XML: Looking at the Forest Instead of
the Trees

Guy Lapalme
Professor
Département d'informatique et de recherche opérationnelle
Université de Montreéal

C.P. 6128, Succ. Centre-Ville
Montréal, Québec
Canada H3C 3J7

| apal mre@ro. unontreal . ca

http://www.iro.umontreal.ca/~lapalme/ForestinsteadOfTheTrees/

»

rali

Publication date August 01, 2022

About this document
This document has been generated with RenderX XEP.
					Visit http://www.renderx.com/ to learn more about
					RenderX family of software solutions for digital
					typography.

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/

XML: Looking at the Forest Instead of the Trees
Guy Lapalme

Professor

Département d'informatique et de recherche opérationnelle Université de Montréal

C.P. 6128, Succ. Centre-Ville
Montréal, Québec

Canada H3C 3J7

| apal me@ro. unontreal . ca

http://www.iro.umontreal .ca/~lapalme/ForestInsteadOf TheTrees/

Publication date August 01, 2022

Abstract

This tutorial gives a high-level overview of the main principles underlying some XML technologies: DTD, XML
Schema, RELAX NG, Schematron, XPath, XSL stylesheets, Formatting Objects, DOM, SAX and StAX models of
processing. They are presented from the point of view of the computer scientist, without the hype too often associated
with them. We do not give a detailed description but we focus on the relations between the main ideas of XML and
other computer language technologies. A single compact pretty-print example is used throughout the text to illustrate
the processing of an XML structure with XML technologies or with Java programs. We also show how to create an
XML document by programming in Java, in Ruby, in Python, in PHP, in JavaScript and in Swift.

The source code of the example XML files and the programs are available either at the companion web site of this
document or by clicking on the file name within brackets at the start of the caption of each example. The source file
will then be shown in aweb page or in a new tab of the browser. Should the page be interpreted by the browser, the
reader can ask for the source of the page.

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/

Acknowledgements

The writing of this XML tutorial started in the Fall of 2002 during my sabbatical at the Université de
Grenoble and at Xerox Research Centre Europe. | wish to thank Gilles Sérasset, Christian Boitet, Pierre
Isabelle and Marc Dymetman for many fruitful discussions.

Since then, the document has been improved (at least it hasincreased in the number of pages...) after having
used it in teaching undergraduate and graduate courses at the Université deMontréal: IFT3225 and IFT6281.
| especially thank Fabrizio Gotti for his careful proofreading and many insightful comments.

In 2007, | decided to start practicing what | preach by using XML technologies for the organization of the
manuscript of thistutorial. Fabrizio Gotti converted the origina LaTeX files to DocBook so that now PDF
and HTML versions can be produced from a single set of XML source files.

Table of Contents

O [11T [F o1 o o I PP TOUPPRUPPPRP 1
2. INSLANCE DOCUMIBNL ... ettt ns e ssnnnnnnnee 9
A R N\ =11 0= o = OSSP 13

3. DOCUMENT VAITABTONeeiiiiiiiee ettt ettt e et e e s st e e e s sab e e e et e e e e s nnbeeeeeane 17
3.1. Document Type Definition (DTD)cuvviiiiiiee e e e e e 17
3.1.1. Associating an Instance FIle With aDTDeevviieeiiiiiiiieeeee e, 21

S o 1= 1= PO PPPR PRI 22
AN I 1 o] L= Y o= PSSR 33

3.2.2. COMPIEX TYPES ...ttt eee ettt e e e e e et e e e e e e e e et e e e e e e s s s bt beeeeeaeeeeannnrnnees 34

3.2.3. Namespaces iN SCHEMESccuviiiiiiie e 34

3.2.4. Overview of the XML SChEMEScooiiiiiiiiiiiiiee et 35

3.3 RELAX NG Lottt ettt ekt e e e et e e ettt e e e et e e e e nbe e e e e bae e e e e 38

RS 1< 11 1o RO PO P PPRTTPPRT 43

3.5. Associating an Instance File With @ SChemacoooooiiiiiiiii e 48

3.6. Additional Information 0N XML SCREMA.........ccoiiiiiiiiiiiiie e 49
1 [PPSR 51
4.1. XPath eXpression COMPONENTSuuuiiiieeeeeiiiiiieeee e e e e e s s seirrree e e e e e e s ssntrrerereaaessssnsnrraereeaeens 51

4.2, XPath TUNCLIONS ...cooiiiiiii ettt e e et e et e e st e e e s nnabeae s 55

4.3, XPath @XAMPIES ..o e e aaas 57

4.4. Additional Information 0N XPathc.ueiiiiiiiiiiiiiie e 58

5. DOCUMENt TraNSFOMMELIONcceiiiiiieiiiiiie ettt ettt e et e e s st e e e s asbb e e e s anbe e e e s snbreeesanns 59
5.1 XSL TranSfOrMELIONSvvveeiiiiieeeiiiieee e sttt ee e et e s e e e ssbe e e e s asbbe e e s ssnbeeeesasbeeeesnnbneeeeaan 60

5.2. Transformation iN HTMLcooiiiiiiiiiiiiee et e e nbae e e anes 63
ST R = o = T PP PPPPOPPPRR 63

5.2.2. Computing New Informationccceeiiiiiiiiieiiie e 68

5.2.3. BUHEIEA LISES .oooiuiiiiieiiiieiie ettt sttt e ettt e e e st e e e e 76

5.3. Transformation into a Compact Textual FOIMMooiiiiiiiiiiie e e 80

5.4. Transformation into PDF With XSL-FOcciiiiiiiiiiiiiee et 84
5.4.1. XSL-FO INPULt tO the RENAEIEYovviiiiie et 86

5.4.2. From the Instance Document to the XSL-FO filecoocviiiiiiiiiiiii e, 87

5.5. Transformation With @ CSSooiiiiiiiiiiiiiiie e 93

5.6. Associating an Instance Fileto a StylESheetoooooiiiiiiiiiie e 95

5.7. Additional INformation 0N XSLcooiiuiiieiiiiiie et e s nbae e e 97

6. DOCUMENT QUETY ...eeiiitiieie e ettt sttt e e e e e et e et s e s e e e e e e e te s e e e e e e ee e et b naeeeeeeeeeebaneeeaeaeenes 99
6.1. XQuUErY OULPUL IN HTIML ...eiiiiiiiiie et e e e e e s e e e e e e e e e eannnees 101
TN 0 T o = PP 101

6.1.2. Computing New INfOrMaLIoNooiiiiiiiiiee e 103

6.1.3. BUIEIEH LISES ..uveiiiiiiiiieieiiiie ettt e e 107

6.2. Transformation into a Compact Textual Form with XQUENYccccevvveeeiiiiiiiiieeeee e, 110

6.3. QUENYING AN iNSLANCE FIl ...ccee e e e 112

6.4. Additional Information 0N XQUENYuvieiiieeeiiiiiiiiiiiee e e e e e e e s e e e e e e e eanneaes 112

7. RDF : Resource DesCription FrameWOIKcccoiiiiiiiiiiiei et e e e s e e e e s ssanarreeeea e 113
7.1 TripleS IN RDF/XIML oottt e e 116

7.2, RDF SCREIMA ...ttt e e st e e e e b b e e e s bbe e e e e nnnees 123

7.3 RDF QUENESttt e e e e e e e e s et e e e e e e e s e e an b b e e e e e e e e e eeeannnaees 124

T4, RDF VEISUS XML oottt ittt e e sttt e st e e e abe e e e e 125

XML: Looking at the Forest Instead

of the Trees
7.5. Additional INformation 0N RDFuuiiiiiieeee et e e e e 126
8. Document Processing by Programming iN JAVAc.uuveiiiiiiiieiiiiee et 127
8.1. Document Object MOl (DOM)oiiiiiiiiiiiiie et 128
8.2. SIMPIE AP FOr XML (SAX) 1.eeecveeeeeeeeeeeeeeeeeseeeee e es st es s eneneea s eseneneseeanean e 132
8.3. SrEAM AP FOr XML (SEAX) weecvvieieeeeee e et ee st en et en e s s eeannan e 136
8.4. Showing an INtEractive TrEE VIBWccoiuiieieiiiiiie ettt 138
8.4.1. Building aJTr ee Wit DOMcooiiiiiiiiiiiiie et 139
8.4.2. BuildingaJTree With SAX ... 141
8.4.3. BuildingaJTree With SEAX ..o 143
8.5. Additional Information on Programming MOAEISccoeeiiiiiiiiiiiiie e, 144
9. Document Creation by Programming iN JAVAccccuvieiieiie e e srrree e 145
9.1. Creating @ DOM DOCUMENTceiieeiiiiiiiieii e e s ettt e e e s e e e e e e e s e st e e e e e e s e e enannnees 145
9.2. Creating a Document With SAX EVENEScevviiiiiiiicc et 149
9.3. Creating a Document with SEAX Streamingcccvvviieiieeeis e 153
9.4. Additional Information on XML Document Creationcoocveeeeniiieeeeinieeeessiieee e 155
10. AITErNatiVe QPPIOBCIESuvviiiiie e e e e s e e e e e e e e e et e e eaeeesaaaaebeeeeeaeeeaaanns 157
10.1. XML processing With RUDYouuiiiiiiiii e 157
10.1.1. DOM parsing USING RUDY ...ttt e e 158
10.1.2. SAX parsing USING RUDYcooiiiiiie e 159
10.1.3. Creating an XML document using RUDYcveeiviieiiiiiiiieee e 161
10.2. XML processing With PYthonoooeiiiiiii e 165
10.2.1. DOM parsing using PythOnouviiiiiiii e 165
10.2.2. SAX parsing USING PYthOn ... 166
10.2.3. StAX parsing USING PYthOncuviiieiie e 168
10.2.4. Creating an XML document using Python ... 171
10.2.5. Other means of dealing with XML documents using Pythoncccccceeeeeens 173
10.3. XML processing With PHP ... 178
10.3.1. DOM parsing USING PHP ... 178
10.3.2. SAX parsing USING PHP ..o 180
10.3.3. STAX parsing USING PHP ..o 183
10.3.4. Creating an XML document using PHP ... 184
10.3.5. Other means of dealing with XML documentsusing PHPccccoieeiieiiis 187
10.4. XML processing With JAVASCIIPLuveriieeiii it e e e e e 193
10.4.1. DOM parsing USING JAVASCIIPLuvvviieiieeeiiiiiiiieeiee e e e e esiiire e e e e e e e s ssnnvae e e e e e e e eaans 194
10.4.2. Creating an XML document using JAVASCIIPLeeveeeeeiiiiiiiiiiee e e e e e 196
10.5. XML processing With SWiftccuiiiiiiiii e 199
10.5.1. DOM parsing USING SWIftcooiiiiiiiiiiie e 199
10.5.2. SAX parsing USING SWITt ...ooooiiiiiiiec e 200
10.5.3. Creating an XML document using SWiftccveeeeiieiiiiiie e 203
10.6. XML processing With EAX ...t 206
10.6.1. DOM parsing USING EAXoooiiieeee e 209
10.6.2. Creating an XML document Using E4Xcccuiiiiiiii e 210
10.7. XML @terNative NOALIONSuuvieiiiiiieeiiiiiie e siiiee et et e e e e e s e e e s annaeee s 214
0 T 1S | PSR 214
O N Y PRSP 220
10.8. Additional information on alternative approaChescccvveeeeeieeiiccciieee e 222
T oot [0 o o PP PP 223
] o] TeTo | "o Y PPRPPR 225
A. Some XML Related Technologies and SYStEMScooiiiiiiiiiiiie e 229

Vi

B. QUICK REFEIENCE TADIESeeeiiie et e e e e e s e et e e e e e e e e ennneeees 231

B.1. REQUIAI EXPIESSIONeeiiiiiiiieeiiiiee e ettt e e ettt e ettt e e et e e e et e e e e s et e e e e e e e nnn e e e s annneee s 231
T N 1 231
ST Y v o 01 = 232
N T G 1 T 233
SRS TSox 1 <011 (0] o E 234
ST R 235
C. XML Production Of thiS DOCUMENLuuiiiiriiiieieieiee i e e e e e e e e e e e e e e s s st e e s s st s e s s et e e ssebanass 237
D. INSEANCE QOCUMENEScevuiiiiiiti i ee ittt e e et e e e e et e e e e et e e e eeaa s e s eaaa s s esbaa s s s essansssssaan s sesaansesesransesesses 243
010 (=TT 249

Vii

viii

List of Figures

1.1. An XML structure and the corresponding tree [W ne. Xm | ..., 1
1.2. Web browser, summary and grid editor viewsof an XML fileccccccoeiiiiiiii e, 3
1.3. Relations between some XML teChNOIOGIESuvviiiiiiiiiiiiiee e e 4
1.4. HTML source of the compact form and its rendering in abrowser.cccccveeeiiiiiiiieeee e, 5
1.5. Compact formsintext and iNPDFoooiiiiiie e e e e 6
3.1. Graphical view of the schemafor the cellar DOOKccuvveeeiiiiiiiii e, 25
3.2. Graphical view of the schemafor thewine catalogcccvveeeiiieiiiiiiiee e, 29
3.3. Built-in datatypes for XML SChEMAcooiiiiiiiiic e 33
4.1, SOME XPAEN GXES ...ttt ettt e e s et e e e e a e e e e n e e e e e na e e e e nnnaeee s 53
5.1. Web browser rendering of Example 5.1 produced by running Example 5.2 on Example 2.3 64
5.2. HTML rendering of EXaMPIE 5.3oveiiiiiieiee ettt e e e e 69
5.3. HTML rendering of EXAMPIE 5.6ueeviiiiiiiiiieee ettt e e e e e 76
5.4. Three pages of PDF output of compaction by Formatting Objectscccccceeeiiiiiiiiiiiec e, 85
5.5. Outline of the XSL-FO file produced by running Example 5.10 on Example 2.2ccccceeeeennn. 86
5.6. CSSformatting of EXAMPIE 2.2uvveiiiiiee e 95
S 4 o= o RSP 114
7.2. Selected information from the Callar-DOOKcccueiiiiiiiiiii e 117
8.1. JTr ee display Of EXAMPIE 2.2uuuuuiuuiiuruiiiiuiriiuueuerenrnrnnnerrrrrerer—————————————————————————————. 139
10.1. Display of the webpage for exercising JavaScript compaction and expansion.cccceeeeeeeee... 193
10.2. HTML for JavaScript compact and eXPandceevvvviiiiiiiiiiiiieiccececcceeeeeeeeeeeeeee e 194
10.3. E4AX eXPreSSiON EXAIMPIESccvviiiiiiiiieieeieeeieieeeee e e e eeee e e e et e et e e e et e e e e e e e e e e et et e e e e e e e ee et e eeeeeeeeereeeeeaeeeees 208
C.1. Overview of organization of the DocBook XML source files of thisdocument 238

List of Tables

T I D B D IS Y o = = 1111 0 (= SRR 18
3.2. XML Schema SyntaX rEMINCESeeieiieiiiiiiiiee e e e e e s r e e e e e s st e e e e e e e e e e snnrnees 23
3.3. RELAX NG Compact SyntaX reMINAEYuvveiiieeiiiiiiiiiiiee e e e escirre e e e e e e s ssrrre e e e e e e e e e s snnrnees 39
3.4. SChematron SYNtaX FEMINUEYuuueiiiee et e e e e s e e e e e e e s s et e e e e e e e s senrrbereeeeeeeseasnrnnees 45
4.1. A selection of XPath fUNCLIONSooiiiiiiie it raaee s 55
L € I S Y = = 1011 0T [SRR 62
A5 = (| 1T = TR 116
7.2. Comparison of Turtle bracketS With tHPIEScoo i 121
B.1. Regular EXPreSSiON SYNLBXcccuvrreiiieeeesieiirieeeeeeesssasitsarreeeeeesssssassrareeaeesssasssssseeeaaeessansssnsees 231

Xi

Xii

List of Examples

2.1. Outline of Cel | ar Book. xm including W neCat al og. xm in adifferent namespace 9
2.2. Excerpt of Cel | ar Book. xni , the XML instance document holding the content of the cellar 10
2.3. Excerpt of W neCat al 0g. XM .o 12
2.4. [NamespaceExanpl e. xm] A smplistic example of declaration and use of namespaces 13
3.1.[Cel | ar Book. dt d] DTD for the cellar book, validation of the instance filein Example 2.2
.. 19
3.2. [W neCat al og. dt d] DTD to validate the wine catalog, included in Example 3.1 20
3.3.[Cel | ar Book. xsd] XML Schemafor the cellar book, validation of the instance file in Ex-

0] [SRR 25
3.4.[W neCat al og. xsd] XML Schemalfileto validate theinstance document shown in Example 2.3.
.. 29
3.5. Qutline of Cel | ar Book. xsd importing Example 3.4 in adifferent namespace. 36
3.6.[Cel | ar Book. r nc] RELAX NG Compact schemafor the cellar book to validate Example 2.2.
.. 39
3.7.[W neCat al og. r nc] RELAX NG Compact schemafor thewine catal og to validate Example 2.3
.. 41
3.8. [Cel | ar Book. sch] 1SO-Schematron for the cellar book to validate Example 2.2. 45
4.1. XPath eXpreSSioN EXAMPIEScoouuiiieiiie ettt et e e s e e e e s e e e e s abb e e e s annneee s 57
5.1. HTML tabular output of the red wines of the catalog produced by Example 5.2ccccovvvveeenes 64
5.2. [W neCat al og. xsl] XSLT stylesheet to select the red winesinthe catalogccccccceeeeuvnneeee. 66
5.3. HTML output by the XSLT codeis shown in EXample 5.4 ... 69
5.4.[Cel | ar Book. xs|] XSLT stylesheet to produce information about the cellar 71
55.[built-in-tenpl at e-rul es. xsl] Built-in template rules for XSLT.ccccvveveieeiiiicinnnnen. 75
5.6. Extract of the HTML output produced by the transformation of Example 5.4 on Example 2.2 76
5.7.[conpact HTM.. xsl] XSLT transformation to produce a bulleted list from the cellar book 78
5.8. Text compaction of the cellar book of Example 2.2 ..., 80
5.9. [conpact . xsl]: Stylesheet used to transform Example 2.2 into Example 5.8cccceeeee. 82
5.10. [conpact FO. xsl] Transformation of the cellar book into a colored nested blocks representa-

L1 o] R 89
5.11. [compact . css] for displaying the content of the cellar bookccccoveeiiiviiiiii e, 93
6.1. [W neCat al og. xq] XQuery script to select the red winesin the catalogccocecvvvveeeennn. 101
6.2. [Cel | ar Book. xq] XQuery script to produce information about the cellarcccvvveeee..n. 104
6.3. [conpact HTM.. xq] XQuery transformation to produce a bulleted list from the cellar book 108
6.4. [conpact . xq]: Stylesheet used to transform Example 2.2 into Example 5.8ccccvveeee.n. 111
7.1. [CBWC- RDF- S. r df] Subject, Predicate and Object triples for the cellar book in RDF/XML.
.. 118
7.2. [CBWC- RDF- S. tt |] The Turtle version of EXample 7.1ccovviiiiiiieeeiiiee e 121
7.3. [CBWC- RDF- S. r q] SPARQL queries on EXample 7.2ooooiiiiiieeiiieee e 125
8.1. [DOMConpact . j ava] Text compaction of the cellar book with Java using the DOM mode! 128
8.2. [Conpact Err or Handl er. j ava] Error handler of the DOM parsing of Example 8.1 131
8.3. [SAXConpact . j ava] Text compaction of the cellar book with Java using the SAX modd 133
8.4. [Conpact Handl er . j ava] SAX handler for text compacting an XML file such as Ex-

001 L2 R 134
8.5. [St AXConpact . j ava] Text compaction of the cellar book with Java using the SAX modd 137
8.6. [TreeVi ewer . j ava]: JTr ee building with DOM and StAX Processing of an XML file......... 140
8.7.[JTreeHandl er . j ava]: JTr ee building with SAX Processing of an XML file..................... 142

Xiii

XML: Looking at the Forest Instead

of the Trees
9.1. [Conpact Tokeni zer . j ava]: Speciaized stream tokenizer that ignores blank tokens............ 146
9.2. [DOVEXpand. j ava]: Compact form parsing to create aDOM XML documentccce...... 147
9.3. [SAXExpand. j ava]: XML document creation using SAX eVentSccccvvveeeeeeeeeiicivnneeeeenn. 149
9.4. [Conpact Reader . j ava]: Compact form parsing to generate SAX eventSceccvvvveeeennnn. 150
9.5. [St AXExpand. j ava]: XML document creation using the StAX approachcccccvvvvvvnnnnnns 153
10.1. [DOMConpact . r b] Text compaction of the cellar book with ruby using the DOM mods! 158
10.2. [SAXConpact . r b] Text compaction of the cellar book with ruby using the SAX moddl 159
10.3. [Conpact Handl er . r b] Ruby SAX handler for text compacting Example 2.2 159
10.4. [Conpact Tokeni zer . r b] Specialized string scanner that returns tokens of compact
0] 1 0 1 USRS 161
10.5. [DOVEXpand. r b] Ruby compact form parsing to create an XML documentccccceeeeennes 162
10.6. [DOMConpact . py] Text compaction of the cellar book with Python using the DOM modd! 165
10.7. [SAXConpact . py] Text compaction of the cellar book with python using the SAX moddl 166
10.8. [Conpact Handl er . py] Python SAX handler for text compacting Example 2.2 167
10.9. [XMLSt r eanReader . py] Text compaction of the cellar book with Python using the SAX
70T [SRR 168
10.10. [St AXConpact . py] Text compaction of the cellar book with Python using the StAX mod-
OSSR 170
10.11. [Conpact Tokeni zer . py] Specialized string scanner that returns tokens of compact
0] 1 0 1 USRS 171
10.12. [DOVEXxpand. py] Python compact form parsing to create an XML document 172
10.13. [ETConpact . py] Python compaction of an XML file using El errent Tr ee nodes. 174
10.14. [ETExpand. py] Python compact form parsing to create a El enent Tr ee document 175
10.15. [DOMConpact . php] Text compaction of the cellar book with php using the DOM modd 178
10.16. [conpact HTM.. php] HTML compaction of the cellar book with PHP using the DOM mod-
SRR 179
10.17. [SAXConpact . php] Text compaction of the cellar book with php using the SAX modd 181
10.18. [Conpact Handl er . php] PHP SAX handler for text compacting Example 2.2 181
10.19. [St AXConpact . php] Text compaction of the cellar book with PHP using the SAX mod-
PP PR PRI 183
10.20. [Conpact Tokeni zer . php] Specialized string scanner that returns tokens of compact
L1011 1 SRR 184
10.21. [DOVEXxpand. php] PHP compact form parsing to create an XML document 186
10.22. [XSLconpact . php] PHP compaction of an XML fileusing an XSLT styleshest. 187
10.23. [Si nmpl eXM_Pat h. php] SimpleXML file loading followed by PHP Si npl e XML expres-
S0 LR SOPRRSR 188
10.24. [Si npl eXM_Conpact . php] PHP compaction of an XML fileusing aSi npl eXM.. 189
10.25. [Si mpl eXM_LExpand. php] PHP compact form parsing to create a Si npl eXM_EI enent
(o[0T 0= o | SR 191
10.26. [DOMConpact . j s] Text compaction of the cellar book with JavaScript using the DOM
4070 = PP PT T OUPPRRSPTPRI 194
10.27. [Conpact Tokeni zer . j s] JavaScript specialized string scanner that returns tokens of
(o0 .07 ot B {0 o 1 SRR 196
10.28. [DOVEXpand. j s] JavaScript compact form parsing in order to create an XML document
.. 197
10.29. [DOMConpact . swi f t] Text compaction of the cellar book with Swift using the DOM mod-
Bl et e e e e e ————e e e _——eee e et teeeeanteeeeeaReeeeeaanteeee e e ntaeeeaannaeeeeannreeeeaas 199
10.30. [SAXConpact . swi f t] Text compaction of the cellar book with swift using the SAX mod-
SR SOURRRSSRRIN 201

Xiv

10.31. [DOVExpand. swi f t] Swift compact form parsing to create an XML document 203

10.32. [DOMConpact . as] Text compaction of the cellar book with E4X using the DOM modd! 209
10.33. [Conpact Tokeni zer . as] E4X specialized string scanner that returns tokens of compact

L1012 1 PP PP 210
10.34. [DOVEXxpand. as] E4X compact form parsing in order to create an XML document 212
10.35. [W neLi st. xm JA smal wine listin XMLcooovviiiiiiiiiiiceeeeeeeeeeeeeeeeee e 215
10.36. [W neLi st.j son] A small Winelistin JSONccooiiiiiiiiiiiee e 215
10.37. [xm 2j son. xsl] XSLT stylesheet to convert an XML fileinto JSON.ccccceevviiiiiinennnn. 216
10.38. [W neLi st . yam] YAML version of EXample 10.35ccueeviiiiiiieiiniiiee e 220
C.1. [DBTenpl at es. xm] Examples of the most common uses of DocBook 5 elementsin this

(0 [0 ot 011" o | PSSP SSOPUSERR 239
D.1. XML content of the file describing the cellar DOOKcc.oooiiiiiiiiii 243
D.2. XML content of the file describing the Wine Catalogoeviiiiiiiiiiiiiieeeee e 246

XV

XVi

Acknowledgements

The writing of this XML tutorial started in the Fall of 2002 during my sabbatical at the Université de
Grenoble and at Xerox Research Centre Europe. | wish to thank Gilles Sérasset, Christian Boitet, Pierre
|sabelle and Marc Dymetman for many fruitful discussions.

Since then, the document has been improved (at least it hasincreased in the number of pages...) after having
used it inteaching undergraduate and graduate courses at the Université deMontréal: IFT3225 and | FT6281.
| especialy thank Fabrizio Gotti for his careful proofreading and many insightful comments.

In 2007, | decided to start practicing what | preach by using XML technologies for the organization of the
manuscript of this tutorial. Fabrizio Gotti converted the original LaTeX filesto DocBook so that now PDF
and HTML versions can be produced from a single set of XML source files.

XVil

XVili

Chapter 1. Introduction

XML hasbeen devel oped to facilitate the annotation of information to be shared between computer systems.
Becauseit isintended to be easily generated and parsed by computer systems on diverse platforms, itsformat
is based on character streams rather than internal binary ones. Being character based, it also has the nice
property of being readable and editable by humans using standard text editors.

Figure 1.1. An XML structure and the corresponding tree [W ne. xmi]

A simple XML structure (top) and an equivalent tree structure in which the element names are shown in
bold and the attribute names in italics. In the tree, the real information is the character data which appears
in roman font. This shows the relations between nodes. pr operti es hasw ne as parent and col or,
al cohol i c- strengt h aschildren; asibling of r egi oniscountry.

<?xm version="1.0" encodi ng="UTF-8"7?>
<wi ne nane="M' code="00518712" format="1l"> <!-- code is the same as for SAQ com->
<properties>
<col or >red</ col or >
<al cohol i c-strengt h>12</ al cohol i c-strengt h>
</ properties>
<ori gi n>
<country>ltal y</country>
<r egi on>Abr uzzo</regi on>
<producer>Cantina M gliani co SCARL</ producer >
</origin>
<rating stars="2"/>
<f ood- pai ri ng>Col d cuts, <bol d>Meatl oaf, </ bol d> Pi zza</f ood- pai ri ng>
<f ood- pai ri ng>Asi an spi cy pork burger</food-pairing>
<price>9.95</price>
<year >2004</ year >

</ W ne>
wine name:"M" code:"Oow
?perties oririn rating stars:2 m year
co||or alcoholic-strength country region producer Cold cuts, bold Pizza Asian .. burger 9.95 2004
red 12 ltaly Abruzzo Can ... SCARL Meatloaf,

XML isbased on auniform, simple and yet powerful model of data organization: the generalized tree. Such
atreeisdefined as either asingle element or an element having other trees asits sub-elements called children
(see middle of Figure 1.1). Thisis the same model as the one chosen for the Lisp programming language
50 years ago. This hierarchical model is very simple and allows a simple annotation of the data. Asin Lisp,
the same tree notation used for data representation is also employed to write programs to transform tree
structuresinto other tree structures. On top of thisidentity of data and program representation, in XML, the
tree notation is also used to denote type information to validate XML data.

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/Wine.xml

Introduction

Asis shown at the top of Figure 1.1, an arbitrary name between < and > symbols is given to a node of a
tree. Thisiscalled a start-tag. Everything up until a corresponding end-tag (the same tag except that it starts
with </ ') forms the content of the node, which can itself be atree. Such trees (e.g. wi ne, properti es
and col or in Figure 1.1) are caled elements. Elements can also contain character data and even mix
character data and elements (e.g. f ood- pai ri ng). An XML eement with no content can be indicated
with an end-tag immediately following a start-tag and can be abridged as an empty-element tag: a start-tag
with aterminating/ (seer at i ng in Figure 1.1). It is possible to have more than one element of the same
namewithin the children of an element (seet ast i ng- not e inFigure 1.1). The ordering between children
isimportant and is referred as the document order. Comments can be added to an XML file by means of a
specia element that startswith <! - - and ends with - - > (see end of the second line of Figure 1.1).

Additional information can be added to an element tag with attribute pairs comprising the name of the at-
tribute (e.g. f or mat), an equal sign and the corresponding character string value within double or single
quotes (e.g. " 11" or ' 11 '). Attributes can also be added to an empty element (e.g. r at i ng). Attribute
names within a single start-tag must be unique and there is no ordering between the different attributes. At-
tributes within a single element are thus considered as a table or a dictionary in which the names are the
keys and the strings, the corresponding val ues.

Asillustrated in the middle part of Figure 1.1, these notations are equival ent to a tree data structure where
each node is labelled with its name and attributes. Character data appears as leaf nodes. An empty element
isanode with no sub-tree.

XML has the (well deserved) reputation of being verbose but it must be kept in mind that this notation is
primarily aimed at communication between machines for which verbosity is not a problem but uniformity
of notation isareal asset. In fact, humans should not be really required to type all these start-tags and end-
tags. Indeed, many useful structural XML editors are now available which hide the verbosity, keeping only
the important structural information or by displaying embedded tablesinstead of tags. Figure 1.2 shows al-
ternative views of an XML file.

As has been shown by Lisp over the years, this tree notation is very general and can be used not only to
represent data but also its processing. Programsfor transforming XML tree structuresinto other tree structures
can be written in XSL (eXtensible Stylesheet Language) stylesheets, which are a declarative notation for
XML transformations also written in XML.

An important feature of XML, and one that differs from Lisp, isthe apriori type checking that can be per-
formed on the file and the validation that can be performed before processing. XML type information can
be provided either through a DTD or a schema which offers a quite powerful and flexible type system. A
schema is also written as an XML file which can itself be type checked. An alternative schema notation
called RELAX NG will also be presented later in this document.

XML originated from the need for aflexible way of organizing natural language texts and thusits designers
used standard representations of the characters—most often Unicode—and standard encodings such asUTF-
8 or UTF-16, which will not be discussed here.

XML isalsowidely used in computing systems to systematize structured data as an alternative to databases.
Many relational databases also offer XML specific features for indexing and searching. Because of the
portability of its encoding and the fact that XML parsers are freely available, it is also used for many tasks
requiring flexible data manipulation to transfer data between systems, as configuration files of programs
and for keeping information about other files. This document will not present these applications but will

Figure 1.2. Web browser, summary and grid editor views of an XML file

At the top, the file of Figure 1.1 as displayed in a web browser; the right pointing triangle at the left of
<pr opert i es> andtheellipsisbetween start and end tagsindicate that thiselement ishidden by collapsing.
By clicking on it, the right pointing triangle becomes a down pointing triangle and the tree is displayed in
full. The bottom of the figure show alternative views of the samefile available on acommercial XML editor
(<oXygen/>) in order to hide the tags from the user: on the left, a summary view similar to the one given
in abrowser but without the tags and on the right a grid editor view

¥<wine name="M" code="00518712" format="11">
» <propertiea>...</properties>
¥<origin>
<country>Italy</country>
<region>Abruzzo</region>
<producer>Cantina Miglianico SCARL</producer>
</origin>
<rating stars="2"/>
v<food-pairing>
Cold cuts,
<bold>Meatloaf,</bold>
Pizza
</food-pairing>
<food-pairing>hsian spicy pork burger</food-pairing=>
<price>9.95</price>
<year>2004</year>

</wine>
@ wine "M" value of the attribute code is the 5AQ.com code <Pxml version="1.0" encoding="UTF-8"
[B value of the attribute code is the 5AQ.com code ¥ wine aname M
¥ o properties red @code 00518712
@ color red format n
. properties color red
@ alcoholic-strength 12 L] .
s alcoholic-st... 12
¥ @ origin Italv [origin country Ttaly
e country laly region Abruzzo
@ region Abruzzo producer Cantina Miglianico SCARL
e producer Cantina Miglianico SCARL rating @stars z
rating "2" [food-pairing #text bold #text
L] g (2 rows) i
food . Cold " 1 Cold cuts, Meatloaf, Pizza
v o food-pairin old cuts
p 9 ' 2 Asian spicy
@ bold Meatloaf, pork burger
e food-pairing Asian spicy pork burger price 9.95
@ price 9.95 & year 2004
@ year 2004

focus on a single one (creating a compact representation of an XML file) that will be used throughout so
that one can appreciate the similarities and differences between the XML technologies presented.

Figure 1.3 presents the XML technologies we will describe in this report and their relations. The focus of
the whole process is an XML instance document (towards the top of the figure) that contains the data. This
XML document can be validated against a specification described either as a Document Type Description
(DTD) or a XML Schema, itself another XML file. The validation process will be described in Chapter 3.
Oncevalidated, XML data can be used by application programs through specific Application Programming
Interfaces (APIs) described in Chapter 8 and Chapter 9. XML data can also be processed by transformations
(Chapter 5) written as stylesheets, a specia kind of validated XML file, to create new XML, HTML, PDF
or text files.

Introduction

Figure 1.3. Relations between some XML technologies

DTD - Schema it
Validation
.dtd .xsd .sch — P Chapter 3
.rng .rnc
A
Display using
.Css
K o] P
. o¢ Chapters 8,9,10
Query using -xml
XPath, XQuery A
Chapters 4,6
Y
StyleSheets ___ | Transformations Application
.xsl Chapter 5 Programs
Y
Formatting
Text Objects XHTML
.fo
A
Rendering
\ 4
PDF XHTML Postscript
Types: XML Process Output
document Chapter Document

For example, the XML file at the top of Figure 1.1 can be transformed with a stylesheet into an HTML one.
Thetop of Figure 1.4 shows such apossible HTML output, displayed in aweb browser shown at the bottom
of the figure. Thisis the kind of tree-to-tree transformation for which XSLT was specifically designed. To
better illustrate the power of the more general transformationsthat XSLT allows, we will show how to obtain
a more compact form; it is shown in Figure 1.5 either as a text file (top) or in PDF (bottom) through a
transformation using Formatting Objects. This compact notation is similar to that used in the Formal De-
scription of XML [13]; it must be viewed as a programming exercise and not as a compression technique
for XML files.

Figure 1.4. HTML source of the compact form and itsrendering in a browser.

Representation of thetreein Figure1.1in source HTML and asit appearsin abrowser window. ThisHTML
output (dighly reformatted here to fit in the page) was produced by our example stylesheet
conpact HTM.. xs| shown in Example 5.7.

<htm xm ns="http://ww. w3. org/ 1999/ xht m ">
<head><titl e>HTM. conpaction of "Wne.xm "</title></head>

<body>
<l i >wi ne</ b> nane="M code="00518712" format="11"

<l i >properties
col or red
<l i >al cohol i c-strengt h 12</1i >

<l i >ori gi n</ b>
country Italy
<l i >r egi on</ b> Abruzzo</Ii >
<l i >pr oducer Cantina M glianico SCARL</I|i >

rating stars="2" </|i>
<l i >f ood- pai ri ng</ b>
Cold cuts,
<l i >bol d</ b> Meat | oaf, </1i >
 Pizza</Ili>

<l i >f ood- pai ri ng</ b> Asi an spicy pork burger
<l i >price 9.95</i>
<l i >year </ b> 2004</1i >

</ body>
</htm >

= wine name="M" code="00518712" format="11"
o properties
= color red
= alcoholic-strength 12
o grigin
= country Italy
= region Abruzzo
= producer Cantina Miglianico SCARL
o rating stars="2"
o food-pairing
= Cold cuts,
= bold Meatloaf,
= Pizza
o food-pairing Asian spicy pork burger
o price 9.95
o year 2004

Introduction

Figure 1.5. Compact formsin text and in PDF

Compact form of the tree in Figure 1.1 in text and PDF formats. These outputs were produced by the
stylesheets of Example 5.9 and Example 5.10.

Wi ne[@ane[M
@ode[00518712]
@ormat[11]
properties[col or[red]
al cohol i c-strength[12]]

origin[country[ltaly]

regi on[Abruzzo]

producer[Cantina M glianico SCARL]]
rati ng[@tars[2]]
food-pairing[Cold cuts,

bol d[Meat | oaf,]

Pi zza]
f ood- pai ri ng[Asi an spicy pork burger]
price[9.95]
year[2004]]
wine @name M
@code 00518712
@format 11
properties color red
alcoholicstrength 12
origin country Italy
region Abruzzo
producer Cantina Miglianico SCARL
rating | @stars 2
food-pairing Cold cuts,
bold Meatloaf,
Pizza
food-pairing Asian spicy pork burger
price 9.95
year 2004

This document is also an example of the use of these technologies because its source fileisitself an XML
document validated by a DocBook RELAX NG Schema and processed by two stylesheets: one produces a
set of linked HTML files and another produces an X SL-FO file which is then rendered as a PDF file. This
process is further described in Appendix C

This chapter has shown that XML is aflexible notation for adding information to natural language text but
itisincreasingly used in other areas aswell. The raw XML is verbose and not very user-friendly but it can
be hidden by appropriate tools. Programmers can also rely on freely available XML parsers and validators
in order to get awell-organized data structure from an XML file.

This document tries to give an overall impression of some XML techniques and should not be considered
a definitive or exhaustive manual. We will describe the main principles and present general rules and the
intuition behind some of the technologies. For the sake of simplicity, we will sometimes be making white
lies that seasoned XML experts could point out.

About this document
This document has been generated with RenderX XEP.
					Visit http://www.renderx.com/ to learn more about
					RenderX family of software solutions for digital
					typography.

[T]he right abstraction [for XML ...] is a labeled tree of elements. Each element has an
ordered list of children in which each child is a Unicode string or an element. An element
is labeled with a two-part name consisting of a URI and local part. Each element also has
an unordered collection of attributeswhere each attribute has atwo-part name, distinct from
the name of the other attributes in the collection, and a value, which is a Unicode string.
That is the complete abstraction. [...] If you understand this, then you understand XML.
— James Clark, in [59], pages ix-x.

Chapter 2. Instance Document

Because there are many types of XML documents, either for transforming or validating data, an XML file
that contains data is called an instance document. Any XML document must be well-formed which means
that:

« al element start-tags and end-tags must be properly nested
* there should only be one top-level element in thefile.

But there are a so other peculiarities we will describe shortly in this chapter.

In the rest of this document, we will be using as input the XML instance files shown in Example 2.2
and Example 2.3. Their global organization is given in Example 2.1. They describe awine cellar containing
wine bottles defined in a separate wine catalog. This application was inspired by the Livre de cave example
used by Benoit Habert in his book on the Common Lisp Object System (CLOS) programming [23]. Some
of the lines in the examples are marked with numbered callouts (such as ®) linked to an explanation at the
end of each example.

The structure of our instance document filesis the following:

e Cel | ar Book. xm (Example 2.2) describesthe céllar in four parts:
* W ne-cat al og (line 9-0) described in an external file W ne- Cat al og. xm
e owner (line 11-@) name and address
e | ocati on (line 21-@) address of the cellar (if different from that of the owner)
« cel l ar (line 27-®) list of wine bottle lots (using codes from the wine catalog) and, for each, the
quantity currently held in the cellar and the purchase date of the lot

W neCat al og. xm (Example 2.3) gives the description of each wine product with a code that will
correspond to codes of the cellar.

Example 2.1. Outline of Cel | ar Book. xm including W neCat al og. xm in a
different namespace

1 <cellar-book ...
xsi : noNamespaceSchenmaLocat i on="Cel | ar Book. xsd"
xm ns: cat="http://ww. iro.unontreal.ca/l apal ne/w ne-cat al og" >

<xi :include href="WneCatal og. xm" ... /> 0

5

<wi ne- cat al og schemaLocation="http://ww.iro.unontreal.ca/l apal me/wi ne-catal og W ne

<wi ne nane="Donai ne de |'Tle Margaux" ... >...</w ne>
<wi ne nane="Riesling Hugel" ... >...</w ne>
<wi ne nane="Chat eau Montguéret” ... >...</w ne>

10 <wi ne nanme="Mumm Cordon Rouge" ... >...</w ne>
<wi ne nane="Prado Rey Roble" ... >...</w ne>

</ wi ne- cat al og>

<owner >. .. </ owner >
15 <l ocation>...</location>
<cel l ar>
<wi ne code="(C00043125">...</w ne>

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CellarBook.xml
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineCatalog.xml
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CellarBook.xml
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineCatalog.xml

Instance Document

<wi ne code="C00312363">...</w ne>

<wi ne code="C00871996">...</w ne>

20 <wi ne code="C00929026">...</w ne>
</cellar>
</ cel | ar - book>

® Inclusion of the file W neCat al og. xm . The XML processor replaces this line at run-time by the
content of thewi ne- cat al og element shown herein bold.

Example 2.2. Excerpt of Cel | ar Book. xni , the XML instance document holding
the content of the cellar (Example D.1 showsthe whole XML content)

1 <?xm version="1.0" encodi ng="UTF-8"?> (1]
<! DOCTYPE cel | ar-book [<!ENTITY guy "Cuy Lapal ne" > (2]
<IENTITY eacute "é" >
<IENTITY m| "Montréal" >
5 <IENTITY G "&guy;, &nmtl;" >]>
<cel | ar-book xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: cat="http://ww.iro.unontreal.cal/l apal ne/ wi ne-cat al og"
xsi : noNanmespaceSchemaLocat i on="Cel | ar Book. xsd" >
<xi:include href="WneCatal og. xnm "
10 xm ns: xi ="http://ww. w3. org/ 2001/ XI ncl ude"/ >
<owner >
<nane>
<first>Jude</first>
<fam | y>Rai si n</fam | y>
15 </ name>
<street>1234 rue des Chéateaux</street>
<ci ty>St-CGeorge</city>
<provi nce>ONk/ pr ovi nce>
<post al - code>MrW 7S0</ post al - code>
20 </ owner >
<l ocati on> (9]
<street>4587 des Futailles</street>
<city>Val | ée des crus</city>
<provi nce>QC</ pr ovi nce>
25 <post al - code>H3C 4J8</ post al - code>
</l ocation>

© 0o

©0 00

® 6

<cel | ar>
<wi ne code="(C00043125">

30 <pur chaseDat e>2005- 06- 20</ pur chaseDat e>
<quantity>2</quantity>
<coment > @

<cat: bol d>&E._; </ cat : bol d>: shoul d reorder soon

</ coment >

35 </w ne>

<wi ne code="C00929026" >
<pur chaseDat e>2003- 10- 15</ pur chaseDat e>
<quantity>1l</quantity>
40 <coment >f or <cat: bol d>bi g</cat: bol d> parti es</ conment >
</ W ne>

10

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineCatalog.xml
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CellarBook.xml

</cell ar>
</ cel | ar - book>

©® A processing instruction indicating the XML version used. Although XML version 1.1 exists, very
few processors handle it, so most of thetimever si on="1. 0" is used. The encoding for the file,
hereitisUTF- 8.

® Element ! DOCTYPE, not awell-formed XML element, defines entities that can be used in the XML

instance document. This notation will be explained further in Section 3.1 but for the moment they can

be considered as text macros that will alow string substitutions before the XML file is processed.

Substitution occurs when an entity isreferred to by enclosing its name between & and ; . For example,

entity guy isreplaced by Guy Lapal nme when &guy; isencountered in thefile.

Entities can refer to other entities: &GL; will be replaced by Guy Lapal me, Montr éal . When

an entity declaration is followed by SYSTEMand the name of afile, then a reference to this entity is

replaced by the content of thefile.

Starting tag indicating that thisis an instance file to be validated with a given schema.

Name of the file containing the schema for thisinstance file.

Inclusion of another XML file describing the wine catal og.

Description of the owner of the cellar book.

Name of the owner of the cellar book.

Location of the owner of the cellar book.

Description of the cellar.

Information about a given wine, such as quantity and comments; the wine isidentified by a code that

must match one in the wine catal og.

As the bol d element is defined in the schema associated with the catalog, it must be given the

namespace prefix of the catalog.

® Description of another wine of the cellar.

©600000F0C ®

(5]

Example 2.3 is the catalog of available types of wines storing information such as their properties (color,
alcohalic strength), their origin, their price and their year of production. This information was inspired by
datafound on the web site of the Société des Alcools du Québec. Other information such as the nane, the
code and f or mat are given as attributes within the start-tag. While the value of an element can be an ar-
bitrarily complex tree of elements, attribute values can only be single string values. Strings for attribute
values must be delimited by either matching' or " . These delimiters have the same meaning and this con-
vention is convenient when embedding a quote of one type within a string value. In case the two types of
guotes are needed within asingle string, one can use the predefined entities' and " ; (explained
in Section 3.1).

The structure of an XML instance file may seem arbitrary and, in asense, it is. In order to make sure that
its processing is efficient, it is important that the structure of the information be in the right format (i.e.
embedded within the correct tags and in the correct order) and that all the mandatory information be present.
This verification could be performed by the program using the information but it would more interesting to
detect errors or lack of information when the instance file is created. Thus the program needing the data can
be sure that the file structure follows the expected format. This validation process, similar to the static type
checking for aprogramming language, is explained in the next chapter but before, we will look at namespaces,
another important concept in XML instance documents.

11

http://www.saq.com

Instance Document

Example 2.3. Excerpt of W neCat al og. xm , the XML instance document holding

1

5

10

15

20

25

30

35

40

00

the content of the wine catalog, it is included in Example 2.2
(Example D.2 showsthe XML content)

<wi ne-catal og xnm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" ©
xsi : schemalLocati on="http://wwv. iro.unontreal.cal/l apal ne/w ne-catalog @
W neCat al og. xsd"
xm ns="http://ww.iro.unontreal.cal/l apal ne/w ne-cat al og" > (3]
<wi ne nane="Donai ne de |'Tle Margaux" ... > (4
<properties>
<col or >red</ col or >
<al cohol i c-strengt h>12. 5</ al cohol i c- strengt h>
<nature>still </ nature>
</ properties>
<ori gi n>
<count ry>France</ country>
<r egi on>Bor deaux</r egi on>
<pr oducer >
SCEA Domai ne de L' Tle Margaux (B.P. 5)
</ pr oducer >
</origin>
<coment >Ready for drinki ng now/coment >
<f ood- pai ri ng>
Acconpani es <enph>Bor del ai se ri bst eak</ enph>, e
<bol d>pork with prunes</bol d> or nagret de canard.
</ f ood- pai ri ng>
<price>22.80</price>
<year >2002</ year >
</ wi ne>

<wi ne nanme="Prado Rey Roble" ... >
<properties>
<col or >red</ col or >
<al cohol i c-strengt h>12. 5</ al cohol i c- strengt h>
<nature>still </ nature>
</ properties>
<ori gi n>
<count r y>Spai n</ count ry>
<region>A d Castille</region>
<producer>Real Sitio de Ventosilla SA</producer>
</origin>
<price>35. 25</ pri ce>
<year >2002</ year >
</ wi ne>
</ w ne- cat al og>

Start of the wine catalog description.

Namespace and file name of the Schemafor thisinstance file.

Namespace for the wine catalog, useful to differentiate the wine elements that appear both in the
catalog and the cellar book.

Description of awine.

Some words can be emphasized by surrounding them with bol d and enph tags.

12

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineCatalog.xml

Namespaces

2.1. Namespaces

Until now we wrote XML element name as a smple identifier, but in fact the full name of an element (or
an attribute) is an identifier combined with a namespace which is an arbitrary string. If the string is empty,
then we consider that the element isin the empty namespace. But usually a namespace is along string that
we would like to be unique for an individual or a corporation. One convenient way of ensuring unigue name
isto usestringsthat are similar to urls; the reasonsfor thiswill be explained in Chapter 7, but for the moment
we will use short strings to smplify the explanations.

The namespace for an element is specified using the xm ns asillustrated in the first tree in Example 2.4
(line 7-@). Elementsnamed b, ¢ and e areinthemar y namespace, whilea andd areinthej ohn namespace.

When the xm ns attribute is not specified for an element, it islooked up in the ancestors of the node (first
the parent, then parent of the parent and so on). Thefirst value associated withanxm ns attribute encountered
isassigned to the current element. If no xm ns attribute isencountered then the current el ement is considered
to be in the empty namespace (equivaent to the declaration of xm ns=""). The second tree (line 18-@)
shows how the namespacesfor elementst r ee, ¢ and d areinherited by thisruleto give equivaent element
names as the onesin the first tree.

But using xni ns can become burdensome and error-prone, so the usual way of specifying namespacesis
by declaring a prefix, usually only afew letters long, for a given namespace and then using the prefix in
front of the element names. The prefix is specified with xm ns: prefix=string which defines the prefix as
specifying the namespace for the entire subtree of the element, including itself. In the third tree (line 30-©),
in element a, mis declared as a prefix for denoting the mar y namespace, which is then used for elements
b, ¢ and e. The prefix string has no significance in itself outside of referencing the full string of the
namespace. Different prefixes couldin principlebeused in different parts of the same XML filefor referencing
the same namespace although this would be less convenient for a human reader. When most of the elements
of an XML tree areto be put in agiven namespace, it is often advantageous to declare the namespace as the
default namespace in the root element tag, so that all elementsin the tree without a prefix will be automat-
icaly put in the given namespace.

Example 2.4. [NanmespaceExanpl e. xm] A simplistic example of declaration and
use of namespaces

Three equal XML trees showing different ways of assigning namespaces to elements. The convention used
in the third tree is most often used.

1 <?xm version="1.0" encodi ng="UTF-8"?>

<l-- sinple illustration of the definition of nanespaces:
all three tree elenents are equal -->
<trees-w t h- nanespaces>
5 <l-- Nanes of nanmespaces are short here for sinplicity,
but they should be unique long strings... -->
<tree no="1" xm ns=""> (1

<a xm ns="j ohn">
<b xm ns="mary">
10 <c xm ns="mary">ghi </ c>
</ b>
<d xm ns="j ohn">

13

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/NamespaceExample.xml

Instance Document

<e xm ns="mary">j kl </ e>

</ d>
15 </ a>
</tree>
<l-- xmns declaration are inherited fromthe ancestors -->
<tree no="2"> (2
<a xm ns="j ohn">
20 <b xm ns="mary">
<c>ghi </ c>
</ b>
<d>
<e xm ns="mary">j kl </ e>
25 </ d>
</ a>
</tree>
<I-- prefix declarations span the tree and sinplify notation -->
<tree no="3">
30 <a xm ns="john" xm ns: n¥"nmary" > (3
<m b>
<m c>ghi </ m c>
</ m b>
<d>
35 <m e>j kl </ m e>
</ d>
</ a>
</tree>

</trees-w th-nanmespaces>

©® Long hand definition of namespaces in each element
® Useof inheritance for the xm ns attribute.
© Definition of aprefix for the elements that are not in the same namespace as the one of the parent.

Namespaces allow agraceful combination of independent XML files. Coming back to our running example
(Example 2.1), let us see how these principles are used in a larger and less artificial context: Example 2.2
includes Example 2.3 viatheelement xi : i ncl ude. Thesefilesboth usethewi ne element, but in different
ways. in Example 2.3, wi ne refersto a description of awine type while in Example 2.2 wi ne refersto a
batch of bottles. Both references must be distinguished from one another in order to validate them with the
appropriate XML Schema. In such asimple case, it would be an easy matter, and probably a better design,
to have different names for these two concepts but we want to illustrate the use of namespaces in a small
scale example. A similar name clash could happen if we wanted to combine independently created XML
files.

For example, in the root tag of line 6-@ of Example 2.2, two namespace prefixes are defined: xsi and cat ,
for which are given two arbitrary unigque identifiers that will be used to distinguish their namespaces. Most
often, identifiers of namespaces are URL s (URIs more precisely) because the authors of an XML fileuse a
URL linking to a web site they own. If authors take care not to use the same URL for different purposes,
this pretty much guarantees the uniqueness of the namespaces. This does not necessarily means that the
URL s used as names for namespaces do exist. It must be stressed that the URL notation is nothing more
than auseful convention, although this name can a so be used by validators asahint to find the corresponding
schema.

14

Namespaces

By default, nameswithout prefixes are defined in the empty namespace or in the value assigned to thexni ns

attribute. To create elementsin a specific namespace, we assign adefault namespace like we did at the start
of Example 2.3 by specifying avalue for the xml ns attribute (line 4). In principle, any element can set a
value for the xni ns attribute to change the default namespace or to set the prefix of new namespaces for
nested elements. As namespace prefixes are inherited, the search for the URI corresponding to a prefix

starts from the current element and follows the parent links in the tree until it finds a corresponding prefix

declared asavalue of axm ns attribute.

As shown in Example 2.1, the declaration of namespaces is most often done at the root element of thefile.
In this listing, elements in italics are in a different namespace. A non-italicized element must use a prefix
to refer to an element in italics. Within italicized code, no prefix is necessary because the namespace has
been given anull prefix (line 4) within the box. It is possible to define anamespace for any element (which
will also apply to its subelements) but this makes it hard for the human reader to be aware of the current
namespace of an element. However, anamespace aware XML processor has no problem because anamespace
is associated with each element. For example, in Example 2.2, cat : bol d designates the bol d element
inthehttp://ww. i ro. unontreal .cal/l apal ne/ wi ne- cat al og namespace. All elementsin
the Example 2.3 also have the same namespace; so bol d elements (line 20-@) are the same: i.e. when, as
will be explained later, they will be processed by an XML system, they will be identified as being of the
same type.

The use of namespaces will be better understood once we have seen their use in validation with schemas
(Section 3.2.3). An excellent short introduction to the concept of namespace can be found in [59], pp.
160—166. Namespaces are fundamental in the context of the semantic web as discussed in Chapter 7.

15

16

Chapter 3. Document Validation

As we have mentioned in the previous section, an XML file must be well-formed in order to be processed
correctly. XML designers have created a thorough checking method called validation that verifies whether
elements of an XML file are well-formed and, furthermore, ensures that their ordering and nesting obey
certain rules. These rules are specified by aDTD or an XML Schema. Thisvalidation is performed prior to
any further processing so that programsthat process an XML file do not waste time checking for such errors.
An application is even allowed to stop any processing if it encounters an invalid XML file.

The author of an XML file can usually be warned of the invalidity of his XML file at creation time. This
validation can be done either within the XML text editor itself (e.g. XMLSpy [3], <oXygen/> [52] or the
nXML modein Emacs[19]) or by an external validator program (e.g. Xerces[4] or XSV [46]). XML editors
can also play an activerolein the creation of valid XML files, by suggesting at each point valid completions
(acceptable elements, attributes or values) depending on the DTD or the XML Schema.

XML, like its ancestor SGML, definesthe validation of afile with respect to a Document Type Declaration
(DTD) declared at the start of thefile. Most often, the DTD isan accompanying external document that allows
different filesto follow the same rules by sharing it. A DTD isrelatively simple to define but the validation
rulesit can enforce are quite rudimentary because they can only define constraints on the nesting of el ements
and perform simple checking on values of attributes.

In order to validate the content of elements, XML designers have defined a more elaborate type system
called a Schema which can be used in at least two technologies: XML Schema presented in Section 3.2 and
RELAX NG described in Section 3.3. On top of these grammar-based validation techniques, we will also
present Schematron, a different approach to validation by means of rules that are evaluated on the instance
document.

3.1. Document Type Definition (DTD)

A DTD isanotation to define elements that are allowed to appear in an XML file aswell asthe type of in-
formation they can contain. Table 3.1 givesan overview of some of the more frequent definitions of elements,
attributes and entity that can be made in a DTD. These definitions are pseudo-XML tags in the sense that
they look like XML start-tags without their corresponding end-tags. For mainly historical reasons, DTDs
are not well-formed XML files. The types for DTDs are most often given as either:

o (#PCDATA) (Parsed Character DATA) which correspondsto character string information; parsed means
that the character data can contain entity references as explained below;

» aregular expression in parentheses involving other element names.

» anelement can aso beaCharacter Data fragment enclosed between <! [CDATA[and]] > whichinserts
its content verbatim without any interpretation. Thisis often used to display XML content without having
to escape the < and &.

« thevalue of an attribute can only be astring (CDATA) but aDTD allows for some specia case that enable
some simple validations:

» | D: astring starting with aletter or an underline (_) followed by a sequence of letters, numbers, un-
derlines, periods (.) and dashes (-). All | Ds must be unique in the document.
» | DREF : astring that must refer to an existing | D in the document.

17

Document Validation

» alist of stringsenclosed in parenthesis and separated by a| . Note that thisvalidation can only be applied
on an attribute and not on the value of an XML element.™

Table 3.1. DTD syntax reminder

<! DOCTYPE r oot El ement SYSTEM «"»file name«"» «>» {[TENTITY *]}? «>»
<I ELEMENT NCNane «(» {#PCDATA «|» }? regexpO elenent name «)» «>»
<! ELEMENT NCNane (#PCDATA) «>»
<l ELEMENT NCNanme EMPTY «>»
<I' ATTLI ST el ement NCNane attri but eNCName decl Val ue default «>»

decl Value = CDATA | ID | IDREF | «(» CNAVE+ «)»

default = {#REQUI RED | #| MPLI ED}

<I[CDATA] ...]]«>»
<IENTITY nane «"» ... «"» «>»
<IENTITY % nane «"» ... «"» «>»

<IENTI TY nane SYSTEM «"»file nanme«"» «>»

A reminder of the subset of the DTD syntax used in Example 3.1 and Example 3.2. CDATA is character dataasis, but PCDATA
isparsed character datathat can contain referencesto entities. Namesin italicsrefer to other elements. decl Val ue anddef aul t
are not part of the DTD syntax, they are only handy abbreviations in this table. Regular expressions syntax isgiven in Table B.1.
Terminal identifiers are indicated in bold and terminal symbols are enclosed in «chevrons».

Example 3.1 is a validating DTD for the XML instance document given in Example 2.2. Elements are
defined withan! ELEMENT tag, seewi ne (line 5-@ of Example 3.1), containing aregular expression indic-
ating constraints on its children elements: it is an element with up to four children elements in sequence:
pur chaseDat e, quantity, rati ng and conmrent , the last two being optional. pur chaseDat e
(line 6-@) can contain character data and no other elements. A cel | ar (line 3-@) isalist (possibly empty)
of wi ne elements. A nane (line 12-@) is a non-empty list of either afirst,initial orfamlyin
any order; as the order of these elementsis not fixed within ananme element, we must alow an infinite re-
petition of these without guaranteeing that the same element isnot given . Thisillustrates some of the limit-
ations on the types of constraints that can be easily represented with a DTD. The alternative would be to
give explicitly all permutations of the three elements within a name.

Attributesare defined using ! ATTLI ST tagsindicating the element to which they belong, their name, their
type and whether they are mandatory (#REQUI RED) or optional (#| MPLI ED). See for example the
' ATTLI ST for the code attribute of thewi ne element (line 10-@).

A DTD can also contain definitions of entities that act as text macros that are replaced textually either in
the instance document or in the DTD itself. Entities whose definitions start with <! ENTI TY such as guy
(already illustrated in Example 2.2) definetextual replacementswherethey are called, i.e. wherethey appear
between & and ; . There are five predefined entities :

< aless-than sign (<) inan XML file because < is reserved to indicate
the start of atag;

&anp; Aswe haveintroduced the ampersand to indicate the start of an entity,
we need away to insert an ampersand (&);

" ; forinsertinga" ;

' forinsertinga’ ;

18

Document Type Definition (DTD)

> ; by symmetry with & t ; even though it is not strictly needed.

Entitiesarereplacedinan XML filewhen thefileisfirst read in memory beforeitsinterpretation; that means
that those entities are replaced within any context even within strings.

Entity replacements can a so be used within the DTDsthemsel vesto modul arize them. These types of entities
are called parameter entities and they are distinguished from ordinary entities by adding a percent sign
preceding the name of the parameter entity and its definition, seeaddr ess (seeline 26-@). Itscall ispreceded
by a percent sign instead of an ampersand see owner (line 32-®) and | ocat i on (line 33-®). Another
special kind of entity, introduced by SYSTEM refersto afile such aswi ne- cat al og (line 36-®). This
entity can then be used to include afile asis shown on the last line of the cellar DTD Example 3.1 which
includes the wine catalog DTD Example 3.2. As the parameter and system entities are replaced when the
DTD is built, they cannot be used in instance documents so no entity is needed to enter a percent.

Example3.1.[Cel | ar Book. dt d] DTD for thecellar book, validation of theinstance
filein Example 2.2

ELEMENTs and ATTLI STs are independent, indentation is ignored by the DTD processor, it is used here
for the human reader only, to highlight some inclusion dependencies.

1 <?xm version="1.0" encodi ng="UTF-8"?>

<! ELEMENT cellar (wine)* > o
5 <l ELEMENT wi ne (purchaseDate, quantity,rating?, corment?) > (2]
<! ELEMENT pur chaseDat e (#PCDATA) > (3]
<! ELEMENT quantity (#PCDATA) > (4]
<l ELEMENT rating EMPTY >
<I ATTLI ST rating stars CDATA #l MPLI ED>
10 <! ATTLI ST wi ne code | DREF #REQUI RED > (5]
<IELEMENT nane (first | famly | initial)+ > (6]
<l ELEMENT first (#PCDATA) >
<! ELEMENT fam |y (#PCDATA) >
15 < ELEMENT initial (#PCDATA) >
<! ELEMENT cel | ar - book (w ne-catal og, owner, |ocation, cellar) > (7]
<l-- [general] entities for use in instance docunent -->
20 <IENTITY guy "CGuy Lapal me" > (8]
<IENTITY eacute "é" >
<IENTITY ntl "Montréal" >
<IENTITY GL "&guy;, &ntl;" >
25 <I-- paraneter entities for use within a DID -->
<IENTITY % address "(street, city, province, postal-code)" > (9]
<! ELEMENT street (#PCDATA) >
<l ELEMENT city (#PCDATA) >
<!l ELEMENT provi nce (#PCDATA) >
30 <! ELEMENT post al - code (#PCDATA) >
<! ELEMENT owner (nane, %address;) > ©

19

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CellarBook.dtd

Document Validation

<! ELEMENT | ocati on %address; > (1]
35 <I-- systementity for including a file -->
<IENTITY % w ne-catal og SYSTEM "W neCat al og. dtd" > @

% ne- cat al og;

A cellar isapossibly empty list of wines.

A wineis defined by a purchase date, a quantity, an optional rating and an optional comment.

The purchase date is a string.

A quantity isalso astring.

A code must refer to ani d defined in the wine catal og.

The name is a non-empty list consisting of afirst name, a family name and an initial; this somewhat
loose definition of aname illustrates some of the limitations of the the regular expression mechanism
inthe DTD.

The cellar book is composed of the wine catalog, the owner, the location, and the cellar itself.

Some definitions of entities and how they can be composed.

Parameter entities can be used in the definition of other entities.

Use of a parameterized entity defined on line 26-@.

Another use of the same parameterized entity.

A parameterized entity definition for fileinclusion; here it is used in the following line to include the
DTD definitions in the wine catal og.

Q00000

0660009

We now look at the validation of the wine catalog (Example 3.2). Given the fact that all element names
must be unique in aDTD (there are no namespaces in DTDs), we must give a different name to thewi ne
element of Example 3.1. Herewedecided tocall itcat - wi ne (line4-@). Theattributef or mat (line 10-8)
shows an exampl e of an enumeration of values from which the attribute value must necessarily be chosen.
Thelink betweenthewi ne andthecat - wi ne elementsismadeusingthecode (line 13- of Example 3.2)
of typel Dand itsreferencein line 10-@ of Example 3.1 whichisof type | DREF. Inan XML file, al values
of type | D must be distinct and values of type | DREF must refer to an existing | D.

Example 3.2. [W neCat al og. dt d] DTD to validate the wine catalog, included in
Example 3.1

1 <?xm version="1.0" encodi ng="UTF-8"?>
<l ELEMENT wi ne-cat al og (cat-w ne*) >

<! ELEMENT cat-wi ne (properties, origin, (1]
5 (tasting-note?, food-pairing?, comment?)*,
price,year) >
<I ATTLI ST cat -wi ne name CDATA #REQUI RED >
<! ATTLI ST cat-wi ne appel | ati on CDATA #| MPLI ED >
<I ATTLI ST cat-wi ne classification CDATA #l MPLI ED >
10 <! ATTLI ST cat-wine format (375m | 750m | 11 | magnum (2]
| jeroboam | rehoboam | mathusal em | sal manazar
| balthazar | nabuchodonosor) #REQUI RED >

<I ATTLI ST cat-wi ne code | D #REQUI RED> (3]
<! ELEMENT properties (color,al coholic-strength, nature?) >
15 <! ELEMENT col or (#PCDATA) >

20

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineCatalog.dtd

Associating an Instance File with a
DTD

<l ELEMENT al cohol i c-strength (#PCDATA) >
<! ELEMENT nature (#PCDATA) >
<l ELEMENT origin (country, region, producer) >
<! ELEMENT country (#PCDATA) >
20 <l ELEMENT regi on (#PCDATA) >
<! ELEMENT producer (#PCDATA) >

<IENTI TY % Comment " (#PCDATA | enph | bold)*" >
<! ELEMENT enph (#PCDATA) >
25 <! ELEMENT bol d (#PCDATA) >

<! ELEMENT comment %Cormment; >

<l ELEMENT t asti ng-note % Comrent; >

<! ELEMENT f ood- pairi ng %omrent; >
30

<! ELEMENT price (#PCDATA) >

<! ELEMENT year (#PCDATA) >

© A wineentry in the catalog is alist of properties, then the wine origins, followed by an optional list

of tasting-notes, food-pairing suggestions and comment; finally the price and year have to be given.
® Theformatisgivenasalist of literal valuesfrom which the actual value of the attribute must be chosen.
® Theunique code for the wine that must bet matched by areference at line 10-@ of Example 3.1

3.1.1. Associating an Instance File with a DTD

Thelink between aDTD and an XML file that it validates can be done externally using an XML Editor or
by acommand line argument to avalidation program. But most DTD validatorsrely ona! DOCTYPE element
at the start of the XML file. For example, one can use declarations such as the following:

1
<! DOCTYPE cel | ar - book SYSTEM " Cel | ar Book. dt d" >
<cel | ar - book>
<wi ne- cat al og>

</ w ne- cat al og>
</ cel | ar- book>

Theroot element of the XML instance document is given asthe second value, SYSTEMin third and areference
tothe DTD filein fourth.

21

Document Validation

3.2. Schema

Aswe have seen in the previous section, a DTD defines constraints on the order and nesting of elementsin
an XML file, but the type of constraintsis limited and does not allow validation of the character content of
elements, except for enumeration valuesand | Y | DREF. There are also other drawbacks: al element names
inaDTD must be unique and thus combining separately developed DTDs can become quite cumbersome.
Moreover, the DTD file is not a well-formed XML file, thus one cannot easily use an XML tool to create
or processit. Thisiswhy XML Schema has been introduced with a comprehensive set of elementary types
and a way to combine them to create new types. The concept of namespaces (presented in Section 2.1) is
also used in order to facilitate the combination of independent files without name clashes.

