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Monte Carlo integration: basics

Want to estimate µ = E[X ] for some random variable X .
Monte Carlo (simulation), in basic form:

I Generate n independent copies of X , say X1, . . . ,Xn;

I estimate µ by X̄n = (1/n)
∑n

i=1 Xi .

Almost sure convergence as n→∞ (strong law of large numbers).
For confidence interval, can use central limit theorem:

P
[
µ ∈

(
X̄n −

cαSn√
n

, X̄n +
cαSn√

n

)]
≈ 1− α

for a given confidence level 1− α, where S2
n is a consistent estimator of

σ2 = Var[X ].

Other types of situations: estimate quantile, optimization, etc.
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Efficiency and variance reduction

Accuracy of estimator X can be measured by half-width of confidence
interval, cαn−1/2σ, or by relative half-width, cαn−1/2σ/µ.

Variance reduction: want new estimator X̃ with same mean µ but smaller
variance σ2. Gives a narrower confidence interval for the same n, but
convergence speed seems to remain O(n−1/2), at first sight.

Does it? In fact, there are situations where the rate can be improved, say
to O(n−k) for k > 1/2, or even to O(e−kn) for k > 0.

In other cases, µ and σ are parameterized by some parameter ε, and a
well-crafted estimator may give us σ(ε)/µ(ε)→ 0 when ε→ 0, whereas
the original estimator has σ(ε)/µ(ε)→∞.

Bias (if any) and computational cost are also important factors for the
quality of an estimator. Could look at work-normalized mean-square error
(absolute or relative). In this talk, we focus on the variance only.
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Ultimate dream: a zero-variance estimator
Can be achieved in theory via importance sampling (IS) or via control
variates (CV), as we will see later in the talk.

Unfortunately, an exact implementation is impractical: It requires the
knowledge of µ (and usually much more) in the first place!

On the other hand, by plugging crude approximations of these unknown
quantities in place of the exact ones in the zero-variance sampling
strategies, we may reduce the variance tremendously, and sometimes the
convergence rate as well.
We will discuss various (efficient) approximation schemes in the paper,
with an emphasis on rare-event situations.

This is what we call approximate zero-variance simulation.

Has been studied for IS by Booth (1985, 1987), Kollman et al. (1999),
Baggerly et al. (2000), and for CV by Henderson and Glynn 2002, Gobet
and Maire (2006), and Kim and Henderson (2006, 2007), among others.
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A rare-event setting

We estimate a small quantity µ0 = µ0(ε) > 0, where µ0(ε)→ 0 when the
rarity parameter ε→ 0, by an unbiased estimator X = X (ε) ≥ 0.

In a queueing system with buffer size B and s servers, we can take
ε = 1/B if we are interested in very large values of B, and ε = 1/s if we
are interested in what happens when there is a large number of servers.

In a reliability model, the failure rates may be taken as polynomial
functions of ε.

The asymptotic behavior when ε→ 0 should be a good indicator of what
happens when ε is very small.
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Inaccuracy of standard Monte Carlo for rare events

With standard Monte Carlo, µ0(ε) becomes harder to estimate as ε→ 0.

Example. Suppose X (ε) is an indicator function, so µ0(ε) = P[X (ε) = 1].
Then the relative variance (squared relative error) blows up:

Var[X ]

µ2
0(ε)

=
1− µ0(ε)

µ0(ε)
≈ 1

µ0(ε)
→∞ when ε→ 0.

Standard Monte Carlo estimates µ0(ε) by X̄n, and needs n = O(1/µ0(ε))
for a meaningful estimate.
If µ0(ε) = 10−10, for example, we need n = 1014 for 1% relative error.

We then need more clever estimators.
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Examples of situations where this happens

I Expected amount of radiation that crosses a given protection shield.

I Probability of a large loss from an investment portfolio.

I Value-at-risk (quantile estimation).

I Ruin probability for an insurance firm.

I Probability that the completion time of a large project exceeds a
given threshold.

I Probability of buffer overflow, or mean time to overflow, in a
queueing system.

I Proportion of packets lost in a communication system.

I Air traffic control.

