
Regular Expressions in Swift
Guy Lapalme

RALI-DIRO

Université de Montréal

October 2024

The Swift programming language’s regular expression notation is unique enough to warrant an explanation. While it adheres to most of the

conventions found in languages such as PERL, Java, JavaScript, PHP and Python, it also has some significant differences that I found

challenging to understand and had to figure out through trial and error. This document is the product of my efforts to understand and I am

sharing it in the hope that it will help others.

I will first review what regular expressions are, and then demonstrate how they can be represented and used in Swift. I will use three

examples to highlight some unique aspects of Swift’s regular expression implementation: parsing Roman numerals, a tokenizer, and an Eliza-

like chatbot. The appendix includes links to additional resources and a handy cheat sheet.

This document serves as a personal reference for me, as I couldn’t find a comprehensive guide on Swift regular expressions. I have searched

the internet for tutorials and videos on Swift regexes, but I have not found a clear definition of what they can be used for and why. Most

examples I have seen are repetitive, so I have decided to develop my own that each illustrate a specific point.

[HTML version] [Markdown version] [PDF version]

mailto:lapalme@iro.umontreal.ca
http://www.iro.umontreal.ca/~lapalme/RegexInSwift/index.html
http://www.iro.umontreal.ca/~lapalme/RegexInSwift/RegexInSwift.md
http://www.iro.umontreal.ca/~lapalme/RegexInSwift//RegexInSwift.pdf

1. What is a regex ?
In 1951, S. C. Kleene introduced the concept of a regular expression, also known as regex, as a formal language construct that describes the

collection of strings formed through the operations of concatenation, alternation, and repetition, or quantification. This concept was later

applied in the 1970s to define patterns for matching lines in a file. For instance, the Unix grep command, whose name derives from “global

regular expression print”, searches for and displays lines that match a specified regular expression. This notation has proven to be extremely

practical and effective for extracting data from extensive texts, as well as for defining modifications in text editors.

Most modern programming languages offer a regular expression syntax for extracting the string parts that match a regex, or for indicating

failure if no match is found.

Swift is a strongly typed programming language, and its creators have taken great care to ensure that regular expressions and their outputs

comply with type constraints. Swift’s regular expression syntax was introduced in 2022, along with Swift 5.7. Previous Swift versions relied on a

port of the NSRegularExpression Objective-C library, which was less than ideal due to the complexity of bridging Objective-C’s NSString and

Swift’s String . As a result, many people, including me, created custom functions for common tasks. However, these new regular expressions

only work on iOS 16.0+ and MacOS 13.0+.

Swift’s syntax may be new, but it shares similarities with well-known languages like Perl, Java, JavaScript, PHP, and Python. Despite some

difficulties, I have managed to understand the main aspects of the Swift regex API. This document summarizes my understanding, which I

believe can benefit others.

We first briefly recall what is a regular expression to define the terms used in the rest of the document. In this section, we focus on the

features that are common to all regex notations. Swift peculiarities will be detailed later.

1.1. Components of Regex Definitions
A regular expression defines a pattern whose occurrences must be matched within a string, the subject. We follow the time-honored

terminology of SNOBOL4 which, in the sixties, was the first programming language to allow the definition of patterns as first-class objects for

matching and operating on strings.

A pattern (a RegexComponent in the Swift parlance) is a combination of :

Character : a letter (e.g., a or w) or a period (.) which stands for any letter. It can also be specified by a set of characters within

square brackets, such as [abc] or a range of characters, such as [a-z] for any English lowercase letter. A character set can be

complemented by starting it with ^ . There are also predefined patterns, such as \d for matching a digit, \w for matching a character

that can appear in a word (letter, digit or underline), \W for matching a non-word character (the set complement of \w) or \s for

matching any space character (e.g., newline, tab, space, carriage return).

A character in a Swift string can be a Unicode extended grapheme cluster that can span more than one byte; so it must be retrieved using

String.Index values and not by integer values on the byte representation. The rules of character equality in Swift based on canonical

equivalence also apply to regexes. For example, a character with a diacritic may be represented by a single Unicode character or by a

base character followed by a combining accent. Therefore, the strings "è" and "e\u{300}" (e followed by a combining grave accent) will

match . corresponding to any single character .

sequence of patterns that the subject must match consecutively in the subject

alternation between patterns denoted by a vertical bar (|) between patterns, alternation matches when one of the choices matches the

subject.

position : check if the subject matches on certain conditions: e.g. ^ matches only at the start of the string, $ matches at the end of the

string, \b matches at a word boundary, i.e. between a \w and a \W .

Sequence has priority over alternation, but parentheses can be used to change this ordering. For example, the pattern abc|def|ghi matches

occurrences of abc , def or ghi , while a(bc|de)f|ghi matches occurrences of abcf , adef or ghi . But we will see later that

parentheses are also used for delimiting parts of patterns that matches that are called capture groups.

A pattern can be repeated a certain number of times by adding a quantifier after it:

? : [0,1]

https://developer.apple.com/documentation/foundation/nsregularexpression
http://www.regressive.org/snobol4/docs/burks/manual/contents.htm
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/stringsandcharacters/%23String-and-Character-Equality

* : [0,+∞)

+ : [1,+∞)

{m,n} : [m,n] m defaults to 0 and n to +∞

{m} : [m,m]

By default, repetition of an indeterminate number of times is eager to find the longest match which is most often what is needed. In some

cases, this strategy can lead to unexpected results. For example, given the subject string "hello" my "friends" , the pattern ".*" will

match once the whole subject, matching the quotes at the start and at the end of the string because the dot matches any character including

a quote.

Repetition can be specified as either:

reluctant by adding ? after it. So ".*?" will instead match the two quoted words, each match stopping as soon as a quote is

encountered.

possessive by adding + after it. Possessive matching finds the longest match without ever backtracking which is more efficient in some

cases, but it can lead to surprising results. For example, ".*+" fails on our subject string, because .* matches all following characters

without ever reconsidering its choices, so it does not find the trailing quote, because it was already matched by the dot . . In this case,

instead of the dot, we should match any character except a quote using "[^"]*+" . This pattern will now match the two quoted words.

When a regex must match a special character used for alternation or quantifier, this character must be escaped by a backslash, e.g., so

matching a and b separated by + must be defined as a\+b otherwise it would match one or more a followed by a b .

Matching a character looks simple, but there can be variations. Should matching be case insensitive? Should diacritics be taken into account?

For a multiline string, should position matches apply to each line ? Each language has its own way (usually flags) of specifying changes in

matching behavior.

This very brief refresher on regex syntax is very far from complete, but it is adequate for explaining how regexes work in Swift. For a more

complete list of metacharacters and operators.

1.2. Result of the matching process
When applying a pattern to a subject, one of two things may happen:

Failure : the pattern was not found on the subject. Failure returns nil in Swift (corresponding to None in Python or to null in Java or

JavaScript). For old-timers: in SNOBOL4, control went to the instruction in the :F(..) GOTO field.

Success : At least one occurrence of the pattern was found in the subject, so a non-failure value is an object with properties that provide

information about the match. These include the start and end positions of the occurrence (range in Swift) or the substring itself

(output in Swift). When a pattern contains subpatterns (called capture groups), the object provides access to them.

When a pattern appears more than once in a subject, a collection of successes can be returned, either as a list or as a generator that

yields a match each time.

Given that regular expressions in most programming languages are defined using strings, errors or exceptions can occur at run-time if the

regex string is not syntactically correct (e.g., unbalanced parentheses). Some compilers check the syntax of string literals in some special

cases, but not in all of them. Swift goes to great lengths to limit the risk of such failures by applying static type checking to regexes as well. In

other type-checked languages such as Java, regexes are plain strings whose peculiar structure is checked by a compile method, which is called

at run-time.

RegexBuilder RegexBuilder Extended literal

Regex {

 ChoiceOf {

 Regex {

 "a"

 ChoiceOf {

 "bc" ; "de"

 }

 "f"

 }

 "ghi"

 }

Regex {

 /"/

 ZeroOrMore(.reluctant) {

 /./

 }

 /"/

#/

 " # opening quote

 .*? # up to next quote

 " # ending quote

/#

2. Regex in Swift
The matching process can be relatively slow because the pattern must be interpreted while scanning the subject. Most programming

languages allow the compilation of a regex from the string to create an automaton for faster matching. A Swift regex is compiled by default to

ensure that it is well formed and type-checked. Swift defines a Regex type used for type checking any expression involving regexes.

2.1. Swift Regex Definition
Swift provides three notations for defining a regular expression:

Regex literal enclosing the expression between two slashes, e.g. /a(bc|de)f|ghi/ or /".*?"/ . In order to avoid ambiguity with the

single slash used for division, a regex cannot start with a space. A regex literal cannot be empty because // is used for line-ending

comments; an empty regex would not be very useful anyway.

RegexBuilder expression, a more verbose but more expressive for complex patterns. The first two columns of the following table show

RegexBuilder expressions corresponding to our two previous examples. We will present this notation in the next section.

extended regex literal, #/.../# which avoids the need to escape forward slashes within the regex. When the opening delimiter is

followed by a new line, it defines a multi-line literal in which whitespace and line-ending comments starting with # are ignored. The third

column of the next table shows how our second example can be written. This can be useful for documenting complex regular

expressions.

We will later show how to define run-time regular expressions using strings. In the remainder of this section, we use regex literals as the

other notations are equivalent. We want to focus on the matching process, not on the syntax of the regular expressions.

2.1.1. Regex Modifications

Changing some aspect of the matching behavior, obtained using flags in other programming languages, is performed by calling a Regex

method that returns a new Regex :

.ignoresCase() for case-insensitive matching, e.g. /a(bc|de)f|ghi/.ignoresCase()

.dotMatchesNewlines() the any character (.) also matches an end of line.

2.2. Swift Regex Operations
Regular expressions are used for identifying which parts of a subject correspond to the pattern. In some cases, it is enough to only check

whether a pattern occurs in the subject, but more often it is necessary to get more information about the match.