A Schemais awell-formed XML file (usually with a. xsd extension) that defines types used to validate
the elements of an XML file. In away similar to variable declarations in a programming language, we can
define types. We follow the Java convention of starting type identifiers with an upper case letter. Element
identifiers start with a lower case letter. In a name comprising more than one word, each word starts with
an uppercase letter. No underscore or dash are used. For most elements, we define a type having the same
name asthe element, but capitalized, instead of using inline definitions of embedded elements. In aSchema,
there are two kinds of types. simple and complex. Simple types define constraints on the text content of an
element which cannot contain any element. A complex type can contain nested elements.

There are many different ways of organizing a Schema as described by Van der Vlist [60]. One can either
use a Russian doll approach in which asingle element is defined with its nested elements defined internal ly.
Another approach is to use a bottom-up approach in which the elements are defined before they are used in
more complex elements. It is also possible to use a top-down approach that first defines the higher level
elements before defining the lower level elements. All these styles of definitions are possible and we will
sometimes use a mix of them in order to show some features of XML Schema.

Table 3.2 presents the XML elements we use in our example to define the types needed for the validation
of our wine catalog and cellar book. Since aschemaisitself an XML filg, it isimportant to distinguish the
elements defining the Schemafrom the elementsbeing defined. Thisis ensured by using adifferent namespace
for the defining element (definiens) suchasxs: asprefix (xsd: isalsocommonly used). A defined element
(definiendum) does not have a prefix, it isin the default namespace. Contrarily toaDTD, an XML Schema
isavalid XML fileand it can be validated using the XML Schemaof XML Schemas, usually provided with
inal XML editors.

22

Schema

Table 3.2. XML Schema syntax reminder

<xs:schena target NaneSpace="URl ">
xs:inmport* {xs:sinpleType | xs:conplexType | xs:element | xs:group}*
</ xs: schenma>
<xs:inmport nameSpace="URl"
schemaLocati on="URl"/>
<xs: si npl eType nane="NCNane">
Xs:restriction
</ xs:si npl eType>
<xs: conpl exType nanme="NCNane"
m xed="true">
{xs:choice | xs:sequence | Xxs:group}? xs:attribute*
</ xs: conpl exType>
<xs: el ement nane="QNanme"
type="TNane"/ >
<xs: el enent nane="QNane"
ref =" ENane"/ >
<xs: el ement nane="QNane" >
{xs:sinpleType | xs:conpl exType}?
{xs:unique | xs:key | xs:keyref}*
</ xs: el emrent >
<xs: sequence {m n| max}occurs="nonNegati vel nt eger | unbounded" >
{xs:element | xs:choice | xs:sequence | Xs:group}*
</ xs: sequence>
<xs: choi ce {m n| max}occurs="nonNegati vel nt eger| unbounded" >
{xs:element | xs:choice | xs:sequence | Xs:group}*
</ xs: choi ce>
<xs: group nanme="NCNanme" >
{xs:choice | xs:sequence}*
</ xs: group>
<xs:attribute name="NCNane"
t ype="TNane"
use="required"/>
<xs:restriction base="TNanme">
<xs: {max| m n}{in|] ex}clusive val ue="anySi npl eType"/ >
| <xs:{max| m n}length val ue ="nonNegativel nteger"
| <pattern value = "regExp"
| <enumeration value = "anyVal ue"
</xs:restriction>
<xs: {uni que| key} nane="NCNane">
xs:selector xs:field+
</ xs:{uni que| key}>
<xs: keyref name="NCNane"
r ef er =" NCNane" >
xs:selector xs:field+
</ xs: keyref >
<xs: {selector|field} xpath="XPathExpr"/>

A reminder of the subset of the XML Schemasyntax used in Example 3.3 and Example 3.4. Namesinitalicsrefer to other elements.
NCNare (non-colonized name) is a name without a namespace prefix. Regular expressions syntax is given in Table B.1.

23

Document Validation

An XML Schemahasan xs: schenma eement as root which can contain different kinds of definition €l e-
ments.

xs: i nmport alowsthe combination of different schemasinto asingle one; in our case, we have aschema
for the wine catalog which isimported into that of the cellar book.

xs: si mpl eType defines additional constraints on predefined types; this is explained further in Sec-
tion 3.2.1.

xs: conpl exType definesanew type in terms of achoice or a sequence between other types.

XS: gr oup gives aname to an incomplete type that can be used as building block for other types.

xs: el ement isthe fundamental way of defining an element that can appear in an instance file. It can
be given either with aname and atype. It can refer to another element definition or it can be defined with
an anonymous simple or complex type followed by keys and keyrefs definitions.

XS: sequence combines other elements by making sure that they occur sequentially.

xs: choi ce combines other elements by making sure that only one of them occurs.

xs: al I combines other elements by making sure that they all occur but in any order.

Xxs: attri but e gives the name and the simple type associated with an attribute. Attributes are not
ordered and optional unless their are given the value r equi r ed to their use attributes. Note that
Xs: attri but esaregiven at the end of the type definition, even though they appear in the start-tag.
Xs:restriction givesrange, pattern constraints on the value of a simple type. enuner ati on is
to limit the allowed value to one of agiven list.

Xs: key, xs: uni que and xs: keyr ef define cooccurrence constraints that generalize the notion of
ID/IDREF. They will not be explained in this document.

Intherest of this section, we first give in Example 3.3 and Example 3.4 the XML Schemas that correspond
respectively to the DTDs of Example 3.1 and Example 3.2. Figure 3.1 gives the overall structure of the
XML Schema of Example 3.3. Figure 3.2 gives the overal structure of the Schemain Example 3.4. Aswe
will see, the validation of the text content of the elements can be much more thorough with an XML Schema
than withaDTD.

We will then explain the structure of the type system: first smple types (Section 3.2.1) and then complex
types (Section 3.2.2).

24

Schema

Figure 3.1. Graphical view of the schema for the cellar book

schema [(Sn

—| <= import: WineCatalog.xsd |

| {wro—(@o > @o—{m=lo

(@ o (@)oo Jo
(v]o

rating @—@@ @ stars |(®

comment (B

@
9_@9‘—.9 first |®
family |@®
initial |@
| (it jo—(@)o—(@)or—Eiamingo

5 s o (@)

(@ oo @)or—mmge
(e

%V PostalCodeCA)@—([}(} restricts: xs:string)@

A name in arectangular box is an element name or, if preceded by @ an attribute name. A complex type
name is preceded by a square and asimple type by atriangle. A sequence is shown with 4 dots horizontally
aligned in an hexagon and a choice with 4 dots aligned vertically (see Figure 5.2 for an example). A + after
abox indicatesthat further details have been omitted. Three small squaresin front of an el ement name either
indicates that its definition will be referred to somewhere else in the schema; the reference is indicated by
asmall arrow at the bottom right of the rectangle. This figure was produced by the <oXygen/> XML editor

from the XML Schema fil

egivenin Example 3.3.

Example 3.3. [Cel | ar Book. xsd] XML Schema for the cellar book, validation of
theinstancefilein Example 2.2.

Thisfile can be compared

with the DTD shown in Example 3.1.

25

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CellarBook.xsd

Document Validation

1 <?xm version="1.0" encodi ng="UTF-8"?>

10

15

20

25

30

35

40

45

50

<xs:schema xm ns: xs="http://wwmv. w3. or g/ 2001/ XM_Schema"

xm ns: cat="http://ww.iro.unontreal.cal/l apal me/w ne-cat al og" >

<xs:inport namespace="http://ww.iro.unontreal.cal/lapal me/w ne-catal og®"
schemaLocat i on="W neCat al og. xsd"/ >

<xs:el enent nane="cellar"> (2]
<xs: conpl exType>
<xs:sequence m nCccurs="0" maxQCccur s="unbounded" >
<xs: el enent nane="w ne" type="Wne"/> (3
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: conpl exType nanme="W ne" > o
<XS:sequence>
<xs: el enent name="purchaseDate" type="xs:date"/> (5

<xs: el enent nanme="quantity" type="xs:nonNegativelnteger"/>
<xs: el enent name="rating" m nCccurs="0">
<xs: conpl exType>
<xs:attribute nanme="stars" type="xs:positivelnteger"/>0
</ xs: conpl exType>
</ xs: el ement >
<xs: el enent name="conment" type="cat:Comrent" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute nanme="code" type="xs:|DREF" use="required"/> (7
</ xs: conpl exType>

<xs: el enrent nane="nane"> (8]
<xs: conpl exType>
<xs:al |l > (9

<xs:el enent nane="first" type="xs:string" m nCccurs="®0"/>
<xs:el enent name="fam |ly" type="xs:string” m nCccurs="0"/>
<xs:elenent name="initial" type="xs:string" m nQccurs="0"/>
</xs:all>
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nane="cel |l ar - book" > ®
<xs: conpl exType>
<XS:sequence>
<xs: el enent ref="cat:w ne-catal og"/>
<xs: el enent nanme="owner" type="Ownner"/>
<xs: el enent nane="l|ocation" m nQccurs="0">
<xs: conpl exType>
<xs:group ref="address"/>
</ xs: conpl exType>
</ xs: el ement >
<xs:elenment ref="cellar"/>
</ xs: sequence>
</ xs: conpl exType>

26

Schema

55

60

65

70

75

80

85

90

95

© o0

</ xs: el enent >

<xs: group nane="address"> @
<XS:sequence>
<xs: el enent nane="street" type="xs:string"/>
<xs:el enment nane="city" type="xs:string"/>
<xs: el enent name="provi nce" type="ProvinceCA"/>
<xs: el enent nanme="postal -code" type="Postal CodeCA"/> ®
</ xs: sequence>
</ xs: group>

<xs: si nmpl eType nane="Provi nceCA">
<l-- http://ww. canadapost . ca/t ool s/ pg/ manual / b03- e. asp#c012 -->
<xs:restriction base="xs:string">
<Xs:enuneration val ue="AB"/ >
<Xs:enuneration val ue="BC'/ >
<Xs:enuneration val ue="MB"/ >
<Xs:enuneration val ue="NB"/> ®
<Xs:enuneration val ue="NL"/>
<Xs:enuneration val ue="NT"/>
<Xs:enuneration val ue="NS"/>
<Xs:enuneration val ue="NU'/>
<Xs:enuneration val ue="ON'/ >
<xs:enuneration val ue="QC'/ >
<Xs:enuneration val ue="SK"/ >
<Xs:enuneration val ue="YT"/>
</xs:restriction>
</ xs:si npl eType>

<xs: conpl exType name="Oaner" > ®
<XS:sequence>
<xs:el enent ref="nane"/>
<xs:group ref="address"/>
</ xs: sequence>
</ xs: conpl exType>

<xs: si nmpl eType nane="Post al CodeCA" > 16]
<xs:restriction base="xs:string">
<xs:pattern value="[A-Z][0-9][A-Z] [0-9][A-Z][0-9]"/>
</xs:restriction>
</ xs:si npl eType>

</ xs: schenn>

Gets the types defined in the schema for the wine catalog, which uses a different namespace, the one
identified by the cat prefix.

Element cel | ar isapossibly empty list of Wi ne elements of type W ne defined at line line 16-@.
Definition of element wi ne of type W ne.

Thetype W ne for the cellar-book defines a set of bottles; it is defined with their date of purchase, the
number of bottles, an optional rating given as a number of stars and an optional comment whose type
is defined in the catalog in a different namespace.

The purchase date is of the predefined XML type dat e.

27

Document Validation

6 6 8

The rating is an empty element with an attribute st ar s indicating the number of stars, which must
be a number greater than 0.

This attribute is the link between the wines defined by the quantitiesin the cellar and their description
in the catalog. Being of type | DREF, it must make reference to an existing | D in the catalog.

The element nane isalist of elements comprising the first name, the family name and initia in any
order.

Each component of a name is a string.

Asall elementsareoptiona (m nCccur s="0"), we obtain the usual definition of aname, contrarily
to what we had to do with aDTD line 12-@ of Example 3.1.

A cedllar book isalist of elements starting with the wine catalog, followed by the owner element, an
optional address and finally the description of the cellar itself using the element defined at line 8-@.
An addressis sequence of four elementsindicating the street address, city, the province in Canada and
a Canadian postal code. An addressis not an element but a group that can be used to define other ele-
ments. Here it is used within the| ocat i on element of the cel | ar - book (line 42-®) and in the
Onner type (line 84-®).

A postal codeisastring matching aregular expression defined inthepat t er n element inthesimple
type defined at line 91-®.

The province isindicated by atwo-letter code chosen among a predefined list.

An owner isanamne element followed by the content of the addr ess group, defined at line 57-@.
A Canadian postal code is composed of two groups of three characters alternating between a capital
letter and a number. The two groups are separated by a space.

28

Schema

Figure 3.2. Graphical view of the schema for the wine catalog

schema G}—' <9 import: http:/ fwwww3.org/ 2001/ xmlxsd |
e Jo
(@)o@ lo
e
0.2 9 tasting-note (&
food-pairing |(®
comment (5
el
el
L Tom]o
@ appellation &
@ classification (&
@ code |(®
@ format (&
- Gro)o
G oo
—(V Format)@—([}(] restricts: xs:string)@
(@ oo
—{ [/ Color }O [] restricts: xs:string |®

%V Percentage)@—([}(} restricts: xs:decimal)@

Graphical view of the schema for the wine catalog (Example 3.4). See the caption of Figure 3.1 for an ex-
planation of the symbols used in the figure.

Example 3.4. [W neCat al og. xsd] XML Schema file to validate the instance

document shown in Example 2.3.

Thisfile can be compared with the DTD shown in Example 3.2.

1 <?xm version="1.0" encodi ng="UTF-8"?>

10

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena

el ement For mDef aul t =" qual i fi ed"

attri but eFor nDef aul t ="unqual i fi ed"”
xm ns: cat ="http://ww.iro.unmontreal .cal/l apal me/ wi ne-cat al og
t ar get Namespace="http://ww. i ro. unontreal . ca/l apal ne/ wi ne-cat al og" >0

o0

<l-- needed because this schema will be inported -->
<xs:imnport namespace="http://ww. w3. or g/ XM_/ 1998/ nanespace"
schemaLocati on="http://ww. w3. org/ 2001/ xm . xsd"/ >

<xs: el enent nanme="wi ne-catal og"> (5]
<xs: conpl exType>

29

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineCatalog.xsd

Document Validation

15

20

25

30

35

40

45

50

55

60

65

<xs:sequence m nCccurs="0" maxQCccur s="unbounded" >
<xs: el enent name="w ne" type="cat:Wne"/>
</ xs: sequence>
<I'-- needed because this schema will be inported...-->
<xs:attribute ref="xmn:base"/>
</ xs: conpl exType>
</ xs: el ement >

<xs: conpl exType nanme="W ne" > (6]
<XS:sequence>
<xs: el enent name="properties" type="cat:Properties"/>
<xs: el enent nanme="origin" type="cat:Oigin"/>
<xs:choi ce m nCccurs="0" maxQOccur s="unbounded" >
<xs: el enent nanme="tasti ng-note"
type="cat: Commrent" m nCccurs="0"/>
<xs: el enent nanme="food- pairing"
type="cat: Commrent" m nCccurs="0"/>
<xs: el enent nane="coment"
type="cat: Commrent" m nCccurs="0"/>
</ xs: choi ce>
<xs: el enent nanme="price" type="xs:deciml" ></xs:el ement>
<xs: el enent name="year" type="xs:gYear"/>
</ xs: sequence>
<xs:attribute name="nane" type="xs:string" use="required"/>
<xs:attribute nanme="appell ation" type="xs:string"/>
<xs:attribute name="cl assification" type="xs:string"/>
<xs:attribute nanme="code" type="xs:ID'/> (7]
<xs:attribute name="format" type="cat: Format"/>
</ xs: conpl exType>

<xs: conpl exType name="Properties"> (8]
<XS:sequence>
<xs: el enent nane="color" type="cat: Col or"/>
<xs: el enent nanme="al coholic-strength" type="cat: Percentage"/>
<xs: el enent name="nature" type="xs:string" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

<xs: conmpl exType name="Origin"> (9]
<XS:sequence>
<xs: el enent name="country" type="xs:string"/>
<xs: el enent nane="regi on" type="xs:string"/>
<xs: el enent nanme="producer" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>

<xs:si nmpl eType nane="For mat" > ©

<xs:restriction base="xs:string">

<xs:enuneration val ue="375m"/>

<xs:enuneration val ue="750m"/>

<Xs:enuneration value="11"/>

<xs:enuneration val ue="magnuni >

<Xs:annot ati on>
<xs:docunentation> 1.5 |itres</xs:docunentation>

30

70

75

80

85

90

95

100

105

110

115

120

</ xs: annot ati on>
</ xs: enunerati on>
<xs:enuneration val ue="j eroboant >
<Xs:annot ati on>
<xs:docunentation> 3 litres</xs:docunmentation>
</ xs: annot ati on>
</ xs: enunerati on>
<xs:enuneration val ue="rehoboant >
<Xs:annot ati on>

<xs:docunentation> 4.5 |litres</xs: docunent ati on>

</ xs:annot ati on>
</ xs: enunerati on>
<xs:enuneration val ue="nmat husal enf >
<Xs:annot ati on>
<xs:docunentation> 6 litres</xs:docunmentation>
</ xs: annot ati on>
</ xs: enunerati on>
<xs:enuneration val ue="sal manazar">
<Xs:annot ati on>
<xs:docunentation> 9 litres</xs:docunmentation>
</ xs: annot ati on>
</ xs: enunerati on>
<xs:enuneration val ue="balthazar">
<Xs:annot ati on>
<xs:docunentation>12 litres</xs:documentation>
</ xs: annot ati on>
</ xs: enunerati on>
<xs:enuneration val ue="nabuchodonosor" >
<Xs:annot ati on>
<xs: docunentation>15 litres</xs:docunmentation>
</ xs: annot ati on>
</ xs: enunerati on>
</xs:restriction>
</ xs:si npl eType>

<xs: conmpl exType name="Coment" m xed="true">
<xs:sequence m nCccurs="0" maxQCccur s="unbounded" >
<xs: choi ce>
<xs: el enent nane="enph" type="xs:string"/>
<xs: el enent nane="bol d" type="xs:string"/>
</ xs: choi ce>
</ xs: sequence>
</ xs: conpl exType>

<xs: si nmpl eType nane="Col or" >
<xs:restriction base="xs:string">
<xs:enuneration value="red"/>
<xs:enuneration value="white"/>
<xS:enuneration val ue="rosé"/>
</xs:restriction>
</ xs:si npl eType>

<xs: si nmpl eType nane="Per cent age" >
<xs:restriction base="xs:decinmal ">

Document Validation

125

<xs: m nl ncl usive val ue="0"/>
<xs: maxl ncl usi ve val ue="100"/ >
<xs:fractionDi gits val ue="2"/>
</xs:restriction>
</ xs:si npl eType>
</ xs: schema>

Start of the schema for the wine catalog giving xs prefix for the elements used in the definition of
other elements.

If a schema has atarget namespace such asin line 6-@, qual i f i ed meansthat all defined elements
in this schemawill be created in the target namespace.

unqual i fi ed meansthat al attributes in this schema will belong to the same namespace as their
carrying element.

Defines the namespace that will be used for the elements defined by this schema.
Thewinecatalogisa(possibly empty) sequence of winedefinitions. In order that referencesto internal
elements remain valid when the instance file validated by this schemaisimported by another file, an
xm : base attributeisadded by theimport process. Thisimpliesthat this attribute must also be allowed
in the schema.

A wine entry of the catalog isalist of properties: its origins followed by optional tasting notes, food
pairing suggestions and comments, its price and its production year. Other information such as the
name, the appellation, the classification, the code and the format are given as attribute strings.

A winein the catalog is assigned a unique code of type | D. The validation process will ensure their
uniqueness across the whole file. It will be references by the code attribute in the wine definition of
the cellar.

Pr operti es definesthe color of the wine, its alcoholic content as a percentage defined by a type
on line 120-®. Finally, an optional nature can be given as a string.

O i gi nisdefined by the country, the region and the producer.

For mat isastring value taken within the values appearinginan xs: enuner at i on element within
thexs: restricti on element. The content of the xs: annot at i on isfor structured comments
without any impact on the type constraints but they are kept within the schemastructure. Thisinform-
ation can then be used in XML applications, for example it can be displayed in by XML editors.
Them xed attribute having ayes valueindicates that enclosed elements can be interleaved with text
nodes. In this case, it means that the content of a comment is text with embedded enph and bol d
elements.

col or can be only be one of three most often encountered possibilities. Wine connoisseurs might be
shocked that wines cannot take other colors such as yellow.

A percentage is anumber between 0 and 100 that must include 2 digits after the decimal point.

32

Simple Types

3.2.1. Simple Types

Figure 3.3. Built-in datatypes for XML Schema

Built—-in Datatype Hierarchy

|all complex types

anySimpleType

|duratinn||datETimE||timEJ|datE||gYearMDnth HgYear||gMDnthDay||gDay”gMDnth|

|huulean‘|base6431nary ”hexBinary||leat| |dnublel|anyURI||QHame||HOTATIOH|

=
Q
fr}
1]
h=
[=
@
E
&
(o
LY
(4]
[+ 4
9
2

string

|nnrmalized5tring

tukéE] |nDnPDsitiveInteger “lang“nnnﬂegativeInteger]

|lﬂnguﬂge||NameI |NMTOKENI |negativeInteger ”lnt||unsignEdLDng “pnsitivelntegerl
T
I

[HCHame | [maToKENS | [short | [unsignedint |
|
1] |tDREF | [EWTITY] [byte |[unsignedshort |
: 1
|IDRIEFS ||ENTI'II‘IES |
ur types — deriwed by restriction
built-in primitiwve types m======= deriwved by list

built-in derived types —==— derived by extension or

restriction

OJOOM

complex types

Built-in datatypes for XML Schema. ur - t ypes serve asroot of the type hierarchy for all derivations. ur
is the German prefix meaning ancestral such as in Ursprung (beginning). Figure taken from section 3 of
XML Schema Part 2: Datatypes[9].

A simple type is a primitive datatype, roughly corresponding to PCDATA in DTD, such as xs: stri ng,
xs: deci mal , xs: doubl e, xs: dat e (XML has 19 of them, shown in Figure 3.3) or aderivation of a
primitive datatype. A derivationisarestriction onthe original type such as constrai ning the maximum length
of astring, giving alist of acceptable values, or requiring that the value matches aregular expression. Fig-
ure 3.3 shows a number of built-in derived types and types that are derived from them (i.e. appear under

33

Document Validation

them). We can see uses of simpletypesin Example 3.3: st ar s (line 22-@) which must not only be an integer
but a positive one, fi r st (line 34-®) whichisast ri ng (essentially the same thing as a#PCDATA in a
DTD).

Users can also define their own simple types, which cannot have any internal element, using the
xs: si mpl eType element. A simple type definition can constrain a string to be one of many choices
(Provi nceCA on line 72-@) or to match aregular expression (Post al CodeCA on line 91-®).

A new simpletypecanalso becreatedusingal i st (alowing aseriesof primitivetypevalues) or auni on
(allowing one of many primitive types). It is thus possible to define a whole gamut of types. These are
quite straightforward, although the the devil isin the details described in [45] and [9].

3.2.2. Complex Types

Unlike a simple type, a complex type can contain element declarations, element references and attributes
declarations. We will illustrate some of these possibilities with Example 3.3.

An element declaration is done with an xs: el enent specifying the name of the element and its type,
which can either be defined as the value of the element, such ascel | ar (line 8-8), or by indicating the
type with thet ype attribute such asinwi ne (line 11-) or pur chaseDat e (line 18-@).

A complex type is defined either by a sequence of elements contained in an xs: sequence element (see
cel I ar on line 8-@) or by a choice between many elements contained in an xs: choi ce element such
as within name (line 31-@). Attributes are defined after the definitions of the elements in sequence or in
choice even though they appear in the start-tag (see code as attribute of wi ne, line 27-@).

xs: choi ce andxs: sequence canbenested. For example, nane (line 31-@) indicates achoice between
three elements of typestringf i rst,fam | y andi ni ti al , which can be repeated any number of times.
Indeed, because an element only occurs once by default (i.ee mi nOccurs="1") and that
maxCccur s="unbounded" , each element can appear as often as we wish.

An existing element can also be referred to using ther ef attribute like name used in Owner (line 84-®).
But be aware that, in this case, if you had mistakenly used the nane attribute instead of r ef , you would
have named a new element with no connection with the one you wished to have referenced; this can lead
to errors that are difficult to track down (I learned this the hard way!!!).

InExample3.4,them xed="t rue" attributein the definition of atype (see Comment , line 103-®) means
that character data can also appear between the elements described by the content of the type. In this case,
character data can thus be interspersed with any number of enph and bol d elements.

3.2.3. Namespaces in Schemas

We have introduced namespaces for instance documents in Section 2.1, but they only show their full power
during the validation process in which the combination of element names and namespaces must correspond
between the instance and the schema. Of course, namespaces must be properly combined during fileinclusion
and details can become quite intricate.

We will illustrate a simple but quite frequent case with Example 3.3 and Example 3.4 . These schemas both
defineaw ne element, but with meanings and contents which must be distinguished. Thisis achieved with

Overview of the XML Schemas

namespace declarations. A similar name clash occurs when we must define an element caled t ype or
sequence that isaready used in the schema vocabulary. Thisiswhy we define anamespace (usualy xs
or xsd) for the element names of an XML Schema.

By default, names without prefixes are defined in the empty namespace or the namespace assigned to the
xm ns attribute. To create elements in a specific namespace (and not the empty one), we set a value for
theattributeasitisdonefor elementt ar get Nanmespace in Example 3.4 (line 6-@). The same namespace
isalsoassignedtotheprefix cat . el ement For nDef aul t issettoqual i fi ed (line3-@ of Example3.4)
so that global elements and types of an included file are visible in the including file. The
attri but eFor nDef aul t issettounqual i fi ed toensurethat the attributes arein the same namespace
as the containing element.

The import of elements from an external schemafile along with its namespacesisdoneusing xs: i npor t
(line 5-@ of Example 3.3) indicating the namespace used in thisfile for the target namespace of the imported
file (here we keep the same one) and the location of the file to be imported. The imported namespace must
be given a prefix definition with an xm ns declaration, see the root tag of Example 3.3. Because the name
associated with the target namespace of the imported file is the same as the one associated with the cat
prefix, we use cat : wi ne to refer to the wi ne element of Example 3.4. Namespace and importation of
RELAX NG schemas, described in the next section, are similar in principle to what we have shown for the
importation of XML Schema.

We now better understand how namespaces are used in the instance documents and how they are linked to
their schemas. For example, the first lines of Example 2.3 define the namespace associated with the null
prefix (i.e. only the element name) asthe value of the xm ns attribute. We also indicate the namespace and
thelocation of the Schemato be used for validation asthe value of thexsi : schemalLocat i on. Thexsi

prefix must also be defined by an attribute starting with xm ns: . Because all elements defined in thisfile
are in the same package, to which we have assigned the null prefix, no namespace prefix isused in thisfile.

3.2.4. Overview of the XML Schemas

Example 2.1 (page 36) shows the outline of our XML instance files validated by the two XML Schemas
described in this section. Their outline is shown in Example 3.5. The instance file of the wine catalog isin-
cluded in the one of the cellar book. So it was natural and convenient to have asimilar organization for the
corresponding schemas even though thisis not always the case. In this case, the wine catalog schemaisin-
cluded in the cellar book schema. Note the use of the namespace prefixesin both the XML instance and the
corresponding XML Schemafiles. The part in bold characters in Example 2.1 and Example 3.5 belong to
different namespaces. Here, we kept the same name for the namespaces in both the instance file of the wine
catalog and the corresponding schema. In Example 3.5, we see that references to linesin bold need to use
the namespace prefix cat for the SAQ- code type (line37-@) andthewi ne- cat al ogelement (line43-®)

These examples show another interesting use of namespaces: to make sure that relative references are kept,
anxm : base attribute (line 19-0) is added to the root element (line 14-©) by when an instancefileisin-
cluded into another. In order that the resulting instance file remains valid, xm : base must be added as an
attribute in the W neCat al og. xsd schema. xm : base isitself a specia XML type whose definition
must also be imported (line 11-@ of Example 3.5).

35

Document Validation

Example3.5. Outlineof Cel | ar Book. xsd importing Example 3.4 (shown initalics)
in a different namespace.

1 <xs:schenma xm ns: xs="http://ww.w3. org/ 2001/ XM_Schena"
xm ns: cat="http://ww. iro.unontreal.cal/l apal ne/ wi ne-cat al og" >

<xs:schemn
5 xm ns: xs=" http://ww. w3. or g/ 2001/ XM_Schena'
el ement For mDef aul t ="qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
xm ns: cat ="http://ww.iro.unontreal.ca/l apal ne/ w ne-cat al 0g"
t ar get Namespace="http://ww. i ro. unontreal . ca/l apal me/ wi ne-catal og"> ©

10
<xs:inport nanmespace="http://ww. w3. org/ XM/ 1998/ nanespace" @
schemaLocati on="http://ww. w3. org/ 2001/ 03/ xm . xsd"/ >
<xs: el enent nanme="w ne-cat al og" > (3
15 <xs: conpl exType>
<xs: sequence mi nCccurs="0" maxQCccur s="unbounded" >
<xs: el enent nanme="w ne" type="cat:Wne"/>
</ xs: sequence>
<xs:attribute ref="xm:base"/> (4
20 </ xs: conpl exType>
</ xs: el ement >
<xs: conpl exType name="W ne">...</xs: conpl exType> e
25 </ xs: schema>
<xs:el enent nane="cellar"> 0

<xs: conpl exType>
<xs: sequence m nCccurs="0" maxQCccur s="unbounded" >
30 <xs: el enent nane="w ne" type="Wne"/> (7]
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

35 <xs: conpl exType nanme="W ne" > (8
<Xs:sequence>. .. </ xs: sequence>
<xs:attribute nanme="code" type="xs:|DREF" use="required"/> 0

</ xs: conpl exType>

40 <xs: el enent nane="cel | ar - book" > ®
<xs: conpl exType>
<XS:sequence>

<xs: el enent ref="cat:w ne-catal og"/> ®
<xs: el enent nanme="owner" type="Onner"/>
45 <xs: el enent nane="l| ocation" m nQccurs="0">...</xs:el ement>

<xs:elenent ref="cellar"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

36

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CellarBook.xsd

Overview of the XML Schemas

6000000 0OD0OO

</ xs: schenn>

The target namespace of the imported schema s the one specified by the cat prefix.
Imports another schema whose content is shown herein italics.

The wine catalog is alist of wine descriptions.

Ensuresthat the base attribute added by the import process is properly defined.
Type for the wine description in the catal og.

Definition of the cellar in the top-level schema.

wi ne elementsin the cellar refer to the W ne type definition of the cellar.

Type for the wine description in the cellar.

Reference to the imported type for the wine code.

Top-level element of the cellar.

Reference to the imported type for the wine-catalog (line 14-@).

37

Document Validation

3.3. RELAX NG

Aswe have seen in the previous section, XML Schemaallows athorough validation of XML instancefiles.
The type extension mechanism is very powerful but its XML format is not user-friendly, especialy for
complex embedding of sequences and choices. Thisis why the graphical editing of schemas, provided by
editors such as XML Spy and <oXygen/>, is very useful. In fact when it comes to ease of use, the DTD
grammar-like format is much more convenient. In order to get the best of both worlds, an alternative Schema
notation has been suggested which is called RELAX NG (REgular LAnguage for XML, New Generation).
It features a simpler, intuitive notation to define schemas. RELAX NG is based on the same mathematical
theory underlying regular expressions but adapted to the XML context. The mathematical foundations are
both simpler and more powerful than the ones of the XML Schema.

RELAX NG has two equivalent syntaxes. one is XML-based and the other (called compact) is more con-
venient because it allows grammar-like definitions. Eric van der VIist[59] has written an excellent book
explaining both notationsin detail. First, heintroducesthe XML patterns, the theoretical foundations of the
formalism, that are combined into ordered and unordered groups and used in choices among alternatives.
He then shows how the compact notation can simplify XML notation. In this report, we use the compact
notation to develop the RELAX NG schemas. Most validators can deal directly with the compact notation.
Example 3.6, a RELAX NG compact notation schema for our cellar book, looks more intuitive than the
equivalent XML Schemaof Example 3.3. Ascan be seenin Table 3.3, the structure of RELAX NG Compact
definitionsis quite regular and simple: adefinition is simply aname followed by an equal sign and a pattern
definition.

The Trang automatic Schema converter [16] can be used to obtain an XML version; the associated web site
of thisbook showstheresulting RELAX NG version corresponding to the RELAX NG Compact given here.

A pattern can start either with the keyword el enent orat t ri but e followed by another pattern within
braces. Patterns can be combined sequentially (with a comma), with aternatives (with avertical bar) or by
interleaving (with an ampersand). This last case means that all patterns must occur but not necessarily in
order. A pattern can also be qualified asoptional, appear zero or moretimes or once or more. Mixed patterns
allow text elementsto appear between patterns. A reference to another pattern isindicated by simply giving
its name (id). enpt y means that the content of the element must be empty. t ext corresponds to any
number of text nodes in the instance document. Specifying a value (usually within braces) means that the
element in the document should match this value. It is also possible to specify facets (in the XML Schema
sense) to atype with alist of triples of the form: the name of the facet, an equal sign and then the value of
the facet.

In Example 3.6, we can see examples of element definitions (line 8-@, line 18-@ and line 24-@). A definition
can also be a comma-separated sequence of patterns (line 31-@ and line 37-®). We use it here for type
definitions but the concept is more general and can be applied to any kind of definition. The content of a
definition startswiththekeywordat t ri but e orel enment followed by itsname and the type of its content
between braces. Similarly to the regular expressions conventions described in Table B.1. If the element
separator is& (such asfor nane- el enent), itindicates aninterleave, meaning that elementsin the pattern
are unordered. In this case, it means that the parts of the name can appear in any order, any of them being
optiona because they are followed by a?. Thisis a dlight difference from the syntax alowed for anamne
element as defined by the DTD (Example 3.1) and XML Schema (Example 3.3), in which the only way to
indicate this constraint would be to enumerate all possible orderingsof first,fanmi |y andiniti al .
The root element of the schemais defined by the rule associated with the st ar t keyword.

38

RELAX NG

Table 3.3. RELAX NG Compact syntax reminder

Compact Syntax (RNC) XML Syntax (RNG)
{default? namespace i d=URI <gr anmar >
| datatypes id=URI}* {<start> pattern </start>
{ start=pattern | <defi ne name="NCNane" >pattern+</defi ne>}*
| id=pattern }* </ gr ammar >
Patterns
el ement QName «{» pattern «}» |<el enent nanme="Q\ane" >pattern+</el enent >
attribute QNane «{» pattern «}»<attribute name="QNanme">pattern+</attribute>
pattern{«, » pattern}+ <group name="(Nane">pattern+</group>
pattern{«&> pattern}+ <interleave nane="QNane">pattern+</interl eave>
pattern{«| » pattern}+ <choi ce name="QNane" >pattern+</choi ce>
pattern«?» <optional nane="(QNanme">pattern+</optional >
pattern«*» <zeroOr Mor e nane="(QNane" >patt ern+</zer oO More>
pattern«+» <oneOr Mbre nane="QNane" >pat t er n+</ oneOr Mor e>
m xed «{» pattern «}» <m xed nane="QNane" >pattern+</ m xed>
id <ref nanme="NCNane"/>
enpty <enpty/>
t ext <text/>
data TypeVal ue <val ue {name="NCNane"}?>string+</val ue>
data TypeVal ue <data {type="NCNane"}?>
«{»{id=val ue}* «}» { <par am nane="NCNane" >stri ng</ par anp} *
</ dat a>

Reminder of the RELAX NG Compact and RELAX NG syntax used in our examples. The top cells of the table specify the start
of thefilefor RELAX NG Compact and the root element for RELAX NG. Each line of the bottom part of the table is a different
pattern that can be combined almost freely with the others. The corresponding RELAX NG Compact and RELAX NG elements
appear on the same line within the bottom cell of the table. Like we did in Table 3.1, we put chevrons around terminal symbols
that appear in theregular expression syntax of RELAX NG Compact. The chevrons should not appear inthe RELAX NG Compact
grammar. In RELAX NG Compact, dat aTypeNane can be NCNane, st ri ng ort oken.

When there are no constraints on the string inside an el ement, then the typeist ext , but it can also refer to
the built-in datatypes of XML Schema (seewi ne). Restrictions can also be added on types by surrounding
them with braces:. patterns (see Post al CodeCA) or enumerations(seepr ovi nce elementin Addr ess).

Example 3.6 includes (line 4-@) the definitions of the wine catalog in aseparate file (Example 3.7). Because
the included file d'so hasast art symbol, we override its definition by the definition in braces after the
name of the file. Any other included definition could be overridden in this way. There are many other pos-
sibilities to combine definitions of many files but we will not present them in this document. One should
consult [59] (Chapter 10) for more details.

Namespace prefixes are declared by a definition following the keyword nanmespace (line 1-9). To usethe
predefined types of XML Schema (Figure 3.3), we similarly declare the prefix used for referring to them.
RELAX NG does not implement the notions of XML Schemakeys and keyr ef so that one must resort
to the simpler (but often sufficient) notion of DTD | Dand | DREF explained in Section 3.1.

Example3.6.[Cel | ar Book. r nc] RELAX NG Compact schemafor thecellar book
to validate Example 2.2.

Compare this file with Example 3.3.

39

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CellarBook.rnc

Document Validation

1

10

15

20

25

30

35

40

000

© 0

nanespace cat = "http://ww.iro.unmontreal.cal/l apal ne/w ne-cat al og”
dat atypes xs = "http://ww. w3. or g/ 2001/ XM_Schena- dat at ypes"

i ncl ude "W neCat al og. rnc" {
start = cell ar-book

e o000

}

cellar = elenent cellar {
el ement w ne {
attribute code {xs:|DREF},
el ement purchaseDate {xs:date},
el ement quantity {xs:nonNegativel nteger},
element rating {attribute stars {xs:positivelnteger}?}?,
el ement comment {Coment}?

}*

©0

}

name = el ement nane { (7]
element first {text}?
& element famly {text}?
& element initial {text}?

}

cel l ar-book = elenent cellar-book { (8
Wi ne- cat al og,
el ement owner {Owner},
el ement | ocation {Address}?,
cel I ar

}

Address = el enent street {text}, (9
el ement city {text},
el ement province {"AB"|"BC'|"MB"|"NB"["NL"| " NT"|
"NS'| "NU'| "ON'| "QC"| " SK'| " YT"},
el ement postal -code {Post al CodeCA}

Omer = nane, Address (10

Post al CodeCA = xs:string {pattern="[A-Z][0-9]1[A-Z] [0-9][A-Z][0-9]"} ®

Defines the namespace prefix used in the catal og.

Defines the namespace prefix corresponding to the standard XML datatypes.

Includes the schema for the wine catal og.

Defines the start symbol for this file by redefining the start symbol imported from the wine catalog

file.

The cellar element is a possibly empty list of wine elements.

A wine element is composed of a mandatory code attribute, a date of purchase, a quantity given by a
non-negative integer, an optional rating (an empty element with an attribute indicating the number of
stars) and finally an optional comment.

40

RELAX NG

A nameis an interleaving of afirst name, family name and initial (all of them being optional). This
means that these three elements can occur in any order but not more than once. Interleaving is a of
expressing that elements can appear in any order. Its use here corresponds to the xsd: al | element
but in fact, it is more general and allows the unordered combination of any subgroups of elements.

A cel | ar - book element contains the wi ne- cat al og, a description of the owner, the optional
location of the cellar and the cellar-element itself defined on line 8-@. Oanner and Addr ess are
themselves patterns.

Pattern for the street, the city name, a Canadian province name (the list of available values that can be
defined directly).

A pattern combining an element and a pattern.

A pattern corresponding to a standard type with a constraint expressed as a regular expression. Here
it corresponds to the Canadian postal codes.

The beginning of Example 3.7 illustrates how to declare a default namespace for the elements of thisfile,
included in Example 3.6 (line 4-@). The definition of elements follows the same principles explained for
the cellar book. wi ne- cat al og must add an optiona attribute xm : base that is used by the XML pro-
cessor during the file inclusion process. It is needed in order to ensure the integrity of both the including
and included file. Element For mat shows that comments starts with a# and go up to the end of the line.

Example 3.7. [W neCat al og. rnc] RELAX NG Compact schema for the wine

catalog to validate Example 2.3

Thisfile can be compared with Example 3.4.

1

5

10

15

20

25

defaul t nanespace = "http://ww. iro.unontreal.cal/lapal ne/w ne-cat al 0g"
dat atypes xs = "http://ww. w3. or g/ 2001/ XM_Schena- dat at ypes"

start = wine-catal og

wi ne-catal og = el ement w ne-catal og { (1
needed because this schema will be inported
attribute xm : base{text}?,
wi ne*

}

wi ne = el ement wi ne{ (2
attribute name {text},
attribute appellation {text},
attribute classification {text},
attribute code {xs:1D},
attribute format {Format},
properties,
origin,
(element tasting-note {Coment}
| elenent food-pairing {Comrent}
| comment
)*,
el enent price {xs:decinmal},
el enent year {xs:gYear}

41

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineCatalog.rnc

Document Validation

30

35

40

45

50

55

©0 000)

©9o

}

properties = el enent properties { (3]
el ement col or {Col or},
el ement al cohol i c-strength {Percentage},
el ement nature {text}?

origin el ement origin { (4
el ement country {text},
el ement region {text},
el ement producer {text}

}

"375m*" | "750m " | "1
| "magnunt #
| "jeroboant #
| "rehoboant #
| "mat husal ent #
| #
| #
| #

For mat | (5]
1.5 litres

3litres

4.5 litres

6 litres

9 1litres

2 litres

5

litres

"sal manazar"
"bal t hazar"
"nabuchodonosor”

Comment
comrent

m xed {element enph {text}* & elenment bold {text}*} (6]
el ement conmment { Comrent }

Color = "red" | "white" | "rosé" (7

Per cent age = xs:decimal ({ (8
m nl ncl usi ve "o"
max| ncl usi ve "100"
fractionDigits ="2"}

Thewine catalog isalist of wi ne elements. An xm : base attribute is added to schemato take into
account that it will be added during the importing process.

A pattern defining all the information related to a given wine.

A pattern describing some properties of awine.

Informations about the origin of awine.

List of allowable values for wine format.

A comment istext interspersed with enph and bol d elements which also contain text. Note that this
definition does not allow embedding of enph and bol d elements.

List of allowable values for the color of wines.

A percentage based on standard XML types and constraint attributes.

42

Schematron

3.4. Schematron

In the previous sections, we have seen two different ways of validating the content of an XML file: while
DTDs can only validate the element nesting structure, XML and RELAX NG schemas can aso validate the
content of the elements by enforcing local constraints such as the length of strings, regular expressions or
range on the allowed values. These types of constraints, defined by means of grammars described the well-
formedness of structure and values, can be characterized as syntactic. But in typical applications, more se-
mantic types of constraints could be appropriate for checking long distance dependencies that would be
awkward or even impossible to express by means of grammar rules or regular expressions, e.g. a starting
datein an attribute or element should be earlier than an ending date in another one. In this case, arule-based
approach is more appropriate.

Typical globa semantic constraints can be defined to take into account relations between elements and at-
tributes: for example, an attribute with a given value could imply the definition of another element. 1t could
be necessary that a certain value is equal to the sum of other values. In certain cases, it would even be inter-
esting to enforce constraints between different XML files. These checks are outside the scope of the XML
validation methods we have presented in the previous sections, but an alternative approach, called
Schematron [20], [86] has been devel oped to cope with thistype of validation. Instead being grammar-based,
Schematron isarule-based validation approach to define assertionsin which X Path expressions are eval uated.
XPath expressions will be described more fully in Chapter 4, but for the moment they can understood as
defining values computed over different parts of an XML file; in fact, Schematron even alows combining
values spanning more than one XML file. In principle, Schematron could be used for also defining local
constraints, but as they are much more easily defined by grammars, we will use Schematron patterns as
supplementary validation rules used in conjunction with an XML Schema. The Schematron specification
describeshow patterns can be embedded within other XML schemanotations suchas XML Schema, RELAX
NG and RELAX NG Compact.

Similarly to an XML Schema and RELAX NG file, a Schematron file is a well-formed (and valid) XML
file that defines validation in terms of pat t er n elements containing r ul e elements. A r ul e defines a
context for internal XPath expressions used inasserti on and r eport elements. When the XPath ex-
pression of an assertion (resp. report)isfal se (resp. t r ue), then the content of the element is
output as validation message. The validation message can contain variable parts to customize the message
according to the context and the specific elements involved.

Typical semantic validation uses are the following:

cooccurrence checking defines arelationship between attributes, elements or a mix of these not
only within asingle XML document but also across multiple documents;
it can a so place constraints on the context of mixed content which cannot
be enforced with a grammar-based approach.

cardinality checking defines a constraint on the number of occurrences of data not only within
asingle element but even over a portion of a document.
algorithmic checking involving some computation on values occurring in the document

Example 3.8 shows Schematron rules for the cellar book. These rules should be combined with the XML
Schema or RELAX NG in order to validate the instance file both syntactically and semantically. We use
the 1SO Schematron [67] that has been recently standardised,. It differs in some respects from the
Schematron 1.6 dialect [87], but the main ideas remain valid in both formalisms.

43

Document Validation

Table 3.4 presents the XML elements we use in our example to define the types needed for the validation
of our wine catalog and cellar book.

Schematron

Table 3.4. Schematron syntax reminder

<schema t ar get NameSpace="URl ">
title? ns? pattern+
</ schema>
<ns prefix="Qane"
uri ="URI"/>
<title>
PCDATA
</title>
<pattern abstract="yes | no"
id="1D"
i s-a="| DREF" >
parant rul e+
</ pattern>
<par am name=" QNane"
val ue=" XPat hExpr"/>
<rul e context =" XPat hExpr" >
{let | report | assert}*
</rul e>
<l et nanme="(QNane"
val ue=" XPat hExpr"/ >
<report test="XPat hExpr">
{ PCDATA | val ue-of | nane}*
</report>
<assert test="XPat hExpr">
{ PCDATA | val ue-of | nanme}*
</ assert>
<val ue- of sel ect =" XPat hExpr"/ >
<nane/ >

A reminder of the subset of the Schematron syntax used in Example 3.8. Namesin italicsrefer to other elements. PCDATA refers
to XML string content . Regular expressions (see Table B.1) are used to describe the allowed forms.

Example 3.8. [Cel | ar Book. sch] 1SO-Schematron for the cellar book to validate
Example 2.2.

Thisfile can be used in combination with the XML Schema shown in Example 3.3.

1 <?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://purl.oclc.org/dsdl/schematron"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
guer yBi ndi ng="xsl t2">
5 <title>Validation using Schenatron rules</title>
<ns prefix="cat"
uri="http://ww.iro.unontreal.cal/l apal me/w ne-catal og"/>
<xsl : key name="col ors" match="/cel |l ar-book/cat:w ne-catal og/cat: w ne" ©
use="cat: properties/cat:color"/>

e 00

10
<pattern> (6
<rul e context="w ne">
<report test="rating/ @tars>1 and not (coment)">
There should be a conment for a wine with nore than one star

45

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CellarBook.sch

Document Validation

15 </report >
</rul e>
</ pattern>
<pattern> (7]
20 <rul e context="cellar">
<l et nane="nbBottl es" val ue="sum w ne/ quantity)"/> (8
<report test="$nbBottles & t; 10">
Only <val ue-of select="$nbBottles"/> bottles left in the cellar
</report >
25 <l-- nb of bottles of each color in the cellar -->
<l et nanme="w nesFronCel | ar" val ue="/cell ar-book/cellar/w ne"/ >0
<l et nane="nbReds"
val ue="sum($w nesFrontCel | ar[@ode=key(' colors','red')/ @ode]/quantity)"/>
<l et nane="nbWhites"
30 val ue="sum($w nesFronCel | ar[@ode=key(' col ors', ' white')/ @ode]/quantity)"/>
<l et name="nbRosés"
val ue="sun($w nesFronCel | ar[@ode=key(' col ors','rosé')/ @ode]/quantity)"/>
<l et name="nbCol ors" val ue="$nbReds+$nbWi t es+$nbRosés"/ >
<l-- check for a well balanced cellar!!! -->
35 <assert test="$nbReds>$nbCol ors div 3">
Not enough reds (<val ue-of sel ect="$nbReds"/> over
<val ue-of sel ect="%$nbColors"/>) left in the cellar
</ assert>
<assert test="$nbWites>$nbColors div 4">
40 Not enough whites (<val ue-of sel ect="$nbWites"/> over
<val ue-of sel ect="%$nbColors"/>) left in the cellar
</ assert>
<assert test="$nbRosés>$nbCol ors div 4">
Not enough rosés (<val ue-of sel ect="$%$nbRosés"/> over
45 <val ue-of sel ect="%$nbColors"/>) left in the cellar
</ assert>
<l-- check for consistency wthin nunber of bottles -->
<assert test="$nbBottl| es=$nbCol ors" > ©
I nconsi stent count of bottles: total is <value-of select="$nbBottles"/>
50 but the count by colors is <val ue-of sel ect="%$nbCol ors"/>:
(<val ue- of sel ect="$nbReds"/> reds, <val ue-of sel ect="$nbWites"/>
whites and <val ue-of sel ect="$nbRosés"/> rosés).
</ assert>
</rul e>
55 </ pattern>
<pattern abstract="true" id="spacesAt StartEnd"> ®
<rul e context="conment| cat: coment | cat:food-pairing|cat:tasting-note">
<report test="starts-with($elem' ') or
60 substring($el emstring-1ength($elem)=""">
A <val ue-of select="nanme($elem"/> element within a <nane/>
shoul d not start or end with a space.
</report >
</rul e>
65 </ pattern>
<pattern is-a="spacesAt StartEnd"> @
<par am nane="el enmi' val ue="cat: bol d"/>
</ pattern>

46

Schematron

70

®
®

<pattern is-a="spacesAt StartEnd"> ®
<par am nane="el eni' val ue="cat: enmph"/>
</ pattern>
</ schema>
| SO-Schematron rules are defined within an XML element defined in a specific namespace. We also

declare the xs| namespace because it will be needed for using xsl : key line 8- for indexing

By setting quer yBi ndi ng attributeto xsl t 2, it is possible to use XPath 2.0 expressionsin the as-
sertions. By default, it islimited to XPath 1.0.

Gives an informative title to a set of validation rules.

Defines the namespace prefix to be used within XPath expressions that refer to elements of the wine
catalog (see line 8-@). For implementation reasons, it is not enough, or even necessary, to define the
namespace with axml ns attribute.

Declares that wi ne elements of the catalog are to be indexed by their color, used in line 26-@.
Defines a cooccurrence constraint withinawi ne element: when the rating is more than one star then
there should be a comment element. The r ul e element gives the context and the content of the
report element definesthe message which is output when the X Path expression of thet est attribute
evaluatestot r ue.

A pattern that defines a rule implementing a mix of cooccurrence and algorithmic constraint within
acel | ar element.

There should be awarning when the total number of bottlesin thecellar islessthan 10. Thisis obtained
by summing the values of al the quant i ty elements of the cellar. We save the total in the local
variable nbBot t | es and use its value in the test by prefixing its name by $. The message can be
customized by embedding val ue- of elementswhich are replaced by the result of the evaluation of
thesel ect attribute.

Defines a mix of cooccurrence and algorithmic constraints by computing the total number of bottles
of each color and asserting that there should be at least a third of the number of bottles that are red,
one fourth of both rosés and whites. The codes of wines of a given color are found by searching with
the key XPath function. An assert element differs from ar eport in that the message is output
when the test expressionisf al se. We define alist of local variables which can be used in many as-
sertions within the same context.

Checks that the total number of bottles in the cellar is equal to the sum of the numbers of each color.
Thisan internal consistency check which in principle should never appear because it would mean that
there awines that are not red, white or rosé. But these values are the only ones allowed by the XML
Schema

Defines an abstract pattern for generating two other patterns (line 66-®, line 69-®). This abstract pattern
can be applied to $el emelements in many contexts; it makes sure that the string content of these
elements do not start or end by a space. Thisis an example of the kind of validation possible on mixed
content on which XML Schema place few constraints.

Instantiates the abstract pattern defined at line 57-® for the cat : bol d elements.

Instantiates the abstract pattern defined at line 57-® for the cat : enph elements.

This example shows how new kinds of validation rules can be applied. The main advantages being the
possibility of enforcing long-distance or algorithmic dependencies that cannot be implemented by the
grammar-based validation offered by DTD and XML Schemas. Another advantage is the possibility of
giving more meaningful error messages for the user than the ones generated automatically by a grammar
based validation. Asthese validations are enforced by run-time checking once the user has entered the values
in thefile, it is not possible to determine alist of allowed choices that can be displayed by an XML editor

47

Document Validation

at any point in the file. Although the 1SO specification is relatively short (about 20 pages), we have not
covered here all aspects of Schematron. In particular, we have not described the order of evaluation of the
patterns and rules and we omitted some elements that are used for formatting and organizing processing
phases and diagnostic messages, even multi-lingual ones.

In principle, Schematron could be used as the sole validation mechanism for XML instance files but smple
sequencing constraints that are easy to express in a grammar must rely on complex XPath expressions in-
volving: : f ol | owi ng- si bl i ng[1] . Soinpractice, itismore convenient to use both types of validation.
But if having two separate validation files is not suitable, it is possible to embed Schematron rules within
xs: appi nf o andxs: annot at i on elementsof an XML Schema Similar embedding conventions have
be defined for both RELAX NG and RELAX NG Compact.

3.5. Associating an Instance File with a
Schema

Aninstance XML file can specify its validating schema by adding some information in the attributes of the
root tag. This is illustrated in line 8-@ of Example 2.2 (page 10), where we indicate the location of the
schemawith no namespace using thexsi : noNanmespaceSchenalLocat i on attribute. Wethen include
(usinganxi : i ncl ude element) the W neCat al og. xnl file (Example 2.3) so that its elements can be
referred to. Infact, the XML processor seesthefull content of thesefiles (i.e. the cellar and the wine catal og).
Example 2.1 ((page 9)) illustrates the file inclusion mechanism for the instance files. They correspond to
their respective XML Schemain Example 3.5.

Xi : i ncl ude refersto the W3C standard [35] which specifies a general purpose inclusion mechanism to
merge information from different XML files. So it is possible to include only some well-formed parts of
the included file, but here we include the whole wine catalog. Thisis a principled way of including inform-
ation and not mere character inclusionslike the one specified with DTD system entitiesused in Section 3.1.1.

Example 2.2 (page 10) also showsthat evenif afileisvalidated with an XML Schema, a DOCTYPE element
can be added to define new entities. In fact, it isthe only way to define an entity in an instance file validated
with an XML Schema.

line 1-@ of Example 2.3 (page 12) shows how to link an instance file and define its namespace. The empty
namespace, defined by thexm ns attribute in the root tag (line 4-@), indicates that al element tags without
prefix aredefinedintheht t p: / / www. i r 0. unont real . ca/ | apal me/ wi ne- cat al og namespace.
The schemalocation isindicated asthe value of thexsi : schenmaLocat i on (line 2-8) attribute with two
values (blank separated). The first part indicates the namespace corresponding to the target namespace of
the schema and the second part givesits URI (herethelocal file W neCat al og. xsd).

RELAX NG specifications [15] do not prescribe how an instance file should be linked to its schema, so
each XML editor or validator has an implementation-specific way of associating thesefiles (either internally
or externally). For example, <oXygen/> uses processing instructions inserted at the top of the file such as
the following (depending on whether the compact syntax is used or not):

<?oxygen RNGSchema="Cel | ar Book. rnc" type="conpact" ?>
<?oxygen RNGSchena="Cel | ar Book. rng" type="xm"?>

48

Additiona Information on XML
Schema

The Schematron specification does not prescribe the link mechanism between an instance file and its
Schematron rule base. With the <oXygen/> XML editor, it is sufficient to add a processing instruction like
<?oxygen SCHSchema="Cel | ar Book. sch" ?>toaXML Schemavalidated file such asExample2.2
or to get both types of validation: XML Schema and Schematron. It is also possible to embed Schematron
rules within xs: appi nf o and xs: annot at i on elements of an XML Schema which is then linked as
described above. Similar embedding conventions have be defined for both RELAX NG and RELAX NG
Compact.

3.6. Additional Information on XML Schema

Although XML schemas have been standardized, the area of validation is still aresearch subject and altern-
atives have been proposed: see [29] for a comparison between some of them. Interesting links are being
made with relational database models [34] in order to build on its strong theoretical background. Schemas
and the validation process are being formalized [13].

We have only skimmed over the subject of validation of XML files but the same essential ideas apply
throughout. On top of the official and informal information available at http://www.w3.org/xml/Schema,
some good sources of information and interesting tutorials can be found in the following resources:

http://www. XML .com is maintained by the O'Reilly editor with many excerpts from their
books.
http://www.XML.org isamarket-oriented site with interesting filesin the resources section.

HighawnrrubayieshaomigidaeXMLgidedd. avery useful XML Syntax Quick Reference Sheet (US letter size).

http:/Amwwxfront.com/xml-schemahtml - a complete XML Schema tutorial in roughly 150 Microsoft Power-
point slides with example source code

http://www.xfront.com/schematron/ Tutorial and links for Schematron

http://www.xmlspy.com XMLSpy is a commercial XML editor on the Microsoft Windows
platform, with a powerful structure editor and internal validation and
real-type suggestions of alowable elements attributes (strangely,
these suggestions are not adequate in the text view i.e. the mode in
which XML tags are explicitely typed). It is easy to switch between
the text view and the structura view of the editor. There is also a
good stylesheet designer module (Stylevision) to create stylesheet
transformationsinteractively and graphically. These transformations
can then be used asabasisfor what is called the authentic view which
can effectively hidethe XML tagsfrom the user of an XML document.

http://www.oxygenxml.com/ <oXygen/> isan XML editor for Microsoft Windows, Linux, MacOS
X and Solaris. Real-time valid suggestions are offered in the text
view. Validation can be donewithin the editor. Stylesheetstransform-
ations can be displayed in a window of the editor. It also features
table and tree editing modes and asimilar graphical output of aschema
to what is provided by XML Spy. Unfortunately, it is not possible to
edit the schema graphically. It is one of the few XML editors that

49

http://www.w3.org/xml/Schema
http://www.XML.com
http://www.XML.org
http://www.mulberrytech.com/quickref/XMLquickref.pdf
http://www.xfront.com/xml-schema.html
http://www.xfront.com/schematron/
http://www.xmlspy.com
http://www.oxygenxml.com/

Document Validation

hitp/Amwwvitheiopensourcecomynxmil-mode/

also offers real-time Schematron validation. For XML files, thereis
also an author mode which allows atagless XML editing of thefile
directly from the rendered version through Cascading Style Sheets.
As the formatting alowed with CSS is less powerful than what is
possible with StyleSheets, this mode does not alow afull rendering
like the authentic mode of XML Spy but it has the advantages of being
based on open standards. But for documented oriented XML files
such as the ones written in DocBook or XHTML, this mode is quite
convenient and user friendly.

nXML mode in Emacs [19] offers real-time valid suggestions for
editing XML filesin text mode only when their schemaiswrittenin
RELAX NG. Trang can be used for trandating an XML Schema or
aDTD into RELAX NG.

50

http://www.thaiopensource.com/nxml-mode/

Chapter 4. XPath

Because XML documents are tree-structured, we must be able to designate nodes in their trees either abso-
lutely (i.e. starting from the root) or relatively to agiven node. An XPath expression refersto either asingle
node or to a set of nodesin the document tree. In thisreport, we use the X Path 2.0 syntax [17], standardized
in 2006 and implemented by many XSLT processors. It is more powerful and better principled than the
previous X Path 1.0 standard. Therefore make sure to run the examples of this document with a processor
meeting both XPath 2.0 and XSLT 2.0 standards. X Path 2.0 has become afull-blown programming language,
as can be seen from the 400 pages of chapters 7 thru 13 of the book of Michael Kay [27]. Thuswe only give
an overview in these few pages.

In 2014, the XPath 3.0 recommandation was published with many new features, such as dynamic function
call, mapping operators and a string concatenation operator, but these features are not used in this ssimple
tutorial.

XPath is an expression language designed primarily for accessing nodes in an XML document. It cannot
modify the XML document, nor doesit permit the creation of new nodesin adocument. An X Path expression
has one of the following types of values:

» atomic values of any XML Schema type (see Section 3.2) either simple ones such as integers, boolean,
dates, URI or even user-defined ones through a Schema.

* treesor nodes of the document

 sequence of atomic values and trees, but not of sequences (sequences cannot be nested)

4.1. XPath expression components

An XPath expression is composed of steps separated by / . Each step designates an axis which can be un-
derstood as the direction in which the nodes will be collected from the current node (called here the starting
node) in the document tree. An axis is a predefined name followed by : : (Figure 4.1 some examples of
axes). The axis specification is followed by anode test which is often the name of anode or * to indicate
any element. The node(s) thus specified can be further restricted with a predicate expression within square
brackets; thisis aboolean expression evaluated at each node, which is kept in the result sequenceif it eval-
uatestot r ue; it can also be a positive integer in which case the sequence only keeps the node with this
index.

Using theinstance document shown in Example D.1 (page 243), here are afew examples of X Path expressions:

* /child::cellar-book/child::cellar/child::w ne[1] designatesthenodecorresponding
to the first wine, the one whose code attribute is C00043125.

» /descendant: : wi ne[pur chaseDat e>' 2005- 01- 01'] returnsasequence of nodesdesignating
the wines bought in 2005 or later (the ones with code attributes C00043215 and C10263859).

» /descendant::wi ne/attri bute: : code returnsthe sequence containing the codes of the4 wines
in the cellar.

* (/descendant::wi ne/attribute::code)][4] returnsthefourth wine. Note that sequencesin
XPath are numbered starting from 1 and not O asis the case in most programming languages.

This notation is very powerful but a bit tedious to write so XPath designers have defined an abbreviated
syntax for the most frequent cases: chi | d: : can be omitted, at t ri but e: : can be written as @and

51

XPath

descendant : : iswritten as// . This notation is thus similar to what is used in computer systems to
designate files and directories; except that at each step (i.e. between slashes) many nodes can be selected
instead of only one file or directory. The above examples can thus be simplified as

» /cel l ar-book/ cel | ar/wi ne[1]

e //w ne[purchaseDat e>' 2005- 01- 01"]
* //w ne/ @ode

e (/1w nel @ode)[4]

After this quick overview of XPath, we give some more details on the evaluation of its expressions, which
isat the root of XSLT. We remind the reader of the seven types of nodesin an XML document:

root the starting point of the document

element the most common type of node, it may contain other elements

text containing the real information; it cannot contain any element

attribute string information contained in the start-tag of the containing element,
it is considered a child of the element which contains it

comment information that is normally ignored for processing but that is neverthe-
less kept in the structure of the document

processing instruction elements starting with <? that will not be discussed in this document

namespace information about the namespace of an element, its processing will not

be discussed in this section.
An XPath expression designating a sequence of nodes in the document tree consists of three parts.

1. an axis specifier givesthe path to a set of nodes. Most of the time, we can use the abbreviated syntax.

2. anodetest can be the name of anode (with or without the namespace prefix), * to indicate all elements,
or it can be afunction name such asnode() ,t ext () or conment () toindicate the type of the node
that is sought.

3. apredicate is a boolean expression given between square brackets ([]) that can further filter the set of
nodes identified with the axis specifier and the node test. If the expression isanumber i, then it refersto
thei™ child element (numbering starts at 1).

The following grammar gives the rules of an XPath expression as taken from the XPath standard [6]. Ter-
minals are shown in nonospace font. Asan extended BNF notation (EBNF) is used, some terminals such
as parenthesis, star, plus or vertical bar are used for grouping, to indicate repetition and aternation. There
are essentially the same symbols as the ones used in DTD or Relax NG compact notation. When a symbol
of the EBNF aso occurs as aterminal, it is enclosed within angle quotes (« »).

Similarly to other functional programming languages, XPath defines an expression in terms of a sequence
of oneor moreexpressions[rule 2]. Thecommay(,) operator isused to create a sequence out of two sequences
which are concatenated; sequences of sequences are not allowed.

The building blocks of an XPath expressions are the following:

» Numeric and string constants [rules 41 and 42] their syntax is not defined here asiit is conventional; as
there are no boolean constants, they are created using the functionscall t rue() andf al se();

e Variable are referenced using the name of the variable prefixed with $ [rule 44]. The same syntax is
used for the index variable of the f or construct;

52

XPath expression components

Figure4.1. Some XPath axes

j parent: :)
; 11 following—sibling:::::>

€7| 51 [10]) child::>

descendant::

(. J

Given adocument tree rooted at node 1 and a starting node indicated by node 6 (in grey), the rounded rect-
angleswrap the sequence of nodesin some XPath axes. Theat t r i but e: : axisisnot shown here because
it would be within the grey node.

» Function calls usethe name of the function followed by the value of the actual parameterswithin paren-
theses [rule 48]. When a user-defined function is called, its name must start with its namespace prefix;

» Range expression [rule 11] creates a sequence of scalar values between their bounds given by two
numbers,

* Axissteps [rules28-39] have been described above;

» Operators [rules7-24] using the standard arithmetic operations[rules 12,13] and some set-like operations
[rules 14,15] on sequences; conditional expressions [rule 7] provide a compact notation for creating new
values; on top of the usual comparisons[rule 22] which are applied on the valuestaking into account their
types, there are value comparisons [rule 23] which makes sure that the types are compatible and node
comparisons [rule 24] which take into account the document order of the nodes;

» Filter expressions [rules 39-40] are predicates, boolean expressions or a single number, enclosed in
square brackets that further restrict the values produced by the previous one;

» For expressions [rule4] return the sequence of results evaluating the body (expressionfollowingr et ur n)
for each item in the subject (expression preceding r et ur n); an index variable is defined to reference an
item of the subject sequence within the body;

» Quantified expressions [rule 6] are aspecial type of loop for checking if any or all elements of asequence
satisfy a certain predicate.

