
Se
co

nd
 p

ro
of

s

Monte Carlo and Quasi-Monte Carlo Methods 2008



Se
co

nd
 p

ro
of

s



Se
co

nd
 p

ro
of

s

Pierre L’Ecuyer � Art B. Owen
Editors

Monte Carlo and
Quasi-Monte Carlo
Methods 2008



Se
co

nd
 p

ro
of

s

Editors
Pierre L’Ecuyer
DIRO
Université de Montréal
C.P. 6128, Succ. Centre-Ville
Montreal, H3C 3J7
Canada
lecuyer@iro.umontreal.ca

Art B. Owen
Department of Statistics
Stanford University
Sequoia Hall
Stanford, CA 94305
USA
owen@stanford.edu

ISBN 978-3-642-04106-8
DOI 10.1007/978-3-642-04107-5

e-ISBN978-3-642-04107-5

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: ???

Mathematics Subject Classification (2000): Primary 11K45, 65-06, 65C05, 65C10; Secondary 11K38,
65D18, 65D30, 65D32, 65R20, 91B28

© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: VTeX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:lecuyer@iro.umontreal.ca
mailto:owen@stanford.edu


Se
co

nd
 p

ro
of

s

Preface

This volume represents the refereed proceedings of the Eighth International Con-
ference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing,
which was held at the University of Montréal, from 6–11 July, 2008. It contains
a limited selection of articles based on presentations made at the conference. The
program was arranged with the help of an international committee consisting of:

Ronald Cools, Katholieke Universiteit Leuven
Luc Devroye, McGill University
Henri Faure, CNRS Marseille
Paul Glasserman, Columbia University
Peter W. Glynn, Stanford University
Stefan Heinrich, University of Kaiserslautern
Fred J. Hickernell, Illinois Institute of Technology
Aneta Karaivanova, Bulgarian Academy of Science
Alexander Keller, mental images GmbH, Berlin
Adam Kolkiewicz, University of Waterloo
Frances Y. Kuo, University of New South Wales
Christian Lécot, Université de Savoie, Chambéry
Pierre L’Ecuyer, Université de Montréal (Chair and organizer)
Jun Liu, Harvard University
Peter Mathé, Weierstrass Institute Berlin
Makoto Matsumoto, Hiroshima University
Thomas Müller-Gronbach, Otto von Guericke Universität
Harald Niederreiter, National University of Singapore
Art B. Owen, Stanford University
Gilles Pagès, Université Pierre et Marie Curie (Paris 6)
Klaus Ritter, TU Darmstadt
Karl Sabelfeld, Weierstrass Institute Berlin
Wolfgang Ch. Schmid, University of Salzburg
Ian H. Sloan, University of New South Wales
Jerome Spanier, University of California, Irvine
Bruno Tuffin, IRISA-INRIA, Rennes
Henryk Woźniakowski, Columbia University.
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vi Preface

The local arrangements (program production, publicity, web site, registration,
social events, etc.) were ably handled by Carole Dufour (GERAD), Marilyne Lavoie
(GERAD), Louis Pelletier (CRM), Marie Perreault (GERAD), and Suzette Paradis
(CRM). Francine Benoit (GERAD) helped with editing the proceedings.

This conference continued the tradition of biennial MCQMC conferences initi-
ated by Harald Niederreiter. They were begun at the University of Nevada in Las
Vegas, Nevada, USA, in June 1994 and followed by conferences at the University
of Salzburg, Austria, in July 1996, the Claremont Colleges in Claremont, Califor-
nia, USA, in June 1998, Hong Kong Baptist University in Hong Kong, China, in
November 2000, the National University of Singapore, Republic of Singapore, in
November 2002, the Palais des Congrès in Juan-les-Pins, France, in June 2004, and
Ulm University, Germany, in July 2006. The next MCQMC conference will be held
in Warsaw, Poland, in August 2010.

The proceedings of these previous conferences were all published by Springer-
Verlag, under the following titles:

• Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Nieder-
reiter and P.J.-S. Shiue, eds.),

• Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter,
P. Hellekalek, G. Larcher and P. Zinterhof, eds.),

• Monte Carlo and Quasi-Monte Carlo Methods 1998 (H. Niederreiter and
J. Spanier, eds.),

• Monte Carlo and Quasi-Monte Carlo Methods 2000 (K.-T. Fang, F.J. Hickernell
and H. Niederreiter, eds.),

• Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.),
• Monte Carlo and Quasi-Monte Carlo Methods 2004 (H. Niederreiter and D. Ta-

lay, eds.),
• Monte Carlo and Quasi-Monte Carlo Methods 2006 (A. Keller and S. Heinrich

and H. Niederreiter, eds.).

The program of the conference was rich and varied with over 135 talks being
presented. Highlights were the invited plenary talks given by Josef Dick (Univer-
sity of New South Wales), Arnaud Doucet (University of British Columbia), Daan
Frenkel (University of Cambridge), Paul Glasserman (Columbia University), Chris-
tiane Lemieux (University of Waterloo), Jun Liu (Harvard University), Klaus Ritter
(TU Darmstadt), Jeffrey Rosenthal (University of Toronto), Wolfgang Schmid (Uni-
versity of Salzburg), and Andrew Stuart (Warwick University). The papers in this
volume were carefully screened and cover both the theory and the applications of
Monte Carlo and quasi-Monte Carlo methods.

We thank the anonymous reviewers for their reports and many others who con-
tributed enormously to the excellent quality of the conference presentations and to
the high standards for publication in these proceedings by careful review of the ab-
stracts and manuscripts that were submitted.

We gratefully acknowledge generous financial support of the conference by the
Centre de Recherches Mathématiques (CRM), the Groupe d’Études et de Recherche
en Analyse de Décisions (GERAD), Mathematics for Information Technology
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and Complex Systems (MITACS), and the American National Science Foundation
(NSF).

Finally, we want to express our gratitude to Springer-Verlag for publishing this
volume.

Pierre L’Ecuyer
July 2009 Art Owen



Se
co

nd
 p

ro
of

s



Se
co

nd
 p

ro
of

s

Contents

Part I Tutorials

Monte Carlo and Quasi-Monte Carlo for Statistics . . . . . . . . . . . . . . . . . . . 3
Art B. Owen

Monte Carlo Computation in Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Jeremy Staum

Part II Invited Articles

Particle Markov Chain Monte Carlo for Efficient Numerical Simulation . 45
Christophe Andrieu, Arnaud Doucet, and Roman Holenstein

Computational Complexity of Metropolis-Hastings Methods in High
Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Alexandros Beskos and Andrew Stuart

On Quasi-Monte Carlo Rules Achieving Higher Order Convergence . . . . 73
Josef Dick

Sensitivity Estimates for Compound Sums . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Paul Glasserman and Kyoung-Kuk Kim

New Perspectives on (0, s)-Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Christiane Lemieux and Henri Faure

Variable Subspace Sampling and Multi-level Algorithms . . . . . . . . . . . . . . 131
Thomas Müller-Gronbach and Klaus Ritter

Markov Chain Monte Carlo Algorithms: Theory and Practice . . . . . . . . . 157
Jeffrey S. Rosenthal

ix



Se
co

nd
 p

ro
of

s

x Contents

MINT – New Features and New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Rudolf Schürer and Wolfgang Ch. Schmid

Part III Contributed Articles

Recursive Computation of Value-at-Risk and Conditional Value-at-Risk
using MC and QMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Olivier Bardou, Noufel Frikha, and Gilles Pagès

Adaptive Monte Carlo Algorithms Applied to Heterogeneous Transport
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Katherine Bhan, Rong Kong, and Jerome Spanier

Efficient Simulation of Light-Tailed Sums: an Old-Folk Song Sung to a
Faster New Tune... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Jose H. Blanchet, Kevin Leder, and Peter W. Glynn

Distribution of Digital Explicit Inversive Pseudorandom Numbers and
Their Binary Threshold Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Zhixiong Chen, Domingo Gomez, and Arne Winterhof

Extensions of Fibonacci Lattice Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Ronald Cools and Dirk Nuyens

Efficient Search for Two-Dimensional Rank-1 Lattices with Applications
in Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Sabrina Dammertz, Holger Dammertz, and Alexander Keller

Parallel Random Number Generators Based on Large Order Multiple
Recursive Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Lih-Yuan Deng, Jyh-Jen Horng Shiau, and Gwei-Hung Tsai

Efficient Numerical Inversion for Financial Simulations . . . . . . . . . . . . . . . 297
Gerhard Derflinger, Wolfgang Hörmann, Josef Leydold, and Halis Sak

Equidistribution Properties of Generalized Nets and Sequences . . . . . . . . 305
Josef Dick and Jan Baldeaux

Implementation of a Component-By-Component Algorithm to Generate
Small Low-Discrepancy Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Benjamin Doerr, Michael Gnewuch, and Magnus Wahlström

Quasi-Monte Carlo Simulation of Diffusion in a Spatially
Nonhomogeneous Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Rami El Haddad, Christian Lécot, and Gopalakrishnan Venkiteswaran

L2 Discrepancy of Two-Dimensional Digitally Shifted Hammersley Point
Sets in Base b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Henri Faure and Friedrich Pillichshammer



Se
co

nd
 p

ro
of

s

Contents xi

Vibrato Monte Carlo Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Michael B. Giles

The Weighted Variance Minimization in Jump-Diffusion Stochastic
Volatility Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Anatoly Gormin and Yuri Kashtanov

(t,m,s)-Nets and Maximized Minimum Distance, Part II . . . . . . . . . . . . . . 395
Leonhard Grünschloß and Alexander Keller

Automation of Statistical Tests on Randomness to Obtain Clearer
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Hiroshi Haramoto

On Subsequences of Niederreiter-Halton Sequences . . . . . . . . . . . . . . . . . . 423
Roswitha Hofer

Correcting the Bias in Monte Carlo Estimators of American-style
Option Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
K.H. Felix Kan, R. Mark Reesor, Tyson Whitehead, and Matt Davison

Fast Principal Components Analysis Method for Finance Problems
With Unequal Time Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Jens Keiner and Benjamin J. Waterhouse

Adaptive Monte Carlo Algorithms for General Transport Problems . . . . . 467
Rong Kong, Martin Ambrose, and Jerome Spanier

On Array-RQMC for Markov Chains: Mapping Alternatives and
Convergence Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Pierre L’Ecuyer, Christian Lécot, and Adam L’Archevêque-Gaudet

Testing the Tests: Using Random Number Generators to Improve
Empirical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Paul Leopardi

Stochastic Spectral Formulations for Elliptic Problems . . . . . . . . . . . . . . . . 513
Sylvain Maire and Etienne Tanré

Adaptive (Quasi-)Monte Carlo Methods for Pricing Path-Dependent
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Roman N. Makarov

Monte Carlo Simulation of Stochastic Integrals when the Cost of
Function Evaluation Is Dimension Dependent . . . . . . . . . . . . . . . . . . . . . . . 545
Ben Niu and Fred J. Hickernell



Se
co

nd
 p

ro
of

s

xii Contents

Recent Progress in Improvement of Extreme Discrepancy and Star
Discrepancy of One-Dimensional Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 561
Victor Ostromoukhov

Discrepancy of Hyperplane Nets and Cyclic Nets . . . . . . . . . . . . . . . . . . . . . 573
Friedrich Pillichshammer and Gottlieb Pirsic

A PRNG Specialized in Double Precision Floating Point Numbers Using
an Affine Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Mutsuo Saito and Makoto Matsumoto

On the Behavior of the Weighted Star Discrepancy Bounds for Shifted
Lattice Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
Vasile Sinescu and Pierre L’Ecuyer

Ergodic Estimations of Upscaled Coefficients for Diffusion in Random
Velocity Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
Nicolae Suciu and Călin Vamoş
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Monte Carlo and Quasi-Monte Carlo for
Statistics

Art B. Owen

Abstract This article reports on the contents of a tutorial session at MCQMC 2008.
The tutorial explored various places in statistics where Monte Carlo methods can be
used. There was a special emphasis on areas where Quasi-Monte Carlo ideas have
been or could be applied, as well as areas that look like they need more research.

1 Introduction

This survey is aimed at exposing good problems in statistics to researchers in Quasi-
Monte Carlo. It has a mix of well known and not so well known topics, which
both have their place in a research context. The selection of topics is tilted in the
direction of problems that I have looked at. That enables me to use real examples,
and examples are crucial to understanding statistics.

Monte Carlo methods are ubiquitous in statistics. Section 2 presents the boot-
strap. It is a method of resampling the observed data to judge the uncertainty in a
quantity. The bootstrap makes minimal assumptions about how the data were ob-
tained. Some efforts at bringing balance to the resampling process have brought
improvements, but they are not large enough to have made much impact on how the
bootstrap is used. Permutation tests, considered in Section 3 have a similar flavor to
the bootstrap, but there, efforts to impose balance can distort the results.

Markov chain Monte Carlo (Section 4) is used when we cannot directly sample
the quantity of interest, but are at least able to find a Markov chain from whose
stationary distribution the desired quantity can be sampled. Space limitations make
it impossible to cover all of the topics from a three hour tutorial in depth. The work
on QMC for MCMC has appeared in [31], [43] and in Tribble’s dissertation [42],
and so it is just sketched here.

Department of Statistics, Stanford University, Stanford CA, 94305
url: http://stat.stanford.edu/˜owen

P. L’Ecuyer, A.B. Owen (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008,
DOI 10.1007/978-3-642-04107-5 1, © Springer-Verlag Berlin Heidelberg 2010
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http://stat.stanford.edu/~owen
http://dx.doi.org/10.1007/978-3-642-04107-5_1
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Fig. 1 A measure of kidney damage is plotted versus age for 60 subjects in [34].

Monte Carlo methods are used for search as well as for integration. Section 5
presents the method of least trimmed squares (LTS). This is the most effective
method known for highly robust regression model fitting. It uses an ad hoc Monte
Carlo search strategy. Quasi-Monte Carlo methods have been used in search prob-
lems [26, Chapter 6], usually to search over the unit cube [27]. The space to search
over in LTS is of a combinatorial nature. Finally, Section 6 points to two more im-
portant problems from statistics where QMC may be useful.

2 The Bootstrap

Figure 1 plots a measure Yi of kidney damage against age Xi , for 60 subjects studied
in Rodwell et al. [34]. There is a clear tendency for older subjects to have greater
kidney damage. This may be quantified through the correlation coefficient, which
on this data takes the value 0.59. Since only 60 subjects were measured, we very
much doubt that the true correlation taken over all people is exactly 0.59. Using ρ

to denote a hypothetical true correlation and ρ̂ to denote the measured one, we may
just want to know the variance V (ρ̂) of our estimate.

The variance of the sample correlation is not hard to find in closed form, so long
as the data are a sample from the bivariate normal distribution. But we have no
reason to expect that assumption is good enough to use. The bootstrap, introduced
by Efron [5] provides a way out of that assumption. Operationally one does the
following:

1. For b = 1, . . . ,B
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2. Draw (X∗bi ,Y ∗bi ), 1≤ i ≤ 60 with replacement from the original data.
3. Compute ρ̂∗b = ρ̂

(
(X∗b1 ,Y ∗b1 ), . . . , (X∗b60 ,Y

∗
60)

)
.

4. Return the variance of ρ̂∗1, . . . ρ̂∗B .

Using B = 9999 the result came out to be 0.0081, so that the standard deviation
of the ρ̂∗ values is 0.090. What we actually got was a Monte Carlo estimate of the
variance of the bootstrapped correlations ρ̂∗ when resampling from the data. Even
if we let B →∞ this would not be the same as the variance we want, which is
that of ρ̂ when sampling from the unknown true distribution of (X,Y ) pairs. But
bootstrap theory shows that the two variances become close quickly as the number
n of sample values increases [7].

First impressions of the bootstrap are either that it is obviously ok, or that it is
somehow too good to be true, like pulling oneself up by the bootstraps. The formal
justification of the bootstrap begins with a statistical functional T defined on dis-
tributions F . In this case T (F ) gives the variance of the correlation measured on
60 pairs of data drawn from the distribution F on R

2. Let F0 be the unknown true
distribution and F̂n be the distribution that puts equal probability 1/n on all n data
points. As n increases F̂n approaches F0. Then a continuity argument gives T (F̂n)
approaching T (F0). The continuity argument holds in great generality but there are
exceptions, as well as remedies in some of those cases [32].

The bootstrap can also be used to estimate and correct for biases in statistics.
Let E(ρ̂ | F) denote the expected value of ρ̂ when sampling n data pairs from F .
Typically E(ρ̂) �= ρ, so that the sample correlation is biased. The bootstrap estimate
of the biasB(F)≡E(ρ̂ |F)−ρ(F ) isB(F̂n)≡E(ρ̂∗ | F̂n)−ρ(F̂n). We can estimate
this bias by resampling. In the present example we find that the average value of
ρ̂∗ − ρ̂ in resampling is −0.0047. If we are worried that ρ̂ is too small by 0.0047
we can add 0.0047 (i.e. subtract the estimated bias) and get 0.594 instead of 0.589.
Here the bias adjustment is very small. That is typical unless the method used has a
large number of parameters relative to the sample size.

Figure 2 shows a histogram of the 9,999 bootstrap samples used in this anal-
ysis. The histogram is skewed, centered near the original correlation, and is quite
wide. The resampled correlations cut the real line into 10,000 intervals. A bootstrap
95% confidence interval is formed by taking the central 9500 of those intervals. If
the values are sorted ρ̂∗(1) ≤ ρ̂∗(2) ≤ ·· · ≤ ρ̂∗(9999), then the 95% confidence in-
terval goes from ρ̂∗(250) to ρ̂∗(9750). In this example we have 95% confidence that
0.391≤ ρ ≤ 0.755. Similarly there is 99% confidence that ρ̂∗(100) ≤ ρ ≤ ρ̂∗(9900), or
0.346≤ ρ ≤ 0.765. Bootstrap confidence levels are not exact. They are approximate
confidence intervals. Typically they have coverage probability equal to their nominal
level plus O(n−1). See [13]. The intervals presented here are known as percentile
intervals. They are the simplest but not the only bootstrap confidence interval. See
[7] for other choices.

The balanced bootstrap [4] is an attempt to improve on bootstrap re-sampling.
Instead of sampling n observations with replacement B times, it forms a large pool
of nB observations, with B copies of each original data point. Then it randomly par-
titions them into B subsets of equal size n. Those groups are treated as the bootstrap
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Fig. 2 This figure shows 9999 bootstrap resampled correlations for the kidney data. There is
a reference point at the sample correlation. Solid vertical lines enclose the central 95% of the
histogram. Dashed lines enclose the central 99%.

samples. Now each original observation appears the same number B of times among
the sampled data. The balanced bootstrap is similar to QMC. Higher order balanc-
ing, based on orthogonal arrays, was proposed by [12], but that proposal requires
the number n of observations to be a prime power.

To apply QMC, it helps to frame the bootstrap problem as an integral over [0,1]n,
as discussed in [28] and thoroughly investigated by Liu [21]. We may write X∗i as
X�nUi	 where Ui ∼ U(0,1) are independent. Then X∗ = (X∗1, . . . ,X∗n) is a function
of U ∼ U(0,1)n. The bootstrap estimate of bias is a Monte Carlo estimate on B

samples of
∫
[0,1]n Q(U)dU for

Q(U)= T (X∗(U))−T (X), (1)

where T (X) is a shorthand for T (n−1∑n
i=1 δXi

) with δx the point mass distribution
at x. The bootstrap estimate of variance has integrand

Q(U)=
(
T (X∗(U))−

∫

[0,1]n
T (X∗(U))dU

)2

. (2)

The upper end of a bootstrap 95% confidence interval is the solution T 0.975 to∫
[0,1]n Q(U)dU = 0.975 where

Q(U)= 1T (X∗(U))≤T 0.975 , (3)

while the lower end uses 0.025 instead of 0.975.



Se
co

nd
 p

ro
of

s

MC and QMC for Statistics 7

To implement the ordinary bootstrap we take points Ub = (Ub1, . . . ,Ubn) ∼
U(0,1)n for b = 1, . . . ,B and use ordinary Monte Carlo estimates of the integrals
in (1), (2) and (3). To get a QMC version, we replace these points by a B point QMC
rule in [0,1]n.

The integrands Q are generally not smooth, because X�nUi	 is discontinuous in
Ui , apart from trivial settings. Smoothness is important for QMC to be effective.
Fortunately, there is a version of the bootstrap that yields smooth integrands, at
least for estimating bias and variance. The weighted likelihood bootstrap (WLB),
proposed by Newton and Raftery [24] uses continuous reweighting of the data
points instead of discrete resampling. It is a special case of the Bayesian boot-
strap of Rubin [38]. Where the ordinary bootstrap uses T (n−1∑n

i=1 δX∗i ), the WLB
uses T (

∑n
i=1wiδXi

) for certain random weights wi . To generate these weights
put vi = − log(Ui) and wi = vi/

∑n
j=1 vj . Then for uniform Ui we find that vi

has the standard exponential distribution, while w = (w1, . . . ,wn) = w(U) has a
Dirichlet distribution. We substitute smooth reweighting for resampling, by using
T (
∑n

i=1wi(U)δXi
) in place of T (X∗(U)) in equations (1), (2), and (3). In a QMC

version of the WLB, we take B points with low discrepancy in [0,1]n and use them
as the uniform numbers that drive the reweighting.

The WLB does not give the same answers as the original bootstrap. But the orig-
inal bootstrap is not exact, only asymptotically correct as n→∞. The same is true
of the WLB.

In her dissertation, Ruixue Liu [21] compared various QMC methods for boot-
strap problems. The underlying problem was to measure the correlation over law
schools, of the average LSAT score and grade point average of newly admitted stu-
dents.

In addition to the methods described above, she considered several QMC and
QMC-like constructions, as follows. Latin hypercube sampling (LHS)[22] provides
a sample in which each of the sample coordinates U1i , . . . ,UBi for i = 1, . . . ,n is
simultaneously stratified into intervals of width 1/B. Randomized orthogonal array
sampling [29] stratifies the bivariate or trivariate margins of the distribution of Ub.
When the array has strength t , then all

(
n
t

)
of the t–dimensional margins are strat-

ified, typically into cubical regions of width B−1/t . Orthogonal array based LHS
[41] has both the LHS and the orthogonal array stratifications. Scrambled nets [30]
are a randomization of a QMC method (digital nets).

Some numerical results from Liu [21] are shown in Tables 1 and 2. Bootstrap
estimates of the bias, variance and 95’th percentile were repeatedly computed and
their variance was found. Those variances are based on 2000 replications of each
method, except for scrambled nets for which only 100 replications were used. The
variances are presented as variance reduction factors relative to the variance of the
plain resampling bootstrap. For example, we see that the LHS version of resam-
pling is about 10 times as efficient as the ordinary bootstrap on the bias estimation
problems.

Several trends are apparent in these results. Better variance reductions are ob-
tained via reweighting than resampling, as one would expect because the former
has smoother integrands. It is easiest to improve on bootstrap bias estimates, harder
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Table 1 This table shows variance reduction factors attained from applying QMC methods to
the three bootstrap problems described in the text. The values are normalized so that the ordinary
bootstrap gets a value of 1.0 in each problem. Each bootstrap method used B = 612 = 3721 resam-
ples. The quantity being bootstrapped was a sample correlation. Both reweighting and resampling
bootstraps were used to estimate bias, variance and 95’th percentile. The orthogonal arrays had
strength 2. The balanced bootstrap is only defined for the resampling approach.

Resampling Reweighting

Method Bias Var Perc Bias Var Perc

Plain bootstrap 1.0 1.0 1.0 1.4 1.4 1.2
Balanced bootstrap 10.8 1.2 1.2
Latin hypercube sampling 10.7 1.2 1.3 16.4 2.3 1.6
Randomized orthogonal array 15.7 3.1 1.7 105.2 8.3 2.9
OA-based LHS 36.0 3.2 1.6 126.1 9.0 2.7
Scrambled (0,612,15)–net in base 61 30.0 3.1 1.8 116.9 8.8 3.3

for variance estimates, and hardest for confidence intervals. Again we would expect
this. In the von Mises expansion (e.g. [8]) the statistic T is approximated by a sum
of functions of one observation at a time. When that approximation is accurate, then
the bias integrands are more nearly additive in the n inputs while the variance inte-
grands are nearly the square of an additive approximation and we might expect the
resulting statistical function to be of low effective dimension in the superposition
sense [2]. Unfortunately, the interest in usual applied settings is in the reverse or-
der, percentiles, then variance then bias. Finally orthogonal array methods with high
strength and few levels do poorly

3 Permutation Tests

Newborn babies have a walking reflex, in which their feet start a walking motion
when placed in contact with a surface. Zelazo et al. [44] conducted an experiment
to test whether regular daily encouragement of this reflex would result in babies

Table 2 This table shows the same quantities as Table 1, except that now B = 173 = 4913 and the
orthogonal arrays had strength 3.

Resampling Reweighting

Method Bias Var Perc Bias Var Perc

Plain bootstrap 1.0 1.0 1.0 1.4 1.4 1.1
Balanced bootstrap 9.9 1.2 1.1
Latin hypercube sampling 10.2 1.2 1.3 15.7 2.5 1.5
Randomized orthogonal array 3.3 0.6 0.4 8.5 0.7 0.3
OA-based LHS 7.5 0.6 0.4 8.8 0.7 0.3
Scrambled (0,173,15)–net in base 17 60.7 6.5 2.2 756.0 33.6 2.9
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Fig. 3 Shown are ages at which babies learned to walk in each of 4 subject groups.

learning to walk at an earlier age, than without the encouragement. Figure 3 shows
the results of this experiment.

There were twenty-four babies in the experiment. The age at which they could
walk alone was reported for twenty-three of them. One group (active) had their re-
flex stimulated daily for eight weeks. Another (passive) had gross-motor stimulation
of a different kind. A third group (none) got neither stimulation but was regularly
tested for walking ability. The fourth group (control) was not even tested until a
greater age.

