

Web Sémantique

un survol

Guy Lapalme

IFT3225

Production de l'information n'est plus vraiment un problème...

- près de 100% des documents d'affaires ou scientifiques sont produits électroniquement
- journaux
- radio et télé (streaming, podcast)
- divertissement (DVD, CD, MP3...)
- personnel
 - caméras numériques
 - e-mail
 - chat

Idem pour Stockage et Transport

- Disques sont maintenant assez grands (» 10GB)
 pour conserver toutes nos archives personnelles
 - écrits
 - e-mails (envoyés et reçus)
 - photos
- via internet (même à la maison!!!)

Problèmes engendrées par ces solutions...

- Recherche d'information
- Intégration de l'information
 - combinaison en tenant compte du contexte
- À tous les niveaux
 - PC, entreprise, Web

Cette problématique est qualifiée de **Partage d'information**

Méthodes de résolution tenant en compte la sémantique

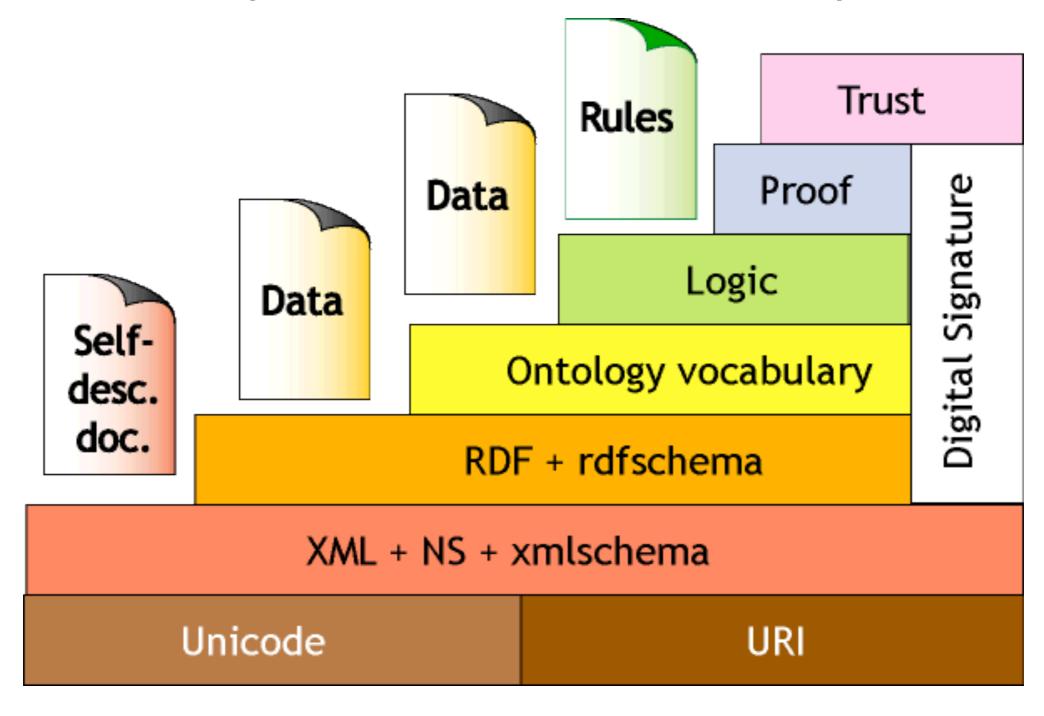
- meta-data: auteur, titre, date...
- concepts traités par les documents
- relations entre ces concepts
 - et ceux d'autres documents
 - avec des connaissances générales
- problématique semblable à celle des images
 - format ou date
 - mais aussi contenu
 - photo satellite d'un endroit
 - photo de quelqu'un

Métainformation à traiter par la machine

- Comment rendre la sémantique disponible aux machines ?
- Comment exploiter ces informations pour chercher et intégrer l'information ?
- Besoin d'une base commune de sens entre les documents