XPath 2.0 grammar

[1] XPath: : = Expr
2] Expr: : =ExprSngle(, ExprSngle)*

53

XPath

(3]

[4]
[5]
6]

[7]
[8]
[9]
[10
[
[12
[3
(14
[
(19
[17
(g
[19
[A
(2]
(2
(23
(A
A

(A
[27
(3
[
3

(31
g%
3

[
(3
[
[37
3
(3
[49
[41]
[

ExprSngle

For Expr
SmpleForClause
QuantifiedExpr

IfEXpr

OrExpr

AndExpr
ComparisonExpr
RangeExpr
AdditiveExpr
MultiplicativeExpr
UnionExpr

Inter sectExceptExpr
I nstanceof Expr
TreatExpr
CastableExpr
CastExpr
UnaryExpr
ValueExpr

GeneralComp:

ValueComp
NodeComp
PathExpr

Rel ativePathExpr
StepExpr
AxisSep

ForwardStep
ForwardAxis

AbbrevForwardStep
ReverseSep
ReverseAxis

AbbrevReverseSep: :

NodeTest
NameTest

Wildcard:

Filter Expr
Predicatelist
Predicate
PrimaryExpr
Literal

. » = ForExpr
| QuantifiedExpr
| IfExpr
| OrExpr
: . =SmpleForClauser et ur n ExprSngle
;. =for $VarNamei n ExprSngle (, $ VarNamei n ExprSngle)*
;. =(sone |every)$ VarNamei n ExprSngle
(, $ VarNamei n ExprSngle)* sati sfi es ExprSngle
=i fo«(» EXpr «) »t hen ExprSingleel se ExprSngle
. : = AndExpr (or AndExpr)*
: : = ComparisonExpr (and ComparisonExpr)*
. » = RangeExpr ((ValueComp | General Comp | NodeComp) RangeExpr)?
. . = AdditiveExpr (t o AdditiveExpr)?
: : = MultiplicativeExpr ((«+» |-) MultiplicativeExpr)*
: > =UnionExpr ((«*»|di v |idi v |nmod) UnionExpr)*
. = IntersectExceptExpr ((uni on | «| ») IntersectExceptExpr)*
. =InstanceofExpr ((i nt er sect |except) InstanceofExpr)*
. : = TreatExpr (i nst ance of SequenceType)?
. . =CastableExpr (t r eat as SequenceType)?
. . =CadstExpr (cast abl e as SngleType)?
: » =UnaryExpr (cast as SngleType)?
D= (- | «+»)* ValueExpr
. : = PathExpr
=== <<=]>|>=
c:=eg|ne|lt|le|gt|ge
s << >>
. =(/ RelativePathExpr?)
| (/ | RelativePathExpr)
| RelativePathExpr
o =SepExpr ((/ |/ /1) StepExpr)*
. =FilterExpr | AxisStep
.+ = (ReverseStep | ForwardStep) Predicatelist
. . = (ForwardAxis NodeTest) | AbbrevForwardStep
c:=(child::)|(descendant ::)|(attribute::)]|(self ::)
| (descendant-or-self ::)|(following-sibling::)
|(follow ng::)|(hanespace::)
;1 = @ NodeTest
. . = (ReverseAxis NodeTest) | AbbrevReverseSep
::=(parent ::)|(ancestor ::)|(preceding-sibling::)
| (preceding::)|(ancestor-or-self ::)
. : =KindTest | NameTest
: : =QName | Wildcard
c=«*»|(NCName: «*»)|(«*»: NCName)
: - =PrimaryExpr Predicatelist
. =Predicate*
s = Expr]
. . = Literal | VarRef | ParenthesizedExpr | ContextltemExpr | FunctionCall
: - =NumericLiteral | StringLiteral

XPath functions

43 NumericLiteral : : =IntegerLiteral | DecimalLiteral | DoubleLiteral
(A VarRef: : =$ VarName

53] VarName: : = QName

44 ParenthesizedExpr : : = «(» Expr? «) »

[41 ContextltemExpr : : =.

[4g FunctionCall : : =QName «(» (ExprSingle (, ExprSngle)*)? «) »
9 SngleType: : = AtomicType «?»?

= SequenceType: : =(enpt y- sequence «(» «) ») | (ItemType Occurrencel ndicator ?)
(51 Occurrencelndicator : : = «?» | «*» | «+»

2 ItemType: : =KindTest | (i t em«(» «) ») | AtomicType

53 AtomicType: : = QName

4 KindTest: : = DocumentTest | ElementTest | AttributeTest

| SchemaElementTest | SchemaAttributeTest | Pl Test
| CommentTest | TextTest | AnyKindTest

[AnyKindTest: : =node «(» «) »

= DocumentTest: : =docunent - node «(» (ElementTest | SchemaElementTest)? «) »
51 TextTest: : =t ext «(»«)»

(S5 CommentTest: : =comment «(» «) »

= PlTest: : =processi ng-i nstructi on «(»(NCName| StringLiteral)? «) »
69 AttributeTest: : =at t ri but e «(» (AttribNameOrWildcard (, TypeName)?)? «) »

[6] AttribNameOrWildcard: : = AttributeName | «* »
[SchemaAttributeTest: : =schema- at t ri but e «(» AttributeDeclaration «) »
63 AttributeDeclaration: : = AttributeName

4 ElementTest: : =el enent «(» (ElementNameOrWIdcard (, TypeName «?»?)?)?«) »
[68 ElementNameOrWildcard: : = ElementName | «* »

(53] SchemaElementTest: : =schema- el enent «(» ElementDeclaration «) »

61 ElementDeclaration: : = ElementName

[AttributeName: : = QName

[ElementName: : = QName

[TypeName: : = QName

4.2. XPath functions

XPath 2.0 expressions can use more than 200 predefined functions described in [33]. It is also possible for
a user to define her own functions with an XSLT f unct i on template described in Section 5.1. Table 4.1
presents a personal selection of what we consider to be the most useful XPath functions separated in broad
categories. The XSL stylesheets of the next chapter will show many more uses of these functions.

Table4.1. A selection of XPath functions

Document information

docunent - uri (node) astring describing the URI of node
Mathematics

abs(nuneri c) absolute value of nurreri ¢
ceiling(nuneric) smallest integer greater than nuner i ¢
fl oor (numneric) biggest integer smaller than nuneri ¢

55

XPath

Strings

concat (argq,args ...) string concatenating the string values of arg;

string-join(strings, sep) stringconcatenating the membersof thesequencest ri ngs using
the string sep as a separator

substring(string, start, |ength) string portionwithstri ng, from positionst art (thefirst
character isnumbered 1) for | engt h characters; if | engt h is
not given, then the rest of the string is returned.

string-length(string) number of charactersinstri ng

nor mal i ze- space(string) string after removing leading and trailing blanks and replacing
sequences of one or more than one whitespace character with a
single space (#x20)

translate(string, nap3r, transr) stri ng inwhich every character appearing at position N in the
mapSt r isreplaced by the character at position N in the
transStr

| ower - case upper-case (string) all lower or upper case version of st ri ng

contains(stringl, string2) checksifstringlcontansstring2

starts-wi th(stringl, string2) checksif stringl startswithstring2

ends-wi th(stringl, string2) checksifstringlendswithstring2

substring-before(stringl, string2) stringof charsof st ri ngl beforethefirst occurrence of
string2

substring-after(stringl, string2) stringof charsof st ri ngl afterthefirst occurrenceof stri ng2

mat ches(string, pattern) checksif st ri ng matchestheregular expression pat t er n;
unless” and $ are used as anchors, the string matches if one of
its substring does

repl ace(string, pattern, repl acenent) string obtained after replacing withinst r i ng every non-overlap-
ping occurrence of pat t er n by r epl acenent

t okeni ze(string, pattern) break st r i ng into asequence of strings, treating every substring
matching pat t er n as a separator

Sequences

di stinct-val ues(seq) sequence of different values that appear at least oncein seq
renove(seq, position) sequence of all elementsof seq except for theoneat posi ti on
reverse(seq) sequence of all elements of seq but in reverse order

subsequence(seq, start, |ength) sequence of elementsof seq, from position st art (thefirst
element isnumbered 1) for | engt h elements; if | engt h isnot
given, then the rest of the sequence is returned.

count (seq) number of elements within seq

avg| max| m n| sum(seq) average | maximum | minimum | sum of the values within seq
Context

position() position of the context item within the current sequence of items
| ast () the size of the current sequence of items

current-date| current-tinme() dateortimevalue of now

56

XPath examples

A selection of XPath functions (taken from [6]) grouped in categories. The names of the formal parameters are chosen to indicate
the expected type or use of the actual parameter. When many functions with the same parameters have a similar behavior, their
names are separated by avertical bar (|); the actual call uses only one choice.

4.3. XPath examples

Example 4.1. XPath expression examples applied on Example D.1 (page 243)

/ cel | ar - book/ owner

/cel | ar-book/ cel | ar/wi ne[quantityé< 2]
[cel | ar - book/ cel | ar/wi ne[1]

/I post al - code/ ..

/ cel | ar - book/ owner/ str eet

!/ /wi ne/ @ode

// cat:w ne/ @odea

/Iwine[last()]/ @ode

/ cel | ar-book/ cel I ar/wi ne[1]/ comment / cat : bol d
sum(/ cel | ar-book/ cel | ar/wi ne/ quantity)
for $win //wine return

66000000 OOO

concat ($w quantity,':',//cat: wi ne/ @ode[.=$w @ode]/../ @ane)

[/cat:w ne[cat:origin/cat:country="France' and cat:price&t; 20] @

The owner element of the cellar. Result : node at line 103.

Thewines for which we have 2 bottles or less. The nodes returned arethewi ne elements even though
the predicate uses quant i t y, an internal element; the predicate is evaluated in the current context
of the path specified. When X Path expressions are used in the context of an XSL file, asit ismost often
the case, the < must bereplaced by & t ; (even within strings!). Result : nodes at lines 131 and 136.
Thefirst wine of the cellar. Result: node at line 120.

The elementswhich containapost al - code element. Thisisachieved by findingapost al - code
anywhere in the tree from the root and then getting the parent element. Result: nodes at lines 103 and
113.

The street of the cellar's owner. Result: 1234 rue des Chat eaux

The value of the code attribute for al wines in the cellar. Result: C00043125, C00312363,
C10263859, C00929026.

The value of the code attribute for all wines in the catalog (note the use of the namespace prefix).
Result: C00043125, 00042101, C10263859, C00312363, C00929026.

The code of the last wine of the cellar. Result: C00929026.

Thecat : bol d element (note again the use of the namespace prefix) within the comment of the first
wine of the cellar. Returns Guy Lapal ne, Mont r éal (expanded from the entity &G_;)

Total number of bottles in the cellar by applying the predefined XPath function sumto the value of
al quanti ty elementsof the winesin the cellar. Returns 14.

Sequence of 4 strings each giving the number of bottles of each winein the cellar, followed by acolon
and the name of the corresponding wine: 2:Domaine de |'Tle Margaux,
5: Munm Cor don Rouge, 6: Chat eau Mont guéret,1: Prado Rey Robl e.

Sequence of French wines in the catalog costing less than 20 dollars: wines that start on lines 24 and
42.

57

XPath

4.4. Additional Information on XPath

The primary source of information on XPath is the reference [6] but other web sites and books are also in-
teresting

http://www.w3.org/Style/X SL/ is the best starting point to get information on XSL (including both
XPath 1.0 and XPath 2.0) with links to tools and tutorials.

XSLT 2.0 and XPath 2.0 Program- A complete and didactic description of all aspectsof X Path and X SLT.
mer's reference (4e ed.) [27]

58

http://www.w3.org/Style/XSL/

Chapter 5. Document Transformation

Since XML is a tree-structured representation of information, it should be relatively simple to change its
shape or select parts provided we have a way of to identify subtrees and to combine them in new trees. To
achieve this, XML designers have defined the eXtensible Stylesheet Language (XSL) technology [28]
which refersto two components:

XSLT atransformation language for converting an XML document into either another XML document,
into HTML, or into a plain text document (avery wide one-level tree!).

XSL-FO aplatform- and media-independent formatting language composed of a set of XML elements,
called formatting objects, that describe parts of a printed page at a high level, e.g. <bl ock>,
<t abl e>, etc. These elements are most often produced by XSLT transformations of an XML
document.

XSLT isan XML based formalism for defining production rules (similar to OPS5 or Prolog without unific-
ation) that match nodes in atree of an XML document and produce a new tree. These rules are defined in
stylesheets (XML files named with the . xs| extension) that can be validated with a predefined XSLT
Schema. This transformation mechanism is very general and can be used to produce any kind of tree, but
most often it is used for presentation, one simple kind of tree being an HTML document. In fact, most web
browsers can process XML documentslinked with XSLT stylesheetsto display the resulting transformation.
When no stylesheet is associated with the XML file, most browsers now have a predefined stylesheet to
explore them gradually by expanding and collapsing elements. XSLTdepends on XPath [17], explained in
the previous chapter, a sublanguage designed to identify nodesin an XML document.

Unfortunately, browsersonly implement XSLT 1.0 which islimited compared to the XSLT 2.0 recommmad-
ation used in this document. Anyway experience has shown that it is not very reliable to rely on the XSLT
processing performed by browser because each one has its peculiarities. Usually the transformation from
XML to HTML will be performed on the server. In 2017, the XSLT 3.0 recommandation was approved
featuring streaming and modularization, but as these features are not needed in this simple tutorial, we use
only XSLT 2.0.

We will seein Section 5.2.1 how to create an HTML tabular presentation of our wine catalog. Section 5.2.2
illustratesfeatures of stylesheetsthat allow to better select information and perform some simple calculations
to produce information that was not present in the original XML file. In Section 5.2.3, we will show how
to transform our cellar book instance document into an HTML page with indented bulleted lists. We will
then show, in Section 5.3, how to transform our XML instance document into the compact text representation
we presented in Figure 1.4. We will illustrate in Section 5.4 the use of Formatting Objectsto produce a PDF
output from an XML document. Finally, in Section 5.5 we compare the Cascading Style Sheets most often
associated with HTML pages with XSLT.

The next chapter will describe how to achieve these transformations using X Query.

The PDF version of this document and the corresponding set of HTML files on the companion web site
were produced by XSLT stylesheetsfrom aset of XML sourcefiles. Thisprocessisexplained in Appendix C.

59

Document Transformation

5.1. XSL Transformations

A template to transform atree node has the following form:

<xsl:tenplate match="pattern expr">
val ue replacing the matchi ng node(s)
</ xsl : tenpl at e>

Like with XML Schemas, we must distinguish between the XSLT predefined elements and the elements
used to create the document. The namespace xs| ismost often used for XSLT elements. In order to trigger
axsl : t enpl at e (aproduction rule), the transformation process must first identify the node (or nodes)
towhich it applies. Thisis done with the value of the mat ch attribute that specifies an pattern expression,
asomewhat restricted type of XPath expression. The content of thexsl : t enpl at e defines the structure
of the produced tree by combining any part of the matched tree, new parts or even other parts of the source
document tree. The parts of thetree used asbuilding blocksare referenced by X Path expressions and combined
with functions, conditions, restricted looping constructs, etc. But the reader must remember that XSLT isa
declarative language (similar to Prolog in some ways), so the ordering of templates cannot be reliably used
to influence the order of processing of the document tree.

A stylesheet follows a simple process: find a node for which a template applies and then, according to the
content of the template, build a new tree structure in the context of this node. A context gives access to the
current node, its parent, its siblings and its position within its siblings. To build the new tree structure, a
template usually involvesthe application of templatesto children of the current node and their combination.
Thisisdonewiththexsl : appl y-t enpl at es element; without attributes, this forces the application of
templates to all the children element nodes of the current node, but the transformation can be applied to
other nodes by using the sel ect attribute which specifies an X Path expression.

Templates can also be named and called with xsl : cal | -t enpl at e, similar to proceduresin standard
programming languages. But be aware that these procedures are rules and that they cannot have variables
that can change their value. XSLT is thus a single assignment language much like functional languages;
parameters are the only mean of passing variable information between templates. Contrarily to ordinary
templates, named templates do not change the context of their application. Therefore, we seethat the principles
underlying XSLT are general, simple and powerful.

Table 5.1 shows the main stylesheet elements for defining transformation rules. As a stylesheet is itself an
XML document, it can be validated with the appropriate schema. Theroot element isxsl : st yl esheet
which contains a certain number of templates.

xsl : t enpl at e withamat ch attribute will be called when an element matching its pattern is encountered
during the processing of the XML instance document. A xsl : t enpl at e element with anane attribute
must be called explicitly by axsl : cal | -t enpl at e. The content of the matched element in the source
document is replaced with the content of the template, which usually involves the application of templates
to the children of the current node. Formal parameters are declared at the start of anxsl : t enpl at e element
with xsl : par amelements.

A xsl : functi on element with a nane attribute and xsl : par amelements can be used to define an
XPath function. User-defined function must be declared in a separate namespace in order to differentiate
them from the predefined system functions. Even though, user-defined function formal parametersare declared
withaxsl : par amelements, the actual parameters are given within parenthesisin the order of the declar-

60

XSL Transformations

ation of thexsl : par amelements. Of course, the name of the user-defined function call must be preceded
by the namespace prefix corresponding to the namespace used in the declaration.

xsl : appl y-t enpl at es isthefundamental operation for traversing the document tree. Without attributes,
it indicates that processing should be recursively applied to al its children elements and text nodes (not to
its attributes). If the element is empty, then the nodes are processed in the document order but it is possible
to specify a different ordering with axsl : sort element. Actual parameters can aso be given by name
and value using wi t h- par amelements.

xsl : val ue- of isthefundamental way of getting the string val ue contained in an element from the source
document. xsl : copy- of should be used to get the whole tree value.

A local single assignment variable can be defined within templates with an xsl : vari abl e element. Its
string value can then be recovered in an XPath expression by prefixing its name with $. If the whole tree
value is needed we can use xsl : copy to get areferenceto the original value and xsl : copy- of to get
anew copy.

Conditional processing can be achieved with xsl : i f which returnsits content when the value of itst est
atributeist r ue or anon-empty set of nodes. Also xsl : choose can select the first value from a series
of aternativesindicated by xsl : when. Thexsl : when conditions are tested in sequence and thefirst one
that returns t r ue is the value of this element. If no test succeeds and an xsl : ot her wi se element is
present, its value isthe value of the xsl : choose element.

Although recursive traversal of the document tree is the preferred way of going through nodes, it is also
possible to do this traversal iteratively with a xsl : f or - each and xsl : f or - each- gr oup. These
templates are especialy convenient for transforming a sequence of children nodes at all the same levels, for
example to create tables or summary information.

Node processing is usually conducted in document order but the order can be changed using xsl : sort,
which allows to specify the sorting key with the sel ect attribute and an ascending or descending sort ac-
cording to the value of or der attribute. The elements are usually sorted by their text value but their string
value can also be used when sorting by specifying adat a- t ype attribute.

In the XPath 1.0, the expression language was quite limited so all control structures (function definition and
calls, aternative or loop constructs) for the computation of values were the ones of XSLT. But as we have
seen in the previous chapter, with XPath 2.0 we now have the choice between xsl : i f ,xsl : choose and
xsl:for-eachandtheif () then ... el seandf or constructsof XPath. User-defined functions
of XPath 2.0 or XSLT named templates can also be sometimes used interchangeably.

In most cases, this choice is a matter of personal choice but if the function has to be used in other XPath
expressions then it should be written as afunction and not as a named template. Within an X Path function,
thenthei f and f or XPath 2.0 must be used. If the function or expression takes atomic values (string or a
number) as input and returns an atomic value, then using an XPath 2.0 expression or function is more con-
venient than using a template. Named templates are most useful for cases when there are default values,
when named parameters are useful or when the current context is needed. In the latter case, the current node
would have to passed as parameter to an X Path function because an XPath function does not execute in a
given context. In practice with XSLT 2.0, templates are almost exclusively used for producing results that
will appear in the output document. Functions and expressions are more convenient when their result is used
by other parts of the program.

61

Document Transformation

Although X Path expressions can be used to reference any node or sequence of nodesin an XML filg, it is
often convenient and much more efficient to have adirect accessto any node in adocument. Thexsl : key
element isatop-level declaration indicating to the XSLT processor that a direct access is needed for nodes
matching a given pattern. This declaration usually implies the building of an index or hash table that allows
adirect matching between akey and a set of nodes matching it. A single key can refer to a many nodes and
asingle node can be referred by many keys. Access to the nodes is achieved with the XPath key function
to which the key valueis given. As there can be many key declarationsin a program, the key function must
also be given in which index the search isto be made.

The dynamic creation of target document elements, attributes and text nodes is performed using the
xsl:elenent, xsl:attribute and xsl :text elements. xsl : attri bute-set is useful for
grouping many attributes under a single name and to combine them.

xsl : message isavery convenient tracing device which writes its content either on the standard output
or another device. It has no effect on the resulting value.

We will now look at examples of these principles and XSL elements in the following sections. First with
straightforward transformationsinto HTML, then into plain text and finally into for matting objectsto produce
more complex formatting.

Table5.1. XSLT syntax reminder

<xsl : styl esheet >
xsl:inmport*,
(decl aration| xsl : vari abl e| xsl : param *

</ xsl:styl esheet >

<xsl:tenplate match="pattern" name="Q\Nane">
xsl : parant, sequence-constructor?*

</ xsl : tenpl at e>

<xsl : param nane="QNane" sel ect ="expressi on">
sequence- const ruct or

</ xsl : par anp

<xsl : appl y-tenpl at es sel ect =" expressi on">
(xsl:sort*|xsl:wth-param*

</ xsl : appl y-t enpl at es>

<xsl:call-tenpl ate nane="Qrane"/>

<xsl :w t h- param nanme="QNane" sel ect ="expressi on">
sequence- const ruct or

</ xsl : wi t h- par an®

<xsl : functi on name="Q\ane" >
xsl : parant, sequence-constructor®*

</ xsl: function>

<xsl : val ue- of sel ect="expressi on">
sequence- const ruct or

</ xsl : val ue- of >

<xsl :vari abl e name="QNanme" sel ect ="expressi on">
sequence- const ruct or

</ xsl:vari abl e>

<xsl : copy>
sequence- const ruct or

</ xsl : copy>

<xsl : copy-of sel ect="expression"/>

62

Transformation in HTML

<xsl:if test="expression">
sequence- construct or

</xsl:if>

<choose>
xsl :when*, xsl:otherw se?

</ choose>

<xsl :when test="expression">
sequence- construct or

</ xsl : when>

<xsl : ot herw se>
sequence- construct or

</ xsl : ot herw se>

<xsl:for-each sel ect="expression">
xsl :sort*, sequence-constructor

</ xsl :for-each>

<xsl:for-each-group sel ect="expressi on" group-by="expression">
xsl :sort*, sequence-constructor

</ xsl : for-each-group>

<xsl:sort select="expression" data-type="{string}">
sequence- construct or

</ xsl:sort>

<xsl : key name="gnanme" natch="pattern"

use="expressi on">

sequence- construct or

</ xsl : key>

<xsl: el ement name="{string}">
sequence- construct or

</ xsl : el enent >

<xsl:text>
character data

</ xsl:text>

<xsl:attribute nane="{string}" sel ect="expression">
sequence- construct or

</xsl:attribute>

<xsl:attribute-set name="(QNane" use-attribute-sets="Qnanes">
xsl:attribute*

</xsl:attribute-set>

<xsl : nessage>
sequence- construct or

</ xsl : nessage>

A reminder of the subset of the XSLT syntax used in our examples. Names in italics refer to other elements. Regular expression
syntax isexplained in Table B.1

5.2. Transformation in HTML
5.2.1.Table

XSLT was designed from the start to transform treesinto other trees. Onetype of treethat is easy to produce
with XSLT is awell-formed HTML document, most often an XHTML document, which is avalid XML

63

Document Transformation

file that can also be displayed directly by web browsers. In this section, we will first show asimple selection
of information from an XML file to produce tabulated information displayed asan XHTML page.

When the body of atemplate contains XML elements that are not XSLT elements (i.e. transformation in-
structions), they are copied verbatim to the output. So it isrelatively easy to build the structure of an HTML
document in which only some parts will be processed. Thisis similar in principle to the backquote macro
processing in Lisp.

Selecting only red wines in our wine catalog (Example 2.3 (page 12)) and outputting an HTML table of a
subset of the available information for each (Figure 5.1) can be done with the XSLT stylesheet given in
Example 5.2.

Figure5.1. Web browser rendering of Example5.1 produced by running Example5.2
on Example 2.3

r6 00 Wine Catalog
Wine Catalog (red only)
| Wine Name | Code |Color|Year]| Price| ml | 1 |
[Domaine de ITle Margaux [[C00043125jred |[2002|[$22.80]] 750]/0.75]
[Prado Rey Roble [co0929026|red |[2002][$35.25][1500] 1.5|

P

Example 5.1. HTML tabular output of the red wines of the catalog produced by
Example 5.2

<?xm version="1.0" encodi ng="UTF-8""?>
<! DCCTYPE htm
PUBLI C "-//WBC//DTD XHTM. 1.0 Strict//EN' "http://ww. w3. org/ TR/ xht m 1/ DTD/ xht m 1-stri ct. dt
<htm xm ns:cat="http://ww.iro.unontreal.cal/l apal me/w ne-cat al og"
xm ns="http://ww. w3. org/ 1999/ xht m " >

<head>
<title>Wne Catal og</title>
</ head>
<body>
<h1l>
Wne Catal og (red only)
</ h1>
<tabl e border="1">
<tr>

<t h>W ne Nane</t h>
<t h>Code</t h>

<t h>Col or</t h>

<t h>Year </t h>
<th>Price</th>

<t h>m </t h>

<th>l </th>

Table

</tr>

<tr>
<t d>Donai ne de |' Tl e Margaux</td>
<t d>C00043125</t d>
<td>red</td>
<td align="right">2002</td>
<td align="right">%$22. 80</td>
<td align="right">750</td>
<td align="right">0.75</td>

</tr>

<tr>
<td>Prado Rey Robl e</td>
<t d>C00929026</ t d>
<td>red</td>
<td align="right">2002</td>
<td align="right">%$35.25</td>
<td align="right">1500</td>
<td align="right">1.5</td>

</tr>

</t abl e>
</ body>
</htm >

The stylesheet in Example 5.2 first defines atemplate matching the root node (line 14-@). Because the wine
catal og is defined in aspecific namespace, its prefix must be declared (line 3-0) and used for selection. This
template outputs the overall structure of the XHTML file and then calls xsl : appl y-t enpl at es to
search for an appropriate template on each child. Inthis casg, it will correspondto cat : wi ne- cat al og.
The corresponding template (line 23-@) outputs a global heading and then starts a table and defines its
headers; the lines of the table will be filled by selecting (line 35-@) wines whose color property isr ed. To
set up this color filter, a value must be assigned to the code variable either with an xsl : vari abl e or
xsl : par amet er element. Here we chose the latter (line 6-@) Since color is defined as a parameter of the
styleshest, it is possible to change its value when the stylesheet is called by the XSLT processor. The way
of setting thisvalue from outside the stylesheet depends on each processor. In order for thesel ect attribute
value to be the character string ' r ed' and not the value associated with the noder ed (which is empty at
this moment), single quotes must be added within the double quotes indicating the value of the attribute.
Note again the use of the namespace prefix. The predicate used in square brackets limits the nodes to which
the templates will be applied but does not change the context of the node, which is still thewi ne node.

The output for each selected wine is defined with atemplate that is applied to each cat : wi ne. It outputs,
on asinglerow of thetable, the values of its attributes, its color, itsyear (right aligned) and formatsits price
to start with a dollar sign (right aligned). It finally outputs the volume of each bottle in milliliters and in
liters. Because the information in the wine catalog is not given in milliliters, we call both a user-defined
XPath function (line 49-@) and a named template (line 52-®) to transform it appropriately. We have delib-
erately chosen the same program structure in both the function and the named template to highlight the dif-
ferences and the similarities between these two means of organizing computation in a stylesheet. Usually
we will use functions to compute strings and templates to produce elements, but the choice is left to the
programmer.

65

Document Transformation

Example5.2. [W neCat al 0g. xsl|] XSLT stylesheet designed to select thered wines
in the catalog (Example 2.3) and to produce Example 5.1 displayed as
Figure5.1

1 <?xm version="1.0" encodi ng="UTF-8" ?>
<xsl:styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'

xm ns: cat="http://ww. iro.unontreal.cal/l apal ne/ wi ne-cat al og" (1]
xm ns="http://ww. w3. org/ 1999/ xht ml "

5 version="2.0">
<xsl : param nanme="col or" select=""red "/> (2]
<l-- to produce legal and validable XHTM. ... -->

“xm (3]
“-//WBC// DTD XHTM. 1.0 Strict//EN

<xsl : out put net hod
doctype-public
10 doct ype-system
"http://ww. w3. org/ TR xhtml 1/ DTD/ xht m 1-strict.dtd"

i ndent = "yes" encoding = "UTF-8"/>

<xsl:tenplate match="/"> (4
15 <htn >
<head><titl e>Wne Catal og</title></head>
<body>
<xsl : appl y-tenpl at es/ >
</ body>
20 </htm >
</ xsl : tenpl at e>
<xsl:tenpl ate match="cat: w ne-cat al og" > e
<hl>
25 W ne Catal og (<xsl:value-of select="%color"/> only)
</ hl>
<t abl e border="1">
<tr>
<xsl : for-each 0
30 sel ect=""Wne Nane',' Code','Color','Year', Price','m","'
<t h><xsl : val ue-of select="."/></th>
</ xsl: for-each>
</tr>
<xsl : appl y-tenpl at es
35 sel ect="cat:w ne[cat: properties/cat:color=%color]"/> @
</ tabl e>

</ xsl : tenpl at e>

<xsl:tenplate match="cat: w ne"> (8
40 <tr>
<t d><xsl : val ue- of sel ect =" @ane"/></td>
<t d><xsl : val ue- of sel ect =" @ode"/></td>
<t d><xsl : val ue- of sel ect="cat: properties/cat:color"/></td>
<td align="right"><xsl:val ue-of select="cat:year"/></td>

45 <td align="right">
<xsl :val ue- of sel ect="fornat-nunber(cat:price,'$0.00")"/>
</td>
<td align="right">
<xsl :val ue-of select="cat:toM.(@ornat)"/> (9

66

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/WineCatalog.xsl

Table

50

55

60

65

70

75

80

</td>

<td align="right">
<xsl:call-tenpl ate name="toL"> ©

<xsl:w th-param name="fnt" select="@ormat"/>

</ xsl :call-templ at e>

</td>

</tr>
</ xsl : tenpl at e>

<xsl :functi on nanme="cat:toM"> @
<xsl : param name="fnm"/>
<xsl :val ue- of sel ect="
if ($fmt="375m"') then ' 375
else if ($fnt="750mM") then '750
else if ($fnt="11") then ' 1000
else if ($fnt="magnunm) then ' 1500
else "big "/>
</ xsl : function>

<xsl:tenpl ate nanme="tolL"> @
<xsl : param name="fnm"/>
<xsl : choose>
<xsl :when test="%$fnt =" 375m ' ">0. 375</ xsl : when>
<xsl :when test="$fnmt =" 750m ' ">0. 75</ xsl : when>
<xsl :when test="$fnt =" 1I"'">1. 0</ xsl : when>
<xsl : when test="%$fnmt =" magnum ">1. 5</ xsl : when>
<xsl : ot her w se>bi g</ xsl : ot herw se>
</ xsl : choose>
</ xsl : tenpl at e>
</ xsl : styl esheet >

Definition of thecat namespace prefix in order to access the elements of the wine catalog which are
defined in this namespace. The default namespace is set to be the one needed for avalid XHTML file.
With this declaration HTML tags that are used in the stylesheet are in the appropriate namespace for
HTML validation.

Global parameter initialized with a string value; note the use of the internal single quotes to make sure
that the string value is used and not a reference to a (non-existing) r ed element. This value can be
overriden by arun-time parameter when the stylesheet is applied.

xsl : out put declaration to tell the transformation engine to serialize with the appropriate headers
to produce valid XHTML.

Template matching the root node that defines the skeleton of the HTML page: a head and abody with
acall to apply templates on its children elements (only cat : wi ne- cat al og in this case).
Template matching the catalog node to produce a header with atitle and a table. The headings of the
table are defined as the first row. The rest of the table will be filled with lines produced by each wine.
Usesaf or - each in asequence of strings to output the headersin the first row of the table.

Selects the wines with the chosen col or . The result is a sequence wi ne nodes. The template on
line 39-@ is applied to each of them.

Outputs properties of a wine. The first four are output as they appear in the source. The pri ce is
formatted in dollars and cents and the bottle format is given in either milliliters or liters.

67

Document Transformation

Outputs the bottle capacity, expressed in milliliters, using a user-defined X Path function (line 59-®).
To distinguish user-defined functions from system defined ones, user-defined functions must be declared
in a separate namespace. Herewe simply chosethecat namespace but we could have used a different
one.

Cdlls anamed template that outputs the bottle capacity, expressed in liters.

A user defined function which must be defined in a specific namespace and that can be called within
an X Path expression like any other system defined one. Here we simply use amulti-line X Path expres-
sionto select theappropriate casewithinacascadedi f (...) then ... else ... expression.
Note the definition of an xsl : par amelement to define the formal parameter that will be used asthe
value of the actual parameter when the function is used in an XPath expression.

Definition of a named template in order to output the number of liters corresponding to the value of
thef nt formal parameter. The formal parameter isreferred to by the XPath expression $f mt within
the template. The template chooses the value to return depending on the value of thef or mat attribute
of the current node given as actual parameter when the named template is called (line 52-®).

5.2.2. Computing New Information

XSLT can aso be used for more complex selections and transformations. We will now show how to create
aweb page presenting the content of the cellar and integrating information from the wine catalog. The end
result isshownin Figure 5.2 (an outline of the underlying HTML codeis shown in Example 5.3). There are
external linksin order to get more information about the wines by googling for the name of wine. There are
two similar links for each wine but it is just to show and compare ways of creating them in XSL.

68

Computing New Information

Figure5.2. HTML rendering of Example 5.3

800 Cellar of Jude Raisin e

Cellar of Jude Raisin

| Personal address || Cellar address |

1234 rue des Chéateaux|[4587 des Futailles
S5t-George ‘Vallée des crus
ON QC

M7TW 750 H3C 418

Code | Name [Purchase Date|Rating[Nb bottles
Domaine de 1'Tle Margaux
DO04EL25 Domaine de I'fle Margaux 2005-00-20) e

Mumm Cordon Rouge e
00312363 i K T 2004-11-19/ 5

Chéteau Montguéret
00871996 B e il 2005-06-19/ 0

Prado Rey Roble
00929026 Prado Rey Roble 2003-10-15 1

[Estimated value (245 85

3]

Comments

00043125 : Guy Lapalme, Montréal: should reorder soon
C00312363 : Bottle too small...

CO0871996 : Really great

C00929026 : for big parties

Example5.3. HTML output by the XSLT codeisshown in Example 5.4

ThisHTML code has been dlightly reformatted and trimmed to fit on the page.

<htm >
<head>
<title>Cellar of Jude Raisin</title>
</ head>
<body>
<h1>Cel | ar of Jude Rai sin</hl>
<t abl e border="1">
<tr><th>...</th><th>...</th></tr>
<tr>
<td>...</td>
<td>...</td>
</[tr>
</t abl e>
<p/>
<t abl e border="1">

69

Document Transformation

<tr><th> ..</th><th> ..</th><th>...</th>
<th>...</th><th>...</th>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td align="right"> ..</td>
<td align="center"/>
<td align="right"> ..</td>
</tr>
<tr>
<td col span="3">...</td>
<td align="right"> ..</td>
<td align="right"> ..</td>
</tr>

</t abl e>
<h3>Comment s</ h3>C00043125 : CGuy Lapal me, Montréal </ b>: shoul d reorder soon

C00312363 : Bottle too small...

C00929026 :for big parties

C10263859 : Really great

</ body>
</htm >

Example 5.4 illustrates some new features. The root template (line 20-©) creates the high-level structure of
the XHTML file: thetitle of the page, also displayed at the top of the page, refers to the name of the owner.
In Example 2.2, element nane (line 12-0) is structured in two elements: f i r st and f ami | y. When the
value of such an element isreturned from an xsl : val ue- of , itisthetext content of al elements. In fact,
there are 5 partsin this case:

« the text node comprising a\ n (this is the notation for an end of line character) following the name
opening tag and white space until the start of f i r st

* the content of theelement f i r st

 the\ n and spaces between the closing tag of f i r st and the openingtag of f ami | y

* thecontent of theelement f ami | y

« the\ n and spaces between the closing tag of f ami | y and the closing tag of nane

Given the fact that a sequence of \ n and spacesin HTML is displayed as a single space by the browser, we
get an appropriate display in this case. But this shows that handling text content can become a bit tricky.
The next section will explain how to work with some of the most frequent cases.

The content of the cellar book is obtained by an implicit call to the template defined on line 36-@ which
creates atable with the address of the owner (line 43-@) and the cellar (line 47-@). It then callsthecel | ar
template (line 54-@). The lines of the addresses are obtained by looping on all elementswith af or - each
and outputting a<br / > between the text values of each element of the owner and | ocat i on elements.
Because we want to skip thefirst element (the owner name has already been given at the top), we only keep
elements (line 43-@) with a position number greater than 1.

Thecel | ar (line58-0) template produces atable of information about winesin the cellar, sorted by their
code. This is why the content of the xsl : appl y-t enpl at es element (line 66-@) is an xsl : sort

70

Computing New Information

element indicating the sorting key and the sort order. The last line of the table contains an estimated total
value of the cellar obtained by acall (line 73-®) tothet ot al named template. To compute the total number
of bottles (line 79-®), we can use the predefined sumfunction. Finally, if there are any comment in the
wi ne elements of the cellar (line 84-®), we add a Comrent s section and output each of them, alsoinin-
creasing order of wine code so that they are in the same order asin the table of wines.

We define the wi ne template (line 95-®) to create arow in the table of wines. In order to gather some in-
formation about thiswine from the wine catal og, we pass the wine node from the wine catal og as a parameter
to the call to thenanmeAndUr | template (line 99-®). The link between the current element and the corres-
ponding element in the catal og is made using the value of the code variable given in the X Path expression.
The remaining elements of the row are the purchase date (right-aligned), a number of stars corresponding
to the rating and the quantity (right-aligned). The estimated value of the cellar is computed using XPath
expressions.

nameAndUr | is a named template that receives awi ne element as parameter. From this wine element,
we create a XHTML link (line 117-®) with an a element with an hr ef attribute whose value is a string
specifying the request to send to Googleto search for thiswine using itsname. Thisisabit involved because
the link must be created dynamically using the the xsl : at t ri but e elements added to an enclosing a
element with appropriate contents. For that, we use two variables:

$CGoogl eStart setinxsl : par amfor the whole stylesheet (line 8-@). This string corresponds to the
CGil call to Google to search for the name of the wine.

$nane is the name of the wine found in the catal og.

These values are used to create the value of the attribute hr ef of the a element in the resulting HTML
code.

Because creating such dynamic elements and attributes is often required, XSLT designers have defined a
non-XML formalism called Attribute Value Template in which we put braces around X Path expressions that
denote values that will be evaluated at run time and whose string value will replace the braces and their
content (line 127-®). One should consult the XSLT documentation to determine in which contexts this
shortcut notation is allowed (it isindicated by surrounding the content of the quotes by braces).

Thecommrent template (line 134-®) outputs the value of the code of the parent node, a colon and the text
value of the comment followed by aline break. In getting the content of the comment, thecat : bol d ele-
mentswill be processed by the appropriate template (line 142-®) that will transform them in HTML b tags.

Example 5.4. [Cel | ar Book. xsl] XSLT stylesheet to produce information about
the cellar (Example 2.2). The resulting HTML code (Example 5.3) is
rendered asFigure5.2.

1 <?xm version="1.0" encodi ng="UTF-8"?>
<xsl:styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'
xm ns:cat="http://ww.iro.unontreal.cal/l apal me/ wi ne-cat al og"
xm ns="http://ww. w3. org/ 1999/ xht m "
5 version="2.0">

<l-- part of URL for a Google search -->
<xsl : param nanme="Googl eSt art " >ht t p: / / ww. googl e. conf sear ch?q=</ xsl : par an>®

71

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/CellarBook.xsl

Document Transformation

10 <l-- to produce legal and validable XHTM. ... -->
<xsl : out put net hod="xm "
doct ype-public="-//WBC//DID XHTM. 1.0 Strict//EN
doct ype-system="http://ww. w3. or g/ TR/ xht M 1/ DTD/ xht Ml 1-strict. dtd"
i ndent ="yes"

15 encodi ng="UTF- 8"/ >
<xsl : key nanme="cat al og" match="cat:w ne" use="@ode"/> (2]
<!-- matches the root node -->
20 <xsl:tenplate match="/"> (3]
<htm >
<head>

<title>Cell ar of <xsl:val ue-of
sel ect ="cel | ar - book/ owner/ nane"/ >

25 </title>
</ head>
<body>
<xsl : appl y-tenpl at es/ >
</ body>
30 </htm >
</ xsl : tenpl at e>
<l-- output of the content of the cellar
addresses of the owner and cellar
35 followed by a table of wines -->
<xsl:tenpl ate match="cel |l ar - book" > (4

<hl>Cel |l ar of <xsl:val ue-of sel ect="owner/nanme"/></hl>
<t abl e border="1">

<tr>
40 <t h>Per sonal address</th>
<t h>Cel | ar address</th>
</[tr>
<tr><td><xsl:for-each sel ect="owner/*[position()>1]"> (5
<xsl : appl y-tenpl at es/ ><br/ >
45 </ xsl :for-each>
</td>
<t d><xsl :for-each sel ect="I|ocation/*"> (6
<xsl : appl y-tenpl at es/ ><br/ >
</ xsl :for-each>
50 </td>
</[tr>
</t abl e>
<p/ >
<xsl :apply-tenpl ates select="cellar"/> (7]
55 </ xsl : tenpl at e>
<l-- content of the cellar as a table -->
<xsl:tenplate match="cel l ar"> (8
<t abl e border="1">
60 <tr><!-- head of the table -->

<xsl :for-each
sel ect ="' Code',' Nane',' Purchase Date','Rating',' No bottles' ">

72

Computing New Information

<t h><xsl : val ue- of select="."/></th>
</ xsl : for-each>
65 </tr>
<xsl : appl y-tenpl ates select="w ne"><!-- each row --> (9]

<xsl:sort sel ect="@ode" order="ascendi ng"/>
</ xsl : appl y-t enpl at es>
<tr>
70 <td col span="3">Esti mated val ue</td>
<td align="right">
<l-- conpute the estimated value of the cellar -->
<xsl : val ue- of sel ect=" ©
sum (for $w in wine return
75 $W quantity * key('catal og',$w @ode)/cat:price)"/>
</td>
<td align="right">
<l-- conpute the total nunber of bottles -->
<xsl :val ue-of sel ect="sum(w ne/quantity)"/> @
80 </td>
</tr>
</t abl e>
<l-- put comment section if at |east one coment appears -->
<xsl:if test="count(w ne/ coment)>0"> @
85 <h3>Comment s</ h3>
<p>
<xsl :apply-tenpl ates sel ect ="w ne/ coment " >
<xsl:sort select="../@ode" order="ascendi ng"/>
</ xsl : appl y-t enpl at es>
90 </ p>
</xsl:if>
</ xsl : tenpl at e>

<l-- information about a wine -->
95 <xsl:tenpl ate match="w ne"> ®
<tr>
<t d><xsl : val ue- of sel ect ="substri ng(@ode, 2)"/></td>
<td>
<xsl:call-tenpl ate name="naneAndUr| "> 1]
100 <xsl :w t h- param name="wi ne" sel ect ="key(' catal og', @ode)"/>
</ xsl :call-templ at e>
</td>
<td align="right"><xsl:val ue-of sel ect="purchasebDate"/></td>
<td align="center">
105 <xsl :val ue-of select="substring("'*****' 1, ®
if (rating/ @tars) then rating/ @tars else 0)"/></td>
<td align="right"><xsl:val ue-of select="quantity"/></td>
</tr>
</ xsl : tenpl at e>

110
<l-- output the name of the wine with a link for "googling" it -->
<xsl:tenpl ate name="naneAndUr| "> 16]
<xsl : param name="w ne"/ >
115 <xsl :vari abl e name="nane" sel ect ="encode-for-uri ($w ne/ @ane)"/ >
<l-- dynam c creation of an element and its attributes -->

73

Document Transformation

120

125

130

135

140

145

00

<a> 17]
<xsl:attribute nane="href">
<xsl : val ue- of sel ect="$Googl eStart"/>
<xsl : val ue- of sel ect ="$nane"/ >
</ xsl:attribute>
<xsl : val ue- of sel ect =" $wi ne/ @ane"/ >

</ a>
<l-- link creation using an Attribute Value Tenplate -->

<i>
 ®
<xsl : val ue- of sel ect =" $wi ne/ @ane"/ >
</ a>
</i>

</ xsl : tenpl at e>

<l-- comment preceded by the code corresponding to it -->
<xsl:tenpl ate match="comment " ><xsl : t ext > ®
</ xsl:text>
<xsl : val ue-of select="../@ode"/>

<xsl:text> : </xsl:text>
<xsl : appl y-tenpl at es/ ><br/ >
</ xsl : tenpl at e>

<l-- global change of <bold> tags to htm tags -->

<xsl:tenpl ate match="cat: bol d"> 20
<xsl : appl y-t enpl at es/ ></ b>

</ xsl : tenpl at e>

</ xsl : styl esheet >

Parameter giving the start of the URL allowing a search for a given wine on Google.

Declaration of a key to access awine element of the catalog use its code attribute as a key.
Template for the root node that defines the skeleton the HTML page: ahead with atitle indicating the
name of the owner and a body to be filled by the application of templates on the child element
(cel I ar - book inthis case).

Global header with the name of the owner and then a table giving more information about the owner
and the location of the cellar.

Loop over al children nodes of the address, except the first one, the name of the owner. After each
node which will be output using the default rules (only their text content will be output), aline break
isforced with an HTML br element.

Loop over al children nodes of the location. After each node which will be output using the default
rules (only their text content will be output), aline break is forced with an HTML br element.
Outputs the content of the cellar with the appropriate template.

The content of the cellar is given as atable with aheader defined in this template, followed by a series
of lines corresponding to each wine and finally aline holding the estimated value of the whole cellar.
Applies the template for each wine but in increasing order of the code attribute.

74

Computing New Information

® Thetotal value of the cellar is computed using arelatively complex XPath expression: that loops over
all wines and returns the sum of the value of each wine. The value of awine is given by the number
of bottles(quant i t y) multiplied by the price of thewinein the catalog having the same code attribute
asthiswine. The price in the catalog is found by first accessing the wine element of the catalog with
the key function giving the value of code attribute of the cellar book.

® Thetotal number of bottlesisthe sum of the values of all quant i t y elements.

® Comments appear at the bottom of the table if at least one wine has a comment. They are also given
in ascending order of code attribute.

® Outputsaline of an HTML table for agiven wine.

® Outputs the name of wine and its URL using the named template defined on line 113-®. The wine
element in the catalog is found using the key function.

® Outputsastring of * corresponding to the number of starsfor thiswine.

® Named template for outputting the name of the wine as the anchor text for an HTML link to Google
with the appropriate wine name to get further information about it. We show here two alternative ways
of creating the link.

® Createsana HTML element with acomputed value for the hr ef attribute: this valueisthe concaten-
ation of the query string and the wine code.

® Createsana HTML element relying on an Attribute Val ue Templ ate in which the content of the braces-
enclosed expressions are evaluated as X Path expressions. In many cases, this notation is simpler than
the preceding one.

® A comment ispreceded with the value of the surrounding code attribute and followed by aline break.

@ Acat: bol d elementistransformed into an HTML b element.

A observant reader might wonder where the text within atext element is coming from, because there is no
template in our program for this case. This output is achieved by means a built-in XSLT template shownin
Example 5.5 which stipulates at line 1-@ that the content of text nodes and attributes are replaced by their
string value. The built-in rule for attribute nodes thus ignores their name.

Another built-in template for the document and element nodes, shown in line 5-@, launches the application
of templates on the children nodes thus traversing the document in a depth-first manner (i.e. in document
order). The combination of these two built-in rules explains why only the text content of an XML document
isdisplayed in a browser when no specific template is defined.

Example 5.5. [buil t-in-tenpl ate-rul es. xsl] Built-in template rules for
XSLT. Theserules are applied when no other defined template can be

applied.

1 <xsl:tenmplate match="text ()| @"> o
<xsl:val ue-of select="string(.)"/>
</ xsl :tenpl at e>

5 <xsl:tenplate match="/|*"> (2]
<xsl : appl y-tenpl at es/ >
</ xsl :tenpl at e>

© A text nodeor an attribute is replaced by its string content.
® A document or element node applies the templates to its children elements.

75

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/built-in-template-rules.xsl

Document Transformation

5.2.3. Bulleted Lists

The previous examples showed transformations specific to a given XML file type. We now describe a
transformation that can be applied to any XML file to show its indentation structure by means of nested
HTML unnumbered lists.

Figure5.3. HTML rendering of Example 5.6

800 HTML compaction of "CellarBook.xml!" e

» cellar-book noNamespaceSchemal.ocation="CellarBook .xsd"
o wine-catalog
= wine name="Domaine de I'fle Margaux" appellation="Bordeaux supéricur" classification="a.c." code="C00043125"
format="750ml"
= properties

= color red

= alcoholic-strength 12.5

= nature still

© owner
= pame
= first Jude
= family Raisin

o location...
o cellar
= wine code="C00043125"
» purchaseDate 2005-06-20
= guantity 2
= comment
= bold Guy Lapalme, Montréal
= : should reorder soon

Example 5.6. Excerpt of the HTML output (slightly reformatted here to fit in the
page) produced by thetransformation of Example 5.4 on thecellar book
(Example 2.2).

<?xm version="1. 0" encodi ng="UTF-8""?>
<! DOCTYPE htm
PUBLIC "-//WBC//DTD XHTM. 1.0 Strict//EN' "http://ww. w3.org/ TR/ xhtml 1/ DTDY xht m 1-stri ct. dt
<htm xm ns="http://ww. w3. org/ 1999/ xht m ">
<head><titl e>HTM. conpacti on of "CellarBook.xm "</title></head>
<body>
cel | ar - book</ b> noNanmespaceSchemalLocat i on="Cel | ar Book. xsd"
<l i >wi ne- cat al og</ b>
<| i >wi ne</ b> name="Donmi ne de |' Tl e Margaux" appel | ati on="Bordeaux supé
<l i >pr operties

col or red
<l i >al cohol i c-strengt h 12.5</1i>
nature still

< ul></ 1>
<lul ></1i>

76

Bulleted Lists

<l i >owner </ b><| i >nane</ b>

first Jude</I|i>
fam | y Raisin
</ ul >

</ ul >

location...
cel | ar</ b>
<l i >wi ne</ b> code="C00043125"
<l i >pur chaseDat e</ b> 2005- 06- 20</ i >
quantity 2</Ii>
coment </ b>

<l i >bol d</ b> Guy Lapal me, Montréal </Ii >
: should reorder soon

</ ul >

</ ul >
</1i>
</ body>
</htnm >

To transform the cellar book (Example 2.2) into the HTML code of Example 5.6 (rendered in Figure 5.3)
we can use the code given in Example 5.7 which has four templ ates:

 one matching the root element (line 17-@) that produces the overall structure of the HTML file with its
head and body elements. The processing of subelements (line 25-@) is called within an unnumbered
list delimited by ul tags.

» matching attributes (line 31-@) is done by outputting a space (with an entity defined on line 3-@), the
name of the attribute followed by an equal sign and its value within double quotes.

» elements (line 36-@) are transformed by outputting the name of the element returned by the function
| ocal - nane() in bold (line 38-@) followed by its attributes. If the element is a node without any
children (line 41-®) then it is output with only its content, otherwise (line 44-®) a new unnumbered list
is started and template matching is applied on children nodes (line 46-®).

* text node content (line 53-®) is output within| i tags.

The* inthe mat ch attribute (line 36-@) indicates that this rule applies to all element nodes not matched
by a more specific rule such as the one on line 17-@ that matches only the root node.

7

Document Transformation

Example 5.7. [conpact HTM.. xsl] XSLT transformation to produce a bulleted

1

5

10

15

20

25

30

35

40

45

50

outline (Example 5.6) from the cellar book (Example 2.2)

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE styl esheet |
<IENTITY space "<xsl:text> </xsl:text>"> (1]
1>
<xsl:styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'
xm ns="http://ww. w3. org/ 1999/ xht m "
version="2.0">

<xsl:strip-space el enents="*"/> (2

<l-- to produce legal and validable XHTM. ... -->

<xsl : out put net hod="xhtni"
doctype-public="-//WBC//DID XHTM. 1.0 Strict//EN
doctype-system="http://ww. w3. org/ TR/ xht M 1/ DTD/ xht ml 1-strict. dtd"
i ndent ="yes" (3
encodi ng="UTF- 8"/ >

<xsl:tenplate match="/"> (4
<htm >
<head>
<title>HTM. conpaction of e
"<xsl:val ue-of select="replace(docunent-uri(.),".*/(.*)","'$1'")"/>"</title>
</ head>
<body>

<xsl : appl y-tenpl at es/ > (6

</ body>
</htm >
</ xsl : tenpl at e>
<xsl:tenplate match="@" > (7
&space; <xsl : val ue- of sel ect="I|ocal -nane()"/>
<xsl:text>="</xsl:text><xsl:val ue-of select="."/><xsl:text>"</xsl:text>

</ xsl : tenpl at e>

<xsl:tenplate match="*"> (8

<xsl : val ue- of sel ect="I1ocal -nane()"/> (o]
<xsl:apply-tenpl ates select="@"/>
<xsl : choose> 10
<xsl:when test="count (*)=0"> <l--single text node ?--> ®
&space; <xsl : val ue-of select="."/>
</ xsl : when>
<xsl : ot herwi se> <!--possi bl e m xed node--> @

<xsl : appl y-tenpl at es/ > ®

</ xsl : ot herw se>
</ xsl : choose>

78

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/compactHTML.xsl

Bulleted Lists

55

&6 00 (] 0000

e 6 6

</ xsl : tenpl at e>

<xsl:tenplate match="text()"> 1]
<l i ><xsl : val ue-of select="."/></1i>
</ xsl : tenpl at e>

</ xsl : styl esheet >

Entity that corresponds to an explicit blank space.

Ignores blank spacesin all elements.

Makes sure that the output will be valid XHTML output.

Matches the root node and produce the HTML skeleton.

Outputs the title of the HTML page. Because the docunent - ur i returns the full uri of the current
document, ther epl ace function uses aregular expression to keep only the part after the last slash.
Start processing the root node of the document by applying the appropriate template.

An attribute is output as a space (note the use of an entity to create an explicit text node that will not
be ignored afterwards), the name of the attribute and its value between double quotes after an equal
sign.

An element node is alist-item.

The name of the element in bold, followed by the attributes using the template defined on line 31-@.
The content of the element is output differently when it has children nodes or not.

Thereareno children nodes, in our casethiswill only be atext node, its content is copied in the current
list item.

If there are children nodes, a new embedded unnumbered list is started.

Thetemplatesare applied on all children nodes, thisisthe default whennosel ect attributeispresent.
In the case of atext node within alist of children (i.e. achild of amixed content element), it is output
aslistitem.

79

Document Transformation

5.3. Transformation into a Compact Textual

Form

We will now use an XSLT stylesheet (shown in Example 5.9) to produce the compact form of an XML file.
The output of thistransformation will only be a stream of plain characters without any tags. This shows that
XSLT can be used to transform XML input into aplain text file.

Example 5.8. Text compaction of the cellar book of Example 2.2 produced by the

stylesheet of Example 5.9.

Some lines and parts of linesindicated by . . . have been omitted here.

cel | ar - book[@oNanespaceSchenalLocati on[Cel | ar Book. xsd]

Wi ne- cat al og[wi ne[@nane[Prado Rey Robl €]
@ppel | ation[Ri ber a-del -duer 0]
@l assification[d.o.]
@ode[C00929026]
@ or mat [magnuni
properties[col or[red]
al cohol i c-strength[12. 5]
nature[still]]
ori gi n[count ry[Spai n]
regionfAd Castille]
producer[Real Sitio de Ventosilla SA]]
price[35. 25]
year[2002]]
wine[...]]
owner [nane[first[Jude]
fam | y[Rai sin]]
street[1234 rue des Chat eaux]
city[St-Ceorge]
provi nce[ON|
post al - code[MPW 7S0]]
| ocation[street[4587 des Futaill es]
city[Vall ée des crus]
provi nce[QC]
post al - code[H3C 4J8]]
cel l ar[wi ne[@ode[C0O0043125]
pur chaseDat e[2005- 06- 20]
quanti ty[2]
conment [bol d[Guy Lapal ne, Montr éal]
shoul d reorder soon]]

wi ne[@ode[C00929026]
pur chaseDat e[2003- 10- 15]
quantity[1]
coment [f or
bol d[bi g]

parties]]]]

80

Transformation into a Compact
Textual Form

The algorithm given Example 5.9 follows the same pattern as the one explained in Section 5.2.3. We recurs-
ively follow the structure of the tree and output a corresponding stream of characters. In our case, only one
rule is applied to all element nodes: we output the name of the element and then output its attributes and
children, with an indentation corresponding to the number of charactersin the name of the parent element.
The root node has an indentation of 0. Because we want an output with few blank lines, we only change
line after having written the first attribute or child element. This rule is implemented with the template
starting on line 40-@. The * in the mat ch attribute indicates that this rule appliesto al element nodes not
matched by a more specific rule such as the one on line 8-@ that matches only the root node. In this latter
rule, we apply thegenera ruletoall childrenwithxsl : appl y-t enpl at es without any sel ect attribute.
All templates have a parameter indicating the indentation given as an xsl : wi t h- par amelement and
declared in the template with the xs| : par amelement.

Characters are put in the output stream literally by xsl : t ext elements. Text can aso be computed with
xsl : val ue- of elementswhosesel ect attributeisan XPath expression. Conditions can be introduced
withan xsl : i f element whoset est attribute can refer to the current context; here count (. ./ @)
countsthe number of attributes of the parent and posi ti on() indicatestherank of the current node among
itssiblings. With thisinformation, we can decideif the current line should be ended and insert the appropriate
number of blanks according to the value of the i ndent parameter before outputting the information on
this line. After the output of the element name, we call the templates for al attributes, elements and text
nodes of this node (this is achieved with the sel ect attribute on line 47-@). In our case, we also update
the current indentation that will be given to al these nodes. The output of all these recursive template applic-
ations will be enclosed in apair of square brackets.

Because al characters and new lines in the stylesheets are returned as they appear in the input (including
\ n and leading and trailing spaces between elements), it can be difficult to achieve a specific output format.
Thisisnot really aproblem if the output of the transformation isHTML, because in this case these spurious
spaces and newlines are removed before being displayed. In our case, the transformation output is given as
isto the user so it is simpler to only output the content of stylesheet elements without any \ n and without
leading and trailing spaces. Thisiswhy, on line 5-@, we declare that all elements (*) of this stylesheet should
ignore all spacesin the instancefile.

On line 22-@, we define the template to output the value of an attribute, which is simply the name of the
attribute preceded by an @and followed by its value in square brackets. If the attribute is not the first one,
the line is ended and a new indentation is produced.

On line 32-0, we aso check if we need to end the current line and then we output the value of the current
nodewith all extraneous spaceremoved usingthenor mal i ze- space function. Thisremovesall whitespace
at the start and at the end of the value and leaves only one space between non-space characters.

To output agiven number of spaces, we have defined an XPath functioncalled nl - and- i ndent (line 16-@)
with one parameter that it used to create a sequence of spaces, which are joined into one string preceded by
anewline.

81

Document Transformation

Example5.9. [conpact . xsl]: Stylesheet used totransform thecellar book instance

document (Example 2.2) into Example 5.8

1 <xsl:stylesheet xm ns:xsl="http://ww.w3.org/ 1999/ XSL/ Tr ansf or ni'

10

15

20

25

30

35

40

45

50

xm ns: gl ="http://ww.iro.unmontreal.call apal ne"
version="2.0">

<xsl:strip-space el enents="*"/> (1
<xsl:out put omt-xm-declaration="yes" nethod="text"/> (2
<xsl:tenplate match="/"> (3
<xsl : appl y-tenpl at es>
<xsl:wt h-param nanme="indent" select="0"/>
</ xsl : appl y-t enpl at es>
<xsl:text>
</ xsl:text>
</ xsl : tenpl at e>
<xsl:function nanme="gl:nl-and-indent"> (4
<xsl : param nane="nb"/ >
<xsl :val ue-of sel ect="concat ('
 ",
string-join(for $ in 1 to $nb return ' ',""))"/>
</ xsl: function>
<xsl:tenplate match="@" > e

<xsl : param nanme="i ndent"/ >
<xsl:if test="position()>1">
<xsl : val ue- of sel ect="gl:nl-and-indent($i ndent)"/>

</xsl:if>

<xsl :text>@/ xsl : text >

<xsl :val ue-of select="I|ocal -nane()"/>

<xsl:text>[</ xsl:text><xsl:val ue-of select="."/><xsl:text>]</xsl:text>
</ xsl : tenpl at e>

<xsl:tenplate match="text()"> (6
<xsl : param nanme="i ndent"/ >
<xsl:if test="count(../@)>0 or position()>1">
<xsl : val ue- of sel ect="gl :nl-and-indent($i ndent)"/>
</xsl:if>
<xsl :val ue-of sel ect="nornalize-space(.)"/> (7]
</ xsl : tenpl at e>

<xsl:tenplate match="*"> (8
<xsl : param nanme="i ndent"/ >
<xsl:if test="count(../@)>0 or position()>1">
<xsl : val ue- of sel ect="gl : nl-and-indent($i ndent)"/>
</xsl:if>
<xsl :val ue-of select="Ilocal -nane()"/>
<xsl:text>[</ xsl:text>
<xsl:apply-tenplates select="@|*|text()"> (o]
<xsl :w t h- param nane="i ndent "
sel ect ="$i ndent + string-I|ength(local-nanme())+1"/>
</ xsl : appl y-t enpl at es>

82

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/compact.xsl

Transformation into a Compact
Textual Form

55

<xsl:text>] </ xsl:text>
</ xsl : tenpl at e>

</ xsl : styl esheet >

The XSLT processor will ignore all whitespace nodes from the input so that the output only contains
spaces explicitly inserted by the stylesheet.

Indicates that the output will be plain text, thus we do not want an XML declaration to be emitted.
At theroot, startsto apply the compaction algorithm with an indentation of 0. Forces anew line at the
end of the output with the content of an xsl : t ext tag.

XPath function for outputting a number of spaces given by thei ndent parameter preceded by anew
line indicated by a character entity.

For an attribute, outputs the name of the attribute preceded by an @followed by its value enclosed in
square brackets. If thisis not the first attribute, indent the following line.

For atext node, outputs its normalized value. If there were attributes or if thistext nodeis not thefirst
child, indent the following line.

Normalizes atext value, i.e. remove the surrounding spaces and line breaks.

For an element, outputs the element name followed by the output of the recursive call to the compaction
of attributes, children and text nodes are enclosed in square brackets. If there are any attributes and it
this element is not the first one, indent the following line.

Updates the indentation for the children nodes with the length of the element name plus one to take
into account the open bracket.

83

Document Transformation

5.4. Transformation into PDF with XSL-FO

The previous sections have illustrated the principles of XSLT templatesfor producing HTML and character
output. XSL also defines a more involved and powerful formatting tool: XSL-FO, standing for eXtensible
Stylesheet Language-Formatting Object. It is similar in principle to the Cascading Style Sheets (CSS) (see
next section) defined for HTML to separate the information computation process from the rendering on a
specific device (screen, paper, PDA, speech). As shown in the middle of the flow diagram of Figure 1.3
(page 4), Transformati ons can produce Formatti ng bjects, i.ee XML elements in the
http:// ww. wW3. or g/ 1999/ XSL/ For mat namespace with prefix f o, which are then rendered on
different devices, particularly in PDF.

XSL-FO is a declarative language designed to describe the page content in terms of nested areas, laid out
under certain constraints. The main purpose of this approach is the production of printed pages. it allows
the definition of the general shape of pages (margins, headers, page numbers, etc.) and the relative placement
and nesting of the areas containing the information of the document. Great care has been given to provide
a uniform processing of multiple languages and writing systems (not necessarily going from left to right
and top to bottom) in the same page. It is aso possible to create HTML-like tables and generalized lists as
pairsof itemswith aligned labelsand bodies. Wewill usetheseliststoillustrate the nesting of XML elements
in our PDF output as shown at the bottom of Figure 1.5 and in Figure 5.4.

Figure 5.4 shows the three pages generated by the stylesheet of Example 5.10 on Example 2.2. An XML
element isdisplayed with its name in green aligned with its contents. In some cases, the characters of alabel
overlap but we could not find areliable way of adjusting the position of alist item body depending on the
length of itslist item label. We simplify by leaving a distance of 30 mm between the start of the label, given
by the element name, and the start of the indented block describing the element value. This limitation is
understandabl e because the rel ative positions of thelabdl and body must be determined whenthef o elements
are generated by the transformation process but the length of alabel is determined when it is rendered on
the PDF page.

Transformation into PDF with X SL -

FO

Figure 5.4. Three pages of PDF output of compaction by Formatting Objects

Page 1 cellar-book | wine-catalog | wine Page 2
1 CellarBook.xsd origin country France
wine-catalog [wine @name Domaine de I'lle Margaux region Loire Valley
@appellation Bordeaux supérieur producer SCEA Chateau de
@classification a.c Montguéret
@code C00043125 comment Made with Grolleau (100%). Ready
@format 750ml to drink now. Serve at 8°-10°C.
properties color red tasting-note Tender pink in
125 color, this wine
nature still shows
origin country France emph Iight raspberry
region Bordeaux highlights.
producer SCEA Domaine price 14.65
de L'lle Margaux year 2003
(B.P.5) wine @name Mumm Cordon Rouge
comment Ready for drinking now @appellation Champagne
food-pairing Accompanies @classification a.c.
emph Bordelaise @code C00312363
ribsteak @format 375ml
, properties color white
bold pork with prunes alcoholiostrength 12
or magret de nature Champagne
canard. origin country France
price 22.80 region Champagne
year 2002 producer G.H. Martel & Co
wine @name Riesling Hugel comment Ready for drinking now. Serve it
@appellation Alsace fresh but not too cold.
@classification a.c. tasting-note This champagne has a light fruity
@code 00042101 aroma. It is delicate and has
@format 750ml exquisite bubbles.
roperties - price 33.00
prop color \1N£1|te vear 2000
nature sill wine @name Prado Rey Roble
origin country France g(a;ll;?sz:lﬁac[g:)n glgera-del-duero
region Alsace anq East @code 00929026
producer Hugel & Fils
. @format magnum
price 17.95 properties color red
year 2002 alcoholiostrength 12.5
wine @name Chateau Montguéret nature still
@appellation Anjou origin country Spain
@classification a.c. region 0ld Castille
@code ©10263859 producer Real Sitio de
@format 750ml Ventosilla SA
properties color rosé price 35.25
11 year 2002
nature still
cellar-book Page 3
owner name first Jude
family Raisin
street 1234 rue des Chateaux
city St-George
province ON
postal-code M7W 7S0
location street 4587 des Futailles
city Vallée des crus
province Qc
postal-code H3C 4J8
cellar wine @code C00043125
purchaseDate 2005-06-20
quantity 2
comment bold Guy Lapalme,
Montréal
: should reorder
soon
wine @code C00312363
purchaseDate 2004-11-19
quantity 5
rating [[@stars 3
comment Bottle too small...
wine @code C10263859
purchaseDate 2005-06-19
quantity 6
comment Really great
wine @code C00929026
purchaseDate 2003-10-15
quantity 1
comment for
bold big
parties

85

Document Transformation

[conpact FO- al | . pdf]: PDF output of compaction by Formatting Objects (XSL-FO) of Example 2.2.
The output spans over three US L etter format pages that we reduced here to show the overview of al pages.
The page headers show the context of each page and the page number.

