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Abstract

We propose a dynamic programming (DP) approach for pricing options embedded in

bonds, the focus being on call and put options with advance notice. An efficient procedure is

developed for the cases where the interest-rate process follows the Vasicek, Cox–Ingersoll–

Ross (CIR), or generalized Vasicek models. Our DP methodology uses the exact joint

distribution of the interest rate and integrated interest rate at a future date, conditional on the

current value of the interest rate. We provide numerical illustrations, for the Vasicek and CIR

models, comparing our DP method with finite-difference methods. Our procedure compares

quite favorably in terms of both efficiency and accuracy. An important advantage of the our

DP approach is that it can be applied to more general models calibrated to capture the term

structure of interest rates (e.g., the generalized Vasicek model).
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0. Introduction

A bond is a contract that pays its holder a known amount, the principal, at a
known future date, called the maturity. The bond may also pay periodically to
its holder fixed cash dividends, called the coupons. When it gives no dividend, it
is known as a zero-coupon bond. A bond can be interpreted as a loan with a
known principal and interest payments equal to the coupons (if any). The
borrower is the issuer of the bond and the lender, i.e., the holder of the bond, is
the investor.

Several bonds contain one or several options coming in various flavors. The call

option gives the issuer the right to purchase back its debt for a known amount, the
call price, during a specified period within the bond’s life. Several government bonds
contain a call feature (see Bliss and Ronn, 1995 for the history of callable US
Treasury bonds from 1917). The put option gives the investor the right to return the
bond to the issuer for a known amount, the put price, during a specified period
within the bond’s life. These options are an integral part of a bond, and cannot be
traded alone, as is the case for call and put options on stocks (for example). They are
said to be embedded in the bond. In general, they are of the American-type and, thus,
allow for early exercising, so that the bond with its embedded options can be
interpreted as an American-style interest-rate derivative. This paper focuses on call
and put options embedded in bonds with advance notice, that is, options with
exercise decisions prior to exercise benefits.

As it is often the case in practice, we assume that exercise of the call and put
options is limited to the coupon dates posterior to a known protection period and
that there is a notice period of fixed duration Dt. Thus, consider a coupon date tm

where the exercise is possible, and let Cm and Pm be the call and put prices at tm. The
decision to exercise or not by the issuer and the investor must be taken at tm � Dt. If
the issuer calls back the bond at tm � Dt, he pays Cm to the investor at tm, and,
similarly, if the investor puts the bond at tm � Dt, he receives Pm from the issuer at
tm. If no option is exercised at tm, by the no-arbitrage principle of asset-pricing
(Elliott and Kopp, 1999), the value of the bond is equal to the expected value of the
bond at the next decision date, discounted at the interest rate. This expectation is
taken under the so-called risk-neutral probability measure, where the uncertainty lies
in the future trajectory of the (risk-free short-term) interest rate.

There are no analytical formulas for valuing American derivatives, even under
very simplified assumptions. Numerical methods, essentially trees and finite
differences, are usually used for pricing. Recall that trees are numerical representa-
tions of discrete-time and finite-space models and finite differences are numerical
solution methods for partial differential equations. The pricing of American financial
derivatives can also be formulated as a Markov decision process, that is, a stochastic
dynamic programming (DP) problem, as pointed out by Barraquand and Martineau
(1995). Here the DP value function, that is, the value of the bond with its embedded
options, is a function of the current time and of the current interest rate, namely the
state variable. This value function verifies a DP recurrence via the no-arbitrage
principle of asset pricing, the solution of which yields both the bond value and the
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optimal exercise strategies of its embedded options at all time during the bond’s life.
For an extensive coverage of stochastic DP, see Bertsekas (1995).

The pricing of options embedded in bonds can be traced back to Brennan and
Schwartz (1977). They used a standard finite-difference approach, which is however
known to be instable in this context. Much later, Hull and White (1990a) proposed
trinomial trees in the context of generalized versions with time-dependent parameters
for the state process. Trees crudely approximate the dynamics of the underlying asset
and convergence is not easy to attain. Büttler and Waldvogel (1996) (indicated here
by BW) suggested that finite differences could not be used to price callable bonds
with advance notice because of discontinuities at notice dates. They proposed an
approach based on Green’s functions, which turns out to be a DP procedure
combined with finite elements, where the transition parameters are obtained by
numerical integration. Recently, d’Halluin et al. (2001) (which we indicate by
DFVL) were able to stabilize the finite-difference approach via flux limiters and
timestepping. Using a Crank–Nicholson time weighing, they compared their results
with those of BW, concluding that their method showed better accuracy than other
methods. Here, we propose a DP approach where the transition parameters are
derived in closed-form. As BW and DFVL, we use the Vasicek and CIR specification
of the interest rate dynamics for our numerical experiments. Results are compared to
those of BW and DFVL and show the efficiency and robustness of our DP method,
with an accuracy comparable to DFVL and superior to BW. An interesting
advantage of our approach is that it can be applied to generalized models calibrated
to capture the term structure of interest rates, such as the ones proposed by Hull and
White (1990a).

The rest of the paper is organized as follows. Section 2 presents a short review of
the interest rate dynamics that have been proposed in the literature. Section 3
presents the model, the general DP formulation and the approximation procedure.
Section 4 derives the exact joint distribution of the interest rate and integrated
interest rate at a future date, conditional on the current value of the interest rate, for
the Vasicek, CIR, and generalized Vasicek models. These joint distributions are used
to obtain closed-form formulas for some constants used in our DP procedure. This
turns out to be a key ingredient for its efficiency. Section 5 reports our numerical
experimentations for the Vasicek and CIR models. Section 6 contains a conclusion.
Appendix A contains some auxiliary results and proofs.
1. Dynamics of the interest rate

As pointed out by Chan et al. (1992), most of the alternative dynamics for the
interest rate are described by the general stochastic differential equation

dRðtÞ ¼ kðr� RðtÞÞdtþ sRðtÞy dBðtÞ for 0ptpT , (1)

where fBðtÞ; tX0g is a standard Brownian motion whereas k (the reverting rate), r

(the reverting level), s (the volatility), and y, are real-valued parameters. Various
versions of (1) found in the literature are listed in the table below. Blank entries
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indicate that the corresponding parameters can take arbitrary values. On the last
line, rðtÞ represents a deterministic function of t.
Interest-rate models
Model
 r
 k
 y
1. Vasicek (1977)
 0

2. Brennan–Schwartz (1977)
 0
 1

3. Brennan–Schwartz (1980)
 1

4. Marsh–Rosenfeld (1983)
 0

5. Cox–Ingersoll–Ross (1985a, b)
 1/2

6. Hull–White (1990a)
 rðtÞ
 0 or 1/2
Vasicek (1977) used a mean-reverting Ornstein–Uhlenbeck process. This model
gives nice distributional results and closed-form solutions for zero-coupon bonds
and for several European-style interest-rate derivatives. But it has the undesirable
property of allowing negative interest rates, although with very low probabilities.
Several authors took advantage of its properties to price various interest-rate
derivatives, often in closed-form. Examples include Jamshidian (1989) and
Rabinovitch (1989).

