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We develop an agency model of financial contracting. We derive long-term debt, a line
of credit, and equity as optimal securities, capturing the debt coupon and maturity; the
interest rate and limits on the credit line; inside versus outside equity; dividend policy;
and capital structure dynamics. The optimal debt-equity ratio is history dependent,
but debt and credit line terms are independent of the amount financed and, in some
cases, the severity of the agency problem. In our model, the agent can divert cash
flows; we also consider settings in which the agent undertakes hidden effort, or can
control cash flow risk. (JEL G30, G32, G35, D82, D86, D92)

We develop a model of long-term financial contracting and derive debt and
equity as optimal securities. Our analysis captures the optimal coupon and
maturity structure for long-term debt; the interest rate and credit available
on a line of credit; debt versus (outside) equity financing; and dividend
policy. The model has implications for how a firm’s capital structure varies
over time. The scenario we consider involves an agent who raises external
capital to finance a business opportunity. Among investors’ concerns in
funding a business is that the agent might divert funds to himself, or
consume other private benefits, at the expense of investors. Our analysis
focuses on this agency problem.

Specifically, in the model, a risk-neutral agent seeks funding from risk-
neutral investors. The funding will finance a business that requires an
investment in assets and generates risky cash flows over the next T periods.
The agent observes the realizations of these cash flows but investors do
not. The agency problem is that the agent can underreport the cash flow,
diverting the cash flow for his own private benefit. At any time during
the life of the business, the business can be terminated. In the event of
termination, the agent is left to pursue his best alternative and investors
are free to make optimal use of the assets. The termination threat is the
key to inducing the agent to share the cash flow with investors. A contract
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specifies payments between the agent and investors and it specifies the
circumstances under which the project is terminated.

We fully characterize the optimal contract for the multiperiod case with
uncertainty. After solving for the contract as an optimal mechanism, we
demonstrate that it can be implemented by a combination of equity, long-
term debt, and a line of credit—very simple, standard securities. Thus
we have a theory of long-term debt and outside equity financing. The
optimal capital structure is shown to be both forward looking and history
dependent. That is, the capital structure depends on the distribution of
the firm’s cash flows (past and future) and the history of the firm’s cash
flow realizations. In addition, the terms of the firm’s long-term debt and
credit line are independent of the amount financed and, under certain
circumstances, independent of the severity of the moral hazard problem.

The optimal long-term debt and credit line can be described as follows.
In each period, the agent is required to pay a fixed charge, principal plus
interest—this is the payment on the long-term debt. The credit line is
characterized by an interest rate and a credit limit. Payments need not
be made on the credit line except for interest payments once the credit
limit is reached, and required payments if the credit limit is reduced. If a
required debt or credit line payment is not made, the agent is in default,
in which case there is some probability that the project is terminated (this
probability is increasing in the extent of the default). The agent will make
optimal use of the line of credit. If he cannot make a debt payment out
of the business cash flow, he will draw on the line of credit. If needed, the
agent continues to draw on the line of credit until it is exhausted. After
that, if the agent cannot make a payment, he may be terminated. Though
the agent could draw on the line of credit and simply pay the cash to
himself, the increased interest expense and likelihood of default make it
optimal for him not to do so. If the business cash flow exceeds the debt
payment, then the agent uses the excess cash to pay down the credit line
and after that pays out the remainder of the cash as a dividend. The equity
shares of the investors and agent determine the split of this dividend.

The intuition for how these securities implement the optimal contract
is as follows. In the model, the agent’s private benefit of diverting funds
equals λ per dollar diverted, where 0 < λ ≤ 1. Thus, to induce the agent
to refrain from diverting cash flows, the agent’s payoff from the contract
must adjust at a rate of λ per dollar of cash flow reported. The agent can
be compensated either with cash paid immediately or through the promise
of higher expected cash payments in the future. The choice between the
two involves a tradeoff: the agent is impatient, and so prefers earlier
consumption, but deferring the agent’s compensation is more effective for
providing incentives in the future.

With risk neutrality, the optimal resolution of this tradeoff is stark:
If the agent’s expected future compensation rises to a critical threshold,
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it is cheaper on the margin to compensate the agent with cash in the
current period. Thus, if the firm does well, the optimal contract raises the
agent’s expected future compensation until the threshold is reached, and
then pays the agent in cash. If the firm does poorly, the agent’s expected
future compensation is lowered until it falls below the minimum efficient
level of compensation for the agent (based on the incentive constraints).
The contract then randomizes between terminating and restarting with the
agent’s compensation set to the minimum efficient level.

This contract can be implemented with the capital structure described
earlier. The agent holds equity in the firm, and so receives cash when
dividends are paid. Because dividends are paid only after the firm has paid
off its credit line, the balance on the credit line determines the agent’s
expected future payments. As the firm repays or draws down the credit line
based on its current cash flows, the agent’s expected future compensation
increases or decreases appropriately. If the firm does poorly and the
credit line is drawn to its limit, the firm defaults and either the contract
is terminated, or the excess debt is forgiven and the firm is allowed to
continue.

The long-term debt and line of credit play different roles in implementing
the optimal contract. The long-term debt is effective for financing early
consumption for the agent (if the agent is impatient relative to outside
investors). If the agent is not impatient, the firm issues minimal long-
term debt, with payments matching the firm’s lowest possible cash flows.
And once the credit line is repaid there is no further chance of default.
The line of credit provides the firm with the efficient level of financial
slack given that its cash flows are risky. If the business is riskless, no
credit line is needed—with no cash flow risk, the fixed debt payments can
simultaneously fund the up-front investment as well as fund the agent’s
early consumption (if desired).

The threat that induces the agent to pay investors is that the project
can be terminated. Our modeling here covers a variety of situations.
Termination could involve liquidating the assets, selling them piecemeal at
market prices. In this case, termination involves an exogenous liquidation
payoff that may vary over the life of the business. Alternatively, termination
could involve the sale of the business as a going concern. Here the sale
price, and hence the termination payoff are endogenous and depend on the
remaining life of the business and on the wealth of potential buyers. For if
a buyer must finance the purchase, the same problem reemerges—the price
a buyer can pay is determined by the solution to the optimal contracting
problem. For the agent, termination may result in his accepting his
next best employment alternative. In this case, termination involves an
exogenous agent payoff. Alternatively, termination could result in the
agent borrowing to start a new business. Here the agent’s termination
payoff is endogenous and depends upon the financing terms he can obtain

2081



The Review of Financial Studies / v 20 n 5 2007

for the new business, which is again determined by the solution to the
optimal contracting problem. After characterizing the optimal contract,
we explore these and other interpretations of termination.

Debt financing is often seen as problematic because of asset-substitution
(risk-shifting) problems. That is, equity holders may seek to make the firm
riskier in order to transfer wealth from debt holders. In our analysis, even
though the optimal contract involves debt, there is no asset-substitution
problem. The agent, an equity holder, does not benefit from an increase
in cash flow risk. In a given period, the agent’s total payoff consists of
a current cash payment plus a continuation payoff (the discounted value
of the agent’s expected future payments, accounting for the possibility
of termination). While the agent’s current cash payment is convex in the
business cash flow, his total payoff (current cash plus continuation) is
linear in the business cash flow. With a linear payoff, an increase in risk via
a mean-preserving spread does not benefit the agent. As will be seen, this
linear payoff follows from the agent’s incentive-compatibility constraint.

We also extend our model to consider contracting with hidden agent
effort. Under our contract, the agent’s equity share determines his
incentives to provide effort. We show that for several standard settings
our contract, with an equity share for the agent that is sufficient to induce
high effort in a static setting, is the optimal principal-agent contract with
hidden effort.

Our analysis covers both the case in which the agent and investors
can commit to a contract and the case in which contracts can be
renegotiated. With the possibility of renegotiation, the contract must
be Pareto optimal throughout its life—otherwise the agent and investors
would renegotiate. Of course, the possibility of renegotiation effectively
entails more constraints on the contracting problem and hence leads to
worse outcomes.

A number of other analyses also examine how financial contracts can
be designed to induce agents to make payments to investors rather than
diverting the cash flow to themselves. Diamond (1984) and Bolton and
Scharfstein (1990) analyze one-period models in which a risky cash flow
is observed only by the agent and can be diverted by the agent. They
show that the optimal contract is debt, and if the agent defaults he
faces a cost that can be interpreted as forfeiting collateral or not being
refinanced in the future. Gromb (1999) considers a multiperiod version
of this model in which the threat facing the agent is that future funding
will be withheld. Gromb provides a partial characterization of the optimal
contract, showing that it may be optimal to provide the agent with slack in
the sense that it may take several low payments before his funding is cut off.
Gromb does not address security design issues. Quadrini (2004); Clementi
and Hopenhayn (2006), and DeMarzo and Fishman (2007) also examine
multiperiod versions of this model and allow for the determination of the
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scale of the firm. These articles focus on firm investment and growth. Our
focus here is on security design. We fully characterize the optimal financial
contract for the multiperiod case with uncertainty.

In other related analyses, Allen (1983) and Hart (1995) examine
multiperiod contracting models in which the agent finances a riskless
business. Bulow and Rogoff (1989) and Atkeson (1991) consider
multiperiod models of sovereign debt. Hart and Moore (1998) and Harris
and Raviv (1995) examine two-period financial contracting models with
risky cash flows (all uncertainty is resolved immediately after the agent
and investors sign a contract). Hart-Moore and Harris-Raviv assume
that while cash flows are observable to both the agent and investors,
they still may not be contractible. In these analyses, the optimal contract
is implemented with debt. Fluck (1998) and Myers (2000) also examine
models in which cash flows are observable but not contractible, and in
their settings, the optimal contract is implemented by giving the investors
equity. In contrast, we assume that the (risky) cash flows are observable
only by the agent and hence are not directly contractible. In our analysis,
the optimal contract is implemented by a combination of outside equity
and debt. In all of these analyses, some threat induces the agent to share
the cash flow with investors. These threats include: the seizure of assets,
withholding future funding, interrupting trade, and so on. Our model is
general enough to cover all of these possibilities. Moreover, since cash
flows are both risky and unobservable by investors, the threat is invoked
in equilibrium in our model.

An extensive literature studies optimal contracts for risk sharing with
privately observed cash flows. To mention a few, Green (1987) examines
optimal contracts in an infinite-horizon model, in which each agent’s
income has an independent and identically distributed (i.i.d.) binary
outcome in each period. Townsend (1979) and Mookherjee and Png
(1989) analyze one-period models in which a costly audit can reveal an
agent’s income. Wang (2005) combines these ideas, analyzing a version of
Green’s model with deterministic auditing (a low income report is certainly
audited and a high income report is not). Our analysis does not incorporate
risk sharing or audits. Both would be important extensions.

Finally, DeMarzo and Sannikov (2006) consider a continuous-time,
infinite horizon version of the discrete time model analyzed here. In their
setting, the optimal contract can be further simplified (e.g., termination
is not randomized) and compensating balances (i.e., holding cash while
borrowing at a higher rate) emerge as part of the optimal contract.
The optimal contract and security prices can be solved as a standard
differential equation, allowing for an analytic determination of optimal
capital structure and comparative statics. Biais et al. (2007) derive the
continuous-time limit of a stationary version of our model with binomial
cash flows. They consider an alternative implementation of the optimal
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contract in which the firm uses cash reserves in place of the credit line and
they derive additional asset pricing implications.

Section 1 presents the model. Section 2 solves for the optimal contract,
and Section 3 shows how the optimal contract can be implemented with a
combination of long-term debt, a line of credit, and equity. Section 4 shows
how by varying the specification of payoffs in the event of termination,
we can accommodate a variety of situations and nest some prior analyses.
Section 5 discusses the asset-substitution problem and the moral hazard
problem involving costly hidden agent effort. Section 6 has concluding
remarks. Proofs are provided in the Appendix.

1. The Model

There are an agent and investors. Investors are risk neutral, have unlimited
capital, and value a cash flow stream {ct } as

∑
t e−rtE[ct ], where r is the

riskless interest rate. The agent is also risk neutral, has limited capital,
and values a cash-flow stream {ct } as

∑
t e−γ tE[ct ], where γ ≥ r is the

subjective discount rate.
The agent has a risky project that requires an initial investment in

assets of I , in period t = 0. The agent privately observes his initial wealth
Y0 ≥ 0. If I>Y0, the agent must raise external funds to finance the project.
Alternatively, even if Y0 ≥ I , if γ>r the agent would like to raise external
funds for consumption purposes.1

1.1 The Project
If funded, the project’s cash flow in period t is given by the random
variable Yt . The cash flows {Yt } are jointly independent and for
s < t, Es [Yt ] = E[Yt ] = μt ; that is, there is no learning about future cash
flows. Denote the minimum element of the support of Yt by Y 0

t .2 The
minimal cash flow Y 0

t is publicly observable and collectible by investors.3

The excess cash flow realizations Yt − Y 0
t , however, are privately observed

by the agent. The moral hazard problem is that the agent might conceal
a cash flow and then divert it to himself for personal consumption. We
assume that for each dollar that the agent conceals and diverts from the
firm, the agent can consume λ, where λ ∈ [0, 1]. That is, 1 − λ represents
the cost of diverting firm funds for private consumption (for example, by
consuming inefficient perks). A common assumption is that diversion is

1 We do not consider the case γ<r. In this case investors would like to borrow from the agent and, more
problematically, the agent’s utility would be unbounded with an unbounded horizon.