5.4.1. XSL-FO Input to the Renderer

Figure 5.5. Outline of the XSL-FO file produced by running Example 5.10 on

Example 2.2
2 w=fo:root xmlns:fo="http://www.w3.0rg/1999/X5L/Format">
ER <fo:layout-master-sets
4= <fo:simple-page-master margin-bottom="1lem" margin-left="1lam" margin-right="1cm"
5 margin-top="1lcm" master-nome="a-page">
b <fo:region-body margin-top="1lcm" margin-bottom="1lcm"/>
7 <fo:regicn-before extent="1lcm"/>
g </fo:simple-page-master>
9= <fo:page-sequence-master master-name="page-layout">
10 <fo:repeatable-page-master-reference master-reference="a-page"s/>
1 </fo:page-sequence-master>
12 </fo:laycut-master-set>
13+ <fo:page-sequence master-reference="page-layout">
14 <fo:static-content flow-name="xsl-region-before"> [4 lines]
18 < <fo:flow flow-name="xsl-region-body">
20 = =fo:list-block provisicnol-distonce-between-starts="38mn">
21w <fo:list-item>
22 = =fo:list-item-label end-indent="label-end()">
23 <fo:bleck font-weight="bold" color="green"s>cellar-book</fo:blocks
24 </fo:list-item-label>
25 = <fo:list-item-body start-indent="body-start()">
26 <fo:bleck border-color="black" border-left-style="solid"
27 border-left-width="thin" border-top-style="solid"
28 border-top-width="thin" padding-left="2mm" space-after="1lmm">
28 <fo:marker marker-claoss-name="context"/>
30 = <fo:list-blocks
EX <fo:list-items [13 lines]
45 = <fo:list-item>
46 p <fo:list-item-label end-indent="label-end()"> [3 lines]
50 p <fo:list-item-body start-indent="body-start()"> [1863 lines]
1514 </fo:list-item>
1815 p <fo:list-items [116 lines]
2032 p =fo:list-items [65 lines]
2058 p <fo:list-items [517 lines]
2616 </fo:list-blocks
2617 </fo:blocks
2618 </fo:list-item-body>
2618 </fo:list-item>
2620 </fo:list-blocks
2621 </fo:flow>
2622 </fo:page-sequence>
R723 e MFne ronds

[conmpact FO. j pg]: Outline of the XSL-FO file produced by running the X SL stylesheet of Example5.10
on the cellar book example of Example 2.2. This picture was reduced with the fold/unfold feature in
<oXygen/>.

Because the output of an X SL-FO instance document is processed by another program to get the final PDF
output, itisabit difficult to grasp the processing involved in the X SL-FO workflow. So we will go backwards
by first looking at the XSL-FO given as input to the renderer. In principle we could write this XML file by

86

From the Instance Document to the
XSL-FO file

hand but, looking from Figure 5.5 which shows only the outline of more than 2500 lines for three PDF
pages, we appreciate the fact that it can be produced by a machine... The figure is the output produced by
the application of the XSL templates of Example 5.10 on the cellar book instance document (Example 2.2).

An XSL-FOfileisan XML file starting with af o: r oot element with two children elements:

« fo:layout - mast er - set that describes the shape of the different types of pages that occur in the
document and the sequence in which they appear. In Figure 5.5, we have a simple document so
» fo: sinpl e-page- mast er (lines 4-8) defines a single model for all pages with 1 cm margins.
Within it, the header, defined with f 0: r egi on- bef or e will take thetop 1 cm and the real content
of the page will start another 1 cm lower. Here we define only asingle type of master page but for more
complex documents it would be possible to have different master page for title pages, for first pages,
for even or odd pages, €tc.

» fo0: page- sequence- mast er (lines 8-11) declares that the document is an infinite repetition of
the above page.

» fo0: page- sequence (lines 13-2622) definesthe content of the document that will be rendered according
to the page layout we have defined above. The content of the page is given in the f o: f | ow element
(lines 19-2621) which starts in the current page and continues in the region-body of the next pages. In
fact, the only visible text from Figure 5.5 that appearsin Figure 5.4 is the first word (cel | ar - book)
produced on line 23. Content that appears at the same place within each page, such as headers and footers,
iscalledst ati c- cont ent (line 14).

5.4.2.From the Instance Document to the XSL-FO file

We will now look at how to build a stylesheet to produce the X SL-FO file described in the previous section
from an XML instance document. Similarly to what we have done to produce HTML output (Section 5.2.3),
all tree structures defined with elements with the f 0 namespace prefix will appear verbatim in the output.
XSL-FO elements can be also be created by xsl : el enent templates but we will not need this here. Ex-
ample 5.10 starts by defining a group of xsl : attri but e-sets for defining the global formatting
parameters of thefile. This set up makesit easier to change the formatting without going into the details of
the code.

We must start with af o: r oot element (line 56-®) with two children:

» fo:layout - mast er - set, within the named template def i ne- | ayout defined on line 32-@, de-
scribes the shape of a page with af o: si npl e- page- nast er element (line 34-@) that defines its
margins relative to the page; within it, we define the r egi on- body in which the content will appear;
wea so define areasfor theheader (calledf o: r egi on- bef or e) and thefooter (not used in our example).
Then the sequence of page mastersisgiven (line 38-@): here asimplerepetition of our single page master.

» fo0: page- sequence (line58-®) refersto apage- sequence- nast er inwhich the content of the
page will begiveninthef o: f | owelement (line 60-®) which will start in the current page and continue
on the next pages within their region-body. The content of a header is defined by the named template
def i ne- header (line 44-@) which creates a line with the content of the marker on the left and the
page number on theright. Asthe last (and only) line of the block isto bejustified, f o: | eader will fill
the line with white space in between.

The overall tree is defined once for the root element of the document (line 55-®) and the traversal of the
instance document starts on line 62-® within the f o: | i st - bl ock element in the top-level f o: f | ow
element, which corresponds to line 30 of Figure 5.5.

87

Document Transformation

The nested boxeswill be at adistance of 30 mm of each other (line 61-®). We use the same type of recursive
treetraversal agorithm astheonefor HTML presentation (Example 5.7) and text compaction (Example5.9).

Formatting objects create lists as aligned blocks whose relative size and position must satisfy presentation
constraints. As can be seen on line 30 of Figure 5.5, af o: | i st- bl ock (created on line 60-® of Ex-
ample 5.10) iscomposed of f 0: | i st -1t ensoneon top of each other. A fo: 1i st-item(line70-®)
iscomposedof af o: | i st-item | abel aignedhorizontalywithaf o:1i st-item body (line76-®)
even if they are not the same height. In our example, the top and |eft borders of blocks are colored to show
the nesting of blocks which corresponds to the nesting of elementsin the XML file. The starting horizontal
position of eachfo: I i st-item| abel iscomputed from the value of the enclosing block but its end
position must be specified. Hereit is computed by apredefined functionf o: | abel - end which takesinto
account the val ue specified for the distance between blocks (line 61-®). The starting position of thelist item
body must aso be specified, most often again with a predefined function f o: body- st art (line 76-®).

The processing of elements starts by creatinganew f o: | i st -i t em(line 72-®) with the element name
in bold green defined in the attribute set on line 27-@ asfo:list-item| abel (line 70-®). The
fo:list-itembody (line 76-®) processing depends on whether there are any children elements (or
attributes) or not:

» when there are no children elements (line 78-®) but possibly text nodes, we display the content of text
nodesinaf o: bl ock.

» whenthere are children nodes (line 85-@), they are displayed within abordered f o: bl ock whose content
is arecursively built (line 92-®) f 0: | i st - bl ock. As we explain below, the current context is also
computed and saved inthef o: mar ker (line 87-®).

Attributes (line 101-®) are displayed using the | abel edVal ue named template (line 128-®): their name
isinblueitalicized text (asthef 0: 1 i st-i t em | abel) andtheir text contentasf o: | i st-i t em body.
Note here the use of a tree fragment value as actua parameters (line 104-® and line 108-®) to the
| abel edVal ue named template. f 0: i nl i ne elements create ordinary text. The area for display is
created with af 0: bl ock element in the | abel edVal ue named template (line 128-®). This template
createsafo:list-itemcomprisngafo:list-itemlabel andalist-item body. Inboth
cases (line 134-@ and line 139-@), we insert the tree given as parameter by means of xsl : copy- of and
not theusual xsl : val ue- of , which would only return the content of the tree given as parameter and not
the tree value itsalf.

Text nodes (line 116-@) are output as alist item with an empty label i.e. an empty in-line block, again using
thel abel edVal ue named template, and the text content as body for the list item. Text nodes comprizing
only spaces and newlines (whose normalization gives an empty string) are ignored.

Because the output of this program islonger than asingle page (see Figure 5.4), then it flows on the following
one. But it isinteresting to show the current context of the start of the page in its header. This is done by
creating af o: mar ker (line 87-@) at each new nested block containing the names of the elements that are
the ancestors of the current node. The current value of a marker at the start of the page will appear in the
left part of the header (line 47-@).

88

From the Instance Document to the
XSL-FO file

Example 5.10. [conpact FO. xsl] Stylesheet to transform the information of the
cellar book (Example 2.2) into the colored nested blocks representation
of Figure5.4

1 <?xm version="1.0" encodi ng="UTF- 8" ?>
<xsl:styl esheet xm ns:fo="http://ww.w3. org/ 1999/ XSL/ Format" versi on="2. 0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

5 <xsl:attribute-set nane="page-size"> (1]
<xsl:attribute nanme="nargin-top">lcnx/xsl:attribute>
<xsl:attribute nane="nmargin-left">lcnk/ xsl:attribute>
<xsl:attribute nanme="nmargin-right">lcnx/xsl:attribute>
<xsl:attribute nane="nargin-bottoni>lcnx/xsl:attribute>

10 </xsl:attribute-set>

<xsl:attribute-set name="bl ock-decoration"> (2]
<xsl:attribute name="border-col or">bl ack</xsl:attribute>
<xsl:attribute nane="border-left-style">solid</xsl:attribute>

15 <xsl:attribute name="border-I|eft-w dth">thin</xsl:attribute>
<xsl:attribute nane="border-top-style">solid</xsl:attribute>
<xsl:attribute nane="border-top-w dth">thin</xsl:attribute>
<xsl:attribute nane="paddi ng-1eft">2nmx/xsl:attribute>
<xsl:attribute nane="space-after">1mx/xsl:attribute>

20 </xsl:attribute-set>

<xsl:attribute-set nane="el enent-formatting"> (3
<xsl:attribute nane="font-wei ght">bol d</xsl:attri bute>
<xsl:attribute nane="col or">green</xsl:attribute>

25 </xsl:attribute-set>

<xsl:attribute-set nanme="attribute-formatti ng"> o
<xsl:attribute nane="font-style">italic</xsl:attribute>
<xsl:attribute nane="col or">bl ue</xsl:attribute>

30 </ xsl:attribute-set>

<xsl:tenpl ate name="defi ne-| ayout"> e
<f o: | ayout - mast er - set >

<f o: si npl e- page- mast er nast er - name="a- page" xsl:use-attri ®bute-sets="pa
35 <f 0: regi on-body xsl:use-attribute-sets="page-size" nargin-|eft="0cnt

<fo: regi on-before extent="1cnl'/>
</ fo: si npl e- page- nast er >
<f 0: page- sequence- mast er nast er - nane="page- | ayout " > (7]

<f o: repeat abl e- page- nast er-ref erence master-reference="a-page"/ >

40 </ f 0: page- sequence- mast er >
</ fo:layout - nast er-set >
</ xsl : tenpl at e>

<xsl :tenpl ate name="defi ne- header" > (8
45 <fo:static-content flow nane="xsl-region-before">
<fo: bl ock text-align-last="justify">
<fo:retrieve-marker retrieve-cl ass-nanme="cont ext" (9]

retrieve-position="first-starting-wthin-page"/>
<fo: | eader/>

89

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/compactFO.xsl

Document Transformation

50

55

60

65

70

75

80

85

90

95

100

Page <fo: page- nunber/>
</ fo: bl ock>
</fo:static-content>

</ xsl : tenpl at e>

<xsl:tenplate match="/"> ©
<fo:root xmns:fo="http://ww. w3. org/ 1999/ XSL/ For mat " > @
<xsl:cal |l -tenpl ate name="defi ne-1layout"/>
<f 0: page- sequence master-reference="page-|ayout"> @
<xsl:cal |l -tenpl ate name="defi ne- header"/ >
<fo:fl ow fl ow nanme="xsl - regi on- body" > ®

<fo:list-block provisional-distance-between-start®s="30mi >

<xsl : appl y-tenpl at es/ > ®
</fo:list-block>
</fo:fl ow
</ f o: page- sequence>
</fo:root>

</ xsl : tenpl at e> 16]

<xsl:tenplate match="*">
<fo:list-itenp @

<fo:list-item|abel end-indent="1abel-end()">
<fo: bl ock xsl:use-attribute-sets="elenment-formatting"> 15]
<xsl :val ue-of sel ect="1ocal -nane()"/>
</ fo: bl ock>
</fo:list-iteml abel >

<fo:list-itembody start-indent="body-start()"> ®
<xsl : choose>
<xsl :when test="count (*)=0 and count(@)=0"> 20

<f o: bl ock>
<fo:inline font-style="normal" col or="bl ack">
<xsl :val ue-of select="."/>
</fo:inline>
</ fo: bl ock>
</ xsl : when>

<xsl : ot herw se> (21
<fo: bl ock xsl:use-attribute-sets="bl ock-decorati on">
<fo: marker marker-cl ass-nane="cont ext"> 22

<xsl :val ue-of select="string-join(for $n in ancestor::*

return | ocal -nane($n)," | ")"/>
</ fo: marker >
<fo:list-bl ock>
<xsl:apply-tenplates select="@|*|text()"/> ®

</fo:list-block>

</ fo: bl ock>

</ xsl : ot herwi se>

</ xsl : choose>
</fo:list-item body>

</fo:list-itenp
</ xsl : tenpl at e>

<xsl:tenplate match="@" > 24
<xsl:call-tenpl ate name="| abel edVal ue" >

<xsl :w t h- param nanme="1 abel ">

90

From the Instance Document to the
XSL-FO file

105

110

115

120

125

130

135

140

145

Q000000

<fo:inline xsl:use-attribute-sets="attribute-formatting"> 2]
@xsl :val ue- of sel ect="I|ocal -nane()"/>
</fo:rinline>
</ xsl : wi t h- par anp
<xsl :w t h- param name="val ue" > D
<fo:inline font-style="normal" col or="bl ack">
<xsl : val ue-of select="."/>
</fo:rinline>
</ xsl : wi t h- par anp
</ xsl :call-tenpl at e>
</ xsl : tenpl at e>

<xsl:tenplate match="text()"> 27]
<xsl:variabl e name="content" sel ect="normalize-space(.)"/>
<xsl:if test="string-I|ength($content)>0">

<xsl:call-tenpl ate name="| abel edVal ue" >
<xsl :w t h- param name="1 abel ">
<fo:inline/>
</ xsl : wi t h- par anp
<xsl :w t h- param nanme="val ue" sel ect="%content"/>
</ xsl :call-tenpl at e>
</xsl:if>
</ xsl : tenpl at e>

<xsl:tenpl ate name="I abel edVal ue" > D
<xsl : param name="1| abel "/ >
<xsl : par am name="val ue"/ >
<fo:list-itenp
<fo:list-item|abel end-indent="1abel-end()">
<f o: bl ock>
<xsl : copy- of sel ect="$l abel "/> 23]
</ fo: bl ock>
</fo:list-iteml abel >
<fo:list-itembody start-indent="body-start()">
<f o: bl ock>
<xsl : copy- of sel ect ="$val ue"/> 5]
</ fo: bl ock>
</fo:list-item body>
</[fo:list-itenp
</ xsl : tenpl at e>

</ xsl : styl esheet >

Attributes that define the global margins of the document.

Attributes that define how the box surrounding an element will be displayed.

Attributes for the formatting of an element name.

Attributes for the formatting of an attribute name.

Creates the global layout, here we have the same layout for each page.

Defines the layout of a page with margins of 1cm so that they coincide with the global margins.
Defines the global layout of pages as the repetition of the same page master.

91

Document Transformation

® 6 ® 8 6

e 66 86

Define the content of the header, it appearsin ther egi on- bef or e as the value of the cont ext
marker and the page number. The combination of thet ext - al i gn- | ast attributeandf o: | eader
ensures that enough space is added so that the page number appears right-aligned at the right margin
of the page.

Gets the current value of the marker defined on line 87-@.

Template that matches the root node and that defines the overall shape of the X SL-FO output enclosed
inaf o: root.

Defines the layout by calling the template defined at line 32-@ followed by the sequence of pages.
The page sequenceisfilled out according to the definition of pages given on line 38-@. It first defines
the content of the header by calling the named template on line 44-@ and then gives the content of the
document in asingle flow.

The content of the document to appear in ther egi on- body is composed of asingle list-block.
Specifies the distance between the start of itsitem and the start of its body.

The content of af 0: | i st - bl ock isfilled by the recursive traversal of al elements of the source
document and the application of the appropriate templates depending on the types of elements.
Template for an element.

Createsanf o: | i st - i t emhaving the name of theelement aslabel. Thebody of thef o: | i st-item
is the content of the element.

Outputs the element name with the formatting defined on line 22-@.

Outputs the content of an element depending on whether it has any children or attributes.

When there are no children nodes, the content of text nodes are copied.

When there are children nodes or attributes, creates an internal block. First updates the value of the
cont ext marker with a string built from the ancestors of this node. This string will be used in the
page header (line 44-@). Then startsanew f 0: | i st - bl ock to befilled by arecursive application
of the templates on the content of al nodes.

Creates the content of the marker with an X Path expression that loops over all ancestors of the current
node and creates a list with the names of their elements. The stringsin thislist are then concatenated
separated with avertical bar.

Applies the templates on all attributes, element and text nodes of this element.

An attribute is output as a one-element list using the named template defined on line 128-@. Note that
the parameter values are complex XSL-FO elements.

Thel abel parameter isthe name of the attribute preceded by an @with the appropriate formatting
defined on line 27-@.

Theval ue parameter isthe value of the attribute (atext node).

A non-empty text nodeis output as a one-element list using the named template defined on line 128-@
with an empty label and the normalized text content asval ue parameter.

Named template for outputting a single list item with the content of two formal parameters.
Because the actual paramater corresponding to | abel can be a complex XSL-FO element, we need
to copy the whole tree of the parameter and not simply use xsl : val ue- of .

Because the actual parameter corresponding to val ue can be a complex XSL-FO element, we need
to copy the whole tree of the parameter and not simply use xsl : val ue- of .

This section has shown how to produce publication quality output from an XML file. We have used nested
list blocks to align the name of an element with its content, but nested tables could aso have been used.
This would alow the horizontal centering of the element name with respect to its content. The principles
remain the same but the code would be a bit longer because tables have more options.

92

Transformation with a CSS

5.5. Transformation with a Cascading Style
Sheet (CSS)

Another type of stylesheet are Cascading Style Sheets (CSS) [11] that allow authors and usersto attach font
and spacing information to structured documents such HTML and XML documents. By separating the
presentation style of the documents from their content, CSS simplifies Web authoring and site maintenance.
Although it isnot an XML technology per se, it bears some resemblance with XSL. Sharing the same name
often brings some confusion between them so wethink it isuseful to give an example of what type of compact
form can be achieved with a CSS. We will then compare this tool with what has be done with XSLT and
XSL-FO.

Aswesaid in the previous section, CSS and X SL-FO share some concepts and terminology about formatting.
Both use a nested box modeling approach and many formatting properties sharing the same name. A CSS
is set of formatting rulesthat can be defined at the level of thetag itself, the document or even of aweb site.
A rule defines if the information within the tag should be displayed as a block starting a new line or if it
should be inserted in-line; we have seen a similar distinction in XSL-FO. The rule can further define the
formatting attributes (fonts and color), the padding, the margins and the borders around the information
within this tag; again the same terminology can be found in XSL-FO.

The formatting to be applied on an element depends on whether an element corresponds to the selector of
arule. Selectors can depend on the name of the element, its class (the value of the cl ass or i dattribute),
its position in the document (e.g. whether isachild or sibling of other elements). It isaso possible to check
the value of its attributes. It is also possible to have a different formatting if the user clicks or hover the
mouse on an element or if it isalink that has been visited; see [57] for more details. Thereisavery limited
way of generating some content either before or after the output of the content of the tag, see Example 5.11.

Compared with XSLT, the formatting that can be obtained with CSSis relatively limited because it is not
possible to compute new information or to change the order of the elementsin the file. So the information
given in the tags and attributes can only be used for labelling the text nodes and cannot have any informa-
tional content that can appear in the output. Thisisthe casein HTML filesin which tags are only used for
formatting. The only effective control that can be achieved with CSSisthe selective display the information
either by leaving some space or by removing it completely from the display. This is quite rudimentary
compared with what can be done with XSLT. But when CSS are combined with Javascript, it is possible to
build interactive displays such as tooltips or have some parts that appear or disappear when the user clicks
on certain parts of the display. It is also possible to add some content before or after the text content of the
element, but thisis a bit awkward and no computation of this new information is possible. But is must be
remembered that CSS are designed as a declarative formalism for separating formating information from
content and not for creating new information. One way of dynamically creating new content in aweb page
isthe use of the AJAX technologies, discussed in Chapter 10, that allow the modification of the underlying
document structure.

Example5.11. [conpact . css] Cascading Style Sheet for displaying the content of
the cellar book in a web page

Thelast 25 lines of the file are not shown as they are similar to the two last ones displayed here (the name
of the tag is given as content).

93

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/compact.css

Document Transformation

1* { o
di spl ay: bl ock;
position:rel ative;
mar gi n-1 eft: 20px;

5 bor der - col or: bl ack
border-left-style: solid;
border-left-width: thin
border-top-style: solid;
border-top-width: thin

10 paddi ng-left: 2mm
paddi ng- bottom 1mm

}

*: before { (2]
15 font-wei ght: bold;

col or: green;

}

cel I ar- book: before {content:"cellar-book ";} (3
20 wi ne-catal og: before {content:"w ne-catalog ";}

wi ne: before {content:"w ne code="attr(code);} o

properties: before {content:"properties ";}
col or:before {content:"color ";}

(5]
25

©® Rulefor any element: it isdisplayed as ablock relatively placed at 20 pixelsto theleft of its enclosing
block; the borders and padding are the same as for bl ock- decor at i on attribute set in line 12-@
of Example 5.10.

® All generated text that will appear before atag will be in bold green.

® Asthereisnoway of accessing the name of the current tag, a specific rule must defined for each type
of tag to insert its name in front of its content.

©® Theat t r functionreturnsthe value of aspecific attribute. So, after the name of thetagwi ne followed
by the name of the attribute, we output the value of the attribute code. As a CSS does not deal with
namespaces, thisruleis used for both thewi ne elementsin the catalog and the onesin the cellar.

0 25linesthat follow the same pattern asthe two previous ones: tag-name: bef ore {cont ent : " tag-
name ";}

94

Transformation with a CSS

Figure5.6. CSS formatting of Example 2.2 with the stylesheet of Example 5.11

Two excerpts of the display in aweb browser of the cellar book using the CSS stylesheet. The nested box
display is to be compared with the one shown in Figure 5.4. The partsin bold (green if seen in color) are
generated content.

rB a6 CellarBook.xml
cellar-book

wine-catalog |
wine code=C00043125 !
properties

color red
alcoholic-strength 12.5
nature still

-

origin
couniry France
region Bordeaux
producer SCEA Domaine de L'lle Margaux (B.P. 5)
comment Ready for drinking now
food-pairing Accompanies
| Bordelaise ribsteak

| pork with prunes
or magret de canard.
price 22.80
year 2002 A
e _arsirnr] i DA 2 1001

L]

B

S HaNS) CellarBook.xml

| year 2002

OWner
name
first Jude

family Raisin

street 1234 rue des Chéiteaux
city St-George

province ON

postal-code M7W 750
location

street 4587 des Futailles

city Vallée des crus
province QC

postal-code H3C 4]8 |
cellar

wine code=C00043125
purchaseDate 2005-06-20

guantity 2 A

COmMment

B

95

Document Transformation

5.6. Associating an Instance File to a
Stylesheet

Transforming an instance file with a stylesheet is most often performed by externally specifying the trans-
formation stylesheet file to apply to a given instance file. This can be achieved using an XML editor in
which we can associate an XML filewith a stylesheet (and vice versa). Some editors also allow the definition
of many transformation scenarios. The transformation can also be done in batch mode by specifying a
stylesheet to a transformation engine. For example, in the companion website of this report, we show a
simple Java program which can be used as a Unix filter to standard input. We can get on the standard output
the compact text output of the wine catalog with the following call:

java Transform conpact. xsl < W neCat al og. xm

This program aso allows to specify run-time parameters to the stylesheet (declared with top-level
xsl : par amelements as shown in Section 5.2.1). To get an HTML file with the table of the white wines
of the catalog (smilar to Example 5.1), we can use the following:

java Transform W neCat al og. xsl color white < WneCatal og. xm > whites. htni

It is also possible to use other transformation program directly from the command line xsl t pr oc (but
it currently deals only with XSL 1.0 stylesheets), SAXON or XALAN for which it is necessary to set your
CLASSPATH appropriately.

xsltproc --stringparam col or white W neCat al og. xsl WneCatal og. xm > whites. htm

java net.sf.saxon. Transform-s W neCat al og. xm W neCat al og. xsl col or=white \
> whites. htm

java org. apache. xal an. xslt. Process -XSL W neCat al og. xsl -1 N W neCat al og. xm \
-QUT whites. htm -PARAM col or white

Because stylesheets can also beinterpreted by web browsers, it isalso possibleto link an instancefile directly
to a stylesheet by means of the xm - st yl esheet processing instruction. For example, if one adds the
following at the beginning of Example 2.3

<?xm -styl esheet type="text/xsl" href="conpact HTM.. xs| " ?>

then, upon loading the XML file W neCat al og. xm into aweb browser, the catalog will be displayed
after the transformation defined by Example 5.7. But one must be careful before relying on such automatic
transformations, because not all browsers implement all XSL transformations, especialy those of XSLT
2.0.

<?xm - styl esheet type="text/css" href="conpact.css"?>

isthe way to make link with aCSSin an XML or HTML page. Even though all browsers implement CSS
formatting, there are till some inconsistencies between platforms.

96

Additional Information on XSL

5.7. Additional Information on XSL

The official information on Extensible Stylesheet Language (XSL) [7] is comprehensive and detailed on
making it more than 400 printed pages, the first 50 pages describe the basic principles of the tree transform-
ationsthat lead to formatting. The remaining pages describe all the possible optionsfor all parameters. One
should also consult the XSLT language description [28] and because the X SL description takesit for granted.

e Transformation

http://www.w3.org/Style/X SL/ isthe best starting point to get information on XSLT with linksto tools
and tutorials.

http://www.mulberrytech.com/qui ckref/X SLTquickref.pdf isanice XSLT and X Path Quick Reference
(USlegal size)

http://www.iro.umontreal .ca/~lapal me/Forestl nsteadOf TheTrees/Qui ckRef Sheets/xsl t2quickref . pdf
XSLT 2.0 Quick reference sheet (2 pages - US letter size)

http:/Awww.iro.umontreal .cal~ apal me/Forest nsteadOf TheTrees/ Qui ckRef Sheets/xd t2qui ckref A bridged. pdf
Abridged XSLT 2.0 Quick reference sheet showing only the most often used elements and attributes
(1 page US letter)

http://www.dpawson.co.uk/xsl/ is another very useful site with a lot of practical informations about
XSL

http://xml.apache.org/xalan-j/ Xalan is apublic domain stylesheet processor that works in conjunction
with Xerces[4]

» Formatting objects

http://mww.ibiblio.org/xml/books/bible2/chapters/ch18.html isavery good initial tutorial on Formatting
Objects

XSL Formatting Objects Devel oper's Handbook[31] is a very thorough and didactic introduction and
reference on Formatting Objects

http://xmlgraphics.apache.org/fop/ FOP is a public domain Formatting object renderer written in Java;
it still has afew limitations with respect to the official standards.

http://www.renderx.com RenderX is selling XEP, written in Java, a commercially available XSL-FO
rendering engine implementing the official specification. It was used to produce the PDF version of
this document. An academic license agreement is available. They also publish a tutorial, which is a
very good starting point for learning XSL.

» Cascading Style Sheets

Beginning CSS: Cascading Style Sheets for Web Design [57] A thorough description of CSS with
many practical examples. There are also tables showing the implementation status of CSS featuresin
different browsers.

97

http://www.w3.org/Style/XSL/
http://www.mulberrytech.com/quickref/XSLTquickref.pdf
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/QuickRefSheets/xslt2quickref.pdf
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/QuickRefSheets/xslt2quickrefAbridged.pdf
http://www.dpawson.co.uk/xsl/
http://xml.apache.org/xalan-j/
http://www.ibiblio.org/xml/books/bible2/chapters/ch18.html
http://xmlgraphics.apache.org/fop/
http://www.renderx.com
http://www.renderx.com/tutorial.html

98

Chapter 6. Document Query

In the previous chapter, we described how to transform an XML fileinto another by means of tree tranform-
ations defined by templates. We have also seen how to extract information from an XML file. But now that
XML files are used for keeping data similarly to databases, an alternate way of querying XML information
has been defined, resulting in alanguage close to the well-known SQL .

Itiscalled XQuery and isaimed at selecting information from XML databases that are often too large to be
stored in asingle XML file for which arandom access would not necessarily be efficient. X Query can also
easily combineinformation from many XML documents, which isabit awkward to do in XSLT. The output
of an XQuery query isasequence of XML nodes that lend themselves to the full power of XPath functions
and XML constructorsin order to further convert them into other XML nodes.

For the simple use cases we have shown in the previous chapter, transforming an XML document into an
XHTML one by means of XSLT templates can also be seen as querying an input document to select some
information which is then inserted into an XHTML template. This chapter illustrates some simple uses of
XQuery to solve the problems shown previoudly.

Contrarily to XML Schema and XSLT, XQuery is not a fully XML based notation. Some readers might
find it lessverbose or rebarbative than X SLT. Relax NG Compact notation isalso anon-XM L-based notation
for schemas of XML files when compared to XML Schema.

An XQuery program is called a query. It is an expression that selects or constructs a sequence of XML
nodes. A query can take one of the following forms:

» The simplest kind of query is an XPath 2.0 expression returning a sequence of nodes, but thisis limited
to the extraction of XML information from the input document without change. XQuery can use al
XPath 2.0 functions (in fact, both XQuery and XPath functions are defined in the same document [33]).
When applied to our cellar-book instance document (Example 2.2), the following query (the same as
line 2-@ of Example 4.1) returns the sequence of wine elements for which there are less than 2 bottles
left in the cellar. Note that the less-than sign can be used without having to typethe &l t ; entity because
an XQuery query isnot an XML expression.

[cel | ar-book/ cel | ar/wi ne[quantity<2]

« A more powerful type of query is a FLWOR expression® (f or , | et , wher e, order by, r et urn)
which is patterned after the SQL SELECT - FROM - WHERE instruction. It allows the reordering of
results, the creation of new values, etc.

for $w in /cellar-book/cellar/w ne,
$cat-w in /cellar-book/cat:w ne-catal og/ cat: wi ne
let $q := $w quantity
where $wW @ode = $cat-w @ode
order by $q
return concat ($q,":", $cat-w @ane)

Like in XSLT, variables must be prefixed by a dollar sign to differentiate them from element names. A
FLOWR query bears someresemblancewiththef or loopin XPath 2.0. Thef or inthisquery (equivalent

Tpronounced flower even though the letters are not in the proper order...

99

Document Query

to line 11-® of Example 4.1) with its two embedded loops performs a join between all the winesin the
cellar and the ones of the catalog; | et creates a variable $q to keep track of the wine quantity in the
cellar; wher e keeps only wines sharing the same code attributesin the cellar and in the catalog; or der
ensuresthat the output will beinincreasing order of quantity; r et ur n buildsthe resulting string composed
of the string value of $q and the name of the wine separated by a colon.

* An XML element that can be created either directly by writing an XML tag in the query (thisis called a
direct constructor) or by using a computed constructor. The following query uses two direct constructors:
cheap-w nes and cheap-w ne. Braces within a direct constructor are used to embed non-XML
XQuery code. Thefollowing example extracts French wines from the catal og that cost |essthan 20 dollars
(likeline 14-® of Example4.1). It creates as output asingle XML element called cheap- wi ne containing
alist awinesfor which we have changedthecat : wi ne tagby cheap- wi ne. Theattributesand elements
of cat : wi ne are copied to the cheap- wi ne with another nested XPath expression.

<cheap- wi nes>

{for $w in /cellar-book/cat:w ne-catal og/cat:w ne
where $w cat:origin/cat:country='France' and $w cat:price < 20.0
return <cheap-w ne>{$w @, $w *} </ cheap- wi ne>}

</ cheap-w nes>

The next query is equivalent to the previous one but uses computed constructors. A computed constructor
is created by an el enent followed by an identifier and an expression within braces. Attributes can be
similarly constructed with an attri but e construct. The element or attribute identifier can also be
computed by writing an expression within bracesinstead of an identifier.

el ement cheap-w nes{
for $w in /cellar-book/cat:w ne-catal og/cat:w ne
where $w cat:origin/cat:country="France' and $w cat:price < 20.0
return el ement cheap-wi ne{$w @, $w *}

}

» A sequence of the above XQuery expressions separated by commas, parentheses can be used to nest se-
guences within others.

A query is often preceded by a"prolog" composed of declarations separated by a semicolon. For example,
in the previous examples, the query should have been preceded by

decl are namespace cat = "http://ww.iro.unontreal.ca/l apal me/w ne-catal og";

in order to definethecat namespace prefix used in the query. Declarations can also used to define variabl es,
functions and other optionsto control the processing of the query. Most often the prolog is much longer that
the query itself as there can be only one query in afile. Thisis not really a limitation because multiple
gueries can be merged into a single one: one only needs to create a sequence of queries by separating them
with commas.

For complete details on the syntax of a query, see EBNF grammar of XQuery.

100

http://www.w3.org/TR/xquery/#id-grammar

XQuery output in HTML

6.1. XQuery output in HTML
6.1.1. Table

XQuery is designed to extract parts of an XML file. It is therefore quite appropriate for selecting a subset
of wines and displaying it asan HTML page.

Selecting only red wines in our wine catalog (Example 2.3 (page 12)) and outputting an HTML table of a
subset of the available information for each (Figure 5.1) can be achieved with the XQuery query givenin
Example 6.1. In order to be compared to Example 5.2, we deliberately organized the X Query script with a
structure similar to the one used in the XSL stylesheet.

The query in Example 6.1 first defines a function for the root node (line 13-@). Because the wine catalog is
defined in a specific namespace, its prefix must be declared (line 1-@) and used for selection. Thisfunction
outputs the overall structure of the XHTML file with direct constructors. Within an enclosed expression, it
callsthewi ne- cat al og functionto create the content of the body. For comparison purposes, on line 23-@
we show an aternate way of defining ther oot function using computed constructorsinstead of giving the
HTML structure. Thewi ne- cat al og function (line 30-8) outputs aglobal heading and then startsatable
and defines its headers. The lines of the table will be filled by selecting (line 37-@) wines whose color
property is $col or. To set up this color filter, a value must be assigned to the global col or external
variable (line 4-@). This value is set in an implementation-dependent way when the query is executed by
the XQuery processor.

The output for each selected wine is defined with afunction that is called for each cat : wi ne. It outputs,
on asinglerow of thetable, the values of its attributes, its color, its year (right-aligned) and formatsits price
to start with a dollar sign (right-aligned). It finally renders the volume of each bottle in milliliters and in
liters. Because the information in the wine catalog is not stored in milliliters, we call two local functionsto
transform it appropriately.

Example6.1. [W neCat al og. xq] XQuery script to select thered winesin the catalog
(Example 2.3) and to produce Example 5.1 displayed as Figure 5.1.
Comparethiswith Example 5.2.

1 decl are nanespace cat = "http://ww. iro.unontreal.cal/l apal me/w ne-catal 0g"®;
decl are default el ement nanmespace "http://ww. w3. org/ 1999/ xhtm ";

decl are vari abl e $col or external; (2

(: to produce |legal and validable XHTM. ... :) (3]

decl are option saxon:output "method=xm";

decl are option saxon:out put "doctype-public=-//WBC//DITD XHTM. 1.0 Strict//EN';

decl are option saxon:out put "doctype-systenrhttp://ww. w3. org/ TR/ xhtml 1/ DTD/ xht m 1-
10 decl are option saxon:out put "indent=yes";

(: using a direct elenent constructor, with an encl osed expression :)

declare function | ocal:root($catal og){ (4
<htnm >
15 <head><titl e>Wne Catal og</title></head>
<body>

101

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/WineCatalog.xq

Document Query

{1 ocal : wi ne- cat al og($cat al og) }
</ body>
</htm >
20 };

(:alternate definition of the function above using computed constructors :)
decl are function | ocal:root-bis($catal og){ (5]
el ement htm {
25 el ement head {elenent title {"Wne Catal og"}},
el enent body {l ocal : wi ne- cat al og($cat al og) }

b

30 decl are function | ocal:w ne-catal og($cat al og) { (6]
el enent hl {concat("Wne Catalog (", $color," only)")},
el ement table {
attribute border {1},
el ement tr { (7]
35 for $t in ('Wne Nane',' Code','Color',"'Year', ' Price','m","I|")
return el ement th{$t}},
for $wine in $catal og/cat:w ne (s}
where $wi ne/cat: properties/cat:col or=$col or
return | ocal : wi ne($wi ne)
40 }
b

decl are function |ocal:w ne($w ne){ (o]
<tr>{
45 <t d>{ dat a($wi ne/ @rane) } </t d>,
<t d>{ dat a($wi ne/ @ode) } </ t d>,
<t d>{dat a($w ne/ cat: properties/cat:color)}</td>,
<td align="right">{data($w ne/cat:year)}</td>,
(: format-nunmber is not available in XQuery 1.0 !l :)
50 <td align="right">{concat ('$',$wi ne/cat:price)}</td>,
<td align="right">{local:toM.($w ne/ @ormat)}</td>,
<td align="right">{local:toL($wi ne/ @ornmat)}</td>
}
</tr>
55 };

decl are function local:toM($fnt){ o]
if ($fnt="375m"') then '375'
else if ($fnt="750mM"') then '750
60 else if ($fnt="11") then ' 1000
else if ($fnt="magnunm) then ' 1500
el se 'big

65 declare function local:toL($fnt){ ®
let $m := local :toM($fnt)
return
if ($m castable as xs:integer)
then number ($m) div 1000
70 el se $ni

102

Computing New Information

b

| ocal : root (/cat:w ne-catal og) @

© Definition of thecat namespace prefix in order to access the elements of the wine catalog defined in
this namespace. The default namespace is set to be the one needed for avalid XHTML file. With this
declaration, HTML tags that are used in the stylesheet are in the appropriate namespace for HTML
validation.

® Global variable that should be initialized when executing the query.

© Declarations telling the SAXON transformation engine to serialize with the appropriate headers to
produce valid XHTML.

© Function called on the root node defining the skeleton of the HTML page: a head and a body with a
call to afunction filling the content of the HTML skeleton.

© Alternate definition of the previous function to illustrate the difference in style between the direct and
computed constructors.

6 Function for the catalog node: a header with atitle and atable.

© Usesafor-eachinalist of stringsto output the headers of the table.

© A for-wher e instruction selects the wines with the chosen col or . Theresult is a sequencew ne
nodes. The function on line line 43-@ is applied to each of them.

© Outputs properties of awine. The first four are written as they appear in the source but we must use
thedat a function to keep only the string value. The pr i ce isformatted in dollars and cents and the
bottle format is given in either milliliters or liters through local functions.

® amulti-line XPath expression to select the appropriate case within acascaded i f -t hen- el se ex-
pression.

® Usestheoutput of the previous function to get the number of milliliters, which isthen divided by 1000
if it isanumber. Otherwiseit isreturned asis.

® Query the document starting from the root element node.

6.1.2. Computing New Information

Here we show how X Query can be used for more complex selections and transformations. We will explain
how to create a web page presenting the content of the cellar and integrating information from the wine
catalog. Thisis equivalent to the program shown in Example 5.4. The end result is shown in Figure 5.2 (an
outline of the underlying HTML code is shown in Example 5.3). There are external linksin order to retrieve
more information about the wines by googling the name of the wine. There are two similar links for each
wine, created for the sole purpose of comparing ways of creating them in XSL.

Ther oot function (line 11-@) creates the high-level structure of the XHTML file. The title of the page,
also displayed at the top of the page, refers to the name of the owner. In Example 2.2, element nane
(line 12-@) is subdivided intwo elements: f i r st and f ami | y. When the value of such an element is ac-
cessed in an enclosed expression, it isreturned as an XML element. Thiswould not be valid inan XHTML
document, so we call the dat a function to get the text content of this element, including the whitespace
nodes.

The content of the cellar book isobtained by thecel | ar - book function on line 20-© creating atable with
the address of the owner (line 28-@) and the cellar (line 31-@). It then callsthecel | ar function (line 37-0).
The lines of the addresses are obtained by looping over all elements with af or and writing a <br/ >
between the text values of each element of the owner and| ocat i on elements. Because we want to skip

103

Document Query

thefirst element (the name of the owner has aready been given at the top), we only keep elements (line 28-@)
with a position number greater than 1.

Thecel | ar (line 40-@) function produces atable of information about winesin the cellar, sorted by their
code. Thisiswhy the f or isfollowed by an or der by specification. The last line of the table contains
an estimated total value of the cellar. The value of each type of wine is computed by creating a sequences
of values obtained by ajoin (two nested expressionson af or) between the codes of winesin the cellar and
the codes of the wines in the catalog. The values are then summed with the predefined sumfunction. To
compute the total number of bottles (line 60-®), we can use the sumfunction. Finally, if there are any
comments in the wi ne elements of the cellar (line 65-®), we add a Conment s section and write each of
them, also in increasing order of wine code. Thisway, they are in the same order as in the table of wines.

We define the wi ne function (line 75-®) to create a row in the table of wines. We first define a variable
$code (line 76-®) holding the value of the code attribute. In order to retrieve some information about this
wine from the wine catalog, we pass the wine node from the wine catalog as a parameter when calling the
naneAndUr | function (line 80-®). The link between the current element and the corresponding element
in the catalog is made using the value of the code variable given in the XPath expression. The remaining
elements of the row are the purchase date (right-aligned), a number of stars corresponding to the rating and
the quantity (right-aligned). The estimated value of the cellar is computed using XPath expressions. Note
the use of the dat a function to get the value of the elements.

naneAndUr | isafunctionthat receivesawi ne element asaparameter. Fromthiswi ne element, it creates
an XHTML link with an a element. Its hr ef attribute value is a string specifying the query to send to
Google when searching for this wine using its name. Because the link must be created dynamically, we use
a computed attribute constructor within a computed a element which uses the dat a function to get the
value of the nane attribute. Notethat if only $wi ne/ @ane had been specified, then the attribute nane
would have been added to the a element and not its value as content of the element.

Theconment function (line 97-®) outputs the value of the code of the parent node, then a colon and the
text value of the comment, followed by aline break. When getting the content of the comment, thecat : bol d
elements will be processed by the bol d function (line 101-®). It will transform them in HTML b tags. In
XSL, thiscall wasimplicit viathe application of templates but in XQuery the function must be called expli-
citly.

Example 6.2. [Cel | ar Book. xq] XQuery script to produce information about the
cellar (Example2.2). TheresultingHTML code (Example5.3) isrendered
as Figure 5.2. Comparethiswith Example 5.4.

1 decl are nanmespace cat = "http://ww. iro.unontreal.cal/l apal ne/w ne-catal og”;

(: to produce legal and validable XHTM. ... :)
decl are option saxon:out put "method=xm";
5 decl are option saxon: out put "doctype-public=-//WBC//DID XHTM. 1.0 Strict//EN';
decl are option saxon:out put "doctype-system=http://ww. w3. org/ TR/ xht m 1/ DTD/ xht m 1-stri ct
decl are option saxon:output "indent=yes";

decl are variabl e $CGoogleStart := "http://ww. googl e. com search?q="; ©
10
decl are function | ocal:root($cell ar-book){ (2
<htm >

104

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/CellarBook.xq

Computing New Information

15

20

25

30

35

40

45

50

55

60

65

<head><title>Cel |l ar of {data($cellar-book/owner/nane)}</title></head>

<body>
{l ocal : cel | ar-book($cel | ar - book) }
</ body>
</htm >
b
decl are function | ocal:cellar-book($cell ar-book) {

<h1>Cel | ar of {data($cell ar-book/owner/nane)}</hl>,
<t abl e border="1">
<tr>
<t h>Per sonal address</th>

<th>Cel | ar address</th>
</tr>
<tr><td>
{for $e in $cellar-book/owner/*[position()>1]
return (data($e),
)}
</td>
<td>{for $e in $cell ar-book/I|ocation/*
return (data($e),
)}
</td>
</tr>
</t abl e>,
<p/ >,
| ocal : cel | ar ($cel | ar-book/ cel | ar, $cel | ar - book/ cat : wi ne- cat al og)
b
decl are function |local:cellar($cellar, $catal og){

<t abl e border="1">
<tr>{

for $t in ("Code", "Nane", "Purchase Date", "Rating","Nb Bottles")

return <th>{$t}</th>}
</tr>{
for $win $cellar/wne
order by $w @ode ascendi ng
return | ocal : wi ne($w, $cat al og) }
<tr>
<td col span="3">Esti mat ed val ue</td>
<td align="right">{
(: conpute the estimated value of the cellar
sum (for $w in $cellar/wine,
$codel nCat in $catal og/ cat: w ne/ @ode
where $codel nCat = $w @ode

return $wquantity * $codelnCat/../cat:price)}

</td>
<td align="right">{
(: conpute the total nunber of bottles :)
sunm($cel | ar/ wi ne/ quantity)}
</td>
</tr>
</t abl e>,
(: put comment section if at |east one coment appears
i f (count($cellar/w ne/conment) >0)
then (

2)

2)

105

Document Query

<h3>Coment s</ h3>
<p>{for $c in $cell ar/w ne/ conment
order by $c/../ @ode ascendi ng

70 return | ocal: comment ($c)}
</ p>
) else ()
b
75 declare function | ocal:w ne($w ne, $cat al og) { (12
| et $code : = $w ne/ @ode ®
return
<tr>
<t d>{substring($code, 2)} </t d>
80 <t d>{| ocal : naneAndUr | ($cat al og/ cat: wi ne[@ode=$code]) }</td> @
<td align="right">{data($w ne/ purchaseDate)}</td>
<td align="center">{substring('*****" 1, ®
if ($wine/rating/ @tars) then $wine/rating/ @tars else 0)}
</td>
85 <td align="right">{data($w ne/quantity)}</td>
</tr>
b
90 decl are function | ocal: nameAndUr | ($wi ne) { ©

el emrent a {
attribute href{concat ($Googl eStart, encode-for-uri ($w ne/ @ane))},
dat a($wi ne/ @rane)

}
95 };
decl are function | ocal : comrent ($coment) { ®
dat a($comment/../ @ode),"':"', | ocal : bol d($coment), <br/ >
b
100
decl are function | ocal : bol d($m xed-content) { ®
for $child in $m xed-content/ node()
return if ($child instance of elenment() and | ocal -nane($child)="bol d")
then el enent b{data($child)}
105 el se $child
b

(: change the namespace of a subtree starting at an el ement
adapted from Priscilla VWl nmsl ey, XQuery, OReilly, p. 258 :)

110 decl are function | ocal: change-el ement - ns- deep($el ement , $new ns) { ®
el ement {QName($new ns, | ocal - nane($el enent))} {
$el enent/ @,

for $child in $el ement/ node()
return if ($child instance of elenent())
115 then | ocal : change- el enent - ns- deep($chi | d, $new- ns)
el se $child

b

120 (: put the whole tree in the XHTM. nanespace :)

106

Bulleted Lists

6 6 6

0 6 0

| ocal : change- el enent - ns- deep(20
| ocal : root (/cell ar-book),
"http://ww. w3. org/ 1999/ xhtm ")

Parameter giving the start of the URL allowing a search for a given wine on Google.

Function for the root node that defines the skeleton of the HTML page: a head with atitle indicating
the name of the owner and a body to befilled by the call tothecel | ar - book function.

Global header with the name of the owner followed by a table giving more information about the
owner and the location of the cellar.

Loops over all child nodes of the address, except the first one, the name of the owner. After the text
content of each node is rendered using the dat a function, a line break is forced with an HTML br
element.

Loopsover all child nodes of the location. After the text content of each nodeiswritten usingthedat a
function, aline break isforced withan HTML br e ement.

Calls the function to output the content of the cellar.

The content of the cellar isgiven asatablewith aheader. It isfollowed by aseriesof lines corresponding
to each wine. Finally aline holding the estimated value of the whole cellar is created.

Callsthew ne function for each wine but in increasing order of the code attribute.

The total value of the cellar is computed using two nested f or expressions that loop over all wines
of the cellar and the catal og and return the sum of the value of each wine. The value of awineisgiven
by the number of bottles (quant i t y) multiplied by the price of the wine in the catalog having the
same code attribute asthiswine.

The total number of bottlesisthe sum of the values of all quant i t y elements.

Comments appear at the bottom of the table if at least one wine has a comment. They are also given
in ascending order of code attribute.

Outputs aline of an HTML table for agiven wine.

Defines alocal variable for the code attribute. It will be useful to differentiate it from the code at-
tribute of the catalog used in the expression on line 80-®

Outputs the name of the wine and its URL using the function defined on line 90-®.

Outputs astring of * corresponding to the number of stars for thiswine.

Produces the name of the wine as the anchor text for an HTML link to Google. It features the appro-
priate wine name in order to get further information about it.

A comment is preceded with the value of the surrounding code attribute and followed by aline break.
A cat : bol d element istransformed into an HTML b element.

In order to produce alegal XHTML document, al elements must be in an appropriate namespace.
Because in XQuery the default global default namespace declaration also appliesto the X Path expres-
sions on the input tree, it is not possible to query atree in the default namespace and have the output
tree constructor in another. The output isfirst created by the transformation in the empty namespace.
Thisresult is then copied but with nodes into the XHTML namespace.

Calls the transformation on the cel | ar - book element and copies the result into the XHTML
namespace.

6.1.3. Bulleted Lists

As we did in the previous chapter, we now describe a query that can be applied to any XML file to show
its indentation structure by means of nested HTML unnumbered lists.

107

Document Query

To transform the cellar book (Example 2.2) into the HTML code of Example 5.6 (rendered in Figure 5.3),
we can use the code given in Example 6.3 which features four main functions:

* for theroot el ement (line 20-@) the function producesthe overall structure of the HTML filewithitshead
and body elements. The enclosed expression for processing subelements (line 27-@) is called within an
unnumbered list delimited by ul tags.

+ for an attribute (line 33-@), the function returns a space, the name of the attribute followed by an equal
sign and its value within double quotes.

» for an element (line 37-@), the function produces the name of the element returned by the function
| ocal - nane() in bold (line 39-@) followed by its attributes. If the element is a node without any
children (it isatext nodein this case) then it is output with only its content, otherwise a new unnumbered
list is started and template matching is applied on child nodes.

» atext node (line54-@) isinserted intoan | i element

Example 6.3. [conpact HTM.. xq] XQuery script to produce a bulleted outline
(Example 5.6) from the cellar book (Example 2.2). Compare this with

Example 5.7.
1 (: to produce legal and validable XHTM. ... :)
decl are option saxon:output "method=xm"; (1

decl are option saxon:out put "doctype-public=-//WBC//DTD XHTM. 1.0 Strict//EN'
decl are option saxon:out put "doctype-systenmchttp://ww. w3. org/ TR/ xhtm 1/ DTD/ xht ml 1-stri ct
5 decl are option saxon:output "indent=yes";

(: renpve all whitespace nodes fromel enents of the input tree :)

decl are function | ocal:strip-space($el enent){ (2
el enent {l ocal - name(%el enent)} {
10 $el enent/ @,

for $child in $el enent/ node()
return if ($child instance of text() and nornmalize-space($child)="")

then ()
else if ($child instance of elenent())
15 then local :strip-space($child)
el se $child
}
1
20 declare function |ocal:root($root, $uri){ (3]
<htm >
<head>
<titl e>HTM. conpaction of "{replace($uri,'.*/(.*)","$1')}"</title> @
</ head>
25 <body>

{l ocal : el ement ($root)} (5

</ body>
30 </htm >
1
declare function local:attribute($attribute)({ (6

108

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/compactHTML.xq

Bulleted Lists

35

40

45

50

55

60

65

70

concat (" ",local -nane($attribute),'="",$attribute,'"")
b
decl are function |ocal: el ement ($el enent) { (7

{1 ocal - nane($el enent) } </ b> (s}
{for $attr in $element/ @
return local :attribute($attr),
if (count($element/*)=0) (: single text node ?:) (9]
then concat (" ", data(%$el enent))
el se { ©
for $child in $element/(*|text()) (: possible mxed node :)
return if($child instance of elenent())
then | ocal : el enent ($child)
el se | ocal :text($child)
}
}

b
decl are function | ocal:text($text){ ®
{$text}
b

(: change the namespace of a subtree starting at an el ement
adapted fromPriscilla Wl nmsl ey, XQuery, OReilly, p. 258 :)

decl are function | ocal : change- el ement - ns- deep($el enent, $new ns) { (12
el enent { QNane($new ns, | ocal - nane($el ement))} {
$el ement/ @,
for $child in $el ement/ node()
return if ($child instance of elenent())
then | ocal : change- el enent - ns- deep($chi | d, $new ns)
el se $child
}
b
| ocal : change-el enent-ns-deep((: put the whole tree in the XHTM. nanespace

| ocal : root (| ocal : strip-space(/*), docunment-uri(/)),
"http://ww. w3. org/ 1999/ xhtm ")

Declarations telling the SAXON transformation engine to serialize with the appropriate headers to
produce valid XHTML.

Function to remove all whitespace-only nodes in an element because we are only interested in the
content of the input document, not its structure.

Produces the XHTML skeleton for the document.

Outputsthetitle of the HTML page. Becausethe $ur i parameter contains the full URI of the current
document, ther epl ace function uses aregular expression to keep only the part after the last slash.
Enclosed expression for starting the processing at the root element node.

An attribute is output as a space, the name of the attribute and its value between double quotes after
an equal sign. Thisseguence of nodesiswithinacall toconcat so that no spurious spaces areinserted
in the outpuit.

109

)®

Document Query

An element node is alist-item.

The name of the element in bold, followed by the attributes using the function defined on line 33-6.

If there are no children elements, i.e. it is a single text node, the textual content is inserted directly

without adding anew list level.

® If there are children nodes, elements are processed recursively and text nodes (in the case of mixed
content) are processed with thet ext function.

® If thereare no children nodes, it is then atext node that is copied to the output.

® Inorder to produce alegal XHTML document, all elements must be in an appropriate namespace.
Because in X Query the default global default namespace declaration also appliesto the X Path expres-
sions on the input tree, it is not possible to query atree in the default namespace and have the output
tree constructor into another. The output isfirst created by the transformation in the empty namespace.
Thisresult is then copied but with nodes into the XHTML namespace.

® Cadls the transformation on the cel | ar - book element and copies the result into the XHTML

namespace.

©09

6.2. Transformation into a Compact Textual
Form with XQuery

We will now use XQuery query (shown in Example 6.4) to produce the compact form of an XML file. The
output of this transformation will only be a stream of plain characters without any tags. This shows that
XQuery can be used to produce atext file.

The algorithm given in Example 6.4 follows the same pattern as the one explained in Section 6.1.3. We re-
cursively follow the structure of the tree and output a corresponding stream of characters. Sequences of
character elements are always embedded within aconcat function so that spurious spaces are not added
between them. The el enrent function starting on line 29-@ is applied to all element nodes: we output the
name of the element and then output its attributes and children, with an indentation corresponding to the
number of charactersin the name of the parent element. The root node has an indentation of 0. Because we
want an output with few blank lines, we only change line after having written the first attribute or child
element. Thisis implemented within the loop on each child and attribute. Because XQuery explicitly pulls
the input tokens from the input, thistest can be done at only one place in the program contrarily to the XSLT
program in Example 5.9 which uses a push approach and thus must test its position in each case. We could
aso have used the pull approach in XSLT, but the push approach is more natural in XSLT because of the
implicit application of templates according to the structure of the document.

For each child node and attribute returned in document order, we call the appropriate function depending
on the type of node.

On line 21-@, we define the function to output the value of an attribute, which is simply the name of the at-
tribute preceded by an @and followed by its value in square brackets.

On line 25-@, we output the value of the current node with all extraneous space removed using the
nor mal i ze- space function. This removes all whitespace at the start and at the end of the value and
leaves only one space between non-space characters. Becausethe st ri p- space function (line 5-@) will
have been called on the input document before processing, nodes containing only newlines and spaces will
not appear in the source tree.

110

Transformation into a Compact
Textual Form with X Query

To output agiven number of spaces, we havedefined afunctioncallednl - and- i ndent (line17-@) taking
one parameter used to create a sequence of spaces, which are joined into one string preceded by a newline.

Example 6.4. [conpact . xq]: Stylesheet used to transform the cellar book instance
document (Example 2.2) into Example 5.8. Compare this with
Example 5.9.

1 declare option saxon: output "nethod=text"; (1]
decl are option saxon:output "omt-xm -decl aration=yes";

(: renove all whitespace nodes fromel enents of the input tree :)

5 declare function local:strip-space($el emrent){ (2]
el enent {l ocal - name($el ement)} {
$el enent/ @,

for $child in $el ement/ node()
return if ($child instance of text() and nornalize-space($child)="")
10 then ()
else if ($child instance of elenent())
then | ocal :strip-space($child)

el se $child
}
15 };
decl are function | ocal:nl-and-indent ($nb){ (3
concat ('
 ' ,string-join(for $ in 1 to $nb return' ','"))
1
20
declare function local:attribute($attribute)({ (4
concat (' @, | ocal -nane($attribute),'[',data($attribute),']")
b
25 declare function |ocal:text($text){ e
nor mal i ze- space($t ext)
b
decl are function | ocal:el enent ($el em $i ndent){ (6
30 I et $newName : = | ocal - nane($el en),
$newl ndent : = $i ndent +string-I|engt h($newNane) +1
return
concat (
$newNane, "[",
35 string-join(
for $child at $pos in $elem (@] *|text())
return (
i f($pos>1)
t hen | ocal : nl - and-i ndent ($newl ndent)
40 el se (),
typeswi tch ($child) (7
case attribute() return local:attribute($child)
case text() return | ocal :text ($child)
case el enment () return | ocal: el enent ($chil d, $newl ndent)
45 default return ()

111

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/compact.xq

Document Query

b
50
| ocal : el ement (| ocal : strip-space(/*), 0) (8]

©® Indicates that the output will be plain text, thus we do not want an XML declaration to be emitted.

® Function to remove al whitespace-only nodes in an element because we are only interested in the
content of the input document, not its structure.

® Functionfor outputting anumber of spaces given by the nb parameter preceded by anew line (indicated
by acharacter entity).

O For an attribute, outputs the name of the attribute preceded by an @followed by its value enclosed in
sguare brackets.

@ For atext node, outputs its normalized value, i.e. removes the surrounding spaces and line breaks.

6 For an element, first outputs the element name followed by an opening bracket. It then recursively
calls the compaction of attributes, children and text nodes. Finally a closing bracket is output. If there
are any attributes and this element is not the first one, indent the following line.

@ Depending on thetype of the child node, callsthe appropriate function. in the case of an element node,
does arecursive call to el ement but with an updated i ndent parameter.

0 Attheroot, startsto apply the compaction algorithm with an indentation of O.

6.3. Querying an instance file

The main motivation for using X Query isfor querying XML databases. Most commercial relational database
systems now offer away to keep and select information in XML but some XML native databases have been
developed. e Xi st - db [65] isan open source database management system that stores XML dataaccording
to the XML data model and features efficient index-based X Query processing.

XQuery can be called from the command line with the Saxon jar library [83]. For example, calling the query
Example 6.1 and giving whi t e asvalue of the $col or parameter can be done as follows:

java -cp /path/to/the/ SAXON. jar net.sf.saxon.Query -s WneCatal og. xm \
-q WneCatal og. xq color=white > whites. htn

6.4. Additional Information on XQuery

The official information on XQuery [10] is comprehensive and detailed, so much so in fact that it counts
more than 170 printed pages. A more tutoria approach can be found in the X Query book by Wamlisley [61]
which gives good examples of use and tricks of the trade. Another excellent source of examples are given
in the XQuery Cookbook [54]. It also gives examples of use of for the eXi st database and how XQuery
can be used with programming languages and environments.

112

Chapter 7. RDF : Resource Description
Framework

In the previous chapters, we have seen how to label information using XML tags so that it can be processed
with diverse technol ogies. Although, we tried to give mnemonic names to element tags, we never assigned
any formal meaning to them. We focused on the syntactic checking of the tag hames and their proper nesting
according to a schema. In order that the information on the web be more easily shared and manipulated by
machines or automated intelligent agents, much research activity has been performed in the area of the Se-
mantic Web [8] to make available for applications not only the information textually present in documents
but also its intended meaning.

On the Semantic Web, computers, not only humans should do the browsing in order to search for knowledge,
to process it and to take action. Now that the current (syntactic) web is a well-accepted distributed
presentation platform, the semantic web aims for a distributed knowledge platform. Although this is a
laudable goal, it is much easier said than done. Progress in this area has been relatively slow compared to
the expectations of the original Semantic Web designers. But ideas and technologies have emerged and
started being used in many contexts.

In this chapter, we present a Semantic Web technology called RDF which stands for Resource Description
Framework. RDF isaway of identifying relations between things on the web; it isvery flexible and scalable
but asit is quiteloose, it islimited in its inferencing possibilities. XML and RDF are at the core of the Se-
mantic Web as can be seenin Figure 7.1. RDF can be described using an XML syntax although its principles
are independent from this notation. RDF should be primarily considered as a triple-based data model to
define graphs of relations between things.

We will first present the data model using a non-XML syntax for which an XML serialization has been
defined. For humans, the non-XML syntax is easier to read, to write and understand but the uniformity, ease
of parsing and standardisation of the XML syntax is a great asset for computer-based applications.

RDF [78] was developed as a smple and extensible data model for annotating web content. Its goal was to
enable Anybody to say Anything about Any topic, sometimes called the AAA Sogan. It isatradeoff between
ease of expression and strictness of organization that allows the combination of information from diverse
sources anywhere on the web or even elsewhere. RDF is a means of associating property-value pairs with
ressources on the web. It is more oriented towards metainformation about web pages than providing inform-
ation itself athough its generality alows the definition of anything.

In order to associate properties and values to entities, it is important to be able to identify them uniquely
and universally. RDF uses the notion of URI which stands for Uniform Resource Identifier. An URI can
identify anything (aresource in the RDF jargon) either

aweb page http://wwviro. unont real . cal ~ apal ne/ For est | nst eadd TheTr ees/ HIMY i ndex. ht nh

aweb site http://rali.iro.unontreal.ca

aperson http://ww.iro.unmontreal.cal/l apal ne

an abstract http://ww. iro.unontreal.cal/l apal me/ MyVi ewOnXM
concept

113

RDF : Resource Description Frame-
work

Figure 7.1. Semantic Stack

"Layer cake" diagram (2007 version) taken fromht t p: / / www. wW3. or g/ sw

User Interface & Applications

Trust

Proof

Unifying Logic i

Ontology:
Query: OWL Rule: g
SPARQL RIF =%
RDFS 5

Data interchange:
RDF

XML |

URI/IRI |

An URI isin a sense arhitrary but, like the namespaces we described in Section 2.1, they often look like
URLswhose start usually give an official name or address of aperson or organization. An URI isnot neces-
sarily an existing web document. Although there is no formal check on this, it is expected that a person
or an organization defining an URI for their own purposeswill start with an addressthat they owninacertain
way unless an existing resource is referred to. It usually consists of the following parts:

scheme atypeof addressfollowed by acolon, most oftenht t p: , butitcouldberai | t o: ,i sbn:
ort el : among others.

authority the name of adomain in the internet (e.g. www. i r 0. unont r eal . ca) preceded by / /

path usually your name or the name of a project possibly followed by the specifics of this ap-
plication (e.g. | apal ne/ Cel | ar Book);

fragment starting with hash (#), a specific term for the name given to the concept to identify (e.g.
#W ne).

These would form the following URI:
http://ww. iro.unontreal.cal/l apal me/ Cel | ar Book#wi ne

Although we have argued previously that URIs are arbitrary, the goal of the Semantic Web is to share in-
formation with others. Naming conventions are thus essential to ensure that the same concepts or information
are al named the same. Also a given name should not reference different things depending on the context
of use because URI are universal.

114

Thelargest effort to distribute and link structured information acrosstheweb isaproject called Linked Data
[30]. In this context, a naming convention patterned after the Cool URI [41] proposition of the W3C has
been defined to ease the sharing of information. Here are a few guidelines for creating one's own URIS so
that others can easily make sense of them and combine them in their applications.

There are two requirements for a cool uri:

» Beon theweb: given only a URI, machines and people should be able to retrieve a description about the
resource identified by the URI from the Web.

» Be unambiguous:. there should be no confusion between identifiers for Web documents and identifiers
for other resources. For example, there should be adifferent URI for referencing the author of this document
and his web page. URIs are meant to identify only one of them, so one URI can't stand for both a Web
document and a real-world object.

These two contradictory requirements can be met by taking advantage of the HTTP protocol which allows
(at least) two tricks : hash URIsand 303 URIs.

Hash URIs are URLs containing afragment part i.e. an identifier following a hash sign (#) thus their name.
Hash URIsare used for non-document ressources. When aclient sends arequest to retrieve ahash URI from
aserver , the HTTP protocol requiresthat the fragment part be stripped off before requesting the URI from
the server. Thus a URI with a hash cannot be retrieved directly and does not necessarily identify a Web
document but it can be used to identify a non-document resource without creating ambiguity. This scheme
is often used when many concepts are defined in the same HTML or RDF document. Referencing the URI
thus retrieves ahuman or machine readabl e document giving accessto all these conceptswith asingle access.

303 URIs are mostly used when the RDF and HTML representations of the resource are two different doc-
uments. In this case, the Web server corresponding to a given URI can be configured to redirect the query
to another URL depending on the information given by the caller in the header of the request: e.g. it could
answer with an HTML document to a browser but with an RDF document if the caller is an application. By
looking at the code of the response header (200 for anormal document and 303 for aredirection), the applic-
ation can distinguish the two types of response.

Within the Linked Datacommunity, it isabest practice to distinguish threetypes of URI for non-information
resources: the resource itself, aweb page for human readers or a RDF/ XML file for machines.

For example in DBPedia, the town of Montréal in Canadais associated with three URIs:

 http://dbpedi a. org/ resource/ Montreal : Montréal asatown;

* http://dbpedi a. or g/ page/ Mont r eal : human oriented description in HTML about Montréal;

 http://dbpedi a. org/ dat a/ Mont r eal : machine readable information in RDF/ XML about
Montréal

The choice between these two mechanisms depends on the application; section 4.4 of [41] present some
basic rules but it concludes by “If in doubt, follow your nose’! But care hasto be given for theinitial choice
because in the words of Tim Berners-Lee “Cool URIs don't change’!

115

RDF : Resource Description Frame-
work

7.1.Triples in RDF/XML

The data model of RDF is deceptively simple: it merely defines a directed binary relation between two re-
sources: the binary relation is called a predicate or a property; the two resources are subject and object.
These three elements form a triple and they are all identified by URIs. An object can be a constant data
value instead of a URI but the subject and predicate must be URIs. Table 7.1 shows different equivalent
notationsfor an RDF triple. The RDF/ XML isthemost widely used for storing and exchanging RDF inform-
ation. The equivalent triple (or its more recent variant Turtle[88]) is easier for humansto type and to under-
stand. The graphical form can also be useful to grasp relations between many resources, but it can become
quite hairy when there are many resources and relations. A very useful tool for converting between different
RDF notationsisthe RDF validator [79] which not only validates theinput but can produce the corresponding
graph or show the equivalent triples. Twinkle [89] provides a GUI interface to query RDF data, but it can
also parse and produce the output of the queriesin different notations of RDF.