Here are the definitions of a pattern and a subject used in the following examples of calls.

file:///Users/lapalme/Dropbox/RegexInSwift/index.html%23dynamic-regex

2.2.1. Checking for an Occurrence of a Pattern

The String methods .contains(..) and .starts(with:..) return a Bool (the value of each expression is shown here after // =>)

2.2.2. Looking in a Subject for Matches of a Pattern

2.2.2.1. Finding a single match

In Swift, the result of applying a pattern to a subject results in match object of optional type Regex<Output>.Match? . The String methods

.firstMatch(of: Regex) , .prefixMatch(of: Regex) and .wholeMatch(of: Regex) return nil when no instance of the pattern is found,

otherwise they return an object whose properties give access to matching information such as

.output : the substring of the subject matched; as this is a substring of the subject, it must often be transformed into a new string using

the String(...) constructor, when it must be printed or used as a String parameter for another function.

.count : the length of the match

.range : the interval of string indices spanning the match

Caution: .output and .count have slightly different meanings for a dynamic regex defined by a string.

Here are examples of calls that use optional chaining operator ?. that returns nil when its left part is nil ; the binary nil coalescing operator

?? unwraps its left Optional operand if it is not nil otherwise it returns its right operand. a ?? b can be understood as a != nil ? a! :

b .

In this case, the subject is matched for an instance of a pattern

2.2.2.2. Finding all matches

To get an array of all matches, we use the String method .matches(of: Regex) . When no match is found in the subject, the array is

empty in the spirit of replacing failure by a list of successes..

This is useful for transforming all matches using a closure. Here is an example that returns the matched substrings in upper case.

Here is a simple minded tokenizer that return strides of numbers or letters and single arithmetic operators, while ignoring the rest; see this

section for a more comprehensive tokenizer. Note that within a character class, it is not necessary to escape special characters used in

regex(e.g. * or + and parentheses), but - must be the first character of the range. / must be escaped so that it does not indicate the end of

the regex

let identifier = /[A-Za-z]\w*/ // a letter, possibly followed by word characters (letter, digit or underline)

let subject = "Here are 10 tokens to be (matched) !"

1

2

subject.contains(identifier) // => true

"123 + 456".contains(identifier) // => false

subject.starts(with:pattern) // => true

"123 + 456".starts(with:identifier) // => false

1

2

3

4

5

subject.firstMatch(of: identifier)?.output ?? "no match!" // => "Here"

subject.firstMatch(of: identifier)?.count ?? "no match!" // => 4

subject.prefixMatch(of: identifier)?.output ?? "no match!" // => "Here"

subject.wholeMatch(of: identifier)?.output ?? "no match!" // => "no match!"

1

2

3

4

5

subject.matches(of: identifier).map{m in m.output.uppercased()}

 // => ["HERE", "ARE", "TOKENS", "TO", "BE", "MATCHED"]

1

2

https://link.springer.com/chapter/10.1007/3-540-15975-4_33

2.2.3. Given a Pattern, Finding Matches within a Subject

A pattern can also be searched within a string using Regex methods bearing the same names as in the previous section but with a different

keyword for their parameter, because it is a pattern that is searched in a string, not a string in which occurrences of a matches are looked for.

Note that there is not equivalent to .matches(..) for patterns.

As it will be explained later, in some regexes the result of a match can be transformed with code that might raise an exception, so a call to one

of these functions must be prefixed by try , even though there is no transformation involved here.

2.2.4. Replacing the Match in the Subject

Once a match is found, we often want to change the matching part of the subject by another string, the replacement. There are two related

String methods:

subject .replacing(pattern, with: replacement) returns a new string in which occurrences of the pattern in the subject have been

replaced with the replacement. The replacement can be another string so that all occurrences will be changed by the same string. If the

replacement is a closure, the replacement can depend on each occurrence of the pattern in the subject because it called at each

occurence with the match as parameter.

subject .replace(pattern, with: replacement) replaces the occurrences of the pattern within the subject which must be declared as

var .

In the next example, the replacement is a string, so it creates a new string in which each identifier is replaced by *id* , unmatched substrings

(here 10 and punctuation signs) are not modified.

A closure is needed when the replacement depends on the content of the subject such as in the following example where each identifier is

wrapped in square brackets:

This notation can be simplified with a trailing closure accessing to the match with $0 , the implicit first parameter for a closure in Swift. $n

happens to be also the notation used in regex replacements in many programming languages.

Here is an example of a replacement within a variable string. Caution .replace(...) returns Void as a reminder of the side effect of this

expression.

"12 + (a_bc*435)- 78".matches(of:/\w+|\d+|[-+*\/()]/).map{String($0.output)}

 // => ["12", "+", "(", "a_bc", "*", "435", ")", "-", "78"]

1

2

try identifier.firstMatch(in: subject)?.output ?? "no match!" // => "Here"

try identifier.firstMatch(in: subject)?.count ?? "no match!" // => 4

try identifier.wholeMatch(in: subject)?.output ?? "no match!" // => "no match!"

try identifier.prefixMatch(in: subject)?.output ?? "no match!" // => "Here"

1

2

3

4

5

subject.replacing(identifier, with: "*id*")

 // => "*id* *id* 10 *id* *id* *id* (*id*) !"

1

2

subject.replacing(identifier, with: {m in return "[\(m.output)]"})

 // => "[Here] [are] 10 [tokens] [to] [be] ([matched]) !"

1

2

subject.replacing(identifier){"{\($0.output)}"}

 // => "{Here} {are} 10 {tokens} {to} {be} ({matched}) !"

1

2

2.2.5. Determining the Ranges of Matches

To get the list (possibly empty) of the ranges of matches within a string, we can use .range(of:..) . A range in Swift can be used for indexing

a string to get the corresponding substring. For example, here to get the list of matched substrings.

2.2.6. Splitting a String According to a Pattern

A regex can also be used to split a string to get an array of substrings between separators. For example, a simple minded tokenizer can be

implemented by splitting using a non-empty sequence of characters that cannot be part of a word /\W+/ :

This removes the separators, but keeping them in the split is a bit more involved. We could instead try matching an empty string (called a

lookBefore) before the non-word pattern , here /(?=\W+)/ :

Unfortunately, this is not adequate because some tokens have spaces or a parenthesis before them. To avoid this problem, the separator

should also use a lookBehind (?<=\W+) match, so the expression should be the following:

While Swift recognizes the lookBehind syntax, it warns that it is not yet implemented. Getting the list of both the substrings and the

separators can be achieved using the .ranges(of:) method described in the previous section. Using the list of ranges of separator

occurrences, we build the list substrings between each range while adding also the content of each separator. This can be implemented with

this String extension.

var subjectV = subject

subjectV.replace(identifier){"#\($0.output)#"}

 // => ()

subjectV

 // => "#Here# #are# 10 #tokens# #to# #be# (#matched#) !"

1

2

3

4

5

subject.ranges(of: identifier).map{rng in subject[rng]}

 // => ["Here", "are", "tokens", "to", "be", "matched"]

1

2

subject.split(separator: /\W+/)

 // => ["Here", "are", "10", "tokens", "to", "be", "matched"]

1

2

subject.split(separator: /(?=\W+)/)

// => ["Here", " are", " 10", " tokens", " to", " be", " ", "(matched", ")", " ", "!"]

1

2

subject.split(separator: /(?=\W+)|(?<=\W+)/) // *** DON'T DO THIS

// => ["Here", " ", "are", " ", "10", " ", "tokens", " ", "to", " ", "be", " ", "(",

 "matched", ")", " ", "!"]

1

2

3

extension String {

 func splitKeeping(separator:Regex<Substring>)->[Substring]{

 var result=[Substring]()

 var pos = self.startIndex

 for rng in self.ranges(of:separator) {

 if rng.lowerBound != pos { // add substring before the separator

 result.append(self[pos..<rng.lowerBound])

 }

 result.append(self[rng]) // add the separator

 pos = rng.upperBound

 }

 if pos != self.endIndex { // add rest of string after last separator

 result.append(self[pos..<self.endIndex])

1

2

3

4

5

6

7

8

9

10

11

12

13

The following expression separates a string at any non-word ignoring tokens comprising only a single space which are not considered useful.

2.2.7. Removing a Match at the Start of a Subject

To remove a match at the start of a subject, .trimmingPrefix(..) can be used. For example

If the pattern does not match the beginning of the subject, the subject is returned unchanged. Similar to the .replacing(..)/.replace(..)

pair, .trimPrefix(..) removes the start of the subject which must have been declared as var .

2.3. Capturing Information within a Match
Regular expressions are useful for extracting information from strings. Once a match is found, parts of it can be captured. For illustrating this

concept, we define a pattern to extract key-value pairs: the key is an identifier and the value is a series of digits. They are separated by an

equal sign with optional spacing between them. The value field with the preceding equal sign can be omitted. The following is an example

subject.

The following pattern can be used to extract the substring associated with the key and the value substrings. Capture groups are delimited by

parentheses and numbered from the left according to their open parentheses (the comment line below shows the opening parenthesis

starting each group), group 0 is the substring corresponding to the whole match.

In this pattern, group 1 is the key, while group 3 is the value: these values can be accessed through indexing (e.g. m.1 or m.3) like any Swift

tuple.

This convention is widely used in regular expressions in programming languages. In Swift, however, because of the strong typing discipline,

adding capture groups changes the type of the match. This is because it creates a tuple of n+1 substrings, n being the number of capture

groups. In our example, the type becomes Regex<(Substring, Substring, Substring?, Substring?)> . We see that groups numbered 2

and 3 are associated with the part that can be omitted, so it is given an Optional type indicated by a trailing ? . So although the match

succeeds, some capture groups can still be nil .

The next example returns the list of values as integers defaulting to 1 when no value is given.