2 For convenience, we discuss the model as though Y 0
t ≥ 0, but this is not required. If Y 0

t < 0, the agent
must have cash (or credit) of −Y 0

t available at the start of period t to meet short-term liabilities.
3 It is possible that investors may know that the cash flow Yt is at least Y ′

t , but can only enforce collection of
Y 0
t <Y ′

t . In our model this can be handled by letting Pr(Yt<Y ′
t ) → 0.
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costless, λ = 1. If λ = 0, diversion is not profitable and the agency problem
disappears. We consider λ > 0.

At date t , after the cash flow Yt is realized, the agent may choose to quit
or the contract may call for terminating the project. Either way, in the event
of termination the assets of the firm are put to their best alternative use,
generating a payoff of Lt , and the agent pursues his best outside option,
receiving a payoff Rt ≥ 0. In Section 4 we show how these termination
payoffs may be endogenously determined based on the investors’ ability to
hire a new agent to run the firm, and the agent’s ability to raise capital to
start a new firm. For now, it is convenient to think of these as exogenous
parameters.

In contrast to the operating cash flows, the asset termination payoff
is observable and contractible. In particular, the division of the proceeds
Lt can be contractually specified. This modeling reflects the idea that the
agent can divert the profits but not the assets.4 We assume the termination
payoffs satisfy the following:

Lt ≥ e−r(s−t)Ls and Rt ≥ e−γ (s−t)Rs for s > t. (1)

These properties follow immediately if the assets can be stored prior to
optimal redeployment or liquidation and the agent can always wait for
the best outside opportunity. If the project is terminated in period t , cash
flows from the project cease, so that Ys = 0 for s>t .5

The first-best value of the project just prior to the termination decision
in period s is given by

V FB
s ≡ max

τ≥s
E

[( ∑
s<t≤τ

e−r(t−s)Yt

)
+ e−r(τ−s)(Lτ + Rτ )

]
.

The maximization in V FB
s is over the termination date τ . Let T denote

the first-best termination date, the first date for which the aggregate
termination payoff exceeds the present value of the payoffs from continuing
the project. Thus,

V FB
t ≥ Lt + Rt , (2)

with equality only for t = T . We assume T >0. An optimal contract leads
to termination no later than period T , and so we can assume without loss
of generality that the project is terminated by period T and generates no

4 Alternatively, we can interpret Rt as including the value of any assets that can be diverted and interpret
Lt as the value of the remaining assets. We also assume that the agent cannot contract on Rt (and use it as
collateral). Any component of the agent’s termination payoff that can be contracted on is included in Lt .

5 The liquidation and reservation values may be stochastic (in which case interpret Lt nd Rt as expected
values) but in this case, as with the cash flows, we assume that there is no learning about their values prior
to their realization.
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cash flows beyond T .6 For ease of presentation we assume the project has
a finite economic life—that is, T is finite. We then show in Section 2.8 how
the optimal infinite horizon contract can be derived by taking the limit as
T → ∞. An example in Section 3.2 will consider this case.

1.2 Contracts and timing
Investors do not observe the realized cash flows or any concealment or
diversion, and they do not observe the agent’s consumption or saving.
Investors observe only the payments and any reports (messages) they
receive from the agent. So a contract can only specify, as a function of
the history of the agent’s payments and reports: (i) payments made from
investors to the agent; and (ii) circumstances under which the project
is terminated.

The timing is as follows. Each period, the agent receives a cash flow
Yt . Then the agent makes a payment to investors of ŷt ≥ Y 0

t , concealing
Yt −ŷt , and the agent makes a report (or message) mt to investors. Given
the history ht of payments and reports up to t (including ŷt and mt) the
contract specifies the payment made from investors to the agent, denoted
by the function dt (ht ) ≥ 0. (Here we treat investors as a single group;
later we disaggregate these cash flows into separate securities.) Then the
agent chooses how much to consume—from concealed funds (at cost 1
−λ) and from his payment from the investors. Any remaining agent funds
accumulate at the continuously compounded return ρ ≤ r.7 Finally, before
the next period’s cash flow, the contract may call for investors to terminate
the project. Let pt (ht ) denote the contractually specified termination
probability in period t , specified as a function of the history. (We can also
interpret probabilistic termination as the deterministic liquidation of the
fraction pt of the assets if we assume constant returns to scale.) The agent
may also terminate the project by quitting.

In summary, a contract consists of a pair of functions (d, p) specifying
the investors’ payment to the agent and the probability of termination
after any history. We consider two contractual environments. In the first,
the contract signed in period 0 remains in force for the life of the project.
In the second, the contract can be renegotiated and replaced with a new
contract if all parties agree.

6 To see this, note that for the agent not to quit, the agent must receive aT ≥ RT in continuation. Suppose
investors receive bT in continuation. From (2), aT + bT ≤ LT + RT . Thus, by terminating immediately
and paying the agent aT − RT , investors get LT + RT − aT ≥ bT .

7 The restriction ρ ≤ r is an assumption that all of the agent’s positive NPV investments are included in the
project. Nothing changes if there were different returns on savings held within the firm versus held by the
agent, as long as neither exceeds r.
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2. Optimal Contract Design

We begin by showing that the optimal contract does not require private
saving by the agent or the use of messages, allowing us to simplify the
problem. We then apply dynamic programming techniques to solve for
the optimal contract.

2.1 The nonnecessity of private saving
Given any contract σ = (d, p), the agent will choose an optimal strategy
ϕ that specifies, after any history, the cash flow to pay investors and any
message to report to investors, an amount of cash flow to conceal and
divert, a consumption and savings decision, and a quit decision. Rather
than introduce notation to define this strategy space explicitly, we show in
this section that a simpler strategy space will suffice.

We can think of the contract σ as a mechanism that determines the
agent’s incentives regarding the strategy choice ϕ. As is standard in a
mechanism design context, we begin with a Revelation-Principle type
result that simplifies the set of strategies we need to consider for the agent.
We can restrict attention to contracts in which the agent pays all the cash
flows to investors, does no concealment or diversion or saving of funds,
and does not quit before termination. Also, since the agent pays out all of
the cash flow, no additional messages are necessary.

The reasoning behind this result is straightforward. Consider any con-
tract for which the agent’s optimal response entails concealing or diverting
cash flows (ŷt<Yt ). We can design a new contract in which the agent gives all
cash flows to investors (ŷ∗

t = Yt ), and investors then pay the agent (through
dt ) an amount equal to the cash flow net of diversion costs (λ(Yt − ŷt )).
Similarly, rather than private saving, the agent can give funds to investors,
and receive them back in the future with interest ρ under the contract (i.e.,
we can lower dt and raise dt+s). These changes do not affect the agent’s
payoff, but lead to a weakly higher payoff for investors since both diversion
and private savings are weakly inefficient (λ ≤ 1 and ρ ≤ r). Finally, any
contract that induces the agent to quit in period t could be replaced with
a contract that terminates in period t . This leads to the following result:8

Proposition 1. Given any contract σ with optimal strategy ϕ for the agent,
there exists a contract σ ∗ and optimal strategy ϕ∗ with the same payoff
for the agent, a weakly higher payoff for investors, and with the property
that the agent pays ŷ∗

t = Yt to investors, consumes d∗
t , does not quit prior to

termination, and messages are unnecessary.

8 Since this result is standard, we do not provide a formal proof. This avoids introducing notation that
would be immediately superfluous. See the proof of Proposition 3 for a direct proof that ŷ∗

t = Yt is
optimal.
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This result implies that we can restrict attention to contracts in which it
is optimal for the agent to give all cash flows to investors, to consume all
payments from investors, and to not save or divert cash flows. Of course,
in deriving the optimal contract, we still need to make sure that a strategy
for the agent with the above properties is incentive compatible.

We take the following approach to determining an optimal contract.
First, we derive an optimal contract assuming that private saving is
impossible, ignoring the associated incentive constraints. Then we will
show that there is no incentive to save at the solution (these incentive
constraints do not bind), so that we have a solution to the original
contracting problem. In contrast, the incentive constraints related to cash
flow diversion will bind.

2.2 The dynamic programming approach
Consider the simplified problem in which the strategy ϕ specifies the agent’s
payment ŷt ∈ [Y 0

t , Yt ] to investors, as well as whether the agent chooses
to quit and terminate the contract, in each period. Let τ ≤ T denote the
(random) time at which the contract terminates. Without private saving,
the agent’s discounted payoff from continuing with the contract beyond
period t is given by:

At(σ , ϕ) = E
[∑

t<s≤τ
e−γ (s−t)(λ(Ys − ŷs) + ds) + e−γ (τ−t)Rτ |σ, ϕ, τ > t

]
.

The pair (σ , ϕ) is incentive compatible if ϕ maximizes this payoff given σ .
Given the agent’s strategy, the investors’ discounted payoff at the end of
period t is

Bt(σ , ϕ) = E
[∑

t<s≤τ
e−r(s−t)(ŷs − ds) + e−r(τ−t)Lτ |σ , ϕ, τ > t

]
.

Note that it is without loss of generality that the investors receive Lτ as
any division of these proceeds can be contractually provided through the
transfers to the agent.

The contract-strategy pair (σ , ϕ) is optimal if it is incentive compatible
and there is no other incentive-compatible pair that provides the same
payoff to the agent and a higher payoff to investors. We say a contract is
optimal if it is part of an optimal contract-strategy pair.

We solve for an optimal contract using dynamic programming.9 Because
cash flows are independent over time and there is no private saving, the
functions At and Bt are common knowledge in period t and independent
of the prior history. As a result, an optimal contract must be optimal

9 See Spear and Srivastava (1987), and Green (1987) for discussions of this approach to solving dynamic
contracting problems.
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Figure 1
The timeline of the model
The continuation functions b

y
t , bd

t , and be
t represent the maximum investor payoffs given promised payoffs

to the agent at the various points in the period.

after any history. Otherwise, we could find an alternative contract that
leaves the agent’s payoff and incentives unchanged, but raises the payoff
to investors. Therefore, given the agent’s payoff a at the end of period t ,
the investors’ payoff is given by

be
t (a) ≡ max

σ ,ϕ
Bt (σ , ϕ) subject to At(σ , ϕ) = a = max

ϕ′ At(σ , ϕ′).

We call be
t the end-of-period t continuation function. It gives the highest

payoff attainable by investors given the payoff a for the agent. If the payoff
a is unattainable, we define be

t (a) = −∞. This continuation function fully
characterizes the payoff-relevant attributes of the project beyond period t .
As a result, the history can be summarized by the current value a of the
agent’s continuation payoff. An optimal contract provides incentives by
effectively specifying how a varies with the history of the agent’s payments
to investors.

As illustrated in Figure 1, be
t is the continuation function as of the end

of period t . We can also define continuation functions at earlier stages
in period t : bd

t is the continuation function just before the payment to
the agent in period t , and b

y
t is the continuation function just before

the cash flow Yt is realized. Our analysis proceeds by characterizing
these continuation functions, working from the end of period t to the
beginning.

2.3 Period T

The project has a finite economic life and will be terminated no later
than period T . Therefore we can define be

T (a), the continuation function
for the end-of-period T , and solve for earlier continuation functions
recursively.

After period T , any payments to the agent are transfers from investors.
Since γ ≥ r, it is efficient to make any such payments in the following
period, which we denote by T +. We can represent this by the end-of-period
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T continuation function:

be
T (a) =

{
−e(γ−r)(T +−T ) a for a ≥ 0
−∞ for a < 0

(3)

That is, the most efficient way to provide the agent with a payoff of a after
the project is terminated is to pay the agent eγ (T +−T ) a in the following
period T +. The continuation function represents the cost of this payment
to investors given the discount rate r. Because the agent cannot be induced
to pay investors once the project is terminated, payoffs a < 0 are infeasible.
Note that while it is feasible to pay the agent after period T , given the
difference in discount rates, such payments are (weakly) inefficient. We
will see that with the optimal contract, all payments will occur before the
end of period T .

Given the continuation function (3), we can work backward to deter-
mine recursively the continuation function be

t in earlier periods t < T .
Following the timeline in Figure 1, our analysis first takes be

t as given and
determines bd

t , summarizing its properties in Proposition 2. Then taking
bd

t as given we determine b
y
t , summarizing its properties in Proposition 3.

Finally, taking b
y
t as given we determine be

t− , summarizing its properties
in Proposition 4. In doing so, we consider the different actions that can be
taken during each stage of a period. While be

T is linear for a ≥ 0, in what
follows we show inductively that be

t is generally concave, as illustrated in
Figure 2. Intuitively, the lower the agent’s share of the project payoff, the
greater the agency costs. Thus, the gain to investors from lowering the
agent’s payoff decreases as ae

t falls.

2.4 Termination and payments to the agent
In this section, we describe how to compute bd

t (the continuation function
just prior to the period t quit/termination decisions and payments to the
agent) from be

t . This involves determining the optimal cash payment from
investors to the agent and the optimal termination probability.