Brennan and Schwartz (1977, 1980) were pioneers on the modeling of options
embedded in bonds. They let the interest rate move as a geometric Brownian motion
without a drift to price the call and put options (Model 2) and as a mean-reverting
proportional process to price the conversion option (Model 3). Model 2 was also
used by Dothan (1978) to price bonds in closed-form, and Model 3 by Courtadon
(1982) to price several European as well as American options on bonds. Notice that
Model 2 is a special case of Model 3 and that the latter includes the geometric
Brownian motion of Black and Scholes (1973).

Model 4 corresponds to the so-called constant-elasticity-of-variance process (Cox,
1996). It was considered by Marsh and Rosenfeld (1983), among others, as an
alternative process for the interest rate.

Cox et al. (1985a,b) (CIR) used the mean-reverting square-root process to handle
the interest rate movements. This model is extensible to several factors, ensures
strictly positive interest rates, and gives closed-form solutions for zero-coupon bonds
and for some European-style interest-rate derivatives. Several authors used the CIR
model to price various interest-rate derivatives (e.g., Richard, 1978; Ananthanar-
ayanan and Schwartz, 1980; Schaefer and Schwartz, 1984). Notice that the Vasicek
and the CIR models are special cases of the so-called single-factor affine term
structure models. Duffie and Kan (1996) provide a characterization of multifactor
affine term structure models. For the models described by (1), matching all
theoretical bond values with their market counterparts is unfeasible because this
gives much more equations than the number of parameters to estimate. A remedy,
proposed by Hull and White (1990a), is to consider time-dependent parameters to
better adjust the model to the observed yield curves. This leads to the generalized
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Vasicek and CIR models. Hull and White (1990b, 1993, 1994a,b, 1996) interpreted
the finite-difference method as a trinomial tree, and priced several interest-rate
derivatives within their extended models. See also the note by Carverhill (1995) and
the response by Hull and White (1995) for a discussion about the performance of
these models.
2. A dynamic programming approach

In this section, we first provide a precise formulation of the model considered for a
bond with its embedded call and put options. We then develop the DP equations and
an approximation procedure to solve them. The pricing is made under a standard no-

arbitrage assumption.

2.1. Model and formulation

Let t0; . . . ; tn be a sequence of dates, where t0 ¼ 0 is the initial time, t1; . . . ; tn�1 are
the coupon dates, and tn ¼ T is the maturity date of the bond, i.e., the time at which
the principal and the last coupon are due. The principal is scaled to 1 and the
corresponding coupon is denoted by c. The periods tmþ1 � tm, for m ¼ 1; . . . ; n, are
equal except perhaps for the the first one, t1 � t0, which can be different. Assume
also that the exercise decisions of the call and put options are made at times
tm ¼ tm � Dt4tm�1, for m ¼ n�; . . . ; n. The benefits of an exercise decision at tm are
obtained at the coupon date tm. The lag Dt ¼ tm � tm is the notice period and the time
increment tn� � t0 is the protection period (against early exercising). All these dates
tm, and the values of Dt and n�, are known in advance.

Let Cm and Pm be the call and put prices at tm, for m ¼ n�; . . . ; n, respectively.
Thus, if the issuer calls back the bond at tm, he pays Cm to the investor at tm, and,
similarly, if the investor puts the bond at tm, he receives Pm from the issuer at tm. We
assume that 0pPmpCm, as is usual in practice, and that Cn ¼ Pn ¼ 1.

Let EQ½� j RðtÞ ¼ r� represent the expectation operator, conditional on the interest
rate at time t, under the so-called risk-neutral probability measure Q. Specific models
for the dynamics of the interest-rate process under Q will be considered in Sections 4
and Appendix A. For dX0, define

rðr; t; dÞ ¼ EQ exp �

Z tþd

t
RðtÞdt

� �����RðtÞ ¼ r

� �
,

which represents the discount factor over the period ½t; tþ d� when RðtÞ ¼ r.
Equivalently, this is the price at t of a zero-coupon bond with a principal scaled to 1
and a maturity date tþ d. Let vðt; rÞ denote the value of the bond with its embedded
options at time t if RðtÞ ¼ r and assuming that both parties always make their
decisions in an optimal way, i.e., each one maximizes its total expected discounted
revenue.
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We adopt the convention that tnþ1 ¼ tn ¼ T and tm ¼ t0 for m ¼ 0; . . . ; n� � 1,
and we use the short notation Em;r½�� ¼ EQ½� j RðtmÞ ¼ r�. We also denote vðtm; rÞ by
vmðrÞ and rðr; tm; tm � tmÞ by rmðrÞ. The ex-coupon holding value at time tm when
RðtmÞ ¼ r, denoted vh

mðrÞ, can be written as

vh
mðrÞ ¼ Em;r vmþ1ðRðtmþ1ÞÞ exp �

Z tmþ1

tm

RðtÞdt

� �� �
(2)

for m ¼ n�; . . . n, and

vh
0ðrÞ ¼ E0;r vn� ðRðtn� ÞÞ exp �

Z tn�

0

RðtÞdt

� �� �
. (3)

For m ¼ n�; . . . ; n, by the no-arbitrage principle of asset pricing, the expected benefit
from exercising or holding the bond with its embedded options at time tm is given by

ðCm þ cÞrmðrÞ if the issuer calls;

vh
mðrÞ þ crmðrÞ if the investor holds;

ðPm þ cÞrmðrÞ if the investor puts.