For illustration, we will focus on the simple problem of testing whether the active
group learned to walk sooner than the ’none’ group. For differing statistical analyses
of all four groups see [1, Chapter 10] and [44].

The active group learned to walk at an average age of X̄ = 10.125 months com-
pared to Ȳ = 11.7 months for the none group. They were faster on average by 1.58
months, but perhaps this difference can be attributed to chance.

A permutation test can be used to judge the difference. The two groups combined
have 12 babies. We could select 6 of them to be the active group in any of

(12
6

)= 924
ways. If there really is no difference in the distribution of walking age between the
groups, then we could permute the active versus none labels without changing the
distribution of the outcome. After such a permutation of the labels, we get new
averages X̄∗ and Ȳ ∗. The original permutation has a 1 in 924 chance of giving the
largest mean difference of them all, if the two groups are identical.

Figure 4 shows a histogram of all 924 permuted group mean differences X̄∗− Ȳ ∗.
There is a vertical reference line at the observed value of X̄− Ȳ =−1.58. There were
only 49 values less than or equal to −1.58. By symmetry there were 49 values at
least +1.58 and so there were 98 values as or more extreme than that observed.
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Fig. 4 The histogram shows all 924 values of X̄∗− Ȳ ∗ obtainable by permuting the labels (control
versus none) for 12 of the babies learning to walk. The vertical reference line is at the observed
value X̄− Ȳ .

This permutation test allows one to claim a two-tailed p-value of 98/924
.= 0.106

for the difference. A difference this large could arise by chance with probability
about 10.6%. The observed difference is not at all unusual. Some statisticians (not
including the author) would claim a p-value of 49/924 here, which is closer to 5%,
the conventional line at which results begin to be taken seriously.

In balanced permutations [6] we compare the two groups in a more carefully
controlled way. Each time the labels are reassigned, we ensure that three members
of the new treatment group come from the old treatment group and that three come
from the old control group. The other six babies are similarly balanced, and they

become the relabeled control group. There are
(6

3

)2 = 400 balanced permutations
for this data. It is customary to include the original sample, from an identity permu-
tation, in an MC based permutation analysis. This avoids the possibility of p = 0.
The identity permutation is not a balanced permutation, and so adding it in to the
reference set here gives a histogram of 401 values.

The intuitive reason for balancing the permutations is as follows. If there is no
difference between the groups, then the balanced permutations still give rise to the
same distribution of the treatment difference as the real sample has. But when there
is a difference, for example the treatment group learn to walk two months earlier
on average, then things change. In relabeling we get X̄∗ for treatment and Ȳ ∗ for
control. In some unbalanced permutations all or most of X̄∗ came from the original
control group while in others few or none came from there. In balanced permutations
exactly half of the values contributing to X̄∗ are at the high level and half at the low
level. A mean difference between the two original groups will mostly cancel for the
relabeled groups. As a result, the histogram of X̄∗ − Ȳ ∗ for balanced permutations
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can be expected to be narrower than the one for full permutations, when there is a
treatment difference. Narrower histograms lead to smaller reported p-values. In the
baby walking data, we find that |X̄∗ − Ȳ ∗| ≥ |X̄− Ȳ | holds for only 27 points in the
reference set, yielding a p-value of 27/401 = 0.067, which is smaller than for the
full permutation set.

While balanced permutations have the potential to sharpen inferences, they have
been applied without theoretical support. In simulations they have been found to
give p–values that are too permissive. The problem with balanced permutations
is that they do not form a group under composition. The group property is a key
ingredient in the permutation argument [17]. Some results in [40] show that the
chance of the original permutation beating all

(
n
2

)2 balanced permutations is much

larger than (1+(n2
)2
)−1 even when two groups of size n have identical distributions.

The p values are too small by a factor that grows quickly with n and is already over
100 for n= 10.

It may be possible to repair balanced permutations, although this looks difficult
at present. One approach is to try to compensate by adjusting the reported p values.
Another is to search for a suitable subgroup of permutations to use.

4 MCMC

Usually in QMC problems, we write the desired answer as an integral μ = ∫
[0,1]d

f (x)dx. The function f takes independent uniformly distributed quantities, trans-
forms them into the desired ones, such as dependent non-uniform values, and then
computes whatever it is we want to average as a function of those values. As is well
known [26], QMC methods achieve better rates of convergence than MC on such
problems, making only modest smoothness assumptions on f .

In some applications however, we seek a value μ= ∫
X
f (x)π(x)dx where there

is no practical way to turn uniform random variables into the desired ones from π

on the state space X. We might be able to get x ∼ π by rejection sampling but with
such an unfavorable acceptance rate that the method would be useless. This issue
arises commonly in Bayesian computations, for statistics [10] and machine learning,
as well as in the physical sciences [23].

In MCMC we generate xi = φ(xi−1,vi) where vi ∼U(0,1)d . The distribution of
xi depends on xi−1,xi−2, . . . only through the immediate predecessor xi−1, and so
it has the Markov property. With some skill and care, one can often choose φ so that
the Markov chain has π as its stationary distribution. Sometimes it is also important
to choose a good starting point x0. Under reasonable conditions there is a law of
large numbers for MCMC, so that

μ̂n = 1

n

n∑

i=1

f (xi)→ μ
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and there are also central limit theorems for MCMC. The theory and practice of
MCMC in statistics is presented in several books, including Liu [20] and Robert
and Casella [33].

The quantity μ̂n depends on n values vi ∼ U(0,1)d . Its expectation is thus an
nd dimensional integral which approximates, but does not equal, the desired one.
Unlike crude Monte Carlo, there is a bias in MCMC. Under reasonable conditions
it decays exponentially with n and so is often very small. Some other times the ex-
ponential decay is still too slow for practically useful problems, and so the constant
in the exponent matters. For some studies of the bias, see Rosenthal [35].

There have been some efforts to replace n vectors vi by quasi-Monte Carlo
points. The key idea is to open up the vectors vi into one long sequence u1,u2,u3,

. . . ,und where vi = (ud(i−1)+1,ud(i−1)+2, . . . ,udi). Then one replaces the indepen-
dent and identically distributed (IID) points ui for i = 1, . . . ,nd by some alternative
points with good equidistribution properties. Naive substitution of QMC points vi
into MCMC can fail very badly.

An early effort by Liao [19] has proven effective. Liao’s approach is to take a
QMC point set a1, . . . ,an ∈ [0,1]d and randomly reorder it getting vi = aτ(i) where
τ is a random permutation of {1, . . . ,n}. Then the reordered points v1,v2, . . . ,vn
are concatenated into a single vector of nd values in [0,1] with which to drive the
MCMC.

The thesis of Tribble [42] has an up to date account, extending the work published
in [31] and [43], and giving methods that do even better than Liao’s, in numerical
examples.

What is known so far is that a completely uniformly distributed (CUD) sequence
u1,u2, . . . can be used in place of IID points. In that case the QMC answer converges
to the correct result, at least for Markov chains with finite state spaces. The main
theoretical technique is a coupling argument first made by Chentsov [3] for sampling
Markov chains by inversion but then extended by Owen and Tribble [31] to handle
Metropolis-Hastings sampling. As of 2008 the continuous state space case had not
been handled. It is now covered in a technical report by Chen, Dick and Owen.

A CUD sequence is one that can be grouped into overlapping d-tuples zi =
(ui, . . . ,ui+d−1) such that the d dimensional star–discrepancy of z1, . . . ,zn−d+1
tends to 0. This must hold for all d . Extensions for random sequences and for lim-
its of finite length sequences are given in [43]. If points ui are independent U(0,1)
then zi have discrepancy that converges to 0 with probability one. But specially con-
structed sequences can have smaller discrepancies and hence may be more accurate.

Using a CUD sequence can be likened to using the entire period of a pseudo-
random number generator. This is an old suggestion of Niederreiter [25]. Quite a
different approach is to drive multiple copies of Markov chains by QMC, with re-
ordering between steps. See for example L’Ecuyer, Lécot and Tuffin [16] and earlier
work by Lécot [15].

The best numerical results for MCQMC so far used some small linear feedback
shift registers, in Tribble [42]. He gets variance reduction factors well over 1,000
for the posterior means of parameters using the Gibbs sampler on the well known
pump failure data set. For a higher dimensional vasorestriction data set of [9] he
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Fig. 5 This plot shows phone calls versus year. Some data values (plotted as open circles) were
corrupted by counts of minutes instead of calls. From top to bottom at the right, the three fitted
lines are least squares regression (dots), L1 regression (dashes), and least trimmed squares (solid).

obtains variance reduction factors up to 100. In both cases the variance reduction
factors increase with sample size. Switching from IID to CUD to randomized CUD
points brings the best improvements when the function φ(x,v) is smooth. This
occurs for the Gibbs sampler, which randomly updates components of x one at a
time given the others. More general Metropolis-Hastings sampling methods typi-
cally have acceptance-rejection steps which make for discontinuous integrands and
lessened improvements. Still, the Gibbs sampler is important enough that improve-
ments of it are worth pursuing.

The theoretical results so far may be likened to the strong law of large numbers.
They indicate that for large enough n, the answer converges. What is missing is an
analogue of the central limit theorem, or of the Koksma-Hlawka inequality, to say
how fast the convergence takes place. Furthermore, not enough is known about the
speed with which discrepancies (for varying d) of CUD sequences can vanish. A
survey of CUD constructions is given by [18].

5 Least Trimmed Squares

Figure 5 shows the Belgian telephone data of [37]. The data were supposed to por-
tray the number of calls per year (in millions) as a function of the year (minus
1900). As it turned out minutes, and not calls, were counted for a period starting in
late 1963 and ending in early 1970. The errors in the data make a big difference to
the regression line, fit by least squares.
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Errors or other data contamination of this nature are not as rare as we would like.
In the present setting we can clearly see that something is amiss, but in problems
where dozens or even thousands of explanatory variables are used to make predic-
tions, gross errors in the data might not be easy to see.

A robust line would be better suited to this problem. Robust methods are those
that are less affected by bad data. An old, but still very good reference on robust
statistical methods is the book by Huber [14].

The least squares regression line shown Figure 5 was found by minimizing∑n
i=1(Yi − β0 − β1Xi)

2 over β0 and β1, where Yi is the i’th phone measure
and Xi is the i’th year. The largest errors dominate the sum of squares, and so
least squares is far from robust. A natural alternative is to minimize the L1 error∑n

i=1 |Yi−β0−β1Xi | instead. It can be fit by quantile regression, where it general-
izes the sample median to the regression context. As such, this choice is less affected
by outliers. It brings a big improvement for this data, but it is still not robust, and
gets fooled badly on other data.

The current state of the art in robust fitting is to sum most of the squared errors,
but not the large ones. This is the Least Trimmed Squares (LTS) method of [37]. For
any β = (β0,β1) let ei(β) = |Yi −β0−β1Xi |, and then sort these absolute errors:
e(1)(β)≤ e(2)(β)≤ ·· · ≤ e(n)(β). We choose β to minimize

f (β)=
αn�∑

i=1

e(i)(β)
2.

If we were confident that fewer than 20% of the data were bad, we could take α =
0.8. The smallest workable value for α is (n+p+ 1)/(2n), which allows for just
under half the data to be bad.

Figure 5 shows the least trimmed squares fit. It goes through the good points and
is oblivious to the bad ones.

Figure 6 shows residuals Yi − β̂0− β̂1Xi for estimates β̂ fit by least squares and
by least trimmed squares. In least squares, the good observations have residuals of
about the same size as the bad ones. For least trimmed squares, the residuals from
bad points are much farther from zero than those from good ones. A data analyst
could then easily decide that those points need further investigation.

When there is only one explanatory variable, then there are fast algorithms to
find the least trimmed squares estimates. But when there are many such variables
then the best known fitting strategy is a Monte Carlo search of Rousseeuw and van
Driessen [36]. Their search is guided by some theory.

Consider a general linear model, which predicts Yi by
∑p

j=1βjXij = β ′Xi for

p ≥ 2 and n≥ p. It is known that the LTS solution β̂ solves Yi = β̂ ′Xi for p of the
points i = 1, . . . ,n. Thus the solution can be found by checking

(
n
p

)
interpolating

models. The cost of checking all those models though is often too high. They use
instead a Monte Carlo strategy.

One of their Monte Carlo search methods is presented in Figure 7. It is the one
recommended when n≤ 600.
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Fig. 6 The left panel shows the residuals from least squares. The good points get errors of about
the same size as the bad ones. The right panel shows residuals from least trimmed squares. The
bad points get very large residuals, making them numerically conspicuous.

The search in Figure 7 has clearly been tuned empirically, for speed and effective-
ness. For example the C–step brings an improvement, but they found diminishing
returns to fully iterated C-steps. It is better to generate many candidates and then
follow up only the best ones.

The algorithm makes numerous choices that seem arbitrary. There is clearly room
for a better understanding of how to search for an optimum.

1. Sample p points: (Yi ,Xi1, . . . ,Xip) i ∈ I⊂ {1, . . . ,n} |I| = p

2. While linear interpolation of Yi to Xi is not unique, add one more sample point
3. Find β̂ to interpolate Yi =X′i β̂ on sampled points.
4. Find points with the smallest h= nα� absolute residuals (among all n points).
5. C-step: Fit LS to the h points and find newest h points with smallest absolute residuals
6. Do 2 more C-steps
7. Repeat steps 1 through 6, 500 times, keeping 10 best results
8. Run C-steps to convergence for these 10
9. Select best of those 10 end points

Fig. 7 This is an outline of the Monte Carlo search algorithm of [36] for solving the least trimmed
squares regression problem, when n≤ 600.
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6 Other Methods

Some other uses of MC and QMC in statistics are very important but were not
described here. Notable among the gaps is the problem of fitting generalized linear
mixed models. Some efforts at this problem via QMC are reported in [39]. This
problem is very important in statistical applications. It features integrands which
can become very spiky in even moderately high dimensions and practical problems
can involve quite high dimension. Another classical quadrature problem arising in
statistics is that of integrating a probability density function of dependent random
variables, (e.g. Gaussian or multivariate t) over a rectangular region. For recent work
in this area see [11].
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Monte Carlo Computation in Finance

Jeremy Staum

Abstract This advanced tutorial aims at an exposition of problems in finance that
are worthy of study by the Monte Carlo research community. It describes prob-
lems in valuing and hedging securities, risk management, portfolio optimization,
and model calibration. It surveys some areas of active research in efficient proce-
dures for simulation in finance and addresses the impact of the business context
on the opportunities for efficiency. There is an emphasis on the many challenging
problems in which it is necessary to perform several similar simulations.

1 Introduction

This tutorial describes some problems in finance that are of interest to the Monte
Carlo research community and surveys some recent progress in financial applica-
tions of Monte Carlo. It assumes some familiarity with Monte Carlo and its applica-
tion to finance: for an introduction, see [24, 46]. For quasi-Monte Carlo methods in
finance, see [46, 72]. Section 2 provides an overview of financial simulation prob-
lems and establishes notation. Section 3 describes aspects of the business context
for simulation in the financial industry and the implications for researchers. The
principal theme of this tutorial is the need to solve multiple similar simulation prob-
lems and the associated opportunity to design efficient Monte Carlo procedures.
The mathematical settings in which multiple similar problems arise, and the tools
researchers use to deal with them, occupy Section 4. Section 5, on variance reduc-
tion, surveys database Monte Carlo and adaptive Monte Carlo. Section 6 is devoted
to simulation for risk management. American options and portfolio optimization are
covered in Section 7. Section 8 surveys sensitivity analysis by Monte Carlo. Some
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recent progress in simulating solutions of stochastic differential equations appears
in Section 9.

2 Overview of Financial Simulation Problems

Financial simulation models involve a vector stochastic process S of underlying fi-
nancial variables. Let S(t) be the value of S at time t and Sj be the j th component of
S. The model is expressed as a probability measure P governing S. A characteristic
feature of finance is that valuation calls for using another measure Q, derived from
P and a choice of numéraire, or unit of account. For example, in the Black-Scholes
model, one may take the numéraire to be S0, a money market account earning inter-
est at a constant rate r . Its value S0(t)= ert . In this model, under the real-world mea-
sure P , the stock price S1 is geometric Brownian motion with drift μ and volatility
σ . Using the money market account as numéraire leads to the risk-neutral measure
Q, under which S1 is geometric Brownian motion with drift r and volatility σ . The
real-world expected price of the stock at a future time T is EP [S1(T )] = S1(0)eμT .
The stock’s value now, at time 0, is S0(0)EQ[S1(T )/S0(T )] = S1(0). In general,
S0(0)EQ[H/S0(T )] is a value for a security whose payoff is H at time T . Thus, we
use P to simulate the real world, but we simulate under Q to value a security.

Figure 1 shows how P and Q enter into the four interrelated problems of valuing
and hedging securities, risk management, portfolio optimization, and model cali-
bration. The model specifies security values as expectations under Q. Sensitivities
of these expectations, to the underlying and to the model’s parameters, are used in
hedging to reduce the risk of loss due to changes in those quantities. In addition to
these sensitivities, real-world probabilities of losses are important in risk manage-
ment. Simulating scenarios under P is one step in sampling from the distribution of
profit and loss (P&L). A portfolio’s P&L in each scenario involves securities’ values
in that scenario, and they are conditional expectations under Q. The same structure
can arise in portfolio optimization, where the goal is to choose the portfolio strategy
that delivers the best P&L distribution. Calibration is a way of choosing a model’s
parameters. It is very difficult to estimate the parameters of P statistically from the
history of the underlying. Instead, one may choose the parameters of Q so that the
prices of certain securities observed in the market closely match the values that the
model assigns to them.

Before elaborating on these four problems, we establish some notation. We dis-
cretize a time interval [0,T ] intom steps, considering the times 0= t0, t1, . . . , tm=T ,
and let Fi represent the information available at step i after observing S(t0), S(t1),
. . . , S(ti). In applying Monte Carlo, we aim to estimate an expectation or integral
μ= E[Y ] = ∫

f (u)du. The domain of integration is often omitted; it is understood
to be [0,1)d when the variable of integration is u. We often ignore the details of
how to simulate the random variable Y = f (U), where U is uniformly distributed on
[0,1)d . Such details remain hidden in the background: when we generate a point set
u1, . . . ,un in order to estimate μ by

∑n
i=1 f (ui )/n, each vector ui results in a sim-
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Fig. 1 Ecology of computations in finance.

ulated path S(i)(t1), . . . ,S(i)(tm), where the superscript (i) indicates that this path is
generated by the ith point or replication. The mapping φ from point to path is such
that when U is uniformly distributed on [0,1)d , φ(U) has the finite-dimensional dis-
tribution specified by P or Q, as appropriate. Sometimes we explicitly consider the
intermediate step of generating a random vector X before computing the random
variable Y = f̃ (X). We will often consider the influence of a parameter vector θ ,
containing initial values of the underlying, parameters of the model, characteristics
of a security, or decision variables. In full generality,

μ(θ)= E[Y(θ)] =
∫

[0,1)d
f (u;θ)du=

∫
f̃ (x;θ)g(x;θ)dx= Eθ [f̃ (X;θ)].

Derivative Securities. Derivative securities have payoffs that are functions of the
underlying. In many models, the market is complete, meaning that the derivative
security’s payoff can be replicated by trading in the underlying securities. Then,
in the absence of arbitrage, the derivative security’s value should equal the cost of
setting up that replicating strategy, and this is an expectation under Q [46, §1.2].
For a survey of ideas about how to price a derivative security whose payoff can not
be replicated, see [92]. According to some of these ideas, price bounds are found by
optimizing over hedging strategies or probability measures. Computational methods
for these price bounds have received little attention; exceptions are [75, 84].

The Greeks, sensitivities of derivative security values to the underlying or to
model parameters, are used to measure and to hedge the risk of portfolios. For ex-
ample, where Δj = μ′(S(0)) is the sensitivity of the j th security’s value to small
changes in the underlying asset’s price, the sensitivity of a portfolio containing wj

shares of each security j is Δ =∑
j wjΔj . Selling Δ shares of the underlying as-

set makes the portfolio value insensitive to small changes in the underlying asset’s
price. It is portfolios, rather than individual securities, that are hedged. However, it
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can be helpful to know the Greeks of each security, which are its contribution to the
portfolio’s Greeks.

The Monte Carlo literature on finance has given a disproportionately great
amount of attention to efficient methods for valuing and hedging some particular
kind of exotic option in isolation. At this point, it is worth shifting attention to
the other three problems or to addressing issues that arise in valuing and hedging
derivative securities because of the business context. Also, research on simulating
recently developed models can contribute to the solution of all four problems. For
example, simulating models with jumps is an important topic of research at present.
The following derivative securities are of particular interest:

• Asian options are important in commodities and foreign exchange, because they
can help non-financial firms hedge risks arising from their businesses.

• Mortgage-backed securities [32] are in the news.
• So are credit derivatives, from single-name credit default swaps to portfolio credit

derivatives such as collateralized debt obligations [13, 40, 41].

All of these lead to a high dimension d for integration, because they involve a large
number m of time steps, and can pose challenges for Monte Carlo and quasi-Monte
Carlo methods.

Risk Management. As illustrated by Figure 1, risk management is a broad sub-
ject that overlaps with the topics of hedging individual securities and of portfolio
optimization. Hedging a portfolio’s Greeks is one approach in risk management.
Another is minimizing a risk measure of the hedged portfolio’s P&L [26]. A risk
measure is a real-valued functional of P&L or the distribution of P&L, such as
variance, value at risk (VaR), or conditional value at risk (CVaR). For example, be-
cause of a regulatory requirement to report VaR, financial firms compute the 99th
percentile of the loss distribution. Because limits on risk constrain activities, and
because regulators impose a costly capital requirement on a financial firm propor-
tional to its risk measure, there is also interest in decomposing the risk measure into
a sum of risk contributions from the firm’s positions or activities. Risk contributions
as often computed as sensitivities of the risk measure to portfolio positions or the
scale of a trading desk’s activities. See [80] for an overview of risk management and
[40, 48] for credit risk modeling.

Portfolio Optimization. Portfolio optimization features a decision variable that
specifies a vector θ of portfolio weights. This may be a static vector or it may be
a stochastic process of portfolio weights that would be chosen in every possible
scenario at each time step. The objective is often to maximize the expected utility
E[u(W(T ))] of future wealth W(T ) = θ(T )�S(T ), or to maximize the expected
total discounted utility E[∑m

i=0 e
−βti u(C(ti))] of a consumption process C, which

is another decision variable. The investor’s initial wealth W(0) imposes the budget
constraint θ�S(0)=W(0). A multi-period formulation requires self-financing con-
straints like θ(ti)

�S(ti) = θ(ti−1)
�S(ti)−C(ti), which may be more complicated

if there are features such as transaction costs and taxes. There may also be con-
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straints such as a prohibition against short-selling, θ ≥ 0, or an upper bound on a
risk measure of W(T ). For background on portfolio optimization, see [14, 28, 33].

Model Calibration. Calibrating the model to observed prices of derivative securi-
ties is an inverse problem, usually ill-posed. As shown in the upper left corner of
Figure 1, the model maps a parameter vector θ to a vector of security values μ(θ),
and here the task is to find the θ that yields a given vector p of the securities’ market
prices. The difficulty is that the mapping μ(·) may be non-invertible or the given p
may not be in its range. A standard approach is to put a norm on the space of price
vectors and to use θ∗ = argminθ ‖μ(θ)− p‖. If the model has many parameters,
it may be necessary to add a penalty term to the objective to prevent over-fitting.
For an exposition, see [27, Ch. 13]. A recent innovation employing Monte Carlo
methods in the search for good parameters is [10].

3 Financial Simulations in Context

Much research on Monte Carlo in finance focuses on computational efficiency: re-
ducing time required to attain a target precision, or attaining better precision given
a fixed computational budget. Efficiency is important: some financial simulations
impose such a heavy computational burden that banks have invested in parallel
computing platforms with thousands of processors. However, the value of efficiency
techniques depends on the context of the business process within which computation
takes place. Because computers are cheap and financial engineers are expensive, the
benefit of a more efficient simulation must be weighed against the cost of analyst
time required to implement it. Efficiency techniques are more valuable the easier
they are to implement and the more broadly applicable they are. Efficiency is most
important for computationally intensive problems, such as those in Section 4. The
software engineering environment may hinder the implementation of efficient sim-
ulation procedures. Many firms use modular simulation software engines in which
path generation does not depend on the security being considered. They may even
generate a fixed set of paths of the underlying, which are then reused for several
purposes, such as pricing many derivative securities. This is an obstacle to imple-
menting some efficiency techniques: for example, it prevents the use of importance
sampling methods tailored to each derivative security.

The Value of Speed. Faster answers are always welcome, but speed is more valu-
able in some applications than others. It does not matter whether it takes 0.1 or 0.01
seconds to deliver a precise estimate of one option price to a trader. However, it does
matter whether it takes 60 hours or 6 hours to measure firm-wide risk over a one-
day horizon: after 60 hours, the answer is useless because that day is over. Faster
calibration is beneficial in delivering more frequently updated model parameters.

The Value of Precision. Faster is always better, but precision can be excessive.
The reason is that precision, related to the reported uncertainty in an estimator, is



Se
co

nd
 p

ro
of

s

24 Jeremy Staum

not the same as accuracy, related to how far the estimator is from the truth. In Monte
Carlo, precision relates to the statistical properties of an estimator of a quantity that
is specified by a model; if the estimator is consistent, it is possible to attain arbitrar-
ily high precision by increasing the computational budget. Accuracy also involves
model error, the difference between some quantity as specified by the model and
the value it really has. Only building a better model, not more computational effort,
will reduce model error. It is unhelpful to provide Monte Carlo estimates whose
precision greatly exceeds the model’s accuracy. Of course, this is true in any scien-
tific computing endeavor, but model error tends to be greater in operations research
and finance than in other disciplines such as physics. Therefore the useful degree of
precision in financial simulations is less than in some other scientific computations.