In the resulting array of .matches(of:..) , it is guaranteed that each match is not nil , but this is not the case for $0.3 . Using the nil

coalescing operator, the string "1" is returned when it is nil which is passed to the Int constructor to return an integer corresponding to

this substring. But the Int constructor itself returns an Optional value; it might return nil if the substring does not correspond to the

syntax of an integer. Here given that the substring contains only digits, it can be unwrapped unconditionally to get an integer value. This

 }

 return result

 }

}

14

15

16

17

subject.splitKeeping(separator: /\W/).filter{$0 != " "}

 // => ["Here", "are", "10", "tokens", "to", "be", "(", "matched", ")", "!"]

1

2

subject.trimmingPrefix(identifier)

 // => " are 10 tokens to be (matched) !"

1

2

let keyValues = "a=3, b, c = 5, d, e= 10"1

let kvPat = /([A-Za-z]\w*)(\s*=\s*(\d+))?/

// 1 2 3

1

2

keyValues.matches(of: kvPat).map{Int($0.3 ?? "1")!}

 // => [3, 1, 5, 1, 10]

1

2

explains the use of the final ! operator.

Contrarily to other programming languages such as Python or Java, capture groups cannot be indexed by an integer variable. As Swift tuple

components may be of different types, they must be accessed by a known subscript to allow to determine the type of the chosen component.

In some cases, it is possible to use reflection tricks to transform a tuple into an array whose all elements must be of the same type and thus

indexable by a variable.

2.3.1. Naming Capture Groups

Keeping track of group numbers is error-prone, especially when, during the development, adding or removing groups within a pattern. It is

thus possible to assign names to groups by starting the group with ?<name> . This allows documenting the kind of values expected in the

groups from the subject. We can thus give a more explicit version of the previous pattern as

in which group 1 is given the name key and group 3 the name value . This change is also reflected in the type of the match:

Regex<(Substring, key: Substring, Substring?, value: Substring?)> in which some fields have been given the name of the capture

group.

As spacing around the equal sign is not relevant, we can ignore a group by starting it with ?: in the output but the parentheses are kept for

delimiting the optional grouping. Our previous example becomes

which now has the type Regex<(Substring, key: Substring, value: Substring?)> ignoring the capture group starting with ?: . We can

now rewrite our example of extracting the integer values of the subject with the following version easier to understand by using the name of

the field (here value).

It is still possible to use indexing (i.e here use $0.2 instead $0.value) but this defeats the purpose of defining names for captured groups.

2.3.2. Matching Capture Groups

A capture group can also be used within the same regular expression to match a repetition of a previous match. Technically, this does not fit

the theoretical definition of a regular expression, but this is sometimes useful. The reference is obtained by using the \n pattern where n is

the number of the group.

For example, /([a-z]+)\1/ matches a substring of consecutive repeated lowercase letters such as abcabc . For named capture groups,

reusing a previous match is achieved with \k<name> . So the previous example, could have been written as /(?<x>[a-z])+\k<x>/ .

To illustrate the use of matching captured string, we develop a pattern for removing XML tags from a subject. We first recall the main rules for

XML tags, see this document for more details. We do not advocate using regular expressions to parse XML, but this is an interesting

pedagogical exercise.

An XML tag is an NCNAME inside angle brackets. NCNAME (name without a colon) is an identifier starting with a letter or an underscore,

possibly followed by a list of letters, digits, underscores, hyphens or periods, corresponding to the /[a-zA-Z_][-a-zA-Z0-9_.]*/

expression literal (note that the hyphen at the start and the period in the character class are not considered as special characters).

There are three types of XML tags:

start-tag : < followed by a NCNAME and attributes; an attribute is a key-value pair, the value being within quotes separated by an equal

sign; it is terminated by > .

end-tag : < followed by the same NCNAME as its corresponding start-tag terminated by > ; no attributes are allowed within the end-tag.

empty-tag: similar to a start-tag, but terminated by /> without a corresponding start-tag.

let kvPatN = /(?<key>\p{alpha}\w*)(\s*=\s*(?<value>\d+))?/1

let kvPatN = /(?<key>\p{alpha}\w*)(?:\s*=\s*(?<value>\d+))?/1

keyValues.matches(of: kvPatN).map{Int($0.value ?? "1")!}

 // => [3, 1, 5, 1, 10]

1

2

https://medium.com/@pavangopal/mastering-reflection-in-swift-a-comprehensive-guide-a4b54d0fd5ca
https://gist.github.com/emctague/e46a9d91ef208bba06f712a999167067
http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/HTML/ch01.html

We show a regular expression that matches an XML tags, skipping attributes in start-tag, but capturing the content between corresponding

start-tags and end-tags. As this expression is quite involved, we define it using an extended regex literal which allows commenting subtleties.

In this expression, we take for granted that no nested XML tags of the same name exist. This case will be dealt later in the document.

We can use this to remove XML tags from a string. This example shows how we keep only the content group of the first two tags; we remove

the third empty tag, but the last tags do not match because their start-tag and end-tag names are different.

In this section, we have shown how to achieve in Swift what regular expressions can do in other programming languages. Now we describe a

way of writing regular expressions that sets Swift apart and allows many variations and combinations while keeping the strong typing

discipline.

let xml_tagX = #/

 < # begin of start-tag

 (?<name>[a-zA-Z_][-a-zA-Z_0-9.]*) # save name

 \s*(?:.*?) # skip attributes

 (?:/> # empty tag

 |

 > # end of start-tag

 (?<content>.*?) # content

 </\k<name>>) # end-tag

/#

1

2

3

4

5

6

7

8

9

10

let xml_string = "<_a>xx</_a> <b.1 c='d' e='f'>yy</b.1> <w-90/> <good>content</bad>"

xml_string.replacing(xml_tagX){$0.content ?? ""}

// => xx yy <good>content</bad>

1

2

3

3. RegexBuilder
In addition to the Regex literal notation shown in the previous section, Swift provides an alternative notation based on the overloaded Regex

constructor which accepts different kinds of parameters. Most often it is a closure (written as a trailing closure) that returns a

RegexComponent created with the Result Builder notation of Swift. See this document for an introduction to this original notion for Domain

Specific Languages (DSL) similar to SwiftUI code. This provides a more readable and type-safe notation for regular expressions and it also

allows a systematic composition of regular expressions.

A RegexBuilder expression combines simple strings and other regexes by concatenation combined with components such as

CharacterClass , LookAhead or ChoiceOf and quantifiers such as Optionally or ZeroOrMore .

To use this notation, the RegexBuilder module must be imported. The regex of an identifier can now be rewritten as

which is more verbose, but more readable and maintainable. Now identifierRB , whose type is Regex<Substring> can be used as a any

regular expression literal.

Xcode provides a refactoring tool to transform a Regex literal into a RegexBuilder expression. Because RegexBuilder allows

constructions that cannot be written as a literal string, an automatic tool to transform a RegexBuilder expression to a regex literal is not

available.

3.1. Capturing Information
We now define an alternative regex for the example used in the named capture group example for parsing key-value pairs, values being

optional. It will be built from simpler expressions. Named captures are obtained through Reference in this context and serve for subscripting

the resulting match i.e., using square brackets. A reference is not a property name as it is the case for regex literals. A reference is a value

created with the Reference constructor called with a type as parameter, hence the .self after the type name. One important feature is that

the resulting value can be a transformation of the matched substring, which may be of a different type than a substring.

First the regex for the key with its captured reference whose type is Regex<(Substring, Substring)> :

The regex for the value to be transformed into an integer. In principle, the Int constructor could fail (but not in this case as the substring only

contains digits. The type of vPatRB is Regex<(Substring, Int)> .

import RegexBuilder

let identifierRB = Regex {

 CharacterClass(("A"..."Z"),("a"..."z"))

 ZeroOrMore(.word)

}

1

2

3

4

5

let key = Reference(Substring.self)

let kPatRB = Regex {

 Capture(as: key) {

 identifierRB

 // /[A-Za-z]\w*/ could also have been used instead of the lines above

 }

}

1

2

3

4

5

6

7

let value = Reference(Int.self)

let vPatRB = Regex {

 Capture(as: value) {

 OneOrMore(.digit)

 } transform: {Int($0)!}

}

1

2

3

4

5

6

https://developer.apple.com/documentation/swift/regex%23initializers
https://developer.apple.com/documentation/regexbuilder
http://www.iro.umontreal.ca/~lapalme/Swift-Fundamentals/SwiftUI%20Fundamentals.html%23result-builder

With these definitions, we can now build a key-value regex, which combines the pattern for capturing the key and optionally parses the equal

sign with surrounding spacing and captures the value. Usually elements in a ResultBuilder are put on separate lines like Swift constructs

but here we use semicolons to separate some of them on the same line for compactness. The type of kvPatRB is now Regex<(Substring,

Substring, Int?)> . The trailing ? indicates that the integer value is optional.

The list of all values in the subject is obtained like the following (to be compared with the literal regex version). A check is made that the value

part is present and if so its integer value is obtained by subscripting.

Note the subscripting within the match using the Reference variable value . The result does not have to be unwrapped because the Regex

transform has already performed the conversion from the Substring to an Int .

If a capture is not given a name, its substring or value is referenced using indexing like an unnamed capture in a regex literal. Throwing an

error from a transform closure aborts matching and propagates the error out to the caller, if this is not what is wanted TryCapture can be

used as a transformation that can fail, where a nil result forces backtracking within the regex matching process.

To match a previously captured string within the same regular expression is only a matter of using the name of the captured value as a

RegexComponent . Here is a version of our previous example of matching an XML tag using the RegexBuilder notation.

Line 2 defines a regex literal for the NCNAME which is used on line 9 where its value is captured. The captured value is used in the Regex on

line 17. As a matched tag does not necessarily have content, the Reference on line 5 is marked as Optional. Because the two alternatives of

ChoiceOf must have type String , a transform closure is used on line 16 to create a String from the captured value.