I Mean time to failure or other reliability or availability measure for a
highly reliable system (e.g., fault-tolerant computers, safety systems).
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Classical robustness properties in this context

Commonly-used characterizations of X (ε) in rare-event setting:

I It has bounded relative error (BRE) (bounded relative variance) if

lim
ε→0

Var[X (ε)]

µ2
0(ε)

<∞.

I It is logarithmically efficient (LE) or asymptotically optimal if

lim
ε→0

ln E[X 2(ε)]

2 lnµ0(ε)
= 1.

Means (roughly) that if µ0(ε)→ 0 at an exponential rate, then the
standard deviation converges at least at the same exponential rate.

I BRE is stronger than LE, and can be more difficult to reach.
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Generalization: BRM-k and LE-k

L., Blanchet, Glynn, Tuffin (2009)

An estimator X (ε) with mean µ0(ε) has bounded relative moment of order
k (BRM-k) if

lim sup
ε→0

E[X k(ε)]

µk
0(ε)

<∞.

It has logarithmic efficiency of order k (LE-k) if

lim
ε→0

ln E[X k(ε)]

k lnµ0(ε)
= 1.

Interesting and relevant for situations where we need estimators of the
variance or of other moments higher than the mean.

Relevant for the validity of Berry-Esseen bound, for example.
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Vanishing Relative Moment of order k (VRCM-k)
X (ε) has vanishing relative centered moment of order k (VRCM-k) if

lim sup
ε→0

E[|X (ε)− µ0(ε)|k ]

µk
0(ε)

= 0.

Theorem: True if and only if

lim sup
ε→0

E[X k(ε)]

µk
0(ε)

= 1.

It has vanishing relative variance or relative error (VRE), if

lim sup
ε→0

σ(ε)

µ0(ε)
= 0.

When VRCM occurs, the rare event difficulty is reversed! May seem
strange and perhaps unachievable at first sight, but does happen, in cases
where zero-variance approximation improves when ε→ 0.

Goal in rare-event simul.: build estimators with these properties.
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Importance Sampling (IS)

Suppose X = h(Y ) where Y is a random vector with density f .
Instead of generating Y from f , we can generate it from another density
f̃ , such that f̃ (y) > 0 whenever h(y)f (y) 6= 0. We have

E[X ] =

∫
h(y)f (y)dy =

∫ [
h(y)f (y)

f̃ (y)

]
f̃ (y)dy = Ẽ

[
h(Y )f (Y )

f̃ (Y )

]
,

where Ẽ is the expectation under the new density.

More generally, in a probability space (Ω,F ,P), let X = h(ω) where
h : Ω→ R and ω obeys P. Instead of sampling ω from P, we sample it
from P̃ such that d P̃(y) 6= 0 when h(y)dP(y) 6= 0. We have

E[X ] =

∫
Ω

h(ω)dP(ω) =

∫
Ω

h(ω)
dP(ω)

d P̃(ω)
d P̃(ω) = Ẽ [h(ω)L(ω)]

where L = dP/d P̃.
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For an unbiased estimator of µ0 = E[X ] with IS, we generate ω1, . . . , ωn

i.i.d. under P̃ and compute

X̄is,n =
1

n

n∑
i=1

h(ωi )L(ωi )

We want to select P̃ so that Xis = h(ω)L(ω) (under P̃) has smallest
possible variance, and certainly smaller than that of X .

If h ≥ 0, then taking d P̃(ω) proportional to h(ω)dP(ω) gives zero variance:

Xis = h(ω)L(ω) = h(ω)
dP(ω)

d P̃(ω)

is the proportionality constant. This constant must be equal to µ0.

How can we implement this? Or approximate it?
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VRCM implies convergence to a zero-variance
sampling measure
Suppose

µ0(ε) = EPε [X (ε)] =

∫
Ω

X (ε, ω)dPε(ω)→ 0

when ε→ 0. The zero-variance measure P∗ε here satisfies

dP∗ε(ω)

dPε(ω)
=

X (ε, ω)

µ0(ε)
.

Proposition (L., Blanchet, Tuffin, Glynn 2009).
If X (ε) is VRCM-(1 + δ) for some δ > 0, then

lim
ε→0

sup
A∈F
|Pε(A)− P∗ε (A)| = 0.