The optimal exercising strategies are as follows. The issuer should call the bond at tm

if its holding value exceeds the exercise benefit, i.e., if

vh
mðrÞ4CmrmðrÞ.

On the other hand, the investor should put the bond at tm if the exercise benefit
exceeds the holding value, i.e., if

vh
mðrÞoPmrmðrÞ.

Otherwise, the bond should be held for at least another period otherwise, i.e., if

PmrmðrÞpvh
mðrÞpCmrmðrÞ.

Notice that it cannot be optimal for the issuer to call and for the investor to put
simultaneously, since 0pPmpCm.

Assembling all these ingredients, we find that

vnþ1ðrÞ ¼ 1þ c, (4)

vmðrÞ ¼ maxfPmrmðrÞ;minðCmrmðrÞ; v
h
mðrÞÞg þ crmðrÞ

for m ¼ n�; . . . ; n, ð5Þ

v0ðrÞ ¼ vh
0ðrÞ þ c

Xn�
m¼1

rmðrÞ. (6)

Eqs. (2)–(6) are the DP recurrence equations. Solving these equations backwards
from the maturity date to the origin (i.e., computing the functions vh

m and vm

successively for m ¼ n; n� 1; . . . ; 0) yields both the initial value of the bond and the
optimal exercise strategies of its embedded options at all exercise dates, via the
functions vh

m. However, these functions do not have an analytical form, so they must
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be approximated numerically. An approximation method is detailed in the next
section.

Büttler and Waldvogel (1996) also propose a DP approach, but they represent the
value function vh

m as

vh
mðrÞ ¼

Z 1
�1

Gðr; r0; tm; tmþ1Þvmþ1ðr
0Þdr0, (7)

where G is a Green’s function defined by

Gðr; r0; tm; tmþ1Þ ¼ Em;r dðRðtmþ1Þ � r0Þ exp �

Z tmþ1

tm

RðtÞdt

� �� �
, (8)

in which d is the Dirac delta function. The Green’s function can be thought as
representing the Arrow-Debreu state prices. This representation of vh

m is
mathematically equivalent to ours. The difference between the two approaches
resides in the approximation method: While BW compute G in closed form and
approximate vh

m by numerical integration, we approximate vh
m by a piecewise linear

interpolation and integrate it in closed form. This is a key ingredient for the
efficiency of our method.
2.2. Approximation procedure

The general idea is to start from the function vnþ1, which is a known constant, use
it in (2) to compute vh

nðrÞ at a finite number of values of r, use (5) to get vnðrÞ at these
values of r, and interpolate these values to obtain an approximation bvh

n of vh
n. This

can be repeated iteratively for m ¼ n� 1; . . . ; n�: for a finite number of values of r,
use the approximation bvmþ1 of vmþ1 in (2) to compute an approximation of vh

mðrÞ, put
it in (5) to get an approximation bvmðrÞ of vmðrÞ, and interpolate these values to obtain
an approximation bvm of vm. Do it again for m ¼ 0, but using (3) and (6) instead of (2)
and (5). Note that the functions vh

m and vm are continuous for all m. In general, the
expectation (or integral) in (2) can be approximated numerically for each r of
interest, but we shall introduce shortcuts that can dramatically reduce the computing
time at that stage by avoiding the explicit numerical integration.

There are, of course, many ways of defining the interpolations bvm for each m (e.g.,
Hermite interpolation, splines, wavelets). Here, we use one of the simplest possible
methods: piecewise-linear interpolation between the evaluation points. The main
advantage of this simple method is that it allows us, under the dynamics presented
here, to express the expectations in (2)–(3) in closed-form when vmþ1 is replaced by its
piecewise-linear approximation.

To be more specific, let r0or1o � � �orporpþ1 ¼1 be a fixed set of points forming
a partition of R. These are the values of r at which the functions vm will be evaluated for
the interpolation. The piecewise-linear approximation of vm has the form

bvmðrÞ ¼
0 for ror0;

am
i þ bm

i r for riprpriþ1; i ¼ 0; . . . ; p;

(
(9)
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for some real-valued coefficients am
i and bm

i , for i ¼ 0; . . . ; p, with bm
p ¼ 0. After

computing the value of bvm at r0; . . . ; rp, the 2ðpþ 1Þ coefficients am
i and bm

i are easily
obtained by solving the following system of 2ðpþ 1Þ linear equations:

bvmðr0Þ ¼ am
0 þ bm

0 r0,

bvmðriÞ ¼ am
i þ bm

i ri ¼ am
i�1 þ bm

i�1ri for i ¼ 1; . . . ; p,

0 ¼ bm
p ,

whose solution can be written explicitly as

bm
p ¼ 0,

am
p ¼ bvmðrpÞ,

bm
i ¼ ðbvmðriþ1Þ � bvmðriÞÞ=ðriþ1 � riÞ,

am
i ¼ ðriþ1bvmðriÞ � ribvmðriþ1ÞÞ=ðriþ1 � riÞ,

for i ¼ 1; . . . ; p� 1. We allow a0 ¼ �1; in that case we have bm
1 ¼ 0 and

am
1 ¼ bvmðr1Þ. The resulting function bvm is continuous everywhere, except perhaps at

r0 if bvmðr0Þa0.
An equivalent representation, in terms of a set of basis functions Ni, is

bvmðrÞ ¼
Xp

i¼0

NiðrÞbvmðriÞ, (10)

where each Ni is a hat function defined as the broken line that interpolates the three
points ðri�1; 0Þ, ðri; 1Þ, ðriþ1; 0Þ, and is zero elsewhere, with the exception of N0, which
is linear between the points ðr0; 1Þ and ðr1; 0Þ and is zero elsewhere, and Np, which is
linear between the points ðrp�1; 0Þ and ðrp; 1Þ, and equals 1 on the right of ðrp; 1Þ.

