQN-PER solution finally achieves
the largest profit in all three scenarios. DDQN-PER solution
significantly improves the maximum platform’s profit at the
beginning hundreds of episodes and then gradually converges
to the final results. We can also clearly see when DDQN-PER
solution outperforms the baseline solutions from the curves
in Fig. 4, and the improving curves of DDQN-PER solution
demonstrate its ability to solve the task allocation problem.

In order to compare different solutions more easily, Fig. 5
shows the final results in terms of the platform’s profit. DDQN-
PER solution attains the largest profits in all three scenarios,
i.e., 57.31, 84.66, and 98.44, respectively. Although ACS so-
lution can leverage the historical information (i.e., pheromone)
in order to perform better than ε-greedy and random solutions,
there is still a gap between DDQN-PER and ACS solutions.
It is obvious that the increasing number of mobile users helps
to improve the final platform’s profits. This is because the
platform can have more and better choices to assign sensing
tasks if the additional mobile users participate in DeepSensing.
However, the number of mobile users has little influence on
random solution and the profits in three scenarios are 23.60,
28.73, and 27.10, respectively. We also observe that the gap
between DDQN-PER and ACS solutions becomes smaller with
the increasing number of mobile users, i.e., 25.51 (5 users),

9

0m 20m 40m 60m 80m 100m
0m

20m

40m

60m

80m

100m

1

2

3

4

5

tasks users

(a) 5 users.

0m 20m 40m 60m 80m 100m
0m

20m

40m

60m

80m

100m

1

2

3

4

5

6 7
8

9
10

tasks users

(b) 10 users.

0m 20m 40m 60m 80m 100m
0m

20m

40m

60m

80m

100m

1

2

3

4

5

6 7
8

9
10

11

12

13

14

15

tasks users

(c) 15 users.

Fig. 3. Simulation scenarios.

1 500 1000 1500 1824
Episode

0

20

40

60

80

100

M
ax
im
um

 p
ro

fit

random ε-greedy ACS DDQN-PER

(a) 5 users.

1 500 1000 1500 2000 2500
Episode

0

20

40

60

80

100

M
ax
im
um

 p
ro

fit

random ε-greedy ACS DDQN-PER

(b) 10 users.

1 500 1000 1500 1961
Episode

0

20

40

60

80

100

M
ax

im
um

 p
ro

fit

random ε-greedy ACS DDQN-PER

(c) 15 users.

Fig. 4. Maximum platform’s profits over episodes.

1 500 1000 1500 1824
Episode

0

20

40

60

80

100

Pr
of
it

DDQN-PER

(a) 5 users.

1 500 1000 1500 1965
Episode

0

20

40

60

80

100

Pr
of
it

DDQN-PER

(b) 10 users.

1 500 1000 1500 1961
Episode

0

20

40

60

80

100

Pr
of
it

DDQN-PER

(c) 15 users.

Fig. 6. Training processes of DDQN-PER solution.

19.42 (10 users), and 12.35 (15 users), respectively. The reason
is that the redundant mobile users can reduce the difficulty of
finding a satisfactory solution. The platform can easily find
the appropriate mobile user for sensing tasks at a very low
cost. Therefore, ACS solution with a weaker searching ability
is approaching DDQN-PER solution in performance, due to
the increasing number of mobile users.

Fig. 6 shows the training processes of DDQN-PER solution
in the three scenarios. Each training process shows an increas-
ing trend of the platform’s profit over the number episodes. Al-
though the learning process presents a general growing trend,
many points with small profits during the process still show the
exploration executed by DDQN-PER solution. In addition, the
training processes in the three scenarios end at similar numbers
of episodes, i.e., 1824, 1965, 1961, respectively. This shows

that the increasing number of mobile users in the simulations
does not have a strong influence on the number of episodes
required for the training.