That is, the sampling distribution must converge in total variation to the
zero-variance measure associated with X (ε), regardless of what sampling
strategy we use (IS or not).
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Proof:

sup
A∈F
|P∗ε(A)− Pε(A)| ≤ sup

A∈F
|EPε [(dP∗ε/dPε) I(A)]− EPε [I(A)]|

≤ EPε |dP∗ε/dPε − 1|

≤ E1/(1+δ)
Pε

[
|dP∗ε/dPε − 1|(1+δ)

]
≤ E1/(1+δ)

Pε

[
|X (ε)/µ0(ε)− 1|(1+δ)

]
= [c1+δ(ε)]1/(1+δ)

ε→0−→ 0.



16

A discrete-time Markov chains framework

Simulation model represented by DTMC {Yj , j ≥ 0} with (large) state
space Y, and a set of absorbing states ∆ ⊂ Y.

Transition kernel: P(B | y) = P[Yj ∈ B | Yj−1 = y).

Stopping time: τ = inf{j : Yj ∈ ∆}.
One-step cost c(y , y ′) for each transition y → y ′.

Total cost: X =
∑τ

j=1 c(Yj−1,Yj).

Expected cost-to-go from state y : µ(y) = E[X | Y0 = y ].

We assume that E[τ | Y0 = y ] <∞ and µ(y) <∞ for all y ∈ Y.

Want to estimate µ0 = µ(y0) for some initial state y0.

This covers a wide range of situations, including a finite time horizon.
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Recurrence equation for µ

The function µ : Y → R satisfies the recurrence (Poisson) equation

µ(y) = Ey [c(y ,Y1) + µ(Y1)] =

∫
Y

[c(y , z) + µ(z)] dP[dz | y ]

for y 6∈ ∆, and µ(y) = 0 for y ∈ ∆

Solving this for µ amounts to solve a huge linear system if state space Y is
large but finite. If Y is continuous, can thing of approximating µ by a
linear combination of basis functions, or more generally by tuning the
parameters of a parameterized function.

These techniques are used in machine learning and approximate dynamic
programming (including least-squares Monte Carlo).

Limitation: often, either the error is large and difficult to estimate, or the
approximation is too costly to compute.
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Interpretation as a Markov decision process (MDP)

At each step of the Markov chain, we can change the transition kernel P
for another kernel P̃. That is, P̃(B | y) = P̃[Yj ∈ B | Yj−1 = y).

Want to select the transition kernels dynamically in a way that minimizes
the variance. The decision (selection) at each step may depend on past
and current history.

An optimal (selection) policy gives zero variance, as we will see soon.

This optimal policy takes dP̃(y1 | y) proportional to
dP(y1 | y)[c(y , y1) + µ(y1)], with proportionality constant 1/µ(y).

We can implement an approximation of it using an approximation of µ.
Often, a crude approximation of µ can be computed cheaply.
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IS for a discrete-time Markov chain

We change P to P̃ such that Ẽ[τ ] <∞ and
P̃(B | y) > 0 whenever

∫
B [c(y , y1) + µ(y1)]dP(y1 | y) > 0.

The estimator X is replaced by

Xis =
τ∑

j=1

c(Yj−1,Yj)

j∏
i=1

L(Yi−1,Yi ),

where L(Yi−1,Yi ) = (dP/dP̃)(Yi | Yi−1).

Theorem. If we choose P̃ so that

dP̃(y1 | y)

dP(y1 | y)
=


c(y , y1) + µ(y1)

µ(y)
if µ(y) > 0,

1 if µ(y) = 0

(this density integrates to 1), then Xis has zero variance.
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IS for a discrete-time Markov chain (cont.)

Proof. The proof can be done by backward induction on the step number,
starting from step τ , using the fact that µ(Yτ ) = 0.

Unique Markov chain implementation of the zero-variance estimator.

Simple special case: finite state space Y.
The DTMC has transition probabilities p(y1 | y) = P[Y1 = y1 | Y0 = y ],
which are replaced by p̃(y1 | y) = P̃[Y1 = y1 | Y0 = y ].
We have L(y , y1) = p(y1 | y)/p̃(y1 | y). For the zero variance:

p̃(y1 | y) =

 p(y1 | y)
c(y , y1) + µ(y1)

µ(y)
if µ(y) > 0,

p(y1 | y) if µ(y) = 0.
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An example where zero-variance gives Ẽ[τ ] =∞

0 1 2

1/2

1/2

1/3

1/3

1/3

Here, µ(y) is the expected number of transitions before reaching state 2,
given that we are in state y . We have µ(2) = 0.