If we insert in (2) the piecewise-linear approximation (9) or (10) of bvmþ1, we obtain
the following approximation of vh

mðrkÞ at any grid point rk:

bvh
mðrkÞ ¼ Em;rk

exp �

Z tmþ1

tm

RðtÞdt

� �bvmþ1ðRðtmþ1ÞÞ

� �
¼
Xp

i¼0

bvmþ1ðriÞC
m
k;i

for m ¼ n�; . . . n and similarly for m ¼ 0, where the constants Cm
k;i can be

precomputed once for all:

Cm
k;i ¼

Bm
k;i�1 � ri�1A

m
k;i�1

ri � ri�1
þ

riþ1A
m
k;i � Bm

k;i

riþ1 � ri
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for all m, where

Am
k;i ¼ Em;rk

exp �

Z tmþ1

tm

RðtÞdt

� �
IðripRðtmþ1Þoriþ1Þ

� �
,

A0
k;i ¼ E0;rk

exp �

Z tn�

t0

RðtÞdt

� �
IðripRðtn� Þoriþ1Þ

� �
,

Bm
k;i ¼ Em;rk

exp �

Z tmþ1

tm

RðtÞdt

� �
Rðtmþ1ÞIðripRðtmþ1Þoriþ1Þ

� �
,

B0
k;i ¼ E0;rk

exp �

Z tn�

t0

RðtÞdt

� �
Rðtn� ÞIðripRðtn� Þoriþ1Þ

� �
.

In the next section, we obtain closed-form formulas for the constants (or transition

parameters) Am
k;i and Bm

k;i for the Vasicek, generalized Vasicek, and CIR models. For the
Vasicek and CIR models, these constants depend on m only through tmþ1 � tm, and the
expected discount factor rmðrkÞ (for which a closed-form formula is also available)
depends on tm and tm only through tm � tm, which are constant for mXn� in our
models. The availability of these closed-form formulas and the fact that the constants do
not depend on m is a key ingredient for the efficiency of our DP procedure. The
piecewise-linear approximation of the function vm was chosen precisely for that reason.
3. Conditional distributions and expectations for specific models

To derive formulas for the constants Am
k;i and Bm

k;i defined in (11), for the Vasicek,
generalized Vasicek, and CIR models, we start from the distribution of the random vector

Rðtþ dÞ;
Z tþd

t
RðtÞdt

� �
(11)

conditional on the value of RðtÞ, for 0ptptþ dpT . The formulas for the
coefficients Am

k;i, Bm
k;i and rðrk; tm; dÞ follow as corollaries.

3.1. The Vasicek model

Under the risk-neutral probability measure, the interest-rate process is the solution
to the following stochastic differential equation

dRðtÞ ¼ kðr� RðtÞÞdtþ sdBðtÞ for 0ptpT . (12)

Closed-form solutions for prices of zero-coupon bonds and European bond options
are available in this model (see, e.g., Jamshidian, 1989).

Theorem 1. For the Vasicek model, the distribution of the random vector (11)
conditional on RðtÞ ¼ r is bivariate normal with mean

mðr; dÞ ¼ ðm1ðr; dÞ;m2ðr; dÞÞ ¼ rþ e�kdðr� rÞ; rdþ
1� e�kd

k
ðr� rÞ

� �
(13)
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and covariance matrix

SðdÞ ¼
s21ðdÞ s12ðdÞ

s21ðdÞ s22ðdÞ

" #
¼

s2

2k
ð1� e�2kdÞ

s2

2k2
ð1� 2e�kd þ e�2kdÞ

s12ðdÞ
s2

2k3
ð�3þ 2kdþ 4e�kd � e�2kdÞ

26664
37775.

(14)

Proof. By applying Itô’s lemma to the process fxðt;RðtÞÞ ¼ ektRðtÞ; 0ptpTg, we
obtain that for 0ptptpu,

RðuÞ ¼ rþ e�kðu�tÞðr� rÞ þ s
Z u

t
e�kðu�tÞ dBðtÞ,

and consequently thatZ tþd

t
RðuÞdu ¼ rdþ

1� e�kd

k
ðr� rÞ þ s

Z tþd

t

Z u

t
e�kðu�tÞ dBðtÞ

� �
du

¼ rdþ
1� e�kd

k
ðr� rÞ þ s

Z tþd

t

Z tþd

t

e�kðu�tÞ du

� �
dBðtÞ,

where the last equality comes from Lemma 6 of the appendix. Conditioning on the
information available at time t, we can decompose Rðtþ dÞ and

R tþd
t RðtÞdt into a

deterministic part and a random part. The random part turns out to be a limit of
linear combinations of the same standard Brownian motion taken at different points
in time. The random variables Rðtþ dÞ and

R tþd
t RðtÞdt, conditional on RðtÞ, are

thus jointly normal.
The mean vector and covariance matrix of the normally distributed random vector

Rðtþ dÞ;
Z tþd

t
RðtÞdt

� �
,

conditional on RðtÞ, can then be derived from the basic properties of stochastic
integrals (e.g., Øksendal, 1995). This is done in Lemma 7 of the appendix. &

Corollary 2. For the Vasicek model, the transition parameters and discount factor are

given by

rðrk; tm; dÞ ¼ expð�m2ðr; dÞ þ s22ðdÞ=2Þ,

Am
k;i ¼ e�m2ðrk ;dÞþs

2
2
ðdÞ=2½Fðxk;iÞ � Fðxk;i�1Þ�

and

Bm
k;i ¼ e�m2ðrk ;dÞþs

2
2
ðdÞ=2½ðm1ðrk; dÞ � s12ðdÞÞðFðxk;iÞ � Fðxk;i�1ÞÞ

� s1ðdÞðe
�x2

k;i � e
�x2

k;i�1Þ=
ffiffiffiffiffiffi
2p
p
�,

where

xk;i ¼ ðri � m1ðrk; dÞ þ s12ðdÞÞ=s1 for i ¼ 0; . . . ; p,

xk;�1 ¼ �1,
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the miðrk; dÞ and the sijðdÞ are given in (13) and (14) with d ¼ tmþ1 � tm for m ¼

n�; . . . ; n and d ¼ tn� � t0 for m ¼ 0, and F is the standard normal distribution

function.

Proof. Using Theorem 1, the derivation is straightforward. &
3.2. The generalized Vasicek model

We now consider a special case of the generalized Vasicek model with time
dependent long run mean, proposed by Hull and White (1990a). Under the risk-
neutral probability measure, the short rate process is the solution to the stochastic
differential equation

dRðtÞ ¼ kðrðtÞ � RðtÞÞdtþ sdBðtÞ for 0ptpT . (15)

This model requires the use of market data by fitting the zero-coupon yield curve.
This can easily be done using, for instance, the Nelson and Siegel (1987) model. Once
this is done, it provides an exact fit to the initial term structure and has a closed-form
solution for the long run mean rðtÞ, given by

rðtÞ ¼ �
1

k
q2 logðPðtÞÞ

qt2
�

q logðPðtÞÞ
qt

þ
s2

2k2
ð1� e�2ktÞ,

where PðtÞ denotes the function fitted to the observed prices at time 0 of zero-coupon
bonds with maturity t.

