IFT-6521

PROGRAMMATION DYNAMIQUE

Chapitre 4(b):

Modèles stochastiques: Examples en finance

Pierre L'Ecuyer

DIRO, Université de Montréal

Février 2015

PD pour évaluer une option américano-asiatique

Le prix d'un actif évolue selon un processus stochastique $\{S(t), t \geq 0\}$ à valeurs dans $[0,\infty)$. Ce processus est observé aux instants (fixes) $0=t_0 < t_1 < \cdots < t_n = T$. Un contrat financier (option) de type américain-bermudien procure un revenu immédiat $g_j(S(t_1),\ldots,S(t_j))$ si on exerce l'option au temps t_j , pour $m^* \leq j \leq n$.

PD pour évaluer une option américano-asiatique

Le prix d'un actif évolue selon un processus stochastique $\{S(t), t \geq 0\}$ à valeurs dans $[0,\infty)$. Ce processus est observé aux instants (fixes) $0=t_0 < t_1 < \cdots < t_n = T$. Un contrat financier (option) de type américain-bermudien procure un revenu immédiat $g_j(S(t_1),\ldots,S(t_j))$ si on exerce l'option au temps t_j , pour $m^* \leq j \leq n$.

En supposant que le processus évolue sous la mesure de risque neutre et que le taux d'intérêt est r, la valeur du contrat au temps t_j si $(S(t_0), \ldots, S(t_j)) = (s_0, \ldots, s_j)$ est $v_j(s_0, \ldots, s_j)$, où les fonctions v_j obéissent aux équations de récurrence:

$$v_{j}(s_{0},...,s_{j}) = \begin{cases} \max(0, g_{n}(s_{1},...,s_{n})) & \text{si } j = n; \\ \max(g_{j}(s_{1},...,s_{j}), v_{j}^{h}(s_{0},...,s_{j})) & \text{si } m^{*} \leq j < n; \\ v_{j}^{h}(s_{0},...,s_{j}) & \text{si } j < m^{*}. \end{cases}$$

avec la valeur de rétention

$$v_j^{\text{h}}(s_0,\ldots,s_j) = \mathbb{E}\left[e^{-r(t_{j+1}-t_j)}v_{j+1}(s_0,\ldots,s_j,S(t_{j+1})) \mid s_0,\ldots,s_j\right].$$

La valeur du contrat au temps 0 est $v_0(s_0)$.

Si g est simple, on peut parfois trouver une formule analytique pour v_j .

Si v_j peut s'écrire comme une fonction de peu de variables (dimension petite), alors on peut résoudre numériquement.

Si v_j peut s'écrire comme une fonction de peu de variables (dimension petite), alors on peut résoudre numériquement.

Exemple: Option de type asiatique, pour laquelle

$$g_j(s_1,\ldots,s_j)=\mathsf{max}(0,\,ar{s}_j-K)$$

pour une constante K > 0, où $\bar{s}_j = (s_1 + \cdots + s_j)/j$.

Si g est simple, on peut parfois trouver une formule analytique pour v_j .

Si v_j peut s'écrire comme une fonction de peu de variables (dimension petite), alors on peut résoudre numériquement.

Exemple: Option de type asiatique, pour laquelle

$$g_j(s_1,\ldots,s_j)=\mathsf{max}(0,\ ar{s}_j-K)$$

pour une constante K > 0, où $\overline{s}_j = (s_1 + \cdots + s_j)/j$.

Dans ce cas, v_j ne dépend que de (s_j, \bar{s}_j) (état à 2 dimensions):

$$v_{j}(s_{j}, \overline{s}_{j}) = \begin{cases} \max(0, \overline{s}_{n} - K)) & \text{pour } j = n; \\ \max(\overline{s}_{j} - K, v_{j}^{h}(s_{j}, \overline{s}_{j})) & \text{pour } m^{*} \leq j < n; \\ v_{i}^{h}(s_{j}, \overline{s}_{j}) & \text{pour } j < m^{*}. \end{cases}$$

οù

$$v_i^{\text{h}}(s_j, \bar{s}_j) = e^{-r(t_{j+1}-t_j)} \mathbb{E}\left[v_{j+1}(S(t_{j+1}), (j\bar{s}_j + S(t_{j+1}))/(j+1)) \mid s_j\right].$$

Pour $m^* \leq j < n$, on exercera l'option ssi $\bar{s}_j - K \geq v_j^{\mathrm{h}}(s_j, \bar{s}_j)$.