The agent has the option to quit and receive Rt . Thus prior to the
termination decision, the lowest feasible payoff for the agent is Rt ,
so bd

t will be defined for ad
t ≥ Rt . Also, given the ability to terminate

probabilistically, all payoffs within the convex hull of (Lt , Rt ) and the
payoff possibilities defined by be

t are feasible. The frontier of this set is
given by a line from (Lt , Rt ) that is tangent to be

t , as shown in Figure 2.
We denote by aL

t the agent’s payoff at the point of tangency, and let lt be
the marginal payoff of investors along this tangent line (Proposition 2 has
a formal definition). An agent payoff ad

t ∈ [Rt , aL
t ] is optimally achieved
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Agent’s
Payoff a

Investor’s Payoff b

bt
d

at
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e
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Dividend
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Continuation
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Liquidation
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(Lt, Rt)

bt
d ′ = −1

−1 < bt
d ′ ≤ lt

bt
d ′ = lt

Figure 2
Constructing the continuation function bd

t from be
t

Current cash payments are cheaper than promises of future payments if the agent’s continuation payoff is
above a1

t . If the agent’s continuation payoff is below aL
t it is optimal to randomize between termination

and continuing with a promise of aL
t .

by terminating with probability

pt (a
d
t ) = aL

t − ad
t

aL
t − Rt

(4)

and otherwise continuing with continuation payoff aL
t . Note that we have

changed notation by writing pt as a function of the state variable ad
t alone,

rather than the entire history ht . This is because the agent’s continuation
payoff captures the payoff-relevant information regarding the history. (We
will do the same for dt below.)

When will the optimal contract provide a payment dt >0 to the agent?
At this stage, there are two ways to compensate the agent—by paying him
cash in the current period and by promising a continuation payoff (the
prospect of cash in the future). The optimal contract uses whichever form
of compensation is least expensive for investors. Since paying the agent
one dollar in cash costs investors one dollar, cash payments are used if
the slope of the continuation function is below −1; that is, if paying the
agent in the future would cost investors more than one dollar. Since be

t is
concave, there is a threshold level of the agent’s payoff, a1

t , such that cash
payments are used above this threshold. That is, the agent receives cash
equal to

dt (a
d
t ) = max(ad

t − a1
t , 0). (5)
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As a result of these transformations, note from Figure 2 that the
continuation function bd

t has the properties:10

bd
t is concave with bd

t
′(a) ≥ −1. (6)

We will exploit these properties in determining the optimal way to provide
the agent with the incentives to pay out all of the project cash flows.

At the end of the project’s life, T , termination is (by definition)
optimal. In this case we set aL

T = ∞ (the same is true in any period
t in which termination is optimal). Also, any cash payments made
to the agent should be made immediately, due to the difference in
discount rates. That is, a1

T = RT . As a result, pT = 1, dT = ad
T − RT ,

and bd
T (ad

T ) = LT − (ad
T − RT ).

We conclude this section with a formal summary of the construction of
bd

t :

Proposition 2. Given be
t concave, let

lt = sup
{

be
t (a) − Lt

a − Rt

: a > Rt

}
.

Then if lt> − 1, define

aL
t = inf{a > Rt : be

t
′(a) ≤ lt }, a1

t = inf{a : be
t
′(a) ≤ −1}

bd
t (ad

t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

be
t (a

1
t ) − (ad

t − a1
t ) for ad

t ≥ a1
t

be
t (a

d
t ) for aL

t ≤ ad
t ≤ a1

t

be
t (a

L
t ) − lt (a

L
t − ad

t ) for Rt ≤ ad
t < aL

t

−∞ for ad
t < Rt

If lt ≤ −1, termination is optimal. In this case, define aL
t = ∞, a1

t = Rt and

bd
t (ad

t ) =
{

Lt − (ad
t − Rt) for ad

t ≥ Rt

−∞ for ad
t < Rt

Finally, note that bd
t satisfies (6).

2.5 The intra-period agency problem
In this section, we solve for b

y
t (the continuation function before the cash

flow Yt is realized) given the continuation function bd
t . To do so, we solve

the intra-period agency problem by providing the agent with incentives to
pay the cash flow to investors.

10 The continuation function need not be differentiable. Throughout the article, at any kink in a concave
function f , we interpret f ′(x) as any supergradient of f at x.
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Consider the agent’s problem. After the cash flow Yt is realized, the agent
chooses a payment ŷt to make. Based on ŷt , according to the contract the
agent receives some continuation payoff ad

t . An optimal contract chooses
the continuation payoff ad

t as a function of the agent’s payment so as to
provide incentives for the agent to pay out all of the cash flow (i.e., choose
ŷt = Yt ). This must be done in a way that maximizes the investors’ expected
payoff. This can be written as the following optimization problem:

b
y
t (a

y
t ) = max

ad
t (·)

E[Yt + bd
t (ad

t (Yt ))] (7)

s.t. (IC) ad
t (Yt ) � ad

t (y) + λ(Yt − y) for all y ∈ [Y 0
t , Yt ]

(PK) E[ad
t (Yt )] = a

y
t

The objective function is the expected payoff of investors. Investors
receive the cash flows plus the highest possible continuation payoff bd

t

given that the agent receives ad
t . The first constraint is the agent’s incentive

compatibility constraint—it is optimal for the agent to pay all the cash
flows to investors, rather than underreport and consume some of the cash
flows himself. The second constraint is the ‘‘promise-keeping’’ constraint
that guarantees the agent’s expected continuation payoff matches his
promised continuation payoff a

y
t at the start of the period.

To solve (7), note first that the (IC) constraint is equivalent to
ad

t (y) − λy increasing in y, or equivalently, ad
t

′(y) ≥ λ. The promise-
keeping constraint fixes the mean payoff to the agent, so different choices
of ad

t affect its variability. But since bd
t is concave, it is optimal to minimize

the variability of ad
t . This is done by setting ad

t
′(y) = λ, so that the incentive

constraints just bind. We state this formally below.

Proposition 3. Given bd
t satisfying (6) and with μt ≡ E[Yt ], the optimal

continuation payoff for the agent given reported cash flow y is given by

ad
t (y) = a

y
t + λ(y − μt). (8)

This yields the start of period continuation function,

b
y
t (a

y
t ) = μt + E

[
bd

t (a
y
t + λ(Yt − μt))

]
, (9)

which is concave.

This result has two important consequences. First, it implies that the
marginal benefit to the agent from paying out a higher cash flow is
constant. As a result, since the agent’s discount rate exceeds the return to
private savings, there is no benefit to concealing cash flows today in order
to report higher cash flows in the future. Thus, the agent has no incentive
to use private savings, justifying our solution methodology.
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Corollary 1. In the optimal contract without private saving, the agent has
no incentive to save. Thus, this contract is optimal even with the possibility
of private saving.

Second, we can combine (5) and (8) to characterize the cash payments
to the agent in the optimal contract. This leads to the following:

Corollary 2. The cash payments to the agent correspond to a levered equity
claim. That is,

dt = λ max(Yt − Dt, 0) (10)

where Dt = μt + λ−1(a1
t − a

y
t ).

Thus, each period the optimal contract effectively pays the agent a share
λ of a levered equity claim on the firm’s cash flows. While a similar charac-
terization holds for static cash flow diversion models, what is special here,
and what we have yet to determine, are the dynamics of the underlying
leverage. We will accomplish this in two stages. First, we complete our
recursive characterization of the optimal contract. Then, in Section 3, we
show how the optimal contract can be implemented using standard debt
and equity claims.

2.6 The optimal contract
Thus far, we have described how to compute the continuation functions bd

t

and b
y
t given the continuation function be

t at the end of period t . We now
derive the continuation function be

t− (the continuation function at the end
of the prior period t−) and combine the results to complete our recursive
characterization of the optimal contract.

Moving from the start of period t to the end of the prior period involves
discounting the payoffs of the agent and investors. To provide the agent
with a payoff a at the end of period t−, he must be paid a plus interest
at rate γ at the start of period t . The investors’ continuation payoff is
then discounted at rate r. This implies the following characterization of
the continuation payoff for investors:

Proposition 4. Given b
y
t , the continuation function at the end of the prior

period t− is given by

be
t−(ae

t−) = e−r(t−t−) b
y
t (e

γ (t−t−) ae
t−),

which is concave.

Thus, starting from the end-of-period T continuation be
T defined by (3),

the constructions in Propositions 2, 3 and 4 recursively solve for the
continuation function at all earlier points in the contract.
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Having solved for the optimal continuation function recursively, we
now show how it determines the optimal contract. The dynamics of
the contract are governed by a single state variable representing the
current promised continuation payoff for the agent. From our preceding
results, the evolution of this state variable can be summarized as in
Figure 3. Given a promised payoff of ae

s at the end-of-period s = t−, the
agent will have a promised payoff of a

y
t at the beginning of period t

(accounting for the agent’s discount rate). Then, given the realization of
the cash flow Yt , the agent’s payoff becomes ad

t . The promised payoff
ad

t determines the cash payment to the agent dt and the termination
probability pt . The agent’s continuation payoff is ae

t if not terminated
and Rt if terminated. When ad

t ≥ aL
t , the termination probability pt is

zero, and the agent’s continuation payoff ad
t = dt + ae

t . When ad
t < aL

t ,
the termination probability pt is positive and the agent’s cash payment
dt = 0. The agent’s expected payoff is ad

t = (1 − pt )a
e
t + ptRt . Figure 3

summarizes the behavior of the optimal contract starting from some initial
promised payoff for the agent. Next we examine how initial payoffs are
determined.

2.7 Initiating the contract
The choice of an initial contract in period 0 corresponds to the choice of an
initial payoff pair from the payoff possibility set. This choice is determined
by the competitive environment in which the contract is signed.

Recall that the agent’s initial wealth is given by Y0. The project requires
an initial investment of I , which will be funded jointly by the agent and
investors. Normally, we think of a contract being proposed, and if accepted
by the agent and investors, the investment is made and the project begins.

An equivalent way to describe this is as follows. Investors commit I up
front. The agent then pays ŷ0 ≤ Y0 to investors. If the agent’s contribution
is acceptable, the project begins. If it is not acceptable, the project is
terminated and investors recover the investment I . Thus, the agent can

Cash Flow Yt Agent Payment & Termination

Period tPeriod s = t − Period t+

as
e ay

t
 = eγ(t−s) ae

s ad
t
 = ay

t
 + λ(Yt

 − μt) dt = (ad
t
 − a1

t)
+ ae

t
 = min(a1

t , max(aL
t , a

d
t))

(aL
t
 − ad

t )
+

pt =
aL

t
 − Rt

Figure 3
Dynamics of the agent’s continuation payoff, payments, and termination
The agent’s continuation payoff evolves as follows. A promised payoff ae

s at the end of period s becomes a
payoff a

y
t at the start of period t , reflecting the agent’s discount rate, which becomes a payoff ad

t depending
on the realization of the cash flow Yt . The continuation payoff ad

t determines the agent’s cash payment, dt ,
and the termination probability, pt . At the end of period t the agent’s continuation payoff is ae

t , reflecting
the agent’s cash payment and the termination decision.
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reject the proposal by choosing not to contribute funds. Investors can
reject the proposal by terminating in period 0.

This description fits the termination stage of period 0 in our model. Here,
we specify termination payoffs (L0, R0) with L0 ≥ I , because investors can
recover at least I by terminating immediately. (We allow L0>I in case
there are pre-existing assets that can also be liquidated.) Thus, the set of
available contracts can be interpreted as the continuation function bd

0 .
If investors compete to fund the project, then we expect the initial

contract to be the best possible for the agent such that investors earn
nonnegative profits. That is, the agent offers to contribute Y0 and gets the
highest payoff possible such that investors break even:

ad
0 = sup{a : bd

0(a) ≥ I − Y0}. (11)

Note that because bd
0

′ ≥ −1, contributing the full Y0 is optimal, and also
ad

0 ≥ R0 + Y0.
Alternatively, if investors own the rights to the project, and there are

multiple agents with the same wealth who compete for the right to manage
it, then we expect the contract to be the best possible for investors such
that the agent earns nonnegative profits:

ad
0 = arg max

a≥R0+Y0

bd
0 (a). (12)

See Figure 4. In either case, investors earn Y0 + bd
0 (ad

0 ) − I . The project
is started with probability 1 as long as ad

0 ≥ aL
0 .11 The agent receives an

immediate cash payment if ad
0 ≥ a1

0 .
Of course, cases in which both investors and the agent have some

market power are possible. For example, investors may own the rights to
the project, and one agent may be a better choice to manage the project
(e.g., he has a higher μt , a lower λ, etc.). This case will lead to a bargaining
outcome between the two extremes indicated above.