Table 7.1. RDF Triplesin different forms, all of them equivalent

Graphl ca form subject predicate > object

Triple subj ect predicate object

Relational form predi cat e(subj ect, obj ect)

RDF/ XML <rdf: Description rdf:about="subject">

<ex: predi cat e>
<rdf: Description rdf:about="o0object"/>
</ ex: predi cat e>
</rdf: Description>
Turtle subj ect ex: predicate object.

Going from top to bottom, we see: the graphical notation in which the subject and object arelinked by alabelled arrow; thetriple
format in which each component isa URI or data value in the case of an object; the relational form that would be the equivalent
in Prolog; the RDF/ XML exchange format and the Turtle format which, in the case of asingletriple, only differs from the triple
notation by its use of namespace prefix in URIs.

Information is represented by a set of RDF triples, often called amodel. Asit is a set, thereis no ordering,
nor repetition between triples within amodel. Information is encoded as a conjunction of triples. Negation
and digunction cannot be expressed in RDF.

All these RDF notations are equivalent, in fact the first thing an RDF parser does when it reads afile, isto
transform the information in terms of triples, removing duplicates. The output files are produced by serial-
izing the triples in the same or in another format.

Given the emphasis on XML in this document, we will first focus on the RDF/ XML notation. But first, we
will explain the concepts with a small set of relations given in the top part of Figure 7.2, the bottom part
will be explained in the next section. Example 7.1 gives the corresponding RDF/ XML version. As RDF
predicates can link any subject and object, an arbitrary network of information can be built which is not
necessarily limited to atreelikein XML

Asshowninthefourthlineof Table7.1, atriplein RDF/ XML, isformed by ar df : Descri pt i on element
whose content is an element named by the URI of the predicate having the object as content (see line 13-@
of Example 7.1). By embedding a predicate and its object within a subject, it is easy to regroup triples that
share a subject by writing all predicates and their object within the subject element.

116

Triplesin RDF/ XML

Figure 7.2. Selected infor mation from the cellar-book

Graphical representation of triples. The circled numbers are not part of the graphical representation, they
areonly given herefor reference purposes. They correspond to the numbers given in XML comments besides
each r df : Descri pti on in Example 7.1 and Example 7.2. The top part of this diagram deals with the
RDF while the bottom part deals with the RDF Schema (RDFS) explained in the next section.

St-George 1234 rge des Chateaux
Oé..o. 9\@6
RDF % $Z40)

cb:JudeRaisin cb:named

cb:ownedBy

cb:theCellar

rdf:_2

wc:C00043125

wc:C00871996 wc:C00042101 rdf:Bag

cb:Person
raf.
t’ype

cb:Cellar rdf:type

(ryee
cb:Wine
Resource I:I Blank node O String value

rdfs:Class

A triple can only indicate a binary relation. To indicate an n-ary relation between a subject and n objects,
we make use of ablank node (indicated by acirclein Figure 7.2) which isanode with alocal URI different
from any other one in another file. We first make arelation between the subject and the blank node and then
other relations between the blank node and the other objects. For example, to indicate that the cellar-book
is located at a given street in a certain city, we first link the cellar-book with a blank node which is then
linked to the name of the street and to the name of the city (seethearrow marked by acircled 5in Figure 7.2).

117

RDF : Resource Description Frame-
work

Components of atriple are URIswhich are usually quite long strings many of them varying only at the end
within the samefile, so it is quite convenient to abbreviate them using entities for the constant part. As the
predicates are elements, the constant part can be given as the namespace of the element. A practical way of
achieving this is to define an entity and the corresponding namespace prefix with the same letter. As the
entity is defined for the whole file, we can aso use it for defining the namespace prefix thus ensuring that
they always correspond. We use this approach in Example 7.1 at line 3-@ and line 7-©. Another way of ab-
breviating URIs is to make them relative to another one using xm : base, seeline 11-@ of Example 7.1.

An object can either be a URI or a string value. In the latter case, the string is given as the content of the
predicate element. The predicate and its string value can also appear as an attribute with its value of the
rdf : Descri pti on element of the subject (see line 20-6 of Example 7.1).

Example7.1. [CBWC- RDF- S. r df] Subject, Predicateand Object triplesfor thecellar
book in RDF/XML.

Selected information from Example 2.2 coded in RDF/XML. The information was selected to illustrate
different features of RDF/XML.

1 <?xm version="1.0" encodi ng="UTF- 8" ?>

<?oxygen RNGSchema="rdf xm .rnc" type="conpact"?> (1]
<! DOCTYPE RDF [(2]
<IENTITY we "http://ww. iro.unontreal.cal/l apal ne/ W neCat al og#" >
5 <IENTITY cb "http://ww.iro.unontreal.cal/lapal ne/ Cel | ar Book" >
1>
<rdf: RDF xm ns:rdf ="http://ww. w3. org/ 1999/ 02/ 22- r df - synt ax- ns#" (3]

xm ns:rdf s="http://ww. w3. or g/ 2000/ 01/ r df - schema#"
xm ns: we="&wc; "

10 xm ns: cb="&ch; #"
xm : base="&ch; "> o
<rdf: Description (5
rdf : about="http://ww.iro.unontreal.cal/l apal ne/ Cel | ar Book#t heCel | ar" >
15 <cbh: ownedBy> <t--1-->

<rdf: Description rdf:about="&cb; #JudeRai sin"/>
</ cb: ownedBy>
</rdf: Description>

20 <rdf: Description (6]
rdf: about="http://ww. iro.unontreal.cal/l apal ne/ Cel | ar Book#JudeRai si n"
chb:street="1234 rue des Chateaux" cb:city="St-CGeorge">
<cb: named rdf: parseType="Resource"> <l-- 2 -->
<cb:first>Jude</ch:first>
25 <cb: fam | y>Rai si n</ch: fanm | y>
</ cb: named>
</rdf: Description>

<rdf: Description rdf:about="#JudeRaisin"><l-- 3 --> (7
30 <cb: 1 oved rdf:resource="&nc; CO0043125"/ >
<cb: 1 oved rdf:resource="&nc; CO0871996"/ >
<cb: comment rdf: parseType="Literal">this is great!</ch: comrent >
</rdf: Description>

118

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CBWC-RDF-S.rdf

Triplesin RDF/ XML

35

40

45

50

55

60

65

<rdf:Bag rdf:1D="theCel | ar" > <l-- 4 --> (8]
<rdf:l1i rdf:resource="&nc; C00043125"/ >
<rdf:li rdf:resource="&nc; C00042101"/ >
<rdf:li rdf:resource="&nc; C00871996"/ >

</rdf : Bag>

<rdf: Description rdf:about="#theCellar"><!-- 5 --> (9]
<cb: | ocat edAt rdf:nodel D="1o0c"/>

</rdf: Description>

<rdf: Description rdf:nodel D="1oc"> <l-- 6 --> ©
<cb: street >4587 des Futaill es</ch: street>
<ch:city>Val | ée des crus</ch:city>

</rdf: Description>

<l-- Schema definition --> ®

<I-- Cl asses -->

<rdfs:C ass rdf:|D="Person"/> <l-- 7 --> @

<rdfs:Class rdf:ID="Cel l ar"/ >

<rdfs:Cl ass rdf: 1 D="Wne"/>

<I-- Properties -->

<rdf:Property rdf:1D="1oved"> <l-- 8 --> ®
<rdfs: domai n rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Wne"/>

</rdf: Property>

<rdf:Property rdf:|D="ownedBy"> <l-- 9 --> ®
<rdfs:domain rdf:resource="#Cel l ar"/>
<rdfs:range rdf:resource="#Person"/>

</rdf: Property>

</ rdf : RDF>
XML validation can be done using the Relax-NG schema given in appendix A of the RDF definition

[78]. Note that this validation only validates the form of the XML file and is different from the schema
notion used in RDFS explained in the next section.

Defines two entities to simplify the writing of an URI. wc endswith a# asit will be used to separate
fragments within the URI. cb will be used as an URI for abase so it does not end with a#.

Starts an RDF model by setting the appropriate namespaces. r df must be this one, but the others are
application dependant. Here we define two namespaces: we for the wine-catalog and cb for the cellar-
book. Using the entities defined in line 3-@, it guarantees that predicates using the namespaces and
the URI for the identification of the resources are consistent.

Defines the base for relative URI in this document indicated by r df : | D, such asfor line 35-@. When
no xm : base is specified, relative URI use the current document as base. This is useful to shorten
the URIsin aRDF document. Notethat the baseis not used for predicates which must use the namespace
prefix.

119

RDF : Resource Description Frame-
work

© Thecellar-book is owned by the resource identified by JudeRai si n. The straightforward way for
noting a triple: both the subject and object are designated by their URI in ar df : Descri pti on
element. For illustration purpose, we use here the full URI for the subject and the abbreviated form
with an entity for the object. Both notations refer to the same resource aswould beoneusingr df : | D
(seeline 29-@). The predicateisindicated by an element named by its URI using the namespace prefix.

0 Description of #JudeRai si n with acomplex node and attributes. Predicates with a string value can
be inserted as attributes of the subject. A predicate with complex content will define a blank node
which will act as subject of the content. Thisfact must beindicated by giving Resour ce asvalue of
ther df : par seType attribute.

© #JudeRai si n loved two wines of the catalog and expressed this fact by acomment. Predicates can
link any two nodesin the graph. The global model isthus an arbitrary graph and not necessarily atree.
To embed XML content as an object, we must specify Li t er al asvalue of ther df : par seType
attribute.

0 Thecdlar-book, referred by theid Cel | ar Book (corresponding to the full URI given in line 13-©)
contains three wines not further defined in this file. We use a r df : Bag here instead of a
rdf : Descri pti on toindicate acontainer. In abag, the order of the elements, noted by r df : | i
is not important. Should the order be important, we could have used ar df : Seq. r df : Al t would
indicate an alternative between many cases. The graph representation of a container declaration is a
link between the resource and ther df : bag URI; ther df : | i elements are represented by links de-
noted by r df : _nwherenisanumber corresponding to the order in which the correspondingr df : | i
element appeared in the document.

© Thecdlar-book hascomplex information, soit isregrouped under ablank nodereferredto by anodel D
which will be defined at line 45-®. Contrarily to anode referred by ar df : | D, theid of ablank node,
referred by r df : nodel d islocal to thisfile.

® Regrouping theinformation about the location within ablank node. The string information of the object
is given as the value of the predicate element.

® Start of the RDFS part that will be further explained in the next section.

® Definition of three classesidentified with |Dswithin the namespaceidentified by the cb entity because
of thexml : base declaration. A classdeclarationisrepresented in RDF by ar df : t ype link between
the class name and the predefined r df s: Cl ass class which is the class of all classes as shown by
lines numbered 7 in Figure 7.2.

® Definesthel oved property linking an instance of aPer son classasitsdomain (i.e. the start of the
arrow) with an instance of a W ne class, the range (i.e. the tip of the arrow). These classes were
identified in line 54-®. A property definition also adds ar df : t ype link between the name of the
property and the predefined r df : Property (yes, Property isin the r df namespace and not
rdf s).

® DefinesaownedBy property linking an instance of aCel | ar class with an instance of a Per son
class.

Although RDF/ XML isaconvenient triple notation for computers, it isnot very user-friendly. So alternatives
have been developed, one of the most widespread being the Ter se RDF Tri pl e Language more
commonly called Turtle [88]. The main rules for writing Turtle triplets are the following:

« A simpletripleis a sequence of three terms (subject, predicate, object) separated by spaces and ending
with a period.
» There are three types of terms;

URI written between < and >; an URI can aso be written asa QNAME i.e. an identifier pre-
ceded by anamespace prefix and acolon. A namespace prefix isdefined witha@r ef i x

120

Triplesin RDF/ XML

definition. The full URI is obtained by concatenating the content of the namespace
prefix with the rest of ther-uri;. A namespace prefix can be empty but the : still appears.

litteral written between single or double-quotes, possibly followed by atype definition marked
by " followed by atype name, most often of the form xsd: . . . for standard XML
Schema types.

blank node marked by : nodel d, a[] or aparenthesized group (explained below)

» anamespace prefix p isdefined by @prefi x p: URI.

e a comma repeats the subject and the predicate that differ only by their object, eg.
ex:a ex:b ex:c, ex:d. isthesameasex:a ex:b ex:c. ex:a ex:b ex:d.

e a semi-colon repeats the subject of triples that differ by their predicate and object, e.g.
ex:a ex:b ex:c; ex:d ex:e. isthesameasex:a ex:b ex:c. ex:a ex:d ex:e.

A blank node of theform _: nodel d can also benoted as[] whenthenodel d isnot used elsewhere. A
blank node assubject suchas[] ex:p "o0" canbenotedas[ex: p "0"] . Thistype of bracketing can
be used in either subject or object position and combined with commas and semi-colons. Table 7.2 compares
the bracket notation with the corresponding triples using blank nodes.

Table 7.2. Comparison of Turtle bracketswith triples

[] ex "o" . _:bO ex:p "O"
[ex:p "0"] . _:bl ex:p "0"
[ex:p "0"] ex:q ex:02 . b2 ex:p "0".
_:b2 ex:q ex:o02 .
ex:s ex:p [ex:pl ex:o]. ex:s ex:p _:b3 .
_:b3 ex:pl ex:o .
[ex:p ex:o0;ex:pl "ol"] b4 ex:p ex:o
_:b4 ex:pl "ol"

Comparison between the bracketed notation for blank nodes and the corresponding triples.

Jena [69] provides libraries and acommand line tool r df copy for parsing and writing RDF triplesin dif-
ferent notations, thus providing a simple conversion tool between these notations.

Example 7.2. [CBWC- RDF- S. t t |] The Turtle version of Example 7.1

An easier to type and to read version of the RDF information described in Example 7.1. As before, this
section only deals with the RDF part and not the RDFS part starting at line 22-@. In Turtle, comments start
with # and span for the rest of the line. In this example, the numbers in comments correspond to the lines
with the same numbers within XML commentsin Example 7.1.

1 @refix rdf: <htt p://wwwv. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#> . o
@refix rdfs: <htt p: //ww. w3. or g/ 2000/ 01/ r df - schema#> .
@refix ch: <http://ww. iro.unontreal.cal/lapal me/ Cel | ar Book#> .
@refix we: <http://ww. iro.unontreal.cal/l apal me/ WneCat al og#> .
5
ch:theCell ar (2]
cb: ownedBy cb: JudeRai sin ; #1
a rdf : Bag ; # 4 (3]

rdf: 1 wc: 00043125 ;

121

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CBWC-RDF-S.ttl

RDF
work

: Resource Description Frame-

10

15

20

25

30

35

rdf:_2 wc: C00042101 ;

rdf:_3 wc: C00871996 ;

cb:locatedAt [ch:city "Vall ée des crus" ; # 5,6
cb:street "4587 des Futailles"]

cb: JudeRai sin cbh:city "St-CGeorge" ; # 2
cb:named [cb:famly "Raisin"
cb:first "Jude"]
ch: 1 oved wc: C00043125 , wc: CO0871996 # 3 (6]
cb:comrent "this is great!"~"rdf: XM.Literal
ch:street "1234 rue des Chéateaux"

© 0

Schema part in RDFS (7]

cb: Person a rdf s: Cl ass . # 7 (5]
ch:Cellar a rdf s: Cl ass .
cb:Bottle a rdf s: Cl ass .

ch: 1 oved # 8 (9]
a rdf : Property ;
rdf s: domai n cb: Person ;
rdf s:range cb: Wne .

cb: ownedBy #9 ©
a rdf : Property ;
rdf s: domai n ch: Cel | ar
rdf s: range cb: Person .

Definition of namespace prefixes. As prefixes can aso be used for subjects and objects of triples,
which is not the case in RDF/XML, base definition is less useful, but still possible.

Six predicates sharing cb: Cel | ar Book as subject.

The notation for a container in Turtle corresponds to the graphical representation: here, the bag is
represented by alink to the predefined r df : Bag type (a isan abbreviation for r df : t ype) followed
by links of theform r df : _n wheren isanumber indicating the order in which ther df : | i appears
in the document. These triples correspond with the arrows with acircled 4 in Figure 7.2.

Four predicates having cb: JudeRai si n as subject are grouped, their predicate and object being
separated by semicolons.

A blank nodeis used as object of cb: named and subject of bothcb: f am | 'y andcb: fi rst, this
explains the semi-colon within the square brackets.

Two objects in namespaces we aso share both their subject cb: JudeRai si n and their predicate
ch: | oved, so they are separated by commas.

Start of the RDFS part further described in the next section.

Definition of three classes in cb namespace. A class declaration is represented in RDF by a a link
(which correspond to r df : t ype) between the class name and the predefined r df s: G ass class
which isthe class of al classes as shown by lines numbered 7 in Figure 7.2.

Definesthe | oved property linking an instance of aPer son classasitsdomain (i.e. the start of the
arrow) with an instance of a W ne class, the range (i.e. the tip of the arrow). These classes were
identified in line 24-@. A property definition also adds aa link between the name of the property and
the predefined r df : Pr operty.

122

RDF Schema

® DefinesaownedBy property linking an instance of aCel | ar class with an instance of a Per son
class.

7.2. RDF Schema

RDF describes simple statements about individuals and relations between them using some basic types
without any structure. This allows great freedom in the creation of new individuals but it would often be
useful to rely on a better organisation, so that relations can be typed and thus allow some inferences from
agiven set of facts:

Therelations (or properties):
* loved links a person with awine
» owned by links a cellar with a person

can seem obvious to a human but, for a machine, knowledge about the vocabulary must be made explicit.
RDFS is a language designed for such cases and it was given a semantics that allows to deduce implicit
knowledge (i.e. new RDF triples) from existing triples.

RDFS is a special case of RDF, every RDFS document is also an RDF document. RDFS allows generic
constructs to define a particular vocabulary. As shown in Example 7.1, RDFS can be written with the fact
that it describesin the same RDF document. The resulting document thus carriesits own semantics. RDFS
isalight ontology language to define classes and instances.

RDFS words are defined in a standard namespace ht t p: / / www. w3. or g/ 2000/ 01/ r df - schema#
(seeline 7-© of Example 7.1 and line 1-@ of Example 7.2)

A word of caution : although RDFS defines a schema, it does not enforce any constraint on the input of
the information. Thisisin stark constrast with an XML schemawhose role is to validate the content of the
file. The RDF schema allows an inference system, called a reasoner in Semantic Web parlance, to infer (to
entail in the Semantic Web jargon) new datafrom the onesthat are given explicitely in thefile. For example,
from line 29-@ of Example 7.1, or the equivalent in line 18-@ of Example 7.2, where we declare that the
property cb: | oved links a person with awine line 59-® of Example 7.1 (line 28-@ of Example 7.2), the
reasoner could infer that #JudeRai si n isan instance of the class Per son and that C00043125 isan
instance of the class W ne.

Similarly, from line 59-® of Example 7.1 (line 28-@ of Example 7.2), it could infer that Cel | ar isof class
Cel | ar Book andinfer againthat JudeRai si n isof classPer son, but that fact will only be kept once
in the data base of triples.

Note that nothing in RDF precludes that a ressource be a member of many classes even ones that do not
make sense for a human, e.g. aressource could be an instance of both a human and wine.

RDFSisthusaway of adding some semanticsto an RDFfile. It allowsthe definition of classes and properties
but also of subclasses and subproperties that are not used in this simple example.

For more details on the semantics associated with RDFS, one should consult [24].

123

RDF : Resource Description Frame-
work

7.3. RDF queries

AsRDF hasan XML serialization, we might be tempted to use XSLT to query RDF content, but thisis not
practical because XSLT would be limited to a given form of XML serialization which is not unique. XSLT
is strongly dependent on the syntactic organisation, i.e. the names and nesting of the elements of the XML
document. But aswe saw above, RDF is notation for aset of tripleswith many XML possible serializations.
RDF queries should instead be based on the underlying triple-based data model and not on its XML form.

The RDF data model being triples, the W3C has proposed SPA RQLl, a guery language analogous in goal
with SQL in which it is possible to retrieve al triples in the model that correspond to a given pattern.
SPARQL uses a notation similar to Turtle to identify triples to be extracted from the RDF database. The
main difference being that the subject, the predicate or the object of atriple can be avariable, noted by an
identifier preceded by ? or $. Such atripleis called triple pattern, many triple patterns can be combined to
form a graph pattern. For example, in Example 7.2: the triple pattern

cb: JudeRai sin ch: street ?address
matches thetriple

cb: JudeRai sin ch:street "1234 rue des Chateaux"
Thetriple

ch: JudeRai sin cb: 1 oved ?w ne
matches two triples corresponding to the two wines.

?s ?p 70
matches all triples. The variable name used in many triple patterns is constrained to the same value within
agraph pattern.

It isthus possible to create more complex queries. For example,

cb: Cel | ar Book cb: ownedBy ?owner.
?owner ch:loved ?w ne.

would match variables ?owner to cb:JudeRaisin and ?wi ne to we: C00043125 and
we: C00871996. Should the value of the variable ?owner not be needed, then we can use and blank node
as variable smplified using the bracket notation as follows

ch: Cel | ar Book cb: ownedBy [cb: | oved ?w ne].
Graph patterns are used in two main types of SPARQL queries:

SELECT vars wher e {graphpat- Theoutput of thisquery isatable containing the values of the selected

tern} variables from all triples that match the graph pattern.

CONSTRUCT { graphpattern;} vars The values of the variables in triples matching the second graph pat-

wher e {graph pattern,} tern are determined and used in building new triples corresponding
to the first graph pattern. Variables are shared between both graph
patterns.

1SPARQL is arecursive acronym of SPARQL Protocol and RDF Query Language

124

RDF versus XML

Example 7.3. [CBWC- RDF- S. r q] SPARQL querieson Example 7.2

SPARQL queries to select triples. # is used to comment the rest of the line. As only one SELECT or
CONSTRUCT query can be used at a time on RDF database, the other queries should be commented out
before executing.

1 PREFI X rdf: <http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#> (1]
PREFI X cb: <http://ww.iro.unontreal.cal/l apal me/ Cel | ar Book#>
PREFI X we: <http://ww.iro.unontreal.cal/lapal me/ WneCat al og#>

5 # show all triples
SELECT * WHERE {?s ?p 7?0} (2]

show the | oved wi nes of the Cell ar Book

SELECT * WHERE {[cb: | oved ?wi ne]} (3]
10

show the street on which the owner of the Cellarbook |ives

SELECT ?street WHERE {cbh: Cel | ar Book ch: ownedBy [cb: street 7?street]} O

show all wi nes of the cellar (5]
15 SELECT ?wi ne WHERE {cb: Cel | arBook ?x ?wi ne FILTER regex(str(?x)," [0-9]+$")}

define a newtriple with an inverse relation
CONSTRUCT {?who cb: owns ?what} WHERE {?what cb: ownedBy ?who} (6]

© Define namespace prefixes to be used in triples. The prefix declaration has dightly different syntax
than the one used in Turtle (see line 1-@ of Example 7.2)

® Show al triples. * indicates that the value of al variables used in the queries will be displayed.

® Display theloved winesfrom the cellar. Asthe name of the subject is not needed here, we used a blank
node as variable as follows [] cb: |l oved ?w ne which can be abbreviated with the bracket
notation.

0 Usethe bracket notation to simplify getting information out of a complex graph structure.

® Display al thewinesthat are part of the Bag. To get them, we filter the triples by matching aregular
expression on the string form of the URI. We check that it ends with an underscore followed by numbers.

0 Create anew triple from an existing triple.

Twinkle [89] is a Java application that provides a graphical user interface for SPARQL queries on RDF
models. These models can either be local files or any file on the internet. More details about the syntax of
SPARQL can be found at [84]. A list of simple queriesis shown in [55]. Thereis aso a JavaAPI, used by
Twinkle, to make SPARQL queries on an RDF database and get the corresponding triples.

7.4. RDF versus XML

Although both RDF and XML are used for codifying information, there are some fundamental differences
between them which can be summarized as given by an information sheet issued by Semaview.com (not in
business anymore):

« XML isatree, RDF isaset of triples;
e XML isordered, but RDF is not ordered:;

125

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CBWC-RDF-S.rq

RDF : Resource Description Frame-
work

* RDF uses XML as one serialization mean for its data model built upon triples;
* RDFiseaser to subset;

* RDFiseasierto query using SPARQL.

* RDF alows some abstraction from the document syntax;

* RDF ismore complicated and requires some planning;

* XML issyntactic, RDF is semantic;

* Not al projects need RDF.

7.5. Additional Information on RDF

This chapter only gave some of the basic information about RDF. Good books have been published in recent
years. Practical views of the semantic web technologies are shown in [24] and programming aspects are
dealt by [58]. More formal aspects are described clearly in [24].

There are many information sources about RDF on the web, some of them being:
http://www.w3.0rg/RDF/

The primary official source with plenty of links about tools and example applications.
http://www.rdfabout.com

Excellent introductory material about RDF and some data sources.
http://jena.sourceforge.net/

A Semantic Web Framework for Java
http://librdf.org/

C libraries that provide support for RDF with language Bindingsin Perl, PHP, Python and Ruby
http://dbpedia.org/

The DBpedia project extracts various kinds of structured information from Wikipedia and combines
thisinformation into an RDF knowledge base.

126

http://www.w3.org/RDF/
http://www.rdfabout.com
http://jena.sourceforge.net/
http://librdf.org/
http://dbpedia.org/

Chapter 8. Document Processing by
Programming in Java

In the previous sections we have described how to process XML fileswith XML declarative tools. But it is
aso possible to use standard programming languages to process XML files, thus allowing a much finer
control on the output and a better integration with other types of processing. Processing XML filesis often
done in Java, but C++, C#, C, Prolog, Haskell, Perl, PHP, Ruby and Python also have packages to do so.
Chapter 10 will show afew examples of handling XML filesin different programming languages other than
Java.

But before we explain how to program our compacting examplein Java, it isimportant to understand different
models of XML processing: Document Object Model (DOM), Smple API for XML (SAX) and Streaming
API for XML (StAX).

The DOM programming model is similar to the one we have been using implicitely in previous chapters:
by reading an XML file, aparser builds an internal tree structure file which it then traverses and modifies.

Using a programming language without any restriction instead of arulelanguage such as XSLT, itispossible
to destroy the tree structures with those manipulations so it is important to have a rigorous programming
discipline.

Building the entire tree structure in memory before starting to process it can be prohibitive in the case of
large XML files, so SAX, an aternative programming model, has been defined: as elements are parsed, user
defined call-back procedures are invoked to do the processing. This requires much less memory because
only a part of the document needs to be kept in memory at all time. However, the program is more limited
inthekind of processing it can do efficiently or smply. Thislimitation issimilar to the one observed between
algorithms reading random-access files and those reading sequential -access files.

On top of the DOM and SAX approaches to parsing that have been available in the standard JavaAPI since
version 1.4, another streaming approach, introduced in Java 1.6, implements pull parsing that offers arel-
atively simple programming model and an efficient memory management. In this case, the program asks
for the next XML token from the parser in order to select the appropriate action according to its type. So
contrarily to the SAX approach in which the program is called back by the parser at each new token, in a
pull-parser it is the program that controls the progression in the XML document. So processing of the file
can be stopped as soon as it has been determined that the rest of the file is not relevant or it is possible to
skip rapidly over irrelevant parts of the document for a certain application.

In this chapter, we will show how our compact pretty-print application shown in Section 5.3 can be imple-
mented with each of the DOM, SAX and StAX programming models.

In Java, all XML document processing classes have been unified under the Java API for XML Processing
(JAXP), for controlling XML parsing, validation and transformation. It describes a unified interface inde-
pendently of particular XML parsers and transformation engines.

127

Document Processing by Program-
ming in Java

8.1. Document Object Model (DOM)

The document object model is standardized by the W3C consortium, but its Java bindings can depend on
theimplementation. Java, sinceversion 1.4, integrates XML processing packagesthat we usein our examples;
no other special library is needed this way. The Java program given in Example 8.1 is a command line ap-
plication that accepts an XML file as parameter and outputs the same compact text representation as the one
used in Example 5.8 (page 80) that we obtained with the XSLT stylesheet of Example 5.9.

Thefirst lines of Example 8.1 import the necessary packagesto process the XML files. The mai n method
(line 26-@) createsaDocunent Bui | der Fact or y object (line 34-@) from which we will obtainaDOM
parser after having configured the necessary options. By default, parsing only checks for well-formedness,
so in order for the parsing to validate against a DTD a flag must be set (line 36-©). To validate against an
XML Schema another one must be set (line 38-@). As explained in Section 3.1.1 and Section 3.5, the XML
instances reference their corresponding DTD or XML Schema.

Creating aparser to build anew DOM document isdone (line 41-@) by using afactory method which returns
aDocunent Bui | der object to which an error handler (line 5-@ of Example 8.2) is assigned to get ano-
tification of possible error messages. If the file is valid (i.e. no SAXPar seExcepti on is raised)l, a
Docunent object can be obtained and the conpact method (line 83-®) is caled (line 46-@) on the root
element.

In order to simplify further processing, we define (line 66-®) a method to remove from the DOM structure,
starting from a given node, all text nodes containing only spaces and carriage returns and nodes other than
element or text nodes, such as comments or processing instructions nodes. This method goes through each
children removing nodes (line 76-®) that are not interesting for further processing; some care hasto betaken
to savethe next sibling (line 71-®) before removing it from the DOM because the removal hasthe side-effect
of setting the sibling nodes to null. For nodes that it does not remove, it callsitself recursively (line 78-®)
to strip-space from the current child node. When it is called on the document element (line 45-@), it will go
through all the document to remove empty text nodes and nodes that are not text or elements.

Within conpact (line 83-®), the processing depends on the type of element obtained on line 85-®. If itis
an element node (line 86-®), we first print the node name followed by an opening bracket. On line 91-®,
attributes are printed with their names preceded by an @ followed by their value in square brackets. A new
lineisstarted if it is not the first attribute. The processing of the children elements, starting on line 97-@, is
asimple traversal algorithm with arecursive call to conpact (line 100-@), followed by the printing of a
closing bracket. In the case of a text node (line 106-®), we print the content of the text node removing
leading and trailing spaces, which could be carriage returns or newlines.

Example8.1. [DOMConpact .] ava] Text compaction of thecellar book (Example2.2)
with Java using the DOM model

1 inmport org.w3c.domAttr;
i mport org.w3c. dom Docunent ;
i mport org.w3c. dom NanmedNodeMap;
i mport org.w3c. dom Node;
5
i mport javax.xmnl . parsers. Docunent Bui | der;

1Even in the DOM model, SAXExcept i onsand SAXPar seExcept i ons can be raised by the document builder.

128

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/DOMCompact.java

Document Object Model (DOM)

10

15

20

25

30

35

40

45

50

55

60

i mport
i mport
i mport

i mport
i mport
i mport
i mport

i mport

i mport
i mport
i mport
i mport
i mport

j avax.xm . parsers. Docunent Bui | der Fact ory;
j avax. xm . parsers. Fact oryConfi gurati onError;
javax.xm . parsers. Parser Confi gurati onExcepti on;

org. xm . sax. | nput Sour ce;

org. xm . sax. Error Handl er;

org. xm . sax. SAXExcepti on;

org. xm . sax. SAXPar seExcepti on;

java.io. | Cexception;

j avax. swi ng. JTree;

j avax. swi ng. JFr ane;

j avax. swi ng. JScr ol | Pane;

j avax. swi ng. tree. Def aul t Mut abl eTr eeNode;
j avax. swi ng. tree. Def aul t Tr eeMbdel ;

public class DOMConpact {

public static void main(String argv[]) { o

/1 is there anything to do?

if (argv.length !'= 1) {
Systemout. println("Usage: java DOMConpact file");
Systemexit(1l);

}
/1 parse file
try {
Docunent Bui | der Factory factory = (2]
Docurent Bui | der Fact ory. new nst ance() ;
factory. setValidating(true); (3]
factory. set NamespaceAwar e(true);
factory.set Attri bute(o

"http://java.sun.com xm /j axp/ properties/schemaLanguage",
"http://ww. w3. org/ 2001/ XM_Schema") ;
Docunent Bui | der buil der = factory. newbDocunent Bui | der(); ©
bui | der. set Error Handl er (new Conpact Err or Handl er ()) ;
Docurent doc = buil der. parse(argv[0]);
Node docEl emrdoc. get Docunent El enent () ;
stri pSpace(docEl en);
conpact (docElem "");
Systemout.println();
new TreeVi ewer (
new JTr ee(new Def aul t Tr eeModel (
TreeViewer.j TreeBui |l d(docElem)))).setVisible(true);
} catch (SAXParseException e) { ®
Systemout.println(argv[0]+"is not well-forned");
System out. println(e.get Message()+"at |ine "+e.getLineNunber()+
", colum "+e. get Col umNunber ());
} catch (SAXException e){
System out. println(e. get Message());
} catch (ParserConfigurati onException e){
Systemout.println("Parser configuration error");
} catch (1 CException e) {
Systemout.println("1O Error on "+argv[0]);

& 0000

129

Document Processing by Program-

ming in Java
}
}
/1l renpbve enpty text nodes (ie nothing el se than spaces and carriage return)
65 /1 and nodes that are not text or el enent ones
private static void stripSpace(Node node) { @
Node child = node.getFirstChild();
whi I e(child!=null){
/1 save the sibling of the node that will
70 /1 perhaps be renpved and set to null
Node c¢ = chil d. get Next Si bling(); ®
i f((child.getNodeType()==Node. TEXT_NODE &&
chil d. get NodeVal ue().trinm().length()==0) ||
((chil d.get NodeType()! =Node. TEXT_NODE) &&
75 (chil d. get NodeType()! =Node. ELEMENT_NODE)))
node. renoveChi | d(chil d); 1]
el se // process children recursively
stri pSpace(child); ®
chi | d=c;
80 }
}
public static void conpact(Node node, String indent) ({ 16]
if (node == null)return;
85 switch (node. get NodeType()) { ®
case Node. ELEMENT_NODE: ({ 15]
System out . pri nt (node. get NodeName()+'[');
i ndent += bl anks(node. get NodeNane(). | ength()+1);
NanedNodeMap attrs = node.getAttributes();
90 bool ean first=true;
for (int i =0; i < attrs.getLength(); i++) { ®
if(!first)Systemout.print('\n'+indent);
Systemout.print(' @+attrs.iten{i).get NodeName()+'["
+attrs.item(i).get Nodeval ue()+']");
95 first=fal se;
}
for(Node child = node.getFirstChild(); 20

child !'= null; child = child.getNextSibling()){
if(!first) Systemout.print('\n'+indent);
100 conpact (chil d, i ndent); 2]
first=fal se;

}
Systemout.print(']');
br eak;
105 }
case Node. TEXT_NODE: { 2]
System out . print (node. get NodeVal ue() .trim());
br eak;
}
110 }
}

/1 production of string of spaces with a |lazy StringBuffer
private static StringBuffer blanks = new StringBuffer();

130

Document Object Model (DOM)

115 private static String blanks(int n){ ®
for(int i=blanks.length();i<n;i++)
bl anks. append(' ');
return bl anks. substring(0, n);

}
120 }
© Beginning of the Java program that checksiif thereis aparameter to be used as afile name to compact.
® Beginning of the parsing process creating a document builder that will be used for validation and for

creating the DOM structure of the document.

® Indicates that document validation will be performed, on top of the default well-formedness check.

0 Validation should be done with a Schema, not aDTD.

© Createsaclassthat will be used for creating the DOM structure.

0 Parsesthe document using the previously created objects.

@ Savesareference to the root document element.

© Remove al white space nodes and non text or element nodes from the whole DOM structure.

© Creates a compact form by traversing the DOM structure from the root. conpact is defined on
line 83-®

® Creates an interactive window representing the DOM structure.

® Dealswith exceptionsthat can occur during the parsing phase, such asnon well-formedness, validation
error or file-access exceptions.

® Empty text children nodes are removed so that only meaningful content nodes are compacted.

® Savesareference to the next sibling.

® Removesthe current child from the DOM structure.

® Strips space recursively on this child node.

® Prints a compact representation of the current node. i ndent isastring that is added to the start of
each line of output in this node.

® Determines the type of the current node in order to choose the appropriate processing step.

® Anelement nodeisfirst printed followed by an opening bracket and the indentation is updated so that
recursive calls will print their content more indented that the name of the current node.

® Attributes are printed on separate (indented) lines; an attribute name is prefixed with an @and the
value is enclosed in square brackets.

@ Thechildren are processed with the current indentation. Finally, a closing bracket is added.

® Compact this child recursively.

@ Normalizes and prints atext node.

® Returnsastring of agiven number of spaces as a substring of static StringBuffer that is expanded as

necessary.

Example8.2.[Conpact Er r or Handl er . j ava] Error handler of the DOM parsing
of Example 8.1

1 inport org.xm.sax. ErrorHandl er;
i mport org.xm . sax. SAXExcepti on; o
i mport org.xm . sax. SAXPar seExcepti on;

5 public class ConpactErrorHandl er inplements ErrorHandl er{
private void nessage(String ness, SAXParseException e)
t hrows SAXExcepti on{
Systemout. println("\n"+mess+

()

131

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/CompactErrorHandler.java

Document Processing by Program-
ming in Java

"\'n Line:"+e. getLi neNunber () +
10 "\n URI:" +e.getSystem d()+
"\'n Message: " +e. get Message());

}
public void fatal Error (SAXPar seException e) throws SAXException{ @
15 nmessage("Fatal error”,e);
}
public void error(SAXParseException e) throws SAXException{ (5]
message("Error", e);
20 }

public voi d warni ng(SAXPar seException e) throws SAXExcepti on{ (6
message(" Warni ng", e);
}

25 }

© SAXExcepti on and SAXPar seExcept i on are used even though DOM parsing is used.

® Implementation of XML parsing error handling.

® Prints out an error message with the current error position. This method is used for all three kinds of
errors.

® Anirrecoverable error.

® An XML validation error.

6 A simplewarning not requiring processing to stop.

8.2. Simple API for XML (SAX)

Inthe SAX model of processing, the system calls event-handler methods as it parses the file. As the whole
document does not have to be kept in main memory, thisis quite memory-efficient but then global variables
have to be used for communicating between handler methods. In our case, the only global information
needed are the current indentation and the fact that the current line be ended.

The current line should be ended at the start of anew element only when the last thing printed was aclosing
bracket. Many closing brackets can be put on the same line though. So we keep a shared boolean variable
for this state and a shared integer storing the current number of blank spaces used for indentation.

Creating aSAX parser isdone viaafactory in much the same way aswe have shown in the previous section
for aDOM parser. Example 8.3 describes the main procedure which creates a factory (line 29-@) and sets
flags for validation. The parser is obtained on line 32-@ and a property is set to indicate that we want valid-
ation to be done with an XML Schema. Parsing is then started on line 36-@ by passing a reference to an
Handl er object which receives call-backs during the parsing process.

132

Simple API for XML (SAX)

Example8.3. [SAXConpact . j ava] Text compaction of thecellar book (Example2.2)
with Java using the SAX model

1

10

15

20

25

30

35

40

45

50

i mport org.
i mport org.
i mport org.

i mport org.

xm . sax. SAXExcept i on;
xm . sax. SAXPar seExcepti on;
xm . sax. hel pers. XM_Reader Fact ory;

xm . sax. hel pers. Def aul t Handl er;

i mport javax.xmnl . parsers. SAXParser Factory;
i mport javax.xml . parsers. Parser Configurati onExcepti on;
i mport javax.xml . parsers. SAXPar ser;

i mport java.io. | OException;

i mport javax.swi ng.JTr ee;
i mport javax.sw ng. JFrane;
i mport javax.sw ng.JScrol | Pane;

public class SAXConpact ({

private static JTree jtree = new JTree(); (1]

public
if

}

static void main(String argv[]) { (2]
(argv.length !'= 1) {

Systemout. println("Usage: java SAXConpact file");

return;

// XM_LPar ser creation
SAXPar ser Factory factory;
SAXPar ser saxParser;

try {

} catch (ParserConfigurati onException e) {

factory = SAXParser Fact ory. new nst ance(); (3]
factory. set NamespaceAwar e(true);
factory.setValidating(true);
saxParser = factory. newSAXParser(); o
saxPar ser . set Property(
"http://java.sun.com xm /jaxp/ properties/schemalLanguage",
"http://ww. w3. org/ 2001/ XM_Schema") ;
/1 parse file and print conpact form e
saxPar ser. parse(argv[0], new Conpact Handl er());
Systemout.println();
/1 parse file and build a tree form
saxPar ser. parse(argv[0], new JTreeHandl er(jtree)); (6]
/1 display the built tree
new TreeVi ewer (jtree).show();

©9o

Systemout.println("Bad parser configuration");

} catch (SAXParseException e) {

Systemout.println(argv[0]+" is not well-formed");
System out. println(e. get Message() +
at line "+e.getLi neNunber () +
", columm "+e. get Col umNunber ());

} catch (SAXException e){

133

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/SAXCompact.java

Document Processing by Program-
ming in Java

System out. println(e. get Message());
} catch (1 CException e) {
Systemout.println("1O Error on "+argv[0]);
}
55 } /1l main(String[])
} /1 class SAXConpact

© Initialisesan empty JTr ee for interactive output.

® Main method that first checks if afile name has been given as an argument to the program.

©® Creates adocument factory.

O Createsanew SAX parser.

® Parses the file given as argument while sending the parse events to a handler that will output the
compact form.

6 Parsesthefile given as argument while sending the parse events to a handler that will add nodes to a
JTr ee for interactive viewing.

© Displaystheinteractive tree viewer.

0 Handles exceptions that can occur in both parsing and input file processing.

Example 8.4 shows the structure of a SAX event handler (a subclass of the Def aul t Handl er class),
which defines empty handlers for all type of events including errors. In our case, only st art El enent

(line 20-@), endEl enent (line 38-@) and char act er s (line 45-@) are called when encountering text
nodes.

When an error is encountered during the parsing process, one of the methods defined on lines starting on
line 66-@ is called. When this happens, we call the nessage method (line 58-@) which prints some useful
information about the error.

Example8.4.[Conpact Handl er . j ava] SAX handler for text compactingan XML
file such as Example 2.2

1 inmport org.xm .sax. SAXExcepti on;
i mport org.xm . sax. hel pers. Def aul t Handl er ;
i mport org.xm.sax.Attributes;
i mport org.xm . sax. SAXPar seExcepti on;

public class Conpact Handl er extends Def aul t Handl er {

/1 production of string of spaces with a lazy StringBuffer
private static StringBuffer blanks = new StringBuffer();
10 private String blanks(int n){
for(int i=blanks.length();i<n;i++)
bl anks. append(' ');
return bl anks. substring(0, n);

}
15
private bool ean cl osed = fal se; /1 closed nmode?
protected int indent; /1 current indentation value

134

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/CompactHandler.java

Simple API for XML (SAX)

20

25

30

35

40

45

50

55

60

65

70

public void startElenent(String uri, String |ocal Nane, (1
String raw, Attributes attrs)
t hrows SAXException {
i f(closed){
Systemout. print('\n'+bl anks(i ndent));
cl osed = fal se
}
i ndent =i ndent +1+| ocal Nane. | engt h() ;
System out . print (| ocal Name+'[');
/1 deal with attributes
for (int i =0; i < attrs.getLength(); i++) {
i f(i>0)Systemout.print('\n' +blanks(indent));
Systemout.print(' @+attrs. getLocal Nanme(i)+' [’
+attrs.getValue(i)+']1");
cl osed=true

public void endElement(String uri, String |ocal Name, String raw) @
t hrows SAXException {
Systemout.print(']');
cl osed = true
i ndent =i ndent - 1- | ocal Nane. | engt h() ;

}
public void characters(char[] ch, int start, int |ength) (3]
t hrows SAXException {
i f(closed){
Systemout. print('\n'+bl anks(i ndent));
cl osed = fal se
}
String s = new String(ch,start,length).trim);
Systemout.print(s);
i f(s.length()>0)
cl osed=true
}
/1 error handling. .
private void nmessage(String ness, SAXParseException e) (4
t hrows SAXExcepti on{
Systemout. println("\n"+mess+
"\'n Line:"+e. getLi neNunber () +
"\n URI:" +e.getSystem d()+
"\'n Message: " +e. get Message());
}

public void fatal Error (SAXPar seException e) throws SAXException{ ©
nmessage("Fatal error”,e);

}

public void error(SAXParseException e) throws SAXExcepti on{
message("Error", e);

}

135

Document Processing by Program-

ming in Java
public void warni ng(SAXPar seExcepti on e) throws SAXExcepti on{
75 message(" Warni ng", e);
}
}

©® Checks whether the current line should be terminated. Then the name of the current element and an
opening bracket are printed. The shared indentation value is updated and the attributes are output if
there are any.

® A closing bracket is printed and the indentation value is decreased by the length of the name. Because
the file has been validated during the parsing process, it is sure that the | ocal Nane variable is the
same as the one used to increase the indentation in the corresponding start-tag method.

® The characters are printed after having removed leading and trailing whitespace. Note that the
char act er s method is not called witha St r i ng but with an array of characters as well as a start
position and the number of characters to use from the character array. This can sometimes avoid the
allocation of anew St ri ng for each element.

O Method used to output error messages.

® Error handling for fatal, validation and recoverable errors.

8.3. Stream API for XML (StAX)

StAX, like SAX, is stream-oriented but in StAX, the programmer isin control using asimple APl based on
the notion of acursor that walksthe XML document from beginning to end. The cursor can only move forward
and pointsto asingle point in the XML fil . Only asmall part of thewhole XML document needsto reside
in memory at any single time, so this approach is quite memory-efficient, asit isfor SAX. But as the pro-
grammer controlswhich methods are called when agiven token is at the cursor, it is possible to add contex-
tual information to each call for dealing with a token without the need of global variablesasin SAX.

Creating a StAX parser isdone viaafactory in much the same way aswe have shown in the previous sections
for DOM or SAX parsers. Example 8.5 describes the main procedure which creates a factory (line 25-@).
Then we configure the parser by setting some properties. here we want entities to be interpreted by the
parser instead of being passed directly to our program and we would like to receive consecutive character
nodes as a single concatenation of all these nodes. Parsing is done using an XMLSt r eanReader created
(line 28-@) from the XMLI nput Fact or y. Thisreader will be an iterator-like object that gets a new token
at each call tonext () whichreturnsitstype as an integer. Thistype can then be checked for equality with
predefined constants in the XMLEvent class but, in our program, we prefer to use parser utility functions
suchasi sStartEl ement () ori sCharacters() that check the type of the current token. In Ex-
ample 8.5, we only deal with the start or end of an element or with its character content.

Similarly to the DOM approach in Example 8.1, the compacting processfollowsrecursively thetree structure.
After skipping what comes before thefirst element, we call theconpact method (line 31-@)with the current
state of the XML stream which will process the current element and its children before returning.

Within conpact (line 47-@), the type of current token is checked and if it is the starting tag of an element
(line 49-@) then the name of the element is printed and the indentation is updated. Then attributes and values
are output properly indented (line 53-®). Each non empty children is then printed by a recursive call to

2ThereisalsoaStAX iterator based AP that representsthe XML document as a set of discrete eventsthat are pulled by the application
in the order in which they show up in the document, but we will not consider this approach here.

136

Stream API for XML (StAX)

compact (line 65-®). A closing bracket is output when the end element tag is encountered which terminates
the loop. The character content (line 68-®) issimply printed asis.

Example 8.5. [
(Example 2.2) with Java using the StAX model

1

10

15

20

25

30

35

40

45

i mport java.
i mport java.

i mport javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.

public class
/1 produ
private
private
for(

St AXConpact . j ava] Text compaction of the celar book

i 0. FilelnputStream
i 0.1 CException;

swi ng. JTree;

swi ng. t ree. Def aul t Tr eeModel ;
xm . stream XM.I nput Fact ory;
xm . stream XM.St r eanExcepti on;
xm . stream XMLSt r eanReader ;

St AXCompact {
ction of string of spaces with a lazy StringBuffer
static StringBuffer blanks = new StringBuffer();
static String blanks(int n){

int i=blanks.length();i<n;i++)

bl anks. append(' ');

return bl anks. substring(0, n);
}
public static void main(String[] argv) { (1]
if (argv.length !'= 1) {
Systemout. println("Usage: java St AXConpact file");
return;
}
try {
XMLI nput Factory xmif = XM.I nput Factory. newl nstance(); 2]
xmif.setProperty(XMI nput Factory. | S REPLACI NG ENTI TY_REFERENCES, true)
xmif.setProperty(XMI nput Factory.|S COALESCI NG, true);
XMLSt r eanmReader xm sr = (3]
xmif.createXM.StreanReader (argv[0], new FilelnputStreamargv[0]));
while(!xm sr.isStartEl enent ())xm sr. next(); o
conpact (xm sr,""); e
Systemout.printin(); // end last l|ine
xm sr. cl ose(); (6]
/] restart to create the JTree
xm sr=xm i f.createXM.StreanReader (argv[0], new Fil el nputStrean{argv[O0])
while(!xm sr.isStartEl enent ())xm sr. next();
new TreeVi ewer (new JTr ege(
new Def aul t TreeModel (TreeVi ewer.j TreeBuil d(xnmsr)) @
)).setVisible(true);
} catch (XM.StreanException ex) { (8]
System out . printl n(ex. get Message());
} catch (1 CException e) {
Systemout.printIn("1O Error on "+argv[0]);
}
}
private static void conpact (XM.St reanReader xm sr, String indent) ©

137

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/StAXCompact.java

Document Processing by Program-
ming in Java

50

55

60

65

70

6 6 0 © 0000

&6 6 6

t hrows XML.StreanExcepti on{
if(xmsr.isStartEl ement()){ ©
String | ocal Nane = xnl sr. getLocal Nane();
System out . print (|l ocal Name+'[");
i ndent += bl anks(| ocal Name. | engt h() +1);
int count = xm sr.getAttributeCount(); [l attributes @
for (int i =0; i < count; i++) {
i f(i>0)Systemout.print('\n'+indent);
Systemout.print("@+xm sr.getAttri butelLocal Nane(i) +
"["+xm sr.getAttributevalue(i)+']");
}

bool ean first=count==0;
while (true){ @
do {xm sr.next();} while(xm sr.isWiteSpace());
if (xmsr.iskEndEl enent()) break;
if (first) first=false;
el se Systemout.print('\n'+indent);
conpact (xm sr, i ndent); ®

}
Systemout.print(']');

} else if (xmsr.isCharacters()){ 1]
System out. print(xm sr.getText());

}

Main method that first checksif afile name has been given as an argument to the program.

Creates an input factory.

Creates a new stream parser.

Ignores the tokens that come before the first element (e.g. processing instructions or DTD).

Calls the compacting process with the current token and then prints a newline to flush the content of
thelast line.

Releases the data structure of the last streaming operation before opening the file for the second time,
to build the JTree.

Handles exceptions that can occur in both parsing and input file processing.

Method to compact from the current token.

If itisastart element tag, outputs the name of the element followed by an opening bracket and update
the current indentation.

Outputs each attribute name and value all indented except the first one.

Loops on children nodesthat are not whitespace and compacts each of them with the correct indentation.
Recursive call to the compacting process.

Prints the character content.

8.4. Showing an Interactive Tree View

The Java APl aready provides a graphical view of trees with the JTr ee class. It displays the nodesin a
window and they can be expanded and collapsed by clicking on their handles. Thiskind of display can also
be obtained by XSL-FO (see section 6.9 of [7]) but few systems currently implement the full specification

138

BuildingaJTr ee with DOM

Figure8.1. JTr ee display of Example 2.2

86 e Tree viewer
cellar-book m
@noNamespaceSchemalocation[CellarBook.xsd]
b J wine-catalog
L wine
@name[Domaine de 'lle Margaux]
@appellation[Bordeaux supérieur]
@classification(a.c]
@eode[CO0043125]
@format[750ml]
properties
origin
comment |
food-pairing e
price
year
wine
wine
wine
wine
v owner
g name
v street

YYYYTYY

YVYYY

which would allow this to happen. Internet Explorer (top right of Figure 1.2) and Firefox use a similar
scheme when displaying XML files but it is based on the vi si bl e property of Cascading Style Sheets
(CSS). Thisform of interaction is used on most operating systemsto display the contents of directories. For
example, the XML file of Example 2.2 (page 10) can be displayed in awindow like the one shown in Fig-
ure 8.1. Nodes are shown there with directory icons and can be expanded or collapsed by clicking on the
triangleto theleft of theicon. A node showing a collapsed subtree has atriangl e that points downward when
it is expanded. A different display can be obtained by changing the look and fed in the Java API but the
principle stays the same.

8.4.1. Building a JTr ee with DOM

Creating such aview from aDOM structureis only a matter of traversing the structure to create nodes that
will be part of the JTr ee display. Itsnodes areinstances of the predefined Def aul t Mut abl eTr eeNode
class. To obtain the display in Figure 8.1, Example 8.1 (line 48-®) creates a new Tr eeVi ewer instance
that displays a JTr ee using a tree model built from the DOM tree constructed using the j Tr eeBui | d
method. Example 8.6 definestheclass Tr eeVi ewer (line13-0) that createsawindow to display theJ Tr ee
instance. It isassigned an initial constant position and size and made scrollable; the application should ter-
minate when the window is closed.

jTreeBuild (line 21-@) is a static method so it is caled with the instruction
TreeVi ewer.j TreeBui l d(.), (line21-@ and line 48-® of Example 8.2). It uses the same algorithm
asconpact (line83-® of Example 8.1) by recursively processing element or text DOM nodes. In the case
of an element node (line 25-@), it creates anew Def aul t Mut abl eTr eeNode for the element and adds
attributes asitsfirst child; it then processes each child by recursively building its subtree (line 37-@) which

139

Document Processing by Program-
ming in Java

isadded as a child of the current node. A non-empty text nodeissimply aDef aul t Mut abl eTr eeNode

having the text as label.

Example8.6.[Tr eeVi ewer . j ava]: JTr ee buildingwith DOM and StAX Processing

of an XML file

1 inport javax.sw ng. JFrane;

10

15

20

25

30

35

40

45

i mport javax.sw ng.JScrol | Pane;
i mport javax.swi ng.JTr ee;
i mport javax.sw ng.tree. Defaul t Mut abl eTr eeNode;

i mport javax.xm .stream XM.StreanExcepti on;
i mport javax.xm .stream XM.StreanReader ;
i mport javax.xm .stream events. XM_LEvent ;
i mport org.w3c. dom NanmedNodeMap;
i mport org.w3c. dom Node;
public class TreeVi ewer extends JFrange{ (1]
TreeViewer (JTree jtree) {
super ("Tree viewer");
set Bounds(100, 100, 600, 450) ;
get Cont ent Pane() . add(new JScrol | Pane(jtree));
set Def aul t G oseQper ati on(JFrane. EXI T_ON_CLCSE) ;
}
public static DefaultMutabl eTreeNode j Tr eeBui | d(Node node) { (2]
if (node == null)
return null;
swi tch (node. get NodeType()) {
case Node. ELEMENT_NODE: { (3]
Def aul t Mut abl eTr eeNode treeNode =
new Def aul t Mut abl eTr eeNode(node. get NodeNane()) ;
NanedNodeMap attrs = node.getAttributes();
for (int i = 0; i < attrs.getLength(); i++)
t reeNode. add(
new Def aul t Mut abl eTr eeNode(
'@+attrs.iten(i).get NodeNane() +
"["+attrs.iten(i).get NodeValue()+']1"'));
/1 process children
Node child = node.getFirstChild();
while(child !'= null){
Def aul t Mut abl eTreeNode chil dTree = j TreeBuil d(child);
i f(childTree!=null)
t reeNode. add(chi | dTree); e
child = child. getNextSibling();
}
return treeNode;
}
case Node. TEXT_NODE: {
String text = node.get NodeValue().trim);

return text.length()==0 ? null (6]

o

new Def aul t Mut abl eTr eeNode(t ext);

140

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/TreeViewer.java

BuildingaJTr ee with SAX

50

55

60

65

70

75

® 0

©600000F0C

}

default : return null; // ignore other types of nodes

}

public static DefaultMitabl eTreeNode j TreeBuild (7]
(XMLSt r eanReader xm sr) throws XM.StreanExcepti on{
if(xmsr.isStartEl ement()){ (8]
Def aul t Mut abl eTr eeNode treeNode
= new Def aul t Mut abl eTr eeNode(xm sr. get Local Nane()) ;
int count = xm sr.getAttributeCount();// attributes (9]
for (int i =0; i < count; i++) {
t r eeNode. add(
new Def aul t Mut abl eTr eeNode(
"@+xm sr.get Attri but eLocal Name(i) +
"["+xm sr.getAttributevalue(i)+']"));
}
while (true){ 1]
do {xm sr.next();} while(xnm sr.isWiteSpace());
i f(xm sr.getEvent Type()==XM_Event . END_ELEMENT) br eak;
Def aul t Mut abl eTr eeNode chil dTree = j TreeBui |l d(xm sr);
i f(childTreel=null) treeNode.add(chil dTree);
}
return treeNode;
} else if (xmsr.isCharacters()){ ®
return new Defaul t Mut abl eTr eeNode(xm sr. get Text());
} else
return null;

}

Inherits from JFr ame so that the tree is displayed in a new window. The content of the constructor
describesthe position and dimensions of thewindow, insertsit in ascrolling pane and makesthe program
end when the window is closed.

Recursive method for creating aJTr eeNode from a document node.

When the node is an element node, creates a new JTr ee node to which are added the attributes as
simple JTr ee nodes and the children nodes which are built recursively.

Recursive building of the tree corresponding to a child.

Adds the new children JTr ee node as a child of the current JTr ee node.

In the case of a non-empty text node, createsasimple JTr ee node.

Recursive method for creating aJTr eeNode from tokens returned by an XMLSt r eanReader .
Creates a new tree node with the name of the element.

Adds a node for each attribute name and value.

Loops on children nodes that are not whitespace and adds a new child for each new tree built.
Creates a node with the character content.

8.4.2. Building a JTr ee with SAX

A JTr ee using SAX processing isis created with a special-purpose handler whose methods will be called
when XML elements are encountered during the parsing process. Thisis similar to the process described in
Section 8.2 where we only needed to keep the current indentation value.

141

Document Processing by Program-
ming in Java

In Example 8.7, webuild atreeusing Def aul t Mut abl eTr eeNode instancesand keep track of the current
node being built (line 13-@). When an XML element start-tag isencountered, inst ar t El enent (line19-@),
anew tree node is created and made the current node (line 25-@). Its attributes are then added as children
(line 29-@). A text node is simply added as a child of the current node (line 41-®). When an end-tag is en-
countered (line 34-@), we set the current node to the parent of the current node. The constructor (line 15-8)
only keeps a copy of the JTr ee that will be displayed. Its model is initialized on the first call of
start El enent (line22-@).

To create a JTr ee, we add (line 40-@ of Example 8.3) anew JTr eeHandl er given as argument to the
SAX parser. Display of the tree is achieved by creating an instance (line 42-@) of the Tr eeVi ewer class
(line 13-@ of Example 8.6). The JTr ee instance is built by caling the SAX parser and giving it a
JTr eeHandl er (line40-0@).

SAX dlows the pipelining of handlers that work in succession during a single parse of the file, a process
called filtering, but here we simplify by parsing the file twice: once for the textual input (line 36-@ of Ex-
ample 8.3) and once more for the tree display (line 40-0).

Example8.7.[JTr eeHandl er . j ava]: JTr ee building with SAX Processing of an
XML file

1 inport org.xm .sax. SAXExcepti on;
i mport org.xnm .sax.Attributes;
i mport org.xm . sax. hel pers. Def aul t Handl er;

5 import javax.swi ng.JTree;
i mport javax.sw ng.tree. Def aul t Mut abl eTr eeNode;
i mport javax.sw ng.tree. Defaul t TreeModel ;

public class JTreeHandl er extends Defaul t Handl er {

10

private DefaultTreeMdel treeModel;

private Defaul t Mut abl eTreeNode node = nul | ;

private JTree jtree; o
15 JTreeHandl er (JTree jtree){ (2]

this.jtreesjtree;

}

public void startElenent(String uri, String |ocal Nane, (3]
20 String raw, Attributes attrs) throws SAXException {

super.startEl enent (uri, |l ocal Nane, raw, attrs);
i f(node==null) //initialise node and nodel
jtree. set Model (
new Def aul t Tr eeMbdel (
25 node=new Def aul t Mut abl eTr eeNode(| ocal Nane))); (6)
else // add child and set node to the child
node. add(node=new Def aul t Mut abl eTr eeNode(| ocal Nare)) ;
/] add attributes as children
for (int i =0; i < attrs.getLength(); i++) (7]
30 node. add(new Def aul t Mut abl eTr eeNode(
'@ +attrs. getLocal Nane(i)+"["+attrs.getValue(i)+']1'));

© 0

142

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/JTreeHandler.java

Building aJTr ee with StAX

public void endElement(String uri, String |ocal Name, String raw) ©

35 t hrows SAXException {
super . endEl emrent (uri, | ocal Nane, raw) ; (9]
node = (Defaul t Mut abl eTreeNode) node. get Parent ();
}
40 public void characters(char[] ch, int start, int |ength)
t hrows SAXException { ©
super. characters(ch,start, | ength);
String text = new String(ch,start,length).trim);
if(text.length()>0) node. add(new Defaul t Mut abl eTr eeNode(text));
45 }

The JTr ee node currently being built.

Initializesthe JTr ee structure to which the JTr ee nodes will be added.

Deals with a start element.

Calls the start method of the superclass.

If the node is not initialized, creates a new tree model and uses it for the root.

Creates anew node and adds it to the current JTr ee node. Note that the new current node is updated
to this new node.

Adds attributes as nodes of the current node.

Processes the end tag.

CallstheendEl ement method of the superclass and the current nodeis now the parent of the current
node.

® Processes atext node by creating anew JTr ee node with text asits content if it is not empty.

8.4.3. Building a JTr ee with StAX

A JTr ee using StAX processing is created with the same recursive process described for the DOM approach.
Looking at Example 8.6, we immediately see the strong similiraties between the two approaches. It isonly
amatter of traversing the structure to create nodes that will be part of the JTr ee display. Its nodes are in-
stances of the predefined Def aul t Mut abl eTr eeNode class. To obtain the display in Figure 8.1, Ex-
ample 8.5 (line 38-@) creates anew Tr eeVi ewer instance that displays a JTr ee by parsing again the
file, thisiswhy we create anew instance of aXML.St r eanReader that isgiven as parameter to the second
TreeVi ewer . JTr eeBui | d static method in Example 8.6

Q00000

@09

It uses the same algorithm as conpact (line 83-® of Example 8.1) by recursively processing element or
text DOM nodes. Inthe case of an element node (line 55-0@), it createsanew Def aul t Mut abl eTr eeNode
for the element and adds attributes asitsfirst children (line 65-®); it then processes each child by recursively
building its subtree (line 65-®) which isadded asachild of the current node. In the case of character content
(line 72-®), a single node with this character content is returned.

143

Document Processing by Program-
ming in Java

8.5. Additional Information on Programming
Models

The JavaAPI since version 1.4 includes classes for the DOMand SAX approaches and for StAX since 1.6.
XML processing is how described into some introductory Java books such as Big Java [25].

XML in a Nutshell [37] provides a short but thorough presentation of these programming models.

Sun publishes excellent online tutorials: [5] for the DOM and SAX processing models and chapter 3 of [72]
for the StAX approach. Java & XML [36] isavery good information source for the creation and manipulation
of XML documentsin Java.

In this chapter, we have used Javato accessthe content of an XML file, but there are XML parsersfor almost
every computer languages such as C [62], C++ [64], C# [63], Perl [42] [40], PHP [77], Python [4Q],
Haskell [50], Prolog [53], Ruby [80], even COBOL [21].

In our case, we were dealing similarly with all document nodes without ever looking at the names of the
elements. Asit often happens that the information needed in adocument is deep down in the tree, one must
then access specific hodes using a sequence of get Fi rst Chi | d() and get Next Si bl i ng() cals
until we get to the right element. This process must often be repeated at each level while it was more or less
implicit using templates and X Path. So we often define specia purpose functions and methods to traverse
aspecific document tree, but there are other ways. For example, XML Spy can generate automatically access
methods, in either C++ or Java, from the the XML Schema that validates a document. Thisis very useful
and much less error prone that relying on a hand-coded traversal of the tree. When the schemais changed,
then methods can be regenerated and processing of a valid XML will always follow the structure of the
XML Schema. There are also tools to convert database schemas into XML Schema. So we see that XML
processing can be easily integrated with other systems and languages.

144

Chapter 9. Document Creation by
Programming in Java

In the previous section, we have shown how to parse an existing XML document by programming. It isalso
important to see how an XML document can be created by programming. We will therefore show the inverse
of the programs shown previously by writing aprogram that parsesthe compact form we produced and expand
it into the corresponding XML document. In principle, after compaction and expansion, we should recover
the original XML document with which we started but since we have not faithfully transformed whitespace,
thefilesare not strictly identical. Although one can write aprogram to create afile with XML tags and their
content using pr i nt methods, we will show (Section 9.1) that it is both ssmpler and more systematic to
create an XML document in memory using the DOM model, to modify it and thento print it using aserializer.
In Section 9.2, we will describe how to create an XML document by parsing atext fileand send SAX events
to atransformer and in Section 9.3 we will show how to do the same with the StAX streaming approach.

9.1. Creating a DOM Document

The DOM API provides an exhaustive collection of methods to create and modify a document. The most
frequently used are:

bui | der . newbDocunent () creates an empty document to which elements can be added

doc. createH ement (String s) createsanew element named s in document doc

par ent . appendChi | d(BH enent €) addselement e asthelast child of element par ent ; if e wasalready
the child of another node, it is removed before being assigned to its
new parent

esgAtrintgSringram, Srirgvdwe) addsthe attribute nanme with the corresponding val ue to the element
e; if the attribute already exists, its value is replaced

doc. creat eText Node(String s) createsanew text node with content s in document doc

In order to smplify parsing, we create acustomized St r eamlokeni zer which returns asingle token for
all characters between separators used in the compact form (i.e. opening and closing brackets, at-sign and
newline). The separators are also returned as a single token. The implementation of this tokenizer is given
in Example 9.1.

In Example 9.2, the mai n method (line 24-@) first creates a Docunent instance (line 29-@) which will
hold the XML tree. It then creates a specialized tokenizer (line 30-@) from the file name given as argument
to the program. It goes on to find the name of the root element (line 34-@) and creates the root node. It then
callsthe expand method (line 39-@) which add the whole content of the element a child of the document.
To output the DOM structure, we create an identity transformation (line 41-@) and use the document as
source and Syst em out asoutput (line 46-@). We also set an output property so that the output is nicely
indented (line 43-@).

Expansion (line 52-@) is a recursive process that adds element and text nodes to a parent node received as
aparameter; it processes each attribute (line 55-®) by getting the name and value of the attribute and adding
it to the current element line 58-®; the content of the element (line 62-®) is processed by looping until a
closing bracket is encountered. When the next node is followed by an open bracket, a new child is created
and expanded recursively (line 66-®); otherwise, atext nodeis created (line 68-®).

145

Document Creation by Programming
in Java

Example 9.1. [Conpact Tokeni zer. java]: Specialized stream tokenizer that
ignores blank tokens

1 inport java.io.Reader;
i mport java.io.lCOException;
i mport java.io. StreaniTokeni zer

5 public class Conpact Tokeni zer {
private Streanifokeni zer st;

Conpact Tokeni zer (Reader r){ (1]
st = new StreaniTokeni zer(r);
10 st.resetSyntax(); // renove parsing of nunbers.. [>)

st.wordChars('\u0000',"'\uOOFF'); // everything is part of a word
/1 except the follow ng..
st.ordinaryChar('\n');
st.ordinaryChar('[");
15 st.ordinaryChar(']");
st.ordinaryChar(' @) ;

}
public String nextToken() throws | OCExcepti on{ (3]
20 st. next Token();
while(st.ttype=="\n"|
(st.ttype==StreanTokeni zer. TT_WORD &&
st.sval.trim().length()==0))
st. next Token();
25 return get Token();
}
public String get Token(){ o
return (st.ttype == Streamlokenizer. TT_WORD) ? st.sval : (""+(char)st.ttype);
30 }
public String skip(String sym throws | OException { e
i f(get Token() . equal s(synj)
return next Token();
35 el se
t hrow new ||| egal Argunent Exception("skip: "+sym+" expected but"+
sym +" found ");
}

40

© Constructor that receives aReader and creates acustomized St r eaniTokeni zer .