Cas simple: Mouvement Brownien géométrique.

$$S(t) = S(0)e^{(r-\sigma^2/2)t + \sigma B(t)}$$

où r est le taux d'intérêt sans risque, σ est la volatilité, et $B(\cdot)$ est un mouvement Brownien standard.

Cas simple: Mouvement Brownien géométrique.

$$S(t) = S(0)e^{(r-\sigma^2/2)t+\sigma B(t)}$$

où r est le taux d'intérêt sans risque, σ est la volatilité, et $B(\cdot)$ est un mouvement Brownien standard.

Pour $t_2 > t_1 \ge 0$, $B(t_2) - B(t_1)$ est une v.a. normale de moyenne 0 et variance $t_2 - t_1$, indépendante des accroissements de $B(\cdot)$ en dehors de $[t_1, t_2]$.

Cas simple: Mouvement Brownien géométrique.

$$S(t) = S(0)e^{(r-\sigma^2/2)t+\sigma B(t)}$$

où r est le taux d'intérêt sans risque, σ est la volatilité, et $B(\cdot)$ est un mouvement Brownien standard.

Pour $t_2 > t_1 \ge 0$, $B(t_2) - B(t_1)$ est une v.a. normale de moyenne 0 et variance $t_2 - t_1$, indépendante des accroissements de $B(\cdot)$ en dehors de $[t_1, t_2]$.

Dans ce cas, $S(t_2)/S(t_1)$ suit une loi lognormale.

Supposons que $t_{j+1} - t_j = h$ pour tout j, et soit $\rho = e^{-rh}$.

Supposons que $\tau_{j+1} = S(t_{j+1})/S(t_j)$ a une densité f strictement positive sur $(0,\infty)$, une espérance finie, et est indépendante de l'historique jusqu'au temps t_j . On a $\mathbb{P}[\tau_{j+1} \leq 0] = 0$ et $\mathbb{P}[\tau_{j+1} > x] > 0$ pour x > 0.

Proposition 1.

- (a) Pour $j=1,\ldots,n-1$, $v_j^{\rm h}(s,\overline{s})$ est continue, strictement positive, strictement croissante, et convexe en s et en \overline{s} , pour s>0 et $\overline{s}>0$.
- (b) La fonction $v_j(s, \bar{s})$ a aussi ces propriétés, sauf que sa croissance en s n'est pas stricte.
- (c) La fonction $v_0(s)$ a aussi ces propriétés en s, pour s > 0.

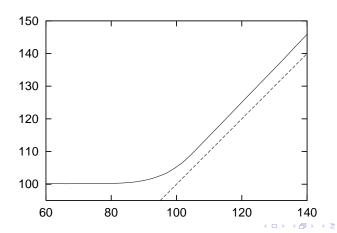
Preuve: Par induction arrière sur j.

On vérifie d'abord que toutes les propriétés sont vraies pour j=n-1. Ensuite, on suppose qu'elles sont vraies pour j+1 et on montre que cela implique qu'elles sont vraies pour j.

Pour les détails, voir Ben Ameur, Breton, et L'Ecuyer (2002). La preuve est faite pour le cas où f est lognormale.

Proposition 3. Pour $j=m^*,\ldots,n-1$, il existe une fonction continue, ⁶ strictement croissante et convexe $\varphi_j:(0,\infty)\to(K,\infty)$ telle que

$$\begin{aligned} & \textit{\textbf{v}}_{\textit{j}}^{\text{h}}(\textit{\textbf{s}},\overline{\textit{\textbf{s}}}) \begin{cases} > \; \max(0,\,\overline{\textit{\textbf{s}}} - \textit{\textbf{K}}) & \text{si } \overline{\textit{\textbf{s}}} < \varphi_{\textit{\textbf{j}}}(\textit{\textbf{s}}) \;\; \text{(on attend)}; \\ = \; \max(0,\,\overline{\textit{\textbf{s}}} - \textit{\textbf{K}}) & \text{si } \overline{\textit{\textbf{s}}} = \varphi_{\textit{\textbf{j}}}(\textit{\textbf{s}}); \\ < \; \max(0,\,\overline{\textit{\textbf{s}}} - \textit{\textbf{K}}) & \text{si } \overline{\textit{\textbf{s}}} > \varphi_{\textit{\textbf{j}}}(\textit{\textbf{s}}) \;\; \text{(on exerce)}. \end{cases}$$