2.8 Infinite horizon
Our analysis can be extended to the infinite horizon case, as we briefly
describe here. Consider an infinite horizon setting that we arbitrarily
truncate to a T -period horizon by forcing liquidation at the end of period
T . Let b̂d

t be the optimal continuation function for this truncated model.
Then in the final period, b̂d

T (a) = LT + RT − a for a ≥ RT , and we can
solve for earlier periods as before. Now let bd

t be the optimal continuation
function with an infinite horizon. Because the contract could call for

11 If I −Y0 is large, it is possible that ad
0 <aL

0 . In that case, p0 >0 and the startup of the project involves a
lottery. The agent takes an all-or-nothing bet with his wealth, and if he wins the project is started with an
agent payoff of aL

0 . If he loses, he loses his initial wealth and the project is not started.
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Agent’s
Payoff a

Investor’s
Payoff b

I − Y0 L0 ≥ I

R0 + Y0

Investors
Compete

Agents Compete

a0

R0

L

b0
 (a)d

Figure 4
Initial contract payoffs
At initiation, the contract must offer the agent at least his opportunity cost plus his investment, R0 + Y0,
and must offer the investor at least his investment, I − Y0. Relative bargaining power will determine the
exact location of the initial payoffs on the Pareto frontier, bd

0 .

liquidation in period T ,

b̂d
T (a) = LT + RT − a ≤ bd

T (a) ≤ V FB
T − a

Therefore,

b̂d
t (a) ≤ bd

t (a) ≤ b̂d
t (a) + e−r(T −t)(V FB

T − LT − RT )

and the optimal continuation function for the infinite horizon model
coincides with the limit of the truncated models as long as

lim
T →∞

e−rT (V FB
T − LT − RT ) = 0 (13)

Condition (13) is satisfied in all reasonable settings (e.g., it is sufficient
that V FB

0 is well defined and LT is bounded below). In this case we can
solve for the optimal continuation function for the infinite horizon case by
considering the limit of finite horizon models.12

2.9 Renegotiation-proofness
In the analysis above, we assumed that the agent and investors commit to
a contract for the life of the project. We now consider the possibility that
they cannot commit not to renegotiate the contract, and we show its effect
on the possible continuation payoffs in the optimal mechanism.

12 This limit exists for stationary settings without renegotiation; with renegotiation there is the possibility of
cycles as T grows large. See DeMarzo and Sannikov (2006) for a discussion of solving for the renegotiation
proof contract with an infinite horizon.
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Consider the continuation function bd
t representing the highest

continuation payoff to investors for a given continuation payoff to the
agent just prior to period t ’s payment from investors to the agent. Define

aR
t = inf{a : bd

t
′(a) ≤ 0}.

Then aR
t maximizes bd

t , so that

bd
t (a) < bd

t (aR
t ) for a < aR

t .

A contract that, after some history, offers the agent a continuation
payoff less than aR

t at this stage is Pareto inferior. Given the opportunity,
the agent and investors will agree to replace it with a new contract that
yields a higher payoff for all; for example, they may agree to continue with
continuation payoff aR

t for the agent instead.
Thus, if renegotiation is possible,13 continuation payoffs a < aR

t are
infeasible. Said another way, a renegotiation-proof contract must always
use continuation payoffs on the Pareto frontier of the payoff possibility set.
With a finite horizon, the result that renegotiation-proofness is equivalent
to the contract being sequentially undominated (in terms of payoffs) is
shown by Hart and Tirole (1988).14

Consider the termination decision. Termination is inefficient if (Lt , Rt )

is inferior to an available continuation payoff, which is equivalent to lt > 0
(this corresponds to bd

t having an upward sloping portion). The following
proposition establishes that to make the contract renegotiation-proof it is
sufficient to rule out termination and change our definition of bd

t when
lt > 0.

Proposition 5. The optimal renegotiation-proof continuation function is
constructed according to Propositions 2, 3, and 4, with the exception that if
lt > 0, then aR

t = aL
t and

bd
t (ad

t ) =

⎧⎪⎨
⎪⎩

be
t (a

1
t ) − (ad

t − a1
t ) for ad

t ≥ a1
t

be
t (a

d
t ) for aL

t ≤ ad
t ≤ a1

t

−∞ for ad
t < aL

t

13 This is likely the case. In the United States, courts will generally not enforce contractual provisions against
renegotiation. This places restrictions on what can be achieved by an optimal contract and is a form of
contract incompleteness.

14 Hart and Moore (1998) and Hart (1995) do not use this approach, but instead assume that one party can
invoke renegotiation to a new outcome unilaterally (see, e.g., Hart and Moore (1998:20)). For example,
suppose a contract has payoffs (6,4) but party 2 can threaten an action that leads to (0,3). These articles
assume that this threat can provoke renegotiation to a new outcome such as (5,5). In addition to a lack
of enforceability, their assumption implicitly assumes one party has greater commitment power than the
other.
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When lt > 0, termination will not occur in period t , which will
limit the incentives that can be provided and lower the continuation
functions in prior periods relative to the case with commitment. Working
backward, after several periods without the possibility of termination, the
continuation function may fall to the point that ls ≤ 0 in period s<t , and
termination is renegotiation-proof.15

Renegotiation-proofness reduces the payoffs associated with the project,
and will alter the numerical values of a1

s , aL
s , etc. in periods s<t . However,

the underlying dynamics of the optimal contract still correspond to those
in Figure 3 above, and so are unchanged.

3. Implementation with Debt and Equity

In this section we describe how the optimal contract can be implemented
using standard securities. We then solve a numerical example and compute
the optimal capital structure. Finally, we explore the role of each security
by considering comparative statics.

3.1 Optimal security design
Our main result is that the optimal contract can be implemented by
funding the project using long-term debt, a credit line, and equity.
Thus, these securities are optimal in our setting. They are defined as
follows:

Long-Term Debt: Long-term debt with maturity T ∗ is characterized by
a sequence of fixed payments xt for 0 < t ≤ T ∗. A final payment fT ∗ is due
at maturity. If a payment is not made, the agent is in default.

Credit Line: A credit line is characterized by an interest rate r̂ and credit
limit cL

t for t ≥ 0. The agent can draw on the credit line, up to the credit
limit, at any time. No payments need be made on the credit line unless the
outstanding balance (including accrued interest) exceeds the credit limit at
the end of the period. If this excess is not paid, the agent is in default.

Equity: Cash flows not used to pay debt claims may be used to pay
a dividend to equity holders. Dividends are paid in proportion to share
ownership.

Default: If default occurs in period t , creditors seize all verifiable cash
flows (Y 0

t plus any current withdrawal on the credit line). Remaining
unmade payments z >0 convert to liquidation rights according to a
contractually specified notional value Nt of the equity. That is, instead
of receiving z, debt holders terminate the project with probability

15 We have defined renegotiation-proofness here for a finite horizon setting. With an infinite horizon, the
definition of renegotiation-proofness is more problematic. Even in a stationary environment, the limit of
finite horizon contracts may not exist because the optimal renegotiation-proof contract may involve cycles
with termination possible in some periods and not in others. See DeMarzo and Sannikov (2006) for a
discussion of how to compute the optimal stationary renegotiation-proof infinite horizon contract.
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pt (z) = z/Nt , and with probability 1 − pt (z), z is forgiven. In the event of
early termination debt holders receive the liquidation payoff Lt .

The definitions of equity, long-term debt and the credit line look like
standard securities used in practice. The notion of default is somewhat
nonstandard, as we allow for stochastic termination. However, our
modeling allows liquidation to be constant returns to scale, in which
case we can interpret this as nonstochastic liquidation of the fraction pt

of the firm.16 Note also that we do not specify how the proceeds Lt are
divided among the debt holders. Different priority rules can be used. While
the specific priority rule used affects the pricing of the individual securities,
it has no consequence regarding the agent’s incentives.

We now state our main theorem showing that the optimal contract
can be implemented with the long-term debt, equity, and line of credit
described above:

Theorem 1. The optimal contract is implemented by a combination of
equity, long-term debt, and a credit line. The agent holds the fraction λ of the
equity, and the remaining 1 − λ is held by investors. In addition, investors
hold long-term debt with maturity T ∗ = min{t : lt ≤ −1} ≤ T , final payment
fT ∗ = LT ∗ , and fixed payments of

xt = μt + λ−1
[
a1

t − eγ (t−t−)a1
t−

]
for 0 < t ≤ T ∗. (14)

The credit line has interest rate r̂ = γ , and a credit limit given by

cL
t = λ−1

(
a1

t − aL
t

)
for 0 ≤ t < T ∗. (15)

In the event of default, the notional value of equity is given by

Nt = λ−1 (
aL

t − Rt

)
for 0 ≤ t < T ∗. (16)

The initial draw on the credit line in period 0 is given by cd
0 = λ−1(a1

0 − ad
0 ),

where ad
0 is determined by the relative market power of the agent and investors

as in Section 2.7.17 Finally, in period T ∗, cL
T ∗ = 0, and NT ∗ = LT ∗ .

Given this contract, the agent pays the long-term debt coupon and then uses
remaining cash to pay down the credit line. Once the credit line is fully repaid,
excess cash is used to pay a dividend. In period T ∗, the agent terminates the
project.

The intuition behind this implementation is as follows. The only history-
dependent variable in the securities above is the balance on the credit line.

16 Termination is not randomized in the continuous-time version of this model; see Biais et al. (2007) and
DeMarzo and Sannikov (2006).

17 A negative draw implies that a dividend is paid in period 0.
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The agent’s continuation payoff at any point in time is ‘‘tracked’’ by this
balance. That is, given credit line balance cd

t , the agent’s continuation
payoff is given by

ad
t = a1

t − λcd
t . (17)

A zero balance on the credit line corresponds to a continuation payoff
of a1

t , and any additional cash flow results in a dividend payment. In
contrast, when the credit line is at its limit cL

t , the agent’s continuation
payoff equals, using (15), a1

t − λcL
t = a1

t − λ(λ−1(a1
t − aL

t )) = aL
t . In this

case, a cash shortfall leads to default and possible termination. Repaying
a dollar on the credit line increases the agent’s continuation payoff by λ.
As a result, the agent has no incentive to divert the cash flows.

To understand the debt payments, xt , suppose the agent has paid off the
credit line in period t−. Then the agent’s expected credit line position in the
next period (before paying a dividend) is xt − μt , implying from (17) an
expected continuation payoff of a1

t − λ(xt − μt). To deliver a continuation
payoff of a1

t− in the prior period, we must have

a1
t− = e−γ (t−t−)[a1

t − λ(xt − μt) ] (18)

Solving the above for xt yields (14).
Finally, recall that termination is used to provide the agent with

appropriate incentives to repay investors. Therefore, the notional value Nt

is based on the value to the agent of avoiding termination and receiving
aL

t versus the outside option Rt .
Of course, this implementation is not unique. For example, we can

aggregate the three securities into a single security without changing the
agent’s incentives. However, the implementation we have described is
natural and corresponds well to securities observed in practice.

Theorem 1 characterizes the optimal dynamic capital structure: the
coupon/maturity structure of the long-term debt; the interest rate and
limit on the credit line; and the equity fraction given to outside investors.
With high cash flows, the debt coupon is paid, the credit line is paid down,
and any remainder goes for dividends. With low cash flows, the agent
draws on the credit line. Hence the firm’s debt-equity ratio moves inversely
with realized earnings and will be strongly history dependent.

3.2 A numerical example
We illustrate our security design results with an example. We will consider
a stationary environment for which T → ∞. A project generates perpetual
risky cash flows that are i.i.d., uniformly distributed on {0, 1, 2, . . . 20}.
The agent has no initial capital (Y0 = 0) and a reservation wage Rt = 0.
The project has a liquidation value of Lt = 75. The riskless rate of interest
is 10% (r = 9.53%, continuously compounded) and the agent’s subjective
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discount rate for consumption is 10.5% (γ = 9.98%). Since γ>r, the agent
would like to raise funds to finance current consumption as well as to
finance the initial investment I required to start the business. Assume
that the financial market is competitive so that in financing the project,
investors break even and the agent captures all of the rents.

Given the expected cash flow of 10 per period, in a perfect capital
market (i.e., λ = 0) the agent would sell all equity to investors, raise funds
of 10/10% = 100, invest I , and immediately consume 100 −I (if I > 100,
the project is not worth funding). Investors would then receive all future
cash flows as dividends. Selling the equity is optimal for the agent even if
no external funds are required to start the project, as the value paid by
investors exceeds value of the equity to the agent, 10/10.5% = 95.24.

Now introduce the agency problem: the agent privately observes the
cash flows and can divert them for his own consumption. Suppose that
this diversion comes at no cost, i.e., λ = 1. By Theorem 1, in this case the
equity is held entirely by the agent, and long-term debt and a line of credit
are sufficient for the investors.

The continuation function bd
t for T large is shown in Figure 5. In this

case, aL = 9.05 and a1 = 35.83 (given the solution is stationary we drop the
subscript t). From Theorem 1, the optimal contract can be implemented
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Figure 5
Optimal continuation function for the example
This figure shows the investor’s continuation function for the example with T → ∞. For an agent
continuation payoff a > a1 = 35.83, bd (a) is linear with slope −1, reflecting the optimality of paying the
agent a − a1 in cash. For an agent continuation payoff a < aL = 9.05, bd (a) is also linear, reflecting the
optimality of randomizing between termination payoffs (Lt , Rt ) which equals (75, 0), and (bd (aL), aL)

which equals (80.52, 9.05). For aL ≤ a ≤ a1, there are no cash payments to the agent and the termination
probability is 0.
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with long-term debt with perpetual coupons of

x = μ + λ−1[a1 − eγ (t−t−)a1] = 10 + [35.83 − 1.105 × 35.83] = 6.24

together with a credit line with an annual interest rate of 10.5% and credit
limit of

cL = λ−1(a1 − aL) = 35.83 − 9.05 = 26.78

By issuing the long-term debt without drawing on the credit line, the
agent is initially able to raise bd(a1) = 62.30. The agent will raise this
amount of capital if I ≤ 62.30, and consume any cash not invested. If
I > 62.30, an initial draw on the credit line is required to fund the project.
By drawing the credit line to its limit, the agent can raise a maximum
of bd(aL) = 80.52 from investors. Because of the incentive problem, if
80.52 < I ≤ 100, the project cannot be financed even though it has a
positive NPV.18

We illustrate the contract for a sample cash flow history in Table 1, for
the case I � 62.30 in which there is no initial draw on the credit line.