C. Completed Tasks

A sensing task is considered to be completed if it is
assigned and performed. The number of completed tasks is
the important part of the performance in DeepSensing. On
the one hand, it is related to the platform’s profit because
a larger profit can be obtained if more sensing tasks are
completed. On the other hand, it prevents a loss of customers
when data requesters drop out of DeepSesning because their
published sensing tasks are not finished in the previous sensing
activities. Fig. 7 shows the numbers of completed tasks in
three scenarios. We observe that the number of completed

10

5 10 15
Number of users

0

20

40

60

80

100

M
ax

im
um

 p
ro

fit

random ε-greedy ACS DDQN-PER

Fig. 5. Maximum platform’s profits in all episodes.

5 10 15
Number of users

0

10

20

30

40

50

Nu
m

be
r o

f c
om

pl
et

e
ta

sk
s

random ε-greedy ACS DDQN-PER

Fig. 7. Numbers of completed tasks.

tasks increases with the number of mobile users. For instance,
there are 31, 46, and 49 sensing tasks performed by 5, 10, and
14 mobile users in DDQN-PER solution, respectively. In the
simulation scenario with 15 mobile users, both DDQN-PER
and ACS solutions accomplish almost all sensing tasks (i.e.,
50 and 49). Thus, 15 mobile users are sufficient to perform
the published sensing tasks in the simulations.

Although the numbers of completed tasks in DDQN-PER
and ACS solutions are almost the same in the scenarios with 10
and 15 mobile users (see Fig. 7), the platform’s profits in the
two solutions are quite far apart (see Fig. 5). That is to say, the
platform receives different profits from each completed task in
these solutions. Fig. 8 shows the profits of each completed task
in all three scenarios. We can see that DDQN-PER solution
achieves the largest profits (around 2) in the three scenarios.
Fig. 5, Fig. 7, and Fig. 8 indicate that DDQN-PER solution
not only achieves the largest overall profit, but also obtains
the largest average profit of each completed task.

D. Travelling Paths of Users

Since the task allocation problem is also considered as a
path planning problem, the planned paths of mobile users are
critical for the platform’s performance. Fig. 9 shows the aver-
age travelling distances of mobile users in three scenarios. We
observe that the average travelling distances decrease with the
numbers of mobile users. For instance, the average travelling
distances of DDQN-PER solution in the three scenarios are
71.39, 53.34, and 32.37, respectively. There are less sensing
tasks on average assigned to each mobile user when more
mobile users are involved, and then mobile users can plan
shorter paths to perform the assigned tasks. Fig. 9 also presents

5 10 15
Number of users

0.0

0.5

1.0

1.5

2.0

Pr
of
it
pe

r t
as
k

random ε-greedy ACS DDQN-PER

Fig. 8. Profits of each completed task.

5 10 15
Number of users

0

30

60

90

Av
er
ag
e
tra

ve
llin

g
di
st
an
ce

random ε-greedy ACS DDQN-PER

Fig. 9. Average travelling distances of users.

the fact that DDQN-PER solution has the smallest average
travelling distance of mobile users in the three scenarios. As
mentioned in (1), the rewards to mobile users are proportional
to the travelling distances of their paths. That is to say, DDQN-
PER solution distributes the smallest total reward to mobile
users. Since the platform’s profit is the difference between the
total budget of sensing tasks and the total reward to mobile
users, DDQN-PER solution achieves the largest profits (see
Fig. 5).

To illustrate more details of the planned travelling paths,
Fig. 10 shows the paths of mobile users in the scenario
with 15 mobile users. We can see that the paths of mobile
users are planned differently by the proposed solutions. The
paths in random solution are the least organized, full of path-
crossings due to its pure random nature. Compared with the
paths in random solution, the paths in ε-greedy and ACS
solutions are better-planned. However, there are still some
path-crossings, e.g., paths of mobile user #3, #13, and #14
in ACS solution. From the perspective of space, path-crossing
means that some mobile users have to travel a long way to
perform the assigned sensing tasks. This increases the cost and
reduces the platform’s profit. Finally, the paths in DDQN-PER
solution are well organized almost without path-crossings.