Closed form solutions for prices of zero-coupon bonds and European bond
options are also available in this model (see, e.g., Hull and White, 1990a).

Theorem 3. For the generalized Vasicek model, the distribution of the random vector

(11) conditional on RðtÞ ¼ r is bivariate normal with mean

m%ðr; dÞ ¼ ðm%

1 ðr; dÞ; m
%

2 ðr; dÞÞ,

where

m%

1 ðr; dÞ ¼ re�kd�
q logðPðtÞÞ

qt

����
tþd
þ e�kd

q logðPðtÞÞ
qt

����
t

þ
s2

2k2
ð1� e�kdÞ þ

s2

2k2
e�ktðe�kðtþdÞ � e�ktÞ,

m%

2 ðr; dÞ ¼ r
ð1� e�kdÞ

k
� log

Pðtþ dÞ
PðtÞ

� �
þ

q logðPðtÞÞ
qt

����
t

ð1� e�kdÞ

k

þ
s2

2k2
d�

s2

2k3
ð1� e�kdÞ þ

s2

4k3
ðe�kðtþdÞ � e�ktÞ2, ð16Þ

and the same covariance matrix SðdÞ as in Theorem 1.
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Proof. The joint normality of ðRðtþ dÞ;
R tþd
t RðtÞdtÞ conditional on RðtÞ can be

proved by a similar argument as in Theorem 1. Stochastic integration then yields the
mean and covariance matrix of this conditional distribution.

More specifically, by applying Itô’s lemma to the process fxðt;RðtÞÞ ¼
ektRðtÞ; 0ptpTg, we obtain that

RðuÞ ¼ RðtÞe�kðu�tÞ þ
Z u

t
krðtÞe�kðu�sÞ dtþ s

Z u

t
e�kðu�tÞ dBðtÞ.

This implies that

m%

1 ðr; dÞ ¼ re�kd þ

Z tþd

t
krðtÞe�kðtþd�tÞ dt

¼ re�kd þ

Z tþd

t
k�

1

k
q2 logðPðtÞÞ

qt2
�

q logðPðtÞÞ
qt

�
þ

s2

2k2
ð1� e�2ktÞe�kðtþd�tÞ

�
dt

¼ re�kd �
q logðPðtÞÞ

qt

����
tþd
þ e�kd

q logðPðtÞÞ
qt

����
t

þ
s2

2k2
ð1� e�kdÞ þ

s2

2k2
e�kðtþdÞðe�kðtþdÞ � e�ktÞ.

The conditional mean m%

2 ðr; dÞ can then be computed as follows:

m%

2 ðr; dÞ ¼ E

Z tþd

t
RðtÞdt j RðtÞ ¼ r

� �
¼

Z tþd

t
E½RðtÞ j RðtÞ ¼ r�dt

¼

Z tþd

t
re�kðt�tÞ �

q logðPðtÞÞ
qt

þ e�kðt�tÞ
q logðPðtÞÞ

qt

����
t

�
þ

s2

2k2
ð1� e�kðt�tÞÞ þ

s2

2k2
e�ktðe�kt � e�ktÞ

�
dt

¼ r
ð1� e�kdÞ

k
� log

Pðtþ dÞ
PðtÞ

� �
þ

q logðPðtÞÞ
qt

����
t

ð1� e�kdÞ

k

þ
s2

2k2
d�

s2

2k3
ð1� e�kdÞ þ

s2

4k3
ðe�kðtþdÞ � e�ktÞ2.

The conditional covariance matrix is the same as in Theorem 1 and can be derived in
the same way. &

Corollary 4. For the generalized Vasicek model, the discount factor and the transition

parameters are given by the same expressions as in Corollary 2, but with m replaced

by m%.
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Proof. The derivation is straightforward from Theorem 3 and we omit the
details. &
3.3. The CIR model

Under the risk-neutral probability measure, the short rate process is the solution
to the following stochastic differential equation:

dRðtÞ ¼ kðr� RðtÞÞdtþ s
ffiffiffiffiffiffiffiffiffi
RðtÞ

p
dBðtÞ for 0ptpT . (17)

In this model, the joint distribution of the random vector in (11) conditional on
RðtÞ ¼ r is characterized by its Laplace transform (see, e.g., Feller, 1951, or
Lamberton and Lapeyre, 1996, p. 126):

E exp �o
Z tþd

t
RðtÞdt� uRðtþ dÞ

� �
j RðtÞ ¼ r

� �
¼ expðX ðr; d;o; uÞ � Y ðr; d;o; uÞrÞ, ð18Þ

where

gðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2os2

p
,

X ðd;o; uÞ ¼
2kr

s2
log

2gðoÞeðgðoÞþkÞd=2

ðus2 þ gðoÞ þ kÞðegðoÞd � 1Þ þ 2gðoÞ

� �
,

Y ðd;o; uÞ ¼
uðgðoÞ þ kþ egðoÞdðgðoÞ � kÞÞ þ 2oðegðoÞd � 1Þ

ðus2 þ gðoÞ þ kÞðegðoÞd � 1Þ þ 2gðoÞ
. ð19Þ

When o ¼ 1 and u ¼ 0, the Laplace transform gives the price of a zero-coupon bond.
We also use this characterization to obtain the following proposition, whose proof is
given in the appendix.