Table 1
An Illustration of the Optimal Contract for a Sample Cash Flow Realization

Period 1 2 3 4 5 6 7 8

Credit line (begin) 0.00 0.00 −1.37 0.00 −6.90 −14.51 −20.72 −29.59
Cash flow Y 10.00 5.00 8.00 0.00 0.00 2.00 0.00 0.00
LT debt coupon x −6.24 −6.24 −6.24 −6.24 −6.24 −6.24 −6.24 −6.24

Current assets - Liab. 3.76 −1.24 0.39 −6.24 −13.14 −18.75 −26.96 −35.83
Dividend paid d −3.76 −0.39
Default amount z 0.18 9.05
Term. probability p 2.0% 100%

Credit line (end) 0.00 −1.24 0.00 −6.24 −13.14 −18.75 −26.78

The agent draws on the credit line when the cash flow is less than the coupon payment (periods 2 and
4-8) and pays a dividend when the credit line is repaid (periods 1 and 3). If the agent exceeds his credit
line limit (periods 7 and 8), then the firm may be terminated.

If the cash flow is less than the coupon payment on the debt, as in
period 2, the agent draws on the credit line. The credit line balance accrues
interest at a rate of 10.5%. The agent pays down any existing balance on
the credit line using the firm’s cash flows net of coupon payments. If the
credit line is fully repaid, as in periods 1 and 3, any excess cash flow is
paid as a dividend. If the credit line balance exceeds the credit limit, as in

18 The additional capital raised by drawing cL = 26.78 from the credit line is only 80.52 − 62.30 = 18.22. The
difference is due to the fact that by drawing on the credit line, the likelihood of default increases, reducing
the value of the debt.
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periods 7 and 8, the firm defaults on the excess amount z. In that event,
the contract is terminated based on a notional equity value of19

N = λ−1(aL − R) = 9.05 − 0 = 9.05

Starting with a zero draw on the credit line, the agent’s expected
utility from the dividends under the above contract is a1 = 35.8. The debt
coupon is set so that this amount is equivalent to the perpetuity value of
the expected dividend that the agent earns when the credit line is repaid:

(10 − 6.24)/0.105 = 35.8

The fact that incentive compatibility constraints bind implies that this
amount also equals the agent’s expected payoff from immediately drawing
the credit line to its limit, diverting the entire cash flow in the next period,
and defaulting:

26.78 + 10/1.105 = 35.8

Note also that, as shown in period 8 of the example, reporting a 0 cash flow
once the credit line is at its limit leads to a 100% probability of termination.

Given a zero draw on the credit line, the combined value of the firm to
the agent and investors is 35.8 + 62.3 = 98.1. Thus, the inefficiency caused
by the agency problem reduces the agent’s utility by 100 − 98.1 = 1.9. This
loss is due to the delay in the payments to the agent, plus the possibility of
inefficient termination of the project.

The example above focused on the infinite horizon steady-state for
simplicity. With a finite horizon, the debt payment and credit limit decrease
as we get close to the project horizon, T . Figure 6 illustrates the debt and
credit limit based on the project’s remaining life for an example in which
the assets, if liquidated, generate observable cash flows of 7.5 per period,
so that Lt is the present value of this annuity (consistent with a steady-state
liquidation value of 75). Starting from the steady-state values, the credit
limit falls to zero, and the debt matures, by the final period (specifically,
xT ∗ = 0 and cL

T ∗− = cL
T ∗ = 0).

3.3 Special cases and comparative statics
To understand better the role of each security, we consider some special
cases. First, we show that the level of long-term debt depends on the
agent’s impatience. If γ = r, the long-term debt is used solely to borrow
against the project’s observable (minimum) cash flows, Y 0

t .

19 For this choice of parameters, commitment to the contract is necessary, as both the agent and investors
would prefer to renegotiate termination. As we will show in Section 4.1.3, commitment is not needed for
an optimal contract if the assets have a liquidation value Lt ≥ 84. Alternatively, without commitment one
could calculate the optimal renegotiation-proof contract in a finite horizon setting using the techniques of
Section 2.9.
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Credit limit and debt payments with a finite horizon
As the remaining project life declines, the credit limit, cL

t , and the debt payment, xt , shrink to 0. For this
example, the liquidation value Lt equals the present value of 7.5 per period for the remaining project life.

Theorem 2. Suppose the agent’s outside option does not bind at the dividend
boundary, Rt− < a1

t− . Then

(i) If γ = r, then xt = Y 0
t for all 0 < t ≤ T .

(ii) If γ>r, then xt ≥ Y 0
t .

If the agent’s discount rate matches the investors’ (γ = r), then once
the credit line is paid off, there is no longer any possibility of default—the
cash flow exceeds the required debt payment (Yt ≥ xt = Y 0

t ), and the firm
uses the excess cash flow (Yt − Y 0

t ) to pay a dividend each period from
then on. Because there is no benefit to early consumption, the agent does
not consume until the chance of default is eliminated. Once the credit line
is repaid, the contract achieves the first-best payoff and the agent receives
the fraction λ of the firm’s unverifiable cash flows (or his outside option).
In this case the dividend boundary is straightforward to compute:

Corollary 3. If γ = r, then a1
t + be

t (a
1
t ) = V FB

t , and a1
t can be calculated

according to

a1
t =

T∑
s=t+

e−r(s−t)λ(μs − Y 0
s ) + e−r(T −t)RT .

In contrast, if the agent is impatient (γ>r) then the required long-term
debt payments will generally exceed Y 0

t . Thus, even if the credit line is fully
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repaid, the firm may face the risk of a cash shortfall (Yt < xt ) that requires
it to draw on the credit line. The higher level of long-term debt in this case
increases the risk of default, but benefits the agent by providing additional
consumption at the start of the project.

Also note that when γ>r, it is possible that T ∗<T . That is, it may be
optimal to terminate the project earlier than its first-best life. For example,
if λ = 1 and Y 0

t = 0, then as γ → ∞, T ∗ → 0 and the project terminates
immediately. The intuition is that it is impossible for investors to induce
payment from an extremely impatient agent, so investors will enforce early
termination.

In Theorem 2 we assume that the agent’s outside option, Rt− is not too
high. If the agent’s outside option is sufficiently high, it may be necessary
to delay his compensation to keep him from quitting early. In terms of our
implementation, the subsequent period’s debt payment xt is reduced (and
may fall below Y 0

t ), making continuation more attractive to the agent.
Figure 7 illustrates these results in the context of our infinite-horizon

example. If the agent’s discount rate equals the market interest rate,
γ = r = 10%, then the optimal long-term debt coupon is zero, so only
the credit line is used, and no cash is taken out of the firm in the initial
financing. Once the credit line is paid off, the agent is debt-free and the
project will never be terminated. But if the agent is impatient (γ>r),
it is optimal to use risky long-term debt. This debt will fund an initial
cash payout, but also implies that the firm will eventually default and the
contract will be terminated. The inefficiency that results from eventual
termination diminishes the maximum investment that can be financed.
Figure 7 shows this maximum initial capital that can be financed, as well
as the initial capital that can be financed with no initial draw on the credit
line. The difference between these two capital amounts is less than the
firm’s available credit due to the lower credit quality of the firm if it draws
on the credit line initially. Note that the optimal debt structure is extremely
fragile at γ = r; if the agent is even slightly impatient relative to investors,
substantial long-term debt will be used.

The prior results provide insight into the role of the long-term debt. Next
we show that the role of the credit line is to provide financial slack given
the uncertainty and potential growth of the cash flows. Indeed, if the cash
flows of the project were constant, the credit line would not be needed:

Theorem 3. Suppose that renegotiation is not possible (or the constraint
does not bind) and γ>r. Then the optimal credit limit converges to zero,
cL
t → 0, as the volatility of the cash flows goes to zero as long as the expected

cash flows do not grow too quickly, μt+ − Y 0
t+ ≤ eγ (t+−t)(μt − Y 0

t ) for all
0 < t<T ∗.

The above result requires that expected cash flows do not grow too
quickly. Otherwise an optimal contract may provide some financial slack
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Figure 7
Effect of the agent’s discount rate γ on the optimal contract
If the agent and investors have the same discount rate, γ = r (in this example r = 10%), there is no
long-term debt. As γ increases, the debt coupon increases and the limit on the credit line decreases. The
maximum amount of initial capital (i.e., debt capacity since there is no outside equity in this example)
decreases in γ .

in earlier periods because the threat of termination in later periods will be
sufficient to provide incentives.

Figure 8 illustrates the optimal contract as a function of cash flow
volatility for our infinite-horizon example.20 Because of the possibility of
default and termination, higher volatility projects entail greater contracting
costs. So while the credit limit increases with risk (providing more financial
slack), the long-term debt and maximum investment decreases.

Figure 9 illustrates the effect of the termination value of the assets,
Lt , on the optimal contract. An increase in Lt increases the amount of
external financing the firm can raise, as well as its reliance on long-term
debt. In contrast, the limit on the credit line is reduced. The intuition for
this result is that an increase in the liquidation value of the assets reduces
the inefficiency of termination, and so reduces the need for financial slack.

The homogeneity of the model implies that increasing the termination
payoffs and the project cash flows proportionally will have the same
proportional effect on the optimal contract. Combining this fact with the
result from Figure 9, we can deduce the effect of increasing the project’s
cash flows on the optimal contract. For example, consider doubling
the project’s cash flows without increasing the assets’ termination value.

20 Here we let the probability of cash flow y be proportional to exp(k(y − μ)2), where k ranges from −∞
(Yt is riskless) to ∞ (Yt is binary with outcomes 0 or 20). Uniform corresponds to k = 0. We depict the
outcomes as a function of the standard deviation of the cash flows.
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Effect of cash flow volatility on the optimal contract
If the cash flow is riskless, the line of credit is not used. As cash flow volatility increases, the debt coupon
decreases and the limit on the credit line increases. The maximum amount of initial capital (debt capacity)
decreases in cash flow volatility.
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Figure 9
Effect of the asset termination/liquidation value L on the optimal contract
As the asset liquidation value L increases, the long-term debt coupon increases and the limit on the credit
line decreases. The maximum amount of initial capital (debt capacity) increases in the liquidation value.

Because we have increased the relative inefficiency of termination, the
optimal contract will have a greater relative reliance on the credit line; that
is, such a change will more than double the credit limit, and will increase
the long-term debt coupons by a factor of less than two. A similar result
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would hold if the project’s cash flows were increased by a constant—the
debt coupons would increase by less than the increase in the cash flows.

From Theorem 1, the agent’s ability to divert the cash flows,
parameterized by λ, directly determines the optimal fraction of outside
equity, 1 − λ. The indirect effect of λ on the optimal debt structure of the
firm can be understood from the following result:

Theorem 4. The optimal long-term debt and credit limit with λ < 1 and
termination payoffs (Rt , Lt) is equal to the optimal long-term debt and credit
limit with λ = 1 and termination payoffs:

R′
t = Rt/λ, and L′

t = Lt − 1 − λ

λ
(V FB

t − Lt). (19)

Thus, when Rt = 0 as in our example, decreasing λ has the same effect on
the optimal debt structure as decreasing the assets’ termination value—and
so from Figure 9 leads to a higher credit limit and lower long-term debt.
For example, with Rt = 0 and V FB

t = 100, (19) implies that reducing λ

from 1.00 to .25 leads to the same debt structure as lowering Lt from 75
to 0. Our model therefore predicts a positive correlation between outside
equity and financial slack. Intuitively, a reduction in agency costs (lower λ)

reduces the share of the equity the agent needs to hold to provide adequate
incentives, and also makes continuing the project more attractive (relative
to terminating), increasing the need for financial slack.

4. Termination Payoffs

In this section we discuss how different specifications for the termination
payoffs (Rt , Lt ) correspond to different applications of our model.
Depending on the application, (Rt , Lt) may be exogenous or endogenous.

4.1 The asset liquidation value
One obvious interpretation for Lt is as a liquidation value based on the
value of the assets in some alternative use. If the alternative use generates
observable cash flows with expected value νt in period t , then

Lt =
∑
s>t

e−r(s−t)νs . (20)

That is, when the project is terminated, the assets are sold for their value
in the alternative use.

4.1.1 Ongoing investment. Another interpretation of the formulation
in (20) is that the business requires ongoing investment. That is, suppose
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that an initial investment ν0 is required to start the firm, and that each
period, an investment of νt is required to keep the firm in operation. Then

I = ν0 + L0 (21)

is the initial capital investors must set aside to finance the future operations.
In any period t , however, investors can ‘‘pull the plug’’ and terminate the
contract, and in this way recover Lt .21

4.1.2 Monitoring. The formulation in (20) can also be interpreted as a
monitoring technology that can be introduced to monitor the firm’s cash
flows and eliminate the agency problem. Monitoring is costly, reducing
the expected cash flow in period t from μt to νt . In this case, termination
means introducing the monitoring technology, making the business worth
Lt . Thus, the optimal contract determines the circumstances under which
the monitoring technology is installed. Prior to its installation, investors
use the threat of monitoring to provide incentives to the agent.