Zero-variance IS gives p̃(y , 2) = 0 for y = 0, 1, so the chain will never
reach the stopping time τ under these new probabilities!
We have zero variance but infinite computing cost.

Trick to resolve this: add a cost δ > 0 to any transition that enters ∆.
Afterwards, subtract δ to the final (zero-variance) estimator.
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Example 2: A birth-and-death process

0 1 2 · · · · · · B − 1 B

1

1− p1

p1

1− p2

p2

1− pB−1

pB−1

1

Let τ = inf{j > 0 : Yj ∈ {0,B}} and define µ(y) = P[Yτ = B | Y0 = y ].
We want to estimate µ0 = µ(1), the probability of reaching B before
coming back to 0.

We have the recurrence:

µ(y) = pyµ(y + 1) + (1− py )µ(y − 1)

for y = 1, . . . ,B − 1, with µ(0) = 0 and µ(B) = 1. Zero-variance change
of measure gives

p̃y = pyµ(y + 1)/µ(y) for y ≥ 1.

Because µ(0) = 0, we also see that p̃1 = 1 and that no sample path will
ever return to 0 under zero-variance IS.
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Example 2 with py = p for 1 ≤ y ≤ B − 1

For ρ = p/(1− p) 6= 1/2, it is known that µ(y) = (1− ρ−y )/(1− ρ−B), so

p̃y =
1− ρ−y−1

1− ρ−y
p =

(1− ρy+1)

(1− ρy )

1

ρ
p.

Those probabilitities do not depend on B.
We have (py−1/p̃y−1)(1− py )/(1− p̃y ) = 1, i.e., the cycles do not
contribute to the likelihood ratio.

For large B, µ(y) = (ρB−y − ρB)/(1− ρB)≈ ρB−y . This approximation is
the probability of the sample path that goes directly from y to B. When ρ
is small, it is the dominating path.

Using this approximation leads to VRCM-k if p → 0 and fixed B, because
then ρB−y/µ(y)→ 1.
If B →∞ for fixed p < 1/2, it gives (only) BRM-k.
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ρ = p/(1− p).

0 1 2 · · · · · · B − 1 B

1

0

(1−ρ2)
(1−ρ)

p
ρ = 1

1− (1−ρ3)
(1−ρ2)

p
ρ

(1−ρ3)
(1−ρ2)

p
ρ

1− (1−ρB )
(1−ρB−1)

p
ρ

(1−ρB )
(1−ρB−1)

p
ρ

1

0 1 2 · · · · · · B − 1 B

1

1− p/ρ

p/ρ

1− p/ρ

p/ρ

1− p/ρ

p/ρ

1
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Zero-Variance via control variates (CV)

Same DTMC model. Still want to estimate µ0 = µ(y0) = E[X ] where
X =

∑τ
j=1 c(Yj−1,Yj). We can write

µ(y0) = X −Mτ

where

Mτ =
τ∑

j=1

[c(Yj−1,Yj) + µ(Yj)− µ(Yj−1)]

=
τ∑

j=1

[c(Yj−1,Yj) + µ(Yj)− E[c(Yj−1,Yj) + µ(Yj) | Yj−1]] .

So if we could compute and subtract Mτ (as a CV) we would have
zero-variance. But of course, µ is unknown.
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Approximate zero variance via control variates

Replace µ in Mτ by an approximation v such that v(y) = 0 for y ∈ ∆:

Mτ =
τ∑

j=1

[c(Yj−1,Yj) + v(Yj)− E[c(Yj−1,Yj) + v(Yj) | Yj−1]] ,

and define the CV estimator Xcv = X −Mτ .

We have E[Mτ ] = 0, and thus E[Xcv] = E[X ] (unbiased) regardless of v .

Variance can be reduced significantly if v is a good approximation of µ.

Warning: Not the right tool for rare-event simulation, because it does not
make the rare events more frequent.

Extensions to regenerative simulation (Kim & Henderson 07), and to
infinite-horizon models with discounting and stochastic differential
equations (Henderson & Glynn 02).
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Model of Highly Reliable Markovian System (HRMS)

c component types, ni components of type i .
Markov chain step: failure of repair of one component.