Proposition 5. For the CIR model, the discount factor and transition parameters are

given by

rðrk; tm; dÞ ¼ expðX ðrk; d; 1; 0Þ � Y ðrk; d; 1; 0ÞrÞ,

Am
k;i ¼ rðrk; tm; dÞ

X1
t¼0

e�lk=2
ðlk=2Þ

n

t!
F dþ2t

riþ1

Z

� �
� Fdþ2t

ri

Z

� �� �
,

and

Bm
k;i ¼ rðrk; tm; dÞZ

X1
t¼0

e�lk=2
ðlk=2Þ

t

t!
½�2ðriþ1f dþ2tðriþ1=ZÞ � rif dþ2tðri=ZÞÞ

þ ðd þ 2tÞðFdþ2tðriþ1=ZÞ � Fdþ2tðri=ZÞÞ�,

for i ¼ 0; . . . ; p, where Fdþ2t and f dþ2t are the distribution and density functions

of a chi-square random variable with d þ 2t degrees of freedom, X ð�Þ;Y ð�Þ are
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defined in (19),

d ¼ tmþ1 � tm for m ¼ n�; . . . n,

d ¼ tn� � t0 at m ¼ 0,

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2s2

p
,

Z ¼
s2ðegd � 1Þ

2ðgþ kÞðegd � 1Þ þ 2g
,

d ¼
4kr

s2

and

lk ¼
8g2 e

gd
rk

s2½ðgþ kÞðegd � 1Þ þ 2g�ðegd � 1Þ
.

4. Numerical illustrations

In this section, we compare the performance of our DP procedure with that of the
methods proposed by BW and DFVL on a numerical example taken from BW and
also considered by DFVL. The comparisons are made with both the Vasicek and
CIR interest-rate models.

The security to be priced is a 4.25% callable bond issued by the Swiss
Confederation, over the period 1987–2012. At the pricing date t0 ¼ 0, December
23, 1991, the time to maturity was T ¼ tn ¼ 20:172 years, with n ¼ 21, a principal
scaled to 1, a coupon c ¼ 0:0425 coming once a year with the first coupon coming at
time t1 ¼ 0:172, a notice period of 2 months, i.e., Dt ¼ tm � tm ¼ 0:1666, and a
protection period of tn� ¼ 10:172 years, with n� ¼ 11. The call prices are
C11 ¼ 1:025, C12 ¼ 1:020, C13 ¼ 1:015, C14 ¼ 1:010, C15 ¼ 1:005, and C16 ¼

� � � ¼ C21 ¼ 1.
The values of the parameters r, k, s, given in Table 1, are taken from BW.
The grid points r1; . . . ; rp are selected to be equally spaced with r0 ¼ �1, r1 ¼

r� 6s1 and rp ¼ rþ 6s1 for the Vasicek model, whereas r0 ¼ 0, r1 ¼ 10�6 and
rp ¼ 3, for the CIR model.

We first compare the accuracies of the three methods on a simple case where a
closed-form solution is available for the exact value: the straight bond, without any
Table 1

Input data for the Vasicek and CIR models

Vasicek CIR

r 0.098397028 0.133976855

k 0.44178462 0.14294371

s 0.13264223 0.38757496
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Table 2

Convergence of our DP procedure: value of v0ðrÞ computed by several methods, for the Vasicek model

Values of the straight bonds for Vasicek model

r p ¼ 600 p ¼ 1200 p ¼ 2400 Formula BW DFVL

0.01 0.92746 0.92743 0.92742 0.92742 0.9274 0.92739

0.02 0.90899 0.90896 0.90896 0.90895 0.9089 0.90892

0.03 0.89091 0.89089 0.89088 0.89088 0.8908 0.89084

0.04 0.87322 0.87319 0.87319 0.87318 0.8731 0.87315

0.05 0.85590 0.85588 0.85587 0.85587 0.8558 0.85583

0.06 0.83895 0.83893 0.83892 0.83892 0.8389 0.83887

0.07 0.82236 0.82233 0.82233 0.82233 0.8223 0.82228

0.08 0.80612 0.80610 0.80609 0.80609 0.8060 0.80604

0.09 0.79022 0.79020 0.79020 0.79019 0.7901 0.79014

0.10 0.77466 0.77464 0.77464 0.77464 0.7746 0.77458
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embedded options. In other words, we assume that n� ¼ n and keep the values given
above for all other parameters. Tables 1 and 2 report the results for the Vasicek and
CIR models, respectively; they give the estimated values of v0ðrÞ with different
methods. The column ‘‘formula’’ gives the exact value obtained from the closed-form
formula. The last two columns report the values obtained by BW and DFVL in their
papers. Columns 2–4 give the approximations obtained by our DP procedure
(denoted by BBKL), for grid sizes with p ¼ 600, 1200, and 2400. We find that our
DP approximations converge very nicely to the exact values as p increases. The
precision of our method compares advantageously with DFVL and BW. BW
reported their results with only four digits of accuracy.

Since we are approximating a continuous function by a piecewise linear
interpolant, the approximation error at each step should converge as OðD2

Þ, where
D ¼ maxiðriþ1 � riÞ. The total error on v0ðrÞ is the cumulation of this approxima-
tion error over the successive steps, combined with other sources of errors (e.g., in
the numerical computation of the Am

k;i and Bm
k;i) which are deemed less important.

Thus, we expect the pricing errors in Tables 1 and 2 to converge as
OðD2
Þ ¼ Oðp�2Þ. We computed the exact error (by comparing with the formula)

for p ¼ 75; 150; . . . ; 2400, for each value of r, then plotted the log of this error as a
function of logðDÞ. In all cases the numbers fitted roughly a straight line, with
slope ranging from 1.93 to 2.15. So doubling p divides the error by 4,
approximately.

Table 3 reports the value of the callable bond, with its embedded options and
n� ¼ 11, obtained by the three approximation methods. Our DP results are for a grid
size with p ¼ 1200. The results for p ¼ 2400 are practically the same as those
reported in the table (with absolute error less than 0.00003, comparable to the
differences observed in Tables 1 and 2). This indicates that convergence has
occurred. The results of DFVL and our method are close to each other, but the
results of BW differ significantly for the Vasicek model.
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Table 3

Convergence of our DP procedure: value of v0ðrÞ computed by several methods, for the CIR model