4.1.3 Investors can hire a new agent. In the above cases, the liquidation
value is exogenous. Now consider an application with an endogenous
liquidation value Lt . Suppose that upon termination, investors fire the
current agent and hire a new equivalent agent. Assume the pool of
available new agents is competitive, and that a dismissed agent receives a
reservation utility Rt = 0. This scenario reflects a case in which the assets
are unique in some way but that there are substitutes for the agent. When
hiring a new agent, investors can offer the agent the contract that yields the
highest possible continuation utility for investors. Therefore, the payoff to
the investors when the contract with the current agent is terminated is

Lt = max
a

be
t (a). (22)

Under this specification, termination is always renegotiation-proof, and
we have the following further characterization of the parameters in the
optimal contract:

Proposition 6. Suppose Rt = 0 and Lt is given by (22) for all t . Then the
optimal contract with commitment is also renegotiation-proof and satisfies

aL
t = e−γ (t+−t)λ(μt+ − Y 0

t+), Lt = be
t (a

L
t ) and lt = 0.

In addition, the optimal debt and credit line terms are independent of λ.

So as the severity of the agency problem varies—that is, λ varies, the
terms of the debt contracts are unchanged. The only changes involve

21 We can equivalently incorporate future investment by replacing the cash flows with Ŷt = Yt − νt .
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Computing the optimal contract when the agent can be costlessly replaced
This figure illustrates the continuation function for different values of Lt . The endogenous liquidation
value that applies when the agent can be costlessly replaced is the solution to (22).

the fraction of equity held by the agent and the amount of funding that
investors will provide (i.e., the pricing of the debt and equity).

While replacing the agent entails no efficiency loss, the new agent
captures rents equal to aL

t , the present value of diverting next period’s
unverifiable cash flow. As a result the prospect of termination reduces the
payoffs available to the initial agent and the investors.22

We can compute the optimal continuation function for this setting
numerically by adjusting the termination payoff Lt until (22) holds. We
illustrate the solution for the infinite-horizon example of Section 3.2 in
Figure 10. In that case, the ability to replace the agent is equivalent to a
liquidation payoff of Lt = 84. The (steady-state) debt coupon is 6.45, and
the credit limit is 24.77. At termination, the current agent is fired, and
a new agent hired. The new agent is given a contract with initial value
aL

t = 9.05 = 10/1.105, which implies a payoff of Lt = be
t (a

L
t ) = 84.

Note that the debt coupon is higher, and the credit limit is lower, than
for the earlier example in which we assumed Lt = 75. Because firing and
replacing the agent is more efficient than liquidating the assets, the optimal
contract provides less financial flexibility.

Here we assumed that an agent can always be replaced with an equivalent
agent who can manage the project. In other settings with scarce managerial
talent, it may be optimal to reinstate a previously terminated agent.

22 See Spear and Wang (2005) for an optimal contracting model of firing and replacing a risk-averse agent.
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However, Gromb (1999) shows that in a stationary environment with
renegotiation and no replacement agents, it is not optimal to temporarily
lay off an agent and ‘‘mothball’’ the assets, starting up again in the future.
Rather, it is optimal for termination to specify a permanent severing of
the relationship.

Variations on the above can be considered. For example, each period
investors may have the option of either replacing or monitoring the agent.
In that case,

Lt = max
(

max
a

be
t (a), e−r(t+−t)(νt+ + Lt+)

)
. (23)

Another variation is to suppose that there are costs associated with
hiring a new agent. Let 	a

t and 	b
t represent the switching cost of the new

agent and the investors, respectively. Then

Lt = max
a

be
t (a) − 	b

t s.t. a ≥ 	a
t , (24)

where the constraint a ≥ 	a
t is required to induce the new agent to

participate.
Finally, if there are no switching costs and new agents have sufficient

access to capital, there is an obvious solution—rent the assets to an agent
each period, with rent equal to the value of next period’s unverifiable
cash flow. Specifically, our optimal contract reduces to cL

t = 0 and
xt = Y 0

t + e−γ (t+−t)(μt+ − Y 0
t+); by forcing the agent to pay for the cash

flows in advance, the agency problem is essentially eliminated.

4.2 The agent’s reservation value
Now we turn our attention to alternative specifications of Rt . In the
simplest case, the agent can be employed in another activity with expected
wage ηs in period s. Then,

Rt =
∑
s>t

e−γ (s−t)ηs . (25)

4.2.1 Sovereign lending. Consider the Bulow and Rogoff (1989) model.
A consortium of banks (the investors) lend to an LDC (the agent). The
LDC generates export revenues Yt that can be used to repay the banks. If
the LDC defaults, the banks can seize a fraction β of the exports, keeping a
fraction α ≤ β after allowing for deadweight costs associated with seizure.
Thus, we can use (20) and (25), letting ηt = (1 − β)μt and νt = αμt , and
solve for the optimal contract in that setting.

Generally, we would suppose ηt + νt ≤ μt (seizure is costly). But even
if ηt + νt ≥ μt , termination is not necessarily efficient if γ>r, as the agent
would prefer to receive cash up front rather than receive ηt over time.
However, the next result shows that when the level of production in

2112



Optimal Long-term Financial Contracting

termination is sufficiently high, the optimal contract involves immediate
termination, and the agent is unable to borrow against future income.

Proposition 7. Suppose (20) and (25) hold and

ηt + νt ≥ μt + (1 − e(γ−r)(t−t−))(νt − [Y 0
t + (1 − λ)(μt − Y 0

t )]) for all t.

Then it is optimal to terminate the project immediately. Thus, the agent’s
initial borrowing capacity is L0.

4.2.2 Agent can start a new business. Now consider a case in which
Rt is determined endogenously. Suppose the agent’s human capital is
the scarce resource, and the physical assets are replaceable. In this case,
Lt corresponds to the liquidation/replacement value of the assets. If the
project is terminated, the agent loses control of the existing assets but can
start a new firm. To do so, the agent must raise Lt from investors to replace
the assets. This can be modeled as

Rt = max{a : be
t (a) ≥ Lt } ∪ {e−γ (t+−t)Rt+}. (26)

That is, the agent earns the highest payoff consistent with being able
to purchase new assets by borrowing Lt from new investors. If the agent
cannot finance a new project this period, the agent waits until next period
to attempt financing. In this case, the agent’s ability to start a new firm
substitutes for renegotiation—that is,

Proposition 8. Suppose Rt is given by (26) for all t . Then the optimal
contract with commitment is also renegotiation-proof.

This model is closely related to Hart (1995; Chapter 5). There, however,
cash flows are deterministic so that Yt = μt . Hart’s emphasis is on the
‘‘inalienability of human capital,’’ or the agent’s right to quit. Here we
model that by assuming the agent can quit and start a new firm if new
capital can be raised to purchase equivalent assets for price Lt (this is
equivalent to Hart’s assumption regarding the agent’s bargaining power).
The difference between our model and Hart’s is the following. We assume
that asset purchases are observable, so if the agent quits and starts a new
firm in period s, the entire amount Ls must be financed externally. Funds
contributed by the agent could be seized by creditors of the initial firm.
Hart’s specification is equivalent to assuming that the agent can contribute
previously diverted capital to start the new firm.

This is best illustrated by example. Suppose Yt = μt = 10 (deterministic
cash flows), λ = 1 (no deadweight diversion cost), νt = 6 (the periodic cash
flow generated by the best alternative use of assets—this determines the
liquidation values), T = 3, r = 0, and γ is very close to zero but positive
(the assumption on γ selects Hart’s ‘‘slowest’’ repayment policy). Since
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Table 2
Comparison with Hart (1995)

t 0 1 2 3

Yt 10 10 10
Lt 18 12 6 0
xt 8 10 0
Hart 95 6 6 0

Consider a riskless project with periodic cash flows of 10 and liquidation value
declining by 6 per period. In our model the agent’s debt capacity is 18. In Hart’s
model, debt capacity is 12 due to his assumption that the agent can use diverted
funds to start a new firm.

λ = 1, by Theorem 1 the agent retains all of the equity, and since there
is no uncertainty, by Theorem 3 the credit line is zero. Table 2 calculates
the optimal long-term debt payment, xt , from our analysis as well as the
optimal payments from Hart (1995).

To fund the project initially, the agent must invest 18 to buy the assets.
In our model, the agent can finance the full investment. In Hart (1995),
the agent can finance at most 12.

To understand the difference, consider the payment in period 2. In our
model the agent will pay x2 = 10 because the agent is threatened with
losing the project, which is worth 10 in period 3. This result differs from
Hart (1995), who assumes that the agent can divert cash from the current
project and use it to fund a new firm. In that case, the agent will never pay
out more than the current value of the assets—so in period 2, the agent
will pay out at most 6. In our model the agent cannot start a new firm
using diverted funds because the creditors of the initial firm would seize
the new firm’s assets.

Working backward in our model, in period 1 the agent is also unable to
quit and raise 12 to start a new firm since he can promise to repay at most
10. Thus, the threat of termination in period 1 could induce the agent to
pay up to 10. However, x1 + x2 cannot exceed 18 since otherwise in period
0 the agent would quit and start a new firm by raising 18 and promising
to repay 8 + 10 to a creditor. In Hart’s model, the agent will again pay
no more than 6 in period 1. Otherwise he could quit, and use cash of 6
diverted from the current project and the promise to repay 6 in period 2 to
start a new firm.

Thus, the critical difference between our models concerns whether the
initial creditors can seize cash that is diverted and invested in the assets of
a new firm. In our analysis they can, and so creditors have more power
than in Hart’s framework, and our contract leads to superior outcomes.
(In addition, relative to Hart (1995), our model generalizes to the case of
uncertain cash flows and different discount rates.)
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4.2.3 Agent finances a sequence of projects. Another variant of our model
subsumes the model of Gromb (1999) in which participation of both the
investors and the agent is necessary (no party has an outside option). There
is a sequence of positive NPV projects. The project in period t requires
investment νt and produces cash flow Yt . (Gromb restricts this further by
assuming stationarity and Yt binary.) Each period a decision must be made
whether to finance the current project or to ‘‘mothball’’ and remain idle.

Absent renegotiation, Gromb’s model coincides with that discussed
in (20)–(21) above, since investors can commit to permanent liquidation
and refuse to finance any future projects (which Gromb shows is optimal).
With renegotiation, this environment can be modeled with Lt as in (23),
and

Rt =
{

a∗
t if be

t (a
∗
t ) > e−r(t+−t)(νt+ + Lt+)

e−γ (t+−t)Rt+ otherwise

where a∗
t = arg maxa be

t (a). That is, investors get the highest possible
continuation payoff with the agent employed, or they mothball and
recover νt . Correspondingly, the agent earns rents only when the project
is not mothballed.

4.2.4 Renegotiation procedures. In our analysis, the possibility of
renegotiation constrains the contract by requiring that it always be Pareto
efficient. In contrast, renegotiation in Bulow and Rogoff (1989); Hart
(1995) and Hart and Moore (1998) is modeled as a procedure that is
exogenously imposed on the contracting problem. For example, Bulow
and Rogoff assume that renegotiation means that the agents play an
alternating offer bargaining game. One could accommodate this view of
renegotiation by specifying (Rt , Lt ) to be the payoffs from the particular
bargaining game selected—so for instance, in period t , the agent can
‘‘quit,’’ and invoke the period-t bargaining game.

5. Asset Substitution and Hidden Effort

Thus far, we have taken the distribution of the cash flows Yt to be
exogenous. But there may be a moral hazard component to these cash
flows. In this section we consider briefly some consequences of unobserved
investment decisions by the agent.

5.1 Asset substitution (risk shifting)
Consider a pure form of the asset-substitution problem: the agent can
influence the riskiness of future cash flows, but not their mean. Specifically,
suppose in period s, the agent can choose a parameter φs that does not
affect the mean of the future cash flows and leaves Y 0

t as a lower bound on
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the support of the cash flow distribution,

E[Yt |φs ] = E[Yt ] = μt and Pr(Yt ≥ Y 0
t |φs) = 1 (27)

but does affect other moments of the cash flow distribution; for example,
Var(Yt |φs) may vary with φs .

In standard models of risky debt, equity holders have an incentive to
increase the riskiness of the cash flows as this transfers wealth from the
debt holders (see Jensen and Meckling (1976)). However, even though
long-term debt and the credit line are risky in our model, there is no
asset-substitution problem under the optimal financial contract:

Proposition 9. Under the optimal contract of Section 2, the agent is
indifferent to the choice of the pure asset substitution parameter φs

satisfying (27). The agent can therefore be assumed to choose φs optimally
for investors and eliminate any mean-preserving spreads. Thus, the contract
of Section 2 remains optimal.

The intuition is as follows. Increasing risk generally benefits equity
holders because of the convexity of their claim—they participate more in
the gains than in the losses. In our model, incentive compatibility requires
that the agent pay for losses through the possibility of termination. So
while the agent’s period-t cash payoff is convex in the period-t cash flow,
the agent’s period-t total payoff, cash plus continuation utility, is linear in
the period-t cash flow. Thus there is no gain for the agent from increasing
risk. There would be a loss for the debt holders, however, since their
payoff function bd

t is concave in the cash flows (due to the deadweight
costs associated with termination).

5.2 Hidden agent effort
Consider next unobserved agent effort. Suppose the agent can expend
effort cost εs ∈ ξ s in period s, where εs is denominated in consumption-
equivalent units and we assume 0 ∈ ξ s . Suppose this effort affects current
output Ys , but not future output. We assume that effort leads to higher
output so that εs increases Ys in the sense of First Order Stochastic
Dominance (FOSD).