In finance, the possibility of loss due to model error is known as model risk, and
it is quite large: we can not be certain that an option’s expected payoff is $10.05
and not $10.06, nor that value at risk is $10 million as opposed to $11 million.
Simulation output can be too precise relative to model error. Suppose we run a long
simulation and report a 99% confidence interval of [10.33,10.34] million dollars
for value at risk. What this really means is that the Monte Carlo simulation left us
with 99% confidence that our model says that value at risk is between $10.33 and
$10.34 million. However, because of model error, we do not have high confidence
that value at risk actually falls in this interval. Reporting excessive precision is a
waste of time, and it is also dangerous in possibly misleading decision-makers into
thinking that the numbers reported are very accurate, forgetting about model risk.

The utility of precision is also limited by the way in which answers are used.
For example, when Monte Carlo is used in pricing derivative securities, the bid-ask
spread provides a relevant standard: if market-makers charge (“ask”) a dollar more
when they sell an option than they pay (“bid”) when they buy it, they do not need to
price the option to the nearest hundredth of a cent.

As a rough general guideline, I suggest that 0.1% relative error for derivative
security prices and 1% relative error for risk measures would not be too precise in
most applications. Here relative error means the ratio of root mean squared error to
some quantity. Usually it makes sense to take this quantity to be the price or risk
measure being estimated. However, in some applications, the price is zero or nearly
zero and it makes sense to take something else as the denominator of relative error.
For example, in pricing swaps, one may use the swap rate or the notional principal
on which the swap is written (in which case greater precision could be appropriate).

Repeating Similar Simulations. In finance, there are opportunities to improve
efficiency because we often perform multiple simulations that are structurally the
same and only differ slightly in the values of some parameters. Examples of three
kinds of situations in which repeated similar simulations arise are:

• Fixed set of tasks: In electronic trading and market-making, we want to value
many options which differ only in their strike prices and maturities. The strikes
and maturities are known in advance.
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• Multi-step tasks: Calibration can involve repeated simulations with different
model parameters that are not known in advance, but depend on the results of
previous steps.

• Sequential tasks: We measure a portfolio’s risk every day. Tomorrow’s portfo-
lio composition and model parameters are currently unknown, but will probably
differ only slightly from today’s.

Section 4 describes some problems in which multiple simulations arise and methods
for handling them efficiently. The variance reduction methods of Section 5 also help
in this context. The aim of Database Monte Carlo is to use information generated in
one simulation to reduce the variance of similar simulations. Adaptive Monte Carlo
and related approaches can be applied to choose good variance reduction parameters
to use in one simulation based on the output of a similar simulation.

Thinking about repeated simulations may lead to a paradigm shift in our under-
standing of how Monte Carlo should support computation in finance. The domi-
nant paradigm is to treat each problem that arises as a surprise, to be dealt with by
launching a new simulation and waiting until it delivers a sufficiently precise an-
swer. Instead we might think of a business process as creating an imperative for us
to invest computational resources in being able to estimate μ(θ) for a range of θ .

4 Multiple Simulation Problems

Many of the computationally intensive problems most worthy of researchers’ at-
tention involve multiple simulations. In many cases, these are structurally similar
simulations run with different parameters.

The Portfolio Context A large portfolio, containing a large number � of securities,
can make risk management and portfolio optimization simulations computationally
expensive. The approach to portfolio valuation is often to choose the number mi of
replications in a simulation to value to the ith security large enough to value this
security precisely, with the result that the total number of replications

∑�
i=1mi is

very large. However, [54] point out that if � is large, the portfolio’s value can be esti-
mated precisely even if m is very small, as long as each security’s value is estimated
with independent replications: then the variance in estimating each security’s value
is large, but the variance in estimating the portfolio value is small.

Nested Simulations Nested simulation arises when, during a simulation, we would
like to know a conditional expectation. If it is not known in closed form, we may
resort to an inner-level simulation to estimate it. That is, within an outer-level sim-
ulation in which we want to estimate

∫
f (u)du by

∑n
i=1f (ui )/n but can not eval-

uate the function f , we may nest an inner level of simulation, in which we esti-
mate f (u1), . . . ,f (un). See [69] for a general framework for two-level simulation in
which we wish to estimate a functional of the distribution of f (U) and estimate f by
Monte Carlo. For examples of nested simulation, see Section 6 on risk management,
where inner-level simulation estimates a portfolio’s value in each scenario simulated
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at the outer level, and Section 7 on American option pricing, where inner-level sim-
ulation estimates the option’s continuation value at every potential exercise date on
each path simulated at the outer level. For the sake of computational efficiency, it is
desirable to avoid a full-blown nested simulation, which tends to require a very large
total number of replications: mn if each of n outer-level scenarios or paths receives
m inner-level replications. One way of avoiding nested simulation is metamodeling.

Metamodeling Metamodeling of a simulation model is the practice of building an
approximation μ̂ to a function μ, using a simulation model that enables estimation
of μ(θ) for any θ in a domain Θ . One purpose of metamodeling is to be able to
compute an approximation μ̂(θ) to μ(θ) quickly. Many simulation models are slow
to evaluate μ(θ), but metamodels are constructed so that they are fast to evaluate.
This makes them useful in dealing with repeated similar simulations (§3). It can be
faster to build a metamodel and evaluate it repeatedly than to run many separate
simulations, so metamodeling can reduce the computational burden of a fixed set of
tasks or a multi-step task. In dealing with sequential tasks, metamodeling enables an
investment of computational effort ahead of time to provide a rapid answer once the
next task is revealed. Another benefit of metamodeling is that it supports visualiza-
tion of the function’s behavior over the whole domain Θ , which is more informative
than merely estimating local sensitivity.

Metamodeling is better developed for deterministic simulations than for stochas-
tic simulations, but it is becoming more widespread in stochastic simulation: for ref-
erences, see [3]. In deterministic simulation, the metamodel is built by running the
simulation model at some design points θ1, . . . ,θk and using the observed outputs
μ(θ1), . . . ,μ(θk) to construct μ̂ by regression, interpolation, or both. In stochastic
simulation, this is not exactly possible, because μ(θ i ) can only be estimated; we
explain below how to deal with this conceptual difficulty. The two main approaches
to metamodeling are regression and kriging. Regression methods impose on the
metamodel μ̂ a particular form, such as quadratic, composed of splines, etc. Then
the unknown coefficients are chosen to minimize the distance between the vectors
(μ(θ1), . . . ,μ(θk)) and (μ̂(θ1), . . . , μ̂(θk)). Finance is one of the applications in
which it may be hard to find a form for μ̂ that enables it to approximate μ well over
a large domain Θ . However, in some applications such as sensitivity estimation and
optimization, it may only be necessary to approximate μ well locally. Unlike re-
gression, kriging is an interpolation method that forces the metamodel to agree with
the simulation outputs observed at all design points. However, it can be combined
with estimation of a trend in μ(θ) as a function of θ , as in regression. There are two
principal difficulties for metamodeling of financial simulations.

One is that metamodeling is hard when θ is high-dimensional and when μ is dis-
continuous or non-differentiable. One remedy for the latter problem is to construct
separate metamodels in different regions, such that μ is differentiable on each re-
gion. In some cases, the troublesome points are known a priori. For example, in a
typical option pricing example, the option price μ is non-differentiable where the
stock price equals the strike price and time to maturity is zero. In other cases, it
is not known in advance whether or where μ may be badly behaved. It may help
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to apply methods that automatically detect the boundaries between regions of Θ in
which there should be separate metamodels [55].

The second obstacle is common to all stochastic simulations. It involves the con-
ceptual difficulty that we can not observe the true value μ(θ) at any input θ , and a
related practical shortcoming. We might deal with the conceptual difficulty in one
of two ways. One way is to use quasi-Monte Carlo or fix the seed of a pseudo-
random number generator and regard the output ν of the stochastic simulation as
deterministic, given that these common random numbers (CRN) are used to sim-
ulate at any input θ . We can build a metamodel ν̂ of ν, but its output ν̂(θ) is an
approximation to ν(θ), the output that the simulation would produce if it were run
at θ with CRN, not necessarily a good approximation to the expectation μ(θ) that
we want to know. Then the practical shortcoming is that ν(θ) needs to be a precise
estimate of the expectation μ(θ), so the number of replications used at each design
point must be large. The second way to deal with the conceptual difficulty is to use
different pseudo-random numbers at each design point θ i , but build a metamodel by
plugging in a precise simulation estimate for μ(θ i ) anyway. This entails the same
practical shortcoming, and the Monte Carlo sampling variability makes it harder to
fit a good metamodel. It is a practical shortcoming to need many replications at each
design point because, given a fixed computational budget, it might be more efficient
to have more design points with fewer replications at each. Stochastic kriging [3]
is one solution to these problems. It shows how uncertainty about the expectation
μ(θ) arises from the combination of interpolation and the Monte Carlo sampling
variability that affects the stochastic simulation output as an estimate of μ(θ i ) for
each design point. Stochastic kriging makes it possible to get a good approximation
to μ(θ) even when the number of replications at each design point is small and pro-
vides a framework for analyzing the trade-off between having many design points
and having more replications at each of them.

Metamodeling is closely related in its aims to database Monte Carlo (§5).

Optimization Another reason that one might need to obtain Monte Carlo estimates
of μ(θ) for multiple values of θ is when optimizing over θ , if simulation is needed
in evaluating the objective or constraints of the optimization problem. This is opti-
mization via simulation (OvS): for an overview, see [34, 60]. In the following, we
concentrate on the problem minθ∈Θ μ(θ) of minimizing an expectation that must
be estimated by Monte Carlo over a continuous decision space Θ defined by con-
straints that can be evaluated without Monte Carlo. The typical pattern is that an op-
timization procedure visits candidate solutions θ0,θ1, . . . ,θK sequentially, at each
step j using information generated by Monte Carlo to choose θ j . It is quite useful
in choosing θ j to be able to estimate the gradient ∇μ(θ j−1): see Section 8.

• Sample Average Approximation. The simplest approach is to approximate the
objective value μ(θ) by the sample average μ̂(θ) =∑n

i=1f (ui;θ)/n. That is,
the common random numbers u1, . . . ,un are used to estimate the objective at any
candidate solution θj . To minimize μ̂, one can use a gradient-free optimization
procedure or use the gradient ∇μ̂(θ)=∑n

i=1∇θf (ui;θ)/n if available.
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• Metamodeling and Stochastic Approximation. Another approach involves
running more simulations at each step, using increasing total simulation effort
as the optimization procedure converges to the optimal θ . Sequential metamod-
eling [7] considers a neighborhood Θj of θ j−1 at step j , and builds a metamodel
μ̂j that approximates μ locally, on Θj . The gradient ∇μ̂j helps in choosing θ j .
(Because of the difficulty of building metamodels that fit well globally, it has
not been common practice in OvS simply to build one metamodel and minimize
over it.) Stochastic approximation depends on ways of computing an estimate
∇̂μ(θ) of the gradient that are described in Section 8 and [35]. At step j , the next
candidate solution is θ j = θ j−1− γj ∇̂μ(θ j−1). It can be troublesome to find a
sequence of step sizes {γj }j∈N that works well for one’s particular optimization
problem [34]. For recent progress, see [18, 82]. Other questions include whether
it is best to estimate the optimal θ by θn or a weighted average of θ1, . . . ,θn, or
to constrain θ j from moving too far from θ j−1; see [60].

• Metaheuristics. Various metaheuristic methods, such as simulated annealing
and genetic algorithms, use Monte Carlo to solve optimization problems heuris-
tically, even if the objective μ can be evaluated without Monte Carlo: they ran-
domly select the next candidate solution θ j . See [83] for an overview in the
simulation context, where it is typical to employ the metaheuristic simply by
using a simulation estimate μ̂(θ j ) in place of each μ(θ j ). Metaheuristics can
solve difficult optimization problems, such as model calibration problems that
are non-convex, with multiple local minima and regions in which the objective is
very flat. However, they are called metaheuristics because they require tailoring
to the specific problem to produce an algorithm that works well. Randomness
over candidate solutions can have more benefits than escaping from local min-
ima: for example, [10] uses a metaheuristic optimization procedure to account
for the parameter uncertainty that remains after model calibration.

• Approximate Dynamic Programming. This discussion of optimization has not
yet explicitly taken into account optimization over policies that include decisions
at multiple times, which is important for American options and dynamic portfolio
optimization. This is the subject of dynamic programming, in which the optimal
decision at each time maximizes a value function, such as the expected utility
of terminal wealth as a function of underlying prices and the composition of the
portfolio. Approximate dynamic programming (ADP) is a solution method for
dynamic programs that are too large to solve exactly. Instead of computing the
exact value of each state, ADP constructs an approximate value function. Monte
Carlo can help in approximating the value function: then ADP is closely related
to simulation metamodeling. For more on ADP, see [11, 88, 89].

5 Variance Reduction

Here we discuss only two active areas of research in variance reduction that have
important applications in finance.
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Database Monte Carlo. The idea of database Monte Carlo (DBMC) is to invest
computational effort in constructing a database which enables efficient estimation
for a range of similar problems [16]. In finance, it is often important to solve a whole
set of similar problems (§3). The problems are indexed by a parameter θ , and we
want to estimate μ(θ) = ∫

f (u;θ)du for several values of θ , for example, to price
several options of different strike prices. DBMC involves choosing a base value
θ0 of the parameter and evaluating f (·;θ0) at many points ω1, . . . ,ωN in [0,1)d .
The set {(ωi ,f (ωi;θ0))}i=1,...,N constitutes the database. DBMC provides a generic
strategy for employing a variance reduction technique effectively: the purpose of
investing computational effort in the database is that it enables powerful variance
reduction in estimating μ(θ) for values of θ such that f (·;θ) is similar to f (·;θ0). It
may be possible to estimate μ(θ) well with f (·,θ) evaluated at only a small number
n of points. DBMC has been implemented with stratification and control variates
[16, 96, 97, 98]. All but one of the methods in these papers are structured database
Monte Carlo (SDMC) methods, in which further effort is expended in structuring
the database: the database is sorted so that f (ωi;θ0) is monotone in i [98].

SDMC with stratification partitions {1, . . . ,N} into n�N strata I1 = {1, . . . , i1},
I2 = {i1+ 1, . . . , i2}, . . . , In = {in−1+ 1, . . . ,N}. (How best to partition is a sub-
ject of active research.) It then performs stratified resampling of u1, . . . ,un from
{ω1, . . . ,ωN }. That is, u1 is drawn uniformly from the set {ωi : i ∈ I1}, u2 uni-
formly from {ωi : i ∈ I2}, etc. SDMC then estimates μ(θ) by

∑n
j=1pjf (uj ;θ)

where pj = |Ij |/N = (ij − ij−1)/N . If this stratification provides good variance
reduction, then

∑n
j=1pjf (uj ;θ) is a good estimator of

∑N
i=1f (ωi;θ)/N . In turn,

∑N
i=1f (ωi;θ)/N is a good estimator ofμ(θ) becauseN is large. Then, even though

n is small,
∑n

j=1pjf (uj ;θ) is a good estimator of μ(θ).
The advantage of SDMC can be understood by viewing it as a scheme for au-

tomatically creating good strata. Ordinary stratification requires partitioning [0,1)d
into strata, and it is time-consuming and difficult to find a good partition, especially
because the partition must be such that we know the probability of each stratum
and how to sample uniformly within each stratum. Although SDMC actually strati-
fies the database, it is similar to partitioning [0,1)d into strata X1, . . . ,Xn such that
{ωi : i ∈ Ij } ⊆ Xj for all j = 1, . . . ,n. Typically, this partition is better than one
that an analyst could easily create, because SDMC takes advantage of knowledge
about f (·;θ0) that is encoded in the database. If f (ωi ,θ) is close to monotone in the
database index i, then SDMC with stratification provides excellent variance reduc-
tion [97]. SDMC avoids issues that make it hard for analysts to find good partitions.
We need not know the stratum probabilities, because they are estimated by sample
proportions from the database. Nor do we need to know how to sample from the
conditional distribution of f (U;θ) given that it falls in a certain stratum, because
stratified sampling is performed using the database indices.

DBMC applied to control variates [16] leads to the idea of a quasi-control variate
[31], i.e., a random variable used as a control variate even though its mean is un-
known and merely estimated by Monte Carlo [85]. In DBMC, one can use f (u;θ0)

as a quasi-control variate, with estimated mean
∑N

i=1f (ωi;θ0)/N . One may re-
sample u1, . . . ,un from {ω1, . . . ,ωN } or instead use fresh points u1, . . . ,un, and then
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estimate μ(θ) by
∑n

j=1f (uj ;θ)/n−β(
∑n

j=1f (uj ;θ0)/n−∑N
i=1 f (ωi;θ0)/N).

There are also SDMC methods which involve sorting the database and using the
database index as a control variate [96].

DBMC is a powerful and exciting new strategy for variance reduction when han-
dling multiple similar problems. DBMC methods are generic and provide automated
variance reduction, requiring relatively little analyst effort. Open questions remain,
especially in experiment design for DBMC. What is the optimal database size N

when one must estimate μ(θ1), . . . ,μ(θk) given a fixed budget C =N+kn of func-
tion evaluations? We may be interested in some values of θ that are near the base
value θ0 and others that are far: when is it worthwhile to restructure the database or
create a new database at another base value?

Such questions emphasize differences between DBMC, in its present state of de-
velopment, and metamodeling. DBMC and metamodeling are two ways of using
an investment of computational effort to get fast estimates of μ(θ) for many val-
ues of θ . However, they work quite differently. Metamodeling provides an estimate
of μ(θ) without any further simulation, but the estimate is biased, in general; when
metamodeling works badly, large errors can result. Metamodeling works by exploit-
ing properties of the function μ, whereas DBMC works by exploiting properties of
f . DBMC estimates μ(θ) with a small simulation of n replications, and the re-
sulting estimate is unbiased (ignoring bias due to estimating coefficients of control
variates). The parallel to metamodeling suggests extending DBMC to incorporate
information from multiple simulations, not just one at θ0.

Adaptive Monte Carlo. The fundamental idea of adaptive Monte Carlo is to im-
prove the deployment of a variance reduction technique during the simulation, us-
ing information generated during the simulation. That is, the variance reduction
technique is parameterized by ϑ , where the special notation ϑ indicates that pa-
rameter does not affect the mean μ= E[f (U;ϑ)]. However, it does affect the vari-
ance Var[f (U;ϑ)]. Adaptive Monte Carlo uses simulation output to choose ϑ to re-
duce the variance Var[f (U;ϑ)]. A number of Monte Carlo methods can be viewed
as adaptive to some extent, even the long-standing practice of using regression to
choose the coefficients of control variates based on simulation output.

This standard way of implementing control variates illustrates a recurrent ques-
tion in adaptive Monte Carlo: should one include the replications used to choose ϑ

in the estimator of μ, or should one throw them out and include only fresh repli-
cations in the estimator? If separate batches of replications are used to choose the
coefficients and to estimate the expectation, the estimator with control variates is
unbiased. However, it is preferable to use the same replications for both tasks, de-
spite the resulting bias, which goes to zero as the sample size goes to infinity [46,
§4.1.3]. Many adaptive Monte Carlo methods include all the replications in the es-
timator, which is nonetheless asymptotically unbiased under suitable conditions. In
some portfolio risk measurement and American option pricing problems, the bias
may be large at the desired sample size. There are methods for these problems, dis-
cussed in Sections 6 and 7, that use a fresh batch of replications to reduce bias or to
deliver probabilistic bounds for bias.
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There are two main approaches to adaptive Monte Carlo. In one approach, the
analyst chooses a parameterized variance reduction scheme, and adaptive Monte
Carlo tries to choose ϑ to attain variance near infϑ Var[f (U;ϑ)]. The other ap-
proach is oriented towards learning a value function which, if known, would enable
zero-variance simulation. This kind of adaptive Monte Carlo achieves variance re-
duction by making use of an approximation to the value function. In finance, both
approaches employ optimization via simulation (§4), either to minimize variance or
to find the approximate value function that best fits the simulation output. Stochastic
approximation (SA) and sample average approximation (SAA) have been employed
as optimization methods. Importance sampling and control variates are the most
common variance reduction methods in this literature.

In the variance-minimization approach, [21] uses SAA while [4, 93] use SA.
The procedures using SA can have multiple stages: at stage n, variance reduction is
performed using the parameter ϑn−1, and then the parameter is updated to ϑn based
on the new simulation output. The estimator is computed by [93] as an average of
fresh replications in the last stage, which were never used to choose the variance
reduction parameter; it is an average of all replications in [4] and papers that follow
it. Under suitable conditions, the variance reduction parameter ϑn converges to an
optimal choice, and the average over all replications is a consistent, asymptotically
normal estimator. Still, it would also be well to confirm the bias is negligible at the
relevant sample sizes. Another issue is how many replications should be in each
stage, between updates of ϑ . Although classic SA procedures may update ϑ after
each replication, that will usually entail too much computational effort when the
goal is variance reduction, or rather, a reduction in work-normalized variance.

The approach that approximates a value function V is surveyed by [73] in a
Markov-chain setting. In finance, V (t,S(t)) may be an option’s price when the un-
derlying is S(t) at time t , for example. An approximate value function V̂ is built by
metamodeling (§4). Adaptive control variates work by using V̂ to construct a mar-
tingale whose ith increment is V̂ (ti ,S(ti))−E[V̂ (ti ,S(ti))|Fi−1], and using it as a
control variate. Adaptive importance sampling works by setting the likelihood ratio
for step i to V̂ (ti ,S(ti))/E[V̂ (ti ,S(ti))|Fi−1]. For the sake of computational effi-
ciency, V̂ should be such that E[V̂ (ti ,S(ti))|Fi−1] can be computed in closed form.
If the true value function V could be substituted for the approximation V̂ , then the
control variate or importance sampling would be perfect, resulting in zero variance
[63]. A bridge between the two approaches is [66], using SA and SAA methods
to construct V̂ by minimizing the variance that remains after it is used to provide
a control variate. In finance, this approach to adaptive Monte Carlo has been used
above all for American options: [30, 63] use SAA and regression metamodeling for
this purpose. Because metamodeling is commonly used anyway in American option
pricing, to identify a good exercise policy, the marginal computational cost of using
the metamodel to find a good control variate or importance sampling distribution
can be small, making this adaptive Monte Carlo approach very attractive.
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6 Risk Management

Monte Carlo methods in risk management are an active area of research. A straight-
forward Monte Carlo approach is to sample scenarios S(1)(T ) , . . . , S(n)(T ) and in
each scenario to compute P&L V (T ,S(T ))−V (0,S(0)), the change in the port-
folio’s value by time T . It is natural to have a high dimensional for S because a
portfolio’s value can depend on many factors. There are two main computational
challenges in risk measurement.

One challenge is that risk measures such as VaR and CVaR focus on the left tail
of the distribution of P&L, containing large losses. It is a moderately rare event for
loss to exceed VaR, so straightforward Monte Carlo estimation of a large portfolio’s
risk can be slow. This makes it worthwhile to pursue variance reduction: see [46,
Ch. 9] for general techniques and [8, 25, 48, 49, 51] for techniques specific to credit
risk.

The second challenge arises when the portfolio value function V (T , ·) is un-
known, so P&L in each scenario must be estimated by Monte Carlo. This leads to
a computationally expensive nested simulation (§4): simulation of scenarios under
P (as in the lower left corner of Figure 1) and a nested simulation under Q condi-
tional on each scenario, to estimate the portfolio value V (T ,S(T )) in that scenario.
In particular, nested simulation is generally biased, which causes a poor rate of con-
vergence for the Monte Carlo estimate as the computational budget grows. This
makes it worthwhile to explore ways to make the simulation more efficient:

• Jackknifing can reduce the bias [54, 74].
• Although variance is not always a good portfolio risk measure, it can be useful

in evaluating hedging strategies. Unbiased estimation of the variance of P&L by
nested simulation is possible. Indeed, a nested simulation with small computa-
tional effort devoted to each scenario, and thus inaccurate estimation of P&L in
each scenario, can provide an accurate estimator of the variance of P&L [94].

• It helps to optimize the number n of scenarios to minimize MSE or confidence
interval width given a fixed computational budget [54, 68].

• When the risk measure emphasizes the left tail of the distribution, is desirable to
allocate more computational effort to simulating the scenarios that seem likely to
be near VaR (when estimating VaR) or to belong to the left tail (for CVaR). This
suggests adaptive simulation procedures, in which the allocation of replications
at one stage depends on information gathered at previous stages. One approach is
to eliminate scenarios once they seem unlikely to belong to the left tail [70, 78].
Another is to make the number of replications somehow inversely proportional
to the estimated distance from a scenario to the left tail or its boundary [54].

• Metamodeling (§4) and database Monte Carlo (§5) can be useful in portfolio risk
measurement because it involves many similar simulation problems: estimating
P&L in many scenarios. Metamodeling can be successful because P&L is often a
well-behaved function of the scenario. It has been applied in [9] and in an adap-
tive procedure for estimating CVaR by [79], where more computational effort is
allocated to design points near scenarios with large losses.
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Estimating sensitivities of risk measures is studied in [47, 61, 62, 76]. They can
provide risk components or be useful in optimization.

7 Financial Optimization Problems

The finance problem most clearly linked to optimization is portfolio optimiza-
tion. Before discussing Monte Carlo methods for portfolio optimization, we turn
to American option pricing. It involves a simple optimization problem, and Monte
Carlo methods for American option pricing have been more thoroughly studied. See
Section 4 for background on optimization via simulation.