Pour prouver cette proposition, on utilise la proposition 1 et ce lemme:

Lemme 2. Pour s > 0 et $0 < \overline{s}_1 < \overline{s}_2$, on a

$$v_j^{\mathrm{h}}(s, ar{s}_2) - v_j^{\mathrm{h}}(s, ar{s}_1) < rac{j}{j+1}(ar{s}_2 - ar{s}_1)
ho \quad ext{ pour } 1 \leq j < n$$

et

$$v_j(s, \overline{s}_2) - v_j(s, \overline{s}_1) \le (\overline{s}_2 - \overline{s}_1)$$
 pour $1 \le j \le n$.

Preuve. Encore par induction arrière sur j.

On vérifie facilement la seconde propriété pour j = n.

Puis on montre que si cette propriété tient pour $j+1 \le n$, alors les deux propriétés tiennent pour j. Voir l'article pour les détails.

Puisque $\bar{s} - K$ a une pente de 1 et que $v_j^{\rm h}(s,\bar{s})$ a une pente < 1 comme fonctions de \bar{s} , $\bar{s} - K$ va finir par dominer pour \bar{s} suffisamment grand.

Résolution numérique. L'idée est d'approximer la fonction v_j à chaque 8 étape, ce qui permet d'approximer chaque φ_j .

En fait, on effectue le changement de variable

$$\mathbf{\bar{s}}' = egin{cases} (j\mathbf{\bar{s}}-s)/(j-1) & \text{si } j>1, \\ 0 & \text{si } j\leq 1 \end{cases}$$

et on approxime la fonction $w_j(s, \bar{s}') = v_j(s, \bar{s})$.

On l'évalue sur une grille de points (s, \overline{s}') qui déterminent des rectangles

$$R_{i,\ell} = \{(s,\overline{s}') : a_i \leq s \leq a_{i+1} \text{ et } b_\ell \leq \overline{s}' \leq b_{\ell+1}\},$$

pour $i=0,\ldots,p$ et $\ell=0,\ldots,q$. Sur chaque rectangle, on approxime w_j par une fonction bilinéaire. Le changement de variable permet d'écrire

$$w_j^{\mathrm{h}}(s,\overline{s}') = v_j^{\mathrm{h}}(s,\overline{s}) = \rho \mathbb{E}[w_{j+1}(s\tau_{j+1},\overline{s})]$$

où l'espérance est par rapport à τ_{j+1} (une seule variable), et la fonction est linéaire par morceaux par rapport à cette variable.

Algorithme. Technique d'approximation de L'Ecuyer (1983).

- 1. Choisir une grille $0 = a_0 < a_1 < \dots < a_p < a_{p+1} = \infty$ et $0 = b_0 < b_1 < \dots < b_q < b_{q+1} = \infty$. (Faire figure) Les points (a_i, b_ℓ) pour $0 \le i \le p$ et $0 \le \ell \le q$ forment la grille G.
- 2. Poser $\hat{w}_n(s, \bar{s}') = \max(0, \bar{s} K)$ pour tout (s, \bar{s}') .
- 3. Pour $j=n-1,\ldots,0$, faire: En chaque point (i,ℓ) de la grille, poser $c_{i,\ell}=((j-1)b_\ell+a_i)/j$ (valeur de \bar{s}); $\tilde{w}_j^{\rm h}(a_i,b_\ell)\approx \rho\mathbb{E}[\hat{w}_{j+1}(a_i\tau_{j+1},c_{i,\ell})];$ $\tilde{w}_j(a_i,b_\ell)=\max[\tilde{w}_j^{\rm h}(a_i,b_\ell),\ c_{i,\ell}-K)].$

Sur chaque rectangle $R_{i,\ell}$, définir $\hat{w}_j(s,\bar{s}')$ comme la fonction bilinéaire qui interpole \tilde{w}_j aux quatre coins de la grille:

$$\hat{\mathbf{w}}_{j}(\mathbf{a}_{i},\mathbf{\bar{s}}') = \alpha_{j,i,\ell} + \beta_{j,i,\ell}(\mathbf{\bar{s}}' - \mathbf{b}_{\ell});$$

$$\hat{w}_{j}(s,\bar{s}') = \frac{a_{i+1} - s}{a_{i+1} - a_{i}} \hat{w}_{j}(a_{i},\bar{s}') + \frac{s - a_{i}}{a_{i+1} - a_{i}} \hat{w}_{j}(a_{i+1},\bar{s}').$$