VI. CONCLUSION

In this paper, we built DeepSensing as a novel MCS
framework to efficiently assign sensing tasks to mobile users.
We presented the structure of DeepSensing and formulated
the task allocation problem in DeepSensing as a path plan-
ning problem. We also proved the formulated problem to
be NP-hard. To optimally solve the task allocation problem,

11

0m 20m 40m 60m 80m 100m
0m

20m

40m

60m

80m

100m

1

2

3

4

5

6 7
8

9
10

11

12

13

14

15

random

(a) Random solution.

0m 20m 40m 60m 80m 100m
0m

20m

40m

60m

80m

100m

1

2

3

4

5

6 7
8

9
10

11

12

13

14

15

ε-greedy

(b) ε-greedy solution.

0m 20m 40m 60m 80m 100m
0m

20m

40m

60m

80m

100m

1

2

3

4

5

6 7
8

9
10

11

12

13

14

15

ACS

(c) ACS solution.

0m 20m 40m 60m 80m 100m
0m

20m

40m

60m

80m

100m

1

2

3

4

5

6 7
8

9
10

11

12

13

14

15

DDQN-PER

(d) DDQN-PER solution.

Fig. 10. Travelling paths of users.

we proposed a solution based on double deep Q-network
with prioritized experience replay from the perspective of
decision making. We also presented three baseline solutions,
i.e., ant colony system, ε-greedy, and random solutions, for
performance comparison. Finally, the results of numerical
simulations show that our proposed solution outperforms the
baseline solutions in terms of the platform’s profit, and also
plans better-organized travelling paths for mobile users.

REFERENCES

[1] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: Current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11, pp.
32–39, 2011.

[2] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang, and X. Zhou,
“Mobile crowd sensing and computing: The review of an emerging
human-powered sensing paradigm,” ACM Computing Surveys, vol. 48,
no. 1, pp. 7:1–7:31, 2015.

[3] Z. Pan, H. Yu, C. Miao, and C. Leung, “Crowdsensing air quality
with camera-enabled mobile devices,” in Proceedings of the 31st AAAI
Conference on Artificial Intelligence, 2017, pp. 4728–4733.

[4] X. Wang, Z. Ning, X. Hu, E. C. H. Ngai, L. Wang, B. Hu, and R. Y.
Kwok, “A city-wide real-time traffic management system: Enabling
crowdsensing in social Internet of vehicles,” IEEE Communications
Magazine, vol. 56, no. 9, pp. 19–25, 2018.

[5] S. Jovanovic, M. Jovanovic, T. Skoric, S. Jokic, B. Milovanovic,
K. Katzis, and D. Bajic, “A mobile crowd sensing application for
hypertensive patients,” Sensors, vol. 19, no. 2, p. 400, 2019.

[6] F. Restuccia, N. Ghosh, S. Bhattacharjee, S. K. Das, and T. Melodia,
“Quality of information in mobile crowdsensing: Survey and research
challenges,” ACM Transactions on Sensor Networks, vol. 13, no. 4, pp.
34:1–34:43, 2017.

[7] H. Gao, C. H. Liu, W. Wang, J. R. Zhao, Z. Song, X. Su, J. Crowcroft,
and K. K. Leung, “A survey of incentive mechanisms for participatory
sensing,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp.
918–943, 2015.

[8] L. G. Jaimes, I. J. Vergara-Laurens, and A. Raij, “A survey of incentive
techniques for mobile crowd sensing,” IEEE Internet of Things Journal,
vol. 2, no. 5, pp. 370–380, 2015.

[9] L. Kazemi and C. Shahabi, “Geocrowd: Enabling query answering
with spatial crowdsourcing,” in Proceedings of the 20th International
Conference on Advances in Geographic Information Systems, 2012, pp.
189–198.

[10] X. Tao and W. Song, “Location-dependent task allocation for mobile
crowdsensing with clustering effect,” IEEE Internet of Things Journal,
vol. 6, no. 1, pp. 1029–1045, 2019.