American Options. Monte Carlo is best suited for European options, which can
be exercised only at maturity. American options can be exercised at any time un-
til maturity. The owner of an American option faces an optimal stopping problem.
Let τ represent the exercise policy: the random variable τ = τ(U) is the stopping
time at which exercise occurs. The resulting payoff is f (U;τ). Pricing methods
for American options involve computing the optimal exercise policy τ ∗ that maxi-
mizes the value E[f (U;τ)] of the option, while computing the price E[f (U;τ ∗)].
It is optimal to exercise at time t if the payoff f (U; t) of doing so exceeds the con-
tinuation value, the conditional expectation of the payoff earned by exercising at
the optimal time after t . Because a continuous-time optimal stopping problem is
troublesome for simulation, much research on the topic of American options actu-
ally deals with Bermudan options, which can be exercised at any one of the times
{t1, . . . , tm}. A Bermudan option with a sufficiently large set of possible exercise
times is treated as an approximation of an American option. Even Bermudan op-
tions are not straightforward to price by Monte Carlo methods: at every step on
every path, one needs to know the continuation value to make the optimal decision
about whether to exercise. A naive approach, which is impractical due to exces-
sive computational requirements, is nested simulation (§4): at every step on every
path, estimate the continuation value by an inner-level simulation. For overviews
of Monte Carlo methods in American option pricing, see [15, 24, 39, 46]. Here we
merely emphasize connections to themes of financial simulation.

• The most popular approach to American option pricing, regression-based Monte
Carlo, is a form of approximate dynamic programming (ADP). The optimal stop-
ping problem is relatively easy for ADP because there are only two actions, con-
tinue or exercise, and they do not affect the dynamics of the underlying.

• After choosing a sub-optimal exercise policy τ and sampling U independently,
f (U;τ) is an estimator of the American option price with negative bias. Duality
yields an estimator with positive bias: see [56] and references therein, particularly
[2]. This enables a conservative confidence interval that is asymptotically valid
for large simulation sample sizes. A bias reduction method is developed in [65].

• Adaptive Monte Carlo (§5) is very useful in American option pricing. It is con-
nected to duality: according to [63], “the perfect control variate solves the ad-
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ditive duality problem and the perfect importance sampling estimator solves the
multiplicative duality problem.”

American option pricing remains an active research area because there are many ri-
val methods that are amenable to improvement. There is potential to gain efficiency
by adaptive simulation that allocates extra simulation effort to design points near
the boundary where estimated exercise and continuation values are equal. High-
dimensional problems remain challenging. It would also be good to better under-
stand and to reduce the error in approximating an American by a Bermudan option.

Portfolio Optimization. An introduction to this topic, stressing the connection be-
tween American option pricing and portfolio optimization, while emphasizing the
value of dual methods, is [56]. The purpose of the dual methods is to provide an up-
per bound on the optimal expected utility: one can use simulation to estimate both
the expected utility a candidate portfolio strategy provides and the upper bound
on the optimal expected utility, and compare these estimates to see if the candi-
date is nearly optimal [57]. Other ADP methods in portfolio optimization include
[17, 81, 95]. ADP is not the only Monte Carlo approach to portfolio optimization.
For an overview, see [14]. Another method uses Monte Carlo to estimate conditional
expectations involving Malliavin derivatives, which are proved to be the optimal
portfolio weights for a portfolio optimization in a complete market [29].

8 Sensitivity Analysis

Many problems in finance call for estimation of the sensitivity μ′(θ) of a mean μ(θ)
to a parameter θ : the Greeks are of direct interest in hedging, and sensitivities are
needed in gradient-based optimization. Approaches to estimating sensitivities via
simulation include:

• Finite differences (FD). Run the simulation at two values θ1 and θ2 in the neigh-
borhood of θ , using common random numbers. The FD estimator is (f (U;θ1)−
f (U;θ2))/(θ1− θ2). This approach is biased and computationally inefficient.

• Metamodeling (M, §4) can be viewed as a variant of FD that is helpful when es-
timating sensitivities with respect to many parameters: where FD would require
running many simulations, metamodeling can provide an answer based on simu-
lations at only a few design points. To estimate first-order sensitivities, fit a linear
metamodel locally, in a neighborhood of θ . To get second-order sensitivities too,
fit a quadratic metamodel locally.

• The pathwise (PW) method, known outside finance as infinitesimal perturbation
analysis (IPA). Under some conditions, μ′(θ)= E[Y ′(θ)], so an unbiased estima-
tor is Y ′(θ)= (∂f/∂θ)(U;θ). It may be easy to compute this if θ is a parameter,
such as a strike price, that has a simple, direct effect on the payoff, but it might
be hard if θ is a parameter that governs the distributions of random variables in
the simulation. This method can only be applied if Y is suitably differentiable;
there are a number of cases in finance in which it does not apply.
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• Smoothed perturbation analysis (SPA) is an extension of IPA. It works by re-
formulating the simulation model: if there is a conditional expectation Ỹ (θ) =
E[Y(θ)|F ] that can be computed and Ỹ is a smoother function of θ than Y is,
then the estimator Ỹ ′(θ) can be used when IPA does not apply. This approach re-
quires the analyst to identify a good set of information F on which to condition,
and to compute the conditional expectation.

• IPA can have problems in first or second derivative estimation because of discon-
tinuity or non-differentiability of the integrand in the commonplace case where
Y(θ) = f (U;θ) has the form f1(U;θ)1{f2(U;θ) ≥ 0}. Kernel smoothing leads
to the estimator

∂f1

∂θ
(U;θ)1{f2(U;θ)≥ 0}+ 1

δ
f1(U;θ)∂f2

∂θ
(U;θ)φ

(
f2(U;θ)

δ

)
,

where φ is the kernel and δ is the bandwidth [77]. In contrast to SPA, kernel
smoothing requires no analyst ingenuity: a Gaussian kernel and automated band-
width selection perform well. This estimator is biased, although it is consistent
under some conditions which may be hard to verify.

• The likelihood ratio (LR) method, also known outside finance as the score func-
tion method, involves differentiating a density g(·;θ) instead of differentiating a
payoff. Here we require a representationμ(θ)= ∫ f (u;θ)du= ∫ f̃ (x)g(x;θ)dx,
framing the simulation as sampling the random vector X(U;θ) which has den-
sity g(·;θ). In the new representation, Y(θ) = f (U;θ) = f̃ (X(U;θ)), so f̃ has
no explicit dependence on θ : applying the method requires θ to be a parameter
only of the density. Under some conditions,

μ′(θ)=
∫
f̃ (x)

∂g(x;θ)/∂θ
g(x;θ) g(x;θ)dx= E

[
Y(θ)

∂g(X;θ)/∂θ
g(X;θ)

]
,

so an unbiased estimator is Y(θ)(∂g(X;θ)/∂θ)/g(X;θ). If the density is not
known in closed form, one may apply the LR method instead to a discretized
version of the underlying stochastic process.

• Malliavin calculus can provide estimators of sensitivities. Implementing these
estimators generally requires that time be discretized. The resulting estimators
are asymptotically equivalent, as the number of time steps m→∞, to combina-
tions of PW and LR estimators for the discretized process [23]. Combinations of
PW and LR methods are also used to overcome the limitations of PW and of LR
in isolation. For a unified view of the PW and LR methods, see [71].

• The method of weak derivatives (WD) can be explained based on LR [37]: sup-
pose ∂g(x;θ)/∂θ can be written in the form c(θ)(g1(x;θ)− g2(x;θ)), where
g1(·;θ) and g2(·;θ) are densities. If the LR approach is valid, then

μ′(θ) = c(θ)

(∫
f̃ (x)g1(x;θ)dx−

∫
f̃ (x)g2(x;θ)dx

)

= c(θ)E
[
f̃ (X1)− f̃ (X2)

]
,



Se
co

nd
 p

ro
of

s

36 Jeremy Staum

where X1 and X2 are sampled according to the densities g1(·;θ) and g2(·;θ)
respectively: an unbiased estimator is c(θ)(f̃ (X1)− f̃ (X2)). (However, the WD
approach does not actually require differentiating the density.) Here we did not
specify how the original pseudo-random numbers would be used to simulate X1
and X2. The whole structure of the simulation is changed, and the dependence or
coupling of X1 and X2 has a major effect on the estimator’s variance.

For introductions to these methods, see [24, 37, 43, 46]. Important early references
include [19, 38]. The different methods have different realms of applicability and,
when two of them apply, they can yield estimators with very different variances.

A recent advance has been in speeding up PW computations of multiple Greeks
of the same derivative security price using adjoint methods [43, 45]. Another ac-
tive area of research is estimation of sensitivities when the underlying stochastic
process has jumps: see e.g. [52]. A further topic for future work is the application
of WD to estimating sensitivities in financial simulation: although weak derivatives
were applied to simulating the sensitivities of option prices in [58], the WD method
has not received enough attention in finance. For results on WD when underlying
distributions are normal, as happens in many financial models, see [59].

9 Discretization of Stochastic Differential Equations

Many financial simulations involve stochastic differential equations (SDEs). The
solution S to an SDE is a continuous-time stochastic process, but it is standard
to discretize time and simulate S(t1), . . . ,S(tm). In some models, it is possible to
simulate exactly, that is, from the correct distribution for (S(t1), . . . ,S(tm)). How-
ever, in many models, it is not known how to do so. Discretization error is the
difference between the distribution of (S(t1), . . . ,S(tm)) as simulated and the distri-
bution it should have according to the SDE. Discretization error causes discretiza-
tion bias in the Monte Carlo estimator. To reduce the discretization bias, one in-
creases the number m of steps, which increases the computational cost of simulating
S(t1), . . . ,S(tm). On quantifying and reducing this discretization bias, see [46, 67],
or [24, 53] for introductions. Some research on SDE discretization is specific to one
model, that is, to one SDE, while some is generic.

Model-specific research may consist of showing how to simulate a certain model
exactly or how to reduce discretization error. For example, recently there have been
major improvements in simulating the Heston model [1, 20, 50]. On simulation of
Lévy processes, see [5] and [27, Ch. 6]. Lévy processes used in finance include VG
and CGMY: on simulating these, see [6, 36, 64, 87].

The generic research includes the study of different discretization schemes and
the rate at which discretization bias decreases as the number m of steps increases.
This rate may be unaffected by replacing the normal random variables typically used
in SDE discretization by simpler random variables which are faster to simulate, e.g.
having discrete distributions with only three values [46, pp. 355-6]. It would be
interesting to explore the application of quasi-Monte Carlo to a simulation scheme
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using these discrete random variables. One active research topic, based on [86],
involves new discretization schemes, the quadratic Milstein scheme and a two-stage
Runge-Kutta scheme, along with a new criterion, microscopic total variation, for
assessing a scheme’s quality.

We next consider two important recent developments in simulating SDEs.

Multi-Grid Extrapolation. One method for reducing discretization error is ex-
trapolation [46, §6.2.4]. Let μ̂(m) be a simulation estimator based on discretizing
an SDE with m time steps, and μ̂(2m) be the estimator when 2m time steps are
used. Because of bias cancelation, the estimator 2μ̂(2m)− μ̂(m) can have lower
bias and a better rate of convergence. This idea is extended by [44] to multiple
grids of different fineness, instead of just two. The estimator given L grids, with
N� paths simulated on the �th grid which has m� steps, is

∑L
�=1

∑N�

i=1(μ̂
(i)(m�)−

μ̂(i)(m�−1))/N�, where μ̂(i)(m�) involves simulating the same Wiener process sam-
ple path {W(i)(t)}0≤t≤T for all grids. It is efficient to simulate fewer paths using the
fine grids than with the coarse grids. For one thing, even if N� is small for a fine
grid, including this �th grid contributes a correction term E[μ̂(i)(m�)− μ̂(i)(m�−1)]
that reduces bias. Furthermore, simulating paths on a fine grid is computationally
expensive, while the variance of μ̂(i)(m�)− μ̂(i)(m�−1) tends to be small for the
fine grids. Consequently, computational resources are better spent on coarser grids
where it is cheap to attack large components of the variance. The result is reduced
bias and better rates of convergence. QMC should be useful particularly when ap-
plied to the coarser grids. A related approach involving multiple grids [91] is based
on the idea that coarse grids provide biased control variates [90].

Exact Simulation of SDEs. Surprisingly, it is sometimes possible to simulate a
scalar diffusion S exactly even when it is not possible to integrate the SDE in closed
form to learn the distribution of (S(t1), . . . ,S(tm)) [12, 22]. The basic idea is to
sample according to the law of S by acceptance-rejection sampling of paths of a
Wiener process W . If a path {W(t)}0≤t≤T is accepted with probability proportional
to the Radon-Nikodym derivative between the law of the S and the law of W , the
path is sampled from the law of S. The log of the Radon-Nikodym derivative has
the form A(W(T ))− ∫ T0 φ(t,W(t))dt where A and φ depend on the coefficients
of the SDE. The problem lies in simulating

∫
φ(t,W(t))dt , which is an awkward

functional of the entire continuous-time path {W(t)}0≤t≤T . The key insight is that
exp(−∫ T0 φ(t,W(t))dt) is the conditional probability, given the path of the Wiener
process, that no arrivals occur by time T in a doubly stochastic Poisson process
whose arrival rate at time t is φ(t,W(t)). This may be simulated by straightforward
or sophisticated stochastic thinning procedures, depending on the characteristics of
the function φ [12, 22, 42]. This approach is a significant development: it is of theo-
retical interest and, when applicable, it eliminates the need for the analyst to quantify
and reduce discretization bias. More work is needed to render this approach widely
applicable in finance and to study the efficiency gains it produces. Acceptance-
rejection sampling can be very slow, when the acceptance probability is low, so this
way of simulating SDEs exactly could be slower to attain a target MSE than exist-



Se
co

nd
 p

ro
of

s

38 Jeremy Staum

ing methods of SDE discretization. The speed of acceptance-rejection sampling can
be improved by drawing the original samples from another law. When the Radon-
Nikodym derivative between the law of S and the original sampling law is smaller,
acceptance occurs faster. In this case, one might think of drawing the original sam-
ples from the law of some other integrable Itō process, not a Wiener process. For
example, one might sample from the law of geometric Brownian motion or of an
Ornstein-Uhlenbeck process, because in many financial models, S is closer to these
than to a Wiener process. An interesting question is how best to choose the original
sampling law given the SDE one wishes to simulate.
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Particle Markov Chain Monte Carlo for
Efficient Numerical Simulation

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein

Abstract Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC)
methods are the two most popular classes of algorithms used to sample from general
high-dimensional probability distributions. The theoretical convergence of MCMC
algorithms is ensured under weak assumptions, but their practical performance is
notoriously unsatisfactory when the proposal distributions used to explore the space
are poorly chosen and/or if highly correlated variables are updated independently.
We show here how it is possible to systematically design potentially very efficient
high-dimensional proposal distributions for MCMC by using SMC techniques. We
demonstrate how this novel approach allows us to design effective MCMC algo-
rithms in complex scenarios. This is illustrated by a problem of Bayesian inference
for a stochastic kinetic model.

1 Introduction

Assume that we are interested in sampling from a probability distribution π (x)
where x = (x1, . . . ,xT ) for some T > 1. For ease of presentation, we assume that
each xi ∈ X for some space X . For complex problems, it is impossible to sample
directly from π (x).
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The standard MCMC approach consists of sampling long realisations of ergodic
Markov chains with invariant distribution π(x). The Metropolis-Hastings (MH) al-
gorithm is the main known generic mechanism to define such updates. It requires
the choice of proposal distributions that sample possible states for the Markov
chain which are either accepted or rejected. A popular application of this principle
consists, for example, of repeatedly updating in turn the lower-dimensional com-
ponents xi of x conditional upon the remaining components x−i = (x1, . . . ,xi−1,

xi+1, . . . ,xT ). The size reduction often allows for a better choice of local proposal
distributions. Although this strategy can result in an improvement over the full up-
dating of x in one block, it can still be ineffective when highly dependent compo-
nents are not updated simultaneously.

SMC methods are an alternative to MCMC methods where a swarm of samples,
named particles, evolves towards the distribution of interest according to a combina-
tion of importance sampling (IS) and resampling; see [6] for a collection of articles
on the subject and [11, chapters 3 and 4]. Where traditional IS would try to directly
produce weighted samples to approximate π (x), and most likely fail for the same
reason that an independent MH (IMH) algorithm would fail, SMC methods decom-
pose the problem of sampling from π (x) into a series of “simpler” sub-problems.
We introduce a sequence of intermediate “bridging” probability distributions of in-
creasing dimension {πn (xn) ,n= 1, . . . ,T −1}with xn= (x1,x2, . . . ,xn)∈X n, then
we sequentially sample approximately from π1 (x1) ,π2 (x2) , . . . ,πT−1 (xT−1) and
πT (x) = π(x). As is the case for MCMC algorithms this dimension reduction usu-
ally allows for the design of better proposal distributions. In this paper we present
a recent addition to the Monte Carlo toolbox named Particle MCMC (PMCMC)
which aims to take advantage of the differing strengths of MCMC and SMC meth-
ods.

The rest of this paper is organised as follows. In Section 2, we briefly review
SMC methods and discuss some of their properties. In Section 3 we present the
particle IMH sampler, a recently developed IMH update targeting π (x) which has
the capability of using SMC approximations of π (x) as a proposal mechanism [1].
In Section 4, we review extensions of this basic update to the case where we are
interested in sampling from π (θ,x) on Θ×X T : the particle marginal MH sampler
and the particle Gibbs sampler. As shown in [1], such updates are of particular
interest in the context of inference in state-space models, but their relevance is not
limited to such models. Connections to previous work are discussed in Section 5.
Finally in Section 6, we demonstrate the performance of the methodology in the
context of inference in a stochastic kinetic model. Space constraints prevent us from
detailing all the results and proofs; we refer the reader to [1] for details.

2 Sequential Monte Carlo Methods

We briefly review here the principle of SMC methods to sample from a given
target π (x). We first introduce an artificial sequence of bridging distributions



Se
co

nd
 p

ro
of

s

Particle Markov Chain Monte Carlo for Efficient Numerical Simulation 47

{πn (xn) ;n= 1, . . . ,T −1} of increasing dimension and define πT (xT ) = π (x).
Each distribution is assumed known up to a normalising constant, that is

πn (xn)= γn (xn)
Zn

,

where γn : X n→ R
+ can be evaluated pointwise, but Zn is unknown. We will use

the notation Z for ZT . An SMC algorithm also requires us to specify an importance
distribution q1 (x1) on X in order to initialise the recursion at time 1 and a family of
proposal distributions {qn (xn|xn−1) ;n= 2, . . . ,T } in order to extend xn−1 ∈X n−1

by sampling xn ∈X conditional upon xn−1 at time instants n= 2, . . . ,T . Guidelines
on how to best select qn (xn|xn−1) are well known, and the main recommendation
is to use the conditional distribution πn (xn|xn−1) or an approximation [6], [11].
An SMC algorithm also involves a resampling procedure of the N particles, which
relies on a family of probability distributions {r( ·|w),w ∈ [0,1]N } on {1, . . . ,N}N .
The resampling step is usually necessary as in most applications the variance of the
importance weights would otherwise typically increase exponentially with n.

The algorithm proceeds as follows to produce a sequence of samples {Xi
n, i =

1, . . . ,N} for n= 1, . . . ,T . Note that we adopt below the convention that whenever
the index i is used we mean “for all i ∈ {1, . . . ,N}.” Further on, we also use the stan-
dard convention whereby capital letters are used for random variables while lower
case letters are used for their values. We also use the notation Wn =

(
W 1

n , . . . ,W
N
n

)

and An =
(
A1
n, . . . ,A

N
n

)
.

Sequential Monte Carlo Algorithm
n= 1

• Sample Xi
1 ∼ q1(·).

• Update and normalise the weights

w1
(
Xi

1

)= γ1(Xi
1)

q1(Xi
1)
, Wi

1 =
w1

(
Xi

1

)

∑N
k=1w1

(
Xk

1

) . (1)

For n= 2, . . . ,T

• Sample An−1 ∼ r (·|Wn−1).

• Sample Xi
n ∼ qn( ·|XAi

n−1
n−1 ) and set Xi

n = (X
Ai
n−1

n−1 ,Xi
n).

• Update and normalise the weights

wn

(
Xi
n

)= γn
(
Xi
n

)

γn−1

(
X
Ai
n−1

n−1

)
qn

(
Xi
n

∣
∣∣X

Ai
n−1

n−1

) , W i
n =

wn

(
Xi
n

)

∑N
k=1wn

(
Xk
n

) . (2)

The variable Ai
n−1 plays an important role in our formulation of SMC methods, and

represents the index of the “parent” at time n− 1 of particle Xi
n for n = 2, . . . ,T .

The vector An is thus a random mapping defined on {1, . . . ,N}→ {1, . . . ,N}N , and
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Fig. 1 Example of ancestral lineages generated by an SMC algorithm for N = 5 and T = 3. The
lighter path is X2

1:3 = (X3
1,X

4
2,X

2
3) and its ancestral lineage is B2

1:3 = (3,4,2).

the resampling procedure is thus interpreted here as being the operation by which
child particles at time n choose their parent particles at time n− 1 according to a
probability r(·|Wn−1) dependent on the parents’ weights Wn−1, or “fitness.” The in-
troduction of the variables An allows us to keep track of the “genealogy” of particles
and is necessary to describe precisely one of the algorithms introduced later on (see
Section 4). For this purpose, for i = 1, . . . ,N and n= 1, . . . ,T we introduce Bi

n the
index the ancestor particle of Xi

T at generation n had at that time. More formally for
i = 1, . . . ,N we define Bi

T := i and for n= T −1, . . . ,1 we have the following back-

ward recursive relation Bi
n := A

Bi
n+1

n . As a result for any i = 1, . . . ,N we have the

identity Xi
T = (X

Bi
1

1 ,X
Bi

2
2 , . . . ,X

Bi
T−1

T−1 ,X
Bi
T

T ) and Bi
T = (Bi

1,B
i
2, . . . ,B

i
T−1,B

i
T = i)

is the ancestral ‘lineage’ of a particle. This is illustrated in Figure 1.
This SMC algorithm provides an approximation of π (x) and its normalising con-

stant Z given by

π̂ (x)=
N∑

i=1

Wi
T δXi

T
(x) and Ẑ =

T∏

n=1

[
1

N

N∑

i=1

wn

(
Xi
n

)
]

. (3)

The validity of the algorithms presented here relies on a set of very weak assump-
tions. First we require the importance weight functions wn (xn) to be properly de-
fined; i.e. the supports of the proposals cover the supports of the targets. Second it
also relies on the following assumptions on the resampling procedure.

Let Oi
n =

∑N
k=1 I

{
Ak
n = i

}
be the number of offspring of particle i at time n.

Then for any i = 1, . . . ,N and n= 1, . . . ,T the resampling scheme must satisfy the
following unbiasedness condition

E
[
Oi
n|Wn

]=NWi
n . (4)
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In fact in practice, for computational efficiency, On =
(
O1
n, . . . ,O

N
n

)
is typically

drawn first (i.e. without explicit reference to An) according to a probability distri-
bution s(·|Wn) such that (4) holds and the offspring then matched to their parents.
For example, the simplest unbiased resampling algorithm consists of sampling On

according to a multinomial distribution of parameters (N,Wn). More sophisticated
schemes such as residual resampling [11] and stratified resampling [9] also sat-
isfy (4). Once On has been sampled, this is followed by a deterministic allocation
procedure of the child particles to the parents, which defines a new set of indices
e.g. the O1

n first child particles are associated to the parent particle number 1, i.e.

A1
n = 1, . . . ,A

O1
n

n = 1, likewise for the O2
n following child particles and the parent

particle number 2, i.e. A
O1
n+1

n = 2, . . . ,A
O1
n+O2

n
n = 2 etc.

Further on, we will impose the slightly stronger unbiasedness condition

r
(
Ai
n = k|Wn

)=Wk
n . (5)

Note that even if (4) holds then (5) is not necessarily satisfied, for example by the
standard deterministic allocation procedure, but this property can be easily enforced
by the addition of a random permutation of these indices. As we shall see our in-
dexing system makes the writing of the probability distributions underpinning our
algorithms extremely simple.

Many sharp convergence results have been established for SMC methods includ-
ing Lp-bounds, central limit theorems, large deviations results etc.; see [4] for a
detailed overview of these results.

3 Particle Independent MH Sampler

The aim of this review is to outline how SMC approximations of π(x) can be used
as proposal distributions for MCMC algorithms. It is natural to suggest the use of
the unconditional distribution of a particle generated by an SMC algorithm targeting
π(x) as a proposal distribution for an IMH algorithm targeting π(x). This is likely
to result in a very efficient IMH algorithm as discussed in the previous section. It
is easy to sample from this unconditional distribution by running an SMC targeting
π(x) to obtain π̂(x) given in (3) and then sample from π̂ (x). However, computing
the MH acceptance ratio of such a MH update would then require us to be able to
evaluate

q (x)= E
(
π̂(x)

)
, (6)

where the expectation is with respect to all the variables used to generate π̂ (x): this
is practically impossible. We show below how it is possible to bypass this problem.
We would like to stress at this point on the fact that we do not believe that the PIMH
algorithm on its own is a practically relevant alternative to standard SMC approxi-
mations of π(x). However its paedagogical value should become clear below while
one should bear in mind that, as it is the case with standard IMH type updates, such
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an update can be of interest when used in conjunction with other MCMC updates. In
order to illustrate the simplicity of the implementation of our approach we describe
a particular instance of the methodology in order to sample from π(x), where x is
updated in one single block.

3.1 Algorithm

In order to sample from π(x) the particle IMH (PIMH) sampler proceeds as follows
(with the notation of Section 2, in particular (3)):

Particle Independent Metropolis-Hastings Sampler
Initialization, m= 0

• Run an SMC algorithm targeting π(x), sample X(0)∼ π̂ (·) and compute Ẑ (0).

At iteration m≥ 1

• Run an SMC algorithm targeting π(x), sample X∗ ∼ π̂ (·) and compute Ẑ∗.
• With probability

1∧ Ẑ∗

Ẑ (m−1)
, (7)

set X(m)= X∗ and Ẑ (m)= Ẑ∗, otherwise set X(m)= X(m−1) and Ẑ (m)= Ẑ (m−1).