Values of the straight bonds for CIR model

r p ¼ 600 p ¼ 1200 p ¼ 2400 Formula BW DFVL

0.01 0.95537 0.95528 0.95526 0.95525 0.9552 0.95527

0.02 0.93166 0.93157 0.93154 0.93154 0.9315 0.93155

0.03 0.90858 0.90848 0.90846 0.90845 0.9084 0.90846

0.04 0.88610 0.88601 0.88599 0.88598 0.8859 0.88599

0.05 0.86422 0.86414 0.86411 0.86411 0.8641 0.86411

0.06 0.84292 0.84284 0.84282 0.84281 0.8428 0.84281

0.07 0.82219 0.82211 0.82208 0.82208 0.8220 0.82207

0.08 0.80200 0.80192 0.80190 0.80189 0.8018 0.80188

0.09 0.78235 0.78227 0.78225 0.78224 0.7822 0.78223

0.10 0.76322 0.76314 0.76312 0.76311 0.7631 0.76309

Table 4

Bond values obtained by the three methods for the Vasicek and CIR models

Values of callable and putable bonds

Vasicek model CIR model

r BW DFVL BBKL BW DFVL BBKL

0.01 0.8556 0.84282 0.84285 0.9392 0.93926 0.93921

0.02 0.8338 0.82627 0.82630 0.9159 0.91598 0.91595

0.03 0.8223 0.81010 0.81009 0.8933 0.89333 0.89330

0.04 0.8062 0.79420 0.79423 0.8712 0.87127 0.87125

0.05 0.7904 0.77868 0.77871 0.8498 0.84980 0.84978

0.06 0.7749 0.76348 0.76351 0.8289 0.82890 0.82888

0.07 0.7598 0.74860 0.74862 0.8085 0.80855 0.80854

0.08 0.7450 0.73403 0.73406 0.7887 0.78874 0.78873

0.09 0.7305 0.71977 0.71980 0.7694 0.76945 0.76945

0.10 0.7163 0.70578 0.70583 0.7507 0.75067 0.75067
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Our code is written in C, compiled with gcc, and executed on a 2.0GHz Pentium
4 processor running under Windows XP. Our DP procedure takes between 2 and 3 s
of CPU time, including all precomputations, to compute one entry of Table 3 for a
grid size of p ¼ 1200. As an indication, CPU times reported by DFVL are between
12 and 14 s (on a Sun Ultra Sparc) and those reported by BW are over 200 s.

The value of the corresponding embedded call option can be obtained by

v
call option
0 ðrÞ ¼ v

straight bond
0 ðrÞ � vcallable bond

0 ðrÞ,

where r ¼ Rðt0Þ is the current interest rate at t0 (Table 4).
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5. Conclusion

In this paper, we model the valuation of options embedded in bonds as a stochastic
dynamic programming problem. We propose a simple and efficient approximation
for the case of three affine models of the term structure. Our method is based on a
piecewise linear approximation of the value function and is quite easy to implement.
It differs from the usual lattice-based and finite-difference methods in that the exact
conditional probability distribution of the interest rate is used in order to compute the
transition probabilities. We provide numerical results for the Vasicek and CIR
models. These results demonstrate convergence and an efficiency that compares
favorably with that of the other available methods. In addition, our methodology
readily extends to handle the generalized Vasicek model with time-dependent long-
run mean, provided that a function can be fitted to the observed zero-coupon bond
prices. Extensive empirical studies of the term structure generated by callable and
puttable bonds have been lacking in the literature, mainly due to the lack of a robust
and efficient numerical procedure for pricing these bonds. Our approach can provide
this type of numerical procedure for many situations, where it can be used to
investigate empirically the cross-sectional and time series properties of bonds with
embedded options. Our solution technique is flexible and can be extended to other
models involving different continuous-time as well as discrete-time processes,
whenever the transition parameters can be obtained efficiently. In particular, it can
be adapted to models with multifactor affine term structure (Dai and Singleton, 2000)
and more generally to the valuation of other Bermudan or American-style derivatives
in the setting of affine diffusion state processes (Duffie et al., 2000, 2003).
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Appendix A
Lemma 6. If f and g are two real-valued functions continuously differentiable in

½t; tþ d�, for 0ptptþ dpT , and fBðtÞ; tX0g is a standard Brownian motion, thenZ tþd

t

Z u

t
f ðtÞgðuÞdBðtÞ

� �
du

¼

Z tþd

t

Z tþd

t
f ðtÞgðuÞIðt 2 ½t; u�ÞdBðtÞ

� �
du
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¼

Z tþd

t

Z tþd

t
f ðtÞgðuÞIðu 2 ½t; tþ d�Þdu

� �
dBðtÞ

¼

Z tþd

t

Z tþd

t

f ðtÞgðuÞdu

� �
dBðtÞ.

Proof. This is a special case of Fubini’s theorem; see, e.g., Protter (2004, p. 207). &

Lemma 7. In Theorem 1, the mean vector and covariance matrix of the random vector

ðRðtþ dÞ;
R tþd
t RðtÞdtÞ, conditional on RðtÞ ¼ r, are given by (13) and (14).

Proof. The conditional mean is

E Rðtþ dÞ;
Z tþd

t
RðtÞdt

� �����RðtÞ ¼ r

� �
¼ ðrþ e�kdðr� rÞ; rdþ

1� e�kd

k
ðr� rÞÞ,

since the centered random vectorZ tþd

t
e�kðu�tÞ dBðtÞ;

Z tþd

t

Z tþd

t

e�kðu�tÞ du

� �
dBðtÞ

� �
is independent of fRðtÞ; tptg.

The conditional variance of Rðtþ dÞ is

Var½Rðtþ dÞ j RðtÞ ¼ r� ¼ E

Z tþd

t
se�kðtþd�tÞ dBðtÞ

� �2
�����RðtÞ ¼ r

" #

¼ s2
Z tþd

t
e�2kðtþd�tÞ dt ¼

s2

2k
ð1� e�2kdÞ.

The conditional variance of
R tþd
t RðtÞdt is

Var

Z tþd

t
RðtÞdt j RðtÞ ¼ r

� �
¼ E

Z tþd

t

Z tþd

t

se�kðu�tÞ du

� �
dBðtÞ

� �2
�����RðtÞ ¼ r

" #

¼ s2
Z tþd

t

Z tþd

t
e�kðu�tÞ du

� �2

dt ¼
s2

2k3
ð�3þ 2kdþ 4e�kd � e�2kdÞ.

The conditional covariance between Rðtþ dÞ and
R tþd
t RðtÞdt is

Cov Rðtþ dÞ;
Z tþd

t
RðtÞdt j RðtÞ ¼ r

� �
¼ E

Z tþd

t
se�kðtþd�tÞ dBðtÞ

Z tþd

t

Z tþd

t
se�kðu�tÞ du

� �
dBðtÞ j RðtÞ ¼ r

� �
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¼ s2
Z tþd

t
e�kðtþd�tÞ

Z tþd

t

e�kðu�tÞ du

� �
dt

¼
s2

2k2
ð1� 2e�kd þ e�2kdÞ: &

Proof of Proposition 5. We start by defining a new probability measure eQ, known as
the forward-neutral measure (see, e.g., Geman et al., 1995), such that:

d eQ
dQ
¼

e
�
R tþd

t
RðtÞ dt

E½e
�
R tþd

t
RðtÞ dt

j RðtÞ ¼ r�

.