Because the agent’s payoff under our optimal contract in period s is

ad
s = ay

s + λ(Ys − μs) − εs,

the agent chooses ε∗
s to solve

max
ε∈ξs

λE[Ys |εs = ε] − ε. (28)
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Under certain conditions, the contract derived in this article remains
optimal in the case of hidden effort. We discuss two important scenarios
below.

5.2.1 Hidden effort and hidden cash flows. Suppose the agent can divert
cash at rate λ as well as make a hidden effort choice. If λ is close to one, the
agent’s incentives for effort provision under our contract are close to first
best. If the solution to (28) involves maximal effort, the optimal contract
is unchanged by the addition of hidden effort:

Proposition 10. Suppose λ is sufficiently high that the solution ε∗
s to (28) is

such that ε∗
s = max {ε ∈ ξ s}. Then the optimal contract with hidden effort

and hidden cash flows is the contract of Section 2 with μs = E[Ys |ε∗
s ] and

agent termination value Rt + ∑
s>t e−γ (s−t)ε∗

s .

This case is likely to occur when the effort choice is binary. As long as
λ is sufficiently high to motivate high effort, the contract is optimal.23 See
Shim (2006) for an application of this model to banking regulation.

5.2.2 Hidden effort and public binary cash flows. Suppose the only agency
problem arises from hidden effort and cash flows are observable and take
on only two values. Effort affects the likelihood of a high versus low cash
flow. In this case, in many circumstances our contract is also the optimal
principal-agent contract to implement a given level of effort. The intuition
for the result is that with binary cash flows, the agent’s payoff must be
linear in the cash flows. Thus this agency problem is equivalent to ours
with a particular λ.

For simplicity, let the agency problem be stationary so that ξ s and
E[Ys |εs = ε] do not depend on s. Let λ∗(ε) be the minimal λ such that the
solution to (28) is ε∗ = ε. Then we have the following result:

Proposition 11. The optimal principal-agent contract that implements effort
level ε is the contract of Section 2 with λ = λ∗(ε), μs = E[Ys |ε] and agent
termination value Rt + ∑

s>t {e−γ (s−t)ε}.

For example, suppose the effort choice is binary. Let ε ∈ {εh, εl} and
	ε = εh − εl . Let 	μ = E[Ys |εh] − E[Ys |εl ] for all s. Then the optimal

23 The reason we require effort to be maximal, as opposed to just efficient (i.e., solving (28) for λ = 1), is
that with privately observed cash flows it may be optimal to induce higher than first-best effort in order
to avoid the deadweight cost of termination. Optimal effort exceeds the first-best if effort increases output
in the sense of FOSD, and if the first-best effort is interior. On the other hand, if effort also increases
risk, then it is possible that optimal effort is below the first-best level. Povel and Raith (2004) examine this
model with a binary effort choice and consider cases in which (i) first-best effort is low effort; and (ii) high
effort entails higher risk as well as higher return.
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principal-agent contract that implements high effort is equivalent to our
contract with24

λ = λ∗(εh) = 	ε/	μ.

Finally, note that the above analysis considered effort that affects current
output. If effort also affects future output, then the contract of Section 2
no longer induces the first-best effort level. There are two reasons for
this. First, the agent discounts future cash flows at rate γ ≥ r. Second,
in general there is a positive probability that the agent will be terminated
prior to receiving the benefit of the effort.

6. Concluding Remarks

Our analysis establishes that in the presence of the incentive problems
associated with privately observed cash flows, standard securities can
implement an optimal long-term financial contract. We have a theory of
long-term debt combined with outside equity.

Static capital structure ‘‘tradeoff’’ models generally predict a positive
relation between earnings and leverage. But empirical attempts to find such
a relation have been largely unsuccessful, casting doubt on such models.
Our dynamic model suggests a more subtle relation between earnings and
leverage, where expected earnings and realized earnings have opposing
effects. Our model predicts that other things equal, firms with higher
expected earnings will carry more debt. However, firms will optimally use
earnings to pay down debt. Hence, other things equal, firms with higher
realized earnings will carry less debt. Thus, leverage ratios will be strongly
history dependent.

As an example of the evolution of a firm’s optimal capital structure,
reconsider the example from Section 3.2, dividing a period into 100
sub-periods with sub-periodic cash flow Yt ∈ {−0.9, 1.1}, where the two
outcomes are equally likely.25 The securities are priced (ex dividend) by
discounting the expected future payments at the rate r. This corresponds to
pricing all of the equity at the market price (since the agent discounts cash
flows at rate γ>r, the agent places a lower value on his nontraded shares).

Figure 11 illustrates two sample paths for a firm’s capital structure
(in market values) given different cash flow realizations. With low cash
flows, the firm accumulates debt (and approaches default). With high
cash flows, the firm pays down its debt. In this example, the firm begins

24 There is a remaining issue regarding whether it is optimal to implement the same effort level every period.
In the binary effort setting this is the case if low effort is sufficiently unproductive. See the working paper
version of Biais et al. (2007) and DeMarzo and Sannikov (2006) for more on this point.

25 This corresponds to an annual expected cash flow of 10 with a volatility of 10. For this case, the optimal
financial structure entails perpetual debt with annual coupons totaling 3.88. The credit line has a limit of
60.25 and an interest rate of 10.5%. The notional value of the equity is 1.
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paying dividends when the debt-value ratio falls to 39%. As shown, a
firm’s capital structure is highly dependent on its history. Also, as shown,
a firm’s capital structure can vary substantially over time even though the
firm’s cash flow distribution is not changing. Two firms with the same
cash flow distribution and termination payoffs might have very different
capital structures depending on their histories. More generally, Theorem
1 establishes how capital structure dynamics depend on the distribution of
cash flows (past and future) as well as their history.
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Figure 11
Possible sample paths for the firm’s optimal leverage ratio
A firm’s optimal capital structure is history dependent. If the firm has low cash flows, it optimally
accumulates debt (the higher path); and if the firm has high cash flows, it optimally pays down its debt
(the lower path). Once the debt is sufficiently low (in this example, a 39% debt-value ratio), the firm begins
paying dividends.

We assumed that the business is run at a fixed scale. Albuquerque and
Hopenhayn (2004); Quadrini (2004); Clementi and Hopenhayn (2006), and
DeMarzo and Fishman (2007) consider dynamic models in which the scale
of the business is determined as part of the optimal contract. These models
generate implications regarding the relation between investment decisions,
past profits, leverage and dividend payouts, and firm size and age. Among
the implications, controlling for the profitability of current investment, the
optimal contract entails more current investment if current and past profits
are high. Also, investment will be positively serially correlated over time.
Like the threat of termination, the promise of funding for new investment
can improve an agent’s incentives.

In our model, the cash flows over time are independent. This simplifies
matters by leading to symmetric information regarding future payoff
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possibilities even if the agent diverts a cash flow (and thus misleads
investors regarding the current cash flow). An important generalization
is to allow for correlated cash flows. Tchistyi (2006) adapts our model to
the case of cash flows that follow a binary Markov switching process. He
characterizes the optimal contract and shows that it can be implemented
using a credit line whose interest rate increases with the amount of
borrowing.

When we considered renegotiation-proof contracts, we assumed that
renegotiation is costless. However, perhaps another important distinction
between types of securities is the cost of renegotiating. If so, an interesting
issue is whether there is an optimal implementation that relaxes the
renegotiation constraint. For instance, it may be easier for the agent to
renegotiate with the bank that issued the credit line than with dispersed
debt or equity holders. In this case, it may be optimal to make the credit
line senior in the event of default so as to increase the incentives for the
bank to follow through with a threat of termination.

In our model, the agent does not consume unless dividends are paid.
It would be straightforward to add a constraint that the agent be paid
some fixed amount each period: we can reinterpret the cash flows as
net of the fixed amount. Even better would be to introduce agent risk
aversion. Then the optimal contract would need to provide both incentives
and consumption smoothing. It would also be interesting to embed this
model in a general equilibrium environment and consider the effect of
productivity shocks on the dynamics of aggregate output.

Appendix:

Proof of Proposition 1. This is standard, and follows the argument in the text. �

Proof of Proposition 2. The construction of bd
t follows as in Figure 2. First, consider the

termination option (Lt , Rt ). Since the agent can always terminate and receive Rt , payoffs
below this are infeasible: bd

t (a) = −∞ for a<Rt . For payoffs above Rt , we need to find the
line from (Lt , Rt ) to the curve be

t with highest slope. This highest slope is given by lt . If
lt> − 1, then the line with the highest slope connects to be

t at aL
t . Thus, payoffs ad

t ∈ [Rt , a
L
t ]

are provided by mixing between termination and continuing with aL
t . The probability of

termination is given by pt in (4), which solves ptRt + (1 − pt )a
L
t = ad

t . In this case the
investors’ expected payoff is

ptLt + (1 − pt )b
e
t (a

L
t ) = be

t (a
L
t ) + aL

t − ad
t

aL
t − Rt

(Lt − be
t (a

L
t )) = be

t (a
L
t ) − lt (a

L
t − ad

t ).

Since lt> − 1, there is a1
t ≥ aL

t such that in the region [Rt , a
1
t ] it is cheaper to compensate

the agent by reducing the termination probability rather than paying him directly. Above a1
t ,

it is cheaper to compensate the agent directly with the payment dt given by (5). In this case
the investors’ payoff is

bd
t (ad

t ) = be
t (a

1
t ) − dt = be

t (a
1
t ) − (ad

t − a1
t ).
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Finally, suppose that lt ≤ −1. In this case, paying the agent directly is cheaper for any
payoff above Rt . Thus, it is optimal to terminate with probability 1 (which is equivalent to
aL

t = ∞ in the definition of pt ), and the investors’ payoff is

bd
t (ad

t ) = Lt − dt = Lt − (ad
t − Rt)

for ad
t ≥ Rt = a1

t . �

Proof of Proposition 3. Here we need to solve the optimization problem (7). For completeness,
we begin by verifying that it is without loss of generality to assume that the agent pays the
entire cash flow Yt at the solution (although this is already shown in Proposition 1). Suppose
there is a solution in which the agent pays ŷt (Yt ) ≤ Yt and receives ad

t (ŷt ). Consider the new
reward schedule ad∗

t (Yt ) = ad
t (ŷt (Yt )) + λ(Yt − ŷt (Yt )). Given this reward schedule, it is easy

to see that truthful reporting is optimal, and the agent’s payoffs are unchanged. The change
in the investors’ payoff is given by

[Yt + bd
t (ad∗

t (Yt ))] − [ŷt + bd
t (ad

t (ŷt ))]

= Yt − ŷt + bd
t (ad

t (ŷt ) + λ(Yt − ŷt )) − bd
t (ad

t (ŷt ))

≥ 0

where the last inequality follows since bd
t

′(a) ≥ −1 and λ ≤ 1.
Given truthful reporting, the (IC) constraint is equivalent to g(y) ≡ ad

t (y) − λy weakly
increasing. The constraint (PK) then becomes E[g(Yt )] = a

y
t − λμt , and the investors’ payoff

is

E[Yt + bd
t (λYt + g(Yt ))] = μt + E[bd

t (λYt + g(Yt ))].

Since the mean of g is fixed by (PK), and since bd
t is concave, the optimal choice of g is

to minimize the risk of λYt + g(Yt ) subject to the constraint that g is weakly increasing. This
is satisfied by making g constant. Thus, ad

t (y) = λy + g(y) = a
y
t + λ(y − μt ). Finally, since

expectation is a positive linear operator, the concavity of b
y
t follows from the concavity of

bd
t . �

Proof of Proposition 4. Follows immediately given the discount rates of the agent and the
investors. �

Proof of Proposition 5. Renegotiation-proofness of a continuation function b is equivalent
to b′(a) ≤ 0 whenever b(a) > −∞. Note first that be

T
′<0. Note also that bd

t
′ ≤ 0 implies that

b
y
t

′ ≤ 0 and hence that be ′
t− ≤ 0. Thus, the only stage at which renegotiation-proofness can be

violated is the construction of bd
t from be

t . Since be
t
′ ≤ 0, the violation occurs only if lt >0. In

that case, the definition of aL
t in Proposition 2 is equivalent to aL

t = inf{a > Rt : be
t (a) > −∞}.

Since termination is infeasible, renegotiation-proofness is equivalent to the requirement that
when lt > 0, bd

t (a) = −∞ for a < aL
t . �

Proof of Theorem 1: First we show that standard securities replicate the optimal mechanism
given the agent’s strategy and then we show that the agent’s strategy is incentive compatible.

Step 1—Replication:
First we claim that given a credit line position of

cd
t = λ−1(a1

t − ad
t )

in the middle of period t , the future outcomes are identical to the optimal mechanism given
the agent has the feasible continuation payoff ad

t (i.e., ad
t ≥ Rt , or ad

t ≥ aL
t in the case of a

renegotiation-proof contract when termination is inefficient).
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Note that if the credit line balance is negative—that is, if there is excess cash after paying

all liabilities—then that cash will be used to pay a dividend. Thus, the agent’s payment is

dt = λ max(−cd
t , 0) = max(ad

t − a1
t , 0)

If t = T ∗, the project is then terminated and the proceeds Lt are claimed by the debt holders.