The output of the algorithm is the chain {X(m)}m≥0. Note the interesting property
that the acceptance probability (7) converges to 1 as N →∞ since both Ẑ∗ and
Ẑ (m−1) are consistent estimates of the unknown normalising constant Z, under
weak assumptions.

3.2 Extended Proposal and Target Distributions

We show here the surprising result that the invariant distribution of the PIMH sam-
pler is π (x) for any N ≥ 1. The key to establish this result is to reformulate the
PIMH as a standard IMH sampler defined on an extended state-space with a suit-
able invariant distribution.

Sampling from the proposal q (x) in (6) requires sampling π̂(x) then drawing one
particle XT from π̂ (x) by setting X=XK

T where Pr
(
K = k| π̂ (x))=Wk

T . Denoting
for n = 1, . . . ,T the set of N simulated X -valued random variables at time n as
Xn :=

(
X1
n, . . . ,X

N
n

) ∈ XN , then the joint probability distribution of all the random
variables used in the proposal distribution is

q (k, x̄1, . . . , x̄T ,a1, . . . ,aT−1)= wk
T ψ (x̄1, . . . , x̄T ,a1, . . . ,aT−1) (8)
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where wk
T is a realization of WK

T and

ψ (x̄1, . . . , x̄T ,a1, . . . ,aT−1)

:=
(

N∏

i=1

q1
(
xi1
)
)

T∏

n=2

(

r (an−1|wn−1)

N∏

i=1

qn(x
i
n

∣∣x
ai
n−1
n−1 )

)

is the distribution of all the random variables generated by the SMC sampler de-
scribed in Section 2, which is defined on X TN ×{1, . . . ,N}(T−1)N+1. We now de-
fine, on the same space, the following artificial target probability distribution

π̃ (k, x̄1, . . . , x̄T ,a1, . . . ,aT−1) (9)

= π
(
xkT
)

NT

ψ (x̄1, . . . , x̄T ,a1, . . . ,aT−1)

q1(x
bk1
1 )

∏T
n=2 r(b

k
n−1|wn−1)qn(x

bkn
n |xb

k
n−1
n−1 )

= π
(
xkT
)

NT

∏T

i=1,i �=bk1
q1(x

i
1)
∏T−1

n=1
r(a

−bkn
n−1|wn−1,b

k
n)
∏T

i=1,i �=bkn
qn(x

i
n

∣
∣x

ai
n−1
n−1 )

where we have used the notation a
−bkn
n−1 = an−1\{ab

k
n

n−1}. By construction, we have
XK
T ∼ π under π̃ and it is easy to check that

π̃ (k,x1, . . . ,xT ,a1, . . . ,aT−1)

q(k,x1, . . . ,xT ,a1, . . . ,aT−1)
= 1

NT

π
(
xkT
)

wk
T q1(x

bk1
1 )

∏T
n=2 r(b

k
n−1|wn−1)qn(x

bkn
n |xb

k
n−1
n−1 )

= 1

NT

π
(
xkT
)

q1(x
bk1
1 )

T∏

n=2
qn(x

bkn
n |xb

k
n−1
n−1 )

T∏

n=1
w
bkn
n

=
π
(
xkT
) T∏

n=1

(
1
N

∑N
m=1wn

(
xmn
))

q1(x
bk1
1 )

T∏

n=2
qn(x

bkn
n |xb

k
n−1
n−1 )

T∏

n=1
wn(x

bkn
n )

= Ẑ

Z
.

In the calculations above we have used (5) on the second line whereas the final result
is obtained thanks to the definitions of the incremental weights (1)–(2) and of the
normalising constant estimate (3). This allows us to conclude that the PIMH sam-
pler is a standard IMH sampler of target distribution π̃ (k, x̄1, . . . , x̄T ,a1, . . . ,aT−1)

and proposal distribution q(k,x1, . . . ,xT ,a1, . . . ,aT−1). This indeed follows by the
definition of q(k,x1, . . . ,xT ,a1, . . . ,aT−1) and the last calculation above which ex-
plains the form of the acceptance probability of the PIMH. This IMH sampler is
automatically irreducible and aperiodic as we have made the assumption that the
importance weight functions wn (xn) are properly defined.
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3.3 Structure of the Invariant Distribution and Alternative
Algorithm

To better understand the structure of the artificial target π̃ , we explain here how we
would sample from it. The algorithm follows straightforwardly from (9).

• Sample uniformly on {1, . . . ,N}T an ancestral lineage BK
T =

(
BK

1 ,BK
2 , . . . ,BK

T

)
.

Recall that we have BK
T =K , BK

n := A
BK
n+1

n .

• Sample XK
T = (X

BK
1

1 ,X
BK

2
2 , . . . ,X

BK
T−1

T−1 ,X
BK
T

T )∼ π . Obviously we cannot do this,
which is why we are using MCMC in the first place.

• Sample all the remaining variables conditional upon
(
XK
T ,B

K
T

)
according to their

conditional distribution under π̃ .

Sampling from this conditional distribution under π̃ can be achieved using the

following conditional SMC algorithm. We recall that A
−BK

n

n−1 = An−1\{ABK
n

n−1}.

Conditional Sequential Monte Carlo Algorithm
n= 1

• For i �= BK
1 , sample Xi

1 ∼ q1(·).
• Compute w1

(
Xi

1

)
and normalise the weights Wi

1 ∝ w1
(
Xi

1

)
.

For n= 2, . . . ,T

• Sample A
−BK

n

n−1 ∼ r(·|Wn−1,A
BK
n

n−1).

• For i �= BK
n , sample Xi

n ∼ qn( ·|XAi
n−1

n−1 ) and set Xi
n = (X

Ai
n−1

n−1 ,Xi
n).

• Compute wn

(
Xi
n

)
and normalise the weights Wi

n ∝ wn

(
Xi
n

)
.

In the case of multinomial resampling, denoting B (a,b) the binomial distribu-
tion of parameters (a,b), B+ (a,b) the binomial distribution of similar parameters
restricted to {1, . . . ,N} and M(a,b) the multinomial distribution, an efficient ap-

proach to sample A
−BK

n

n−1 ∼ r(·|Wn−1,A
BK
n

n−1) proceeds as follows.

• Sample O
BK
n

n−1 ∼ B+
(
N,W

BK
n

n−1

)
.

• Allocate randomly O
BK
n

n−1− 1 parent indexes uniformly in {1, . . . ,N}\{BK
n

}

and set these parents equal to BK
n−1.

• For i �= BK
n compute W

i

n−1 ∝Wi
n−1 with

∑N
i=1,i �=BK

n
W

i

n−1 = 1 and denote

Wn−1 these N −1 weights.

• Sample On−1\
{
O

BK
n

n−1

}
∼M

(
N −O

BK
n

n−1,Wn−1

)
.

• Allocate randomly the associated parent indexes uniformly
in {1, . . . ,N}\{indexes with parents equal to BK

n−1

}
.
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This procedure follows directly from the fact that On−1 ∼M(N,Wn−1) so the

marginal distribution of O
BK
n

n−1 is B
(
N,W

BK
n

n−1

)
and, conditional upon O

BK
n

n−1, we have

On−1\
{
O

BK
n

n−1

}
∼M

(
N −O

BK
n

n−1,Wn−1

)
. Finally conditional upon O

BK
n

n−1 ≥ 1 we

have O
BK
n

n−1 ∼ B+
(
N,W

BK
n

n−1

)
.

Note that an alternative to the PIMH algorithm to sample from π (x) con-
sists of alternating a conditional SMC step to update π̂(x) and a step to sam-
ple

(
XK
T ,B

K
T

)
from π̂(x). For any N ≥ 1, this algorithm admits π (x) as invari-

ant distribution as it is just a (collapsed) Gibbs sampler of invariant distribution
π̃ (k, x̄1, . . . , x̄T ,a1, . . . ,aT−1). Contrary to the PIMH, it is here necessary to have
N ≥ 2 to ensure irreducibility of this sampler.

3.4 Using All the Particles

The standard estimate of
∫
f (x)π(x)dx forM MCMC iterations is 1

M

∑M
m=1f (X(m)).

A possible criticism of the PIMH is that in the implementation above we generate N
particles at each iteration m of the MCMC algorithm to decide whether to accept or
reject one single candidate. This might appear wasteful. However, it can be shown
that the estimate

1

M

M∑

m=1

(
N∑

i=1

Wi
T (m)f (X

i
T (m))

)

converges also towards
∫
f (x)π (x)dx as M →∞ where {Wi

T (m),X
i
T (m)} cor-

responds to the set of normalized weights and particles used to compute Ẑ (m).
Following [8] it is also possible to propose an estimate which recycles the candidate
populations of particles rejected by the PIMH; see [1] for details.

4 Particle Marginal MH Sampler and Particle Gibbs Sampler

We now consider the case where we are interested in sampling from a distribution

π (θ,x)= γ (θ,x)
Z

with γ :Θ×X T → R
+ assumed known pointwise and Z a possibly unknown nor-

malising constant, independent of θ ∈ Θ . For many statistical models of practical
interest x can be high dimensional (e.g. a vector of latent variables of the size of a
large dataset) and the conditional distribution π (x|θ) is non-standard. We have

π (x|θ)= γ (θ,x)
γ (θ)

, π (θ)= γ (θ)

Z
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where γ (θ)= ∫
X T γ (θ,x)dx is typically unknown. We propose here two strategies

to sample from π (θ,x). The first strategy consists of using a particle approximation
of an MH algorithm updating simultaneously θ and x. The second strategy consists
of using a particle approximation of the Gibbs sampler sampling from π (x|θ) and
π (θ |x) .

Both strategies will rely on the use of an SMC algorithm in order to pro-
pose approximate samples from π (x|θ) and approximately compute its normalis-
ing constant γ (θ). Hence we need to consider a family of bridging distributions
{πn (xn|θ) ;n= 1, . . . ,T −1} where

πn (xn|θ)= γn (θ,xn)
Zθ
n

(10)

and πT (xT |θ)= π (x|θ) and a family of proposal distributions {qθn (xn|xn−1)} that
defines sampling of xn ∈ X conditional upon xn−1 ∈ X n−1 and θ . Note that Zθ

T =
γ (θ).

4.1 Particle Marginal MH Sampler

Consider a MH algorithm of target distribution π (θ,x). Assume for the time being
that sampling from π (x|θ) for any θ ∈ Θ is feasible and recall the standard de-
composition π (θ,x) = π (θ)π (x|θ). In such situations it is natural to suggest the
following form of proposal distribution for an MH update

q
( (
θ∗,x∗

)∣∣(θ,x)
)= q

(
θ∗
∣∣θ
)
π
(
x∗|θ∗) ,

for which the proposed x∗ is perfectly “adapted” to the proposed θ∗, and the only
degree of freedom of the algorithm is q (θ∗|θ), suggesting that the algorithm ef-
fectively targets the marginal distribution π (θ) as the MH acceptance ratio is given
by

1∧ π (θ∗,x∗)
π (θ,x)

q ( (θ,x)|(θ∗,x∗))
q ( (θ∗,x∗)|(θ,x)) = 1∧ γ (θ∗)

γ (θ)

q(θ |θ∗)
q(θ∗|θ) . (11)

This algorithm is appealing since the difficult problem of sampling from π (θ,x) is
reduced to that of sampling from π (θ) which is typically defined on a much smaller
space and for which the design of proposal density is usually easier. Unfortunately,
as discussed earlier, sampling exactly from π (x|θ) is rarely feasible and γ (θ) is
rarely known analytically, preventing the use of the above “idealized” Marginal MH
(MMH) algorithm. It is natural to propose a Particle MMH (PMMH) algorithm
which is a particle approximation of this “ideal” MMH algorithm using an SMC
approximation of both samples from π (x|θ) and of its normalising constant γ (θ).
The PMMH algorithm proceeds as follows.
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Particle Marginal Metropolis-Hastings Sampler
Initialization, m= 0

• Set randomly θ (0) .
• Run an SMC algorithm targeting π (x|θ (0)), sample X(0) ∼ π̂ ( ·|θ (0)) and compute

γ̂ (θ (0)).

At iteration m≥ 1

• Sample θ∗ ∼ q ( ·|θ (m−1)).
• Run an SMC algorithm targeting π (x|θ∗), sample X∗ ∼ π̂ ( ·|θ∗) and compute γ̂ (θ∗).
• With probability

1∧ γ̂ (θ∗)
γ̂ (θ (m−1))

q ( θ (m−1)|θ∗)
q ( θ∗|θ (m−1))

(12)

set θ (m) = θ∗, X(m) = X∗, γ̂ (θ (m)) = γ̂ (θ∗), otherwise set θ (m) = θ (m−1), X(m) =
X(m−1), γ̂ (θ (m))= γ̂ (θ (m−1)) .

Under very weak assumptions, the acceptance ratio (12) converges to (11) as
N →∞. However more remarkably it can be established, using a reasoning very
similar to that used for the PIMH algorithm, that this algorithm admits π (θ,x) as
invariant distribution for any N ≥ 1.

4.2 Particle Gibbs Sampler

A popular alternative to the MH algorithm to sample from π (θ,x) consists of using
the Gibbs sampler. Numerous implementations rely on the fact that sampling from
the conditional distribution π (θ |x) is feasible and thus the potentially tedious design
of a proposal for θ can be bypassed. We will assume that this is the case here.
Sampling from π (x|θ) is typically impossible so we propose the following particle
approximation.

Particle Gibbs Sampler
Initialization, m= 0

• Set randomly θ (0).
• Run an SMC algorithm targeting π (x|θ (0)), sample X(0)∼ π̂ (·|θ (0)) and denote B(0)

its ancestral lineage.

At iteration m≥ 1

• Sample θ (m)∼ π (·|X(m−1)).
• Run a conditional SMC algorithm for θ (m) consistent with X(m−1) ,B(m−1), sample

X(m)∼ π̂ (·|θ (m)) and denote B(m) its ancestral lineage.

Under very weak assumptions, the interesting feature of this algorithm is that it
admits π (θ,x) as invariant distribution for anyN ≥ 1. Contrary to the PIMH and the
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PMMH algorithms, it is however necessary to have N ≥ 2 to ensure irreducibility
of the Particle Gibbs (PG) sampler.

5 Extensions and Discussion

For ease of presentation, we have limited our description to one of the simplest SMC
algorithms. However numerous more sophisticated algorithms have been proposed
in the literature over the past fifteen years to improve on such basic schemes. In
particular, in many applications of SMC, the resampling step is only performed
when the accuracy of the estimator is poor. Practically, this is assessed by looking
at the variability of the weights using the so-called Effective Sample Size (ESS)
criterion [11, pp. 35–36] given at time n by

ESS =
(

N∑

i=1

(
Wi

n

)2

)−1

.

Its interpretation is that inference based on theN weighted samples is approximately
equivalent to inference based on ESS perfect samples from the target. The ESS

takes values between 1 and N and we resample only when it is below a threshold
NT otherwise we set Wi

n ∝Wi
n−1 wn

(
Xi
n

)
. We refer to this procedure as dynamic re-

sampling. All the strategies presented in the previous sections can also be applied in
this context. The PIMH and PMMH can be implemented in the dynamic resampling
context without any modification. However, the PG is more difficult to implement
as the conditional SMC step requires simulating a set of N − 1 particles not only
consistent with a “frozen” path but also consistent with the resampling times of the
SMC method used to generate the “frozen” path [1].

The PIMH algorithm presented in Section 3 is related to the Configurational-
Biased Monte Carlo (CBMC) method which is a very popular method in molecular
simulation used to sample long proteins [7]. Similarly to the PIMH sampler, the
CBMC algorithm samples N particles and uses resampling steps. However, the re-
sampling step used by the CBMC algorithm is such that a single particle survives, to
which a new set of N offspring is then attached. Using our notation, this means that
the CBMC algorithm corresponds to the case where Ai

n =A
j
n for all i,j = 1, . . . ,N

and A1
n ∼ r(·|Wn) i.e. at any time n, all the children share the same and unique

parent particle. The problem with this approach is that it is somewhat too greedy
and that if a “wrong” decision is taken too prematurely then the proposal will be
most likely rejected. It can be shown that the acceptance probability of the CBMC
algorithm does not converge to 1 for T > 1 as N →∞ contrary to that of the
PIMH algorithm. It has been more recently proposed in [3] to improve the CBMC
algorithm by propagating forward several particles simultaneously in the spirit of
the PIMH algorithm. However, contrary to us, the authors in [3] propose to kill or
multiply particles by comparing their weights wn

(
Xi
n

)
with respect to some pre-

specified lower and upper thresholds; i.e. the particles are not interacting and their
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number is a random variable. In simulations, they found that the performance of this
algorithm was very sensitive to the values of these thresholds. Our approach has the
great advantage of bypassing the delicate choice of such thresholds. In statistics, a
variation of the CBMC algorithm known as the Multiple-Try Method (MTM) has
been introduced in the specific case where T = 1 in [10]. The key of our methodol-
ogy is to build efficient proposals using sequential and interacting mechanisms for
cases where T � 1: the sequential structure might be natural for some models (e.g.
state-space models) but can also be induced in other scenarios in order to take ad-
vantage of the potential improvement brought in by the interacting mechanism [5].
In this respect, both methods do not apply to the same class of problems.

6 Application to Markov Jump Processes

We consider here a discretely observed stochastic kinetic Lotka-Volterra (LV)
model. This model is often used to describe biochemical networks which exhibit
auto-regulatory behaviour; see [12] for a thorough description of these models and
their applications to system biology. Having access to noisy biochemical data, our
objective is to perform Bayesian inference for the kinetic rate constants of the LV
models

The LV model describes the evolution of two speciesX1
t (prey) andX2

t (predator)
which are continuous-time non-negative integer-valued processes. In a small time
interval (t, t+dt], there are three possible transitions for the Markov Jump Process
(MJP) Xt =

(
X1
t ,X

2
t

)

Pr
(
X1
t+dt=x1

t+1,X2
t+dt=x2

t

∣∣x1
t ,x

2
t

)= αx1
t dt+o(dt) ,

Pr
(
X1
t+dt=x1

t−1,X2
t+dt=x2

t+1
∣∣x1

t ,x
2
t

)= β x1
t x

2
t dt+o(dt) ,

Pr
(
X1
t+dt=x1

t ,X
2
t+dt=x2

t−1
∣∣x1

t ,x
2
t

)= γ x2
t dt+o(dt) ,

corresponding respectively to prey reproduction, predator reproduction and prey
death, and predator death. We assume that we only have access to a noisy estimate

of the number of preys Yn =X1
nΔ+Wn with Wn

i.i.d.∼ N
(
0,σ 2

)
. We are interested

here in making inferences about the kinetic rate constants θ = (α,β,γ ) which are
assumed to be a priori distributed as

α ∼ G(1,10), β ∼ G(1,0.25), γ ∼ G(1,7.5)

where G is the Gamma distribution [12, pp. 188–189]. The initial populations
X1

0,X
2
0 are assumed to be uniformly distributed in the interval {20,21, . . . ,80}.

We are interested in the posterior distribution p(xT ,θ |yT ) where
xT =

(
x0,x2Δ,. . . ,x(T−1)Δ

)
and yT = (y0,y1, . . . ,yT−1). This inference problem

has already been addressed in [2]. In this paper, the authors propose a sophisticated
reversible jump MCMC algorithm and a block updating strategy to sample from
p(xT ,θ |yT ). The reversible jump MCMC is used to sample the continuous-time
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process Xt (and its unknown number of transitions) in the interval [0, (T −1)Δ]
whereas the block updating strategy attempts to update Xt for t ∈ [(k−1)Δ,kΔ]
using a sensible proposal. The authors note that both “algorithms suffered sig-
nificant mixing problems”. We use here the PMMH algorithm with πn (xn|θ) =
p(xn|yn,θ). For the SMC proposals, we simply use the prior of Xt from which
it is easy to sample using Gillespie’s algorithm [12, pp. 188–189]. For the param-
eters, we use a Gaussian random walk proposal whose parameters were estimated
in a short preliminary run. We could have alternatively used an adaptive MCMC
strategy. We generated T = 50 observations by simulating the MJP using Gille-
spie’s algorithm with parameters α = 2, β = 0.05, γ = 1.5, Δ = 0.2, σ 2 = 4 and
X1

0 = X2
0 = 40; see Figure 2. We ran the algorithms for 100,000 iterations with a

burn-in of 20,000. For N = 1000, the average acceptance rate of the PMMH sampler
was 36%. The results are displayed in Figure 3.

Fig. 2 Lotka-Volterra data. The number of prey X1
t and predators X2

t are shown in dotted and solid
lines, respectively. The squares indicate the observations Yn.

In Figure 4, we display the autocorrelation function (ACF) for the parameters
(α,β) for various N . We can see that N = 500 is sufficient in this case for obtaining
good performance and that increasing N does not improve the performance of the
PMMH algorithm.

7 Conclusion

We have presented a new class of MCMC algorithms which rely on proposal distri-
butions built using SMC methods. One of the major advantages of this approach is
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Fig. 3 Histograms and scatter plots of the sampled parameters. The straight lines on histograms
represent the true values of the parameters.

Fig. 4 Autocorrelation of the parameter α (left) and β (right) for the PMMH sampler for various
numbers N of particles.

that it systematically builds high-dimensional proposal distributions whilst requiring
the practitioner to design only low-dimensional proposal distributions. It offers the
possibility to simultaneously update large vectors of dependent random variables.
The lower the variance of the SMC estimates of the normalising constants, the bet-
ter the performance of these algorithms. This strategy is computationally expensive
but to some extent unavoidable and useful in complex scenarios for which standard
proposals are likely to fail.

We believe that many problems in statistics where SMC methods have already
been used could benefit from PMCMC methods. We have already successfully used
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this methodology to fit complex continuous-time Lévy-driven stochastic volatility
models and Dirichlet process mixtures [1]. Note that in the former case proposing
samples from the prior distribution is the only known approach, which can lead to
poor results when using standard MCMC algorithms. The CBMC method, to which
our approach is related, is a very popular method in computational chemistry and
physics which has been widely used for molecular and polymer simulation [7], and
PMCMC algorithms might also prove useful in these areas.
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Computational Complexity of
Metropolis-Hastings
Methods in High Dimensions

Alexandros Beskos and Andrew Stuart

Abstract This article contains an overview of the literature concerning the com-
putational complexity of Metropolis-Hastings based MCMC methods for sampling
probability measures on R

d , when the dimension d is large. The material is struc-
tured in three parts addressing, in turn, the following questions: (i) what are sensible
assumptions to make on the family of probability measures indexed by d ?; (ii) what
is known concerning computational complexity for Metropolis-Hastings methods
applied to these families?; (iii) what remains open in this area?

1 Introduction

Metropolis-Hastings methods [19, 15] form a widely used class of MCMC meth-
ods [17, 21] for sampling from complex probability distributions. It is therefore of
considerable interest to develop mathematical analyses which explain the structure
inherent in these algorithms, especially structure which is pertinent to understanding
the computational complexity of the algorithm. In this short article we overview the
literature concerning the computational complexity of Metropolis-Hastings based
MCMC methods for sampling probability measures on R

d, when the dimension d

is large. The presentation will be discursive: theorems will not be given, rather we
will outline the essential ideas and give pointers to the relevant literature where the
theorems are stated and proved.
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The article is organized around three sections. In Section 2 we address the ques-
tion of how to make sensible assumptions on the family of probability measures
indexed by dimension d . In Section 3 we overview what is known concerning com-
putational complexity for Metropolis-Hastings methods applied to these families.
Section 4 highlights open questions.

2 Structure of the Target

2.1 Product Target

A pioneering paper in the study of Metropolis methods in high dimensions is [10];
it studied the behaviour of random walk Metropolis methods when applied to target
distributions with density

πd
0 (x)=Πd

i=1f (xi). (1)

A similar study was undertaken in [22] for Langevin based Metropolis methods.
Whilst these were amongst the first papers to pursue a rigorous study of Metropolis
methods in high dimensions, a natural objection to this work is that families of target
measures of the form (1) are restrictive from an applied perspective and, in any case,
can be tackled by sampling a single one-dimensional target, because of the product
structure. Partly in response to this objection, there have been several papers which
generalize this work to target measures which retain the product structure inherent in
(1), but are no longer i.i.d.. To be precise, we introduce standard deviations {λi,d}di=1
so that

πd
0 (x)=Πd

i=1λ
−1
i,d f (λ

−1
i,d xi). (2)

The papers [2, 23] consider this form of measure in the case where λi,d = λi only,
when the standard deviations do not change with dimension. Similar objections
maybe raised concerning applicability of this work, namely that the product struc-
ture renders the problem far from most applications.

2.2 Beyond the Product Structure

In [5, 3] a different approach was taken, motivated by an infinite dimensional per-
spective arising in many applications. The target measure π is defined on a function
space and is absolutely continuous with respect to some simpler reference measure
π0:

dπ

dπ0
(x)∝ exp

(−Ψ (x)
)
. (3)

For example π and π0 might be the posterior and prior distributions respectively
in the Bayesian formulation for an inverse problem on function space [7], or might
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arise from a (possibly conditioned on observations, end-point constraints etc.) SDE
via the Girsanov formula [12]. Often π0 has a product structure when written in an
appropriate basis.

Perhaps the simplest context in which to see such a product structure is to con-
sider the case where π0 is a Gaussian distribution N (0,C) on a Hilbert space H.
The eigenvalue problem

Cφi = λ2
i φi (4)

provides a basis {φi}∞i=1 in which the operator C is diagonal and hence may be used
to create a coordinate system in which there is a product structure. For the Gaussian
measure to be well defined, C must be a trace-class operator which in turn implies
that the λi’s are square summable [9]. Any function x ∈H may be written as

x =
∞∑

i=1

xiφi . (5)

If x ∼N (0,C) then the {xi} form a sequence of independent Gaussian random vari-
ables on R with xi ∼N (0,λ2

i ). Thus we may write

x =
∞∑

i=1

ξiλiφi (6)

where the ξi are an i.i.d. sequence of standard unit Gaussians. This shows that any
Gaussian measure can be identified with a product measure on R

∞, an important
idea which underlies the connections between simple product measures and quite
complex measures π given by (3). The representation (6) is known as the Karhunen-
Loéve expansion.