® Because we do not want to have numbers and Java comments to be dealt with, we reset the syntax to
indicate that al characters can be part of a word except for special separators used in the compact
form.

® Cals the Java tokenizer and skips newlines and empty text nodes. It returns the current token as a
String.

© Function for accessing the current tokenasa St r i ng.

146

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/CompactTokenizer.java

Creating aDOM Document

® Function for checking that the current token corresponds to the one given in parameter. Raises an ex-
ception if thisis not the case. Thisis useful for checking the input that will not appear in the output
corresponds to what is expected.

Example 9.2. [DOVExpand. j ava]: Compact form parsing to create a DOM XML
document

A sampleinput for this program is Example 5.8 to give back Example 2.2.

1 inport org.w3c.dom El ement;
i mport org.w3c.dom Docunent ;
i mport javax.xml . parsers. Docunment Bui | der;
i mport javax.xml . parsers. Docunent Bui | der Fact ory;

i mport javax.xm .transform Qut put Keys;
i mport javax.xm .transform Transformer;
i mport javax.xm .transform TransfornerFactory;
i mport javax.xm .transform Transforner Exception;
10 inport javax.xm .transform Transformer Confi gurati onExcepti on;
i mport javax.xm .transform dom DOVSour ce;
i mport javax.xm .transform stream StreanResul t;

15 inmport java.io.|OException;
i mport java.io.BufferedReader;
import java.io.FilelnputStream
i mport java.io.lnputStreanReader;
i mport java.io. Streanfokeni zer;
20
public class DOVExpand {
static Conpact Tokeni zer st;

public static void main(String[] argv) { (1]
25 try {
Docunent Bui | der Factory factory =
Docunent Bui | der Fact ory. newl nst ance();
Docunent Bui | der buil der = factory. newbDocunent Bui | der () ;

Docurent doc = buil der. newDocunent () ; (2]
30 st = new Conpact Tokeni zer ((3]
new Buf f er edReader (
new | nput St r eanReader (
new Fil el nputStrean(argv[0]))));
String root Name = "dumyEl enent "; o
35 /1 ignore everything preceding the word before the first "["

whi | e(!st. next Token().equal s("[")){
r oot Nanme=st . get Token();

}

expand((El emrent) doc. appendChi | d(doc. creat eEl erent (root Nan®e. trim())));
40 /1 output with an "identity" Transforner

TransfornmerFactory tFactory = TransfornerFactory. newl nstance(); ®

Transformer transformer = tFactory. newTransformer();

t ransf ormer. set Qut put Propert y(Qut put Keys. | NDENT, "yes"); @

DOVBour ce source = new DOVSour ce(doc);

147

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/DOMExpand.java

Document Creation by Programming

in Java
45 StreamResult result = new StreamResult (System out);
transformer.transforn(source,result); (8]
} catch (Exception ex) {
ex. print StackTrace();
}
50 }
static void expand(El enent elen) throws | OException{ (9]
Docunent doc = el em get Owner Docunent () ; ©
st.skip("[");
55 whi | e(st. get Token().equal s("@)){// process attributes @
String attNane = st.next Token();
st . next Token();
elemsetAttribute(attNane, st.skip("[")); @
st . next Token();
60 st.skip("]1");
}
whi |l e(!st.get Token().equals("]1")){ // process el enent ®
String s = st.getToken().trin();
st . next Token();
65 i f(st.get Token().equals("["))
expand((El enent) el em appendChi | d(doc. creat eEl enent (s)®));
el se{
el em appendChi | d(doc. cr eat eText Node(s)); ®
}
70 }
st.skip("1");
}
}

© 00

0000

&6 6 686

(]

Main procedure for expanding a compact form.

Creates a new empty DOM document.

Creates aspecia purpose tokenizer, described in Example 9.1, to process the file whose nameis given
as a parameter of the program

Getstheidentifier beforethefirst opening bracket and usesit as the name for the root element inserted
as achild of the document.

Expands the rest of the file asachild of the root just created.

Creates an identity transformer for serializing the output.

Makes the serializer pretty-print the output.

Creates a transformation source from the DOM structure created.

Recursive procedure for expanding the content of afile whose tokens are returned by st . The content
isinserted as the child of the el emelement.

Finds areference to the document node necessary for creating new element and text nodes.

Loops on al attribute name and value pairs.

Adds the attribute to the current element.

Loops on all elements until the closing bracket.

Creates anew element with name s and adds it asa child of the current element. Recursively expands
the next element as a child of the newly created child.

Adds atext node to the current element.

148

Creating a Document with SAX
Events

9.2. Creating a Document with SAX Events

Another way of creating an XML document isto haveaTr ansf or mer doit for us. Since the transformer
must receive an XML document, we might think that thisis pointless. However, a SAX transformer creates
adocument from SAX events aswe saw in Section 8.2. So if we manage to send these types of eventswhile
reading our text file, we will obtain a new XML document. This illustrates a clever and efficient way to
convert non-XML filesinto XML.

The main class for the SAX transformation (Example 9.3) is very simple: it creates a Conpact Reader
that will read thefileasan | nput Sour ce (line 20-@); then it creates atransformer to process this source
into an output stream (here Syst em out). All the magic of setting theinput file and creating the document
elements is done via the identity transformation process (line 25-0).

Example 9.3. [SAXExpand. j ava]: XML document creation using SAX events

1 inport org.xm.sax.|nput Source;
i mport javax.xm .transform sax. SAXSour ce;
i mport javax.xm .transform stream StreanResult;
i mport javax.xm .transform Transformer;
5 inmport javax.xm .transform TransformerFactory;
i mport javax.xm .transform Transf or mer Excepti on;
i mport javax.xm .transform Transforner Configurati onExcepti on;

i mport java.io.BufferedReader;
10 inmport java.io.FileReader;
i mport java.io.lOException;

public class SAXExpand {
public static void main(String[] argv) {

15 try {

| nput Sour ce i nput Source =
new | nput Sour ce(
new Buf f er edReader (new Fi | eReader (argv[0])));

Conpact Reader saxReader = new Conmpact Reader () ;

20 SAXSour ce source = new SAXSour ce(saxReader, i nput Source); @
StreamResult result = new StreanmResult (System out);

TransformerFactory tFactory =
Transf or mer Fact ory. new nst ance() ;
25 Transformer transformer = tFactory. newTransformer(); (2]
transformer.transform source,result);
} catch (TransfornerException ex){
System out . println("Transforner Exception"+ex);
ex. print StackTrace();
30 } catch (1 OException ex) {
System out. println("l CException"+ex);
ex. print StackTrace();

35 }

149

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/SAXExpand.java

Document Creation by Programming
in Java

©® CreatesaReader tobeusedasan| nput Sour ce.
® Usesanidentity transformer to copy the input to the output stream (here the standard output).

The reading of the file and generation of SAX events are performed by Conpact Reader (Example 9.4),
a specialized XM_Reader . Because Conpact Reader implements the XM_Reader interface, it must
define many methods but only afew of them arereally important in this special case. This explainsthe many
stub methods at the end of Example 9.4 (line 89-@).

The SAX parsing events are sent to an event handler (line 18-0) for whichwedefine(get . . . andset .. .)
accessor methods available to the user of the handler. The main method is par se (line 41-@) that usesthe
same algorithm as the ones used for the DOM approach. par se uses a Conpact Tokeni zer instance
(line 39-@) of the same class used with the DOM approach in Example 9.1. This method will generate SAX
events as it goes through the text file. It first finds the name of the root element (line 400-@) and then calls
expand (line 50-@) with an indentation level (used only to obtain a nicer output).

Most of the processing is done within the expand method that receives the name of the current element as
parameter. It first creates an Att ri but esl npl data structure which is populated with the names and
vauesof al attributes (line 64-@). Once all the attributes have been gathered, wecan send ast ar t El enent

event to the handler (line 72-®). We then process the content of the event either with a recursive cal to
expand (line 77-®) or by creating atext element by sendingachar act er s event to the handler (line 80-®).
Once all children elements have been processed, an endEl ement event is sent to the handler (line 85-®).

The previous processing produces a valid XML file but one that is very hard to read because everything
will appear on the same line. A way to produce a nicely formatted output is to send ignorable spacing to
the handler. As the formatting rule we use is to always end the current line and add some indentation, we
have defined an auxiliary method i gnor abl eSpaci ng that manages an array of characters of the appro-
priate length. It is initialized with nine spaces but it expands when necessary. This method is caled at the
appropriate moment in the expansion process, i.e. before creating a new start (line 71-®) or end element
(line 84-®) or before a new text node (line 79-®).

Example 9.4. [Conpact Reader . j ava]: Compact form parsing to generate SAX
events

1 inport org.xm .sax. XM_Reader

i mport org.xm . sax. Content Handl er

i mport org.xm . sax. DTDHandl er

i mport org.xm.sax. EntityResol ver;
5 inmport org.xm.sax. ErrorHandl er

i mport org.xm . sax. | nput Source;

i mport org.xm.sax.Attributes;

i mport org.xm.sax. SAXExcepti on

i mport org.xm.sax. hel pers. Attri buteslnpl;

10

i mport java.io.| OException

i mport java.io.Streanmlokeni zer

i mport java.util.Arrays;

15 public cl ass Conpact Reader inplenments XM_Reader {

private String nsu = ""; // no nanespace UR
private ContentHandl er handl er; (1

150

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/CompactReader.java

Creating a Document with SAX

Events
20 private static char[] blanks = "\n ".toCharArray(); (2]
private void ignorabl eSpacing(int nb) throws SAXException { (3
i f (nb>bl anks.length){// extend the length of space array
bl anks = new char[nb];
25 bl anks[0] ="\ n";
Arrays.fill (bl anks, 1, bl anks.length," ");
}
handl er. i gnor abl eWhi t espace(bl anks, 0, nb) ;
}
30
/I Return the current content handler
publ i ¢ Cont ent Handl er get Cont ent Handl er () {return handl er;}
/1A'l ow an application to register a content event handl er
public void set Cont ent Handl er (Cont ent Handl er handl er) {
35 t hi s. handl er =handl er
}
[/ Parse an XM. document.
private Conpact Tokeni zer st; (4
40
public void parse(lnputSource input)({ (5]
try{
String root Name = "dummyRoot";
st = new Conpact Tokeni zer (i nput. get Character Stream());
45 /1 ignore everything preceding the word before the first "["
whi | e(!st. next Token().equal s("[")){
r oot Name=st . get Token() ;
}
handl er . st art Docunent () ;
50 expand(r oot Nane, 1) ; (7
i gnor abl eSpaci ng(1);
handl er. endDocunent () ;
} catch (SAXException e){
System out. println(e. get Message());
55 } catch (1 CException e) {
Systemout.println("1O Error:"+e);
}
}
60 voi d expand(String el ement Nanme, i nt i ndent) (8
t hrows | OExcepti on, SAXException {
Attributesinpl attrs = new Attributeslnpl();
st.skip("[");
whi | e(st. get Token().equal s("@)) {// process attributes (9]
65 String attNane = st.next Token();
st . next Token();
attrs. addAttri bute(nsu, att Nane, att Name, " CDATA", st.skip("["));
st . next Token();
st.skip("]1");
70 }

i gnor abl eSpaci ng(i ndent);
handl er . st art El ement (nsu, el enent Nane, el ement Nane, attrs);

e 6

151

Document Creation by Programming

in Java
whi | e(!st.get Token().equals("]1")){ // process content @
String s = st.getToken().trinm();
75 st . next Token();
i f(st.get Token().equals("["))
expand(s, i ndent +3) ; ®
el se {
i gnor abl eSpaci ng(i ndent +3) ; 14
80 handl er. characters(s.toCharArray(),0,s.length()); ®
}
}
st.skip("1");
i gnor abl eSpaci ng(i ndent); ©
85 handl er . endEl enent (nsu, el ement Nane, el ement Nane) ; ®
}
/1 dumry definitions..
publ i c DIDHandl er get DTDHandl er(){return null;} 15]
90 public EntityResol ver getEntityResolver(){return null;}
public ErrorHandl er getErrorHandler() {return null;}
public bool ean get Feature(String nanme) {return false;}
public Object getProperty(String name) {return null;}
public void parse(String systemd){}
95 public void set DTDHandl er (DTDHandl er handl er) {}
public void setEntityResol ver(EntityResol ver resolver){}
public void setErrorHandl er (ErrorHandl er handl er){}
public void setFeature(String name, bool ean val ue){}
public void setProperty(String name, Object value){}
100 }
© Private variable for keeping track of the document handler.
® Character array containing a carriage return followed by a certain number of blanks that will used for
formatting.
©® Method for returning blanks that will be ignored by the parser.
O Variablefor the tokenizer that handles the compact output.
® Starting point of the parsing process. Creates the tokenizer for the input file and generates a
start Docunent event.
0 Findsthe name of the root node.
@ Startstherecursive processing of the content of an element with the name of the root node.
O Recursive processing of an element content.
© Loopsover the content of al attributes that are inserted into asingle At t r i but esl npl structure.
® Generate spacing for pretty-printing the output structure.
® Generatesast art El enment event with the name of the element and the structure containing the at-
tributes.
® Loopsover al children nodesin order to process either element or text nodes.
® Ifitisaneement node, callsexpand recursively but with more indentation.
® Ifitisatext node, generatesachar act er s event with an appropriate indentation
® Indentation before atext node.
® Indentation before closing an element
® Indicates the end of an element.
® Empty definitions for handlers required by the XM_LReader interface but not used in this example.

152

Creating a Document with StAX
streaming

9.3. Creating a Document with StAX stream-
INng

To create anew document using the StAX API, we must first createan XMLSt r eamW i t er that provides
methods to produce XML opening and closing tags, attributes and character content. As this approach only

keeps asmall part of the document in memory, thereis no validation or even well-formedness guarantee on
the program. The methods must be called in the appropriate order in order to reflect the XML tree structure.

The most frequently XMLSt r eamV i t er (xm sw) methods are:

xm sw witeStartDocurent (); initialises an empty document to which elements can be added

xnmswwiteSartHenent (Sring s) createsanew element named s

xtemwn tetribigSrirgram Srirgvdle adds the attribute nane with the corresponding val ue to the last
element produced by acall towr i t eSt art El enent . Itispossible
to add attributes as long as no cal to witeEl ement Start,
writeCharacters orwiteEndEl enment hasbeendone.

xm sw. wr i t eEndEl enent close the last started element
xnmhswwiteCharacters(Sring s) creates anew text node with content s as content of the last started
element.

Likewe did in Section 9.1, to simplify parsing, we create a customized St r eamTokeni zer (line 18-8)
which returns a single token for all characters between separators used in the compact form (i.e. opening
and closing brackets, at-sign and newline). The separators are also returned as a single token. The imple-
mentation of this tokenizer is given in Example 9.1.

Themain classfor the StAX transformation (Example 9.5) isvery simple: it createsan XMLSt r eam i t er

instance that will write the output file (line 17-@) and an instance of a Conpact Tokeni zer to read the
input file. After skipping everything before the first opening bracket, we initialize the output with a start
document (line 26-@) and call expand method (line 29-@) to deal with the content of an element. Asthe
output of an XMLSt r eamW i t er isnot indented, we decided here to define thei gnor abl eSpaci ng

method (line 73-®) that outputs whitespace nodes. Thisis usually not needed but it is convenient to be able
to seetheresults. In this particular case, creating a properly indented is abit tricky because we must output
anew line only when the last thing written was the end of an element or an attribute.

The expand method (line 43-@) first outputs the attributes on the current element (line 46-@) and then
writes either a new element and calls itself recursively to process its contents (line 57-®) or it outputs the
character content of the element (line 63-®).

Example 9.5. [St AXExpand. j ava]: XML document creation using the StAX
approach

1 inport java.io.BufferedReader;
i mport java.io.FileReader;
i mport java.io.lCException;

5 inmport javax.xm .stream XM.Qut put Factory;
i mport javax.xm .stream XM.StreanExcepti on;
i mport javax.xm .stream XM.StreanWiter;

153

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Java/StAXExpand.java

Document Creation by Programming
in Java

i mport java.util.Arrays;
10
public class St AXExpand {
static XM.StreamWiter xmsw = null;
public static void main(String[] argv) {
try {
15 xm sw = XM_Qut put Fact ory. newl nst ance()
.createXM.StreamiNiter(Systemout);
Conpact Tokeni zer tok = new Conpact Tokeni zer (
new Fi | eReader (argv[0]));

(o)

20 String root Name = "dummyRoot";
/1 ignore everything preceding the word before the first "["
whi | e(!t ok. next Token().equal s("[")){
r oot Name=t ok. get Token() ;
}
25 /] start creating new docunent
xm sw. writeStartDocunent (); (3]
i gnor abl eSpaci ng(0);
xm sw. writeStartEl enent (root Nane) ;

expand(t ok, 3); o
30 i gnor abl eSpaci ng(0);
xm sw. wri t eEndDocunent () ; (5]

xm sw. fl ush();
xm sw. cl ose();
35 } catch (XM.StreanException e){ (6]
System out. println(e. get Message());
} catch (1 CException ex) {
System out. println("lOException"+ex);
ex. print StackTrace();

40 }
}
public static void expand(Conpact Tokeni zer tok, int indent) (7]
t hrows | OExcepti on, XM_St r eanException {
45 tok. skip("[");
whi | e(t ok. get Token().equals("@)) {// add attributes (8]

String attNane = tok.next Token();

t ok. next Token() ;

xm sw.witeAttribute(attName,tok.skip("["));
50 t ok. next Token() ;

tok. skip("]");

}
bool ean | ast WaASEl enent =true; // for controlling the output of newines
whi | e(!tok. get Token().equal s("]")){ // process content (9]
55 String s = tok.getToken().trim);
t ok. next Token() ;
i f(tok.getToken().equals("[")){ ©

i f(lastWasEl enent)i gnor abl eSpaci ng(i ndent);
xm sw.writeStartEl enent (s);

60 expand(t ok, i ndent +3) ;
| ast WASEIl emrent =t r ue;

154

Additiona Information on XML
Document Creation

65

70

75

80

0666000000 OD0OO

} else {
xm sw. wri t eChar acters(s); ®
| ast WASEIl enent =f al se;
}
}
tok. skip("]");
i f (1 astWasEl enent)i gnor abl eSpaci ng(i ndent -3);
xm sw. wri t eEndEl enent () ; @
}
private static char[] blanks = "\n".toCharArray();
private static void ignorabl eSpaci ng(int nb) ®
t hrows XML.StreanException {
i f (nb>bl anks.length){// extend the length of space array
bl anks = new char[nb+1];
bl anks[0] ="\ n";
Arrays.fill (bl anks, 1, bl anks.length,"' ");
im sw. w it eCharacters(bl anks, 0, nb+1);
}
}
Createsthe XMLSt r eamWW i t er for outputting the XML text.
Creates a specialized tokenizer for the compact form.
Initializes the XML document.
Calls the expanding process on the root element.
Terminates the XML writing proces by ending the document and closing the file.
Deals with exceptions that can be raised during writing the XML code and the file.
Recursive method to output an element properly indented.
Adds attributes name and value on the last element outputted.
Deals with the content of the element.
Recursively calls the expansion on the content of the element.
Outputs the character content.
Outputs the end of the current element.
Creates a character node containing a new line and an appropriate number of spaces.

9.4. Additional Information on XML Docu-
ment Creation

Java & XML [36] is avery good information source about creating and manipulating XML documentsin
Java. It also shows how to integrate stylesheet processing with Java.

All programming languages providing XML parsing APls, (C [62], C++ [64], C# [63], Perl [42] [40],
PHP [77], Python [40], Haskell [50], Prolog [53], Ruby [80] and COBOL [21]) also give means to create
XML file by serialization of the DOM-like structures or with SAX callbacks.

155

156

Chapter 10. Alternative approaches to
XML programming

In the previous sections, XML was used as aformalism for data organization and markup. It was processed
either with XML tools or using the Java programming language, which provides a fairly complete set of
toolsfor processing XML documents. Sincethistree based approach to data organization is now well accepted,
tools for XML file parsing and creation have been developed for other programming languages. XML
packages exist for C++, C#, Perl and even Fortran with capabilities and programming interfaces similar to
the ones we have presented for Java. XML thus serves as convenient exchange language between programs
written in different programming languages.

Of particular interest is | i bxm 2 library [73] which is an XML parser and toolkit written in C with a
variety of language bindings for other programming languages. It is very portable and can be run on most
systems. It is most often accessible from the command line thru the xni | i nt command. The parser can
validate with DTD, XML Schema, Relax NG or Schematron. XPath and XSLT are also implemented but
at the 1.0 level. Some features of XSLT 2.0 have been implemented in a separate project [74].

We will first present how XML data can be processed in Ruby[44], adynamically typed scripting language
known for its flexibility and its large library of tools for creating Web-based applications. We then show
how XML can be processed with Python [32], a popular script language, PHP [76], a server-side script
language for the Internet, JavaScript [68] used in web browsers, and Swift [85], , a statically typed script
language. For mainly historical purposes, we a so describe EcmaScript for XML (E4X).[66],

We will illustrate the use of XML within these programming languages using the same compact and expand
applications that we have used in previous chapters. Thiswill allow an easier comparison between different
programming languages.

Even though we have argued until now that XML is the ideal markup language, we will describe in this
chapter some alternative approaches for a tree based data organization. It should be remembered that most
of these smplified XML packages do not provide validation for their input, which must be performed by
other means. In the last section of this chapter, we will show other XML competitors for exchanging data
between programs: JavaScript Object Notation (JSON) [71] and YAML (YAML Ain't aMarkup Language)
[90]. These notations are geared toward the production of a human-readable notation for describing tree
based informations compared with XML. Thisgoal is achieved but they do not provide any notion of valid-
ation or transformation tools within the exchange language itself. But in the context of simple information
transfers betweens programs (e.g. between a browser and a Web server using the AJAX technology for a
more pleasant interaction) not needing sophisticated validation or transformation, they provide interesting
lightweight alternatives.

10.1. XML processing with Ruby

Ruby [81] is a dynamic object-oriented programming language known for its flexibility and uniformity
when accessing object properties. Because XML tree structures can easily be represented with Ruby objects,
it is possible to use a simple and intuitive way of dealing with XML objects using essentially the same
syntax as that used for other Ruby objects. In Ruby, XML processing is most often performed using the

157

Alternative approaches

REXM. package. In this section, we will show how to use it for both DOM and SAX parsing, which we
used in XML processing in Java.

10.1.1. DOM parsing using Ruby

To show how to processan existing XML structure, wewill usethe compacting processthat we programmed
in Java in Section 8.1. In Ruby, DOM parsing is achieved simply by creating an instance of the
REXML: : Docurent class. Thisinstance isanode and its node type is given by its class: El enment or
Text in our example. Information about a node is available through properties name, attri but es (a
Hash whose keys are the attribute names), chi | dr en (an Ar r ay that can be iterated upon with each)
or val ue (more useful for text nodes).

Example 10.1. [DOMConpact . r b] Text compaction of the cellar book (Example2.2)
with Ruby using the DOM model

Compare this program with Example 8.1.

1 require 'rexm /docunent’ (1
i ncl ude REXM

def conpact (node, i ndent) (2]
5 i f(node. cl ass==El enent) (3
print node.nane+"["
i ndent += ' '*(node. nane. | ength+1);
first=true
node. attri butes. each do | key, val ue| o
10 print "\ n#{indent}" unless first
print "@{key}[#{value}]"
first=fal se;
end
node. chi | dren. each do | chil d| (5]
15 # deal only with el ement nodes or non-"enpty" text nodes
if child.class==Elenment || child.value.strip.|ength>0 (6
print "\ n#{indent}" unless first
conpact (chi l d, i ndent)
first=fal se;
20 end
end
print "]"
el sif node. cl ass==Text (7]
print node.val ue.strip.gsub(/ *\n */," ") # normalize new |ines
25 end
end
doc = Docunent.new(STDI N) (8]
conpact (doc.root,"") (9]

30

©® Makessurethat theDocunent classinthe REXML library ispresent. Includesall classes of the REXML
module.

158

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Ruby/DOMCompact.rb

SAX parsing using Ruby

® Printsthe content of the XML node. Each line prefixed with an indentation, a string composed of the
appropriate number of spaces.

® If the node is an element, prints the name of the node followed by an opening bracket and adds the
appropriate number of spaces to the current indentation.

0 Dealswith attributes which are contained in a hash over which we iterate. For each attribute, prints a
@ its key and the corresponding value within square brackets. A new lineis started for each attribute
except thefirst.

© Processesall children with an iterator.

6 If itisan element or a non-empty text node, recursively calls conpact possibly changing line if it
not the first child.

© Processes atext node by printing it and normalizing internal newlines.

0 Parsesthefile by creating anew XML document from the content of the standard input.

© Call the compacting process on the document node with an empty indentation string.

10.1.2. SAX parsing using Ruby

In order to process an XML structure with the SAX approach, we will use a similar compacting process to
the one we programmed in Java in Section 8.2. SAX parsing is achieved by creating an instance of the
SAX2Par ser classtowhich we add alistener for parsing events. The parsing process will send call-backs
to the handler of these events which will produce the compacted document.

Example 10.2. [SAXConpact . r b] Text compaction of the cellar book (Example2.2)
with Ruby using the SAX model

Compare this program with Example 8.3.

1 require 'rexm /docunent’ o
require 'rexm /parsers/sax2parser’
require 'rexm /sax2listener’
requi re ' Conpact Handl er"

5
parser = REXM.:: Parsers:: SAX2Par ser. new(STDI N) (2]
parser.|i sten(Conpact Handl er. new) (3]
par ser. parse (4]

© Makessurethat the appropriate SAX parser classes of the REXM. library and the Conpact Handl er
class are present.

® Creates an instance of the SAX parser that will parse the standard inpui.

® Hasthe parser send its parsing events to the Conpact Handl er class described in Example 10.3.

O Startsthe parsing process.

SAX parsing in Ruby is only a matter of defining the appropriate handlers. Because the current version of
REXM_ does not handle XML entities, some codeisadded to deal with their declaration and their expansion.

Example 10.3. [Conpact Handl er . r b] Ruby SAX handler for text compacting an
XML filesuch asthat of Example 2.2

Compare this program with Example 8.4.

159

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Ruby/SAXCompact.rb
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Ruby/CompactHandler.rb

Alternative approaches

1 cl ass Conpact Handl er

10

15

20

25

30

35

40

45

50

i ncl ude REXM.:: SAX2Li st ener (1]
def initialize (2]
@| osed=f al se
@ ndent =0;
@ntities = {"&np; "=>"&", """=>"', "&pos;"=>""",
&Ity o=> <M, > => ">t
end
def start_elenent(uri,|ocal name, gnane, attri butes) (3]
if @l osed
print "\n"+" "*@ ndent
@| osed=f al se
end
@ ndent += 1+l ocal nane. | engt h() o

print | ocal nane+"["

first=true;

attributes.each do | key, val ue| (5]
print "\n"+" "*@ndent if !first
first=fal se
print "@¥{key}[#{expandEntities(value)}]"
@| osed=t rue

end

end

def end_el enent (uri, | ocal nane, gnane) (6]
print "]"
@| osed=t rue
@ ndent =@ ndent - 1- | ocal nane. | engt h

end
def characters(text) (7]
if text.strip.length>0
if @l osed
print "\n"+" "*@ ndent
@| osed=f al se
end
text.strip! # renove | eading and trailing space®
text.gsub! (/[\s\r\n]+/," ") # normalize space

print expandEntities(text)
@| osed=t rue

end

end

def entitydecl (nane, decl) (9]
@ntities["& +name+"; "] =dec

end

def expandEntities(text) ©

if text.include?("&")
match entities as long as there are repl acenents
@ntities.each{|key,value| retry if text.gsub!(key, value)}
replace nunerical entities starting with &
while true

160

Creating an XML document using

Ruby
55 if res=text.match("&#x([0-9a-fA-F]+);") # hexadeci nmal ®
text=res.pre_match+[res[1]. hex].pack("U")+res. post_match
el sif res=text.match("&#([0-9]+);") # deci mal
text=res.pre_match+[res[1].to_i].pack("U")+res. post_match
el se
60 br eak
end
end
end
t ext
65 end

end

Includes the default declarations needed to handle events sent by a SAX parser.

Definesand initializes two instance vari abl es needed to output the element with the correct indentation.
Creates the entities table and initializes it with the predefined XML entities.

When anew element is started, finishes the current indentation if needed.

Updates the current indentation by adding the length of the element name.

Prints the first attribute on the same line and the others on the subsequent lines properly indented.
When an element finishes, closes the current bracket and updates the current indentation.

For a non-empty text node, ends current line if needed.

Removes leading and trailing space, normalizes and expands entities.

When a new entity is declared, add it to the entities table.

If the text contains an ampersand, it meansthat it contains entities the program must deal with. Entities
from the entities table are expanded as often asit is necessary.

Numerical entities are expanded by replacing them with their Unicode equivalent.

0000000 © o

=

10.1.3. Creating an XML document using Ruby

In order to demonstrate the creation of new XML document, we will parse the compact form produced in
Section 10.1.1 or in Section 10.1.2 likewe did in Chapter 9. We first need away to access appropriate tokens
corresponding to important signalsin the input file. Thisis achieved by defining aConpact Tokeni zer
class (Example 10.4) that will return opening and closing square brackets, at-signs and the rest as asingle
string. Newlineswill also delimit tokens but will beignored inthe document processing. Thefileis processed
by aseries of callsto next Token or ski p. ski p provides auseful redundancy check for tokensthat are
encountered in the input but are ignored for output.

Example 10.4. [Conpact Tokeni zer . r b] Specialized string scanner that returns
tokens of compact form.

Compare this program with Example 9.1.

1 require 'strscan'
cl ass Conpact Tokeni zer
attr_reader :token

© 000

5 def initialize(file)
@e = /\[|\]|\n@["[\]\n@+ # handle different token types
@canner = StringScanner.new(file.read)

161

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Ruby/CompactTokenizer.rb

Alternative approaches

end

10 # get next non-whitespace token and return it
def next Token (5]
| oop do
@ oken = @canner.scan(@ e)
break if @oken !~ /M n? *$/ #skip tokens with only whitespace
15 end
@ oken
end

if the current token is "syni then get next one
20 # otherw se, output error nmessage
def skip(sym (6]
if (@oken==sym
next Token
el se
25 # out put error message giving the position and the current |ine
str = @canner.string
pos = @canner. pos
rai se "skip:#{syn} expected but #{@oken} found at position #{pos}:"+

stristr.rindex("\n",pos)|]|0 ... str.index("\n",pos)||str.|ength]
30 end
end
end
® Includesthe St ri ngScanner package on which thistokenizer is built.
® Definesthe Conpact Tokeni zer class.
® Makesthe current token available as a readable attribute.
® (@e is an instance variable containing the regular expression corresponding to each token type;

@canner istheSt ri ngScanner instance running on the string read fromthef i | eNane para-
meter.

Getsthe next token but skip those containing only whitespace. It returns the value of the current token.
Checks that the current token is the same as the one given as parameter and retrieves the next one. If
the current token does not match, then raises an exception giving the expected token and the one found
with the content of the current line.

© 0

Thanks to the dynamic object oriented aspect of Ruby, much of the complexity of node creation and child
addition is hidden in simple class instance creations. Docunent. new(), El enent. new() and
Text . new() . Adding a new node is done with the << operator that appends new information at the end
of amost any object in Ruby. The attributes of a node are kept in a hash table that is an a property of an
XML node. This hash tableis assigned like any other one in Ruby.

Example 10.5. [DOVEXpand. r b] Ruby compact form parsing to create an XML
document

A sample input for this program is Example 5.8 , which should yield Example 2.2. Compare this program
with Example 9.2.

162

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Ruby/DOMExpand.rb

Creating an XML document using

Ruby
1 require 'rexm /docunent’ (1]
i ncl ude REXML
requi re 'conpact Tokeni zer' (2]
5 st = Conpact Tokeni zer. new(STDI N) (3]
start new docunent
doc = Docunent. new() o
doc << XM.Decl.new 1.0, "UTF-8") (5]
10 # find the nane of the root
root Name = 'dummyEl enent’ (6]
whi | e st.next Token!="["
r oot Name=st . t oken
end
15
create the elenent and return it with the current token
def expand(st, el ement Nane) (7]
el em = El enent. new el enent Nane) (8]
st.skip("[")
20 while st.token=="@ # process attributes (o]
att Name = st.skip("@)
st. next Token
elemattributes[attNanme] = st.skip("[") ©
st. next Token
25 st.skip("]")
end
while st.token!="]" # process children ®
s = st.token.strip
st. next Token
30 if(st.token=="[")
el em << expand(st, s) @
el se
el em << Text.new(s) ®
end
35 end
st.skip("]")
return elem
end
40 # expand fromthe root el enent
doc << expand(st, root Nane) 1]
wite it properly indented
doc. writ e(STDQUT, 0) ®

0000000

Ensures that the library REXM. document class is loaded, then include it.
Ensures that the Conpact Tokeni zer (Example 10.4) isloaded.
Creates the tokenizer on the standard input.

Initializes anew XML document.

Adds an appropriate XML declaration.

The name of theroot is the first token immediately followed by an opening square bracket.

Creates an XML element corresponding to the content of r oot Name and returnsiit.
Creates a new, empty XML element with name el ement Nane.

163

Alternative approaches

(9]

e 66

Because all attribute names start with an @ we loop while the current token is equal to @ The name
of the attribute is saved and the following opening square bracket is skipped, the value is kept and the
] isskipped.

Adding an attribute is done by assigning tothe at t r i but es hash within the XML node.

All children are then processed in turn until a closing square bracket is encountered. s is the current
token, which is either a child element name (if followed by an opening square bracket) or the content
of atext node.

A child nodeisexpanded by arecursive call whoseresult isadded asthelast child of the current el ement.
A text node is added as the last child of the current element.

Cdlls the expansion of the document starting from ther oot Nane and adds the result as the child of
the document.

Serializesthe document on the standard output. By default, the XML is properly indented. The second
parameter gives aglobal indentation level if needed.

164

XML processing with Python

10.2. XML processing with Python

Python [32] is adynamically typed script programming language with a syntax inspired by functional lan-
guages such as Haskell. In this section, we will show how to useit for both DOM, SAX and StAX parsing,
whichweused in XML processing in Java. Asmost XML files use the UTF-8 encoding, we will useVersion
3 of Python in which the processing of this encoding is better integrated. To make string processing more
uniform, it preferable to also use UTF-8 as the encoding of our Python source file. Thisis indicated using
a structured comment as the first line of our programs (see Example 10.6).

10.2.1. DOM parsing using Python

To show how to process an existing XML structure, wewill use the compacting processthat we programmed
in Javain Section 8.1. In Python, DOM parsing is achieved simply by calling the par se method from the
xm . dom m ni dompackage. ThiscreatesaDOM structure composed of instancesof thexm . dom Node
class.

Example 10.6. [DOMConpact . py] Text compaction of thecellar book (Example 2.2)
with Python using the DOM model

Compare this program with Example 8.1.

1 #-*- coding: utf-8 -*-
i mport xml.dom o
fromxm .dominport Node
fromxm .dom m ni dominport parse

5 inmport sys

def strip_space(node): (2]
chil d=node.firstChild
whi | e chil d! =None:
10 c=chi |l d. next Si bl i ng
if (child.nodeType==Node. TEXT_NODE and
l en(chil d. nodeVal ue. strip())==0):
node. r enoveChi | d(chi | d)
el se:
15 strip_space(child)
chil d=c
return node

wuse sys.stdout.wite instead of print to control the output
20 # i.e. without added spaces between el enents to print
def conpact (node,indent): (3
i f node==None: return
i f node. nodeType==Node. ELEMENT_NCDE: o
sys. stdout.wite(node. nodeName+' [')
25 i ndent += (| en(node. nodeNane) +1)*" "
attrs = node.attributes
first=True
for i in range(len(attrs)): (5
if not first: sys.stdout.wite('\n'+indent)

165

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Python/DOMCompact.py

Alternative approaches

30

35

40

45

(o

60000

sys.stdout. wite(' @+attrs.iten(i).nodeName +
"["+attrs.item(i).nodeVal ue+']")
first=Fal se
chil d=node.firstChild
whi | e chil d! =None: (6]
if not first: sys.stdout.wite('\n'+indent)
conpact (chil d, indent) (7]
first=Fal se
chi I d=chi | d. next Si bl i ng
sys.stdout.wite(']")
elif node. nodeType==Node. TEXT_NODE: (8]
sys. stdout.wite(node. nodeVal ue.strip())
doc = parse(sys.stdin) (9
conpact (stri p_space(doc. docunent El emrent), " ")
sys.stdout.wite('\n") ©
Imports the xm . dommodule from which we specifically import the Node class and the par se

method to read the standard input.

A recursive method which goes through the DOM structure to remove whitespace only nodes. It returns
the cleaned DOM structure.

Prints the content of the XML node. Each line is prefixed with an indentation, a string composed of
the appropriate number of spaces.

If the node is an element, prints the name of the node followed by an opening bracket and adds the
appropriate number of spaces to the current indentation.

Deals with attributes which are contained in alist of nodes over which we iterate. For each attribute,
prints a @ its name and the corresponding val ue within square brackets. A new line is started for each
attribute except the first.

Loops over the list of children possibly changing lineif it not the first child.

Recursively callsconpact on the child node with the updated indentation.

Processes a text node by printing it and normalizing internal newlines.

Parses the file by creating anew XML document from the content of the standard inpuit.

Calls the compacting process on the document node with an empty indentation string and ends the last
line with a newline.

10.2.2. SAX parsing using Python

In order to process an XML structure with the SAX approach, we will use asimilar compacting process to
the one we programmed in Javain Section 8.2. SAX parsing is achieved by creating an instance of the SAX
classto which we add a handler method for the corresponding parsing events. The parsing process will send
call-backs to the handler of these events which will produce the compacted document.

Example 10.7. [SAXConpact . py] Text compaction of thecellar book (Example 2.2)

with Python using the SAX model

Compare this program with Example 8.3.

166

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Python/SAXCompact.py

SAX parsing using Python

1

10

000

i mport
i mport
i mport

par ser
parser.
parser.

xm . sax (1]
Sys
Conpact Handl er

= xml . sax. make_parser ()
set Cont ent Handl er (Conpact Handl er . Conpact Handl er ())
par se(sys. stdin)

o0

sys.stdout.wite('\n")

Imports the SAX parser package and the Conpact Handl er class.

Creates an instance of the SAX parser.

Makes the parser send its parsing events to the Conpact Handl er class described in Example 10.8.
Starts the parsing process and ends the last line with a newline.

SAX parsing in Pythonis only amatter of defining the appropriate handlers. Because nodes are not normal -
ized, many successive text nodes can appear within an element, so some care has to be taken to deal with
thisfact.

Example 10.8. [Conpact Handl er. py] Python SAX handler for text compacting

an XML file such asthat of Example 2.2

Compare this program with Example 8.4.

1 from xm . sax. handl er inport ContentHandl er
i mport sys (1

5

10

15

20

25

def

def

def

cl ass Conpact Handl er (Cont ent Handl er) :

_init__(self): (2
sel f.closed = Fal se

self.indent = 0

sel f. | ast NodeWasText = Fal se

start El ement (sel f, |ocal name, attrs): (3]
if self.closed:
sys.stdout.wite('\n' +sel f.indent*" ")
self.closed = Fal se
sel f.indent +=1+| en(| ocal nane) o
sys.stdout.wite(local nane+' [')
first = True
for nane in attrs. getNames(): (5]
if not first:
sys.stdout.wite('\n' +sel f.indent*" ")
first = Fal se
sys.stdout.wite(' @+nanme+' [' +attrs. get Val ue(name)+']")
self.closed = True
sel f. | ast NodeWasText = Fal se

endEl emrent (sel f, | ocal nane): (6]
self.closed = True
sys.stdout.wite(']")

167

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Python/CompactHandler.py

Alternative approaches

30

35

[~

Q00060

sel f.indent -= 1+l en(l ocal name)
sel f. | ast NodeWasText = Fal se

def characters(self, data): (7]
data = data.strip()
i f(len(data)>0):
if self.closed and not self.| ast NodeWasText:
sys.stdout.wite('\n' +sel f.indent*" ")
sel f.closed = Fal se
sys. stdout.wite(data)
sel f.cl osed=Tr ue
sel f. | ast NodeWasText = True

Imports the xm . sax. handl er package containing the Cont ent Handl er class which will be
subclassed to handle events sent by a SAX parser.

Definesthe constructor of the class and initializesthree instance variabl es needed to output the element
with the correct indentation. The last flag is used when many successive text nodes appears; this happens
when XML entities are being replaced by their values.

When anew element is started, finishes the current indentation if needed.

Updates the current indentation by adding the length of the element name.

Prints the first attribute on the same line and the others on the subsequent lines properly indented.
When an element finishes, closes the current bracket and updates the current indentation.

For anon-empty text node, ends current lineif needed and if the last node was not atext node. Writes
the content of the node and indicates that the last node was a text node.

10.2.3. StAX parsing using Python

Pull parsing in Pythonis performed using thepul | dompackage whoseinterfacetothe DOVEvent St r eam
isabit tricky to use. In particular, it can return many successive text nodes and it does not provide an uniform
API like the one defined in the Java XML St r eanReader class. So to simplify our processing, we first

define our own XMLSt r eanReader classwhich will be used in Example 10.10.

Example 10.9. [XM.St r eanReader . py] Text compaction of the cellar book

1

(Example 2.2) with Python using the StAX model

fromxm .dominport pulldom
i mport sys (1

cl ass XM.StreanReader () : (2]
XM_St reanReader: sinplified interface to DOVEvent Stream

so that it looks simlar to the Java XM.StreanReader with sinilar nethods
It concatenates all successive text nodes

0 """

15

def __init_ (self, file): (3
sel f.events = pull dom parse(file)
sel f.event = None
sel f. node = None
sel f. 1 ook _ahead=None

168

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Python/XMLStreamReader.py

StAX parsing using Python

20

25

30

35

40

45

50

55

60

65

70

get next token

def

def

def

def

def

def

def

def

def

def

def

next (sel f):
if self.l ook _ahead == None:
(sel f.event, sel f.node) =sel f. events. get Event ()
el se:
(sel f.event, sel f.node) =sel f.| ook_ahead
sel f. 1 ook _ahead=None
concatenate consecutive character nodes
whil e sel f.event == pul | dom CHARACTERS
sel f. | ook_ahead=sel f.events. _next__ ()
whi | e sel f.l ook_ahead[0] == pull dom CHARACTERS
sel f. | ook_ahead=sel f. event s. get Event ()
br eak

i s\Whi t eSpace(sel f):
return (self.event == pull dom CHARACTERS and
| en(sel f.node. data.strip())==0)

isStartEl enent (sel f):
return self.event == pull dom START_ELEMENT

i SEndEl ement (sel f):
return self.event == pull dom END_ELENMENT

i sCharacters(self):
return self.event == pul | dom CHARACTERS

checkSt art El ement (sel f, net hod) :
if not self.isStartEl enment():

rai se ValueError("% called for an event of type

(et hod, sel f. event))

get Local Nane(sel f):
sel f.checkStart El ement (" get Local Nane")
return self.node. | ocal Nane

get Attri but eCount (sel f):
sel f.checkStart El ement ("get Attri buteCount™)
return self.node.attributes.|ength

get Attri but eLocal Nanme(sel f,i):
sel f.checkStart El ement ("get Attri buteLocal Nanme")
return self.node.attributes.iten{i).| ocal Nanme

get Attri but eval ue(self,i):
sel f.checkStart El ement ("get Attri buteVal ue")
return self.node.attributes.iten(i).val ue

get Text (sel f):
if not self.isCharacters():

%" %

(9

rai se ValueError("getText called for an event of type %"%

sel f. event)
return sel f.node. data

169

Alternative approaches

00

Imports the pul | dompackage.

Defines a new classto simplify accessto the pull parsing process.

Constructor that defines the instance variables. access to the file, the current event and node. A 1ook-
ahead node event pair useful to concatenate the text content of successive text nodes.

Getsthe next event either from stream if there is no look-ahead or from the look-ahead.
Concatenates successive character nodes. Thefirst non-text node is kept in the look-ahead for the next
call.

A series of node type tests on the current event.

Checksif the current element is a start node, otherwise raises an exception. Useful for debugging the
following methods.

Returns information about the current start element.

Checks if the current node is a text node and returns its contents if it is the case, otherwise raises an
exception.

Example10.10. [St AXConpact . py] Text compaction of thecellar book (Example2.2)

with Python using the StAX model

Compare this program with Example 8.5.

1

5

10

15

20

25

30

from XMLSt reanmReader inport XM.StreanReader
i nport sys o

def compact (xm sr,indent): (2]
if xmsr.isStartEl enent():
sys. stdout.wite(xm sr.getLocal Name()+'[')
i ndent += (len(xm sr.getLocal Nane())+1)*" "
count = xm sr.getAttributeCount () (3]
for i in range(count):
if i>0:
sys. stdout.wite(indent)
sys.stdout. wite(' @+xnl sr.getAttributelLocal Name(i)+
"["+xm sr.getAttributevalue(i)+']")
first = count==
whil e True: (4]
xm sr. next ()
whil e xm sr.isWiteSpace(): xm sr.next ()
if xm sr.isEndEl ement (): break;
if first:
first=Fal se
el se:
sys. stdout.wite(indent)
conpact (xm sr, i ndent); e
sys.stdout.wite(']")
elif xmsr.isCharacters(): (6]
sys.stdout.wite(xmsr.getText().strip())

xm sr = XM_St reanReader (sys. stdin) (7]
xm sr. next ()
while not xm sr.isStartEl ement ():xm sr.next() (8]

170

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Python/StAXCompact.py

Creating an XML document using
Python

© o

®

©O000060C

conpact (xm sr, "\ n") (9]
sys.stdout.wite("\n")

Imports the XMLSt r eanReader class defined in Example 10.9

If itisastart element tag, outputs the name of the element followed by an opening bracket and update
the current indentation.

Outputs each attribute name and val ue properly indented except for thefirst one. Attributes are obtained
by indexing within the loop on the number of attributes.

L oops on children nodesthat are not whitespace and compacts each of them with the correct indentation.
Recursive call to the compacting process.

Prints the normalized character content.

Creates a new stream reader, indicates that it will parse the standard input.

Ignores the tokens that come before the first element (e.g. processing instructions).

Calls the compacting process and then prints a newline to flush the content of the last line.

10.2.4. Creating an XML document using Python

In order to demonstrate the creation of new XML document, we will parse the compact form produced in
Section 10.2.1 or in Section 10.2.2 likewe did in Chapter 9. We first need away to access appropriate tokens
corresponding to important signalsin the input file. Thisis achieved by defining aConpact Tokeni zer
class (Example 10.11) that will return opening and closing square brackets, at-signs and the rest asasingle
string. Newlineswill also delimit tokens but will beignored inthe document processing. Thefileis processed
by aseries of callsto next Token or ski p. ski p provides auseful redundancy check for tokensthat are
encountered in the input but are ignored for output.

Example 10.11. [Conpact Tokeni zer . py] Specialized string scanner that returns

tokens of compact form.

Compare this program with Example 9.1.

1

10

15

i mport re, sys (1
cl ass Compact Tokeni zer (): (2]

def __init_ (self,file): (3]
self.pat = re.conpile(' ([\[@]])")
sel f. whitespacepat = re.conpile('\n? *$")
self.file =file
sel f.tokens = []

def next Token(self): (4
whil e True:
if len(self.tokens)==0:
self.line = self.file.readline().strip()
if self.line:
self.tokens = [tok for tok in (5]
self.pat.split(self.line) if tok!=""]
el se:

171

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Python/CompactTokenizer.py

Alternative approaches

sel f.token = None
20 br eak
sel f.token = sel f.tokens. pop(0)
if not self.whitespacepat.match(self.token):
return self.token

25 def get Token(self): (6]
return self.token
def skip(self,sym: (7
if self.token==sym
30 return sel f. next Token()
el se:

rai se Val ueError (' skip: % expected but % found % sym sel f.token))

Includes the regular expression r e package on which this tokenizer is built.

Defines the Conpact Tokeni zer class.

Definesthepat regular expression to split an input line on an ampersand, an opening or closing square

bracket. The sguare brackets characters in the regular expression must be preceded by a backdash as

square brackets are part of the regular expression language, also used in the same expression. Defines
aregular expression to match awhitespace node. Save the referenceto thefileto tokenize andinitializes
the current list of tokens.

O Getsthe next token but skip those containing only whitespace. When the current list of tokensisempty,
it reads the next line of thefile and initializes the list of tokens for thisline. It returns None at the end
of the file. When the list of tokens is not empty, sets the current token to the first one in the list and
removes it from the list. If the current token is not a whitespace node, returnsit.

® List comprehension expression to split the current line at separators which are also returned as tokens.
Should empty tokens appear, they are removed from the result.

0 Returnsthe current token.

@ Checksthat the current token is the same as the one given as parameter and retrieves the next one. If

the current token does not match, then raises an exception giving the expected token and the one found.

00

In Python, a new document is created using the constructor of the Docurnent class. The result of calling
the constructor is then assigned to a variable which can be used to create an element or atext node. Adding
a new node is done with the appendChi | d method that adds the new node as the last child of a given
node. The attributes of a node are added usingtheset At t r i but e method.

Example 10.12. [DOVEXpand. py] Python compact form parsing to create an XML
document

A sample input for this program is Example 5.8 , which should yield Example 2.2. Compare this program
with Example 9.2.

1 inmport xm .dom m ni dom sys o
from Conpact Tokeni zer inmport Conpact Tokeni zer (2]
def expand(el em: (3]

5 gl obal ct, doc

ct.skip("[")
whil e ct.get Token()=="@: o

att Name = ct. next Token()

172

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Python/DOMExpand.py

Other means of dealing with XML
documents using Python

10

15

20

25

000

(o

60009 ©

(S

ct. next Token()

elemsetAttribute(attNane, ct.skip("[")) (5
ct. next Token()
ct.skip("]")

while ct.getToken()!="]": (6

s=ct.get Token().strip()
ct. next Token()
if ct.getToken()=="[":
expand(el em appendChi | d(doc. creat eEl ement (s.strip()))) (7]

el se:
el em appendChi | d(doc. cr eat eText Node(s)) (8

ct.skip("]")

return elem
doc = xm . dom mi ni dom Docunent () (9]
ct = Conpact Tokeni zer (sys. stdin) ©
whil e ct.nextToken()!="[" ®

r oot Name=ct . get Token()
expand(doc. appendChi | d(doc. cr eat eEl ement (r oot Name. strip())))
print (doc.toprettyxm (" ")) @

Imports the necessary packages for creating DOM nodes and for accessing the standard input.
Imports the Conpact Tokeni zer (Example 10.11).

Creates an XML element corresponding to the content of el emand returnsiit.

Because al attribute names start with an @ we loop while the current token is equal to @ The name
of the attribute is saved and the following opening square bracket is skipped, the valueis kept and the
] isskipped.

Adding an attribute isdone by callingtheset At t r i but e method with the name of the attribute and
its corresponding value.

All children are then processed in turn until a closing square bracket is encountered. s is the current
token, which is either a child element name (if followed by an opening square bracket) or the content
of atext node.

A child nodeisexpanded by arecursive call whoseresult isadded asthelast child of the current el ement.
A text node is added as the last child of the current element.

Initializes anew XML document.

Creates the tokenizer on the standard inpui.

The name of the root is the first token immediately followed by an opening sgquare bracket. The root
node is created as the child of the document node which is then filled by theinitial call to expand.
The resulting DOM node in doc is then formatted in indented form to the output using the
t oprettyxm method.

10.2.5. Other means of dealing with XML documents
using Python

Python also allows other ways of dealing with XML files. For simple reading and manipulation of information
of an XML file, onemight consider the EI enent Tr ee package which, upon parsing an XML file, trandates
its the tree structure into a Python object, an instance of the El enent Tr ee class, that can be processed

173

Alternative approaches

using the usual property selectors and array iterators. Methods are provided to get the name of an element,
itsattributes and its children nodes. Inan El enent Tr ee instance, accessto the children nodesis achieved
by iterating on the node. Text content is obtained by reading thet ext property. Mixed content is dealt with
thet ai | property of achild node which gives the text content in the document before the next child.

In order to illustrate the manipulation of SimpleXML structures, we give in Example 10.13 a version to
produce a compact version of an XML file. We parse (load) the file and the El enrent Tr ee structure is
built in memory. It is then a simple matter of traversing this structure to produce a compact version of the

file.

Example 10.13. [ETConpact . py] Python compaction of an XML file using

Compaction of an XML file by first creating as El enent Tr ee object and the traversing it with standard

El enent Tr ee nodes.

Python iterators to create a compact version of thefile.

1 inport xm.etree. El ement Tree as ET
i mport sys, re

def stripNS(tag):

5

def

10

15

20

25

return re.sub("™M{.+}","" tag)

conpact (node, i ndent) :
i f node==None:return
if ET.iselenent(node):

| ocal nane = stri pNS(node.tag)
sys.stdout.wite(local nane+' [')
i ndent += (len(local nane)+1)*" "
attrs = node.attrib
first=True
for nane in attrs:
if not first:sys.stdout.wite(indent)
sys.stdout. wite(' @s[%)' ¥ nane, attrs. get(nane)))
first=Fal se
i f node.text and len(node.text.strip())>0:
sys. stdout.wite(node.text.strip())
first=Fal se
for child in list(node):
if not first: sys.stdout.wite(indent)
conpact (chi l d, i ndent)
first=Fal se
if child.tail and len(child.tail.strip())>O0:
sys.stdout.wite(indent+child.tail.strip())
sys.stdout.wite(']")

30 conpact (ET. parse(sys.stdin).getroot(),"\n")
sys.stdout.wite('\n")

necessary packages.

Imports the El erent Tr ee class and renames is as ET because it will be used often. Imports other

174

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Python/ETCompact.py

Other means of dealing with XML
documents using Python

® AsEl enent Tr ee nodes contain namespace information in their print names, we discard it here to
keep only the local name.

® Function to compact a node (first parameter) with each new line preceded by an indentation given by
the second parameter.

O Prints the name of the element followed by an open bracket and updates the indentation by adding

spaces corresponding to the number of charactersin the element name.

Prints the attributes on different lines except for the first. The name of the attribute is preceded by @

and the value is put within square brackets.

If thereistext content, printsit. The text is normalized by removing spaces at the start and end.

If the element has children, compacts them, anew line is output if it is not the first child.

Callsconpact recursively.

Parses the standard input to get the EI enment Tr ee root node and calls the compacting process on it.

Ends the output with anew line.

(o

@000

Example 10.14 followsthe same structure as Example 10.12 to expand acompact formintoaEl enent Tr ee
structure. It uses the tokenizer of Example 10.11 to read the file. It recursively creates the XML structure
as it processes the file. As the Python library does not provide an indented form of the XML string, we
provide one here as another illustration of El ement Tr ee use.

Example 10.14. [ETExpand. py] Python compact form parsing to create a
El enment Tr ee document

A sample input for this program is Example 5.8 , which should yield a file equivalent to Example 2.2.
Compare this program with Example 9.2.

1 inport xm.etree. Element Tree as ET o
i mport sys,re
from Conpact Tokeni zer inmport Conpact Tokeni zer

5 def expand(elemn:
gl obal ct
ct.skip("[")
whil e ct.get Token()=="@: (3]
att Name = ct. next Token()
10 ct. next Token()
elemattrib[attNane]=ct.skip("[") (4
ct. next Token()
ct.skip("]")
| ast NodeWasText =Tr ue
15 while ct.getToken()!="]": (5]
s=ct. get Token().strip()
ct. next Token()
if ct.getToken()=="[": 0
chi | d=ET. El enment ('s)
20 el em append(chi | d)
expand(chi | d)
| ast NodeWasText =Fal se
el se:
i f |astNodeWasText: (7]
25 if not elemtext:
elemtext=""

175

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Python/ETExpand.py

Alternative approaches

30

35

40

45

50

55

00

(]

® 66 00

el em t ext +=s

el se:
if not child.tail
child.tail=""
child.tail +=s
ct.skip("]")

ct = Conpact Tokeni zer (sys. stdin)
whi |l e ct.next Token()!="[":

r oot Name=ct . get Token()
doc=ET. El ement (r oot Nane. strip())
expand(doc)

86 00

El enent Tree does not provide a pretty-print method so we define one
def pprint(elemindent):
sys.stdout.wite(indent+ < +el emtag)
for ain elemattrib: ®
sys.stdout. wite(' 9%="9%"'%a,elemattrib[a]))
new ndent = indent+"
sys.stdout.wite('>")
if elemtext: 1]
sys.stdout.wite(elemtext)
for child in elem ®
pprint (child, newi ndent)
if child.tail
sys. stdout.wite(new ndent+child.tail)
if elem
sys. stdout.wite(indent)
sys.stdout.wite('</'+elemtag+ >')

(S

pprint (doc, "\n") 16]
sys.stdout.wite("\n")

Importsthe El enment Tr ee, other system packages and the Conpact Tokeni zer (Example10.11).
Adds the content of the file corresponding to the children of the current node to the el emelement.
Because all attribute names start with an @ loops while the current token is equal to @ The name of
the attribute is saved and the following opening square bracket is skipped, the value is kept and the |
is skipped.

Adding an attribute is done by setting the attribute value associated with itsnameintheat t ri b dic-
tionary of the current element.

All children are then processed in turn until a closing square bracket is encountered. s is the current
token, which is either a child element name (if followed by an opening square bracket) or the content
of atext node.

A new element named s is created and its children are filled in by arecursive call to expand.

A text nodeis added as the child of the current element. Successive text nodes are added by concaten-
ating the content of the text node with the content of the last child tail.

Creates the tokenizer on the standard inpui.

The name of theroot is the first token immediately followed by an opening square bracket.

Creates theroot node asan El enent Tr ee.

The root node which isfilled in by acall to expand.

Recursive function to create and indented string for the current element. Thei ndent parameter isa
string which is output before the start of each new line.

176

Other means of dealing with XML
documents using Python

® 8 6

Outputs the name of element followed by its attributes on asingle line.

If thereisatext, outputsit.

Recursively process each children possibily writing the text content of thet ai | property at the same
level of indentation. Finally closes the tag.

Prints the document node on the standard output by calling the ppr i nt method defined above.

177

Alternative approaches

10.3. XML processing with PHP

PHP[76] isapopular server-side script language embedded in HTML that provides excellent string processing
capabilities coupled with agood integration with arelational data-base most often MySQL, but other databases
can also be accomodated. It features also many libraries for reading, creating and transforming XML data
[77]. In this section, we will show how to use PHP for DOM, SAX and StAX parsing. We will use the same
algorithms and program organization that we used in Java (Chapter 8 and Chapter 9). We will also describe
how to transform XML data using XSL stylesheets and briefly show how to use the Si npl eXML library
that is useful for some simple cases.

10.3.1. DOM parsing using PHP

To show how to process an existing XML structure, wewill use the compacting processthat we programmed
in Javain Section 8.1. In PHP, DOM parsing is achieved simply by creating an instance of the Domclass.
This instance is a node and its node type is given by the value of its property nodeType:
XM_._ELEMENT _NODE or XM._TEXT_NGODE. Information about a node is available through properties
nodeNane, at t ri but es (an arr ay whose keys are attribute names), chi | dNodes (an ar r ay that
can beiterated upon with f or each) or t ext Cont ent for text nodes.

Example 10.15. [DOMConpact . php] Text compaction of the cellar book (Example2.2)
with PHP using the DOM model

Compare this program with Example 8.1.

1 <?php
function conpact_($node, $i ndent) { o
i f ($node->nodeType==XM._ELEMENT_NODE) { 2]
print $node->nodeNane."[";
5 $indent. =str_repeat(' ',strlen($node->nodeNane) +1);
$first=true;
foreach ($node->attributes as $attrNane => $attrVal ue) { (3]
if(!$first)print "\n$indent";
print "@.$attrNane."[". $attrVal ue->value."]";
10 $first=fal se;
}
foreach ($node->chil dNodes as $chil d) o
i f($child->nodeType==XM._ELEMENT_NODE or
strlen($chil d->text Content)>0){
15 if(!$first)print "\n$indent";
conpact _($chil d, $i ndent);
$first=fal se; (5]
}
print "]"
20 } else if ($node->nodeType==XM._TEXT_NODE) (6]
print preg_replace("/ *\n? +"," ", trim $node->textContent));
}

$dom = new DonDocurent (); (7]
25 $dom >preserveWit eSpace fal se;
$dom >substituteEntities true;

178

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/DOMCompact.php

DOM parsing using PHP

30

0

$dom >l oad(" php://stdin");

conpact _($dom >docunent El enent, ""); (8]
print "\n";
?>

Prints the content of the XML node. Each line prefixed with an indentation, a string composed of the
appropriate number of spaces.

If the node is an element, prints the name of the node followed by an opening bracket and adds the
appropriate number of spaces to the current indentation.

Deals with attributes which are contained in an array over which we iterate. For each attribute, prints
a@itskey and the corresponding value within square brackets. A new lineis started for each attribute
except thefirst.

Processes all children with af or - each loop.

If it is an element or a non-empty text node, recursively calls conpact possibly changing lineiif it
not the first child.

Processes a text node by printing it and normalizing internal newlines.

Parsesthefile by creating anew XML document from the content of the standard input. Sets parameters
to that white space only nodes are not returned and that entities are replaced by their values before the
XML processing.

Call the compacting process on the document node with an empty indentation string.

Because PHP programs are meant to be embedded in HTML, we now show how the HTML compacting
process can be done.

Example 10.16. [conpact HTM.. php] HTML compaction of the cellar book

(Example 2.2) with PHP using the DOM model

Compare this program with Example 5.7.

1

5

10

15

20

<?php

function tag($tag, $body, $attrs=""){ °
return "<$tag".($attrs?" ":"")."S$attrs>$body</ $t ag>";

}

function conpact_($node){ (2]
i f ($node->nodeType==XM._ELEMENT_NODE) { (3
$res="";
$attrs="";
foreach ($node->attri butes as $key => $val ue) o
$attrs. =" S$key=' $val ue->val ue'"
$res. =tag("b", $node- >nodeNane) ." ".SPattrs;
$chil dren = $node- >chi | dNodes;
i f($children->length>1){
$cs="";
foreach($children as $child)
$cs. =conpact _($chil d);
$res. =tag("ul", $cs);
} else
$res. =conpact _($children->iten(0)); (7
return tag("li", $res);
} else if ($node->nodeType==XM._TEXT_NODE) {

©0

179

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/compactHTML.php

Alternative approaches

25

30

35

40

©

0000

return preg_replace("/ *\n? +/"," ",trinm$node->nodeVal ue)); ©
}
}
$dom = new DonDocurent (); (9]
$dom >pr eserveWi t eSpace = fal se;
$dom >substituteEntities = true

$file = $ GET['file'];
$dom >l oad($fil e?$file:"php://stdin");
?>
<htm xm ns="http://ww. wW3. org/ 1999/ xht m ">
<head>
<title>HTM. conpaction of "<?php print $ GET['file']?>"</title>
</ head>
<body>

<?php print conpact_($dom >docunent El enent, "") ?> ©
</ ul >
</ body>
</htm >

Defines afunction that returns a string comprised of the string of the body of atag (second parameter)
wrapped by the start and end tag named with the first parameter. The third argument give a string of
attributes that are added to the start tag.

Returns a string corresponding to the content of the XML node.

If the nodeisan element, the name of the nodeisand its attributes are embedded in ab tag. The content
of the attributes and the children nodesisembedded inal i tag.

Deals with attributes which are contained in an array over which we iterate. For each attribute, prints
its name and the corresponding value separated by an equal sign. These attributes are combined in a
single string which is added after the name of the node wrapped with ab tag.

Getsthelist of al children.

If there are more than one child, accumulates the content of the children and wrap it withinan ul tag.
In the case of one child, returns its content.

Processes a text node by normalizing its content.

Parses the file by creating a new XML document from the content of a file named by the HTTP file
parameter passed in the url. If this value is not set, the standard input content will be used. Sets para-
meters to that white space only nodes are not returned and that entities are replaced by their values
before the XML processing.

Calls the compacting process on the document node within an HTML structure forming the shape of
HTML page. conpact _ returns a string corresponding to the content of the file which is printed
within the HTML template.

10.3.2. SAX parsing using PHP

In order to process an XML structure with the SAX approach, we will use a similar compacting process to
the one we programmed in Java in Section 8.2. SAX parsing is achieved by calling the
xm _par ser _cr eat e function. Thiscall return areference to aparser to which we can set some options
and then give an object in which are defined call-back functionsthat will be called during the parsing process.

180

SAX parsing using PHP

Example10.17. [SAXConpact . php] Text compaction of thecellar book (Example2.2)
with PHP using the SAX model

Compare this program with Example 8.3.

1 <?php
requi re ' Conpact Handl er. php'; (1]
$handl er = new Conpact Handl er () ;

5 $parser = xml _parser_create("UTF-8");
xm _parser_set _option($parser, XM._OPTI ON TARGET _ENCODI NG "UTF-8");
xm _parser_set _option($parser, XM._OPTI ON CASE FOLDI NG 0);
xm _parser_set _option($parser, XM._OPTION SKIP_WH TE, 1);

()

10 xm _set _obj ect ($parser, $handl er); (4
xm _set el ement _handl er ($parser, "startEl enent", "endEl emrent");
xm _set character_data_handl er ($parser, "characters");

$fp = fopen("php://stdin","r"); (5
15 while ($data = fread($fp, 4096)) {
if (!'xm _parse($parser, $data, feof ($fp))) {
die(sprintf("XM error: % at line %",
xm _error_string(xm _get _error_code($parser)),
xm _get_current _line_nunber($parser)));

20 }
}
print "\n";
xm _parser_free($parser);
?>

© Makessure that the appropriate Conpact Handl er classis present.

® Creates an instance of the SAX parser that will parse an UTF-8 input. Set some options, in particular,
make sure that tag names are not returned in upper-case.

O Indicates to which object the parsing events of the Conpact Handl er class (described in Ex-
ample 10.18) will be sent. Then gives the name of functions of this object that will be called when a
start tag, an end tag and a character node will be parsed.

0@ Startsthe parsing process on the standard input. In order to save space, the parsing is sent to the parser
in chunks of 4K until the the third parameter of xm _par seist r ue.

SAX parsing events in PHP are sent to an event handler object in which are defined some methods to deal
with the parsing events. Unfortunately, the PHP SAX parser does not collapse all contiguous character nodes
in asingle one, so the character content must be accumulated in the $char s variable which is then output
before dealing with a start or end tag.

Example 10.18. [Conpact Handl er . php] PHP SAX handler for text compacting
an XML file such asthat of Example 2.2

Compare this program with Example 8.4.