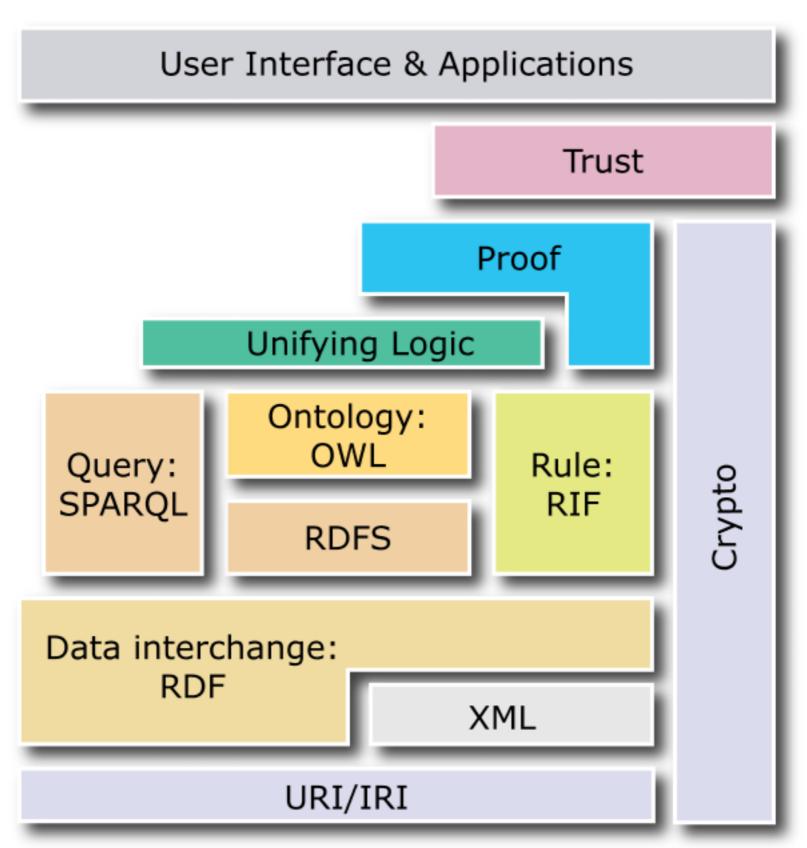
Ontologies

- Modèles formalisés de connaissances partagées dans un domaine
- Semblables aux Schémas de Base de données ou des modélisations UML sur des domaines restreints



Particularités des ontologies pour le Web

- Changement continuel (ajout, retrait)
 - difficile de déterminer l'information dont on veut tenir compte
- Représentations hétérogènes de contenus


Semantic Web Stack (Berners-Lee 2000)

Semantic Web Stack- revised 2007

RDF - Motivations

- metadata Web
- applications qui demandent des modèles ouverts d'information
- information traitable par des machines en dehors de leur environnement de création
- combinaison d'information
- traitement par des agents automatisés

But de la conception

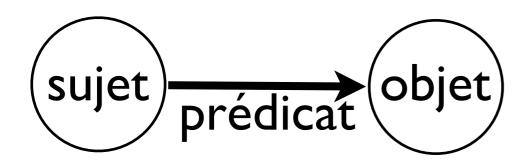
- Modèle simple de données
- Sémantique formelle et inférence prouvable
- Vocabulaire extensible
- Syntaxe à base de XML
- Support pour les types XML
- Permettre à n'importe qui d'énoncer des faits

RDF sur Web

- Représente de l'information (propriétésvaleurs) sur des ressources du WWW
- Vise la méta-information (e.g. titre, auteur, date de modification d'une page web)
- Identifie l'information via des
 - Uniform Resource Identifiers (URI)
 - Uniform Resource Name (URN)e.g: URN:ISBN:0-395-36341-1
- Information à être traitée par des applications plutôt que par des humains

Pourquoi un nouveau standard pour le Web Sémantique ?

Joshua Tauberer: http://www.rdfabout.com/intro/?section=1


- Sur le web sémantique, ce sont les ordinateurs qui browsent: cherchent les connaissances, les traitent et prennent action
- Web : plateforme décentralisée pour des
 - présentations distribuées (actuel)
 - connaissances distribuées (sémantique)