In the applications cited in [7, 12], the exponent Ψ is shown to satisfy useful
properties which can be exploited in the design and analysis of sampling methods.
In particular, Ψ can be shown to be bounded from below and above polynomially,
and to be Lipschitz, on some Banach space X of full measure under π0.

Consideration of some finite dimensional approximation of (3) will lead to a
target measure πd of the form

dπd

dπd
0

(x)∝ exp
(−Ψ d(x)

)
(7)

where πd
0 is given by (2). Such measures are no longer of product form. However,

the fact that they arise as approximations of measures on function space which are
absolutely continuous with respect to a product measure leads to certain properties
of Ψ d being uniform in d . Furthermore, absolute continuity of π with respect to π0
means, in rough terms, that if we expand a sample from π and one from π0 in an
orthonormal basis for H, then the expansion coefficients are asymptotically (in the
parameter indexing the expansion) identical: indeed absolute continuity sets strict
conditions on the rate at which this asymptotic behaviour must occur (the Feldman-
Hajek theorem [9]). Intuitively this allows for insight gleaned from the case of prod-
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uct measures to be transferred to this more applicable context and explains the im-
portance of the initial work in [10, 22, 23] concerning product measures.

These insights enable proof that, in some contexts, Ψ d is bounded from below
and above polynomially and is Lipschitz, with constants uniform in dimension d ,
provided appropriate norms are chosen to reflect the underlying infinite dimensional
norm on X; see [3].

To give a little more detail on the nature of finite dimensional approximations of
(3) we continue with the case where the reference measure is symmetric Gaussian
and the Karhunen-Loéve expansion (5). If we denote by Pd the orthogonal projec-
tion of H onto the linear span

PdH := span{φ1, . . . ,φd}
then we may define the measure πKL on H by

dπKL

dπ0
(x)∝ exp

(−Ψ (P dx)
)
. (8)

This measure is identical to π0 on H\PdH, i.e. on the orthogonal complement of
PdH.

On PdH, it provides a measure with the structure (7) and with the reference
measure πd

0 given by (2) for λi,d = λi given by (4); see [3] for details. Further ap-
proximation may be necessary, or desirable, as it may not be possible to evaluate Ψ ,
even on PdH. In the case of SDE (possibly conditioned on observations, end-point
constraints etc.), and finite difference approximations (Euler-Maruyama method)
one again obtains a measure of the form (7) with the reference measure πd

0 given by
(2), but now the λi,d depend on d and satisfy λi,d → λi as d→∞, for each fixed i;
see [3] for details.

In summary, the early foundations of the study of the computational complex-
ity of Metropolis methods in high dimension are based in the study of families of
product measures (2); see [23] for an overview. More recently, this has given way
to the study of wider classes of problems arising in applications with target measure
of the form (3); see [5] for an overview. Whilst product measures might seem un-
duly restrictive, it turns out that a great deal of intuition can be transferred from this
situation to the more applied problems, whenever the underlying reference measure
in (3) has a product structure, a situation arising frequently in practice. With this in
mind we now turn to the study of complexity.

3 Computational Complexity

We study Metropolis methods applied to the target measure πd given by (7), and
based on approximating (3). We assume that there are constants 0 <C− ≤C+ <∞
and κ ≥ 0 such that, for all indices i and dimensions d ,
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C− ≤ iκλi,d ≤ C+

giving bounds on the standard deviations.
Note that this setup subsumes the simpler cases (1) and (2) – by choosing Ψ ≡

0 for both cases, and λi,d ≡ 1 for the first. In real applications a wide range of
κ > 0 are encountered. For SDEs, possibly conditioned on observations, we have
κ = 1. For Gaussian random field priors based on covariance operators which are
fractional powers of the Laplacian in spatial dimension 2 (not to be confused with
the dimension d of the approximating space) we require κ > 1

2 to obtain almost
surely continuous fields; more generally, increasing κ will correspond to random
fields with increasing regularity, almost surely.

3.1 The Algorithms

The Metropolis methods we will consider are based on proposals on R
d with kernel

Qd(x,dy) derived from the following expression in which the parameter δ > 0 and
the square root is applied to a positive-definite matrix:

y−x

δ
= αA∇ logπd

0 (x)+
√

2A
δ
ξ, ξ ∼N (0,I ). (9)

In the case α = 0 we refer to random walk methods and for α = 1 to Langevin
methods. We will take A= I or A= Cd where we define the diagonal matrix Cd =
diag{λ2

1,d , · · · ,λ2
d,d}.

In the case where πd
0 is Gaussian we will also be interested in proposals of the

form, for θ ∈ [0,1],
y−x

δ
= θA∇ logπd

0 (y)+ (1− θ)A∇ logπd
0 (x)+

√
2A
δ
ξ (10)

for ξ ∼N (0,I ). For both classes of proposal we will refer to δ as the proposal vari-
ance. All these proposals can be viewed as being derived from Euler-Maruyama-
like discretizations of stochastic differential equations (SDEs) which are either πd -
invariant or πd

0 -invariant. Note, for instance, that proposals (9) for α = 1 and (10)
could be conceived as approximations (the first an explicit, the second an implicit
one, see [16] for background on numerical approximations of SDEs) of the π0-
invariant SDE:

dx

dt
=A∇ logπd

0 (x)+
√

2A dW

dt

driven by d-dimensional Brownian motion W . See [1, 14, 13, 11, 24] for more
details on this interpretation. In this setting δ is the time-step in the Euler-Maruyama
discretization.

The Metropolis-Hastings MCMC method [19, 15] creates a πd invariant Markov
chain {xn} as follows. Let a(x,y) denote the acceptance probability, that is:
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a(x,y)= 1∧ πd(y)Qd(y,x)

πd(x)Qd(x,y)
.

Given xn we make a proposal yn ∼ Qd(xn, ·). With (independent) probability
a(xn,yn) we set xn+1 = yn; otherwise we set xn+1 = xn.

3.2 Complexity

Application of the Metropolis-Hastings accept-reject rule to proposals generated by
the kernels Q described above gives rise to a πd -invariant Markov chain {xn}∞n=0
on R

d ; we are interested in the computational complexity of running this chain
to explore πd . Let yn denote the proposed state at step n, calculated from setting
x = xn and y = yn in (9) or (10). The cost of each update is usually straightforward
to compute, as a function of dimension, and thus the question of computational
complexity boils down to understanding the number of steps required to explore πd .
Complexity of Metropolis methods on R

d , for d large, is a difficult subject and the
work we are about to overview does not provide the kind of complete analysis that
is currently available for MCMC methods applied to some combinatorial problems.
We will overview results related to optimizing choices of A, α and θ (and δ, as a
function of the dimension d) according to four (inter-twined) criteria, which we now
describe.

Assume that x0 ∼ πd and that y | x is given by one of the proposals (9) or (10)
above. The four criteria are:

1. choose proposal parameters to maximize the mean square jump

E‖xn+1−xn‖2;
2. choose proposal parameters to maximize the mean time-step

δ×E [a(xn,yn) ];
3. choose proposal parameters to maximize the proposal variance subject to the

constraint that the average acceptance probability is bounded away from zero,
uniformly in dimension:

liminf
d→∞ E [a(xn,yn) ]> 0;

4. choose proposal parameters to maximize the proposal variance for which there
exists a π-invariant diffusion limit for zd(t) := xδt�, as d→∞.

In all four cases we use the rule of thumb that the number of steps M(d) required to
sample the invariant measure is given by the expression

M(d)∝ δ−1, (11)
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where the constant of proportionality is independent of dimension d , but the pro-
posal variance δ depends on d. Later in this section we discuss the theory which
justifies this decision. In the final section we will discuss the relations among these
criteria and ideal criteria for convergence of Markov chains. For now we proceed on
the assumption that the four criteria listed are useful in practice.

In [3] it is shown that, for proposals of the form (9), the optimality criteria 1., 2.
and 3. all lead to the same conclusion (in an asymptotic sense, as d →∞) about
optimal scaling of the proposal variance, hence to the same expression for M(d).

We summarise the specification of M(d) for the different choices of α and A in
Table 1.

Briefly, for α = 0 and A= I we find that M(d)= d2κ+1; for α = 0 and A= Cd
we remove the κ-dependence, at the expense of inverting a covariance operator, and
find that M(d)= d . Similar considerations apply for the case when α = 1, only now
the corresponding values are d2κ+1/3 and d1/3.

Table 1 Number of steps M(d) to sample the invariant measure for each of the various MCMC
algorithms derived via proposals (9) and (10).

Proposal (9), with α = 0 and A= I M(d)= d2κ+1

Proposal (9), with α = 0 and A= Cd M(d)= d

Proposal (9), with α = 1 and A= I M(d)= d2κ+1/3

Proposal (9), with α = 1 and A= Cd M(d)= d1/3

Proposal (10), with θ = 1/2 and π0 Gaussian M(d)=O(1)

In [4] we show that, by choosing θ = 1
2 in proposal (10), it is possible to achieve

M(d)=O(1) when the reference measure is Gaussian. In [4] numerical illustration
is given only in the case of SDEs conditioned to start and end at specified points
(diffusion bridges); however, [8] shows application of the same algorithmic idea to
the problem of data assimilation for the Navier-Stokes equation.

3.3 A Special Result: Diffusion Limit

We now turn to the subject of diffusion limits. This will enable us to connect crite-
rion 4. with criteria 1., 2. and 3., providing substantiation for the use of the heuristic
(11) to measure the number of steps required to explore the target distribution in
stationarity.

First we consider the simplest case where the target measure has the form (1).
In [10] it was shown that, using (9) with α = 0 and A = I , and choosing the pro-
posal variance δ to scale as δ = �2d−1, for some constant � > 0, leads to an average
acceptance probability of order 1. Furthermore, with this choice of scaling, individ-
ual components of the resulting Markov chain converge to the solution of an SDE.
Analytically, if the Markov chain is started in stationarity, and
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zd(t) := x
d·t�
i

denotes a continuous-time interpolant of the ith component of the Markov chain,
then zd ⇒ z as d→∞ in C([0,T ];R), where z solves the SDE

dz

dt
= h(�)(logf )′(z)+√2h(�)

dW

dt
. (12)

Here h(�) is often termed the speed measure and simply sets a time-scale for the
SDE; it is identified explicitly in [10].

The diffusion limit leads to the interpretation that, started in stationarity, and
applied to target measures of the form (1), the random walk Metropolis algorithm
will require an order of δ−1 steps to explore the invariant measure; it also provides
the justification for (11). Furthermore, the existence of a diffusion limit in this case
shows that optimality criteria 1., 2., 3. and 4. all coincide. But the diffusion limit
contains further information: it can be shown that the value of � which maximizes
h(�), and therefore maximizes the speed of convergence of the limiting diffusion,
leads to a universal acceptance probability, for random walk Metropolis algorithms
applied to targets (1), of approximately 0.234. This means that, for the stated class
of target distributions and algorithms, optimality can be obtained simply by tuning
the algorithm to attain this desired acceptance probability.

These ideas have been generalized to other proposals, such as those based on
(9) with α = 1 and A = I in [22]. In this case, the choice δ = �2d−1/3 leads to a
diffusion limit for

zd(t) := x
d1/3t�
i ,

again implying that optimality criteria 1., 2., 3. and 4. all coincide. This leads to the
interpretation that the algorithm will take time of order d1/3 to explore the invariant
measure. Furthermore, the choice of � which maximizes the speed of the limiting
SDE can be identified and results from an acceptance probability of approximately
0.574.

These papers of Roberts and coworkers concerning i.i.d. product measures are
extended to non-i.i.d. products in [2, 23]. The impact of this work has been very
high, in part because of the simple criteria for optimality when expressed in terms
of the average acceptance probabilities 0.234 and 0.574, and in part because the
existence of a diffusion limit provides an important conceptual understanding of the
behaviour of MCMC methods in high dimensions. It is therefore natural to wonder
if these optimal average acceptance probabilities arise also in the nonproduct case
and if diffusion limits can then be found. We finish this section by discussing these
two issues.

As mentioned above, [5, 3] study the question of optimal scaling of the proposal
variance according to criteria 1., 2. and 3., for proposals (9), with α ∈ {0,1} and
A ∈ {I,Cd}, for non-product target measures of the form (7). There, it is shown that
the mean square jumping distance (criterion 1.) and the mean time-step (criterion
2.) are both maximized by choosing the acceptance probabilities to be 0.234 (for
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α = 0) or 0.574 (for α = 1) as in the i.i.d. product case (1). It is also shown that such
a choice corresponds to optimizing with respect to criterion 3.

For target measures of the form (7), individual components of the Metropolis
Markov chain cannot be expected to converge to a scalar SDE as happens for (1).
However, it is natural to expect convergence of the entire Markov chain to an infinite
dimensional continuous time stochastic process. In [13, 14] it is shown that the target
measure π given by (3) is invariant for H-valued SDEs (or stochastic PDEs, labelled
SPDEs) with the form

dz

ds
=−z−C∇Ψ (z)+√2C dW

ds
, (13)

where W is cylindrical Brownian motion (see [9] for a definition) in H. In [18],
we show that for proposal (9) with α = 0 and A = Cd , started in stationarity, and
zd(t) := xdt�, zd ⇒ z as d →∞ in C([0,T ];H). This generalizes the work in
[10, 22, 23] to the non-product set-up and shows that, in stationarity, the random
walk Metropolis algorithm requires O(d) steps to explore the target distribution.

4 Open Questions

There are, of course, many open questions in the broad area of analyzing and con-
structing efficient MCMC methods in infinite dimensions. We mention a few inter-
esting avenues in this general area, reflecting our personal tastes.

• Rigorous complexity estimates. Perhaps the primary open question concerning
the work described herein is whether it can be used as the basis of the proof
of a spectral gap for the Markov chain {xn}∞n=0, and determination of how the
spectral gap scales with dimension d . A natural approach to this problem would
be to use the theory highlighted in [20]. This theory provides a methodology
for establishing convergence results of the following form: there are constants
C > 0,λ < 1 and function V : Rd �→ [1,∞) such that, for every x0 ∈ R

d, and
every function g with |g| ≤ V ,

|E [g(xn) ]−πd(g) | ≤ CV (x0)λn.

The distance of the constant λ from 1 can be used to estimate the spectral gap of
the Markov chain. In typical proofs, the value of λ reflects both the mixing rate
of the Markov chain in the center of the state space (in a small set) and the rate of
return to the center of the state space. Since the results outlined in the previous
section are concerned with behaviour in stationarity, it is likely that they reflect
behaviour in the center of the state space. Thus, they do not contain information
about travel times from outside the center of the state space; indeed this may
lead to optimal scalings of the proposal variance which differ from those in the
center of the state space, as shown in [6]. This relates to the burn-in time of the



Se
co

nd
 p

ro
of

s

70 Alexandros Beskos and Andrew Stuart

algorithm, whereas the work described in Section 3 is primarily concerned with
behaviour in stationarity.

• [Number of steps]/[work per step] trade-off. We have indicated above that the
work in [4] demonstrates that, for measures of the form (7) with πd

0 Gaussian,
it is possible to construct algorithms which explore the state space in a num-
ber of steps independent of dimension. These algorithms use proposals given by
(10) with θ = 1

2 . However, the algorithms require, at each step, either drawing
a sample from the Gaussian reference measure N (0,Cd) (in the case A = Cd ),
or inversion of the operator I + δ

2C
−1
d (in the case A = I ). In contrast, proposal

(9) with A = I is potentially considerably cheaper per step, but does require
O(d2κ+1) steps to explore the invariant measure. There is, therefore, a trade-off
between cost per step, and number of steps, for proposals based on (9) and (10).
For probability measures arising from SDEs (possibly conditioned by observa-
tions, end-point constraints etc.) the linear algebra associated with proposals of
the form (10) is (asymptotically in d) no more expensive than the cost of an
update under (9) with A = I , so it is clear that methods based on (10) with
θ = 1

2 have a significant advantage; this advantage is illustrated numerically in
[4]. However, for other classes of problems the trade-off remains to be studied.
This poses an interesting avenue for study.

• Non-Gaussian reference measures. At the end of Subsection 3.2 we highlighted
the fact that certain probability measures can be explored in number of steps in-
dependent of the dimension d , when started in stationarity. However this relies
heavily on the assumption that the reference measure πd

0 in (7) is Gaussian. It re-
mains an open question whether similar ideas to those in [4, 8] can be developed
in the case of non-Gaussian reference measures. This is intimately related to the
development of π-invariant SPDEs for measures of the form (3) [1, 13].

• Other proposals. The proposals we have discussed have been based on the
discretization of π- or π0-reversible SPDEs, leading to the Metropolis and
Metropolis-Hastings variants of MCMC methods. However, there are many other
proposals known to be effective in practice. In particular, Hybrid Monte Carlo
(HMC) methods are widely used by practitioners. These methods double the size
of the state space, from d to 2d , by adding a momentum variable; they then use
randomized Hamiltonian mechanics to explore the probability measure. Practi-
cal experience indicates that these methods can be very effective and theoret-
ical studies of these proposals, of the type described in this review, would be
of interest. More generally, there may be other proposals which yield improved
complexity and this area is likely to be fruitful for further development.
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On Quasi-Monte Carlo Rules Achieving Higher
Order Convergence

Josef Dick

Abstract Quasi-Monte Carlo rules which can achieve arbitrarily high order of con-
vergence have been introduced recently. The construction is based on digital nets
and the analysis of the integration error uses Walsh functions. Various approaches
have been used to show arbitrarily high convergence. In this paper we explain the
ideas behind higher order quasi-Monte Carlo rules by leaving out most of the tech-
nical details and focusing on the main ideas.

1 Introduction

In this paper we study the approximation of multivariate integrals of the form
∫

[0,1]s
f (x)dx

by quasi-Monte Carlo rules

1

N

N−1∑

h=0

f (xh).

Whereas the classical theory, see [12, 13, 14], focused on functions with bounded
variation (or functions with square integrable partial mixed derivatives up to first
order in each variable) or periodic functions, see [21], here we focus on functions
which are not periodic and are smooth. The smoothness is a requirement if one wants
to achieve convergence rates of order N−α(logN)c(s,α) with α > 1 (here c(s,α)

is a function which depends only on the dimension s and the smoothness α), as,
for example, by the lower bound by Sharygin [20] we can in general at most get
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N−1(logN)s for functions which have only bounded variation but no additional
smoothness.

Let us assume our integrand f : [0,1]s → R is smooth. For s = 1 we consider
the norm ‖ · ‖α defined by

‖f ‖2
α =

(∫ 1

0
f (x)dx

)2

+·· ·+
(∫ 1

0
f (α−1)(x)dx

)2

+
∫ 1

0
|f (α)(x)|2 dx,

and the corresponding inner product

〈f,g〉α =
∫ 1

0
f (x)dx

∫ 1

0
g(x)dx+·· ·+

∫ 1

0
f (α−1)(x)dx

∫ 1

0
g(α−1)(x)dx

+
∫ 1

0
f (α)(x)g(α)(x)dx,

where f (τ) denotes the τ th derivative of f for 1 ≤ τ ≤ α and where f (0) = f . For
simplicity we assume throughout the paper that α ≥ 1 is an integer, although the
results can be generalized to include all real numbers α > 1, see [4].

In dimensions s > 1 we consider the tensor product, but before we can do so we
need some additional notation. Let S = {1, . . . , s}, x = (x1, . . . ,xs) and for u ⊆ S

let xu = (xj )j∈u denote the vector which only consists of the components xj of x

for which j ∈ u. Further, for τ = (τ1, . . . ,τs) ∈ {0, . . . ,α}s let |τ | = τ1+ ·· · + τs ,

f (τ )(x)= ∂ |τ |f
∂x

τ1
1 ···∂xτss

(x) and for τ = 0 let f (0)(x)= f (x).

We define a norm ‖ · ‖α by

‖f ‖2
α

=
∑

u⊆{1,...,s}

∑

τS\u⊆{0,...,α−1}s−|u|

∫

[0,1]|u|

(∫

[0,1]s−|u|
f (τS\u,αu)(x)dxS\u

)2

dxu,

where τS\u ∈ {0, . . . ,α−1}s−|u| shall denote a vector for which τj does not occur for
j ∈ u and otherwise has a value in {0, . . . ,α−1}, and where (τS\u,αu) is the vector
for which the j th component is α for j ∈ u and τj for j ∈ S \u. The corresponding
inner product is given by

〈f,g〉α
=

∑

u⊆{1,...,s}

∑

τS\u⊆{0,...,α−1}s−|u|
∫

[0,1]|u|

∫

[0,1]s−|u|
f (τS\u,αu)(x)dxS\u

∫

[0,1]s−|u|
g(τS\u,αu)(x)dxS\u dxu.

We say that a function f has smoothness α if ‖f ‖α <∞. In the papers on higher
order quasi-Monte Carlo rules various definitions of smoothness have been used,
different from the one just introduced, for technical reasons: In [3] the author con-
sidered a Korobov space of periodic functions for which the kth Fourier coefficient is
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of order |k|−α , i.e., functions in this space have ‖f ‖α <∞, but are in addition also
periodic. Non-periodic functions were first included in [4], but the results therein
were based on a somewhat different norm purely for technical reasons. The results
in [4] also include fractional smoothness, i.e., therein α > 1 is allowed to be any real
number. The function space considered in [4] was based on Walsh series, and it was
shown that this space includes all smooth functions, i.e., functions with smoothness
α > 1. Later, it was shown in [5] that functions f with ‖f ‖α <∞ are contained
in this Walsh space. A function space with norm as above was finally considered in
[1]. Periodic functions on the other hand where considered in [3].

First results on convergence rates faster than N−1(logN)s for non-periodic func-
tions using quasi-Monte Carlo rules were obtained in (in chronological order):

• [18, 19], where a convergence rate of N−3/2(logN)(s−1)/2 was shown using
scrambled digital nets;

• [10], where a convergence rate of N−2+δ , δ > 0, was shown using randomly
shifted lattice rules and the baker’s transformation;

• [2], where a convergence of N−2+δ , δ > 0, was shown, also using randomly
digitally shifted digital nets and the baker’s transformation.

For periodic functions on the other hand, the following results are known:

• it has long been known that we can achieve N−α(logN)αs by using lattice rules,
as explained in Subsection 2.3, although for arbitrary N and s we do not have a
priori constructions.

• From Niederreiter [11] it is known that we can achieve N−α+ε using explic-
itly constructed Kronecker sequences, a simple example being ({n√p1}, . . . ,
{n√ps}), n= 0,1, . . ., with p1, . . . ,ps being distinct prime numbers.

The focus in this work is on generalized nets and sequences which can achieve con-
vergence rates ofN−α(logN)αs for smooth non-periodic functions, where α≥ 1 can
be an arbitrarily large integer (where we assume that the integrand has smoothness
at least α).

There are two main hurdles to arrive at quasi-Monte Carlo rules which achieve
the optimal order of convergence for functions with smoothness α, where α ∈N can
be arbitrarily high.

The first main step towards proving higher order convergence of the integration
error (i.e., convergence of N−α(logN)αs for any α ≥ 1) is a result concerning the
decay of the Walsh coefficients. We will explain the details in Section 4.1. It requires
a result on the decay of the Walsh coefficients of smooth functions, first shown
explicitly in [4], see also [5].

The second main step is to construct point sets explicitly which can be used in
a quasi-Monte Carlo rule. The construction scheme uses digital nets and a quality
criterion on the generating matrices of such point sets can be obtained using the
result in the first step. The details of this will be explained in Section 4.3.

It is useful to first look at how lattice rules can achieve arbitrarily high order of
convergence for smooth periodic functions, as part of the theory for non-periodic
functions is similar, albeit much more technical.
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2 Higher Order Convergence for Smooth Periodic Functions
Using Lattice Rules

In this section we consider numerical integration using lattice rules, which will give
us a basic understanding of how the theory on numerical integration works, see also
[21] for a particularly nice introduction to this theory.

2.1 Lattice Rules

First let us introduce lattice rules. Assume we want a quasi-Monte Carlo rule with
N points. For a real number x let {x} = x−x� denote the fractional part of x. Then
choose a vector g ∈ {1, . . . ,N −1}s and use the quadrature rule

1

N

N−1∑

�=0

f

({
�g

N

})
.

This quadrature rule is called lattice rule.
Such rules work well with periodic functions. Before we can introduce the error

analysis we need some understanding of the connection between smooth periodic
functions and the decay of the Fourier coefficients.

2.2 Decay of the Fourier Coefficients of Smooth Periodic
Functions

Let now f : [0,1]s → R be a smooth periodic function. I.e., for any x,y ∈ {0,1}s
(here {0,1} is the set consisting of the two elements 0 and 1), and any τ ∈
{0, . . . ,α− 1}s we have f (τ )(x) = f (τ )(y). Assume f has square integrable par-
tial mixed derivatives up to order α in each variable, then ‖f ‖α <∞. We assume in
the following that α ≥ 1. Let the Fourier series of f be given by

f (x)=
∑

k∈Zs

f̂ (k)e2π ik·x,

where k · x = k1x1 + ·· · + ksxs and f̂ (k) is the kth Fourier coefficient f̂ (k) =∫
[0,1]s f (x)e

−2π ik·x dx.