Proposition. Supposons que les approximations \hat{w}_j sont non-décroissantes. Si $p \to \infty$, $q \to \infty$, $a_p \to \infty$, $b_q \to \infty$,

$$\sup_{1\leq i\leq p} (a_i-a_{i-1})\to 0\quad \text{et}\quad \sup_{1\leq \ell\leq q} (b_\ell-b_{\ell-1})\to 0,$$

alors pour tout c > 0,

$$\sup_{0\leq j}\sup_{\langle n(s,\overline{s}')\in(0,c]^2}\left|\hat{w}_j(s,\overline{s}')-w_j(s,\overline{s}')\right|\to 0.$$

PD pour évaluer une option sous le modèle GARCH

(Generalized Autoregressive Conditional Heteroschedasticity)

Ben-Ameur, Breton et Martinez, Management Science (2009).

Sous la mesure de risque neutre, le prix du sous-jacent évolue selon un processus $\{S(t),\ t\geq 0\}$ dont le paramètre de volatilité est aussi un processus stochastique:

$$\ln[S(t_{j+1})/S(t_j)] = r - 0.5H(t_{j+1}) + \sqrt{H(t_{j+1})} \epsilon_{j+1},
H(t_{j+1}) = \gamma(H(t_j), \epsilon_j),$$

et les ϵ_j sont i.i.d. N(0,1). Le revenu de l'option si on exerce à l'étape j dans l'état $S(t_j) = s$ est $g_j(s)$.

En faisant les hypothèses appropriées, on peut faire un développement semblable au cas précédent.

PD pour évaluer des options sur des bonds rachetables et encaissables

On suppose que le taux d'intérêt $\{R(t), t \ge 0\}$ évolue selon une équation différentielle stochastique de la forme

$$dR(t) = \kappa(\overline{r} - R(t))dt + \sigma R(t)^{\theta}dB(t), \text{ pour } 0 \le t \le T,$$
 (1)

où $\{B(t),\ t\geq 0\}$ est un mouvement Brownien standard, tandis que $\kappa,\ \overline{r},\ \sigma$, et θ , sont des paramètres réels.

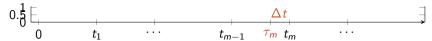
Différentes versions (les valeurs non indiquées sont arbitraires):

Modèle	<u></u>		θ
		70	
1. Vasicek (1977)			0
2. Brennan-Schwartz (1977)		0	1
3. Brennan-Schwartz (1980)			1
4. Marsh-Rosenfeld (1983)	0		
5. Cox-Ingersoll-Ross (1985a, b)			1/2
6. Hull-White (1990a)	$\overline{r}(t)$		0 or $1/2$

Soient $t_0 = 0$ et $0 < t_1 < \cdots < t_{n-1} < t_n = T$.

T est la date de maturité et t_1, \ldots, t_{n-1} sont les dates de coupon.

Une décision d'exercice peut se faire au temps $\tau_m = t_m - \Delta t > t_{m-1}$, pour $m = n^*, \ldots, n$, pour un paiement au temps t_m . Le délai Δt est la période de notification et τ_{n^*} est la période de protection. (figure)



Pour $m = n^*, \ldots, n$, au temps t_m , le prix de rachat par l'émetteur est C_m et le prix de vente par l'acheteur est P_m .

On a $0 \le P_m \le C_m$ et $P_n = C_n = 1$ (la valeur du principal).

Toutes les espérances sont sous la mesure de risque neutre.

Le taux d'actualisation espéré pour la période $[\tau, \tau + \delta]$ si $R(\tau) = r$ est

$$\rho\left(r,\tau,\delta\right) = \mathbb{E}\left[\exp\left(-\int_{\tau}^{\tau+\delta}R(t)dt\right) \,\middle|\, R(\tau) = r\right].$$

Soit v(t,r) la valeur d'un bon au temps t si R(t) = r et que les deux parties optimisent toujours leur revenu espéré actualisé.