Modèle à base de triplets

(sujet, prédicat, objet) propriété littéral

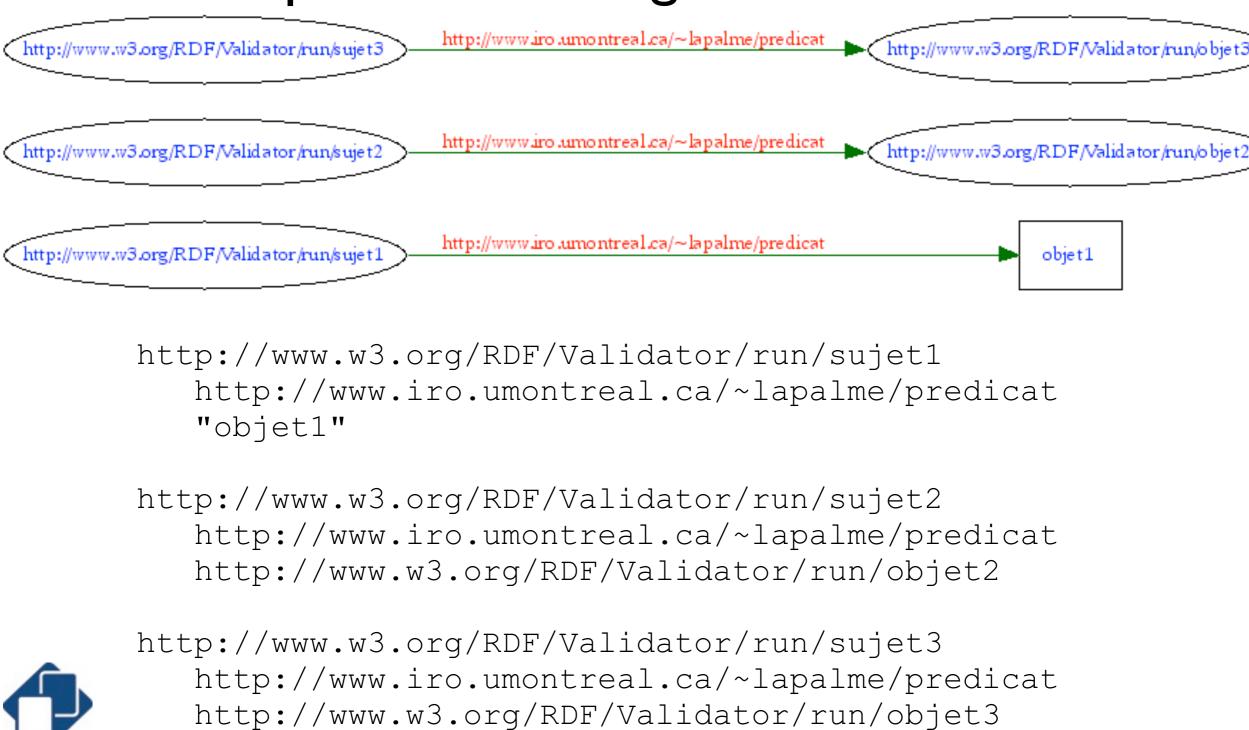
prédicat(sujet,objet)


```
prédicat
sujet objet
```


sujet ex:predicate objet. Triplet - Turtle

Composantes

- Noeud
 - URI Reference (URIRef)
 - littéral
 - vide (nom local et arbitraire)
- Prédicat / propriété entre deux noeuds
 - URIRef
- Types de XML-Schema
- Littéral
 - identifié par sa représentation lexicale
 - peut être objet mais non sujet



Encodages XML

```
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
         xmlns:gl="http://www.iro.umontreal.ca/~lapalme/">
  <!-- gl:predicat(sujet1, "objet1") -->
  <rdf:Description rdf:about="sujet1">
         <gl:predicat>objet1</gl:predicat>
   </rdf:Description>
  <!-- gl:predicat(sujet2,objet2) -->
  <rdf:Description rdf:about="sujet2">
      <gl:predicat>
         <rdf:Description rdf:about="objet2"/>
      </gl:predicat>
  </rdf:Description>
  <!-- gl:predicat(sujet3,objet3) -->
  <rdf:Description rdf:about="sujet3">
      <gl:predicat rdf:resource="abjet3"/>
   </rdf:Description>
</rdf:RDF>
```


Graphes et triplets résultants http://www.w3.org/RDF/Validator/

Encodage Turtle Terse RDF Triple Language

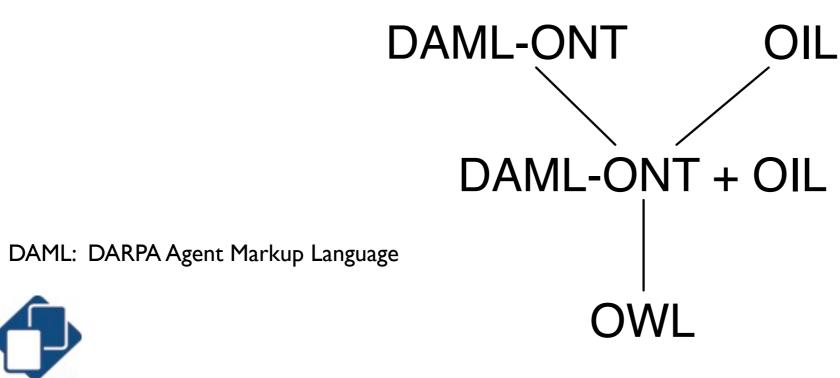
```
@prefix ex: <file://Users/glapalme/Desktop/GeneveFevMars2010/RDF/> .
@prefix gl: <http://www.iro.umontreal.ca/~lapalme/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
ex:sujet1 gl:predicat "objet1" .
ex:sujet2 gl:predicat ex:objet2 .
ex:sujet3 gl:predicat ex:objet3 .
```


Comparaison RDF et XML

- RDF est construit par-dessus XML
- XML est un arbre, RDF ensemble de triplets
- XML est ordonné, RDF sans ordre
- RDF permet de ne comprendre qu'un sous-ensemble
- RDF est plus facile à interroger
- XML est syntaxique, RDF est sémantique
- RDF permet de déduire
- RDF et Ontologies permettent aux programmes de déduire
- RDF permet de s'abstraire de la syntaxe des documents
- RDF est plus compliqué et demande une planification
- Pas tous les projets ont besoin de RDF...