Consider the case s = 1 for a moment: Then f (x) =∑∞
k=−∞ f̂ (k)e2π ikx . As-

sume that f is differentiable and let f̂ ′(k) denote the kth Fourier coefficient of f ′,
i.e., f̂ ′(k) = ∫ 1

0 f
′(x)e−2π ikx dx. Then by differentiating the Fourier series for f

we obtain 2π ikf̂ (k) = f̂ ′(k), or, for k �= 0, f̂ (k) = f̂ ′(k)/(2π ik). Another way of
obtaining the last formula for k �= 0 is by using integration by parts:
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f̂ (k) =
∫ 1

0
f (x)e−2π ikx dx

= − 1

2π ik
[f (x)e−2π ikx]1x=0+

1

2π ik

∫ 1

0
f ′(x)e−2π ikx dx

= f̂ ′(k)
2π ik

,

as f (0)= f (1). If, say,
∫ 1

0 |f ′(x)|dx <∞, then the equation above implies that for
k �= 0 we have

|f̂ (k)| = 1

2π |k|
∣
∣
∣
∣

∫ 1

0
f ′(x)e−2π ikx dx

∣
∣
∣
∣≤

1

2π |k|
∫ 1

0
|f ′(x)|dx.

Repeated use of the argument above shows that if f is α times differentiable,
then |f̂ (k)| =O(|k|−α).

The case s > 1 works similarly. We have |f̂ (k)| =O(|k̄1 · · · k̄s |−α), where k̄ = k

for k �= 0 and 1 otherwise. The constant in the bound on the Fourier coeffi-
cient depends on the norm of the function, indeed, one can show that |f̂ (k)| ≤
Cα,s |k̄1 · · · k̄s |−α‖f ‖α with some constant Cα,s independent of k and f .

2.3 Numerical Integration

The following property is useful in analyzing the integration error of Fourier series
when one approximates the integral with a lattice rule (we assume N is a prime
number):

1

N

N−1∑

�=0

e2π i�k·g/N =
{

1 if k ·g ≡ 0 (mod N),

0 otherwise.

The set of all k ∈ Z
s for which the above sum is 1 is called the dual lattice, i.e.,

we have
L= {k ∈ Z

s : k ·g ≡ 0 (mod N)}.
Using the Fourier series expansion of the function f we obtain

∣∣∣∣∣

∫

[0,1]s
f (x)dx− 1

N

N−1∑

�=0

f ({�g/N})
∣∣∣∣∣
=
∣∣∣∣∣
f̂ (0)−

∑

k∈Zs

f̂ (k)
1

N

N−1∑

�=0

e2π i�k·g/N
∣∣∣∣∣

=
∣
∣∣
∣∣∣

∑

k∈L\{0}
f̂ (k)

∣∣
∣
∣
∣∣

≤
∑

k∈L\{0}
|f̂ (k)|.
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We can use the bound on the Fourier coefficients from the previous section to
obtain

∣∣∣∣∣

∫

[0,1]s
f (x)dx− 1

N

N−1∑

�=0

f ({�g/N})
∣∣∣∣∣
≤ Cα,s‖f ‖α

∑

k∈L\{0}
|k̄1 · · · k̄s |−α.

The last sum tells us to choose g such that only those k ∈ Z
s \ {0} should satisfy

k ·g ≡ 0 (mod N) for which |k̄1 · · · k̄s |−α is small. Indeed, one can show that there
are g such that

∑
k∈L\{0} |k̄1 · · · k̄s |−α =O(N−α+δ) for any δ > 0.

One way to show the last claim is the following (we do not give the details here,
just an outline, see [12, Chapter 5] for more information): Let

ρ = min
k∈L\{0}

|k̄1 · · · k̄s |. (1)

We call ρ the figure of merit. Then the largest term in
∑

k∈L\{0} |k̄1 · · · k̄s |−α is given

by ρ−α . One can now show that the sum
∑

k∈L\{0} |k̄1 · · · k̄s |−α is dominated by its
largest term. Indeed, there are bounds

ρ−α ≤
∑

k∈L\{0}
|k̄1 · · · k̄s |−α ≤ C′α,sρ−α(logρ)αs, (2)

see [12, Chapter 5]. Further there is a result which states that there exists a g ∈
{1, . . . ,N −1}s such that ρ > (s−1)!N

(2logN)s−1 . Together with (2) this yields the result.
In the following we use a similar approach for numerical integration using digital

nets. Instead of considering Fourier series, we now consider Walsh series and lattice
rules are replaced by quasi-Monte Carlo rules based on digital nets. Before we can
explain this theory we introduce the necessary concepts in the next section.

3 Preliminaries

In the following we introduce the digital construction scheme and Walsh functions.
For simplicity we only consider the case where the base b is a prime.

3.1 The Digital Construction Scheme

The construction of the point set used here is based on the concept of digital nets
introduced by Niederreiter, see [12].

Definition 1. Let b be a prime and let n,m,s ≥ 1 be integers. Let C1, . . . ,Cs be
n×m matrices over the finite field Fb of order b. Now we construct bm points
in [0,1)s : for 0 ≤ h ≤ bm − 1 let h = h0 + h1b+ ·· · + hm−1b

m−1 be the b-adic
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expansion of h. Identify h with the vector h = (h0, . . . ,hm−1)
� ∈ F

m
b , where �

means the transpose of the vector (note that we write h for vectors in the finite field
F
m
b and h for vectors of integers or real numbers). For 1≤ j ≤ s multiply the matrix

Cj by h, i.e.,
Cjh=: (yj,1(h), . . . ,yj,n(h))� ∈ F

n
b,

and set

xh,j := yj,1(h)

b
+·· ·+ yj,n(h)

bn
.

The point set {x0, . . . ,xbm−1} is called a digital net (over Fb) (with generating ma-
trices C1, . . . ,Cs).

For n,m = ∞ we obtain a sequence {x0,x1, . . .}, which is called a digital se-
quence (over Fb) (with generating matrices C1, . . . ,Cs).

Niederreiter’s concept of a digital (t,m,s)-net and a digital (t, s)-sequence will
appear as a special case in the subsequent section. Further, the digital nets consid-
ered below all satisfy n≥m.

For a digital net with generating matrices C1, . . . ,Cs let D = D(C1, . . . ,Cs) be
the dual net given by

D = {k ∈ N
s
0 : C�1 k1+·· ·+C�s ks = 0},

where for k = (k1, . . . ,ks) with kj = κj,0 + κj,1b+ ·· · and κj,i ∈ {0, . . . ,b− 1}
we define kj = (κj,0, . . . ,κj,n−1)

�. The definition of the dual net is related to the
definition of the dual space as defined in [15].

3.2 Walsh Functions

Let the real number x ∈ [0,1) have base b representation x = x1
b
+ x2

b2 + ·· · , with
0 ≤ xi < b and where infinitely many xi are different from b− 1. For k ∈ N, k =
κ1b

a1−1+ ·· ·+ κνb
aν−1, a1 > · · · > aν > 0 and 0 < κ1, . . . ,κν < b, we define the

kth Walsh function by

walk(x)= ω
κ1xa1+···+κvxav
b ,

where ωb = e2π i/b. For k = 0 we set wal0(x)= 1.
For a function f : [0,1] → R we define the kth Walsh coefficient of f by

f̂ (k)=
∫ 1

0
f (x)walk(x)dx

and we can form the Walsh series

f (x)∼
∞∑

k=0

f̂ (k)walk(x).
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Note that throughout the paper Walsh functions and digital nets are defined using
the same prime number b.

4 Higher Order Convergence of Smooth Functions Using
Generalized Digital Nets

In this section we present the ideas behind higher order quasi-Monte Carlo rules
based on generalized digital nets.

4.1 Decay of the Walsh Coefficients of Smooth Functions

We will focus mainly on s = 1 in this section, the case s > 1 is a natural extension
as we consider tensor product spaces of functions. We do not give all the details,
but provide an heuristic approach. The simplest exposition of the result presented in
this subsection which contains all the details may be found in [5].

We now prove a bound on the Walsh coefficients of smooth functions which are
not necessarily periodic (if the functions are periodic, then slightly stronger results
can be obtained [5]). Note that we cannot differentiate the Walsh series of a function
f , since the Walsh functions are piecewise constant and have therefore jumps. But
we can use the second approach based on integration by parts, as was done for
Fourier series above. Let Jk(x)=

∫ x
0 walk(t)dt , then

f̂wal(k) =
∫ 1

0
f (x)walk(x)dx

= [f (x)Jk(x)]
1
x=0−

∫ 1

0
f ′(x)Jk(x)dx

= −
∫ 1

0
f ′(x)Jk(x)dx, (3)

as
∫ 1

0 walk(x)dx = 0.
As for Fourier series, we would now like to relate the Walsh coefficient f̂wal(k)

to some Walsh coefficient of f ′. For Fourier series this happened naturally, but here
we obtain the function Jk . The way to proceed now is to obtain the Walsh series
expansion of Jk , which will allow us to relate the kth Walsh coefficient of f to some
Walsh coefficients of f ′.

We need the following lemma which was first shown in [9] and appeared in many
other papers (see for example [4] for a more general version). The following notation
will be used throughout the paper: k′ = k−κ1b

a1−1, and hence 0≤ k′ < ba1−1.

Lemma 1. For k ∈ N let Jk(x)=
∫ x

0 walk(t)dt . Then
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Jk(x) = b−a1

(

(1−ω
−κ1
b )−1walk′(x)+ (1/2+ (ω

−κ1
b −1)−1)walk(x)

+
∞∑

c=1

b−1∑

ϑ=1

b−c(ωϑ
b −1)−1walϑba1+c−1+k(x)

)

.

For k = 0, i.e., J0(x)=
∫ x

0 1dt = x, we have

J0(x)= 1/2+
∞∑

c=1

b−1∑

ϑ=1

b−c(ωϑ
b −1)−1walϑbc−1(x). (4)

We also need the following elementary lemma.

Lemma 2. For any 0 < κ < b we have

|1−ω−κb |−1 ≤ 1

2sin π
b

and |1/2+ (ω−κb −1)−1| ≤ 1

2sin π
b

.

Let k ∈ N with k = κ1b
a1−1+·· ·+κνb

aν−1, where 0 < κ1, . . . ,κν < b and a1 >

· · · > aν > 0. Further let k(1) = κ2b
a2−1 + ·· · + κνb

aν−1, k(2) = κ3b
a3−1 + ·· · +

κνb
aν−1, and k(τ) = κτ+1b

aτ+1−1+ ·· ·+ κνb
aν−1 for 0 ≤ τ < ν and k(ν) = 0. It is

also convenient to define the following function:

μα(k)=
{
a1+·· ·+amin(α,ν) for k > 0,
0 for k = 0.

Substituting the Walsh series for Jk in (3) we obtain approximately

f̂wal(k) ≈ −b−a1(1−ω
−κ1
b )−1

∫ 1

0
f ′(x)walk′(x)dx

= −b−a1(1−ω
−κ1
b )−1f̂ ′wal(k

(1)).

In actuality we obtain an infinite sum on the right hand side, but the main term is
the first one, the remaining terms can be dealt with, see [5] for the details.

We can repeat the last step τ times until either f (τ) is not differentiable anymore,
or k(τ) = 0, that is, we can repeat it min(α,ν) times. Hence

f̂wal(k) ≈ b−a1(ω
−κ1
b −1)−1f̂ ′wal(k

(1))

≈ b−a1−a2

2∏

i=1

(ω
−κi
b −1)−1f̂ ′′wal(k

(2))

...

≈ b−a1−···−amin(α,ν)

min(α,ν)∏

i=1

(ω
−κi
b −1)−1f̂

(min(α,ν))
wal (k(min(α,ν))).

Taking the absolute value and using some estimation we obtain
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|f̂wal(k)| � b−a1−···−amin(α,ν)

min(α,ν)∏

i=1

|ω−κib −1|−1|f̂ (min(α,ν))
wal (k(min(α,ν)))|

≤ b−μα(k)

(2sinπ/b)min(α,ν)
|f̂ (min(α,ν))

wal (k(min(α,ν)))|

≤ b−μα(k)

(2sinπ/b)min(α,ν)

∫ 1

0

∣∣∣f (min(α,ν))(x)

∣∣∣ dx,

where we used

|f̂ (min(α,ν))
wal (k(min(α,ν)))| =

∣
∣
∣
∣

∫ 1

0
f (min(α,ν))(x)walk(min(α,ν)) (x)dx

∣
∣
∣
∣

≤
∫ 1

0

∣
∣
∣f (min(α,ν))(x)

∣
∣
∣ |walk(min(α,ν)) (x)|dx

=
∫ 1

0

∣
∣
∣f (min(α,ν))(x)

∣
∣
∣ dx.

Thus if f is α times differentiable, we obtain

|f̂wal(k)|� Cf b
−μα(k).

By some modification of the above approach, see [5], it can be shown that the con-
stant Cf , which depends on f , can be replaced by a constant which depends only
on α and b (but not on f ) and the norm of f , i.e., we have

|f̂wal(k)|� Cα,b‖f ‖αb−μα(k).
The same holds for dimensions s > 1, see [1, 4, 5], where the constant additionally
depends on the dimension s

|f̂ (k)|� Cα,b,s‖f ‖αb−μα(k),
where μα(k) = μα(k1)+ ·· · +μα(ks) for k = (k1, . . . ,ks). For some values of b,
this constant Cα,b,s goes to 0 exponentially as s increases, see [1, 5].

Thus we have now achieved an analogous result to the decay of the Fourier coef-
ficients of smooth functions and we can now begin to investigate numerical integra-
tion.

4.2 Numerical Integration

This section is largely similar to Section 2.3. Note that, as opposed to Section 2.3,
we do not assume that the functions here are periodic. Again, we have the property
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1

bm

bm−1∑

�=0

walk(x�)=
{

1 if C�1 k1+·· ·+C�s ks = 0 ∈ F
m
b ,

0 otherwise,

where k = (k1, . . . ,ks) ∈ N
s
0, kj = kj,0+ kj,1b+·· · , and kj = (kj,0, . . . ,kj,n−1)

�.
The set of all k for which the sum above is 1 is called the dual net D, i.e.,

D = {k ∈ N
s
0 : C�1 k1+·· ·+C�s ks = 0 ∈ F

m
b }.

Using the Walsh series expansion of the function f we obtain

∣
∣
∣
∣
∣

∫

[0,1]s
f (x)dx− 1

bm

bm−1∑

�=0

f (x�)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣
f̂wal(0)−

∑

k∈N
s
0

f̂ (k)
1

bm

bm−1∑

�=0

walk(x�)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

k∈D\{0}
f̂wal(k)

∣
∣
∣
∣
∣
∣

≤
∑

k∈D\{0}
|f̂wal(k)|.

We can use the bound on the Walsh coefficients of the previous subsection to
obtain

∣∣∣∣∣

∫

[0,1]s
f (x)dx− 1

bm

bm−1∑

�=0

f (x�)

∣∣∣∣∣
≤ Cα,b,s‖f ‖α

∑

k∈D\{0}
b−μα(k).

The last inequality separates the contribution of the function from the contribu-
tion of the quasi-Monte Carlo rule, i.e., ‖f ‖α depends only on the function f but
not on the quasi-Monte Carlo rule, whereas

∑
k∈D\{0} b−μα(k) depends only on the

generating matrices of the digital net and not on the function itself (only on the
smoothness of f ; i.e., it is the same for all functions which have smoothness α).
Therefore, when considering the integration error we can now focus on the term∑

k∈D\{0} b−μα(k), which we do in the following subsection.

4.3 Generalized Digital Nets

The aim is now to find digital nets, i.e., generating matrices C1, . . . ,Cs ∈ F
n×m
b such

that
∑

k∈D\{0} b−μα(k) =O(N−α(logN)αs), where the number of quadrature points
N = bm.

Roughly speaking, the sum
∑

k∈D\{0} b−μα(k) is dominated by its largest term.
To find this largest term, define

μ∗α(C1, . . . ,Cs)= min
k∈D\{0}

μα(k).
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The dependence on the generating matrices C1, . . . ,Cs on the right hand side of
the above equation is via the dual net D = D(C1, . . . ,Cs). The largest term in∑

k∈D\{0} b−μα(k) is then b−μ∗α(C1,...,Cs).
In order to achieve a convergence of almost N−α = b−αm we must have that

the largest term in
∑

k∈D\{0} b−μα(k) is also of this order, that is, we must have
μ∗α(C1, . . . ,Cs) ≈ αm (or say μ∗α(C1, . . . ,Cs) > αm− t for some constant t inde-
pendent of m). That this condition is also sufficient is quite technical and was shown
in [4, Lemma 5.2]. (The definition of μ∗α(C1, . . . ,Cs) is reminiscent of the figure of
merit for lattice rules, see (1). For lattice rules an approach of proving the desired
order of convergence was described in Subsection 2.3.)

We can use some analogy to find matrices C1, . . . ,Cs ∈ F
n×m
b which achieve

μ∗α(C1, . . . ,Cs) ≈ αm: The definition of μ∗α(C1, . . . ,Cs) is similar to the figure of
merit ρ for lattice rules, or more precisely to logρ, which for classical digital nets
is analogous to the strength of the digital net, that is, m− t . On the other hand, the
classical case corresponds to α = 1, hence one can expect a relationship between
μ∗1(C1, . . . ,Cs) and m− t .

Indeed, we have the following: Let Cj = (c�j,1, . . . ,c�j,n)�, i.e., cj,� ∈ F
m
b is the

�th row of Cj . Then the matrices C1, . . . ,Cs generate a classical digital (t,m,s)-net
if for all i1, . . . , is ≥ 0 with i1+·· ·+ is ≤m− t , the vectors

c1,1, . . . ,c1,i1 , . . . ,cs,1, . . . ,cs,is

are linearly independent over Fb.
Now assume C1, . . . ,Cs generate a classical digital (t,m,s)-net and that we are

given a k ∈ N
s
0 \ {0} with μ1(k) ≤ m− t . Let ij = μ1(kj ) for j = 1, . . . , s, then

C�1 k1+·· ·+C�s ks is a linear combination of the vectors c1,1, . . . ,c1,i1, . . . ,cs,1, . . . ,
cs,is . As k �= 0 and i1+·· ·+is ≤m− t , which implies that c1,1, . . . ,c1,i1 , . . . ,cs,1, . . . ,
cs,is are linearly independent, it follows that C�1 k1+ ·· · +C�s ks �= 0 ∈ F

m
b . Thus

k /∈ D. This shows that if C1, . . . ,Cs generate a classical digital (t,m,s)-net and
k ∈D \{0}, then μ1(k) > m− t . This is precisely the type of result described above
which we also want to have for α > 1.

In the classical case α = 1 we had some linear independence condition of the
rows of the generating matrices which lead to the desired result. We now want to
generalize this linear independence condition to α > 1, i.e., we want to have that if
k ∈N

s
0 \{0} with μα(k)≤ αm− t , then the generating matrices should have linearly

independent rows such that C�1 k1 + ·· · +C�s ks �= 0 ∈ F
m
b . Let k = (k1, . . . ,ks),

where kj = κj,1b
aj,1−1+ ·· · + κj,νj b

aj,νj−1, with aj,1 > · · · > aj,νj > 0 and 0 <

κj,1, . . . ,κj,νj < b. First note that if n < αm− t , then k = (bn,0, . . . ,0) ∈ D, but
μα(k) = n+ 1 ≤ αm− t . In order to avoid this problem we may choose n = αm.
Hence we may now assume that aj,1 ≤ n = αm for j = 1, . . . , s, as otherwise
μα(k) > αm already and no independence condition on the generating matrices
is required in this case.

Now C�1 k1+·· ·+C�s ks is a linear combination of the rows

c1,a1,1 , . . . ,c1,a1,ν1
, . . . ,cs,as,1, . . . ,cs,as,νs .
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Thus, if these rows are linearly independent, then C�1 k1+·· ·+C�s ks �= 0 ∈ F
m
b , and

therefore k /∈D.
Therefore, if C1, . . . ,Cs ∈ F

n×m
b are such that for all choices of aj,1 > · · · >

aj,νj > 0 for j = 1, . . . , s, with

a1,1+·· ·+a1,min(α,ν1)+·· ·+as,1+·· ·+as,min(α,νs ) ≤ αm− t,

the rows
c1,a1,1 , . . . ,c1,a1,ν1

, . . . ,cs,as,1, . . . ,cs,as,νs

are linearly independent, then k ∈ D \ {0} implies that μα(k) > αm− t . (Note that
we also include the case where some νj = 0, in which case we just set aj,1+·· ·+
aj,min(α,νj ) = 0.)

We can now formally define such digital nets for which the generating matri-
ces satisfy such a property. The following definition is a special case of [4, Defini-
tion 4.3].

Definition 2. Let m,α ≥ 1, and 0≤ t ≤ αm be integers. Let Fb be the finite field of
prime order b and let C1, . . . ,Cs ∈ F

αm×m
b with Cj = (c�j,1, . . . ,c�j,αm)�. If for all

0 < aj,νj < · · ·< aj,1, where 0≤ νj for all j = 1, . . . , s, with

s∑

j=1

min(νj ,α)∑

l=1

aj,l ≤ αm− t

the vectors
c1,a1,ν1

, . . . ,c1,a1,1 , . . . ,cs,as,νs , . . . ,cs,as,1

are linearly independent over Fb, then the digital net with generating matrices
C1, . . . ,Cs is called a digital (t,α,1,αm×m,s)-net over Fb.

The need for a more general definition in [4] arises as we assume therein that the
smoothness α of the integrand is not known, so one cannot choose n = αm in this
case.

We have seen so far that a digital (t,α,1,αm×m,s)-net used as quadrature
points in a quasi-Monte Carlo rule will yield a convergence of the integration er-
ror of order N−α(logN)αs for integrands with ‖f ‖α <∞.

The remaining question now is: do digital (t,α,1,αm×m,s)-nets for all given
α,s ≥ 1 and some fixed t (which may depend on α and s but not on m) exist for all
m ∈ N? An affirmative answer to this question will be given in the next subsection.

4.4 Construction of Generalized Digital Nets

In this subsection we present explicit constructions of digital (t,α,1,αm×m,s)-
nets. The basic construction principle appeared first in [3] and was slightly modified
in [4]. The construction requires a parameter d , which, in case the smoothness of the
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integrand α is known, should be chosen as d = α. In this subsection we present this
construction and a bound on the t-value, but we assume that α is known explicitly
and hence choose d = α.

Let C1, . . . ,Csα be the generating matrices of a digital (t ′,m,sα)-net; we recall
that many explicit examples of such generating matrices are known, see e.g., [8,
12, 13, 14, 16, 17, 22] and the references therein. As we will see later, the choice
of the underlying (t ′,m,sα)-net has a direct impact on the bound on the t-value of
the digital (t,α,1,αm×m,s)-net. Let Cj = (c�j,1, . . . ,c�j,m)� for j = 1, . . . , sα; i.e.,

cj,l are the row vectors of Cj . Now let the matrix C(α)
j be made of the first rows of

the matrices C(j−1)α+1, . . . ,Cjα , then the second rows of C(j−1)α+1, . . . ,Cjα , and

so on. The matrix C
(α)
j is then an αm×m matrix; i.e., C(α)

j = (c(α)j,1, . . . ,c
(α)
j,αm)

�,

where c(α)j,l = cu,v with l = (v− j)α+ u, 1 ≤ v ≤ m, and (j − 1)α < u ≤ jα for
l = 1, . . . ,αm and j = 1, . . . , s.

To give the idea why this construction works we may consider the case s = 1.
Let α > 1. To simplify the notation we drop the j (which denotes the coordinate)
from the notation for a moment. Let C(α) be constructed from a classical digital
(t ′,m,α)-net with generating matrices C1, . . . ,Cα as described above. Let αm ≥
a1 > a2 > · · · > aν ≥ 1. Then we need to consider the row vectors c(α)a1 , . . . ,c

(α)
aν .

Now by the construction above, the vector c(α)a1 may stem from any of the generating

matrices C1, . . . ,Cα . Without loss of generality assume that c(α)a1 stems from C1,

i.e., it is the i1th row of C1, where i1 = �a1/α	. Next consider c(α)a2 . This row vector

may again stem from any of the matrices C1, . . . ,Cα . If c(α)a2 also stems from C1,
then �a2/α	 < i1. If not, we may w.l.o.g. assume that it stems from C2. Indeed,
it will be the i2th row of C2, where i2 = �a2/α	. We continue in this fashion and
define numbers i3, i4, . . . , il , where 1 ≤ l ≤ α. Further we set il+1 = ·· · = iα = 0.
Then by the (t ′,m,α)-net property of C1, . . . ,Cα , it follows that c(α)a1 , . . . ,c

(α)
aν are

linearly independent provided that i1 + ·· · + iα ≤ m− t ′. Hence, if we choose t

such that a1 + ·· · + amin(α,ν) ≤ αm− t implies that i1 + ·· · + iα ≤ m− t ′ for all
admissible choices of a1, . . . ,aν , then the digital (t,α,1,αm×m,1)-net property of
C(α) follows.

Note that i1 = �a1/α	 and il ≤ �al/α	 for l = 2, . . . ,α. Thus

i1+·· ·+ iα ≤ �a1/α	+ · · ·+�aα/α	
≤ (a1+·· ·+aα+α(α−1))/α

= a1+·· ·+aα

α
+α−1

≤ m− t/α+α−1.

Thus, if we choose t such that m− t/α+α− 1 ≤ m− t ′, then the result follows.
Simple algebra then shows that

t = αt ′ +α(α−1)
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will suffice.
A more general and improved result is given in the following which is a special

case of [4, Theorem 4.11], with an improvement for some cases from [6] (a proof
of this result can be found in [6, 3, 7]).

Theorem 1. Let α ≥ 1 be a natural number and let C1, . . . ,Csα be the generating
matrices of a digital (t ′,m,sα)-net over the finite field Fb of prime power order
b. Let C(α)

1 , . . . ,C
(α)
s be defined as above. Then the matrices C(α)

1 , . . . ,C
(α)
s are the

generating matrices of a digital (t,α,1,αm×m,s)-net over Fb with

t = αmin

(
m,t ′ +

⌊
s(α−1)

2

⌋)
.

This shows that digital (t,α,1,αm×m,s)-nets exist for all α,m,s ≥ 1 with t

bounded independently of m. Indeed, also the dependence of t on α and s is known
from [6]: namely t " α2s.