This regex can be used like this

let kvPatRB = Regex {

 kPatRB

 Optionally {

 ZeroOrMore(.whitespace); /=/; ZeroOrMore(.whitespace)

 vPatRB

 }

}

1

2

3

4

5

6

7

keyValues.matches(of: kvPatRB).map{$0.2 != nil ? $0[value] : 1}

 // => [3, 1, 5, 1, 10]

1

2

// letter or underscore followed by letter, digit, underscore, hyphen or period

let nc_name = /[a-zA-Z_][-a-zA-Z_0-9.]*/

let tag_name = Reference(Substring.self)

let content = Reference(Substring?.self)

let xml_tag_RB = Regex {

 "<" // begin of start-tag

 Capture (as: tag_name) {nc_name}

 /.*?/ // skip attributes

 ChoiceOf {

 "/>" // empty-element tag

 Regex {

 ">" // end of start-tag

 /.*?/

 Capture (as: content) { /.*?/ } transform: {$0}

 Regex{"</" ; tag_name ; ">"} // end-tag

 }

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

We thus see that the RegexBuilder notation is more versatile, readable and compositional than the literal one.

3.2. Foundation Parsers
Swift’s regexes allow combining regular expressions with existing parsers for commonly occurring strings, such as URLs, locale-dependent

numbers, dates and currencies. These are called Foundation parsers in the Swift terminology. These industrial strength parsers can be used like

any other regular expression component and return properly typed values. Such specialized parsers, that are often error prone to develop,

are more efficient than regular expression interpretation. The next section will show that these parsers are merely implementing a protocol

that users can follow for implementing their own parsers.

3.2.1. Customizing Foundation Parsers

Matching a Date

The API defines 6 methods to match different ways of writing a date and capturing it as a Date object. We choose one in which the format is

specified by a string. It is also possible to match an ISO 8601-formatted date string. As each method follows the convention of a given locale, it

is a very flexible tool.

The Swift interpolated string for the format: parameter declares the field names of the Date object followed by a writing specification (here

.defaultDigits). It drives the matching process to create the date.

Matching a Currency

Matching a currency is specified by locale properties and the result can be specified either as an Integer , in which case the cents are ignored.

To deal with cents, we must use a Decimal number which is a Swift structure representing a base-10 number with its own arithmetic

operators.

Matching a URL

Matching a url , which is a quite elaborate regex, creates a structure with the usual fields such as scheme , host , part , query ...

3.2.2. Using Foundation Parsers

xml_string.replacing(xml_tag_RB){$0[content] ?? ""}

// => xx yy <good>content</bad>

1

2

let date = Reference(Date.self)

let dateRB = Regex{

 Capture (as:date){

 .date(format:"\(day:.defaultDigits)/\(month:.defaultDigits)/\(year:.defaultDigits)",

 locale: Locale(identifier: "fr_CA"),

 timeZone:.current)

 }

}

1

2

3

4

5

6

7

8

let price = Reference(Decimal.self)

let priceRB = Regex {

 Capture (as:price){

 .localizedCurrency(code: Locale.Currency("CAD"),

 locale: Locale(identifier: "fr_CA"))

 }

}

1

2

3

4

5

6

7

let link = Reference(URL.self)

let linkRB = Regex {Capture (as:link){.url()}}

1

2

https://developer.apple.com/documentation/swift/regexcomponent/date(format:locale:timezone:calendar:twodigitstartdate:)
https://developer.apple.com/documentation/swift/regexcomponent/iso8601
https://developer.apple.com/documentation/swift/regexcomponent/localizedcurrency(code:locale:)
https://developer.apple.com/documentation/foundation/decimal/
https://developer.apple.com/documentation/swift/regexcomponent/url(scheme:user:password:host:port:path:query:fragment:)
https://www.rfc-editor.org/rfc/rfc3986%23page-50

We now show an example of use of these parsers to process strings representing orders to an online store. The following string will be used

as an example subject for a regular expression that combines Swift predefined parsers.The order contains a localized date and currency,

using the French Canada locale, followed by a URL. These fields are separated by a colon with spacing around it.

The order for a computer screen was placed on February 19th, 2024 and costed $258.92 followed by a URL describing the item. The format of

the date and the currency in the subject are written according to the writing convention for French in Canada.

Separating fields

The ordered item is a list of characters, while a separator is a colon with some spacing around it. Using a quantifier such as ZeroOrMore can

sometimes lead to some inefficiencies because the regex engine might have to backtrack a few times with different starting points. But in

many cases, such as in the separator here, once a separator has been matched, we are sure of the choice and we can avoid any backtracking

over this choice by marking it Local .

In other regex formalisms, this is called an atomic or non-backtracking group indicated by ?> which is also allowed in Swift. This idea is similar

to the FENCE pattern in SNOBOL4 or the cut ! in Prolog. For example, the regular expression a(bc|b)c (capturing group) matches abcc

and abc , but a(?>bc|b)c matches abcc but not abc , because once it has matched bc , the remaining choice for b is lost because of the

local marking. Such Local or atomic group does not create a capture and thus does not add a component to the type.

Matching the Order

Matching the complete order is now only a matter of composing the previous regexes with embedded separators.

Creating an Invoice

We now create an invoice from the captured values by matching the subject in the orderRB regex.

We define an English locale aware format for a Date object.

We want Decimal numbers displayed with 6 digits for the dollar part and two for the cents, but this format adds leading 0 and spaces. We

define a function to format the value and use a regex (of course...) to replace leading 0 and spaces by spaces and add a dollar sign.

let order = "19/2/2024 : Computer Screen : 258,92 $: https://www.azamon.ca/gp/aw/d/B0CJVK87Y7/?ref_=sbx_be_s_sparkle_mcd_asin_1_img&pd_rd_w=dPFhO&content-id=amzn1.sym"1

let item = Reference(Substring.self)

let itemRB = Regex {Capture (as:item){OneOrMore(.any)}}

let sep = Regex{

 Local{ZeroOrMore(.horizontalWhitespace); ":"; ZeroOrMore(.horizontalWhitespace)}

}

1

2

3

4

5

6

let orderRB = Regex{

 dateRB ; sep ; itemRB ; sep ; priceRB ; sep ; linkRB

}

1

2

3

let en_CA_date = Date.FormatStyle()

 .year()

 .day(.defaultDigits)

 .month(.defaultDigits)

 .locale(Locale(identifier: "en_CA"))

1

2

3

4

5

https://www.regular-expressions.info/atomic.html

We can now apply the orderRB to the subject order and extract captures. The sales tax rate for Québec in computed and added as a

Decimal number. A multi-line literal string in which the captured and computed values are then printed.

To produce the following in which the date (month/day/year) is now formatted according to the English locale.

3.3. Custom RegexComponent
We now show how to build a specialized matcher and use it like a regex. This approach relies on implementing the

CustomConsumingRegexComponent protocol with the consuming function that receives a string, a starting index and bounds to work within.

When the function considers it has a match, it returns a pair whose first value is the index following the end of the match, the second value

being the matched substring. The function returns nil when no match is found. This is the protocol implemented by Foundation Parsers used

in the previous section.

3.3.1. Matching Balanced Parentheses

For illustrating a custom regex component, we define a matcher for a well parenthesized expression, similar to the predefined BAL pattern in

SNOBOL4. This is a classical example of a pattern that cannot be written using a formal regular expression. Some programming languages

allow the definition of recursive regular expressions, but Swift does not; we cannot refer to a regex within itself.

In this function, when the match begins with an open parenthesis, the level variable is set to 1. The function iterates over the characters of

the string decrementing level when a close parenthesis is encountered and incrementing when an open parenthesis is seen. A match is

found as soon as level reaches 0 and a pair is returned containing the index of the next character and the substring between the start and

current indices. Should this match fails, the global regex engine calls it at another starting position.

let decimalFormat = Decimal.FormatStyle(locale: Locale(identifier: "fr_CA"))

 .precision(.integerAndFractionLength(integer: 6, fraction: 2))

func fmt(_ val:Decimal)->String{

 val.formatted(decimalFormat)

 .replacing(/^[\s0]*/){String(repeating:" ",count:$0.count)}+" $"

}

1

2

3

4

5

6

let m = order.firstMatch(of: orderRB)!

let m_price = m[price]

let taxes = m_price * Decimal(0.14975) // Québec sales rate is 14.975%

let total = m_price + taxes

print("""

On \(m[date].formatted(en_CA_date)),

you ordered a \(m[item])

 Price: \(fmt(m_price))

 Taxes: \(fmt(taxes))

 Total: \(fmt(total))

Thank you

\(m[link].host!)

""")

1

2

3

4

5

6

7

8

9

10

11

12

13

On 2/19/2024,

you ordered a Computer Screen

 Price: 258,92 $

 Taxes: 38,77 $

 Total: 297,69 $

Thank you

www.azamon.ca

1

2

3

4

5

6

7

struct BalancedParentheses: CustomConsumingRegexComponent {

 typealias RegexOutput = Substring

1

2

https://www.regular-expressions.info/recurse.html

Here are some tests returning a list of the balanced parenthesized substrings within a subject.

3.3.2. Matching Nested XML Tags

The next example is a custom RegexComponent for matching nested XML tags, building on our previous example, but defining them as

RegexBuilder expressions instead of literals.

 func consuming(_ input: String,

 startingAt index: String.Index,

 in bounds: Range<String.Index>)

 throws -> (upperBound: String.Index, output: Substring)? {

 guard index < input.endIndex && input[index]=="(" else {return nil}

 var level=1

 var pos = input.index(after: index)

 while pos != input.endIndex {

 if input[pos] == ")" {

 level -= 1

 if level == 0 {

 return (input.index(after:pos),input[index ... pos])

 }

 } else if input[pos] == "(" {

 level += 1

 }

 pos = input.index(after:pos)

 }

 return nil

 }

}

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

let bal = BalancedParentheses()

"(2+(3+4)))((())".matches(of: bal).map{"\($0.output)"}

// => ["(2+(3+4))", "(())"]

" (2+(3+4)())+(abc (1+2) ".matches(of: bal).map{"\($0.output)"}

// => ["(2+(3+4)())", "(1+2)"]

1

2

3

4

5

let xml_attr = Regex { // an attribute

 let quotesym = Reference(Substring.self)

 /\s+/

 nc_name // attribute name

 /\s*=\s*/

 Capture (as:quotesym) {/["']/} // start quote ' or "

 /.*?/ // attribute value

 quotesym // ending quote same as start

}

let xml_tagN = Regex {

 Capture (as:tag_name){nc_name} // tag name

 Regex {ZeroOrMore {xml_attr} // followed by 0 or more attributes

 /\s*/

 }

}

// define three types of tags

let xml_start_tag = Regex {"<" ; xml_tagN ; ">" }

let xml_empty_tag = Regex {"<" ; xml_tagN ; /\/>/ }

let xml_end_tag = Regex {"</" ; xml_tagN ; ">" }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

file:///Users/lapalme/Dropbox/RegexInSwift/index.html%23matching-captured-groups

With these definitions, we can define a custom RegexComponent that uses a global stack (line 1) for keeping track of open tags with their

starting index. When an end tag of the same name as the one on the top of the stack is encountered, it returns a match containing the portion

of the subject between the starting position and the end of the current match. An empty tag is considered as balanced. In the case of nested

XML tags, both inner and outer tags are matched. Errors are raised for badly nested tags or for a < not followed by a tag.