On note $\mathbb{E}_{m,r}[\cdot] = \mathbb{E}[\cdot \mid R(\tau_m) = r]$, $v_m(r) = v(\tau_m, r)$, et $\rho_m(r) = \rho(r, \tau_m, t_m - \tau_m)$.

La valeur de retention sans coupon au temps τ_m lorsque $R(\tau_m) = r$ est

$$v_m^{\mathrm{h}}(r) = \mathbb{E}_{m,r} \left[v_{m+1} \left(R(\tau_{m+1}) \right) \exp \left(- \int_{\tau_m}^{\tau_{m+1}} R(t) dt \right) \right]$$
 (2)

pour $m = n^*, \dots n$, et

$$v_0^{\mathrm{h}}(r) = E_{0,r} \left[v_{n^*} \left(R(\tau_{n^*}) \right) \exp \left(- \int_0^{\tau_{n^*}} R(t) dt \right) \right].$$

Pour $m=n^*,\ldots,n$, si c est le montant du coupon, le gain espéré pour l'acheteur au temps τ_m est

$$(C_m+c)
ho_m(r)$$
 si l'émetteur rachète, $v_m^{\rm h}(r)+c
ho_m(r)$ si aucun des deux n'exerce, $(P_m+c)
ho_m(r)$ si le détenteur vend.

Pour $m=n^*,\ldots,n$, si c est le montant du coupon, le gain espéré pour l'acheteur au temps τ_m est

$$(C_m+c)
ho_m(r)$$
 si l'émetteur rachète, $v_m^{\rm h}(r)+c
ho_m(r)$ si aucun des deux n'exerce, $(P_m+c)
ho_m(r)$ si le détenteur vend.

L'émetteur devrait annoncer le rachat à τ_m si

$$v_m^{\rm h}(r) > C_m \rho_m(r).$$

Le détenteur devrait annoncer sa vente à τ_m si

$$v_m^{\mathrm{h}}(r) < P_m \rho_m(r).$$

Sinon, le contrat est maintenu pour une autre période, et on a

$$P_m \rho_m(r) \leq v_m^{\mathrm{h}}(r) \leq C_m \rho_m(r).$$

En assemblant ces ingrédients, on obtient les équations de récurrence:

$$\begin{array}{rcl} v_{n+1}(r) & = & 1+c, \\ v_m(r) & = & \max\left\{P_m\rho_m(r), \, \min\left(C_m\rho_m(r), \, v_m^{\rm h}(r)\right)\right\} + c\rho_m(r) \\ & & \text{pour } m=n^*, \ldots, n, \\ v_0(r) & = & v_0^{\rm h}(r) + c\sum_{m=1}^{n^*}\rho_m(r). \end{array}$$

En assemblant ces ingrédients, on obtient les équations de récurrence:

$$\begin{array}{rcl} v_{n+1}(r) & = & 1+c, \\ v_m(r) & = & \max\left\{P_m\rho_m(r), \, \min\left(C_m\rho_m(r), \, v_m^{\rm h}(r)\right)\right\} + c\rho_m(r) \\ & & \text{pour } m=n^*, \ldots, n, \\ v_0(r) & = & v_0^{\rm h}(r) + c\sum_{m=1}^{n^*}\rho_m(r). \end{array}$$

En pratique, on va approximer chaque fonction $v_m^{\rm h}$ et v_m . Pour chaque m, on calcule $v_m^{\rm h}(r)$ à un nombre fini de valeurs de r en utilisant l'approximation de v_{m+1} dans l'intégrale, puis on interpole ces valeurs pour obtenir l'approximation de $v_m^{\rm h}$, puis celle de v_m . Cela donne une approximation de la politique optimale pour les deux parties.

Dans l'article "A DP Approach for Pricing Options Embedded in Bonds" de Ben Ameur et al. (2007), on interpole v_m au lieu de v_m^h .

On va utiliser une interpolation linéaire par morceaux pour v_m , ce qui va simplifier beaucoup les calculs.

Soient $-\infty \le r_0 < r_1 < \cdots < r_p < r_{p+1} = \infty$ les points d'évaluation de v_m . L'interpolation linéaire par morceaux aura la forme:

$$\widehat{v}_{m}(r) = \begin{cases} 0 & \text{for } r < r_{0}; \\ \alpha_{i}^{m} + \beta_{i}^{m} r & \text{pour } r_{i} \leq r \leq r_{i+1}, i = 0, \dots, p \end{cases}$$

pour certains coefficients α_i^m et β_i^m , pour i = 0, ..., p, et $\beta_p^m = 0$.