Yj = (Y
(1)
j , . . . ,Y

(c)
j ) = num. failed compon. of each type at step j .

{Yj , j ≥ 0} DTMC with p(y , y ′) = P[Yj = y ′ | Yj−1 = y ].
Suppose that failure probabilities are much smaller than repair
probabilities. This is typical of highly reliable systems.

The state space Y is partitioned in: (1) a (decreasing) set of up states U
and (2) the set of failure states F .

For any set A, let τA = first hitting time of A, and

µ(y) = P[τF < τ0 | Y0 = y ],

the prob. of visiting F before returning to 0.

Goal: estimate µ0 = µ(0). This can be difficult when µ(0) is very small.
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Some previous IS heuristics:

Balanced failure biasing (BFB) (Shahabuddin 1994) changes p to p̃ as
follows, for x 6∈ B:

p̃(x , y) =


1

|F (x)| if y ∈ F (x) and pR(x) = 0;

ρ 1
|F (x)| if y ∈ F (x) and pR(x) > 0;

(1− ρ) p(x ,y)
pR(x) if y ∈ R(x);

0 otherwise.

Simple failure biasing (SFB) (Shahabuddin 1988): Replace 1/|F (x)| above
by p(x , y)/

∑
y∈F (x) p(x , y).

SBLR (Alexopoulos and Shultes 2001) changes the probabilities in a way
that over any cycle in the visited states during the simulation, the
cumulated likelihood ratio remains bounded

These methods do not attempt to mimic zero-variance sampling.
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Proposed approximation (ZVA)

Approximate µ by some easily computable function v , and plug into
zero-variance formula.

For any state y ∈ U , let Γ(y) be the set of all paths
π = (y = y0 → y1 → · · · → yk) where y1, . . . , yk−1 6∈ F ∪ {0}, yk ∈ F ,
and having positive probability

p(π) =
k∏

j=1

p(yj−1, yj) > 0.

Because these paths represent disjoint events, we have

µ(y) =
∑

π∈µ0(y)

p(π).

This last sum may contain a huge (perhaps ∞) number of terms.
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A very crude approximation is to just take the path with largest
probability, i.e., approximate

µ(y) =
∑
π∈Γ(y)

p(π)

by its lower bound
v0(y) = max

π∈Γ(y)
p(π).

Computing v0(y) amounts to computing a shortest path from y to F ,
where the length of a link y ′ → y ′′ is − log p(y ′, y ′′). Easy.

This would work fine if a single path dominates the sum (this may happen
when failure transitions have very small probabilities), but this v0 will
often underestimate the bound significantly.
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Refinements

Typically, the farther we are from F , the more v0 underestimates µ.
Close to F , things are fine, but not close to 0.

First simple correction:
1. Estimate µ(0) in preliminary runs with crude IS strategy;
2. Find constant α ≤ 1 such that (v0(0))α equals this estimate;
3. Use v1(y) = (v0(y))α for all y ∈ U as approx. of µ(y).
This v1 matches µ for y ∈ F and matches its estimate at y = 0.

Second refinement: Replace α by a state-dependent exponent

α(y) = 1 + [α(0)− 1]
log v0(y)

log v0(0)
,

where α(0) = α as above. This α(y) changes progressively from 1 near F
to α(0) < 1 in state 0. The correction here is milder than in the previous
case when we are close to F .
Let v2(y) = (v0(y))α(y) be the resulting approximation.
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Example: Three types of components

c = 3 and n1 = n2 = n3. We have (n1 + 1)(n2 + 1)(n3 + 1) states.
Expon. repair times with mean 1.
Failure rate λi for component type i ,
with λ1 = ε, λ2 = 1.5ε, and λ3 = 2ε2, for some small real number ε.

We will try different values of (ni , ε).

F = states where at least one component type has fewer than 2
operational units.

To define v0(y), we consider all three paths to F that result from failures
of a single component type, and sum their probabilities.

The table contains results with n = 220 runs.