 This function can be called as follows to print all balanced XML elements within a multi-line string containing nested XML tags.

var tags = [(Substring,String.Index)]() // stack of (start-tag-name, string index of start)

struct NestedXML: CustomConsumingRegexComponent {

 typealias RegexOutput = Substring

 func consuming(_ input: String,

 startingAt index: String.Index,

 in bounds: Range<String.Index>)

 throws -> (upperBound: String.Index, output: Substring)? {

 guard index < input.endIndex else {return nil}

 var pos = index // current position

 while let m = input[pos...].firstMatch(of: /(?><)/) { // skip to before the next <

 let start = m.range.lowerBound

 if let m = input[start...].prefixMatch(of: xml_end_tag){ // end-tag encountered

 if m[tag_name] == tags.last!.0 { // check if the tag-name is the same as the top of the stack

 let (_,tag_start) = tags.popLast()! // remove it

 return (m.range.upperBound,input[tag_start ..< m.range.upperBound])

 } else { // should never happen (bad nesting of tags)

 fatalError("Bad XML: \(m[tag_name]) should match \(tags.last?.0 ?? "strange tag")")

 }

 } else if let m = input[start...].prefixMatch(of: xml_empty_tag){ // empty tag

 return (input.index(after: start),input[start ..< m.range.upperBound]) // return it

 } else if let m = input[start...].prefixMatch(of: xml_start_tag){ // start tag

 tags.append((m[tag_name],start)) // add it to the stack

 pos = input.index(start, offsetBy: m.0.count) // update position

 } else { // should never happen: < not followed by a tag

 fatalError("no match of tag: \(start) : \(input[start...])")

 }

 }

 return nil

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

let doc = """

 hello

<p><p>info</p></p> nothing <q><p>test</p></q> <x z='2' />

<z-1> a value spanning

two lines</z-1>

<c>good</c>friends

<d><e/></d>

"""

doc.matches(of: NestedXML()).forEach{print("\($0.output)")}

// output

 hello

<p>info</p>

<p><p>info</p></p>

<p>test</p>

<q><p>test</p></q>

<x z='2' />

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

<z-1> a value spanning

two lines</z-1>

<c>good</c>

<c>good</c>friends

<e/>

<d><e/></d>

18

19

20

21

22

23

4. Run-time Regular Expressions
In the previous sections, the regular expression was defined in Swift code, which allowed its static typing. However, in some cases, a regular

expression must be created from a string provided by the user, read from a file, or generated on the fly. This is how regexes are defined in

most other programming languages, including ones advocating a strong typing discipline, such as Java. In these cases, the regular expression

syntax can be checked when it is compiled, which occurs at run-time, though. Swift also allows this mode of definition of regexes.

To create a regular expression from a String , we use the Regex constructor with a string as parameter. When it is a string literal, such as

"a(bc|de)f|ghi" or "\".*?\"" , care must be taken to escape special characters such as in the second expression where the quotes that

delimit standard Swift strings must be matched. To reduce the number of characters that need to be escaped, extended string delimiters can be

used. The second example can thus be written as #"".*?""# .

But the creation of a regex from an arbitrary string may raise an error in the case of a malformed pattern. It is thus necessary to embed the

call to the Regex constructor within a try block. If we are confident the regex is well formed, then using try! creates a regex that can be

used directly, such as the following:

These regular expressions can be used with the String methods .contains(..) or .startsWith(..) which return a boolean result (see

Line 2 in the following example).

The result of a matching method for a run-time regex is an object of the erased type AnyRegexOutput (see Line 3) in a way similar to the

result of a regex match in other programming languages such as Java or Python.

The match result gives access to the range of the whole match, but its output property is an array of Elements corresponding to the capture

groups. Subscripting (e.g. [n]) is used to retrieve the value of a capture group. This differs from the index (e.g. .n) used for accessing fields

of a tuple in the case of statically typed regexes. We can use output[0] to get information about the whole match or output[n] to get

information about the capture group n. The count property indicates the number of capture groups plus 1.

Each element of the output property has the substring property to get the match substring of this group, range for its range and name to

get the name of the capture group, nil if it does not have a name. Here are a few examples of access to the result of matching a run-time

regex.

4.1. Specifying the Expected Type
Whenever possible, the generic parameters for the Regex constructor should be specified as in the following examples so that the compiler

can detect some potential errors at compile time. In the following examples, we could have used literal regexes in which case, the compiler

would have inferred the appropriate types, but we use literal strings instead of string variables in the constructor calls for simplification.

Line 1 shows a case where the regular expression matches a substring. The type of the expression in line 2 is a pair: the parentheses, used to

change the priority of alternation over concatenation, also create a typed capture group that is combined with the substring for the whole

match. The second type of the pair is marked as Optional because the group appears on the left of the alternation with ghi . In line 3, the

group is marked as not captured by prefixing it with ?: , so its type is not added in the signature; ?: groups should be specified when a given

group is not needed as it simplifies the type.

let exprS = try! Regex("a(bc|de)f|ghi")

let quoteES = try! Regex(#"".*?""#)

1

2

let subj1 = "labcf ghk ghi def ccc"

subj1.contains(exprS) // => true

subj1.firstMatch(of: exprS) // => Optional(Match(anyRegexOutput: _StringProcessing.AnyRegexOutput(...))

subj1.firstMatch(of: exprS)?.range // positions 1...5 in subj1

subj1.firstMatch(of: exprS)?.count // 2 because there one capture group

subj1.firstMatch(of: exprS)?.output[0].substring // abcf

subj1.firstMatch(of: exprS)?.output[0].range // positions 1...5 in subj1

subj1.firstMatch(of: exprS)?.output[0].name // nil

1

2

3

4

5

6

7

8

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/stringsandcharacters/%23Extended-String-Delimiters

It is also possible to specify the type as a parameter of the Regex constructor, so the following examples are equivalent to the preceding

ones. Note the use of .self to refer to the type.

As we have specified that the type of the result of the match is a substring, then using the result of the match is similar to what we have

shown in the previous sections for literal regexes and regex created by calls to the RegexBuilder . The result of the call to firstMatch is still

an optional because the subject might not have an occurrence that matches the pattern, this explain unwrapping the result in line 1.

This section shows that although it is possible to use strings to define regular expressions, it is simpler and more reliable to use regex literals

or Regexbuilder expressions whenever this is possible because type checking occurs when the program is compiled and not at run-time.

Moreover, access to the components of the match is simpler when the types are specified.

4.2. Using Run-Time Regexes
We now illustrate a use of a run-time regex in a struct for replacing French words with their corresponding English word. This struct is

initialized with a dictionary (line 5) and a regex which is an alternation joining keys of the dictionary (line 7) separated by | , As we want to

match complete words, the alternation must be enclosed by word boundaries \b (line 8). As the alternation is the only expression in this

regex, it is not necessary to capture the result, so (?:…) is used. Note the use of the raw string notation between #" and "# which avoids

escaping backslashes. But then to use string interpolation, we need to use \#(…) instead of \(…) . As the built regex always has the same

form, we can specify its type Regex<Susstring> when it is declared (line 3) and does not need to be repeated when the regex is created (line

8).

The replacing(in:...) method (lines 11-13) replaces matches of created regex on a string by the corresponding value of the original

dictionary.

Line 16 builds a struct from a simple dictionary of french and English words. Line 17 makes the replacement of the words of the dictionary

within a string. Note that jour is not replaced because is does not occur at the word boundary.

let quoteESt = try! Regex<Substring>(#"".*?""#)

let exprSt = try! Regex<(Substring,Substring?)>("a(bc|de)f|ghi")

let exprSt1 = try! Regex<Substring>("a(?:bc|de)f|ghi")

1

2

3

let quoteESta = try! Regex(#"".*?""#,as:Substring.self)

let exprSta = try! Regex("a(bc|de)f|ghi",as:(Substring,Substring?).self)

let exprSt1a = try! Regex("a(?:bc|de)f|ghi",as: Substring.self)

1

2

3

subj1.firstMatch(of: exprSt1)! // => "abcf"

subj1.matches(of: exprSt).map{"\($0.0)"} // => ["abcf","ghi"]

1

2

struct WordsReplace{

 let dict:[String:String]

 let dictRE:Regex<Substring>

 init(_ dict:[String:String]){

 self.dict = dict

 let reS = dict.keys.joined(separator: "|")

 dictRE = try! Regex(#"\b(?:\#(reS))\b"#)

 }

 func replacing(in str: String)->String {

 return str.replacing(dictRE, with: {dict[String($0.output)]!})

 }

}

let fr2en = WordsReplace(["jour":"day", "monde":"world", "joyeux":"happy", "triste":"sad"])

fr2en.replacing(in:"bonjour le monde joyeux et rarement triste")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// => "bonjour le world happy et rarement sad"18

5. Use Cases
This section presents some compelling uses of Swift regexes. First a simple example of parsing Roman numerals using either a regex literal or

a RegexBuilder expression. Then a more elaborated example of a tokenizer that combines literal regexes within a RegexBuilder

expression. Finally we show how dynamic regexes can be created from a JSON file for building the core of an ELIZA-like chatbot. The complete

source file of these examples are available on the companion web site.