[11] S. R. B. Gummidi, X. Xie, and T. B. Pedersen, “A survey of spatial
crowdsourcing,” ACM Transactions on Database Systems, vol. 44, no. 2,
pp. 8:1–8:46, 2019.

[12] D. Deng, C. Shahabi, and L. Zhu, “Task matching and scheduling
for multiple workers in spatial crowdsourcing,” in Proceedings of the
23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2015, pp. 21:1–21:10.

12

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, 2011.

[14] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[17] W. Guo, W. Zhu, Z. Yu, J. Wang, and B. Guo, “A survey of task
allocation: Contrastive perspectives from wireless sensor networks and
mobile crowdsensing,” IEEE Access, vol. 7, pp. 78 406–78 420, 2019.

[18] J. Wang, L. Wang, Y. Wang, D. Zhang, and L. Kong, “Task allocation in
mobile crowd sensing: State-of-the-art and future opportunities,” IEEE
Internet of Things Journal, vol. 5, no. 5, pp. 3747–3757, 2018.

[19] B. Guo, Y. Liu, L. Wang, V. O. K. Li, J. C. K. Lam, and Z. Yu, “Task
allocation in spatial crowdsourcing: Current state and future directions,”
IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1749–1764, 2018.

[20] D. Zhang, H. Xiong, L. Wang, and G. Chen, “CrowdRecruiter: Selecting
participants for piggyback crowdsensing under probabilistic coverage
constraint,” in Proceedings of ACM International Joint Conference on
Pervasive and Ubiquitous Computing, 2014, pp. 703–714.

[21] H. Xiong, D. Zhang, G. Chen, L. Wang, V. Gauthier, and L. E. Barnes,
“iCrowd: Near-optimal task allocation for piggyback crowdsensing,”
IEEE Transactions on Mobile Computing, vol. 15, no. 8, pp. 2010–2022,
2016.

[22] W. Liu, Y. Yang, E. Wang, and J. Wu, “Dynamic User Recruitment with
Truthful Pricing for Mobile CrowdSensing,” in Proceedings of the 39th
IEEE International Conference on Computer Communications, 2020.

[23] S. He, D. Shin, J. Zhang, and J. Chen, “Near-optimal allocation algo-
rithms for location-dependent tasks in crowdsensing,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 4, pp. 3392–3405, 2017.

[24] N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding,
F. Zhao, and H. Cha, “Piggyback CrowdSensing (PCS): Energy efficient
crowdsourcing of mobile sensor data by exploiting smartphone app op-
portunities,” in Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, 2013, pp. 7:1–7:14.

[25] H. Xiong, D. Zhang, L. Wang, and H. Chaouchi, “EMC3: Energy-
efficient data transfer in mobile crowdsensing under full coverage
constraint,” IEEE Transactions on Mobile Computing, vol. 14, no. 7,
pp. 1355–1368, 2015.

[26] H. Xiong, D. Zhang, L. Wang, J. P. Gibson, and J. Zhu, “EEMC:
Enabling energy-efficient mobile crowdsensing with anonymous partici-
pants,” ACM Transactions on Intelligent Systems and Technology, vol. 6,
no. 3, pp. 39:1–39:26, 2015.

[27] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on Pure and
Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[28] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Informa-
tion Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[29] L. Wang, D. Zhang, A. Pathak, C. Chen, H. Xiong, D. Yang, and
Y. Wang, “CCS-TA: Quality-guaranteed online task allocation in com-
pressive crowdsensing,” in Proceedings of ACM International Joint
Conference on Pervasive and Ubiquitous Computing, 2015, pp. 683–
694.

[30] Z. Liu, Z. Li, and K. Wu, “UniTask: A unified task assignment design
for mobile crowdsourcing-based urban sensing,” IEEE Internet of Things
Journal, vol. 6, no. 4, pp. 6629–6641, 2019.

[31] B. Guo, Y. Liu, W. Wu, Z. Yu, and Q. Han, “ActiveCrowd: A framework
for optimized multitask allocation in mobile crowdsensing systems,”
IEEE Transactions on Human-Machine Systems, vol. 47, no. 3, pp. 392–
403, 2017.