Best estimate of µ(0): obtained from a large number of runs with our best
IS strategies.
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Mean
ni ε µ(0) v0(0) BFB SBLR

3 0.001 2.6× 10−3 1.3× 10−3 2.7× 10−3 2.6× 10−3

6 0.01 1.8× 10−7 3.4× 10−8 1.9× 10−7 (9.9× 10−11)
6 0.001 1.7× 10−11 3.4× 10−12 1.8× 10−11 (1.8× 10−16)

12 0.1 6.0× 10−8 3.2× 10−9 4.8× 10−8 1.3× 10−8

12 0.001 3.9× 10−28 3.5× 10−29 (1.8× 10−40) (2.9× 10−45)

Variance
ni ε BFB SBLR

3 0.001 1.8× 10−2 8.0× 10−3

6 0.01 6.3× 10−11 (4.5× 10−16)
6 0.001 8.8× 10−19 (2.0× 10−26)

12 0.1 8.1× 10−10 1.7× 10−10

12 0.001 (3.2× 10−74) (3.5× 10−84)
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Mean
ni ε µ(0) ZVA(v0) ZVA(v1) ZVA(v2)

3 0.001 2.6× 10−3 2.6× 10−3 2.6× 10−3 2.6× 10−3

6 0.01 1.8× 10−7 1.8× 10−7 1.8× 10−7 1.8× 10−7

6 0.001 1.7× 10−11 1.7× 10−11 1.7× 10−11 1.7× 10−11

12 0.1 6.0× 10−8 6.0× 10−8 6.2× 10−8 6.7× 10−8

12 0.001 3.9× 10−28 3.9× 10−28 3.9× 10−28 3.9× 10−28

Variance

ni ε α ZVA(v0) ZVA(v1) ZVA(v2) RE(v2)

3 0.001 0.906 6.5× 10−4 2.7× 10−3 9.3× 10−9 0.04
6 0.01 0.903 2.0× 10−14 1.2× 10−14 7.7× 10−15 0.48
6 0.001 0.939 1.2× 10−23 1.1× 10−23 7.6× 10−24 0.16

12 0.1 0.851 1.6× 10−10 2.9× 10−10 1.5× 10−11 64.50
12 0.001 0.963 1.4× 10−55 9.3× 10−56 9.4× 10−56 0.78

We have α→ 1 when ε→ 0 or when ni ↗
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Approxim. and adaptive learning (for CV and IS)

I Zero-variance schemes require the knowledge or a good
approximation of the function µ.

I More practical approach: approximate µ in a parametric class of
functions V = {v(·; θ) : Y → R, θ ∈ Θ}, where Θ ⊆ Rm, and
θ = (θ1, . . . , θm) is a vector of parameters that we try to optimize so
that v = v(·; θ) is close to µ in some sense.

I Convenient way (in terms of computations): fixed set of functions
v1, . . . , vm, independent over R, and define V as the space of all
linear combinations of these functions:

V =

{
v = v(·; θ) =

m∑
i=1

θivi (·)

}

where θ = (θ1, . . . , θm) ∈ Rm.

I Can also use nonlinear parameterization.
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Approximate zero variance and VRE

θ∗ = arg min
θ∈Θ

r∑
`=1

|v(y`; θ)− µ̂(y`)|2

found by least-squares regression or standard temporal differences method
(stochastic approximation):

θ(n+1) = θ(n) + an

(
c(yn, yn+1) + v(yn+1, θ

(n))− v(yn, θ
(n))
)
∇θv(yn, θ

(n+1)).

I The method converges to the zero-variance sampling only if the
parameterized class V contains the function µ.

I No better convergence than the O(n−1/2) (in the probabilistic sense)
otherwise.

I Issue: selecting a good parameterized space V. Basis function
adaptation possible during the learning phase.

I For IS, instead of parameterizing v , we can directly parameterize the
IS distribution, and then minimize the variance of Xis with respect to
these IS parameters. In any case, needs to be sampled easily!
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Other adaptive techniques in the literature

Adaptive Monte Carlo (AMC) for IS: (Booth, 1985)
Learns iteratively function µ(·), and still plug the approximation into the
zero-variance change of measure formula instead of µ(·).

I Considers several steps and ni independent simulation replications at
step i .

I At step i , replaces µ(x) by a guess µ(i)(x)

I use probabilities

P̃
(i)
y ,z =

Py ,z(cy ,z + µ(i)(z))∑
w Py ,w (cy ,w + µ(i)(w))

.