5.1. Parse a Roman Numeral
To illustrate the use of Swift regex in a real-world scenario, we will now demonstrate a regular expression that can be used to convert a

Roman numeral string into its decimal equivalent. Roman numerals use letters to represent numbers: M :1000, D :500, C :100, L: 50, X: 10,

V :5 and I :1. Up to three letters can appear following another to add their value to the previous one. If a lower-valued unit appears before a

higher-valued one, it is deducted.

5.1.1. With a regex literal

Roman numerals in the range [0,4000) can be matched using the following regex muli-line literal which applies four optional regexes on the

string. The first regex (line 2) matches one to three M , while regexes for hundred, tens and units follow the pattern of line 5 replacing I , V , X

by X , L , C and by C , D and M respectively. This pattern is an alternative between:

an I followed by an X , a V or up to 2 other I ;

a V followed by unto three I .

The regexes on lines 3 to 5 could have been also written in the form (I|II|III|IV|V|VI|VII|VIII|IX)? but this would entail more

backtracking, unless the regex compiler is very clever. We prefer writing the tree-based form which seems very clear anyway.

 These spans of letters correspond to values to be added to determine the overall value:

With these definitions, the value of a string corresponding to a roman numeral can be obtained with the following function that matches the

whole string (line 2). The values of each captured string that appears to the result (lines 5-8) are then added. Note the use of the optional

captured groups that must be unwrapped done here with the if let construct; this value is a substring transformed to string by string

interpolation is used as a key for the romanVals dictionary; as indexing a dictionary can in principle also return nil, the result of the indexing

must also be unwrapped. When the whole string cannot be matched, the string does not correspond to a valid roman numeral (lines 11,12).

let romanRE = #/

 (M{1,3})? # thousands

 (C(?:M|D|C{,2})|DC{,3})? # hundreds

 (X(?:C|L|X{,2})|LX{,3})? # tens

 (I(?:X|V|I{,2})|VI{,3})? # units

/#

1

2

3

4

5

6

let romanVals = [

 "C": 100, "CC": 200, "CCC": 300, "CD": 400, "CM": 900,

 "D": 500, "DC": 600, "DCC": 700, "DCCC": 800,

 "I": 1, "II": 2, "III": 3, "IV": 4, "IX": 9,

 "L": 50, "LX": 60, "LXX": 70, "LXXX": 80,

 "M": 1000, "MM": 2000, "MMM": 3000,

 "V": 5, "VI": 6, "VII": 7, "VIII": 8,

 "X": 10, "XC": 90, "XL": 40, "XX": 20, "XXX": 30

]

1

2

3

4

5

6

7

8

9

https://en.wikipedia.org/wiki/Roman_numerals

Note that it is not possible to use an integer index for the captures because the result of the match is a tuple. So we deal with them

separately.

5.1.2. With a RegexBuilder Expression

We now illustrate how this approach to Roman numeral parsing can be implemented using a RegexBuilder . As the regex for units, tens and

hundreds follow the same pattern, we use a function to define a pattern parametrized by strings for the unit, the five and the ten. It returns

(line 7) the integer (already unwrapped in the transformation) corresponding to the parsed string.

makeRB is used to define the regex for all components.

This function can be used to parse a string and return the corresponding value by adding the returned value by each optional regex when it

exists, 0 otherwise (line 4). Compare this with parseRomanRE above.

5.2. Developing a Tokenizer
We will now demonstrate how to create a tokenizer that classifies substrings using regular expressions. This is typically the first stage of

compiling, but it can also be used in other text-processing applications. This tokenizer is a Swift implementation of an example from the

Python documentation, but in this case, we combine literal regexes with a RegexBuilder expression to get the best of both worlds.

func parseRomanRE(_ s:String)->Int? {

 if let m = s.wholeMatch(of: romanRE){

 var res = 0

 if let v = m.output.1 {res += romanVals["\(v)"]!}

 if let v = m.output.2 {res += romanVals["\(v)"]!}

 if let v = m.output.3 {res += romanVals["\(v)"]!}

 if let v = m.output.4 {res += romanVals["\(v)"]!}

 return res

 }

 return nil

}

1

2

3

4

5

6

7

8

9

10

11

func makeRB(_ i: String,_ v:String, _ x:String)->Capture<(Substring, Int)>{

 return Capture {

 ChoiceOf {

 Regex {i ; ChoiceOf { x; v ; Repeat(...2) { i }}}

 Regex { v; Repeat(...3) { i }}

 }

 } transform:{romanVals["\($0)"]!}

}

1

2

3

4

5

6

7

8

let romanRB = Regex {

 Optionally {Capture { Repeat(1...3){"M"} } transform: {str in 1000*str.count}}

 Optionally {makeRB("C","D","M")}

 Optionally {makeRB("X","L","C")}

 Optionally {makeRB("I","V","X")}

}

1

2

3

4

5

6

func parseRomanRB(_ s:String)->Int? {

 if let m = s.wholeMatch(of: romanRB){

 let out = m.output

 return (out.1 ?? 0) + (out.2 ?? 0) + (out.3 ?? 0) + (out.4 ?? 0)

 }

 return nil

}

1

2

3

4

5

6

7

https://docs.python.org/3/library/re.html%23writing-a-tokenizer

5.2.1. Defining a Token

A Token is a structure (lines 13-19) with many alternatives (kinds) defined by an enum with associated values (lines 1-11) to classify each

span of text. In some cases (ID , KEYWORD , OP), the text span is kept with the token; if it is a NUMBER , it is converted to a numeric value. The

line and column positions of the start of the token (line 15) are also saved, which is useful for error messages or for languages that take

indentation into account. Line 16 specifies the format for displaying a Token : the kind followed by line and column numbers within square

brackets.

5.2.2. Creating a Pattern

The association of a portion between a matched substring by a regex and a Token can be defined using the following Swift construct.

To simplify the notation, we define pat , a function to create such associations. It has two parameters: a regex and a closure to define the kind

of token to create. lineNumber is a global variable (line 1) maintained by the tokenizing process and colPos is function (lines 5-8) giving the

starting position of the matched substring in the subject. pat (lines 10-15) returns a Capture with the matched substring and the

transformed Token . Since the closure will be executed after the pat function returns, it must be annotated with @escaping (more

information about this annotation).

enum kinds {

 case NUMBER (Double)

 case ASSIGN

 case END

 case ID (Substring)

 case KEYWORD (Substring)

 case OP (Substring)

 case SKIP

 case NEWLINE

 case MISMATCH

}

struct Token:CustomStringConvertible {

 let kind: kinds

 let line,column: Int

 public var description:String {

 "\(kind) [\(line),\(column)]"

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Capture {regex} transform:{Token(kind:…, line:…, column:…)}1

var lineNumber:Int

// find the position as an integer of a substring within its original/base string

// columns are numbered from 1

func colPos(_ s:Substring) -> Int {

 let base = s.base

 return base.distance(from: base.startIndex, to: s.startIndex)+1

}

func pat(_ regex:Regex<Substring>,

 kindClosure: @escaping (Substring)->kinds) -> Capture<(Substring,Token)>{

 return Capture {regex} transform:{

 Token(kind: kindClosure($0), line:lineNumber, column: colPos($0))

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/enumerations/%23Associated-Values
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/closures/%23Escaping-Closures

5.2.3. Using the Patterns

We can now construct a RegexBuilder expression for each token type, with each line being a call to pat with a literal regex as first parameter

and a trailing closure returning the appropriate kind of the token depending on the matched substring s . Line 2 demonstrates the conversion

of the string into a numeric value. The substring matched by line 5 can either be an ID or a KEYWORD , depending on whether it appears in

the set of predefined keywords (line 14). An underscore is given as a parameter to the closure when the value of the matched string is not

needed. If none of the first seven patterns match, it returns a MISMATCH .

These pairs of regex and token kinds could be extended to include other tokenization features, such as end-of-line comments, literal strings,

parentheses, brackets, braces, etc.

The inferred type of tokenSpecifications is

a tuple containing the matched substring, followed by eight optional Token S, only one of which is non-nil because the ChoiceOf stops as

soon as it finds a match, so properly ordering the pat calls is important. The access to the components of the resulting tuple is done with a

number between 1 and 8, as indicated in the comments following each pat call. As contrarily to Python, Swift does not give access to the last

match number, all possibilities will have to be checked.

5.2.4. Defining the Tokenizer

A tokenizer is typically invoked by a parsing routine that iteratively handles each token using a method that generates a new token on every

invocation. This pattern is comparable to the IteratorProtocol which requires the definition of a next() method.

Here is a Swift Tokenizer structure taking a program string (line 5) to build a list of numbered lines kept as a list of pairs. It stores the current

line in a property and updates it using the static nextLine method (lines 37-42). This method creates a new string from the first element of

lines and removes it from the list. This ensures that the column numbers are relative to the beginning of the current line rather than of the

entire program. The line number is included in the returned value.