[32] E. Wang, Y. Yang, J. Wu, W. Liu, and X. Wang, “An efficient prediction-
based user recruitment for mobile crowdsensing,” IEEE Transactions on
Mobile Computing, vol. 17, no. 1, pp. 16–28, 2018.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[34] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[35] Y. Li, “Deep reinforcement learning: An overview,” CoRR, 2017.
[Online]. Available: http://arxiv.org/abs/1701.07274

[36] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the 30th AAAI Conference
on Artificial Intelligence, 2016, pp. 2094–2100.

[37] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proceedings of the 4th International Conference on Learning
Representations, 2016.

[38] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang, and
D. I. Kim, “Applications of deep reinforcement learning in communi-
cations and networking: A survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[39] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L. Wang,
“Deep reinforcement learning for mobile 5G and beyond: Fundamentals,
applications, and challenges,” IEEE Vehicular Technology Magazine,
vol. 14, no. 2, pp. 44–52, 2019.

[40] Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang, “Artificial intelli-
gence empowered edge computing and caching for internet of vehicles,”
IEEE Wireless Communications, vol. 26, no. 3, pp. 12–18, 2019.

[41] Y. Dai, D. Xu, S. Maharjan, Z. Chen, Q. He, and Y. Zhang, “Blockchain
and deep reinforcement learning empowered intelligent 5G beyond,”
IEEE Network, vol. 33, no. 3, pp. 10–17, 2019.

[42] X. Tao and W. Song, “Task allocation for mobile crowdsesning with
deep reinforcement learning,” in Proceedings of IEEE Wireless Commu-
nications and Networking Conference, 2020, to appear.

[43] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval
Research Logistics, vol. 34, no. 3, pp. 307–318, 1987.

[44] M. G. Kantor and M. B. Rosenwein, “The orienteering problem with
time windows,” Journal of the Operational Research Society, vol. 43,
no. 6, pp. 629–635, 1992.

[45] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[46] M. Dorigo and M. Birattari, Ant Colony Optimization. Springer, 2010.
[47] M. H. Cheung, R. Southwell, F. Hou, and J. Huang, “Distributed time-

sensitive task selection in mobile crowdsensing,” in Proceedings of the
16th ACM International Symposium on Mobile Ad Hoc Networking and
Computing, 2015, pp. 157–166.

[48] X. Wang, W. Wu, and D. Qi, “Mobility-aware participant recruitment for
vehicle-based mobile crowdsensing,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 5, pp. 4415–4426, 2018.

Xi Tao received both his B.Eng. degree and M.Eng degree in Electrical
Engineering from Xi’an Jiaotong University, Xi’an, China, in 2013 and
2016, respectively. He received his Ph.D. degree in Computer Science from
University of New Brunswick, Fredericton, NB, Canada, in 2020. He is
currently a postdoctoral researcher in the Department of Computer Science
and Operations Research, University of Montreal, Montreal, QC, Canada. His
research interests include mobile crowdsensing, edge computing, and IoT.

Abdelhakim Senhaji Hafid is Full Professor at the University of Mon-
treal. He is the founding director of Network Research Lab and Montreal
Blockchain Lab. He is research fellow at CIRRELT, Montreal, Canada. Prior
to joining University of Montreal, he spent several years, as senior research
scientist, at Bell Communications Research (Bellcore), NJ, US, working in
the context of major research projects on the management of next generation
networks. Dr. Hafid was also Assistant Professor at Western University
(WU), Canada, Research Director of Advance Communication Engineering
Center (venture established by WU, Bell Canada and Bay Networks), Canada,
researcher at CRIM, Canada, visiting scientist at GMD-Fokus, Germany and
visiting professor at University of Evry, France. Dr. Hafid has extensive
academic and industrial research experience in the area of the management
and design of next generation networks. His current research interests include
IoT, Fog/edge computing, Blockchain, and Intelligent Transport Systems.