If t<T ∗, then default occurs if the credit line is overdrawn, and the project is terminated with

probability

pt = max(cd
t − cL

t , 0)

Nt

= max(λ−1(a1
t − ad

t ) − λ−1(a1
t − aL

t ), 0)

λ−1(aL
t − Rt )

= max(aL
t − ad

t , 0)

(aL
t − Rt)

otherwise the overdraft is forgiven. Thus, the ending balance on the credit line is given by

ce
t = max(min(cd

t , cL
t ), 0) = λ−1 max(min(a1

t − ad
t , a1

t − aL
t ), 0)

= λ−1(a1
t − min(max(ad

t , aL
t ), a1

t ))

= λ−1(a1
t − ae

t )

In the following period, the credit line accrues interest at rate γ . In addition, the debt coupon

xt must be paid, and cash flows Yt are received and can be used to pay down the credit line.

This leads to a new balance of

cd

t+ = eγ (t+−t)ce
t + xt+ − Yt+

= eγ (t+−t)λ−1(a1
t − ae

t ) + μt+ + λ−1(a1
t+ − eγ (t+−t)a1

t ) − Yt+

= λ−1[a1
t+ − (eγ (t+−t)ae

t + λ(Yt+ − μt+ ))]

= λ−1(a1
t+ − ad

t+ )

Finally, note that since ad
t is feasible, we know from the optimal mechanism that ad

t+ is
feasible as well.

Step 2—Incentive Compatibility:

For each $1 paid as a dividend, the agent retains λ. Thus, there is no incentive for the

agent to divert funds in lieu of a dividend. Similarly, for each $1 paid on the credit line, the

agent’s continuation payoff grows by λ, and so again there is no incentive to divert, nor is

there an incentive to pay a dividend rather than pay off the credit line. (Note that if the agent

draws on the credit line in excess of current liabilities, even if the credit line is at its limit at

the end of period t , this corresponds to the feasible continuation payoff aL
t . )

Next consider termination. At the conclusion of any period t<T ∗, the agent’s continuation

payoff is at least Rt (by feasibility), so there is no incentive to terminate early. At the end

of period T ∗, if the agent terminates, he receives RT ∗ . Thus the total opportunity cost for

the agent to pay off the final debt claim of LT ∗ rather than terminate, is RT ∗ + λLT ∗ . For

continuation to be preferred to termination, the agent must earn a continuation payoff that

exceeds this amount:

ae
T ∗ > RT ∗ + λLT ∗ . (A1)
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The payoff ae
T ∗ is the present value of the agent’s share of future dividends, which we denote

by η, plus some ultimate termination payoff:

ae
T ∗ = η + E[e−γ (τ−T ∗)Rτ ]. (A2)

Now, investors receive fraction (1 − λ) of the dividends, so that

be
T ∗ (ae

T ∗ ) � 1 − λ

λ
η. (A3)

Also, from (1),

RT ∗ ≥ E[e−γ (τ−T ∗)Rτ ]. (A4)

Combining (A1)–(A4), we get

ae
T ∗ + be

T ∗ (ae
T ∗ ) ≥ 1

λ
η + E[e−γ (τ−T ∗)Rτ ]

>
1
λ

[RT ∗ − E[e−γ (τ−T ∗)Rτ ] + λLT ∗ ] + E[e−γ (τ−T ∗)Rτ ]

≥ RT ∗ + LT ∗

But this contradicts the fact that lT ∗ ≤ −1. Thus, termination in period T ∗ is optimal for the

agent. �

Proof of Theorem 2: Note that since bd is concave,

be ′
t− (ae

t− ) = e(γ−r)(t−t−)b
y
t

′(eγ (t−t−)ae

t− )

= e(γ−r)(t−t−)E[bd
t

′(eγ (t−t−)ae

t− + λ(Yt − μt ))]

≤ e(γ−r)(t−t−)bd
t

′(eγ (t−t−)ae

t− + λ(Y 0
t − μt ))

Since bd
t

′(a) = −1 for a ≥ a1
t , this implies that

be ′
t− (ae

t− ) ≤ −1 if (and only if, when γ = r) ae

t− ≥ e−γ (t−t−)[a1
t + λ(μt − Y 0

t )]

This implies that

a1
t− ≤ e−γ (t−t−)[a1

t + λ(μt − Y 0
t )] (A5)

unless Rt− binds, in which case

a1
t− = aL

t− = Rt− > e−γ (t−t−)a1
t + λ(μt − Y 0

t ).

Rearranging (A5) and using the definition of xt yields xt ≥ Y 0
t , with equality when γ = r .

Note that this also implies that when γ = r ,

a1
t− = max(Rt− , e−r(t−t−)[a1

t + λ(μt − Y 0
t )]),

allowing for an easy recursive calculation of a1
t for this case. Note also that this implies

that if ad

t− ≥ a1
t− , then ad

t ≥ a1
t ≥ aL

t . Thus, once the agent has continuation payoff above
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a1
t , early termination will not occur. This implies that the payoffs are first best—i.e.,

bd
t (a1

t ) + a1
t = V FB

t . Thus T ∗ = T , and Corollary 3 is also established. �

Proof of Theorem 3. Note that cL
T ∗ = 0 by definition. Define

a0
t ≡ e−γ (t+−t)[Rt+ + λ(μt+ − Y 0

t+ )], (A6)

the minimum feasible continuation payoff at the end of period t absent renegotiation in
period t+. Now, for t = T ∗−, note that since bd ′

T ∗ (a) = −1, then be
t
′(a0

t ) ≤ −1. This implies
that

a1
t = aL

t = max(Rt , a
0
t ), and so cL

t = 0. (A7)

We now show that this holds inductively for t−. First, note that

be ′
t− (a0

t− ) = e(γ−r)(t−t−)b
y
t

′(eγ (t−t−)a0
t− )

= e(γ−r)(t−t−)E[bd
t

′(Rt + λ(Yt − Y 0
t ))]

≈ e(γ−r)(t−t−)bd
t

′(Rt + λ(μt − Y 0
t ))

where the last equation holds given a degenerate distribution for Yt . Thus, if
Rt + λ(μt − Y 0

t ) ≥ a1
t , then we have that be ′

t− (a0
t− ) ≤ −1, which implies (A7) in period t−.

Indeed, rather than Yt degenerate, this only requires

Pr(Yt ≥ μt ) ≥ e(r−γ )(t−t−) + bd
t

′(Rt )
+

1 + bd
t

′(Rt )+

So, it remains to establish

Rt + λ(μt − Y 0
t ) ≥ a1

t = max(Rt , a
0
t )

which is implied by

Rt + λ(μt − Y 0
t ) ≥ a0

t = e−γ (t+−t)[Rt+ + λ(μt+ − Y 0
t+ ) ]

Since Rt ≥ e−γ (t+−t)Rt+ from (1), it is enough that

(μt − Y 0
t ) ≥ e−γ (t+−t)(μt+ − Y 0

t+ ).

Note also that when Rt = 0 for all t ,

xt = μt + λ−1[a1
t − eγ (t−t−)a1

t− ] = μt + λ−1[a0
t − eγ (t−t−)a0

t− ]

= μt + e−γ (t+−t)(μt+ − Y 0
t+ ) − (μt − Y 0

t )

= Y 0
t + e−γ (t+−t)(μt+ − Y 0

t+ )

�
Proof of Theorem 4: Let b

d,λ
t be the optimal continuation function given diversion rate

λ < 1 and termination payoffs (Rt , Lt ), and let bd
t be the optimal continuation payoff with

diversion rate λ = 1 and termination payoffs (R′
t , L

′
t ). We prove this result by showing that

b
d,λ
t (ad

t ) = λbd
t (λ−1ad

t ) + (1 − λ)V FB
t (A8)
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and in addition that a
1,λ
t = λa1

t and a
L,λ
t = λaL

t . Note that for final date T ,

b
d,λ
T (a) = LT + RT − a = λ(L′

T + R′
T − λ−1a) + (1 − λ)V FB

t

so that (A8) holds. We now show that it holds inductively. Supposing it holds for b
d,λ
t implies

that

b
y,λ
t (a

y
t ) = μt + E[bd,λ

t (a
y
t + λ(Yt − μt ))]

= λ(μt + E[bd
t (λ−1a

y
t + (Yt − μt))]) + (1 − λ)(μt + V FB

t )

= λb
y
t (λ−1a

y
t ) + (1 − λ)(μt + V FB

t )

Therefore,

b
e,λ

t− (ae

t− ) = e−r(t−t−)b
y,λ
t (eγ (t−t−)ae

t− )

= λe−r(t−t−)b
y
t (λ−1eγ (t−t−)ae

t− ) + (1 − λ)e−r(t−t−)(μt + V FB
t )

= λbe

t− (λ−1ae

t− ) + (1 − λ)V FB

t−

Thus, b
e,λ

t−
′(a) = be ′

t− (λ−1a), which implies that a
1,λ
t = λa1

t and, given lt , a
L,λ
t = λaL

t . Finally,
lt is unchanged since

b
e,λ

t− (a
L,λ

t− ) − Lt−

a
L,λ

t− − Rt−
=

λbe

t− (aL

t− ) + (1 − λ)V FB

t− − (λL′
t− + (1 − λ)V FB

t− )

λaL

t− − λR′
t−

=
be

t− (aL

t− ) − L′
t−

aL

t− − R′
t−

Finally, applying the construction in Proposition 2 yields the result for b
d,λ

t− . �

Proof of Proposition 6. That Lt = be
t (a

L
t ) and lt = 0 follows immediately from (22). Since

lt ≥ 0 for all t, bd
t

′ ≥ 0 as well and so the optimal contract is renegotiation proof. Thus, (22)
is satisfied for the smallest feasible a : aL

t = inf{a : be
t (a) > −∞}. The minimal continuation

payoff at the end of period t is the one that is just feasible after the worst possible reported
cash flow next period:

eγ (t+−t)aL
t + λ(Y 0

t+ − μt+ ) = Rt+ .

Since Rt = 0 for all t , we get the indicated expression for aL
t .

Finally, the conditions of Theorem 4 are satisfied since Rt = 0 and at T ,LT = L′
T =

V FB
T = 0. Using the induction argument from the proof of Theorem 4, this implies that at

T −,

b
e,λ

T − (ae

T − ) = λbe

T − (λ−1ae

T − ) + (1 − λ)V FB

T −

Therefore, LT − = λL′
T − + (1 − λ)V FB

T − . This argument can be repeated to verify (19) for
each t . �

Proof of Proposition 7: Let t = T ∗−. From the proof of Theorem 3, be
t

′(a0
t ) � −1 where a0

t is
given by (A6). Thus, termination is not optimal in period t if and only if

Lt + Rt < max
a

(
a + be

t (a)
) = a0

t + be
t (a

0
t ).
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Since be
t (a

0
t ) = e−r(T ∗−t)(LT ∗ + Y 0

T ∗ + (1 − λ)(μT ∗ − Y 0
T ∗ )), using (20) and (25) the above

can be rewritten as

ηT ∗ + νT ∗ < μT ∗ + (1 − e(γ−r)(T ∗−t))(νT ∗ − [Y 0
T ∗ + (1 − λ)(μT ∗ − Y 0

T ∗ )] )

Thus, if this is not satisfied for all T ∗ > 0, immediate termination is optimal. �

Proof of Proposition 8: If the commitment contract is not renegotiation-proof, it must be that

lt >0 for some t . This implies that aL
t ≥ Rt and be

t (a
L
t ) > Lt . By continuity, this implies there

exists a>Rt such that be
t (a) ≥ Lt , contradicting (26). �

Proof of Proposition 9: From the analysis in Section 2, the agent’s continuation payoff

ad
t = a

y
t + λ(Yt − μt ). Thus, the agent’s expected continuation payoff is unaffected by φs .

On the other hand, b
y
t (a

y
t ) = μt + E[bd

t (a
y
t + λ(Yt − μt ))] and bd

t is concave. Thus, investors

prefer that φs be chosen to eliminate mean-preserving spreads. �

Proof of Proposition 10: From the proof of Proposition 3 the incentive compatibility constraint

implies that the agent’s payoff as a function of Yt is given by λYt + gt (Yt ) for some weakly

increasing function gt . Given such a payoff, by FOSD and the fact that ε∗
s = max {ε ∈ ξ s}

solves (28), the agent will choose effort ε∗
s under any incentive-compatible contract. Thus,

we can regard this effort choice as exogenous and solve for the optimal contract as in the

previous analysis. Since the payoffs are computed gross of effort costs, we adjust the agent’s

termination payoff equivalently (in other words, in the event of termination, the agent saves

the future effort costs in addition to receiving Rt). �

Proof of Proposition 11: With binary cash flows (Yt ∈ {Y 0
t , Y 0

t + 	Yt }), conditional on a

history an optimal contract specifies some continuation payoff al after a low cash flow and

ah = al + 	a after a high cash flow. Let πt (ε) be the probability of a high cash flow given

effort ε. By hypothesis, ε is a solution to

max
ε′

πt (ε
′)λ	Yt − ε′

for λ = λ∗(ε), and is not a solution for λ<λ∗(ε). Since the agent chooses effort to solve

max
ε′

πt (ε
′)	a − ε′

incentive compatibility requires 	a ≥ λ	Yt . Given concavity of the investor’s payoff bt (a), it

is optimal to make this constraint bind, so that 	a = λ	Yt . This is equivalent to optimization

for the cash flow diversion model in Proposition 3 with stealing rate λ. �
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