The next() function (lines 12-35) first checks whether the current line is empty. If it is not, it retrieves the subsequent line. Otherwise, it

returns nil . At line 20, the beginning of the line is identified, the outcome of the match is stored, and the matched substring is erased from

the start of the line. If the result is MISMATCH (line 23), an error message is displayed, indicating the incorrect substring (in this case, a single

character) along with the line and column numbers. The function next() is then called recursively (line 21) to search for a real token. If the

result is either NEWLINE or SKIP (line 27), the function ignores it by calling next() . In all other instances (line 30), the transformed token is

returned (line 23).

let tokenSpecifications = ChoiceOf {

 pat(/\d+(?:\.\d*)?/){s in .NUMBER(Double(s)!)} // .1 number

 pat(/:=/) {_ in .ASSIGN} // .2 assignment

 pat(/;/) {_ in .END} // .3 end of statement

 pat(/[A-Za-z]\w*/) {s in // .4 identifier or keyword

 return keywords.contains(String(s)) ? .KEYWORD(s) : .ID(s)}

 pat(/[+\-*\/]/) {s in .OP(s)} // .5 arithmetic operator

 // ignored values

 pat(/[\t]+/) {_ in .SKIP} // .6 spaces

 pat(/$/) {_ in .NEWLINE} // .7 end of line

 pat(/./) {_ in .MISMATCH} // .8 error

}

let keywords:Set = ["IF", "THEN", "ENDIF", "FOR", "NEXT", "GOSUB", "RETURN"]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ChoiceOf<(Substring, Token?, Token?, Token?, Token?, Token?, Token?, Token?, Token?)>1

struct Tokenizer:IteratorProtocol {

 let program:String

 var lines:[(Int,Substring)]

1

2

3

5.2.5. Running the Tokenizer

The code below demonstrates how to use this tokenizer. First an instance of a Tokenizer is created (line 8) with the program statements. The

tokenizer is used on lines 9-11 to print each returned tokens, but it could be seamlessly integrated into a more complex program. Lines 14-23

show an excerpt of the output.

 var line:Substring // current line

 init(_ program: String){

 self.program = program

 self.lines = Array(zip(1...,program.split(separator:"\n")))

 (lineNumber,line) = Tokenizer.nextLine(&self.lines)

 }

 mutating func next()->Token? {

 while line.isEmpty {

 if !lines.isEmpty {

 (lineNumber,line) = Tokenizer.nextLine(&self.lines)

 } else {

 return nil

 }

 }

 if let m = line.prefixMatch(of: tokenSpecifications) {

 let out = m.output

 line = line.dropFirst(out.0.count) // remove matched substring

 if let _ = out.8 { // error message for mismatch and search next token

 print("\(out.0) unexpected at line \(lineNumber), column: \(colPos(out.0))")

 return next()

 }

 if let _ = out.6 ?? out.7 { // ignore newline, skip

 return next()

 }

 if let t = out.1 ?? out.2 ?? out.3 ?? out.4 ?? out.5 ?? out.6 {

 return t

 }

 }

 return nil // should never happen

 }

 static func nextLine(_ lines:inout [(Int,Substring)])->(Int,Substring) {

 // create new string for setting column numbers relative to this line

 let (number,substr) = lines.removeFirst()

 let str = String(substr)

 return (number, str[str.startIndex..<str.endIndex])

 }

}

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

let statements = #"""

IF quantity THEN

 total := total + price * quantity;

 tax := price * 0.05; #

ENDIF;

"""#

var tokenizer = Tokenizer(statements)

while let t=tokenizer.next() {

 print(t)

1

2

3

4

5

6

7

8

9

10

5.3. Eliza-like Chatbot
Eliza in 1966 was one of the first programs that allowed a conversation between a human and a computer. It works by detecting patterns with

placeholders in the user input, for which predetermined responses, usually questions, are already defined. Although the original

implementation did not use regular expressions , Eliza-like programs have since been developed, which make extensive use of regexes. The

source code gives a Swift implementation of a JavaScript version that illustrates run-time regexes created from patterns given in a JSON file

(elizadata.json).

The heart of the matching process used by this program is explained in this section, which is data-driven by a script organized as shown in the

following code block. The most important part of the data for the script are embedded lists associated with a keyword.

When a keyword is detected in the user input, the system selects a question associated with the first pattern that matches the input. In a

question. A pattern is a string containing words and * used as a capture group similar to a (.*?) regex. In the associated questions, these

groups are referred to by number in parentheses. For example, given the input Often I remember coming to my house , Eliza will produce

the question Do you often think of coming to your house ? by matching pattern-1 in which the star corresponds to coming to my house

in which my is replaced by your .

When a pattern contains an ampersand, it refers to a synonym defined elsewhere. For example the pattern in line 1 of the next code block,

corresponds to the /(.*?) i \b(desire|want|need)\b (.*?)/ regex. As this alternative corresponds to capture group, we see why the last

part of the string is referred to by (3) . These regexes are generated when the JSON file is read when the program is launched.

5.3.1. Eliza Class (Eliza.swift)

}

/* output

KEYWORD("IF") [1,1]

ID("quantity") [1,4]

KEYWORD("THEN") [1,13]

ID("total") [2,5]

ASSIGN [2,11]

...

END [3,24]

unexpected at line 3, column: 26

KEYWORD("ENDIF") [4,1]

END [4,6]

*/

11

12

13

14

15

16

17

18

19

20

21

22

23

24

[keyword, priority, [| ["remember", 5, [

 [pattern-1, | ["* i remember *", [

 [question-11, | "Do you often think of (2) ?",

 question-12, | "Does thinking of (2) bring anything else to mind ?",

 ...]], | ...]],

 [pattern-2, | ["* do you remember *", [

 [question-21, | "Did you think I would forget (2) ?",

 question-22, | "Why do you think I should recall (2) now ?",

 ...]], | ...]],

 ...] | ...

] |]

1

2

3

4

5

6

7

8

9

10

11

["* i @desire *",["What would it mean to you if you got (3) ?",

 "Why do you want (3) ?",

 ...]],

let synons = {"desire":["want","need"],"sad":["unhappy","depressed","sick"]}

1

2

3

4

5

https://dl.acm.org/doi/10.1145/365153.365168
https://www.masswerk.at/elizabot/

The properties of the Eliza class save the information from the elizadata.json file. Most of its properties are straightforward conversions

from the JSON format. But the keywords property transformation is more complex because each list of lists shown above si transformed into

a named tuple of the following type:

 priority is the JSON value and keywordRE a regex that matches the keyword string within two word boundaries. The matchers array

consists of several functions that accept a string as input and try to match it against a specific pattern. Upon a successful match, the function

returns a question with the placeholders replaced by substrings from the user’s input.

The makeMatcher() method, an attribute of the Eliza class, demonstrates how to generate a matcher function from a pattern string, a list of

question strings, and a dictionary of synonyms. The Questions class encapsulates a list of question strings and returns one of them

sequentially on each invocation of nextQuestion() . Once all questions have been exhausted, it resumes at the beginning.

Lines 4-10 build a run-time regex from the pattern string: if it contains an ampersand, it expands the following word to a regex containing it

and the alternatives from the synons dictionary; each star is replaced by a regex that matches any substring.

Lines 12–24 define a closure that matches the user input and returns a single question with the appropriate captured groups substituted.

Post-replacements (e.g., my by your) are applied to the groups (line 19).

The conversion of a pattern into a regular expression occurs just once when the makeMatcher() function is invoked during startup. It does

not happen again each time the resulting closure is used.

In the closure, userInput is compared to the patternRE regular expression (line 12). If a match occurs, a specific query text is chosen.

Within this selected query, the corresponding substrings extracted from the “userInput” are substituted for the numeric placeholders

enclosed in parentheses. It is important to note that the selection of the match output component (line 17) uses an index, as the regex on line

10 has type Regex<(Substring,Substring)> . On the other hand, the component is obtained by subscripting on line 18, since patternRE (line

10) is a run-time regex of type Regex<AnyRegexOutput> . Finally (line 21), the function replaces sequences of one or more spaces with a single

space. If the input does not match the pattern regex (line 23), the function returns nil .

typealias Keyword = (priority:Int,

 keywordRE:Regex<Substring>,

 matchers:[(String)->String?])

1

2

3

func makeMatcher(pattern:String,questions: Questions,synons:[Substring:[String]])

 ->((String)->String?) {

 // create a regex from the pattern

 var pattern = pattern

 if let m = pattern.firstMatch(of: /@(\w+)/) { // expand synonyms

 let synonsREs = m.1 + "|" + synons[m.1]!.joined(separator:"|")

 pattern.replace(m.0,with:#"\b(\#(synonsREs))\b"#)

 }

 pattern.replace(/\s**\s*/,with:#"(.*?)"#) // deal with *

 let patternRE = (try! Regex(pattern)).ignoresCase() // create regex

 return {userInput in // returned closure

 if let m = userInput.wholeMatch(of: patternRE){

 var question = questions.nextQuestion()

 question.replace(/\((\d)\)/){i in

 let groupNo=Int("\(i.output.1)")!

 // replace (i) in the response by the ith capture of the input

 // to which the post-replacements are applied

 let replacement = String(m.output[groupNo].substring!)

 return posts.replacing(in: replacement)

 }

 return question.replacing(/\s+/,with:" ")

 }

 return nil

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

5.3.2. Running the dialog

Within the eliza-chat.swift file, makeQuestion(..) (lines 1-14) is the main function that returns a question based on the user’s text. To

accomplish this, it breaks the text down at periods, processing each segment individually before recombining them. The appropriate keyword

structure is found by getKeyword() (lines 16-18), which scans through the list of keywords looking for the first match to the keywordRE

pattern.

When a particular keyword is encountered (line 6), the reply function (lines 20-31) is invoked. On line 22, the selected matcher function is

applied to the input to generate the response. If the response mentions another keyword (line 23), the reply function is invoked recursively

for that keyword (line 24). Otherwise, the response is returned directly. If no matching keywords were found, then nil is returned. However,

this should never happen, as there should always be at least one pattern that matches unless there is a bug. However, this issue has arisen

during development a few times.

Line 10 executes when no keyword is found in the input. Otherwise, line 12 performs post-processing on the full question.

5.3.3. Sample dialog

Here is a small dialog with Eliza with only two statements from the patient.

func makeQuestion(_ text:String) -> String {

 var question = ""

 for part in unify(text).split(separator: "."){ // separate input in parts

 let part = eliza.pres.replacing(in: String(part)) // preprocess the part

 if !part.isEmpty, let keyword = getKeyword(part) {

 question += reply(String(part),keyword)!+" "

 }

 }

 if question.isEmpty {

 return reply("x",eliza.keywords.first(where: {"xnone".contains($0.keywordRE)})!)!