Outils de traitement RDF

- Java : Jena (issu des travaux du HP Labs UK)
- C: <u>Redland</u> avec interface pour Perl, PHP, Python, Ruby
- Gestion efficace de triplets
- Semantic Web Development Tools
 - http://www.w3.org/2001/sw/wiki/Tools


Avantages des ontologies structurées

- vérification de consistance
- complétion de l'information
- interopérabilité
- support à
 - validation et au test
 - configuration
 - recherche coopérative et structurée
- exploiter
 - la généralisation
 - la spécialisation

OWL motivations

- expressivité de RDF et RDFS est limitée
 - RDF: prédicats binaires
 - RDFS : hiérarchie de sous-classes et de propriétés
- besoin d'exprimer des relations plus riches

Exigences pour un langage d'ontologie

- Syntaxe bien définie (RDF/XML)
- Sémantique formelle (Description Logic)
 - permet de raisonner sur
 - appartenance à une classe
 - équivalence de classe
 - permet de vérifier
 - consistance de l'ontologie
 - possibilités de relations non voulues
 - classification automatique des instances

OWL: Web Ontology Language

- Représentation de connaissances riches et complexes à propos de
 - choses
 - groupes de choses
 - relations entre choses
- Basé sur une logique calculatoire permettant
 - vérifier la consistance des connaissances
 - expliciter des connaissances implicites
- Documents OWL peuvent être liés entre eux

Principes

- Langage déclaratif pour exprimer des ontologies
- Ce n'est pas
 - un langage de schéma
 - peut pas forcer l'apparition de certaines informations
 - un modèle de base de données
 - monde ouvert plutôt que fermé : une information manquante peut être vraie

une BD peut toutefois servir d'infrastructure pour conserver l'ontologie

Modélisation des connaissances

- Axiomes : énoncés de base supposés vrais
- Entités : référents aux objets du monde
- Expressions : combinaisons d'entités pour former des descriptions complexes à partir de formes de base

Le résultat de la modélisation est appelé ontologie

Représentation de connaissances

- Énoncés de base
 - il pleut
 - tout homme est mortel
- Conséquences des énoncés
 - un énoncé a est vrai si d'autres A le sont
 - A entraîne (entails) a
 - A est consistant s'il y a une situation où tous ses énoncés sont vrais
 - A est inconsistant si on ne peut trouver de situation où tous ses énoncés sont vrais
- Sémantique formelle définit les états pour lesquels un ensemble d'énoncés sont vrais

Raisonnement à partir des axiomes

- Calcul automatique des conséquences d'un ensemble d'axiomes
- Outils sont appelés reasoners
- Pas toujours facile à contrôler ou à en comprendre les résultats

Outils

- OWL-API : interface Java
- Editeurs d'ontologie
 - Protégé, SWOOP
 - TopBraid Composer (Commercial)
- Raisonneurs
 - Fact++ (Manchester)
 - Pellet
 - RacerPro

État actuel du Web Sémantique

- Encore en mouvement
- Standards encore en évolution
- Commence à entrer dans les moeurs
- Retro-ingénierie difficile

SKOS+FOAF

- réseaux d'information distribués et extensibles à cause de leur base RDF
- FOAF
 - approche évolutive pour l'extension d'information
 - facilement extensible par n'importe qui
- SKOS
 - approche plus organisée
 - standardisé par un comité du W3C

RDFa

attributs XHTML pour supporter RDF

- expression de données structurées dans un langage de balisage
- rendre le texte et les liens HTML accessibles aux machines
- ne pas répéter de contenu
- éviter d'avoir à distribuer séparément le contenu lisible par la machine
- règles de traitement pour produire des triplets RDF à partir du XHTML+RDFa

Bibliographie

- G. Lapalme, Looking at the Forest instead of the Trees, tutoriel XML
- D. Allemang et J. Hendler, <u>Semantic Web for the Working Ontologist</u>, Morgan Kaufmann, 2008.
- G.Antoniou et F van Harmelen, <u>A Semantic Web</u>
 <u>Primer</u>, MIT Press, 2009, 2nd ed.
- <u>Pascal Hitzler</u>, <u>Markus Krötzsch</u>, <u>Sebastian Rudolph</u>, <u>Foundations of Semantic Web Technologies</u>, Chapman & Hall/CRC, 2009.
- http://www.w3.org/2001/sw/