I Gives a new estimation µ(i+1)(y) of µ(y), from which a new
transition matrix P̃(i+1) is defined.
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Adaptive stochastic approximation (ASA)
I (Ahamed et al, 06) just uses a single sample path (y0, . . . , yn).

I Initial distribution for y0, matrix P̃(0) and guess µ(0)(·).
I At step j of the path, if yj 6∈ ∆,

I matrix P̃(j) used to generate yj+1.
I From yj+1, update the estimate of µ(yj) by temporal difference

µ(j+1)(yj ) = (1− aj (yj ))µ(j)(yj )

+ aj (yj )
[
c(yj , yj+1) + µ(j)(yj+1)

] P(yj , yj+1)

P̃(j)(yj , yj+1)
,

where {aj(y), j ≥ 0}, sequence of step sizes
I For δ > 0 constant,

P̃(j+1)(yj , yj+1) = max

(
P(yj , yj+1)

[
c(yj , yj+1) + µ(j+1)(yj+1)

]
µ(j+1)(yj )

, δ

)
.

I Otherwise µ(j+1)(y) = µ(j)(y), P̃(j+1)(y , z) = P(j)(y , z).

I Normalize: P(j+1)(yj , y) =
P̃(j+1)(yj , y)∑
z P̃(j+1)(yj , z)

.

I If yj ∈ ∆, yj+1 generated from initial distribution, but estimations of
P(·, ·) and µ(·) kept.

I Batching techniques used to get a confidence interval.
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Drawbacks of these learning techniques
I Must store the vectors µ(n)(·).

I State-space typically very large when we use simulation... This limits
the practical effectiveness of the methods.

I We can use adaptive learning to optimize the parameter vector θ of
an approximation instead of learning µ(y) directly.

I Example (Bolia et al. 04):
I To approximate the value function in the context of pricing an

American option by IS;
I least-squares regression to approx. the value function and the

continuation value function (the value of the option conditional on not
exercising it at the current step)

I Basis functions vi (y) = exp[ai log2 y + bi log y ], where the ai and bi are
constants: IS then mixtures of lognormal, easy to sample!

I In a first-stage, they learn good vectors of weights θ and use them to
approximate both the zero-variance IS and the optimal stopping rule.

I In a second stage, they use these approximations to estimate the value
function more accurately.
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Iterated CVs for computing
∫

f (y)dy
(Gobet and Maire 2006)

I Uses an orthonormal basis of functions ek(x), 1 ≤ k ≤ p.

I From n sample values Yi , computes b
(1)
i = 1

n

∑n
i=1 f (Yi )ei (Yi ) and

first approx

f (1)(y) =
1

n

n∑
i=1

b
(1)
i ei (x).

I At step m ≥ 2, the same technique for n independent copies is
iteratively applied to function again applied to f − f (m−1).

I Eventually, at step M, the approximation is

f (M)(y) =

p∑
k=1

akek(y)

with âk =
∑M

m=1 b
(m)
k .
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Iterated CV (2)

I Can use s-dimensional basis functions (Legendre or Tchebichev
polynomials, Korobov space) used such that the real coefficient am

(now multidimensional) decreases fast when m increases:

|am| ≤
C1

(m1 · · ·ms)L
.

I The variance of the âm decreases fast too then.

I One-dimensional case: optimal choice: M = ln(n)
(2L−1) ln(2) and, then

using n ln(n) sample values,

σ2(âm) ≤ C2
1

nL−1/2−ε .
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Conclusions
I Both IS and CV can achieve zero-variance in theory.

I But zero-variance sampling can only be approximated, usually by
approximating the value function µ.

I Fits the framework of approximate dynamic programming.

I Approximation by a linear combination of a fixed set of basis
functions; natural in the case of continuous or very large state spaces.

I Difficulty: choice of those basis functions.

I Another important hurdle for IS: approximation must be constructed
to allow efficient random variate generation.

I In practice, approximate zero-variance sampling can provide very
significant gains in efficiency.

I More applications could benefit from this technology.

I Other methods can improve the O(n−1/2) convergence rate: adaptive
stratification, generalized antithetic variates, randomized quasi-Monte
Carlo, for example.
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