 } else {

 return applyPostTrans(question) // apply post translation

 }

}

func getKeyword(_ text:String)-> Keyword? {

 return eliza.keywords.first(where: {text.contains($0.keywordRE)})

}

func reply(_ part:String,_ keyword:Keyword)->String? {

 for matcher in keyword.matchers {

 if let rpl = matcher(String(part)) {

 if let m = rpl.wholeMatch(of: /goto (\w+)/){

 return reply(part,getKeyword(String(m.output.1))!)

 } else {

 return rpl

 }

 }

 }

 return nil

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The source code shows a more complete script similar to the one in the paper of Weizenbaum (1966).

Is something troubling you ?

User: Often,I remember returning to my house.

Eliza: Do you often think of returning to your house ?

User: I need some help.

Eliza: Why do you want some help ?

This was a good session, wasn't it -- but time is over now. Goodbye.

1

2

3

4

5

6

6. Conclusion
This document has described some original aspects of Swift regular expressions and provided illustrative instances of their use. Although it

does not aim to be comprehensive, it should offer enough understanding for users to further investigate the Swift API. It also showcased three

full-fledged examples: translating Roman numerals, breaking down a string into tokens and a pattern-matching based chat box. These

examples demonstrate the cutting-edge features of Swift’s regex abilities.

I hope that this text will be just as helpful to the reader as it was for me while writing it.

7. Appendix
7.1. Further reading

Links about Swift regexes:

The Swift-evolution proposals 350, 351, 354, 355 and 357 although the implementation differs in details.

Videos presented at the Apple Worldwide Developers Conference 2022 (WWDC 2022):

Meet Swift Regex that introduces the formalism

Swift Regex: Beyond the basics video illustrates more advanced parts (WWDC notes).

An online Swift regex tester is useful for testing some ideas, but it does not allow the use of Foundation parsers.

Other useful introductions:

Regular expressions in Swift: improve your text validations by using the new Regex APIs

Swift Regex Deep Dive

Links about regexes in general

Syntax for regex literals using the ICU regular expressions or other programming languages namely Python.

A comprehensive website about regular expressions in many programming languages, but not Swift.

7.2. Swift API
Regex structure

RegexBuilder Framework

RegexComponent protocol

Regex related functions are distributed across many types; the most often used functions are described in the Bidirectional Collection

protocol. As it can be difficult to get authoritative information, this browsable subset of the Regex API can be useful.

Regular expressions used before Swift 5.7 : NSRegularExpression (they can also be used)

7.3. Source Files
Source files for the examples in this document

RegexInSwift/RegexInSwift/main.swift

RegexInSwift/RegexInSwift/Roman.swift (Section 5.1)

RegexInSwift/RegexInSwift/Tokenizer.swift (Section 5.2)

Eliza-Like Chatbot (Section 5.3)

RegexInSwift/RegexInSwift/eliza-chat.swift

RegexInSwift/RegexInSwift/eliza.swift

RegexInSwift/RegexInSwift/elizadata.json

RegexInSwift.playground

7.4. Showing Matches
In the main.swift source file, we have defined the function showMatches(of patternS:String, in subject:String) which highlights

with up arrows the matched characters within a string by a regular expression given as a String . It takes for granted that the subject is a

single line. Here are a few examples of calls.

showMatches(of: "abc|def|ghi", in: "labc ghk ghi def ccc")1

https://github.com/apple/swift-evolution/blob/main/proposals/0350-regex-type-overview.md
https://github.com/apple/swift-evolution/blob/main/proposals/0351-regex-builder.md
https://github.com/apple/swift-evolution/blob/main/proposals/0354-regex-literals.md
https://github.com/apple/swift-evolution/blob/main/proposals/0355-regex-syntax-run-time-construction.md
https://github.com/apple/swift-evolution/blob/main/proposals/0357-regex-string-processing-algorithms.md
https://developer.apple.com/videos/play/wwdc2022/110357/
https://developer.apple.com/videos/play/wwdc2022/110358
https://www.wwdcnotes.com/notes/wwdc22/110358/
https://swiftregex.com/
https://blorenzop.medium.com/swift-regex-56eaf81e6d1e
https://bignerdranch.com/blog/swift-regex/
https://unicode-org.github.io/icu/userguide/strings/regexp.html
https://docs.python.org/3/library/re.html
https://www.regular-expressions.info/tutorial.html
https://developer.apple.com/documentation/swift/regex
https://developer.apple.com/documentation/regexbuilder
https://developer.apple.com/documentation/swift/regexcomponent
https://developer.apple.com/documentation/swift/bidirectionalcollection
https://swiftinit.org/docs/swift/_stringprocessing/regex
https://developer.apple.com/documentation/foundation/nsregularexpression
http://www.iro.umontreal.ca/~lapalme/RegexInSwift/RegexInSwift/RegexInSwift/main.swift
http://www.iro.umontreal.ca/~lapalme/RegexInSwift/RegexInSwift/RegexInSwift/Roman.swift
http://www.iro.umontreal.ca/~lapalme/RegexInSwift/RegexInSwift/RegexInSwift/Tokenizer.swift
http://www.iro.umontreal.ca/~lapalme/RegexInSwift/RegexInSwift/RegexInSwift/eliza-chat.swift
http://www.iro.umontreal.ca/~lapalme/RegexInSwift/RegexInSwift/RegexInSwift/eliza.swift
http://www.iro.umontreal.ca/~lapalme/RegexInSwift/RegexInSwift/RegexInSwift/elizadata.json
http://www.iro.umontreal.ca/~lapalme/RegexInSwift//RegexInSwift.playground

It is also possible to call this overloaded function by giving it a RegexComponent , but in this case the string corresponding to the regular

expression cannot be printed. This is the core function called by the preceding one.

We found these functions useful for learning and debugging purposes.

7.5. Showing Capture Groups
It can be useful for debugging to get the list of substrings matched by capture groups of a matching result, but the standard way that Swift

prints substrings is difficult to interpret. The following function can be used to get a list of strings for the capture groups in the result match of

a run-time regex.

getGroups can also be used for a typed regex match result by converting it by calling the getGroups(Regex.Match(...)) . The Regex.match

constructor creates type erased Match object.

// output

Matching /abc|def|ghi/ 3 times

> labc ghk ghi def ccc

> ↑↑↑ ↑↑↑ ↑↑↑

showMatches(of: "\".*\"", in:#"abc "abcf" "gh"i"#)

// output

Matching /".*"/ once

> abc "abcf" "gh"i

> ↑↑↑↑↑↑↑↑↑↑↑

showMatches(of:#"".*?""#, in:#"abc "abcf" "gh"i"#)

// output

Matching /".*?"/ twice

> abc "abcf" "gh"i

> ↑↑↑↑↑↑ ↑↑↑↑

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

" (2+(3+4)())+(abc (1+2) ".matches(of:BalancedParentheses()).map{"\($0.output)"})

// output

> (2+(3+4)())+(abc (1+2)

> ↑↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑

1

2

3

4

func getGroups(_ output:Regex<AnyRegexOutput>.Match)->[String]{

 return (0 ..< output.count).map{"\(output[$0].substring!)"}

}

1

2

3

Operation Method

Check for a occurrence
String .contains(Regex)->Bool

String .starts(with: Regex)->Bool

Find a match

String .firstMatch(of: Regex)->Regex.Match?

String .wholeMatch(of: Regex)->Regex.Match?

String .prefixMatch(of: Regex)->Regex.Match?

Regex .firstMatch(in: String)->Regex.Match?

Regex .wholeMatch(in: String)->Regex.Match?

Regex .prefixMatch(in: String)->Regex.Match?

Find all matches String .matches(of: Regex)->[Regex.Match]

Replace a match
String .replacing(Regex , with: String)

String .replacing(Regex){ Closure }

Change a string with a match
String .replace(Regex , with: String)

String .replace(Regex){ Closure }

Find ranges of a match
String .firstRange(of: Regex)->Range?

String .ranges(of: Regex)->[Range]

Split a string with a regex String .split(separator: Regex)->[String]

Get a string after removing a prefix String .trimmingPrefix(Regex)->[String]

Remove prefix of string String .trimPrefix(Regex)->Void

Escape sequence Meaning CharacterClass

. any character any

\b \B word boundary

\d \D digit digit

\k<name> back reference a named capture

\p{..} \P{} any character with a unicode property

\s \S any white space character whiteSpace

\w \W any word character word

[..] any character in the set anyOf(...)

^ beginning of line

$ end of line

7.6. Swift Regex Cheat Sheets

7.6.1. Methods

7.6.2. Frequently Used Metacharacters

Uppercase letters are the set inverse of the corresponding lowercase.

\N back reference a capture group by number N

\
quote one of the following characters

\ * ? + [() { } ^ $ *

Operator Description RegexBuilder

| alternation ChoiceOf

* *? *+ match 0 or more times (eager, reluctant, possessive) ZeroOrMore

+ +? ++ match 1 or more times (eager, reluctant, possessive) OneOrMore

? match 0 or 1 Optionally

() capture group Capture

(?:) non-capture group One often omitted

(?<name>) named capture group Capture(as:...)

(?=...) match position before pattern Lookahead

(?!...) match position not before pattern NegativeLookahead

(?>...) create a Local (atomic) group without capture Local

{m,n} repeat previous match between m and n times, m is 0 and n is +∞ by default Repeat

Operator Description Type

m.output Substring matched Substring

m.range Interval of string indices spanning the match Range<String.Index>

m.count Length of match Int

m.N Nth capture group Substring

m.name Named capture group Substring

Operator Description Type

m.output[N].substring Nth group Substring

m.output[name]?.substring regex with named capture group Substring

m.output.count number of capture groups Int

7.6.3. Operators in Literal and Keyword in RegexBuilder

7.6.4. Access to the properties of the Match Object (m)

Literal regex, RegexBuilder expression or typed run-time regex: a Tuple

Untyped run-time regex (Regex<AnyRegexOutput>.Match) : an Array

https://developer.apple.com/documentation/swift/anyregexoutput