181

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/SAXCompact.php
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/CompactHandler.php

Alternative approaches

1 <?php
cl ass Conpact Handl er {
var $cl osed, $i ndent, $chars;

5 function Conpact Handl er () {
$t hi s- >cl osed=f al se;
$t hi s- >i ndent =0;
$t hi s->chars="";

}
10
function startEl ement ($parser, $local name, array $attri butes){
$t hi s->fl ushChars();
i f ($this->closed) {
print "\n".str_repeat(' ',$this->indent);
15 $t hi s- >cl osed=f al se;
}
$t hi s- >i ndent +=1+str| en($l ocal nane) ;
print $local nane."[";
$first=true
20 foreach ($attributes as $attrName => $attrVal ue){
if(!$first)print "\n".str_repeat(' ', $this->indent);
print "@.$attrNane."[". $attrvalue."]";
$first=fal se;
$t hi s->cl osed=t rue
25 }

}

function endEl ement ($parser, $I ocal nane) {
$t hi s->fl ushChars();
30 print "]"
$t hi s->cl osed=t rue
$t hi s- >i ndent - =1+st r| en($l ocal nane) ;

}

35 function characters($parser, $text)({
if(strlien(trim$text))>0){
i f ($this->closed) {
print "\n".str_repeat(' ',$this->indent);
$t hi s- >cl osed=f al se;
40 }
$t hi s- >chars=$t hi s->chars. trin($text);

}

45 function flushChars(){
if (strlen($this->chars)>0) {
i f ($this->closed) {
print "\n".str_repeat(' ',$this->indent);
$t hi s->cl osed=f al se;
50 }
print preg_replace("/ *\n? +"," ", $this->chars);
$t hi s->cl osed=t rue
$t hi s->chars="";

182

StAX parsing using PHP

?>

Declares variablesto save the state of the parsing processing between callsto parsing call-back methods.
Initializes two instance variables needed to output the element with the correct indentation and one to
accumulate the character content of successive character nodes.

When anew element is started, outputs the content of last character nodes and finishes the current in-
dentation if needed.

Updates the current indentation by adding the length of the element name.

Prints the first attribute on the same line and the others on the subsequent lines properly indented.
When an element finishes, outputs the contents of the last character nodes and closes the current
bracket and updates the current indentation.

For anon-empty text node, ends current line if needed and adds its contents to the $char s string.
Ends the current indentation and output the normalized content of the $char s variables and resetsit
to an empty string.

10.3.3. StAX parsing using PHP

Compare this program with Example 8.5.

Pull parsing in PHP is done using an instance of the XMLReader class which defines a method to move
the cursor forward in the XML file (read()) and attributes to test the content of the current token
(nodet ype,hasAt tri but es and nane). Contrarily to the standards, the PHP pull parser does not return
astart and end tag for an empty element, but it instead only a single element that can be checked with the
i sEnpt yEI enent method.

Example 10.19. [St AXConpact . php] Text compaction of the cellar book

1

10

15

20

(Example 2.2) with PHP using the StAX model

<?php
function conpact _($xm sr, $i ndent) { o
i f($xm sr->nodeType==XM_Reader : : ELEMENT) { (2]
print $xm sr->nane."[";
$indent. =str_repeat (' ',strlen($xm sr->nane)+1);
$first=true;
i f($xm sr->hasAttributes){ (3]
whi | e($xm sr->nmoveToNext Attribute()){
if(!$first)print "\n$indent";
print "@.$xm sr->nane."[". $xm sr->value."]";
$first=fal se;
}
} /1 Warning: PHP does not return an END _ELEMENT on a enpty tag
i f(!%$xm sr->i sEnpt yEl enent) o
whi |l e(true){

do {$xm sr->read();}
whil e ($xm sr->nodeType==XM_Reader : : SI GNI FI CANT_\WHI TESPACE) ;
i f($xm sr->nodeType==XM_Reader : : END_ELEMENT) br eak;
if($first)$first=false;

el se print "\n$indent";

conpact _($xm sr, $i ndent) ; (5]

183

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/StAXCompact.php

Alternative approaches

25

30

35

}
print "]"
} else if ($xnm sr->nodeType==XM_Reader : : TEXT)
print preg_replace("/ *\n? +/"," ", trim$xm sr->val ue)); (6]
el se {
di e(" STRANGE NODE: ". $xnl sr - >nodeType. "\ n");
}
}
$xm sr = new XM_Reader () ; (7]

$xm sr->open("php://stdin");
$xm sr->set Par ser Propert y(XM_Reader : : SUBST_ENTI TI ES, true) ;
whil e ($xm sr->nodeType! =XM_Reader : : ELEMENT) $xml sr - >r ead() ;

© 0

conpact _($xm sr,"");
print "\n";
?>

Method to compact from the current token. Asthereisaready aconpact method predefined in PHP,
we changed the name of our method by adding atrailing underscore.

If itisastart element tag, outputs the name of the element followed by an opening bracket and update
the current indentation.

Outputs each attribute name and value all indented except the first one. Attributes are obtained by iter-
ation using thethe noveToNext At t ri but e method.

Loops on children nodesthat are not whitespace and compacts each of them with the correct indentation.
Some care must be taken not to call this process on an empty tag (i.e. without any children node) because
the PHP parser does not return the corresponding end tag.

Recursive call to the compacting process.

Prints the normalized character content.

Creates a new stream parser, indicates that it will parse the standard input and that entities must be
substituted by the parse.

Ignores the tokens that come before the first element (e.g. processing instructions).

Calls the compacting process with the current token and then prints a newline to flush the content of
thelast line.

10.3.4. Creating an XML document using PHP

In order to demonstrate the creation of new XML document, we will parse the compact form produced in
Section 10.3.1 or in Section 10.3.2 likewe did in Chapter 9. We first need away to access appropriate tokens
corresponding to important signalsin the input file. Thisis achieved by defining aConpact Tokeni zer
class (Example 10.20) that will return opening and closing square brackets, at-signs and the rest asasingle
string. Newlineswill also delimit tokens but will beignored inthe document processing. Thefileis processed
by aseries of callsto next Token or ski p. ski p provides auseful redundancy check for tokensthat are
encountered in the input but are ignored for output.

Example10.20. [Conpact Tokeni zer . php] Specialized string scanner that returns

tokens of compact form.

Compare this program with Example 9.1.

184

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/CompactTokenizer.php

Creating an XML document using

PHP
1 <?php
cl ass Conpact Tokeni zer { (1
var $i ndex, $tokens;
5 functi on Conpact Tokeni zer ($file){ (2

gl obal $i ndex, $t okens;
$tokens = preg_split("/\n|(\[|\]|@/",
file_get_contents($file),
-1, PREG_SPLI T_NO EMPTY| PREG SPLI T_DELI M_CAPTURE) ;
10 $i ndex = 0;
}

functi on get Token() { (3
gl obal $t okens, $i ndex;
15 $t oken = $i ndex<count ($t okens) ?$t okens[$i ndex] : f al se;
return $token;
}

functi on next Token(){ (4
20 gl obal $t okens, $i ndex;
do {
$i ndex=$i ndex+1;
$t oken = $t hi s- >get Token();
i f ($t oken==f al se) br eak;
25 $t oken=t ri m($t oken) ;
} while (strlen(%$token)==0);
return $token;

}
30 function skip($syn{ (5]
i f($this->get Token()==$sym
return $this->next Token();
di e("ski p: $sym expect ed but ". $thi s->get Token()." found. index=$i ndex");
}
35}
?>

® Definesthe Conpact Tokeni zer class with two instance variables $t okens an array to keep all
tokens and $i ndex to indicate the current token.

® Initializesthe $t okens array in which the string of the whole file is split according to aregular ex-
pression; the last parameter sets flags so that no empty string tokens are of the pr eg_spl i t method
is acombination of flags to indicate that the delimiters are also returned as tokens and that no empty
string are returned as tokens. The index of the current token is set to the first element of the array

® Check that theindex of the current token iswithin the bounds of the array and set it to fal se otherwise.
Return it.

O Getsthe next token but skip those containing only whitespace. It returns the value of the current token.
® Checksthat the current token is the same as the one given as parameter and retrieves the next one. If
the current token does not match, then stop the program by indicating the expected token and the one
found with the content of the current line.

185

Alternative approaches

In PHP, the node creation and child addition is using DOM methods creat eEl ement (),
appendChi l d() and createText Node(). The attributes of a node are added using the
set Attri but e() method.

Example 10.21. [DOVEXpand. php] PHP compact form parsing to create an XML
document

A sampleinput for this program is Example 5.8 , which should yield Example 2.2. Compare this program
with Example 9.2.

1 <?php
requi re ' Conpact Tokeni zer. php'; (1]
function expand($el en{ (2]
5 gl obal $st, $dom
$st->skip('[');
whi | e($st - >get Token()==" @) { /1 process attributes (3]

$at t Name=$st - >ski p(" @) ;
$st - >next Token() ;
10 $el em >set Attri but e("$att Nane", $st->skip("[")); o
$st - >next Token() ;
$st->skip("]");

}
whil e ($st->get Token()!=fal se & $st->get Token()!="]") { (5]
15 $s = trim $st->get Token()); // process children
$st - >next Token() ;
i f($st->get Token()=="[")
expand($el em >appendChi | d($dom >cr eat eEl enent ($s))); (6]
el se

20 $el em >appendChi | d($dom >cr eat eText Node($s)) ; (7]

}
$st->skip("]");
}

25 $st = new Conpact Tokeni zer (' php://stdin'); (8
$dom = new DOVDocument () ; (o]
$root name = $st - >get Token(); 10
whi | e($st - >next Token()!="[")

$r oot nane=%st - >get Token() ;

30
expand($dom >appendChi | d($dom >cr eat eEl enent ($r oot nane))) ; ®
$dom >f or mat Qut put =t r ue; ®
print $dom >saveXM.();

35 ?>

© Ensuresthat the Conpact Tokeni zer (Example 10.20) isloaded.
® Addsthe content of the file corresponding to the children of the current node to the $el emelement.
©® Because dl attribute names start with an @ loops while the current token is equal to @ The name of

the attribute is saved and the following opening square bracket is skipped, the value is kept and the |
is skipped.
O Adding an attribute is done by callingtheset At t ri but e method of the current element.

186

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/DOMExpand.php

Other means of dealing with XML
documents using PHP

(o

All children are then processed in turn until a closing square bracket is encountered. s is the current
token, which is either a child element name (if followed by an opening square bracket) or the content
of atext node.

A new element named s is created and its children are filled in by arecursive call to expand.

A text node is added as the last child of the current element.

Creates the tokenizer on the standard input.

Initializesanew XML document.

The name of the root is the first token immediately followed by an opening square bracket.

Creates the root node which isfilled in by acall to expand.

Serializes the document on the standard output. Sets a flag so that the XML is properly indented.
Serialization is done using the saveXM. method of the document node.

0660000

10.3.5. Other means of dealing with XML documents
using PHP

PHP also allows other ways of dealing with XML files, the simplest of whichisto apply an XSLT stylesheet
on aloaded DOM structure. Currently, only XSLT 1.0 stylesheets can be used without having to link with
external Javaclassesusing aPHP/Java bridge. Thefollowing example shows how to perform the transform-
ation defined by the Example 5.9 stylesheet. As the PHP transformation is performed by xsl t pr oc that
does not deal very well with entities, for this case, we had to modify our original stylesheet Example 5.9 by
replacing all entitiesreferences by their values. Theresulting XSLT conpact - php. xsl isnot given here
but it is available on the companion web site.

Example 10.22. [XSLconpact . php] PHP compaction of an XML fileusngan XSLT
styleshest.

Application of an XSLT stylesheet on an XML file. Here we use a modified version Example 5.9 to produce
acompact version of an XML file.

1 <?php
$xm = new DOVDocunent () ; (1]
$xm - > oad(" php://stdin");

5 $xsl = new DOVDocunent (); (2]
$xsl - >l oad(' conpact - php. xsl ') ;
$proc = new XSLTProcessor(); (3]
$proc->i nport Styl eSheet ($xsl);

10 $proc -> setParaneter(null, 'name','value'); // unused in this exanple

print $proc->transfor mfoXM ($xm) ; o
?>

© Initidizes the DOM structure for the instance file to transform and loads the file, here we deal with
the standard inpui.

Initializesthe DOM structure for the transformation stylesheet and loads it.

Configures the transformation processor with the stylesheet and sets some parameters (unused here)
Serializes the output of the transformer on the instance file.

© o0

187

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/XSLcompact.php

Alternative approaches

For ssimple reading and manipulation of information of an XML file, one might consider the Si npl e XM
extension which, upon loading an XML file, trandates its the tree structure into a PHP object, an instance
of the Si npl eXMLEI enent class, that can be processed using the usua property selectors and array
iterators. Asin PHP arrays are zero-based contrarily to XPath in which elements are numbered starting at
1, some care must be given when translating the expressions from one to the other. It is also possible to use
XPath expressions to select elementsin this structure. Methods are provided to get the name of an element,
its attributes and its children nodes. Although it is possible to deal with namespaces, their useis error-prone.
The type of object created by Si npl e XML is particular, so its uses should be kept for simple operations
and extraction of XML data. When an Si npl eXMLEl enent instance is compared or combined with
other variables such as integers or strings, it must be casted into the appropriate type before being used.
Moreover, Si nmpl e XML has no provision for mixed content, so for generality the DOM approach should
be preferred, but it can be useful in some cases.

Example 10.23 shows the use of SimpleX ML Expressions to access some information in Example 2.2. The
expressions correspond to the examples given in Example 4.1.

Example 10.23. [Si npl eXM_Pat h. php] SmpleXML fileloading followed by PHP
Si npl eXM. expressions

Si nmpl eXML file loading followed by PHP expressions corresponding to the XPath expressions of Ex-
ample 4.1.

1 <?php
$cel l arbook = sinplexm _load_file("CellarBook.xm"); (1]
p("/cell ar-book/owner", (2]

5 $cel | ar book- >owner) ;
p("/cellar-book/cellar/w ne[quantity<2]",
$cel | ar book- >xpat h("/ cel | ar - book/ cel | ar/wi ne[quantity<2]"));
p("/cellar-book/cellar/wine[1]",
$cel | ar book->cel | ar->wi ne[0]);
10 p("//postal -code/..",
$cel | ar book- >xpat h("// postal -code/.."));
p("/cellar-book/owner/street",
$cel | ar book- >owner - >street);
foreach ($cell arbook->cellar->w ne as $w {
15 p("//w ne/ @ode", $W "code"]);
}
foreach ($cell arbook->children("http://ww.iro.unontreal.cal/lapal ne/w ne-catal og")->
children() as $w){p("//cat:w ne/ @ode", $W "code"]);
}
20 p("/cellar-book/cellar/w ne[1]/conment",
$cel | ar book- >cel | ar - >wi ne[0] - >coment) ;
$suneO0;
f oreach($cel | ar book->cel | ar->wi ne as $w){
$sum+=(i nt) $w >quantity;
25}
p("sum(/cell ar-book/cellar/w ne/quantity)", $sum;

print("for \$win //w ne return
concat (\$w quantity,':"',//cat:wi ne/ @ode[.=\$wW @ode]/../ @ane)

188

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/SimpleXMLPath.php

Other means of dealing with XML
documents using PHP

30 ")
f oreach($cel | ar book->cel | ar->wi ne as $w){
foreach ($cell arbook->
children("http://ww.iro.unmontreal.cal/l apal ne/w ne-catal 0g")
->children() as $catw){

35 i f((string)$w "code"] == (string)$catwf "code"])
print($w >quantity.":".$catw "nanme"]."\n");
}
}
print("--------------- \n")
40

$cheapFrenchW nes=array();
foreach ($cell arbook->children("http://ww.iro.unontreal.ca/lapal me/w ne-catal og")
->children() as $catw){
i f((string)$catw >origin->country=="France" && (int)$catw >price<20)

45 array_push($cheapFrenchW nes, $catw "nane"]);
}
p("//cat:wi ne[cat:origin/cat:country="France' and cat:price&anp;lt;20]",
$cheapFr enchW nes) ;
50 function p($xpath, $sxo0) { (3]

print("$xpath\n");
var _dunmp($sxo) ;
print("--------------- \n");

}
55
?>

©® Loadsthefile given as parameter and returns the root element.

® List of example expressions. As comparison, the corresponding XPath is given as a string, followed
by the Si npl eXM. expression which it printed within the p method defined bel ow.

® Printsthe string with the XPath expression, the structure returned by the evaluation of the expression.
var _dunp isused because it indicates the precise type of the expression. A separator lineis printed
to delimit each example.

In order to illustrate the manipulation of SimpleXML structures, we give in Example 10.24 a version to
produce a compact version of an XML file. We simply parse (Ioad) the file and the SimpleXML structure
isbuilt in memory. It isthen asimple matter of traversing this structure to produce a compact version of the
file AsaSi npl eXMLEl enent instance hasonly oneslot for its character content, it cannot cope correctly
with mixed content elements. Some information is lost in this process. For example, all the text nodes in
the f ood- pai ri ng element of the first wine in the catalog will be concatenated as a single text node.
When the SimpleXML is printed in compact form, then first the text child is printed and then the element
children afterwards.

Example10.24. [Si npl eXM_.Conpact . php] PHP compaction of an XML fileusing
aSi npl eXM..

Compaction of an XML file by first creating aSi npl e XM object and the traversing it with standard PHP
iterators to create a compact version of thefile.

189

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/SimpleXMLCompact.php

Alternative approaches

1

10

15

20

25

©

©0 00

<?php
function conpact_($sxel em $i ndent) {
print $sxel em >get Nane()."[";
$indent.=str_repeat (' ',strlen($sxel em >getNane()) +1);
$first=true;
foreach ($sxelem >attributes() as $attname => $attval ue) { (3]
if(!$first)print "\n$indent";
print "@ $attnane}[$attval ue]"”;
$first=fal se;

(o)

}
$text = trim $sxel em; o
if(strlien($text)){
print preg_replace("/ *\n? +"," ", 6 $text);
$first=fal se;
}
$children = $sxel em >chil dren(); (5]
foreach ($children as $child){
if(!$first)print "\n$indent";
conpact _($chil d, $i ndent); (6]
$first=fal se;
}
print "]"
}

$dom = sinplexm _load_file('php://stdin");
conpact _($dom "");

print "\n";

?>

©9

Function to compact asimple xml object (first parameter) with each new line preceded by an indentation
given by the second parameter. Asconpact isa predefined function in PHP for dealing with arrays,
we rename the function to conpact _.

Prints the name of the element followed by an open bracket and updates the indentation by adding
spaces corresponding to the number of charactersin the element name.

Printsthe array of attributes on different lines except for thefirst. The name of the attributeis preceded
by @and the value is put within square brackets.

If there istext content, printsit. The text is normalized by replacing contiguous spaces and new lines
by a single space. Spaces at the start and end are removed first. Beware that the content is the concat-
enation of all child text nodes, so thisis problematic in the case of mixed content elements.

if the element has children, compacts them, anew lineisoutput if it is not the first child.
Callsconpact _ recursively.

Reads an XML instance file, here the standard input and keeps a reference on the root node.

Calls the compacting function on the root element with an empty indentation.

Example 10.25 follows the same structure as Example 10.21 to expand a compact form into a
Si npl eXMLEI enrent structure. It uses the tokenizer of Example 10.20 to read the file. It recursively
creates the XML structure as it processes the file. As the PHP library does not provide an indented form of
the XML string, we provide one here as another illustration of Si npl eXMLEI enent use.

190

Other means of dealing with XML
documents using PHP

Example 10.25. [Si npl eXM_LExpand. php] PHP compact form parsingto create a
Si npl eXMLElI enent document

A sampleinput for this program is Example 5.8 , which should yield afile equivalent to Example 2.2 except
for the mixed content elements. Compare this program with Example 9.2.

1 <?php
requi re ' Conpact Tokeni zer. php'; (1]
function expand($el en{ (2]
5 gl obal $st;
$st->skip('[');
whi | e($st - >get Token()==" @) { /1 process attributes (3]

$at t Name=$st - >ski p(" @) ;
$st - >next Token() ;
10 $el em >addAttri but e("$att Nane", $st->skip("[")); o
$st - >next Token() ;
$st->skip("]");
}
whil e ($st->get Token()!=fal se & $st->get Token()!="]") { (5]
15 $s = trim $st->get Token()); // process children
$st - >next Token() ;
i f($st->get Token()=="[") {
expand($el em >addChi | d($s)); 0
} else
20 $el en{ 0] =$s; // add a text node (7]
}
$st->skip("]");
}

25 $st = new Conpact Tokeni zer (' php://stdin");
$r oot nanme = $st - >get Token();
whi | e($st - >next Token()!="["){
$r oot nane=%st - >get Token() ;
}

30
$sxel em = new Si npl eXML_El enent (" <$r oot nane/ >");
expand($sxel em ;

© e

print ppXM.($sxelem"");
35
function ppXM.($sxel em $i ndent) {
$res="";
$name = $sxel em >get Nane();
$res. =" $i ndent <$nane";
40 i f(count ($sxel em>attributes()>0)) 1]
foreach ($sxelem >attri butes() as $attname => $attval ue)
$res. =" ".$attnane.'="'.Pattvalue.'"";
$text = trin((string) $sxelem;
i f($sxel em >count ()==0 && strlen($text) == 0)
45 $res. ="/>\n"; ®
el se if($sxel em >count () ==0)
$res. =" >$t ext </ $name>\n"; ic)

® ® 66

191

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/PHP/SimpleXMLExpand.php

Alternative approaches

50

55

00

(]

(5] ® 66 00

® 6 6 6

el se {
$res. =">$text\ n" ®
foreach ($sxel em >chi | dren() as $ch| | d)
$r es. =ppXM.($chi | d, $i ndent ");
$res. =" $i ndent </ $name>\ n"
}
return $res;
}
?>
Ensures that the Conpact Tokeni zer (Example 10.20) isloaded.
Adds the content of the file corresponding to the children of the current node to the $el emelement.
Because al attribute names start with an @ we loop while the current token is equal to @ The name

of the attribute is saved and the following opening square bracket is skipped, the valueis kept and the
] isskipped.

Adding an attribute isdone by callingtheset At t ri but e method of the current element.

All children are then processed in turn until a closing square bracket is encountered. s is the current
token, which is either a child element name (if followed by an opening square bracket) or the content
of atext node.

A new element named s is created and its children are filled in by arecursive call to expand.

A text node is added as the child of the current element. Asthere is no explicit method to specify text
content, we assign the text content to the first array position of the Si npl eXMLEI enent . This has
the unfortunate side-effect of removing the previous child nodes in the case of mixed content.
Creates the tokenizer on the standard input.

The name of theroot is the first token immediately followed by an opening square bracket.

Creates theroot node asa Si npl eXML_El enent .

The root node which isfilled in by acall to expand.

Serializes the document on the standard output by calling the ppXM. method defined below. It is
similar to the as XML method of the Si npl eXMLELenent but it returns an indented string.
Recursive function to create and indented string for the current element. The $i ndent parameter is
astring which isoutput before the start of each new line. The output stringisbuiltinthe $r es variable.
Outputs the name of element followed by its attributes on asingle line.

If there is no text content and no children nodes, closes the current tag.

If there are not children node, outputs the text and closes the tag.

Close the current tag followed by possible text. Recursively process each children and concatenates
their result in the current string outpuit.

192

XML processing with JavaScript

10.4. XML processing with JavaScript

XML processing with JavaScript in the context of a browser is somewhat simplified as it can leverage the
DOM API dready part of the browser for dealing with HTML whichisadialect of XML. Thisisthe approach
we present in this section. To use JavaScript outside of a web browsing context, then one should consider
using thej sdom[70] package for Node,js.

Parsing a string containing an XML structure to get the corresponding DOM structure is done by calling
new DOWVParser (). parseFronttring(xm Str, "text/xm™")

which returns a DOM structure that can be manipulated using similar calls as in Java. For example,
chi | dr en to get thelist of children elements, at t r i but es to get amapping of attribute names with the
corresponding values, appendChi | d(node) to add a new child to the current element, etc.

Once the DOM structure has been modified, a string with the XML structure can be obtained by calling
new XM.Serializer().serializeToString(docunent)

The resulting string is a correct XML structure, but is not indented so some further processing is needed to
get a more readable display. One way is to use an XSLT transformation within the browser, but browsers
often differ on how they handle such transformations. See this example for such an approach. We instead
use a specialized string formatter.

We illustrate JavaScript XML processing through a very simple web page (see Figure 10.1) that embeds
our running example, compacting and expanding XML structures.

Figure 10.1. Display of the webpage for exercising JavaScript compaction and
expansion.

Compaction and expansion of XML

XML Compact form
<wine-list> wine-list [wine[@name [Domaine de 1'Ile Margaux]
<wine name="Domaine de 1'fle Margaux" appellation="Bordeaux supérieur"> @appellation[Bordeaux supérieur]
<is-red>true</is-red> is-red[true]
<origin> origin[country[France]
<country>France</country> region[Bordeaux]]
<region>Bordeaux</region> price([22.80]
</origin> year [2002]]
<price>22.80</price> wine [@name [Riesling Hugel]
<year>2002</year> fappellation[Alsace]
</wine> is-red[false]
<wine name="Riesling Hugel" appellation="Alsace"> origin[country|[France]
<is-red>false</is-red> region[Alsace and East]]
<origin> price[17.95]
<country>France</country> year[2002]]]
<region>Alsace and East</region>
</origin>
<price>17.95</price>
<year>2002</year>
</wine>

</wine-list>

The left part shows the XML content and the right part shows the compact form once the user has clicked
ontheconpact button.

193

https://nodejs.org/en/
https://codepen.io/WhatIsHeDoing/pen/wvYrzP
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/JavaScript/CompactExpandXML.html

Alternative approaches

Figure 10.2. HTML to create the web page for compaction and expansion

1 <! DOCTYPE htni >
<htm [ang="en">

<head> o
<title>Conpacti on and expansion of XM.</title>
5 <script src="https://code.jquery.comjquery-latest.mn.js"></script>

<script src="DOMConpact.]js"></script>
<script src="Conpact Tokeni zer.|s"></script>
<script src="DOVExpand.js"></script>
<script src="Format XM..js"></script>
10 <styl e>
textarea{font-famly: 'Courier New , Courier, nonospace;font-size: large;}
.center {text-align: center;}

</styl e>
</ head>
15 <body> (2]
<hl1l>Conpacti on and expansi on of XM.</hl>
<t abl e>
<tr><t h>XM.</t h><t h>Conpact fornx/th></tr>
<tr>
20 <td><textarea name="xm " id="xm" col s="50" rows="20"></textarea></td>
<td><textarea name="text" id="text" col s="50" rows="20"></textarea></td>
</tr>
<tr>
<td class="center"> (5
25 <i nput type="button" id="conpact" val ue="conpact">
<i nput type="button" id="pprint" value="pretty-print">
</td>
<td class="center"><input type="button" id="expand" val ue="expand"></td>
</tr>
30 </ tabl e>
</ body>
</htm >
© HEADsectionthat definesthetitle of the page, makeslinksto JavaScript files and add some elementary
formatting using CSS.
® body with atitle and table containing two text boxes and buttons.
® Text box in which the XML content can be pasted.
O Text box where the compaction will appear.
© Buttonsfor launching the compaction, expansion and pretty-print of the expanded XML.

10.4.1. DOM parsing using JavaScript

Example 10.26. [DOMConpact . j s] Text compaction of thecellar book (Example2.2)
with JavaScript using the DOM model

Compare this program with Example 8.1.

194

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/JavaScript/DOMCompact.js

DOM parsing using JavaScript

10

15

20

25

30

35

00

o0

/1 taken from https://devel oper.nozill a. org/en-US/ docs/ Wb/ APl / Node/ nodeType

const ELEMENT_NODE = 1; (1]
const TEXT_NODE = 3
const COWMENT_NODE = 8;
functi on donConpact (node, indent){ (2]
const nodeType = node. nodeType; (3
swi tch (nodeType) {
case ELEMENT_NODE: (4]
let out=[]; // create list of compacted strings
i ndent +=" ".repeat (node. nodeNane. | engt h+1)
const attributes = node.attributes; (5
for (let i =0; i < attributes.length; i++) {
const attr = attributes[i];
out. push(” @{attr.nodeNane}[${attr.nodeVal ue}]);
}
const chil dren=node. chi | dNodes; (6
for (let i =0; i < children.length; i++) {
const child = children[i];
/1 skip coment and enpty text nodes
if (child. nodeType==COMVENT_NCDE |
(chil d. nodeType==TEXT_NODE &&
child.textContent.trim().|ength==0))continue;
out . push(domConpact (chil d, i ndent));
}
return "~ ${node. nodeNane}[${out.join("\n"+indent)}]"; (7
case TEXT_NODE: (8]
return node.textContent.trin()
defaul t:
consol e. | og(" Shoul d never happen: bad nodeType", nodeType)
}
}
$(docunent) . ready(function(){
$("#compact ™). click(function(){ (o
const xm Str=$("#xm ").val ();
const doc=new DOVParser (). parseFronttring(xm Str,"text/xm");
$("#text").val (donConpact (doc. docunent El enent, ""));
})
})
Constants for relevant DOM node types.
Start of function to produce a compact string from anode with agiveni ndent (astring of spaces).
Determines the node type and switch to the appropriate code. Only element and text types are dealt

with.

If the nodeisan element, alist of compact string isinitialized for adding attributes and children nodes.
The new indentation value is computed for the children nodes.

Each attribute is added with its name preceded by @and its value within square brackets.

Each child node is added with arecursive call to conpact .

Returns a new string in which the compacted strings for the attributes and children are joined with a
new line and the appropriate indentation.

A text node is the trimmed content of the node.

195

Alternative approaches

© Thecallback function for the conpact button gets the XML string in the left text box, parsesit to
produce an XML document which is then compacted and added to textbox on the right.

10.4.2. Creating an XML document using JavaScript

Parsing a compact form in order to create an XML document follows an organization similar to the one we
have shown in Chapter 9 and Section 10.1.3. Wefirst define an object for aspecialized tokenizer which returns
only meaningful units that will be used to create the XML elements and attributes of the resulting XML
document.

Example 10.27. [Conpact Tokeni zer . | s] JavaScript specialized string scanner
that returnstokens of compact form

Compare this program with Example 9.1.

1 function Conpact Tokeni zer (source){ (1
this. token=""; (2
thi s. tokens=source.split(/(\[[\]|\n@[M[\]\n@+)/) /] separate all tokens
.filter((e)=>e.length>0 && 'e. match(/™\n? *$/) // keep only non enpty tokens

5);
t hi s. next Token = function(){ (4
return this.token = this.tokens.length==0 ? null : this.tokens.shift();
}
10
t hi s. ski p=function(sym { (5
i f(this.token==sym
return this.nextToken();
el se
15 t hr ow new Argunent Error ("ski p: "+symt" expected but "+
this.token+ " found");
}
}

Constructor for building a specialized tokenizer for the string given as source.

Keeps the current token.

Builds the array of all tokens by splitting according to important elements of the inputs. Here we are

interested in the content matched by the regular expressions, so we capture the content matched.

However as the input is matched by the regular expression, empty strings between each match are

produced. These empty matches and those containing only spaces are removed by thecall tof i | t er .

O Retrievesthe first element of thet okens array, removes it and saves it as the current token, which
is then returned as the value of the call.

® Checksthat the current token corresponds to the parameter. If thisis the case, returns the next token,

otherwise raises an exception. In principle, this exception should never be raised but this function

might be useful (and it was!) for debugging purposes.

00

The creation of anew XML document isdone by acall to thedomExpand function which launchesaseries
of recursive callsto expand.

196

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/JavaScript/CompactTokenizer.js

Creating an XML document using
JavaScript

Example 10.28. [DOVEXpand. j s] JavaScript compact form parsing in order to
createan XML document

A sample input for this program is Example 5.8 to yield Example 2.2. Compare this program with Ex-
ample 9.2.

1 function expand(st, doc, def aul t NS, el enment Nane) { (1
let elem
const col onPos=el enent Nare. i ndexCOf (": ") (2
if (colonPos>0) // qualified el enment nane
5 el em = doc. creat eEl enent NS(el enent Nane. subst ri ng(0, col onPos),
el enent Nane. subst ri ng(col onPos+1))
el se
el emrdoc. cr eat eEl enment NS(def aul t NS, el enent Nane) ;
st.skip("[");
10 while (st.token=="@){ // process attributes (3]
const attName=st.skip("@);
st . next Token();
const attVal ue=st.skip("[");
if (attName=="xm ns")defaul tNS=attValue; // set new default nanespace

15 el em set Attri bute(att Nane, att Val ue) ;
st . next Token();
st.skip("]")
}
while (st.token!="]"){ (4
20 const str=st.token.trim);

st . next Token();
if (st.token=="["){
el em appendChi | d(expand(st, doc, defaul t NS, str)) e
} else {
25 el em appendChi | d(doc. creat eText Node(str))
}
}
st.skip("1");
return elem
30 }

function donmExpand(s){ (6]
| et st=new Conpact Tokeni zer (s);
| et root Nane;
35 whi | e(st. next Token()!="[")root Nane=st.t oken
| et doc= new Docunent ()
doc=expand(st, doc,"", r oot Nane) ;
return doc;
}
40
$(docunent) . ready(function(){ (7]
$("#expand").click(function(){ (s}
const text=$("#text").val();
const xml Str=new XM.Seri alizer().serializeToString(domExpand(text))
45 $("#xm ") . val (xm Str)

})
$("#pprint").click(function(){ (o]

197

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/JavaScript/DOMExpand.js

Alternative approaches

50

const xm Str=$("#xm ").val ();
$("#xm ") . val (format Xm (xm Str))

1)
1)

Defines the function with the following parameters: the Conpact Tokeni zer object, the document
node necessary for creating new elements, the default namespace and the element name to be created
during expansion.

Creates anew element checking if the element name is qualified, in which case it sets the appropriate
namespace on creation otherwise it uses the default namespace.

Each attribute is created with acall toset At t r i but e. The element name is the result of the call to
ski p("[") whichreturnsthe token after the opening bracket. If the name of the attributeisxmni ns,
it resets the default namespace.

Loops on each child. Gets the string that follows, which is then trimmed.

If the current token is an opening bracket, then we create anew element by arecursivecall toexpand
which is added as a child of the current node. Otherwise the string is added as a text node.

The function receives astring with the compact form for which the Conpact Tokeni zer iscreated.
The root element name is theidentifier preceding thefirst |left bracket. A new document object isthen
created and given as parameter to the expand function.

Associates callback functions with the expand and pr et t y- pri nt buttons.

Function that gets the value of the expand string (the right text box), gives it to the donExpand
function whose result is serialized in the left box. Unfortunately, this result is not indented.

Function that gets the value of the raw XML and formats it using a function that it not shown here.

198

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/JavaScript/FormatXML.js.js

XML processing with Swift

10.5. XML processing with Swift

Swift [85] isastatically typed script programming language with a syntax inspired by functional languages
such as Haskell and script like Python. In this section, we will show how to use it for both DOM and SAX
parsing, which we used in XML processing in Java.

10.5.1. DOM parsing using Swift

To show how to process an existing XML structure, wewill use the compacting processthat we programmed
inJavain Section 8.1. In Swift, DOM parsing is achieved simply by calling the XM_LDocunent constructor
available as Foundat i on class. This creates a DOM structure composed of instances of the XM_LNode

class.

Example 10.29. [DOMConpact.sw ft] Text compaction of the cellar book

(Example 2.2) with Swift using the DOM model

Compare this program with Example 8.1.

1

10

15

20

25

30

i mport Foundati on

func processDOM _ string: String)->String{
var res=""

func compact (_ nodel n: XM_Node?, _ i ndent: String){
guard (nodeln !'=nil) else {return}
| et node = nodel n!
var newl ndent =i ndent
swi tch node. ki nd {
case .element:
| et nane = node. nane!
|l et elem = node as! XM.El enent
res += name+"["

newl ndent += String(repeating:" ", count: nane.count+1)
var first = true
if elemattributes !'= nil {

for attr in elemattributes! {
if !'first {res += "\n\(new ndent)"}

res += "@ (attr.nane!)[\(attr.stringVvalue!)]"
first = fal se
}
if elemchildren !'= nil {

for child in elemchildren! {
if !'first {res += "\n\(new ndent)"}
conpact (chil d, new ndent)
first = fal se

res +: II] n
case .text:

199

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Swift/DOMCompact.swift

Alternative approaches

35

40

45

50

60000 (]

=

res += node. stringVal ue!.trinm ngCharacters(in
. whi t espacesAndNew i nes)

defaul t:
print (" conpact: unprocessed ki nd:\(node. ki nd)")
}
}
do {
et doc = try XM.Docunent (data: string.data(using: .utfl6)!, ©
options: [])
conpact (doc. root El enent (), "") ©
return res+"\n"
} catch {
print("Error in the input file:\(error)")
return ""
}
}
P

func processDOM path: String)->String {
return processDOMtry! String(contentsOf: URL(fileURLWthPath: path)))

}

Imports the Foundat i on framework needed for XML processing.

Function that takesthe XML input as aatring and returns the compacted form asastring, herether es
variable.

A recursive function that processesan XML nodein order to add to r es indented lines corresponding
to theinput structure. The second parameter isastring with the current number of spacesfor indentation
of each new line.

If the nodeis an element, it adds to the the name of the node followed by an opening bracket and adds
the appropriate number of spaces to the current indentation.

Deals with attributes which are contained in alist of nodes over which we iterate. For each attribute,
prints a @ its name and the corresponding val ue within square brackets. A new line is started for each
attribute except the first.

Loops over the list of children possibly changing lineif it not the first child.

Recursively callsconpact on the child node with the updated indentation.

Processesatext node by addingittor es after removing starting and endind spaces, tabs and newlines.
Parses the file by creating anew XML document from the content of the input string.

Calls the compacting process on the document node with an empty indentation string and ends the last
line with a newline.

Transformsthe XML fileidentified by apath string to produce a string containing the compacted form
by calling the pr ocessDOMfunction on the string content of thefile.

10.5.2. SAX parsing using Swift

In order to process an XML structure with the SAX approach, we will use asimilar compacting process to
the one we programmed in Java in Section 8.2. SAX parsing is achieved by creating an instance of the
xnl Par ser Del egat e class in which we define handler methods for some parsing events. The parsing
processwill send call-backsto the handler of these events, called adel egate in Swift, to create the compacted
document as a string. SAX parsing in Swift is only a matter of defining the appropriate functions in the

200

SAX parsing using Swift

delegate. Because nodes are not normalized, many successive text nodes can appear within an element, so
some care has to be taken to deal with thisfact. Unfortunately, in Swift 5, internal entities such as the ones
used at the start of the CellarBook.xml file cannot be properly dealt with.

Example 10.30. [SAXConpact.sw ft] Text compaction of the cellar book
(Example 2.2) with Swift using the SAX model

Compare this program with Example 8.3.

1 inport Foundation (1

/1 Caution: internal entities are not dealt properly with this API.
func processSAX(string: String)->String {
5
cl ass xnl Par ser Del egat e: NSObj ect, XM.Par ser Del egat e { (2
var res=""
var cl osed=fal se
var indent=""
10 var | ast NodeWasText =f al se

func parser(_ parser: XM.Parser, (3]
di dSt art El enent el enent Nanme: String,
nanespaceURl : String?, qualifiedName gName: String?,
15 attributes attributeDict: [String : String] = [:]1){
if closed {
res += "\n\(indent)"
cl osed = fal se
}
20 i ndent += String(repeating: " ", count:elenmentNane.count+l) @
res += "\ (el enent Nane)["
var first = true
for (name,val) in attributeDi ct { (5
if I'first {res += "\n\(indent)"}
25 res += "@(nane)[\(val)]"
first=fal se
cl osed=t rue
}
| ast NodeWasText =f al se
30 }

func parser(_ parser: XM.Parser, (6]
di dEndEl enent el enent Nanme: String,
namespaceURl : String?, qualifiedName gNanme: String?)({
35 res += "]"
cl osed=t rue
i ndent =St ri ng(i ndent. dropLast (el enent Nane. count +1))
| ast NodeWasText =f al se
}
40
func parser(_ parser: XM.Parser, (7]
foundCharacters string: String){
| et s=string.trimm ngCharacters(in: .whitespacesAndNew i nes)
if s.count>0 {

201

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Swift/SAXCompact.swift

Alternative approaches

45 if closed & & !l ast NodeWasText {
res += "\n\(indent)"
cl osed = fal se

}
cl osed=true
50 res += "\ (s)"
}
| ast NodeWasText =t r ue
}
55 public func parserD dEndDocunent (_ parser: XM.Parser) { (8]
res += "\n"
}
func parser(_ parser: XMParser, (9]
60 par seError Cccurred parseError: Error){
print("** parseErrorQccurred:\(parseError)")
}
func parser(_ parser: XM.Parser
65 val i dationErrorCccurred validationError: Error){
print("** validationErrorQccurred:\(validationError)")
}
}

70 | et nyDel egat e=xm Par ser Del egat e() ©
| et parser=XM.Parser(data: string.data(using: .utfl6)!) ®
parser.del egate = nyDel egate @
par ser. parse() ®
return nyDel egate.res

75 }

func processSAX(path: String)->String{ 1]
return processSAX(string:try! String(contentsO: URL(fil eURLWthPath: path)))
}
80
©® Importsthe Foundat i on framework for the XML processing.
® Definesthe constructor of the class and initializesinstance variables needed to output the element with

the correct indentation and for keeping track of the parsing state. The last flag is used when many
successive text nodes appears.

When a new element is started, finishes the current indentation if needed.

Updates the current indentation by adding the length of the element name.

Prints the first attribute on the same line and the others on the subsequent lines properly indented.
When an element finishes, closes the current bracket and updates the current indentation.

For anon-empty text node, ends current line if needed and if the last node was not atext node. Writes
the content of the node and indicates that the last node was a text node.

When the document parsing finishes, add a terminating newline.

Deals with aparsing error by printing an error message.

Creates an instance of the SAX parser delegate.

Creates an instance of the SAX parser.

Sets the parser delegate to which the parsing will send events.

Q00060

® 66 00

202

Creating an XML document using
Swift

® Startsthe parsing process and return the string containing the result of the compacting process.
® Transformsthe XML fileidentified by apath string to produce a string contai ning the compacted form
by calling the pr ocess Sax function on the string content of the file.

10.5.3. Creating an XML document using Swift

In order to demonstrate the creation of new XML document, we will parse the compact form produced in
Section 10.5.1 or in Section 10.5.2 likewe did in Chapter 9. Wefirst need away to access appropriate tokens
corresponding to important signalsin the input file. Thisis achieved by defining aConpact Tokeni zer
class that will return opening and closing square brackets, at-signs and the rest as a single string. Newlines
will also delimit tokens but will be ignored in the document processing. The file is processed by a series of
callsto next Token or ski p. ski p provides a useful redundancy check for tokens that are encountered
in the input but are ignored for output.

In Swift, anew document is created using the constructor of the XM_LDocunent class. Adding a new node
isdone with theaddChi | d method that adds the new node asthe last child of a given node. The attributes
of anode are added using the addAt t ri but e method.

Example 10.31. [DOVEXpand. swi f t] Swift compact form parsingto createan XML
document

A sample input for this program is Example 5.8 , which should yield Example 2.2. Compare this program
with Example 9.2.

1 inport Foundation o
cl ass Conpact Tokeni zer { (2
var tokens:[String]
5 var i Tok: I nt
init(string:String){ (3

let pattern = "(\\[|\\]|@[M\\[\\]@\n]+)"

l et regex = try!l NSRegul ar Expressi on(pattern: pattern, options: [])
10 | et nsrange = NSRange(string.startlndex..<string.endlndex,in:string)

i Tok=0

tokens = regex. matches(in: string, options: [],

range: nsrange).map {match in
| et mat chedRange=Range(match. range(at:1),in:string)!
15 return string[mat chedRange]
.trimm ngCharacters(in:.whitespacesAndNew i nes)
}.filter{!%$0.isEmty}

}
20 func next Token()->String { o
| et token = tokens[i Tok]
i Tok+=1
return token
}
25
func skip(_ string: String)({ (5]

i f nextToken() != string {

203

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/Swift/DOMExpand.swift

Alternative approaches

print("\(string) expected at

position \ (i Tok-1)")

}
30 }
func i sAtEnd()->Bool { (6]
return i Tok>=t okens. count
}
35}
func expand(string: String) -> XM.Node ({ (7
| et ct=Conpact Tokeni zer(string: string) (8
40 func expandEl en{_ el em XMLEl enent, _ i nTok: String) { (9
var tok = inTok
while tok == "@ { ©
| et attName=ct. next Token()
ct.skip("[")
45 el em addAttri but e(®
XM_Node. attri bute(w t hNane: att Name,
stringVal ue: ct.nextToken()) as! XM.Node)
ct.skip("]")
t ok=ct . next Token()
50 }
while tok !'="]" && lct.isAtEnd() ({ @
| et s=tok
| et next Tok=ct. next Token()
if nextTok == "[" { ®
55 et child = XM_Node. el enent (wi t hNane: s) as! XM.El enent
expandEl en{ chi | d, ct. next Token())
el em addChi I d(chi | d)
tok = ct.next Token()
} else { 1]
60 el em addChi | d(XM_Node. t ext (wi t hStri ngVal ue: s) as! XM_Node)
t ok = next Tok
}
}
}
65
var root Name=""
var token=ct. next Token()
while token = "[" {
root Name = token
70 t oken = ct. next Token()
}
[et root = XMLEl enent (nane: root Nane) ®
| et doc=XM_Docunent (root El enent: root) ©
expandEl en(root, ct. next Token())
75 return doc
}
func expand(path: String)->XM-Node { @

80 }

return expand(string: try!

String(contentsCr:

URL(fil eURLW t hPath: path)))

204

Creating an XML document using
Swift

60000 ® 0 00

e

(5]

® 6 6 6 6

Imports the Foundat i on framework for the XML processing.

Definesthe Conpact Tokeni zer class.

Definesthe pat t er n regular expression to split an input line on an ampersand, an opening or closing
square bracket. The square brackets charactersin the regular expression must be preceded by abackdash
as sguare brackets are part of the regular expression language, also used in the same expression. The
list of al non-empty tokensis created by matching the regular expression on the whole input string.
Returns the next token.

Checks that the current token is the same as the one given as parameter and retrieves the next one. If
the current token does not match, then print an error message.

Checksif there are still tokens left to process.

Creates an XML document corresponding to the content of the input string.

Creates an instance of the Conpact Tokeni zer classthat will be used to get the tokens.

Addsto an XML element the content starting with the current tokeni nTok.

Because all attribute names start with an @ we loop while the current token is equal to @ The name
of the attribute is saved and the following opening square bracket is skipped, the value is kept and the
] isskipped.

Adding an attributeisdone by callingtheaddAt t r i but e method having an XM_Node as parameter.
The attributeis created by calling the XMLNode. at t r i but e function with the name of the attribute
and its corresponding value.

All children are then processed in turn until a closing square bracket is encountered. s is the current
token, which is either a child element name (if followed by an opening square bracket) or the content
of atext node.

A child nodeisexpanded by arecursive call whoseresult isadded asthelast child of the current el ement.
A text node is added as the last child of the current element.

The name of the root is the first token immediately followed by an opening square bracket.

Create the document node by calling XM_Docunent with an element that serves asits root.
Callsthe expand function on the content of the file at the given path. The output of this function is
an XMLNode that can be easily transformed into a prettyprinted string using the
xm String(options: .nodePrettyPrint) method.

205

Alternative approaches

10.6. XML processing with E4X

Caution. E4X and ActionScript are now deprecated for all practical purposes, so you should consider
other toolsfor processing XML such astheuseof JavaScr i pt described in the previous section JavaScript.

As more and more Javascript programs are expected to process XML data, it has been thought useful to
provide asimple notation for handling XML datadirectly within Javascript. ECM A Script for XML (E4X)[66]
has been recently standardized to support a natural use of XML data within Javascript programs. Its main
innovationisthe addition of an XML datatype and the possibility of using XML literalsthat can be accessed
directly using the usua dot notation used for accessing properties of Javascript objects. It ispossibleto access
the content of an XML node but also to change its value or to add or remove new XML nodes.

For example, it ispossibleto declareanew wi ne element directly in aJavascript program using thefollowing
notation, which is the same as the usual notation for all XML data:

var wine: XM. = <wi ne nane="Chateau La Piquette" format="1I">
<properties>
<col or >red</ col or >
</ properties>
<conment >Shoul d be t hrown away</coment >
<year >2007</ year >
</ wi ne>;

Wi ne isthen a Javascript variable whose value can be retrieved or changed using the element name. For
example,wi ne. properti es. col or will return”r ed" . If there are more than one element of the same
name, a specific one can be selected by putting its ordinal number (in document order) within square
brackets after the name. To change an element or add a new one, it isonly a matter of using its name asthe
target of an assignment. Attributes can be accessed by prefixing their nameswith an @ The. . operator is
the equivalent of the XPath / / operator.

Here are afew examples of E4X expressions:

e wine.comrent="1 found it excellent" changesthevaue of the comment;

Wi ne.origin.country="USA" addsanew element ori gi n containing the count ry element;
e W ne. @ane returns the name of thewine (" Chat eau La Pi quette");

* Wi ne..col or returns"red".

Thereisalimited XPath-like notation to access alist of XML nodes over which it is possible to iterate. For
example, f or each (var win wne. @) will loop over all attributes of awine.

var el enms: XMLLi st = wi ne. *;

for(var i=0;i&t;elens.length();i++){
elens[i]...

}

will access al wi ne elementsin turn. XMLLi st is a predefined type defining a list of XML nodes and
providing specific methods. In order to simplify programming (in most cases), the E4X specification points
out that it deliberately blurs the distinction between an XMLNode and an XMLList containing a single
XMLNode. This design choiceis also madein XSL.

206

XML processing with E4X

It isalso possible to select elements and attributes from alist with a boolean expression evaluated on each
element of the list. Figure 10.3 gives a few examples of E4X expressions for accessing information in the
cellar book.

207

Alternative approaches

Figure 10.3. E4X expression examples applied to Example D.1

These expressions are the same as the ones used in Example 4.1. cel | ar Book isaJavascript variablein
which the XML document has been stored. It corresponds to the root node (/ cel | ar - book) of the XML
document.

1 cel | ar Book. owner o

cel I ar Book. cel | ar. wi ne. (quanti t y<=2) (2]

cel | ar Book. cel | ar. w ne[0] (3]

cel | ar Book. descendants("*"). (el ement s("postal -code") .| engt h() >0) o
5 cel | ar Book. owner. st r eet (5]

cel | ar Book. . wi ne. @ode (6]

var cat NS: Nanespace (7]

= new Namespace("cat","http://ww. iro.unontreal.cal/l apal me/w ne-catal 0g");
cel | ar Book. addNanespace(cat NS) ;
10 cel |l ar Book. . cat NS: : wi ne. @ode

var wi nes: XM_Li st = cel | ar Book. . w ne; (8
Wi nes[wi nes. |l ength()-1]. @ode

15 cel | ar Book. cel | ar.wi ne[O] . conment . cat NS: : bol d (o]

var sum Nunber =0; ©
for each (var g in cellarBook.cellar.w ne.quantity)
sum += Nunber (Qq);

20 sum

var res: String=""; (11}
for each (var win cellarBook..w ne)
res+=w. quantity+":"+cel | ar Book. . catNS: : w ne. (@ode==w. @ode) . @ane+"\ n";
25 res

cel I ar Book. .cat NS: : wi ne. (cat NS: : ori gi n. cat NS: : count ry=="France" @
&& catNS: :price < 20)

©® Theowner element of the cellar. Result: node on line 103.

® Thewines for which we have 2 bottles or less. The nodes returned are the wi ne elements that are
filtered with aboolean expression (predicate) in parentheses. The predicateusesquant i t y, aninterna
element evaluated in the current context of the path specified. Result: nodes on lines 131 and 136.

® Thefirst wine of the cellar. Result: node on line 120.

0 Thedementswhich containapost al - code element. Thisisachieved by keeping only descendants
for which thelist of dl post al - code elementsis not empty. Result: nodes at lines 103 and 113.

© Thestreet of the cellar's owner. Result: " 1234 rue des Chat eaux”.

O Thevalue of the code attribute for al winesin the cellar. Note the use of . . to find al descendants
of a node, analogous to / / in XPath. Result: " C00043125", "C00312363", " C10263859",
" C00929026".

@ Thevaueof the code attribute for all winesin the catalog. Note the use of the namespace prefix that
must be defined and then added to the XML aobject. It is used by prefixing the element namewith : : .
Result: " C00043125"," C00042101"," C10263859"," C00312363"," C00929026" .

0 Thecode of thelast wine of the cellar,obtained by getting thelist of winesand returning the one having
an index that is one less than the length of the list. Result: " C00929026" .

208

DOM parsing using E4X

Thecat : bol d element (note again the use of the namespace prefix) within the comment of the first
wine of the cellar. Result: " Guy Lapal me, Montr éal " (expanded from the entity &G;).

Total number of bottlesin the cellar obtained by iterating over the values of all quant i t y elements
of the wines in the cellar. As each XML value is a string, it must first be converted to a number for
the sum. Otherwise, + would concatenate the strings. Result: 14.

Sequence of 4 strings, each giving the number of bottles of each winein the cellar, followed by acolon
and the name of the corresponding wine. Result: 2: Domaine de |'Tle Margaux,
5: Mumm Cor don Rouge, 6: Chat eau Mont guéret,1: Prado Rey Robl e.

Sequence of French winesin the catalog costing less than 20 dollars. Result: wines that start on lines
24 and 42.

10.6.1. DOM parsing using E4X

Parsing a string to get an XML value with E4X is achieved by casting the string to XML using the XL
function. Because the content of afile can beread in astring, we can use thisfunction on the resulting string.
Example 10.32 presents an ActionScript file that provides a class with methods for converting a string
containing an XML source into a string with the compact notation we have seen in previous chapters. It is
meant to be called from a Flash program XMLPr ocessi ng. f | a not described in this document but
available on the companion Web site. It that allows the user to select a given file and to display the output
of the compacting process in a scrollable window. This application can also transform the XML elements
into sprites that can be zoomed on when they are clicked.

Example 10.32. [DOMConpact . as] Text compaction of thecellar book (Example2.2)

with E4X using the DOM model

Compare this program with Example 8.1.

1 package{
public class DOMConpact { o
var doc: XM.;
5 function DOMConpact (s: String){ (2]
doc = XM (s);
}
public function toString():String { (3]
10 return conpact (doc);
}
var blanks:String =" " o
private function spaces(n:int){
15 whi | e(bl anks. | engt h<n) bl anks+="
return bl anks. substr (0, n);
}
private function conpact (node: XM, i ndent: String=""):String { ©
20 var type: String = node. nodeKi nd();

switch (type) {
case "elenent": (6]
var out: String = node.local Nane()+"[";

209

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/E4X/DOMCompact.as

Alternative approaches

i ndent += spaces(node. | ocal Nane() .| ength+1);

25 var attributes: XMLLi st = node. @; (7]
var first:Boolean = true;
for (var i:int=0;i<attributes.length();i++){

i f(i>0)out+="\n"+indent;
out+="@+attributes[i].nane()+"["+attributes[i]+"]";
30 first=fal se;

for each (var child: XML in node.children()){ (8]
if(!first) out+="\n"+i ndent;
out +=conpact (chi |l d, i ndent) ;
35 first=fal se;

return out+"]";
case "text": 9]
return node[0].toString().replace(/ *\n */g," ');
40 }
return "Shoul d never happen!!!"”;

}

©® Definesthe class with one instance variable, the document of type XM_.

® Constructor of the classthat createsan XML document from astring. Parsing is done through the XML
function.

©® Produces acompact string by calling the conpact function.

0 Definesasinstance variable a string from which the spaces function will produce a certain number
of spaces with the substring function. If bl anks is not long enough, more spaces are added to the
string.

® Mainfunction for producing a compact version of the XML document, starting with a given node and
acertain indent given as a string of spaces. By default, the indent is empty.

6 If thenodeis an element, we initialize the output string with the name of the element followed with

an opening bracket. The length of this string is used as indent to be added to the current one for the

subsequent lines.

All attributes are output with their names and values within brackets.

Each child node is output with arecursive call to conpact .

A text node is the content of the node but normalized by replacing newlines and their surrounding

whitespaces with a single space.

10.6.2. Creating an XML document using E4X

Parsing a compact form in order to create an XML document follows an organization similar to the one we
have shown in Chapter 9 and Section 10.1.3. Wefirst define aclassfor aspecialized tokenizer which returns
only meaningful units that will be used to create the XML elements and attributes of the resulting XML
document.

@09

Example 10.33. [Conpact Tokeni zer . as] E4X specialized string scanner that
returnstokens of compact form

Compare this program with Example 9.1.

210

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/E4X/CompactTokenizer.as

Creating an XML document using

1

10

15

20

25

30

E4X
package {
cl ass Conpact Tokeni zer { (1]
private var tokens:Array = [];
private var tok:String = "";
functi on Conpact Tokeni zer (source: String):voi d{ (2]
tokens=source.split(/(\[|\]|\n| @[M\[\]\n@+)/).filter(notEnpty);
}
private function notEnpty(el ement:*,index:int,a:Array): Bool ean{ (3]
return elenment.length>0 && !el enent. match(/™\n? *$/);
}
public function nextToken(): String{ o
return tok = tokens.length==0 ? null : tokens.shift();
}
public function token():String { (5]
return tok;
}
public function skip(sym String)({ (6]
i f(token()==sym
return next Token();
el se
t hr ow new Argunent Error ("ski p: "+symt" expected but "+
token()+ " found");
}
}
}

Defines a class with two private instance variables: t okens, an array of all tokens whose elements
will be returned one by one; t ok, the current token.

Builds the array of al tokens by splitting according to important el ements of the inputs. Here we are
interested in the content matched by the regular expressions, so we capture the content matched.
However as the input is matched by the regular expression, empty strings between each match are
produced. These empty matches and those containing only spaces are removed by thecall tof i | t er .
Defines a function to match empty strings and those containing only spaces.

Retrieves the first element of thet okens array, removes it and saves it as the current token, which
is then returned as the value of the call.

Returns the current token.

Checks that the current token corresponds to the parameter. If thisis the case, returns the next token,
otherwise raises an exception. In principle, this exception should never be raised but this function
might be useful (and it was!) for debugging purposes.

The creation of anew XML document is done by arecursive call to the expand function that creates each
element of the document in turn.

211

Alternative approaches

Example 10.34. [DOVEXxpand. as] E4X compact form parsingin order to create an
XML document

A sample input for this program is Example 5.8 to yield Example 2.2. Compare this program with Ex-
ample 9.2.

1 package{
public class DOVExpand { o
var doc: XM;
5 function DOVExpand(s: String){ (2
var st: Conpact Tokeni zer = new Conpact Tokeni zer (s);
var root Nane: String;
whil e (st.nextToken()!="[") rootNane=st.token();
doc = expand(st, root Nane) ; (3]
10 }
public function toString():String { (4
return doc.toXM.String();
}
15

function expand(st: Conpact Tokeni zer, el ement Nane: String): XM.{ ©
var el em XM.= <{el enent Nane}/ >;

st.skip("[");
whi |l e(st.token()=="@){
20 var attNanme: String=st.skip("@); (6

st . next Token();
el em @att Nane] =st. skip("[");
st . next Token();

st.skip("]");
25 }
while (st.token()!="]"){ (7]
var s:String = st.token().replace(/"s*(.*?)\s*$/,"$1");
st . next Token();
if(st.token()=="[")
30 el em appendChi | d(expand(st,s)); (8
el se
el em appendChi | d(s); 0
}
st.skip("1");
35 return el em
}
}
}

©® Definesaclass with asingle instance variable: the XML document to create.

® The constructor instantiates a compact tokenizer and then finds thefirst string followed by an opening
bracket which will be the name of the root.

® Createsanew XML structure by caling expand on the name of the root element.

O Theseridization of the XML structure isthe string representation of the doc instance variable.

212

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/E4X/DOMExpand.as

Creating an XML document using
E4X

Creates a new element whose name is the second parameter. We use the st string tokenizer. We first
create an empty element using an XML literal. Asthe name hasto be evaluated, it is put within braces.
Each attribute is created with a single assignment statement making use of the attribute name within
brackets. This nameisthe result of thecall toski p("[") which returnsthe token after the opening
bracket.

Loops on each child. Gets the string that follows, which is then trimmed using a regular expression.
If the current token is an opening bracket, then we create anew element by arecursive call to expand
which is added as a child of the current node.

If the current token is not an opening bracket, then its value is used to create a text node as a child of
the current node.

213

Alternative approaches

10.7. XML alternative notations

In this document, we have been promoting XML asthe ideal exchange language between systems because
of its standardization and its wide range of applications. Unfortunately XML needs acomplex infrastructure
(parser, validator, transformer, etc.) in order to profit from its power. In some cases, this may prove to be
an overkill. Thisis why we will now describe two alternative human readable and writable notations for
information interchange between systems. This will show that XML is not the only exchange formalism
and will highlight the advantages and disadvantages of each approach.

10.7.1. JSON

The AJAX technology, built upon the XMLHTTPRequest (XHR) system call that exchanges information
between a browser and a server in order to update a part of a\Web page without reloading it entirely. This
allowsin certain cases a better user experience (dynamic suggestions, on-the-fly server-side validation, etc.)
especially when aWeb page is used as interface for an interactive system.

As its name implies, XHR involves an XML information exchange between the server and the browser.
XML must then parsed by the Javascript engine of the browser for each exchange in order to create the
corresponding Javascript data structure in memory. If E4X is not implemented in the Javascript interpreter,
using afull XML parser may be prohibitive in both time and memory usage for simple data exchange. A
simpler alternative has been proposed: JavaScript Object Notation (JSON) which is based on the conven-
tional literal object notation of Javascript. In this case, creating a Javascript data structure isjust a matter of
evaluating the received data string from the server. Because the eval function is already included in all
Javascript interpreters, there is thus no need for an external parser.

JSON encodes the information by means of the primitive data structures of Javascript built on the following
types of values:

primitive objects numbers, strings (between double quotes), booleans (t r ue or f al se) and
nul | ;
complex objects arrays (elements between square brackets) or objects (key-value pairs between

braces). Arrays or objects elements are separated by acomma. A key isastring
and it is separated from the corresponding value by a colon.

Complex objects components are accessed using the dot notation as for any other Javascript object. If the
name of an element isasimple identifier then it can be used directly (e.g. Wi ne. ori gi n. count ry) but
if it contains a dash which is a not alegal Javascript identifier, the we must use the indexing mechanism
suchaswi ne["i s-red"]. Itissimilar to what we have shown for E4X in the previous section, but it
does not allow for all XPath-like possibilities provided by the direct XML literal notation.

In order to show the similarities between XML and JSON, we show asmall XML winelistin Example 10.35
and its JSON equivalent in Example 10.36. A tree with more than one child istrandlated into an object with
asinglekey corresponding to the root of the tree and its value is another object containing the attributes and
children. The attributes are simple key-value pairs and the children are nodes that are themselves objects.
Similarly named nodes are combined within an array to allow indexing. If the content of Example 10.36 is
kept in the Javascript variable s, then parsing is a simple matter of doing r oot = eval (s); ! Inthis

1As some Javascript parserswill consider the first identifier followed by acolon to bethe label of astatement, it is usually safer to use
root = eval ("("+s+")"); toforcethe parser to consider the string to be an expression.

214

JSON

case, the name of the second wine of this list can be accessed in Javascript with
root["wine-list"].w ne[1l].nane.

Example 10.35. [W nelLi st . xm] A small winelist in XML

1 <?xm version="1.0" encodi ng="UTF- 8" ?>
<wi ne-|ist>
<wi ne nane="Donai ne de |' Tl e Margaux"
appel | ati on="Bor deaux supérieur">
5 <is-red>true</is-red>
<ori gi n>
<count ry>France</ country>
<r egi on>Bor deaux</r egi on>
</origin>
10 <price>22.80</price> e
<year >2002</ year >
</ wi ne>
<wi ne nanme="Ri esling Hugel" appellati on="Al sace"> (6
<is-red>fal se</is-red>
15 <ori gi n>
<count ry>France</ country>
<r egi on>Al sace and East </regi on>
</origin>
<price>17.95</price>
20 <year >2002</ year >
</ wi ne>
</wine-list>

o000

Root element of a small data-oriented XML document.
First wine element, with two attributes.

An attribute with a string value.

An element with a boolean value.

An element with anumerical value.

Second wine e ement with two attributes.

Q00000

Example 10.36. [W neLi st . j son] A small winelist in JISON

The same content as in Example 10.35, transformed in JSON, the same callout numbers in both listings
correspond to the same elements.

14
"wne-list": { o
"wine":[({ (2
"nane": "Domaine de |'Tle Margaux", ©
5 "appel | ation": "Bordeaux supérieur",
"is-red": true, (4
"origin": {
"country": "France",
"region": "Bordeaux"
10 H
“price": 22.80, (5
"year": 2002

215

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineList.xml
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineList.json

Alternative approaches

15

20

25 }}

Q00000

]

b
"nanme": "Riesling Hugel™"
"appel l ation": "Al sace",
"is-red": false,
"origin": {
"country": "France",
"region": "Alsace and East™
}
"price": 17.95,
"year": 2002
}

Root element translated as a single key-value pair.

All wineswill be stored under a single key corresponding to an array of values.
An attribute is transformed into a key-value pair with a string value within quotes.
A boolean value is written without quotes.

A numerical value iswritten without quotes.

Second wine of the array.

The JSON version given above was produced by Example 10.37, an XSLT stylesheet for transating an
XML filein JSON format. We will describe later some restrictions that should be put on an XML file so
that itstrandation to JSON is meaningful and produces legal Javascript.

Example 10.37. [xm 2j son. xsl] XSLT stylesheet to convert an XML file into

JSON.