Under this new measure, it can be proved that the conditional distribution of Rðtþ
dÞ is proportional to a non-central chi-square random variable. For a detailed
discussion on the properties of square-root processes, see Jamshidian (1995, 1996).
More precisely, under eQ, Rðtþ dÞ=Z has the non-central chi-square distribution with
non-centrality parameter l and with d degrees of freedom, where

l ¼
8g2e

gd
r

s2½ðgþ kÞðegd � 1Þ þ 2g�ðegd � 1Þ
,

and where g, Z, and d are defined as in the theorem’s statement. Now, we can rewrite
Am

k;i in terms of the new probability measure eQ as follows:

Am
k;i ¼ Em;rk

e
�
R tmþ1

tm
RðtÞ dt

IðripRðtmþ1Þoriþ1Þ

� �
ð20Þ

¼ rðrk; tm; dÞ eQ ripRðtmþ1Þoriþ1½ �

¼ rðrk; tm; dÞ Flk ;d
riþ1

Z

� �
� Flk ;d

ri

Z

� �� �
, ð21Þ

where rðrk; tm; dÞ, the discount factor over the period ½tm; tm þ d� when RðtmÞ ¼ rk is
derived using the Laplace transform given by Eq. (18) and Flk ;d is the distribution
function of a non-central chi-squared with non-centrality parameter lk and d degrees
of freedom, with lk defined as in the theorem’s statement. The distribution function
Flk ;d can be written as

Flk ;dðzÞ ¼ e�lk=2
X1
t¼0

ðlk=2Þ
t

t!
F dþ2tðzÞ,

where F dþ2t is the chi-square distribution function with d þ 2t degrees of freedom.
Combining this result with (21), we obtain

Am
k;i ¼ rðrk; tm; dÞ

X1
t¼0

e�lk=2
ðlk=2Þ

t

t!
Fdþ2t

riþ1

Z

� �
� Fdþ2t

ri

Z

� �� �
,

where lk, d and Z are defined as previously.
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With the same change of probability measure, we also obtain

Bm
k;i ¼ Em;rk

e
�
R tmþ1

tm
RðtÞ dt

Rðtmþ1ÞIðripRðtmþ1Þoriþ1Þ

� �
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eQ
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Rðtmþ1Þ

Z
I

ri

Z
p

Rðtmþ1Þ

Z
o

riþ1

Z

� �� �
.

The expectation in this expression can be computed explicitly as

E
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Z
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Z
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Z
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� �� �
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t

t!

Z riþ1=Z

ri=Z
yf dþ2tðyÞdy.

After integration, it comes that
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.

This implies that

Bm
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Z

� �� ��
: &
References

Ananthanarayanan, A.L., Schwartz, E.S., 1980. Retractable and extendible bonds: the Canadian

experience. Journal of Finance 35, 31–47.

Barraquand, J., Martineau, D., 1995. Numerical valuation of high dimensional multivariate American

securities. Journal of Financial and Quantitative Analysis 30, 383–405.

Bertsekas, D.P., 1995. Dynamic Programming and Optimal Control, Vol. I and II. Athena Scientific,

Belmont, MA.

Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy

81, 637–654.

Bliss, R.R., Ronn, E.I., 1995. To call or not to call? Optimal call policies for callable U.S. treasury bonds.

Economic Review 80, 1–15.

Brennan, M.J., Schwartz, E.S., 1977. Savings bonds, retractable bonds, and callable bonds. Journal of

Financial Economics 5, 67–88.

Brennan, M.J., Schwartz, E.S., 1980. Analyzing convertible bonds. Journal of Financial and Quantitative

Analysis 15, 907–929.



ARTICLE IN PRESS

H. Ben-Ameur et al. / Journal of Economic Dynamics & Control 31 (2007) 2212–22332232
Büttler, H.J., Waldvogel, J., 1996. Pricing callable bonds by means of green’s function. Mathematical

Finance 6, 53–88.

Carverhill, A., 1995. A note on the models of hull and white for pricing options on the term structure.

Journal of Fixed Income 5, 89–96.

Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison of alternative

models of the short-term interest rate. Journal of Finance 47, 1209–1227.

Courtadon, G., 1982. The pricing of options on default-free bonds. Journal of Financial and Quantitative

Analysis 17, 75–100.

Cox, J.C., 1996. The constant elasticity of variance option pricing model. Journal of Portfolio

Management 22, 15–17.

Cox, J.C., Ingersoll, J.E., Ross, S.A., 1985a. An intertemporal general equilibrium model of asset prices.

Econometrica 53, 363–384.

Cox, J.C., Ingersoll, J.E., Ross, S.A., 1985b. A theory of the term structure of interest rates. Econometrica

53, 385–407.

Dai, Q., Singleton, K., 2000. Specification analysis of affine term structure models. Journal of Finance 55,

1943–1978.

d’Halluin, Y., Forsyth, P.A., Vetzal, K.R., Labahn, G., 2001. A numerical PDE approach for pricing

callable bonds. Applied Mathematical Finance 8, 49–77.

Dothan, L.U., 1978. On the term structure of interest rates. Journal of Financial Economics 6, 59–69.

Duffie, D., Kan, R., 1996. A yield-factor model of interest rates. Mathematical Finance 6, 379–406.

Duffie, D., Pan, J., Singleton, K., 2000. Transform analysis and asset pricing for affine jump diffusions.

Econometrica 68, 1343–1376.

Duffie, D., Filipovic, D., Schachermayer, W., 2003. Affine processes and applications in finance. Annals of

Applied Probability 13, 984–1053.

Elliott, R.J., Kopp, P.E., 1999. Mathematics of Financial Markets. Springer-Verlag, New York.

Feller, W., 1951. Two singular diffusion problems. Annals of Mathematics 54, 173–182.

Geman, H., ElKaroui, N., Rochet, J.C., 1995. Changes of numéraire, changes of probability measure and
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