Après avoir calculé $\widehat{v}_m(r_0),\ldots,\widehat{v}_m(r_p)$, on peut déterminer les 2(p+1) coefficients α_i^m et β_i^m en résolvant le système de 2(p+1) équations linéaires:

$$\widehat{v}_{m}(r_{0}) = \alpha_{0}^{m} + \beta_{0}^{m} r_{0},
\widehat{v}_{m}(r_{i}) = \alpha_{i}^{m} + \beta_{i}^{m} r_{i} = \alpha_{i-1}^{m} + \beta_{i-1}^{m} r_{i} \text{ pour } i = 1, \dots, p,
0 = \beta_{p}^{m},$$

dont la solution explicite est: $\beta_p^m = 0$, $\alpha_p^m = \hat{v}_m(r_p)$,

$$\beta_{i}^{m} = \frac{\widehat{v}_{m}(r_{i+1}) - \widehat{v}_{m}(r_{i})}{r_{i+1} - r_{i}},$$

$$\alpha_{i}^{m} = \frac{r_{i+1}\widehat{v}_{m}(r_{i}) - r_{i}\widehat{v}_{m}(r_{i+1})}{r_{i+1} - r_{i}},$$

pour i = 1, ..., p - 1.

La fonction \hat{v}_m résultante est continue partout, sauf possiblement à r_0 si $\hat{v}_m(r_0) \neq 0$.

Représentation équivalente:

$$\widehat{v}_m(r) = \sum_{i=0}^p N_i(r)\widehat{v}_m(r_i)$$

où chaque N_i est une fonction chapeau, définie par les deux segments de droite qui interpolent les trois points $(r_{i-1}, 0)$, $(r_i, 1)$, $(r_{i+1}, 0)$, et vaut zéro ailleurs.

Exceptions: N_0 est linéaire entre $(r_0, 1)$ et $(r_1, 0)$, et 0 ailleurs; N_p est linéaire entre $(r_{p-1}, 0)$ et $(r_p, 1)$, et vaut 1 à droite de $(r_p, 1)$.

En insérant cette interpolation linéaire par morceaux de \widehat{v}_{m+1} dans (2), on obtient l'approximation suivante de $v_m^h(r_k)$ pour chaque point r_k de la grille:

$$\widehat{v}_{m}^{h}(r_{k}) = \mathbb{E}_{m,r_{k}} \left[\exp\left(-\int_{\tau_{m}}^{\tau_{m+1}} R(t)dt\right) \widehat{v}_{m+1} \left(R(\tau_{m+1})\right) \right] \\
= \mathbb{E}_{m,r_{k}} \left[\exp\left(-\int_{\tau_{m}}^{\tau_{m+1}} R(t)dt\right) \sum_{i=0}^{p} N_{i} \left(R(\tau_{m+1})\right) \widehat{v}_{m+1}(r_{i}) \right] \\
= \sum_{i=0}^{p} \widehat{v}_{m+1}(r_{i}) C_{k,i}^{m}$$

pour $m=n^*,\ldots n$ (et il y a une expression semblable pour m=0), où les constantes $C_{k,i}^m$ sont calculables à l'avance pour plusieurs variantes du modèle (Vasicek, Vasicek Généralisé, CIR, ...).

Pour Vasicek et CIR, ces constantes ne dépendent de m que via $\tau_{m+1} - \tau_m$, qui est habituellement indépendent de m, auquel cas les contantes ne dépendent pas de m.