1 <! DOCTYPE styl esheet [
<IENTITY cr "<xsl:text>
</ xsl:text>">

1>

5 <xsl:styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni

10

15

20

xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xmns: gl ="http://ww.iro.unontreal.ca/l apal ne"
version="2.0">

<xsl:strip-space el enents="*"/>

<xsl:out put omt-xm-declaration="yes"/>

<xsl:tenplate match="/">
<xsl:text>{</xsl:text><xsl:apply-tenpl ates>
<xsl:wt h-param nane="indent" select="0"/>
</ xsl :appl y-tenpl at es><xsl : t ext >} </ xsl : t ext >
</ xsl : tenpl at e>

<!-- end current line, indent $str by $nb spaces -->
<xsl :tenpl ate name="dol ndent" >

<xsl : param name="nb" as="xsd:integer"/>

<xsl : param name="str" as="xsd:string"/>

&cr; <xsl : val ue- of

sel ect="concat (string-join(for $i in 1 to $nb return

</ xsl : tenpl at e>

L), $str) />

216

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/xml2json.xsl

JSON

25

30

35

40

45

50

55

60

65

70

75

<l-- produce a JavaScript String:
if the parameter is a nunber or a bool ean, output the string;
ot herwi se put the string between quotes escaping quotes within it-->
<xsl:function name="gl:jsString"> (4
<xsl : param name="s"/>
<xsl : val ue- of sel ect="
if (string(nunber($s))!="NaN or matches($s, 'true|false' ,'i')) then $s
el se concat (' " ;' , repl ace($s,"' &uot;"',"'\\""'), "' &uot;")
">
</ xsl :function>

<xsl:tenpl ate name="out Array" > (5
<xsl : param name="i ndent" as="xsd:integer"/>
<xsl:call-tenpl ate nanme="dol ndent " >
<xsl : wi t h- param nanme="nb" sel ect =" $i ndent +3" as="xsd: i nteger"/>
<xsl:w th-param name="str"
sel ect="concat (gl :jsString(string(current-grouping-key())),

I:[I)II/>
</ xsl :call-tenpl at e>
<l-- output its contents "recursively" -->

<xsl :apply-tenmpl ates sel ect="current-group()">
<xsl :wi t h- param nanme="i ndent" sel ect ="$i ndent +6" as="xsd:integer"/>
<xsl :w t h- par am name="out put Nane" sel ect="fal se()"/>

</ xsl : appl y-t enpl at es>

<xsl:call-tenpl ate nanme="dol ndent" >
<xsl : wi t h- param nanme="nb" sel ect =" $i ndent +3" as="xsd: i nteger"/>
<xsl:w th-param name="str" select=""1""/>

</ xsl :call-tenpl at e>

</ xsl : tenpl at e>

<l-- an attribute is its name followed by its text value -->
<xsl:tenpl ate match="@ " ><xsl : param nane="i ndent" as="xsd:integer"/> ©O
<xsl:call-tenpl ate nanme="dol ndent" >
<xsl : wi t h- param name="nb" sel ect ="$i ndent" as="xsd:integer"/>
<xsl:w t h-param name="str"
sel ect="concat (gl :jsString(nane()),": ",gl:jsString(.))"/>
</ xsl :call-tenpl at e>
</ xsl : tenpl at e>

<l-- a text node is the value of its content --> (7]
<xsl:tenplate match="text()">

<xsl :val ue-of select="gl:jsString(normalize-space(.))"/>
</ xsl : tenpl at e>

<l-- any child node -->
<xsl:tenplate match="*"> (8
<xsl : param name="i ndent" as="xsd:integer"/>
<xsl : par am name="out put Nane" sel ect="true()"/>
<l-- output the name of the tag if so desired -->
<xsl:if test="%out put Nane"> (9]
<xsl:call-tenpl ate nanme="dol ndent " >
<xsl :w t h- param name="nb" sel ect =" $i ndent"/ >
<xsl:w th-param name="str" select="gl:jsString(name())"/>

217

Alternative approaches

</ xsl :call-templ at e>

80 <xsl:text>: </xsl:text>
</xsl:if>
<xsl : choose>
<l-- node with a single child text node which nust be non-enpty-->
<xsl :when test="count (text()[string-Iength(normalize-space(.))>0])=1">
85 <xsl :appl y-tenpl at es> ©

<xsl :w t h- param nane="i ndent" sel ect =" $i ndent +3"/ >
</ xsl : appl y-t enpl at es>
</ xsl : when>

<l-- any type of nodes -->
90 <xsl : ot herwi se>
<xsl:text>{</xsl:text>
<l-- loops over all groups of identical tags --> ®

<xsl:for-each-group select="@| *|text()"
gr oup- adj acent ="1 ocal - name() " >

95 <xsl : choose>
<xsl :when test="count (current-group())=1">
<l-- a single el enent group-->
<xsl:apply-tenpl ates select=".">
<xsl :w t h- param nane="i ndent" sel ect =" $i ndent +3"/ >
100 </ xsl : appl y-t enpl at es>

</ xsl : when>
<xsl : ot herw se>

<I-- many el ement groups within braces-->
<xsl:call-tenpl ate nanme="out Array" >
105 <xsl :w t h-param nanme="i ndent" sel ect ="$i ndent"/>

</ xsl :call-tenpl at e>
</ xsl : ot herwi se>
</ xsl : choose>
<xsl:if test="position()!=last()">

110 <xsl :text>, </ xsl:text>
</xsl:if>
</ xsl : for - each- group>
<l-- end current group -->
<xsl:call-tenpl ate nanme="dol ndent" >
115 <xsl :w t h- param name="nb" sel ect =" $i ndent"/ >

<xsl:w th-param name="str" select=""}""/>

</ xsl :call-templ at e>

</ xsl: ot herw se>

</ xsl : choose>

120 <xsl:if test="position()!=last()">

<xsl:text>, </xsl:text>

</xsl:if>

</ xsl : tenpl at e>

125 </ xsl :styl esheet >

©® Definesan entity for ending aline with a carriage return.
® Startsthe transformation of all node with an indentation of 0.

218

JSON

® Named template for ending the current line and outputting a string indented with a given number of
spaces.

© Outputs a number, aboolean or astring in the correct Javascript format. It ensures that quotes are es-

caped within a string.

Outputs an array of similarly named elements. The name comes from the current grouping key found

on line 92-®. An opening square bracket is output. The internal elements are converted recursively

but by indicating that their name is not to be output. The closing square bracket is finally output.

An attribute is converted like a smple element: its name, a colon and the string value.

A text node is output but it isfirst normalized.

An element is output as a key-value pair.

If the name is to be output (it is the case unless we are dealing with an element within an array), the

name is output properly indented, followed by a colon.

If it isanon-empty text node, output it properly indented.

When it is a complex node, group adjacent similarly named element within an array. When a group

has only one element, then output it recursively properly indented. If there are many elementsin the

group, then use out Ar r ay line 37-@ for its elements. Separate each group with a comma and end

with aclosing brace.

@000 (]

e 6

Example 10.37 shows that it is relatively straightforward to produce JSON output from an XML file. The
resulting Javascript string istrivially transformed into a Javascript data structure using the eval function.
The browser then does not need afull blown XML parser to access the information from the XML structure.

But one should be aware that there are intrinsic limitations to the JSON notation compared to XML. It is
not possible to do validation on the JSON structure as it is possible on XML using a Schema. Some JSON
proponents argue that JSON istyped because the notation differentiates between numbers, strings, arrays
and sets of key-value pairs while XML is untyped becauseit is only string. Thisis the case only when this
is considered from the point of view of Javascript without any notion of XML embedded processing. In our
view, XML istyped because it can be validated with a Schema but JSON is not...

Transforming XML dementsinto sets of key-value pairs a so loses someinformation that might beimportant:

« theorigina document order islost except within arraysthat arise from a series of adjacent similarly named
elements. In Javascript, key-value pairs within an object are not ordered, they behave like a hash table.

* there is no distinction between an attribute of an element and a children element as both are translated
similarly.

« thereisno defined trandation for XML mixed content, i.e. atext node interspersed with other elements.
In particular, Example 10.37 will produce illegal Javascript when it encounters mixed content because
strings will be output within akey-value pair.

It is also possible to write an XSL stylesheet to transform JSON text into XML. The companion Web site
of this document, gives one example in thefile

j son2xm . xsl

The processing is similar to the one used in Example 9.2 but doing this with a stylesheet implies arecursive
processing of the textual input.

Because of the limitations given above, an XML transformed by Example 10.37 and then back with
j son2xm . xsl will not necessarily beidentica: elements might be reordered within anode and an attribute
of an element will be transformed into a child node of the element.

219

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/programs/XSL/json2xml.xsl

Alternative approaches

10.7.2. YAML

Another data structure notation that has been proposed isYAML[90], which could have meant Yet Another
Markup Language, but is instead the recursive acronym of YAML Ain't a Markup Language. As one of the
primary intended use of YAML is for configuration files, it was designed to be easy to read and write by
humans using standard text editors. This contrastswith XML for which brevity was not a design goal because
it was intended to be produced and parsed by machines.

Similarly to JSON, YAML describes tree structured data. The label of the root of the tree is written as a
string line followed by colon. If the content is a simple value (string, number or boolean) then it is written
on the sameline. If the content is a complex value (hash table or array), it iswritten on the lines that follow,
more deeply indented than the start of label of the root.

Example 10.38 shows how the content of our small wine list (Example 10.35) could be written in YAML.
The samerestrictions (no distinctions between attributes and nodes, no order of nodes, except within arrays)
that we have described for JSON also apply to YAML. Parsers for YAML have been written for many
programming languages so it meansthat it is possible to use it for exchanging data between systems written
in different languages.

Example 10.38. [W neLi st . yam] YAML version of Example 10.35

In order to show the parallel between XML, JSON and YAML, we use the same callout numbers as for
Example 10.36.

1 wine-list:
Wi ne:
name: "Dormaine de |' Tl e Margaux"
5 appel | ati on: Bordeaux supéri eur
is-red: true
origin:
country: France
regi on: Bordeaux
10 price: 22.80
year: 2002

© o o000

o

nane: R esling Huge
appel I ati on: Al sace
15 is-red: false
origin:
regi on: Al sace and East
country: France
price: 17.95
20 year: 2002

© Root element on asingle line with no indentation.

® Dependent element with anindentation that controlsthe next lines. The- on thefollowing lineindicates
the start of an array element. The content of each array element isindented more deeply than the dash.
A single value content is put on the same line.

220

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineList.yaml

YAML

(4]
(5]
(6]

A key with astring value. A string is not put within quotes unless it includes some special characters
like quotes or newlines.

A key with a boolean value.

A key with anumerical value.

Start of the second wine of the array.

Thissection has shown simpler alternativesfor markup languagesfor describing tree structured information.
In specia cases (configuration files, simple information exchanges), they provide enough structuring to be
useful but in the more genera set-up in which document ordering is important, they do not allow the full
expression power of XML.

221

Alternative approaches

10.8. Additional information on alternative
approaches

The Ruby Web site [81] is the primary source for information about Ruby and its implementation on most
platforms. But the authoritative book isthe Pick Ax book [44] and the Ruby-doc Web site [82]. The REXML
Web site [80] describes XML processing in Ruby.

The Python programming book [32] is an excellent source of information for learning the language. This
books hints at some XML processing in the Advanced Internet Topics chapter. As Python now integrates
XML processing within is software package, the most up to date information about the use of Python for
XML isthe section of the documentation on structured markup processing [40].

PHP is described extensively on the web [76] and the XML modules are described in a section of the online
manual [77].

JavaScript [68] was originally designed to add animation to web pages, but it has since become the langua
franca for all web applications in browsers, but also on the server side.

Swift [85] was introduced in 2015 originaly for programming applications for the Apple machines, but it
was then released as an open source project and has been ported to other platforms.

Chapter 18 of Essential ActionScript 3.0 [39] presents awell organized introduction to both XML program-
ming and how to use E4X in ActionScript 3.0.

222

Chapter 11. Conclusion

This report has presented some XML technigues using a single example application in order to give a ped-
agogical overview of the different approachesto processing XML files. Thefact that we could apply different
processing models on the same example illustrates the richness of the XML world which is part of almost
every facet of computer systems. Working on this example was our own way of learning XML, so the
techniques we used in this document should not be viewed as optimal or definitive. We also tried to make
some connections with other computer science techniquesin order to profit from our previous knowledge.

Even though, XML as been jokingly defined as Lisp with fat parentheses, we think that we have shown that
thereis much moreto it in the sense of type checking, programming and interoperability and ease of use by
means of many public domain efficient tools. Given the breadth of applications and the multitude of com-
peting proposals to extend or use XML, we have deliberately ignored many detailsin order to focus on the
main ideas, which are at end quite ssimple.

XML isnow agivenfact of lifein computer science oftenin hidden ways (e.g. with the AJAX (Asynchronous
Javascript And XML) technology that is now part of every modern web browser which also include a
stylesheet interpreter; XML files can now be sent directly without having to be translated into HTML before
hand. XML processing is only starting and much more remains to be done, especially because it is one of
the fundamental building block of the Semantic Web initiative [8]. XML is the encoding for upper level
languages such as RDF for defining information about documents and for OWL to define ontologies.

223

224

Bibliography

Documents

[1]

[2]

(3]
[4]
(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Adobe Corporation, Portable Document Format, Technical Report, 2005,
http://partners.adobe.com/public/devel oper/pdf/index_reference.html

Dean Allemang and Jim Hendler, Semantic Web for the Working Ontol ogist (2nd ed), Morgan Kaufman,
2011.

Altova Corporation, XMLSpy 2007 , 2007, http://www.altova.com/
Apache XML Project, XercesJava and C++ Parsers, 2005, http://xerces.apache.org/xerces2-j/

E. Armstrong, The J2EE 1.4 Tutorial for Sun Java System Application Server Platform Edition 8.1
2005Q2, June 2005, http://docs.oracle.com/javaee/1.4/tutorial/doc/

Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay, Jonathan Robie,
and Jrome Siméon, XML Path Language (XPath) 2.0, Technica Report, 2010,
http://www.w3.org/TR/xpath20/

Anders Berglund, Extensible Syl esheet Language (XSL) Version 1.1, 2006, http://mww.w3.org/TR/xsl/

Tim Berners-Lee, James Hendler, and OraL assila, The Semantic Web, Scientific American, May 2001,
http://www.scientificamerican.com/article.cfm? d=the-semantic-web

Paul V. Biron and Ashok Malhotra, XML Schema Part 2: Datatypes Second Edition, Technical Report,
2004, http://www.w3.0org/TR/xmlschema-2/

Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie, and Jréme
Siméon, XQuery 1.0: An XML Query Language, Technical Report, 2010, http://mww.w3.org/TR/xquery/

Bert Bos, Tantek Celik, lan Hickson, and Hakon Wium Lie, Cascading Style Sheets Level 2 Revision
1 (CSS2.1) Specification, 2007, http://www.w3.org/TR/CSS21/

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and FrancoisYergeau, Extensible Markup
Language (XML) 1.0 (Fourth Edition), Technical Report, 2006, http://www.w3.0rg/TR/REC-xml/

Allen Brown, Matthew Fuchs, Jonathan Robie, and Philip Wadler, XML Schema: Formal Description,
Technical Report, September 2001, http://www.w3.org/TR/xmlschema-formal/

Alison Cawsey, Presenting tailored resource descriptions: Wil XSLT do the job?, May 2000,
http://www9.org/w9cdrom/119/119.html

James Clark and Makoto Murata, RELAX NG Specification, Technical Report, 2001,
https.//www.0asi s-open.org/committees/rel ax-ng/spec-20011203.html

James Clark, Multi-Format Schema Converter Based on RELAX NG, Technical Report, 2003,
http://www.thai opensource.com/rel axng/trang.html

James Clark and Steve DeRose, XML Path Language (XPath), Technica Report, 1999,
http://www.w3.org/TR/xpath/

James Clark, Associating Style Sheets with XML documents, Technical Report, 1999,
http://www.w3.org/ TR/xml-styl esheet/

James Clark, New mode for XML , 2004, http://www.thai opensource.com/nxml-mode/

225

http://partners.adobe.com/public/developer/pdf/index_reference.html
http://www.altova.com/
http://xerces.apache.org/xerces2-j/
http://docs.oracle.com/javaee/1.4/tutorial/doc/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xsl/
http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema-formal/
http://www9.org/w9cdrom/119/119.html
https://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.thaiopensource.com/relaxng/trang.html
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xml-stylesheet/
http://www.thaiopensource.com/nxml-mode/

Bibliography

[20]

[21]
[22]

[23]

[24]

[29]
[26]

[27]
[28]
[29]

[30]
[31]
[32]

[33]

[34]

[39]

[36]

[37]

[38]
[39]
[40]

[41]

[42]

Roger Costello, Tutorials on Schematron - Rule-Based XML \Validation, 2007,
http://www.xfront.com/schematron/

ECM Systemintegration, XML4cobol SE, Technical Report, 2005, http://xml4cobol.com/

David C. Fallside and Priscilla Walmsey, XML Schema Part O: Primer Second Edition, Technical
Report, 2004, http://www.w3.0rg/ TR/xmlschema-0/

Benoit Habert, Objectif : CLOS, Masson, Paris, 1996.

Pascal Hitzler, Markus Krétzsch, and Sebastian Rudol ph, Foundations of Semantic Web Technologies,
Chapman & Hall/ CRC, 2009,
http://www.semanti c-web-book.org/page/Foundations_of _Semantic Web_Technologies

Cay Horstmann, Big Java 3rd Edition, 2008, http://www.horstmann.com/bigjava.html

I SO (International Organization for Standardization). 1SO 8879:1986(E), | nfor mation processing, Text
and Office Systems Standard Generalized Markup Language (SGML). First edition, Technical Report,
1986.

Michael Kay, XSLT 2.0 and XPath 2.0, 4e ed., Wiley, 2008.
Michael Kay, XSL Transformations (XSLT) Version 2.0, 2007, http://www.w3.org/TR/xslt

Dongwon Lee and Wesley W. Chu, Comparative Analysis of Sx XML Schema Languages, 2000,
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/sigmod-record-00. pdf

Linked Data, Linked Data - Connect Distributed Data across the Web, http://linkeddata.org/
Doug Lovell, XS Formatting Objects Devel oper's Handbook, Sams, 2003.

Mark Lutz, Programming Python 4th edition, O'Reilly, 2010,
http://shop.oreilly.convproduct/mobil /9780596158118 doyrean=18055703844& cp=af-mybuy-9780596158118.1 P

Ashok Malhotra, Jim Melton, and Norman Walsh, XQuery 1.0 and XPath 2.0 Functionsand Operators,
2007, http://www.w3.org/TR/xpath-functions/

Murali Mani and Dongwon Lee, XML to Relational Conversion using Theory of Regular Tree
Grammars, August 2002, http://www.cobase.cs.ucla.edu/tech-docs/dongwon/eextt02. pdf

Jonathan Marsh and David Orchard, XML Inclusions (XInclude) Version 1.0, Technical Report, 2004,
http://www.w3.org/ TR/xinclude/

Brett McLaughlin and Justin Edelson, Java & XML, Third Edition, 2006,
http://shop.oreilly.com/product/mobile/9780596101497.do

W. Scott Means and Elliotte Rusty Harold, XML in a Nutshdl, 2002,
http://shop.oreilly.com/product/mobile/9780596002923.do

David Megginson, Official website for SAX , Technical Report, 2005, http://www.saxproject.org/
Colin Moock, Essential ActionScript 3.0, O'Reilly, 2007.

Python Software Foundation, Sructured Markup Processing Tools , 2010,
http://docs.python.org/library/markup.html

Leo Sauermann and Richard Cyganiak, Cool URIs for the Semantic Web, 2008,
http://www.w3.org/TR/cooluris/

M att Sergeant, XML-Parser-2.34, Technical Report, 2003,
http://search.cpan.org/~msergeant/X M L -Parser-2.34/Parser.pm

226

http://www.xfront.com/schematron/
http://xml4cobol.com/
http://www.w3.org/TR/xmlschema-0/
http://www.semantic-web-book.org/page/Foundations_of_Semantic_Web_Technologies
http://www.horstmann.com/bigjava.html
http://www.w3.org/TR/xslt
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/sigmod-record-00.pdf
http://linkeddata.org/
http://shop.oreilly.com/product/mobile/9780596158118.do?green=18055703844&cmp=af-mybuy-9780596158118.IP
http://www.w3.org/TR/xpath-functions/
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/eextt02.pdf
http://www.w3.org/TR/xinclude/
http://shop.oreilly.com/product/mobile/9780596101497.do
http://shop.oreilly.com/product/mobile/9780596002923.do
http://www.saxproject.org/
http://docs.python.org/library/markup.html
http://www.w3.org/TR/cooluris/
http://search.cpan.org/~msergeant/XML-Parser-2.34/Parser.pm

[43] Bob Stayton, DocBook XS, The Complete Guide, Sagehill Enterprises, 2005.
[44] Dave Thomas, Programming Ruby, The Pragmatic Programmers, 2006.

[45] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn, XML Schema Part 1:
Sructures Second Edition, Technical Report, 2004, http://www.w3.org/TR/xmlschema-1/

[46] Henry S. Thompson and Richard Tobin, XML Schema Validator, 2002,
http://www.Itg.ed.ac.uk/~ht/xsv-status.html

[47] W3C, Document Object Model (DOM) Technical Reports, Technical Report, 2003,
http://www.w3.org/DOM/DOMTR

[48] W3C, Universal Resource Identifiers, Technical Report, 2003,
http://www.w3.org/Addressing/URL/URI_Overview.html

[49] W3C, Uniform Resource Locators, Technical Report, 2003,
http://www.w3.org/Addressing/URL/Overview.html

[50] Malcom Wallace and Colin Runciman, HaXml, 2006, http://www.cs.york.ac.uk/fp/HaxXml/

[51] Norman Walsh and Leonard Muellner, DocBook 5.0: The Definitive Guide, 2007,
http://www.docbook.org/tdg5/en/html/docbook.html

[52] Sean Wheller, <oXygen/> XML Editor User Guide, 2005, http://www.oxygenxml.com/

[53] Jan Wielemaker, SM-Prolog SGML/XML parser, Technica Report, 2005,
http://www.swi-prol og.org/pldoc/package/sgml.html

[54] Wikibook, XQuery Examples Collection Wikibook!, http://en.wikibooks.org/wiki/X Query
[55] Wikibook, XQuery/SPARQL Tutorial, http://en.wikibooks.org/wiki/XQuery/SPARQL _Tutoria

[56] GrahamWilcock, Pipelines, Templates and Transformations: XML and Natural Language Generation,
2001, http://www.ling.helsinki.fi/~gwilcock/Pubs/2001/NL PXML-01.pdf

[57] RichardYork, Beginning CSS- Cascading Style Sheets for Web Design, Wiley, 2005.
[58] LiyangYu, A Developer's Guide to the Semantic Web, Springer, 2011.

[59] Ericvan der Vlist, RELAX NG, O'Reilly, 2004, http://books.xmlschemata.org/relaxng/
[60] Ericvander Vlist, XML Schema, O'Reilly, 2002.

[61] PriscillaWamsley, XQuery, O'Reilly, 2002.

Web Sites

[62] The XML C parser and toolkit of Gnome, http://xmlsoft.org/

[63] System.Xml, http://msdn.microsoft.com/en-ug/library/system.xml.aspx
[64] libxml++, http://libxmlplusplus.sourceforge.net/

[65] eXist-db Open Source Native XML Database, http://exist-db.org/

[66] Sandard ECMA-357 - ECMAScript for XML (E4X) Specification, ISO/IEC 22537,
http://www.ecmarinternational .org/publications/standards/Ecma-357.htm

227

http://www.w3.org/TR/xmlschema-1/
http://www.ltg.ed.ac.uk/~ht/xsv-status.html
http://www.w3.org/DOM/DOMTR
http://www.w3.org/Addressing/URL/URI_Overview.html
http://www.w3.org/Addressing/URL/Overview.html
http://www.cs.york.ac.uk/fp/HaXml/
http://www.docbook.org/tdg5/en/html/docbook.html
http://www.oxygenxml.com/
http://www.swi-prolog.org/pldoc/package/sgml.html
http://en.wikibooks.org/wiki/XQuery
http://en.wikibooks.org/wiki/XQuery/SPARQL_Tutorial
http://www.ling.helsinki.fi/~gwilcock/Pubs/2001/NLPXML-01.pdf
http://books.xmlschemata.org/relaxng/
http://xmlsoft.org/
http://msdn.microsoft.com/en-us/library/system.xml.aspx
http://libxmlplusplus.sourceforge.net/
http://exist-db.org/
http://www.ecma-international.org/publications/standards/Ecma-357.htm

Bibliography

[67] Information technology - Document Schema Definition Languages (DSDL) - Part 3: Rule-based val-
i dation S chematron,
http://standards.iso. orgllttf/PublchyAvalIabIeStandards/c040833 ISO_IEC_19757-3_2006(E).zip

[68] The Modern JavaScript Tutorial, https://javascript.info
[69] A Semantic Web Framework for Java, http://jena.apache.org/

[70] Pure-JavaScript implementation of the DOM and HTML Sandards for use with Nodejs,
https.//www.npmjs.com/package/jsdom

[71] JavaScript Object Notation, http://www.json.org/

[72] T he Java Web Services Tutorial,
http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/

[73] The XML C parser and toolkit of Gnome, http://xmlsoft.org/

[74] LIBX*, http://www.explain.com.au/libx/

[75] OWL 2Web Ontology Language, http://mwww.w3.org/TR/owl-overview/

[76] PHP Manual, http://php.net/

[77] PHP Manual - XML Manipulation, http://php.net/manual/en/refs.xml.php
[78] Resource Description Framework (RDF), http://www.w3.org/RDF/

[79] RDF Validation service, http://www.w3.org/RDF/Validator/

[80] Ruby Electric XML, http://www.germane-software.com/software/XML/rexml/
[81] Ruby A Programmer's Best Friend, http://www.ruby-lang.org/

[82] RUBY-DOC.ORG - Help and documentation for the Ruby programming language.,
http://www.ruby-doc.org/

[83] XS.T 2.0 and XQuery processors, http://www.saxonica.com/documentation/about/intro.xml
[84] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-spargl-query/
[85] Swift programming language, https://swift.org

[86] Schematron: a language for making assertions about patterns found in XML documents,
http://www.schematron.com/

[87] The Schematron Assertion Language 1.6, http://xml.ascc.net/resource/schematron/Schematron2000.html
[88] Turtle- Terse RDF Triple Language, http://www.w3.org/TR/turtle/

[89] Twinkle: A SPARQL Query Tool, http://www.ldodds.com/projects/twinkle/ Local improvement (de-
scription in French)

[90] YAML Ain't a Markup Language, http://www.yaml.org/

228

http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
https://javascript.info
http://jena.apache.org/
https://www.npmjs.com/package/jsdom
http://www.json.org/
http://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/
http://xmlsoft.org/
http://www.explain.com.au/libx/
http://www.w3.org/TR/owl-overview/
http://php.net/
http://php.net/manual/en/refs.xml.php
http://www.w3.org/RDF/
http://www.w3.org/RDF/Validator/
http://www.germane-software.com/software/XML/rexml/
http://www.ruby-lang.org/
http://www.ruby-doc.org/
http://www.saxonica.com/documentation/about/intro.xml
http://www.w3.org/TR/rdf-sparql-query/
https://swift.org
http://www.schematron.com/
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://www.w3.org/TR/turtle/
http://www.ldodds.com/projects/twinkle/
http://www.iro.umontreal.ca/~lapalme/Twinkle.html
http://www.iro.umontreal.ca/~lapalme/Twinkle.html
http://www.yaml.org/

Appendix A. Some XML Related

Technologies and Systems

Language

Abbreviation Full name Sections Spoecs

DOM Document Object Model |Section 8.1 [47]

DTD Document Type Defini-|Section 3.1 [12]
tion

E4X EcmaScript for XML Section 10.6 [66]

JSON Javascript Object Notation| Section 10.7.1 [71]

PDF Portable Document | Section 5.4 [1]
Format

RELAX NG REgular LAnguage for|Section 3.3 [15]
XML, New Generation

SAX Simple Application pro-|Section 8.2 [38]
gramming interface for
Xml

SGML Standard Generalized|Chapter 1 [26]
Markup Language

URI Uniform Resource |denti-| Section 2.1 [48]
fier

URL Uniform Resource Locat- | Section 2.1 [49]
or

XML eXtended Markup Lan-|* [12]
guage

XML Schema XML Schema Section 3.2 [45],[9]

XPath XML PATH language |Chapter 4 [17]

XSL eXtensible Stylesheet|Section 5.1 [7]
Language

XSLT XSL Transformations Section 5.1 [28]

YAML YAML Ai'nt a Markup|Section 10.7.2 [90]

229

230

Appendix B. Quick Reference Tables

Quick reference tables taken from previous chapters. Names in italics refer to other elements. The syntax
of regular expressions used to describe the allowed formsare given in Table B.1. When there is an ambiguity
between the symbols used for the regular expression syntax and their use as terminals of the grammar, the
terminals are enclosed in chevrons (« »).

B.1. Regular expression

TableB.1. Regular expressions

, sequence

| choice

() grouping of expressions

? optional previous expression

* repetition, possibly none, of the previous expression
+ repetition at least once of the previous expression

B.2.DTD

TableB.2. Table 3.1, Section 3.1

<! DOCTYPE r oot El ement SYSTEM «"»file name«"» «>» {[TENTITY *]}? «>»
< ELEMENT NCNane «(» {#PCDATA «|» }? regexpO el enment nanme «)» «>»
<l ELEMENT NCNanme (#PCDATA) «>»
<l ELEMENT NCNanme EMPTY «>»
<I'ATTLI ST el ement NCNarme attri but eNCNane decl Val ue default «>»

decl Value = CDATA | ID | IDREF | «(» CNAME+ «)»

default = {#REQUI RED | #| MPLI ED}

<I[CDATA[...]]«>»
<IENTITY nane «"» ... «"» «>»
<IENTITY % nane «"» ... «"» «>»

<IENTI TY nane SYSTEM «"»fil e nanme«"» «>»

231

Quick Reference Tables

B.3. XML Schema

Table B.3. Table 3.2, Section 3.2

<xs:schema target NaneSpace="URl ">
xs:inmport* {xs:sinpleType | xs:conplexType | xs:element | xs:group}*
</ xs: schema>

<xs:import nameSpace="UR"
schemaLocati on="URl "/ >

<xs: si npl eType nane="NCNane">
Xs:restriction
</ xs: si npl eType>

<xs: conpl exType nane="NCNange"

nm xed="true">

{xs:choice | xs:sequence | xs:group}? xs:attribute*
</ xs: conpl exType>

<xs: el ement nane="QNane"
type="TNane"/ >

<xs: el ement nanme="QNanme"
r ef =" ENanme"/ >

<xs: el enent nane="QNane" >
{xs:sinpleType | xs:conpl exType}?
{xs:unique | xs:key | xs:keyref}*
</ xs: el emrent >

<xs: sequence {m n| max}occurs="nonNegati vel nt eger | unbounded" >
{xs:element | xs:choice | xs:sequence | Xs:group}*
</ xs: sequence>

<xs: choi ce {m n| max}occurs="nonNegati vel nt eger| unbounded" >
{xs:element | xs:choice | xs:sequence | Xs:group}*
</ xs: choi ce>

<xs: group nane="NCName" >
{xs:choice | xs:sequence}*
</ xs: group>

<xs:attribute nanme="NCNane"
type="TNane"
use="required"/>

<xs:restriction base="TNanme">
<xs: {max| m n}{in| ex}cl usive val ue="anySi npl eType"/ >
| <xs:{max| m n}length val ue ="nonNegativel nt eger"
| <pattern value = "regExp"
| <enumeration value = "anyVal ue"
</xs:restriction>

<xs: {uni que| key} nane="NCNane">
xs:sel ector xs:field+
</ xs:{uni que| key}>

<xs: keyr ef nanme="NCNange"
r ef er =" NCNane" >
xs:selector xs:field+
</ xs: keyr ef >

<xs: {selector|field} xpath="XPathExpr"/>

232

RELAX NG

B.4. RELAX NG

TableB.4. Table 3.3, Section 3.3

Compact Syntax (RNC)

XML Syntax (RNG)

{default? namespace i d=URI

| datatypes id=URI}*
{ start=pattern
| id=pattern }*

<gr amar >
{<start> pattern </start>
| <defi ne name="NCNane" >pattern+</defi ne>}*
</ gr ammar >

Patterns

el enent QNane «{» pattern «}»

<el ement nane="QNane" >patt er n+</ el enent >

attribute QName «{» pattern «}»

<attribute name="QNane">pattern+</attribute>

pattern{«, » pattern}+

<group nane="QName">pattern+</group>

pattern{«&> pattern}+

<interl eave nane="(Nane">pattern+</interl eave>

pattern{«| » pattern}+

<choi ce name="QNane" >patt ern+</choi ce>

pattern«?»

<optional name="Nanme">pattern+</optional >

pattern«*»

<zeroOr More nane="QNane" >patt ern+</zer oO Mor e>

pattern«+»

<oneOr Mbre nane="QNane" >pat t er n+</ oneOr Mor e>

m xed «{» pattern «}»

<m xed nane="QNane" >pattern+</ m xed>

id

<ref nanme="NCNane"/>

enpty

<enpty/>

t ext

<text/>

data TypeVal ue

<val ue {name="NCNane"}?>string+</val ue>

data TypeVal ue
«{»{id=val ue}* «}»

<data {type="NCNane"}?>
{ <par am nane="NCNane" >stri ng</ par anp} *
</ dat a>

233

Quick Reference Tables

B.5. Schematron

Table B.5. Table 3.4, Section 3.4

<schema t ar get NameSpace="URl ">
title? ns? pattern+
</ schema>

<ns prefix="QNane"
uri="URI"/>

<title>
PCDATA
</[title>

<pattern abstract="yes | no"
id="1D"
i s-a="| DREF" >
parant rul e+
</ pattern>

<par am nanme=" QNane"
val ue=" XPat hExpr"/ >

<rul e context =" XPat hExpr" >
{let | report | assert}*
</rul e>

<l et name="Q\ane"
val ue=" XPat hExpr"/ >

<report test="XPat hExpr">
{ PCDATA | val ue-of | nane}*
</report>

<assert test="XPat hExpr">
{ PCDATA | val ue-of | nanme}*
</ assert >

<val ue- of sel ect =" XPat hExpr"/ >

<nane/ >

234

XSLT

B.6. XSLT

TableB.6. Table5.1, Section 5.1

<xsl:styl esheet >
xsl:inmport*,
(decl aration| xsl : vari abl e| xsl : param) *

</ xsl : styl esheet >

<xsl:tenpl ate match="pattern" name="Q\Nanme">
xsl : paranf, sequence-constructor*

</ xsl : tenpl at e>

<xsl : param nanme="QNane" sel ect ="expressi on">
sequence- construct or

</ xsl : par anmp

<xsl : appl y-tenpl ates sel ect =" expressi on">
(xsl:sort*| xsl:with-paran)*

</ xsl : appl y-t enpl at es>

<xsl:call-tenpl ate name="Qnane"/>

<xsl :wi t h- param nane="QNane" sel ect =" expressi on">
sequence- construct or

</ xsl : wi t h- par anr

<xsl: function nane="QNane" >
xsl : parant, sequence-constructor?*

</ xsl: function>

<xsl :val ue- of sel ect="expression">
sequence- construct or

</ xsl : val ue- of >

<xsl:variabl e name="Q\anme" sel ect ="expressi on">
sequence- construct or

</ xsl:vari abl e>

<xsl : copy>
sequence- construct or

</ xsl: copy>

<xsl : copy-of sel ect="expression"/>

<xsl:if test="expression">
sequence- construct or

</xsl:if>

<choose>
xsl :when*, xsl:otherw se?

</ choose>

<xsl : when test="expression">
sequence- construct or

</ xsl : when>

<xsl : ot herwi se>
sequence- construct or

</ xsl: ot herwi se>

<xsl:for-each sel ect="expressi on">
xsl :sort*, sequence-constructor

</ xsl: for-each>

<xsl :for-each-group sel ect ="expressi on" group-by="expressi on">
xsl:sort*, sequence-constructor

</ xsl : for-each-group>

235

Quick Reference Tables

<xsl:sort sel ect="expression" data-type="{string}">
sequence- construct or
</ xsl:sort>

<xsl : key name="gname" match="pattern"
use="expressi on">
sequence- construct or
</ xsl : key>

<xsl:el ement name="{string}">
sequence- construct or
</ xsl : el enent >

<xsl :text>
character data
</ xsl : text>

<xsl:attribute nane="{string}" sel ect="expression">
sequence- construct or
</xsl:attribute>

<xsl:attribute-set name="QNane" use-attribute-sets="(nanes">
xsl:attribute*
</xsl:attribute-set>

<xsl : message>
sequence- construct or
</ xsl : nessage>

236

Appendix C. XML Production of this
Document

In thisdocument, we have shown how XML related technol ogies are used in an applicative context: extraction,
transformation and presentation of information. But one important application isthe use of XML for storing
and publishing texts; in fact, it wasthistype of application that motivated SGML, the ancestor of XML and
that influenced many of the features we described in this document. This is why, we decided to also use
XML technologies for organizing this document. In fact, the first version was written using LaTeX but it
was later retrofitted into XML when we realized that we might as well practice what we preach given the
fact that there are many excellent XML technologies for technical documentation publication.

This appendix briefly describes the organization of this document as a set of about 50 valid XML files
(taking the example filesinto account) valid to according the DocBook 5.0 schema[51], writtenin RELAX
NG Compact. A document of this size is inconvenient to manipulate as a whole, so we make an extensive
use of Xi ncl ude to combine chapters and sections written in separate files. The DocBook 5.0 RELAX
NG Compact being the result of many years of experience, it is designed to be modular so it is possible to
get the validation of each section and chapter separately. With modern XML editors, such as <oXygen/>,
we can profit from real -time valid compl etions and validation which are very useful when writing adocument.
Using validation scenarios, it is even possible to validate references between different files within the
global final document. The examplesare Xi ncl uded directly from the source XML used for testing. With
the proper organization, that means that the examples are always up to date. Of course, making sure that the
surrounding text still describes what is going on is still a hand made error prone process... We have also
developed some special templates that include only subparts of examples in order to shorten the document
while staying in parallel with the source programs.

The publication process, shown in Figure C.1 is aso done using some XML technologies presented in this
document: from a single set of DocBaook files, there are already stylesheets to transform them into either a
single HTML file or, as we did, a set of related HTML files (a process called chunking in the DocBook
jargon). But more, there also exist stylesheets to transform XML files into an XSL-FO file which is then
rendered as a pdf file.

The DocBook 5.0 schema and stylesheets are already well developed but more interesting is the fact that
they are designed to be extensible [43]. So it was possible for us to add a new XML tag (we called it
r ef I i ne) designed to indicate the line number within alisting. So in order that the XML file still be valid,
we could extend the original schemaincrementally by adding this new tag. We then also added anew template
to implement the intended semantics to the original DocBook 5.0 stylesheets which are also designed to be
customized either by means of parameters, definition of new templates or redefinition of existing templates.

Example C.1 showsthe structure of most of the Docbook el ementsthat we used when writing this document.
It can serve as areminder when writing a technical document to be processed by a Docbook stylesheet.

237

XML Production of this Document

Figure C.1. Overview of organization of the DocBook XML source files of this
document

We do not show here al the XML filesinvolved but only the main organization. Inclusion of filesis shown
by indentation: an included file is more indented than its including file. This figure can be compared with
Figure 1.3 (page 4).

DBx.rnc

—— | RNC validation
docbook.rnc

l

Introduction.xml
InstanceDocument.xml
CellarBook.xml
WineCatalog.xml
Validation.xml
Transformation.xml
Programming.xml

Creating.xml
Examples...
fo-customization.xsl html-customization.xsl
fo.xsl I Saxon 6.5.5 chunk-html.xsl
common.xsl Transformations common.xsl

Formatting
Objects

.xml

t

XEP Rendering

PDF
Types: XML Process Output
document Chapter Document
T

238

ExampleC.1.[DBTenpl at es. xm] Examplesof themost common uses of DocBook

1

10

15

20

25

30

35

40

45

5 elementsin thisdocument.

<?xm version="1.0" encodi ng="UTF-8""?>
<l-- exanpl e uses of the nbst combn docbook tenplates -->
<?oxygen RNGSchema="DBx.rnc" type="conpact"?>
<! DOCTYPE book [
<IENTITY %ralient SYSTEM "rali.ent">
% al i ent;
1>
<chapt er
xm ns="htt p://docbook. or g/ ns/ docbook"
xm ns: xi =" http://ww. w3. org/ 2001/ Xl ncl ude"
xm ns: x| ="http://ww. w3. org/ 1999/ xl i nk"
xm ;i d="chap_XXX">

<title>Sone DocBook 5 tenplates</title>

<i nf o>
<keywor dset ><keywor d>keyword for this docunment </ keyword></keywor dset >
</info>

<i ndexterm cl ass="startofrange" xm :id="section_start">
<primary>i nstance docunent </ pri nmary>

</i ndext er e

<l-- range of the section -->

<i ndexterm cl ass="endof range" startref="section _start"/>

<section xm:id="sec_ title">
<title>Title</title>
<i ndext er ne<pri mary>i ndex ternx/primry></indexternp

<l-- list : bulleted -->
<item zedl i st spaci ng="conpact">
<listitenmp
<para>first bullet...</para>
</listitenp
<listitenmp
<para>second bullet...</para>
</listitenp
</item zedlist>

<l-- list : definition -->
<vari abl el i st >
<?dbfo |ist-presentation="blocks"?> <!-- if terns are too long -->
<varlistentry>
<t er miPTERWK/ t er nP
<listitenp<si npara>DEF</si npara></listitenp
</varlistentry>
</variablelist>

239

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/DBTemplates.xml

XML Production of this Document

50

55

60

65

70

75

80

85

90

95

100

<l-- figure -->
<figure xm:id="fig_NAME" floatstyle="before">
<title>TITLE</title>
<si npar a>CAPTI ON at the top</sinmpara>
<nmedi aobj ect >
<i mageobj ect role="htm "><!-- role are needed only for a pdf that do not appe
<i magedata fil eref="i mages/ W neTree. png" contentw dt h="8i n" w dt h="8i n"/>
</ i mageobj ect >
<i mageobj ect role="fo">
<i magedata fil eref="i mages/ WneTree. pdf" scal e="75"/>
</ i mageobj ect >
</ medi aobj ect >

<capti on><si npara/ ></caption><!-- if aline is wanted at the bottom-->
</figure>
<l-- table -->

<table xm :id="tab_NAME" shortentry="1">
<title>TITLE</title>
<titl eabbrev>TI TLE smal |l </titl| eabbrev>

<?db-fo keep-together="always"?> <!-- to force a table to be on the same page -->
<tgroup cols="2" align="left">
<t body>
<r ow>

<entry>ROM_COL1</entry>
<entry>ROM_COL2</entry>
</ row>
<r ow>
<entry>RON_COL2</entry>
<entry>RON_COL2</entry>

</ row>
</t body>
</t group>
<capt i on><si npar a>CAPTI ON</ si npar a></ capt i on>
</t abl e>
<l-- exanple listing -->

<exanple xm :id="fil eName. ext">
<title>[<link xl:href="& -root;fileNanme. ext"><fil ename>fil eNane. ext</fil ename></I
<i ndext er np
<pri mary>exanpl es</ pri mary>
<secondar y>fi |l eNane. ext </ secondar y>
</i ndexternp
<si npara>capti on to appear at the exanple.</sinpara>

<l-- listing with callouts -->
<progranlistingco>
<ar easpec units="linecol um">

<area xm :id="co_id" coords="L 70"/>
</ ar easpec>
<program i sting |inenunbering="nunbered">
<I--<xi:include href="file..." parse="text"/>--></programisting>
<cal loutlist>
<cal l out arearefs="co_id">
<par a>XXX</ par a>

240

</ cal | out >

</calloutlist>

105 </ program i stingco>
</ exampl e>

<para> <!-- things that can appear in a paragraph... -->
<l-- references to line nunbers in a listing (personal extension to dochook
110 <refline lineid="co_id"/>
<I--<refline lineid="co_id" source="yes"/>-->
<refline lineid="co_id" |inkend="fil eNanme.ext"/>
<l-- italics and bold face -->
115 <enphasi s>i t al i cs</ enphasi s>

<enphasi s rol e="strong">bol d</ enphasi s>

<!l-- link to an external url -->
<link xlI:href="http:..."/>

120 <link xlI:href="http:...">TEXT</Iink>
<l-- references to an | D,

can al so be used for refering to a bibliography entries -->
<xref |inkend="1D"/>
125 <xref linkend="1D" xrefstyle="select: |abel page"/>

<l-- index terms -->
<i ndexterm cl ass="startofrange” xm :id="PRI MARY start">
<pri mar y>PRl MARY</ pri mary>
130 </i ndexternp
<i ndext erm cl ass="endof range" startref="PRl MARY start"/>

<i ndext er ne<pri mar y>PRI MARY</ pri mar y></i ndext er n»
</ par a>
135 </ section>

<l-- forcing a page break or clearing floats-->
<?har d- pagebr eak?>
<?fl oat - cl ear ?>
140
<l-- bibliography entry -->
<bi bl i ogr aphy>
<bi blioentry xm :id="1D">
<aut hor gr oup>
145 <aut hor >
<per sonnane>
<firstname>FI RSTNAME</ f i r st name>
<sur name>NAME</ sur nane>
</ per sonnane>
150 </ aut hor >
</ aut hor gr oup>
<publ i sher nane>PUB</ publ i sher nane>
<pubdat e>YYYY</ pubdat e>
<title>TITRE</titl e>
155 </ biblioentry>
</ bi bl i ogr aphy>

241

XML Production of this Document

</ chapt er >

242

Appendix D. Instance documents used
In the examples

Example D.1. XML content of the file [Cel | ar Book. xml] describing the cellar
book whose structure has been given in Example 2.2

1 <cel |l ar-book noNanmespaceSchemalLocati on="Cel | ar Book. xsd" >
<wi ne- cat al og>
<wi ne nane="Donai ne de |' Tl e Margaux"
appel | ati on="Bor deaux supérieur"
5 classification="a.c."
code="C00043125"
f or mat =" 750m " >
<properties>
<col or >red</ col or >
10 <al cohol i c- strengt h>12. 5</ al cohol i c-strengt h>
<nat ure>still </ nature>
</ properties>
<ori gi n>
<count ry>France</ country>
15 <r egi on>Bor deaux</r egi on>
<producer> SCEA Domai ne de L' Tl e Margaux (B.P. 5) </producer>
</origin>
<conment >Ready for drinki ng now/conment >
<f ood- pai ri ng> Acconpani es <enph>Bor del ai se ri bst eak</ emph>,
20 <bol d>pork with prunes</bol d> or nagret de canard. </food-pairing>
<price>22.80</price>
<year >2002</ year >

</ W ne>
<wi ne name="Ri esling Hugel"
25 appel | ati on="Al sace"

classification="a.c."
code="C00042101"
f or mat =" 750m " >
<properties>
30 <col or >whi t e</ col or >
<al cohol i c- strengt h>12</ al cohol i c- st rengt h>
<nat ure>still </ nature>
</ properties>
<ori gi n>
35 <count ry>Fr ance</ country>
<regi on>Al sace and East </regi on>
<producer >Hugel & Fil s</producer>
</origin>
<price>17.95</price>
40 <year >2002</ year >
</ W ne>
<wi ne nanme="Chéat eau Mont guéret"”
appel | ati on=" Anj ou"
classification="a.c."

243

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/CellarBook.xml

Instance documents

45 code="(000871996"
format="750m ">
<properties>
<col or >r osé</ col or >
<al cohol i c-strengt h>11</ al cohol i c-strengt h>
50 <nature>still </ nature>
</ properties>
<ori gi n>
<count ry>France</ country>
<regi on>Loire Val |l ey</regi on>
55 <producer >SCEA Chéat eau de Mbnt guéret </ producer >
</origin>
<comment > Made with Golleau (100% . Ready to drink now Serve at 8°-10°C. </
<tasting-note> Tender pink in color, this w ne shows
<enmph>l i ght raspberry</enph> highlights. </tasting-note>
60 <price>14.65</price>
<year >2003</ year >
</ wi ne>
<wi ne name="Mumm Cor don Rouge"
appel | ati on="Chanpagne”
65 classification="a.c."
code="000312363"
format="375m ">
<properties>
<col or >whi t e</ col or >
70 <al cohol i c-strengt h>12</ al cohol i c-strengt h>
<nat ur e>Chanpagne</ nat ur e>
</ properties>
<ori gi n>
<country>France</ country>
75 <r egi on>Chanpagne</r egi on>
<producer>G H. Martel & Co</producer>
</origin>
<comment > Ready for drinking now. Serve it fresh but not too cold. </comment>
<tasting-note> This chanpagne has a light fruity aroma. It is
80 delicate and has exquisite bubbles. </tasting-note>
<price>33.00</price>
<year >2000</ year >

</ wi ne>
<wi ne nanme="Prado Rey Robl e"
85 appel | ati on="Ri ber a- del - duer 0"

classification="d.o."
code="000929026"
f or mat =" magnunt' >
<properties>
90 <col or >r ed</ col or >
<al cohol i c-strengt h>12. 5</ al cohol i c- strengt h>
<nat ure>still </ nature>
</ properties>
<ori gi n>
95 <count r y>Spai n</ count ry>
<region>A d Castille</region>
<producer>Real Sitio de Ventosilla SA</producer>
</origin>

244

100

105

110

115

120

125

130

135

140

<price>35. 25</ pri ce>
<year >2002</ year >
</ wi ne>
</ w ne- cat al og>
<owner >
<name>
<first>Jude</first>
<fam | y>Rai si n</fam | y>
</ name>
<street>1234 rue des Chat eaux</street>
<city>St-CGeorge</city>
<provi nce>ON</ pr ovi nce>
<post al - code>MrW 7S0</ post al - code>
</ owner >
<l ocati on>
<street>4587 des Futaill es</street>
<city>Val |l ée des crus</city>
<provi nce>QC</ pr ovi nce>
<post al - code>H3C 4J8</ post al - code>
</l ocation>
<cel l ar>
<wi ne code="C00043125">
<pur chaseDat e>2005- 06- 20</ pur chaseDat e>
<quantity>2</quantity>

<conment ><cat : bol d>Guy Lapal me, Montr éal </ cat : bol d>:

</ wi ne>
<w ne code="C00312363">
<pur chaseDat e>2004- 11- 19</ pur chaseDat e>
<quantity>5</quantity>
<rating stars="3"/>
<comment >Bottle too small...</coment>
</ wi ne>
<w ne code="C00871996" >
<pur chaseDat e>2005- 06- 19</ pur chaseDat e>
<quantity>0</quantity>
<comment >Real | y gr eat </ conment >
</ wi ne>
<wi ne code="C00929026" >
<pur chaseDat e>2003- 10- 15</ pur chaseDat e>
<quantity>1</quantity>

shoul d reorder

<comment >f or <cat : bol d>bi g</ cat: bol d> parti es</ conment >

</ w ne>
</cell ar>

</ cel | ar - book>

This listing shows what is seen by the XML processor, after the inclusion of the wine catalog (see Ex-
ample D.2) and once the XML entities have been replaced in Example 2.2. The formatting and line numbers
differ from the onesin the sourcefile.

245

S00

Instance documents

Example D.2. XML content of the file [W neCat al og. xnl] describing the wine
catalog whose structure has been given in Example 2.3

1 <wi ne-catal og schemalLocati on="http://wwv. iro.unontreal.cal/l apal ne/w ne-catal og WneCatal o
<wi ne nane="Donai ne de |' Tl e Margaux"
appel | ati on="Bor deaux supérieur"
classification="a.c."
5 code="C000043125"
format="750m ">
<properties>
<col or >red</ col or >
<al cohol i c-strengt h>12. 5</ al cohol i c- strengt h>
10 <nature>still </ nature>
</ properties>
<ori gi n>
<count ry>France</ country>
<r egi on>Bor deaux</r egi on>
15 <pr oducer >
SCEA Domai ne de L' Tle Margaux (B.P. 5)
</ pr oducer >
</origin>
<coment >Ready for drinki ng now/coment >
20 <f ood- pai ri ng>
Acconpani es <enph>Bor del ai se ri bst eak</ enph>,
<bol d>pork with prunes</bol d> or nagret de canard.
</ f ood- pai ri ng>
<price>22.80</price>
25 <year >2002</ year >
</ wi ne>
<wi ne nanme="Ri esling Hugel"
appel | ati on="Al sace"
classification="a.c."
30 code="0C00042101"
format="750m ">
<properties>
<col or >whi t e</ col or >
<al cohol i c-strengt h>12</ al cohol i c-strengt h>
35 <nature>still </ nature>
</ properties>
<ori gi n>
<count ry>France</ country>
<r egi on>Al sace and East </regi on>
40 <pr oducer >Hugel & Fil s</producer>
</origin>
<price>17.95</price>
<year >2002</ year >

</ wi ne>
45 <wi ne nanme="Chéat eau Mont guéret"”
appel | ati on="Anj ou"
classification="a.c."
code="C00871996"
format="750m ">
50 <properties>

246

http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/data/WineCatalog.xml

<col or >r osé</ col or >
<al cohol i c-strengt h>11</ al cohol i c-strengt h>
<nature>still </ nature>
</ properties>
55 <ori gi n>
<count ry>France</ country>
<regi on>Loire Val |l ey</regi on>
<producer >SCEA Chéat eau de Mbnt guéret </ producer >
</origin>
60 <coment >
Made with Golleau (100%. Ready to drink now.
Serve at 8°-10°C
</ commrent >
<t asti ng- not e>
65 Tender pink in color, this wi ne shows
<enph>| i ght raspberry</enph> highlights.
</tasting-note>
<price>14.65</price>
<year >2003</ year >
70 </w ne>
<wi ne name="Mumm Cor don Rouge"
appel | ati on="Chanpagne”
classification="a.c."
code="000312363"
75 format="375m ">
<properties>
<col or >whi t e</ col or >
<al cohol i c-strengt h>12</ al cohol i c-strengt h>
<nat ur e>Chanpagne</ nat ur e>
80 </ properties>
<ori gi n>
<country>France</ country>
<r egi on>Chanpagne</ r egi on>
<producer>G H. Martel & Co</producer>
85 </origin>
<coment >
Ready for drinking now. Serve it fresh but not too cold.
</ commrent >
<t asti ng- not e>
90 Thi s chanpagne has a light fruity aroma. It is delicate
and has exqui site bubbles.
</tasting-note>
<price>33.00</price>
<year >2000</ year >
95 </w ne>
<wi ne nanme="Prado Rey Robl e"
appel | ati on="Ri ber a- del - duer 0"
classification="d.o."
code="000929026"
100 f or mat =" magnunt >
<properties>
<col or >r ed</ col or >
<al cohol i c-strengt h>12. 5</ al cohol i c- strengt h>
<nature>still </ nature>

247

Instance documents

105 </ properties>
<ori gi n>
<count r y>Spai n</ count ry>
<region>A d Castill e</region>
<producer>Real Sitio de Ventosilla SA</producer>
110 </origin>
<price>35. 25</ pri ce>
<year >2002</ year >
</ wi ne>
</ w ne- cat al og>
115

This listing shows what is seen by the XML processor. The formatting and line numbers differ from the
ones in the sourcefile.

248

Index

A

AJAX, 93, 214, 223
algorithmic checking, 43
aternative notations for XML, 214
Alternativesto XML, 157
atomic values, XPath, 51
ATTLIST, 18

attribute, 2

attribute node type, 52
Attribute Value Template, 71
attributeFormDefault, 35
AVT, 71

axis specifier, 52

axis steps, XPath, 53

axis, XPath, 51-52

B

bottom-up schema organization, 22

C
cardinality checking, 43
Cascading Style Sheet, 93
command line

query, 112
comment node type, 52
comments, 2
compact notation, 4
complex type, 34
constants, XPath, 52
cooccurrence checking, 43
CSS, 93-94

D
DocBook, xvii, 237
DOCTYPE, 11
document creation, 145
DOM, 145-149
E4X, 210
JavaScript, 196
PHP, 184
Python, 171
Ruby, 161
Swift, 203
document nodes, XPath, 51
Document Object Model, 127-128

document order, 2
document parsing
E4X, 209
JavaScript, 194
PHP, 187
Python, 173
document parsing, DOM
PHPR, 178
Python, 165
Ruby, 158
Swift, 199
document parsing, SAX
PHP, 180
Python, 166
Ruby, 159
Swift, 200
document parsing, StAX
PHP, 183
Python, 168
DOM, 127-132
document creation, 145-149
JavaAPl, 144
tree view, 139-141
DTD, 17
IATTLIST, 18
IELEMENT, 18
IENTITY, 18
association, 21
parameter entity, 19
syntax table, 18

E
E4X, 157
document creation, 210-213
document parsing, 209-210
document processing, 206-213
examples, 208
Ecmascript for XML, 157
element node type, 52
elementFormDefault, 35
elements, 2
entity, 11, 18
definition, 48
parameter, 19
predefined, 18
system, 19
ENTITY, 18
examples

249

Index

CBWC-RDF-S.rdf, 118
CBWC-RDF-Sirqg, 125
CBWC-RDF-Sitl, 121
Cellarbook.dtd, 19
CellarBook.rnc, 39
CellarBook.sch, 45
Cellarbook.xml, 10, 243
including WineCatal og.xml, 9
CellarBook.xq, 104
CellarBook.xsd, 25
CellarBook.xdl, 71
compact.css, 93
compact.xq, 111
compact.xd, 82
CompactErrorHandler.java, 131
compactFO.xdl, 89
CompactHandler.java, 134
CompactHandler.php, 181
CompactHandler.py, 167
CompactHandler.rb, 159
compactHTML .php, 179
compactHTML .xq, 108
compactHTML .xdl, 78
CompactReader.java, 150
CompactTokenizer.as, 210
CompactTokenizer.java, 146
CompactTokenizer.js, 196
CompactTokenizer.php, 184
CompactTokenizer.py, 171
CompactTokenizer.rb, 161
DBTemplates.xml, 239
DOM Compact.as, 209
DOM Compact.java, 128
DOMCompact.js, 194
DOM Compact.php, 178
DOM Compact.py, 165
DOM Compact.rb, 158
DOM Compact.swift, 199
DOMExpand.as, 212
DOMExpand.java, 147
DOMExpand.js, 197
DOMExpand.php, 186
DOMExpand.py, 172
DOMExpand.swift, 203
ETCompact.py, 174
ETExpand.py, 175
expand.rb, 162
JTreeHandler.java, 142
NamespaceExample.xml, 13

SAXCompact.java, 133
SAXCompact.php, 181
SAXCompact.py, 166
SAXCompact.rb, 159
SAXCompact.swift, 201
SAXExpand.java, 149
SimpleXML Compact.php, 189
SimpleXML Expand.php, 191
SimpleXML Path.php, 188
StAX Compact.java, 137
StAX Compact.php, 183
StAX Compact.py, 170
StAX Expand.java, 153
TreeViewer.java, 140
WineCatalog.dtd, 20
WineCatalog.rnc, 41
WineCatalog.xml, 12, 246
WineCatalog.xq, 101
WineCatalog.xsd, 29
WineCatalog.xdl, 66
WineList.json, 215
WineList.xml, 215
WineList.yaml, 220
xml2json.xsl, 216

XML StreamReader.py, 168
X SLcompact.php, 187

F
filter, XPath, 53

for expression, XPath, 53
function calls, XPath, 53
functions, XPath, 55

G
generalized tree, 1

H

HTML chunking, 237

HTML transformation, 63
XQuery, 101

I

ID, 17

IDREF, 17

IMPLIED, 18

include, 48

instance document, 3, 9-15
instance document structure, 9

250

introduction, 1-7

J
Java
appendChild(), 145
createElement(.), 145
createTextNode(.), 145
Documentimpl(), 145
setAttribute(.), 145
JavaScript, 157
document creation, 196-198
document parsing, 194-196
document processing, 193-198
Javascript Object Notation (JSON), 157
JAXP, 127
js
HTML, 194
JSON, 214-219
conversion from XML, 216
typing, 219
JSON (Javascript Object Notation), 157
JTree, 138

L

|abeled tree, 7
LaTeX, 237
Lisp, 1

list, 34

N

named template, 60
namespace, 13, 34
default, 15
prefix, 13
namespace node type, 52
node test, 52
node test, X Path, 51-52
node types, 52
attribute, 52
comment, 52
element, 52
namespace, 52
processing instruction, 52
root, 52
text, 52
nXML, 50

O

operators, XPath, 53
OWL, 223
<oXygen/>, 49

P

parameter entity, 19

PHP
document creation, 184-187
document parsing, 187-192
document processing, 178-192
DOM document parsing, 178-180
SAX document parsing, 180-183
StAX document parsing, 183-184

predicate expression, XPath, 51

predicate, XPath, 52

processing instruction node type, 52

Programming, 127-144

pull-parser, 127

Python
document creation, 171-173
document parsing, 173-177
document processing, 165-177
DOM document parsing, 165-166
SAX document parsing, 166-168
StAX document parsing, 168-171

Q

quantified expression, XPath, 53
query

command line, 112

RDF, 124

Turtle, 124

XML, 99

R

range, XPath, 53

RDF, 223
query, 124

RDF Schema, 123

RDF versus XML, 125

RDK(S), 123

Relax NG, 38
attribute, 38
compact notation, 38
element, 38
empty, 38
enumeration, 39

251

Index

interleave, 38
pattern, 38-39
Syntax table, 38
text, 38
REQUIRED, 18
root node type, 52
Ruby, 157
document creation, 161-164
document processing, 157-164
DOM document parsing, 158-159
SAX document parsing, 159-161
russian doll schema organization, 22

S
SAX, 127, 132-136
event handling, 134
events creation, 149-153
treeview, 141-143
SAXON, 96, 112
schema, 22
complex type, 34
mixed, 34
namespace, 34
organization, 22
Relax NG, 38-42
simpletype, 33
Syntax table, 23
Trang converter, 38
type hierarchy, 33
xs.al, 24
xs.attribute, 24
xs.choice, 24, 34
xs.complexType, 24
xs.element, 24
Xs.group, 24
xsiimport, 24, 35
xs.key, 24
xs.keyref, 24
xs.restriction, 24
Xs.sequence, 24, 34
xs.simpleType, 24
Xs:unique, 24
schema association, 48
schema organization, 22
schematron, 43
Syntax table, 45
Schematron
assertion, 43

report, 43
rule, 43
Semantic constraints, 43
Semantic Web, 113-125
sequence, XPath, 51
SGML, 17, 237
Simple API for XML, 132
simpletype, 33
list, 34
union, 34
StAX, 127, 136-138
document creation, 153-155
treeview, 143
steps, X Path, 51
Stream APl for XML, 136
stylesheet association, 96
Swift, 157
document creation, 203-205
document processing, 199-203
DOM document parsing, 199-200
SAX document parsing, 200-203

T
tag

empty, 2

end, 2

Start, 2
targetNameSpace, 35
template, named, 60
text node type, 52
top-down schema organization, 22
Trang schema converter, 38
transformation, 59-97

stylesheet, 59

stylesheet association, 96

XPath, 51

XSLT, 59
Treeview

Programming, 138-143
tree view

DOM, 139-141

SAX, 141-143

StAX, 143
triples, 116
Turtle, 116

query, 124
type

complex, 22

252

simple, 22

typing
JSON, 219

U
union, 34
URI, 15

V

validation, 17-50
DTD, 17-21
schema, 22-37
schematron, 43-48

variables, XPath, 52

W
well-formed, 17
well-formedness, 9

X
XALAN, 96
XHR (XML HTTP Request), 214
xi:include, 48
XML
aternative notations, 214-221
aternatives, 157
conversion to JSON, 216
XML alternative
JSON, 214
YAML, 220
XML text editor, 17
XMLHTTPRequest, 214
xmins, 15
XML Spy, 49
XML StreamWriter
writeAttribute(.,.), 153
writeCharacters(.), 153
writeEndElement(), 153
writeStartDocument, 153
writeStartElement(.), 153
XPath, 51-58
atomic values, 51
axis, 51-52
axis steps, 53
constants, 52
document nodes, 51
examples, 51, 57
filter, 53

for expression, 53
function calls, 53
key, 62
node test, 51-52
node types, 52
operators, 53
predicate, 52
predicate expression, 51
guantified expression, 53
range, 53
sequence, 51
steps, 51
system functions, 55
variables, 52
XQuery, 99-112
compact transformation, 110-112
HTML transformation, 101-110
XSL, 59
XSL predicate, 52
XSL transformations, 60
XSL-FO, 59, 84
fo:layout-master-set, 87
fo:list-item-body, 88
fo:list-item-label, 88
fo:page-sequence, 87
fo: page-sequence-master, 87
fo:simple-page-master, 87
xd:function, 60
XSLT, 59-63
Attribute Value Template, 71
AVT, 71
built-in templates, 75
compact transformation, 80-83
dynamic element creation, 71
formatting objects, 84-92
HTML transformation, 63-79
named template, 60
processing model, 60
syntax table, 62
template, named, 60
xd:apply-templates, 61
xdl:attribute, 62
xdl:attribute-set, 62
xd:call-template, 60
xd:choosg, 61
xdl:copy-of, 61
xd:element, 62
xdl:for-each, 61
xdl:for-each-group, 61

253

Index

xd:function, 60
xd:if, 61
xsl:key, 62
xsl:message, 62
xsl:otherwise, 61
xdl:sort, 61
xd:template, 60
xdl:text, 62
xsl:value-of, 61
xd:variable, 61
xs:when, 61
xdtproc, 96

Y

YAML, 220-221

YAML Ain't aMarkup Language (YAML), 220
Yet Another Markup Language (YAML), 220

254

	XML: Looking at the Forest Instead of the Trees
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Instance Document
	2.1. Namespaces

	Chapter 3. Document Validation
	3.1. Document Type Definition (DTD)
	3.1.1. Associating an Instance File with a DTD

	3.2. Schema
	3.2.1. Simple Types
	3.2.2. Complex Types
	3.2.3. Namespaces in Schemas
	3.2.4. Overview of the XML Schemas

	3.3. RELAX NG
	3.4. Schematron
	3.5. Associating an Instance File with a Schema
	3.6. Additional Information on XML Schema

	Chapter 4. XPath
	4.1. XPath expression components
	4.2. XPath functions
	4.3. XPath examples
	4.4. Additional Information on XPath

	Chapter 5. Document Transformation
	5.1. XSL Transformations
	5.2. Transformation in HTML
	5.2.1. Table
	5.2.2. Computing New Information
	5.2.3. Bulleted Lists

	5.3. Transformation into a Compact Textual Form
	5.4. Transformation into PDF with XSL-FO
	5.4.1. XSL-FO Input to the Renderer
	5.4.2. From the Instance Document to the XSL-FO file

	5.5. Transformation with a Cascading Style Sheet (CSS)
	5.6. Associating an Instance File to a Stylesheet
	5.7. Additional Information on XSL

	Chapter 6. Document Query
	6.1. XQuery output in HTML
	6.1.1. Table
	6.1.2. Computing New Information
	6.1.3. Bulleted Lists

	6.2. Transformation into a Compact Textual Form with XQuery
	6.3. Querying an instance file
	6.4. Additional Information on XQuery

	Chapter 7. RDF : Resource Description Framework
	7.1. Triples in RDF/XML
	7.2. RDF Schema
	7.3. RDF queries
	7.4. RDF versus XML
	7.5. Additional Information on RDF

	Chapter 8. Document Processing by Programming in Java
	8.1. Document Object Model (DOM)
	8.2. Simple API for XML (SAX)
	8.3. Stream API for XML (StAX)
	8.4. Showing an Interactive Tree View
	8.4.1. Building a JTree with DOM
	8.4.2. Building a JTree with SAX
	8.4.3. Building a JTree with StAX

	8.5. Additional Information on Programming Models

	Chapter 9. Document Creation by Programming in Java
	9.1. Creating a DOM Document
	9.2. Creating a Document with SAX Events
	9.3. Creating a Document with StAX streaming
	9.4. Additional Information on XML Document Creation

	Chapter 10. Alternative approaches to XML programming
	10.1. XML processing with Ruby
	10.1.1. DOM parsing using Ruby
	10.1.2. SAX parsing using Ruby
	10.1.3. Creating an XML document using Ruby

	10.2. XML processing with Python
	10.2.1. DOM parsing using Python
	10.2.2. SAX parsing using Python
	10.2.3. StAX parsing using Python
	10.2.4. Creating an XML document using Python
	10.2.5. Other means of dealing with XML documents using Python

	10.3. XML processing with PHP
	10.3.1. DOM parsing using PHP
	10.3.2. SAX parsing using PHP
	10.3.3. StAX parsing using PHP
	10.3.4. Creating an XML document using PHP
	10.3.5. Other means of dealing with XML documents using PHP

	10.4. XML processing with JavaScript
	10.4.1. DOM parsing using JavaScript
	10.4.2. Creating an XML document using JavaScript

	10.5. XML processing with Swift
	10.5.1. DOM parsing using Swift
	10.5.2. SAX parsing using Swift
	10.5.3. Creating an XML document using Swift

	10.6. XML processing with E4X
	10.6.1. DOM parsing using E4X
	10.6.2. Creating an XML document using E4X

	10.7. XML alternative notations
	10.7.1. JSON
	10.7.2. YAML

	10.8. Additional information on alternative approaches

	Chapter 11. Conclusion
	Bibliography
	Appendix A. Some XML Related Technologies and Systems
	Appendix B. Quick Reference Tables
	B.1. Regular expression
	B.2. DTD
	B.3. XML Schema
	B.4. RELAX NG
	B.5. Schematron
	B.6. XSLT

	Appendix C. XML Production of this Document
	Appendix D. Instance documents used in the examples
	Index