$$C_{k,i}^{m} = \frac{B_{k,i-1}^{m} - r_{i-1}A_{k,i-1}^{m}}{r_{i} - r_{i-1}} + \frac{r_{i+1}A_{k,i}^{m} - B_{k,i}^{m}}{r_{i+1} - r_{i}}$$

pour tout m, où

$$A_{k,i}^{m} = \mathbb{E}_{m,r_{k}} \left[\exp \left(- \int_{\tau_{m}}^{\tau_{m+1}} R(t) dt \right) \mathbb{I} \left(r_{i} \leq R(\tau_{m+1}) < r_{i+1} \right) \right],
A_{k,i}^{0} = \mathbb{E}_{0,r_{k}} \left[\exp \left(- \int_{\tau_{0}}^{\tau_{n^{*}}} R(t) dt \right) \mathbb{I} \left(r_{i} \leq R(\tau_{n^{*}}) < r_{i+1} \right) \right],
B_{k,i}^{m} = \mathbb{E}_{m,r_{k}} \left[\exp \left(- \int_{\tau_{m}}^{\tau_{m+1}} R(t) dt \right) R(\tau_{m+1}) \mathbb{I} \left(r_{i} \leq R(\tau_{m+1}) < r_{i+1} \right) \right],
B_{k,i}^{0} = \mathbb{E}_{0,r_{k}} \left[\exp \left(- \int_{\tau_{0}}^{\tau_{n^{*}}} R(t) dt \right) R(\tau_{n^{*}}) \mathbb{I} \left(r_{i} \leq R(\tau_{n^{*}}) < r_{i+1} \right) \right].$$

Dans l'article, on obtient la loi de probabilité conjointe du vecteur

$$\left(R(\tau+\delta),\int_{ au}^{ au+\delta}R(t)dt\right)$$

conditionnelle à $R(\tau) = r$. À partir de cette loi, on trouve ensuite des formules explicites pour les termes $A_{k,i}^m$, $B_{k,i}^m$ et $\rho(r_k, \tau_m, \delta)$.

Illustration numérique.

On considère un bond émis par la Suisse pour la période 1987–2012. On voulait évaluer à la date $t_0=0$ correspondant au 23 décembre 1991. On avait alors $n=21,\ T=t_n=20.172$ années, et un coupon de c=0.0425 une fois par année, le premier arrivant au temps $t_1=0.172$.

On a $n^*=11$ et la période de notification est $\Delta t=t_m-\tau_m=1/6$ (2 mois). Les autres paramètres sont donnés dans l'article.

Points de la grille: r_1,\ldots,r_p également espacés, avec $r_0=-\infty$, $r_1=\overline{r}-6\sigma_1$ and $r_p=\overline{r}+6\sigma_1$ pour Vasicek, et $r_0=0$, $r_1=10^{-6}$ et $r_p=3$, pour CIR.

Illustration numérique.

On considère un bond émis par la Suisse pour la période 1987–2012. On voulait évaluer à la date $t_0=0$ correspondant au 23 décembre 1991. On avait alors n=21, $T=t_n=20.172$ années, et un coupon de c=0.0425 une fois par année, le premier arrivant au temps $t_1=0.172$.

On a $n^*=11$ et la période de notification est $\Delta t=t_m-\tau_m=1/6$ (2 mois). Les autres paramètres sont donnés dans l'article.

Points de la grille: r_1, \ldots, r_p également espacés, avec $r_0 = -\infty$, $r_1 = \overline{r} - 6\sigma_1$ and $r_p = \overline{r} + 6\sigma_1$ pour Vasicek, et $r_0 = 0$, $r_1 = 10^{-6}$ et $r_p = 3$, pour CIR.

Résultats avec p = 1200 (temps de calcul: environ 2 secondes):

Prix obtenus par trois méthodes pour les modèles de Vasicek et CIR. Les méthodes BW et DFVL sont plus lentes.

	Vasicek model				CIR model		
r	BW	DFVL	BBKL	BW	DFVL	BBKL	
0.01	0.8556	0.84282	0.84285	0.9392	0.93926	0.93921	
0.02	0.8338	0.82627	0.82630	0.9159	0.91598	0.91595	
0.03	0.8223	0.81010	0.81009	0.8933	0.89333	0.89330	
0.04	0.8062	0.79420	0.79423	0.8712	0.87127	0.87125	
0.05	0.7904	0.77868	0.77871	0.8498	0.84980	0.84978	
0.06	0.7749	0.76348	0.76351	0.8289	0.82890	0.82888	
0.07	0.7598	0.74860	0.74862	0.8085	0.80855	0.80854	
0.08	0.7450	0.73403	0.73406	0.7887	0.78874	0.78873	
0.09	0.7305	0.71977	0.71980	0.7694	0.76945	0.76945	
0.10	0.7163	0.70578	0.70583	0.7507	0.75067	0.75067	