Geometrical properties of digital (t,α,1,αm×m,s)-nets and their generalization
were shown in [6]. In the following section we show pictures of those properties.

5 Geometrical Properties of Generalized Digital Nets

In this section we describe geometrical properties of generalized digital nets. The
generating matrices C(2)

1 ∈ F
4×8
2 and C

(2)
2 ∈ F

4×8
2 for the digital net over F2 shown

in Figure 1 are obtained from the classical digital (1,4,4)-net with the following
generating matrices:

C1 =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ ,C2 =

⎛

⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟⎟
⎠ ,C3 =

⎛

⎜⎜
⎝

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎞

⎟⎟
⎠ ,C4 =

⎛

⎜⎜
⎝

0 1 1 0
1 1 0 1
0 0 0 1
0 0 1 0

⎞

⎟⎟
⎠ .

Using the construction principle from [3, 4] described above, we obtain

C
(2)
1 =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜
⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎟⎟
⎟
⎠

and C(2)
2 =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜
⎜⎜
⎝

1 1 1 1
0 1 1 0
0 1 0 1
1 1 0 1
0 0 1 1
0 0 0 1
0 0 0 1
0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎟⎟
⎟
⎠

.
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Theorem 1 implies that C(2)
1 , C(2)

2 generate a digital (4,2,1,8× 4,2)-net. Upon
inspection one can see that it is also a (3,2,1,8× 4,2)-net, but not a (2,2,1,8×
4,2)-net (the first two rows of C(2)

1 and C(2)
2 are linearly dependent).

Fig. 1 A digital (3,2,1,8×4,2)-net over Z2 which is also a classical digital (1,4,2)-net over Z2.

Figure 2 shows that the point set is a classical (1,4,2)-net. Indeed, this is true
more generally: Generalized digital nets are also classical digital nets (with the clas-
sical t-value worse than the best classical nets known for the chosen parameters,
which is understandable as generalized digital nets have some additional structure
as we will see below) and are therefore also well distributed. This statement is made
precise in the following proposition.

Proposition 1. Let α ≥ 1 be a natural number and let C1, . . . ,Csα be the generating
matrices of a digital (t,m,sα)-net over the finite field Fb of prime power order b.
Let C(α)

1 , . . . ,C
(α)
s be defined as above. Then the matrices C(α)

1 , . . . ,C
(α)
s are the

generating matrices of a digital (t,m,s)-net over Fb.

Proof. Let d1, . . . ,ds ≥ 0 be integers such that d1+·· ·+ds ≤m− t . Then the first dj
rows of C(α)

j stem from the matrices C(j−1)α+1, . . . ,Cjα . Indeed there are numbers
l(j−1)α+1, . . . , ljα ≥ 0, such that dj = l(j−1)α+1+·· ·+ ljα with the property that the

first dj rows of C(α)
j are exactly the union of the first l(j−1)α+r rows of C(j−1)α+r

for r = 1, . . .α. Hence the fact that
∑s

j=1 dj =
∑s

j=1
∑α

r=1 l(j−1)α+r ≤ m− t and
the (t,m,sα)-net property of C1, . . . ,Csα imply that the union of the first dj rows of

Cj , j = 1, . . . , s, are linearly independent. This implies that C(α)
1 , . . . ,C

(α)
s generate

a digital (t,m,s)-net.

Remark 1. (i) Proposition 1 yields a better result than what can be obtained from
using Theorem 1 and [4, Theorem 4.10 (ii)].

(ii) From the proof of Proposition 1 it is apparent that we do not consider all lin-
ear combinations of rows of the generating matrices C1, . . . ,Csα of the original
(t,m,s)-net. Hence, for particular choices of the original net, it is possible to
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obtain a generalized net which is a classical (t ′,m,s)-net with t ′ < t , where t is
the quality parameter of the original net. For example, if one uses a digital net
obtained from a Sobol sequence, than choosing certain (as of now unknown) di-
rection numbers could yield such an improvement. Similar optimizations could
also be applied to other digital nets.

(iii) When using the construction of generalized nets from [3, 4] as outlined above,
then, as of now, it seems advantageous to choose the original digital net with as
small a t-value as possible. For example, using the table from MinT (http:
//mint.sbg.ac.at), we know that there is a digital (6,15,10)-net. For
α = 2, the generalized digital net constructed as outlined above using a digital
(8,15,20)-net, is also a digital (8,15,10)-net, for α = 3, we can obtain a gen-
eralized digital net which is also a digital (9,15,10)-net and for α = 4 we can
obtain a generalized digital net which is also a digital (10,15,10)-net in base 2
(with the advantage of additional properties of generalized nets).

(iv) An analogue to Proposition 1 for digital sequences also holds with the classical t-
value of the generalized sequence being the same as the original digital sequence
(which is of course in dimension sα).

Figure 3 shows a partition of the square for which each union of the shaded rect-
angles contains exactly two points. Figures 4 and 5 show that also other partitions
of the unit square are possible where each union of shaded rectangles contains the
fair number of points. Many other partitions of the square are possible where the
point set always contains the fair number of points in each union of rectangles, see
[6], but there are too many of them to show them all here. Even in the simple case
considered here there are 12 partitions possible, for each of which the point set is
fair - this is quite remarkable since the point set itself has only 16 points (we ex-
clude all those partitions for which the fairness would follow already from some
other partition, otherwise there would be 34 of them). In the classical case we have
4 such partitions, all of which are shown in Figure 2. (The partitions from the classi-
cal case are included in the generalized case; so out of the 12 partitions 4 are shown
in Figure 2, one is shown in Figure 3, one is shown in Figure 5 and one is indicated
in Figure 4.)

The subsets of [0,1)s which form a partition and which each have the fair number
of points are of the form:

J (aν,dν)

=
s∏

j=1

b−1⋃

dj,l=0

l∈{1,...,αm}\
{
aj,1,...,aj,νj

}

[
dj,1

b
+·· ·+ dj,n

bαm
,
dj,1

b
+·· ·+ dj,n

bαm
+ 1

bαm

)
,

where b ≥ 2 is the base and where
∑s

j=1
∑νj

l=1 aj,l ≤ αm− t . For j = 1, . . . , s we
again assume 1 ≤ aj,νj < · · · < aj,1 ≤ αm in case νj > 0 and {aj,1, . . . ,aj,νj } = ∅
in case νj = 0. Further, we also use the following notation: ν = (ν1, . . . ,νs), |ν|1 =∑s

j=1 νj , aν = (a1,1, . . . ,a1,ν1 , . . . ,as,1, . . . ,as,νs ), dν ∈ {0, . . . ,b−1}|ν|1 , and dν =

http://mint.sbg.ac.at
http://mint.sbg.ac.at


Se
co

nd
 p

ro
of

s

90 Josef Dick

Fig. 2 The digital (3,2,1,8×4,2)-net is also a digital (1,4,2)-net, as each elementary interval of
volume 1/8 of every partition of the unit square contains exactly two points.

(d1,i1,1 , . . . ,d1,i1,ν1
, . . . ,ds,is,1, . . . ,ds,is,νs ), where the components aj,l and dj,l , l =

1, . . . ,νj , do not appear in the vectors aν and dν in case νj = 0.
Figures 2, 3, 4, and 5 give only a few examples of unions of intervals for which

each subset of the partition contains the right number of points. As the J (aν,dν), for
fixed ν and aν (with dν running through all possibilities) form a partition of [0,1)s ,
it is clear that the right number of points in J (aν,dν) has to be bmVol(J (aν,dν)).
For example, the digital net in Figure 3 has 16 points and the partition consists of 8
different subsets J (aν,dν), hence each J (aν,dν) contains exactly 16/8= 2 points.
(In general, the volume of J (aν,dν) is given by b−|ν|1 , see [6].)

6 Geometrical Numerical Integration

The geometrical properties needed for numerical integration can be illustrated in the
one-dimensional case.
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Fig. 3 The digital (3,2,1,8×4,2)-net. The union of the shaded rectangles in each figure from (a)
to (h) contains exactly two points.
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Fig. 4 Digital (3,2,1,8× 4,2)-net over Z2. The union of the shaded rectangles contains two
points. As in Figure 3 one can also form a partition of the square with this type of rectangle where
each union of rectangles contains two points.

Fig. 5 Digital (3,2,1,8× 4,2)-net over Z2. The union of the shaded rectangles contains half the
points.

Assume f : [0,1] → R is twice continuously differentiable. Then

f (x)= f (0)+
∫ x

0
f ′(t)dt = f (0)+xf ′(0)+

∫ 1

0
(x− t)+f ′′(t)dt, (5)

where (x− t)+ is x− t for x ≥ t and 0 otherwise.
Let x1, . . . ,xN ∈ [0,1], then using (5) we obtain

1

N

N∑

h=1

f (xh)−
∫ 1

0
f (x)dx

= f (0)+f ′(0) 1

N

N∑

h=1

xh+ 1

N

N∑

h=1

∫ 1

0
(xh− t)+f ′′(t)dt

−f (0)−f ′(0)
∫ 1

0
x dx−

∫ 1

0

∫ 1

0
(x− t)+f ′′(t)dt dx
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= f ′(0)
[

1

N

N∑

h=1

xh−
∫ 1

0
x dx

]

+
∫ 1

0
f ′′(t)

[
1

N

N∑

h=1

(xh− t)+−
∫ 1

0
(x− t)+ dx

]

dt.

Taking the absolute value of the integration error we obtain

∣
∣
∣
∣
∣

1

N

N∑

h=1

f (xh)−
∫ 1

0
f (x)dx

∣
∣
∣
∣
∣
≤
[
|f ′(0)|+

∫ 1

0
|f ′′(t)|dt

]
sup

0≤t≤1
|ΔN(t)|,

where

ΔN(t)=
∣
∣
∣
∣
∣

1

N

N∑

h=1

(xh− t)+−
∫ 1

0
(x− t)+ dx

∣
∣
∣
∣
∣
.

The factor |f ′(0)| + ∫ 1
0 |f ′′(t)|dt is a seminorm of the function f and the fac-

tor sup0≤t≤1 |ΔN(t)| measures properties of the quadrature points x1, . . . ,xN . For
example, for t = 0 the quadrature rule would numerically integrate the function x

and

ΔN(0)= 1

N

N∑

h=1

xh−
∫ 1

0
x dx

is the integration error.
In order to obtain a convergence of N−2+δ , δ > 0, our quadrature points should

be chosen such that ΔN(t)=O(N−2+δ) for any 0≤ t ≤ 1. Any equidistant quadra-
ture points only yield sup0≤t≤1 |ΔN(t)| =O(N−1), hence the points from a digital
(t,α,1,αm×m,s)-net are not equidistant for α > 1, but introduce some cancella-
tion effect as we explain in the following.

Consider Figure 6. We assume we want to numerically integrate the function x

(then Δ(0) would be the integration error) using a (t,2,1,2m×m,1)-net (where
b = 2). This function is relevant as it appears in the upper bound (the case where
0 < t ≤ 1 is similar.) Assume we want to put two points in the interval [0,1/2),
such that one point is in [0,1/4) and another one is in [1/4,1/2), as illustrated in
Figure 6(a). Then we get some integration error for the point x1 in [0,1/4) of the
form e1 = x1−

∫ 1/4
0 dx and another integration error for the point x2 in [1/4,1/2)

of the form e2 = x2−
∫ 1/2

1/4 x dx. The integration error for the interval [0,1/2) is then
the sum of the two errors e1+ e2. If both e1 and e2 have the same sign then the
absolute value of error |e1+ e2| for the integral

∫ 1/2
0 x dx increases, whereas if they

have opposite signs then we get some cancellation effect and the absolute value of
the error, |e1+ e2|, decreases.

We can partition each of the intervals [0,1/4) and [1/4,1/2) again into two inter-
vals to obtain [0,1/8) and [1/8,1/4) on the one hand and [1/4,3/8) and [3/8,1/2)
on the other hand, see Figure 6(b). Next we put two points in the interval [0,1/2): In
Figure 6(c) one point is in the interval [0,1/8) and the other one in [3/8,1/2) and in
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Fig. 6 Geometrical numerical integration.

Figure 6(d) one is in [1/8,1/4) and one in [1/4,3/8). In both cases, when consider-
ing the integral

∫ 1/2
0 x dx, we get some cancellation effect: in Figure 6(c) the point

in [0,1/8) underestimates the integral
∫ 1/4

0 x dx, whereas the point in [3/8,1/2)

overestimates the integral
∫ 1/2

1/4 x dx. Similarly for Figure 6(d). On the other hand, in
Figure 6(e) both points underestimate the corresponding integral and in Figure 6(f)
both points overestimate the corresponding integral - hence the integration errors
add up in this case.

We started out saying that we want to have one point in the black interval in
Figure 7(a) and one in the white. But to get some cancellation effect we also want
to have that one point is in the black part in Figure 7(b) and one in the white part.



Se
co

nd
 p

ro
of

s

Higher Order Convergence of Quasi-Monte Carlo Rules 95

Fig. 7 Geometrical numerical integration.

But such a structure is exhibited by the point set shown in Figure 1. Considering
the projection of the point set onto the x-axis, Figure 2(c) shows that the same
number of points is in the interval [0,1/4) as there is in [1/4,1/2). Figures 3(a) and
(b) on the other hand show that the same number of points is in [0,1/8)∪[1/4,3/8)
as there is in [1/8,1/4)∪ [3/8,1/2). Therefore this point set shows the desired
cancellation effect which allows us to obtain a convergence beyond O(N−1+δ).
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Sensitivity Estimates for Compound Sums

Paul Glasserman and Kyoung-Kuk Kim

Abstract We derive unbiased derivative estimators for expectations of functions
of random sums, where differentiation is taken with respect to a parameter of the
number of terms in the sum. As the number of terms is integer valued, its derivative
is zero wherever it exists. Nevertheless, we present two constructions that make the
sum continuous even when the number of terms is not. We present a locally con-
tinuous construction that preserves continuity across a single change in the number
of terms and a globally continuous construction specific to the compound Poisson
case. This problem is motivated by two applications in finance: approximating Lévy-
driven models of asset prices and exact sampling of a stochastic volatility process.

1 Introduction

By a compound sum we mean a random variable with the representation

X(λ)=
N(λ)∑

i=1

ξi, (1)

in which N(λ) is a non-negative integer-valued random variable, and the ξi are i.i.d.
copies of a positive random variable ξ independent of N(λ). The distribution of N
(and therefore that of X) depends on the parameter λ; for example, in a compound
Poisson sum, N(λ) has a Poisson distribution with mean λ. We consider the problem
of estimating a derivative of the form of dE[Φ(X(λ))]/dλ, the sensitivity of the
expectation of some function Φ of X(λ).

Paul Glasserman
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Kyoung-Kuk Kim
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Compound sums arise in many areas of applied probability, including queueing,
inventory, and insurance risk, but our motivation arises from two applications in fi-
nance. The first is the use of Lévy processes to model asset returns; for purposes
of simulation, the jump component of a Lévy process is often approximated by a
compound Poisson process. The second application comes from the simulation of
the Heston [10] stochastic volatility model. In [8], we have given an exact represen-
tation of the transitions of the process suitable for simulation. The representation
involves compound sums in which the number of terms N has either a Poisson or
Bessel distribution. Both Lévy processes and the Heston model are used in pricing
options; sensitivities to model parameters are then essential inputs to option hedg-
ing.

Related problems of simulation sensitivity estimation have received extensive
study; see, e.g., Chapter VII of Asmussen and Glynn [1] for an overview and ref-
erences. A difficulty posed by a family of integer-valued random variables N(λ)

indexed by λ is that dN(λ)/dλ must be zero anywhere it exists. This suggests that

d

dλ
Φ(X(λ))=Φ ′(X(λ)) d

dλ
X(λ)= 0

wherever it exists, rendering it useless as an estimator of the sensitivity of the ex-
pectation E[Φ(X(λ))].

The same problem arises when a Poisson process is used to model arrivals to a
queue, and this has motivated alternative sample-path methods, such as the phantom
method of Brémaud and Vazquez-Abad [4] and its variants. These methods address
the discontinuities in N(λ) by estimating the impact of one additional (or one fewer)
arrival. The issue of sample-path discontinuities can alternatively be avoided using
a likelihood ratio method estimator, as in p.222 of [1].

But the case of a compound sum offers possibilities not open to N(λ) itself be-
cause X(λ) need not be integer valued and may change continuously in λ even if
N(λ) does not. The main contribution of this article is to introduce and analyze two
constructions that develop this idea.

For each λ in some parameter domain Λ, (1) determines the distribution of X(λ)
once the distributions of N(λ) and the ξi are specified. However, we are free to vary
the joint distribution of, say,X(λ) andX(λ−Δ), so long as we respect the constraint
on the marginals. Different constructions impose different joint distributions and
lead to potentially different values of dX(λ)/dλ.

Of our two constructions, one applies only to compound Poisson sums and the
other applies more generally. For both, we give conditions ensuring that the resulting
pathwise derivative is unbiased, in the sense that

E

[
Φ ′(X(λ)) d

dλ
X(λ)

]
= d

dλ
E[Φ(X(λ))]. (2)

The compound Poisson construction is globally continuous, in the sense that, for a
fixed interval Λ, X(·) is almost surely continuous on Λ. Our other construction is
only locally continuous: the interval over whichX(·) is continuous in λ is stochastic.
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The locally continuous feature of this construction makes this an interesting ex-
ample within the broader literature on simulation sensitivity estimation. A general
(and generally sound) rule of thumb states that pathwise derivatives are unbiased
estimators of derivatives of expectations (as in (2)) for globally continuous con-
structions. It has been recognized since at least Cao [6] that this is more than what is
strictly necessary — it should (nearly) suffice for the probability of a discontinuity
in a neighborhood of λ of length Δ to be o(Δ). Our locally continuous construc-
tion relies on this observation; we know of no previous examples in which this type
of weaker condition arises naturally. Through an analysis on the mean squared er-
ror, we also show how the estimator degrades as the construction becomes nearly
discontinuous.

The rest of this article is organized as follows. In Section 2, we present our mo-
tivating applications. Section 3 covers the locally continuous construction, and Sec-
tion 4 demonstrates its application. Section 5 presents the globally continuous con-
struction for compound Poisson sums.

2 Motivating Applications

2.1 Lévy Processes

A wide class of models of asset prices admits a representation of the form

St = S0 exp(at+Xt), t ≥ 0,

with X = {Xt }t≥0 a Lévy process, X0 = 0. Here, S = {St }t≥0 might represent the
price process of a stock, for example, and S0 and a are constants. In the most familiar
model of this type, X is simply a Brownian motion. Other examples include the
variance gamma (VG) model (Madan et al. [11]) and the normal inverse Gaussian
(NIG) model (Barndorff-Nielsen [3]). Simulation of the VG model is studied in
Avramidis and L’Ecuyer [2].

A Lévy process X has stationary independent increments and is continuous in
probability. Its law is determined by its characteristic function at any time t > 0,
which, according to the Lévy-Itô decomposition, must have the form

E[exp(iωXt )] = exp

(
t
(
iωb− σ

2
ω2+

∫

R

(eiωy−1− iωy1|y|≤1)q(dy)
))

,

for some constants σ > 0 and b and measure q on R. We will suppose that the Lévy
measure admits a density, so q(dy)= q(y)dy. Loosely speaking, this representation
decomposesX into the sum of a drift bt , a Brownian motion σW(t), and a jump term
independent of W and described by q. If q has finite mass ν, then the jump term is a
compound Poisson process with arrival rate ν and jumps drawn from the probability
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density q(·)/ν. One may also write this as the difference of two compound Poisson
processes, one recording positive jumps, the other recording negative jumps.

If q has infinite mass, then we may still interpret a finite q(A), A ⊆ R as the
arrival rate of jumps of size inA, but the total arrival rate of jumps is infinite. The VG
and NIG models are of this type, and they take σ = 0, so the Brownian component
is absent — these are pure-jump processes. For purposes of simulation, one may
truncate q to a finite measure and then simulate a compound Poisson process as
an approximation; see, for example, Asmussen and Glynn [1], Chapter XII, for a
discussion of this idea.

If the original density q depends on a parameter λ, one may be interested in
estimating sensitivities of expectations with respect to λ. In choosing how to ap-
proximate the original Lévy process with a compound Poisson process, we have a
great deal of flexibility in specifying how the approximation should depend on λ. If,
for example, we truncate all jumps of magnitude less then ε, for some ε > 0, then
the arrival rate of jumps in the compound Poisson approximation will, in general,
depend on λ, because the mass of q ≡ qλ outside the interval (−ε,ε) may vary with
λ. This puts us in the context of (1). Glasserman and Liu [9] develop alternative
methods that avoid putting parametric dependence in N by, for example, letting ε

vary with λ, precisely to get around the problem of discontinuities. The construc-
tions developed here deal directly with the possibility of discontinuities.

2.2 Stochastic Volatility and Squared Bessel Bridges

A δ-dimensional squared Bessel process Vt is defined by the stochastic differential
equation

dVt = δdt+2
√
VtdWt , δ > 0.

(See Chapter XI of Revuz and Yor [12] for more details about squared Bessel pro-
cesses.) This is, after a time and scale transformation, the equation for the vari-
ance process in the Heston stochastic volatility model. Through the method of
Broadie and Kaya [5], exact simulation of the Heston model can be reduced to
sampling from the distribution of the area under a path of the squared Bessel bridge,(∫ 1

0 Vt dt |V0 = v0,V1 = v1

)
. In Glasserman and Kim [8], we derive the representa-

tion (∫ 1

0
Vt dt |V0 = v0,V1 = v1

)
d= Y1+Y2+Y3

where

Y1 =
∞∑

n=1

2

π2n2

Nn(v0+v1)∑

j=1

Γn,j (1,1), Y2 =
∞∑

n=1

2

π2n2
Γn(δ/2,1), Y3 =

η∑

j=1

Zj .

Here, the Nn(v0+ v1) are independent Poisson random variables, each with mean
v0+v1; Γn,j (1,1), Γn(δ/2,1) are independent gamma random variables with shape
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parameters 1 and δ/2, respectively, and scale parameter 1. Also, η has a Bessel
distribution with parameters ν := δ/2− 1 and z := √v0v1, denoted by BES(ν,z).
This is a non-negative integer valued distribution with probability mass function

bn(ν,z) := P(η = n)= (z/2)2n+ν

Iν(z)n!Γ (n+ν+1)
, n≥ 0

where Iν(z) is the modified Bessel function of the first kind and Γ (·) is the
gamma function. Lastly, the random variables Zj are independent with the follow-
ing Laplace transform:

Ee−θZ =
( √

2θ

sinh
√

2θ

)2

.

In [8], we simulate Y1 and Y2 by truncating their series expansions and approx-
imating the remainders with gamma random variables matching the first two mo-
ments of the truncated terms. For Y3, we need to simulate the Zj and η. To generate
the Zj , we numerically invert their Laplace transform to tabulate their distribution
and then sample from the tabulated values. Rejection methods for sampling from the
Bessel distribution are investigated in Devroye [7]; however, for our constructions
we sample by inversion, recursively calculating the probability mass function using

bn+1(ν,z)= (z/2)2

(n+1)(n+ν+1)
bn(ν,z).

This method leaves us with two compound sums — a Poisson sum in Y1 and
a Bessel sum in Y3. It is significant that the parameters of the Poisson and Bessel
random variables depend on the endpoints v0, v1. In the stochastic volatility ap-
plication, hedging volatility risk entails calculating sensitivities with respect to the
level of volatility (or variance), and this puts us back in the setting of estimating the
sensitivity of a compound sum. We return to this application in Section 4.

3 Locally Continuous Construction

In this section, we construct a family of compound sums X(λ), λ ∈Λ, to be locally
continuous in λ. If N(λ) has nontrivial dependence on λ, a sufficiently large change
in λ will introduce a discontinuity in N(λ). Our construction preserves continuity
of X(λ) across the first (but only the first) discontinuity in N(λ).

We use pn(λ) to denote P(N(λ) ≤ n). In this section, we assume that the pn(λ)
are all monotone in λ in the same direction; to be concrete, we assume they are all
decreasing,

pn(λ−%) > pn(λ), ∀n,λ,%> 0,

as in the case of the Poisson distribution, for which we have
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d

dλ
pn(λ)=−e−λλn

n! < 0.

As is customary in the simulation context, our construction starts from an infinite
sequence of independent uniform random variables. The key step lies in the gener-
ation of the last summand ξN(λ). The construction at a pair of points λ0 and λ < λ0
is illustrated in Figure 1. We generate a uniform U and sample N(λ0) by inversion
to get

N(λ0)= n iff pn−1(λ0) < U ≤ pn(λ0),

with the convention that p−1(·) = 0. If λ is sufficiently close to λ0, then we also
have N(λ) = N(λ0) = n. On this event, we construct a conditionally independent
uniform random variable

V = U −pn−1(λ)

pn(λ0)−pn−1(λ)
, (3)

and we map V to ξN(λ) using the inverse of the distribution F of ξ , as illustrated in
the figure. (A different approach using a similar distance from the boundary is re-
viewed in [1], pp.233-234.) As λ decreases, it eventually reaches a point λ∗ at which
U = pn−1(λ

∗) and at which N(λ) drops to N(λ0)− 1. Just at this point, we have
ξN(λ) = 0, provided F(0)= 0; thus, X(λ) remains continuous at the discontinuity in
N(λ). On the event {N(λ) < N(λ0)}, we then generate ξN(λ) from an independent
uniform without using V or the uniform U used to generate N(λ0). We combine
these steps in the algorithm below.

Fig. 1 Illustration of the locally continuous construction.

Algorithm: Locally Continuous Construction

• Generate a uniform random variable U and determine N(λ0)= n.
• Generate uniform random variables U1, . . . ,Un−1.
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• For λ < λ0, calculate N(λ) using U .
• If N(λ)= n, then X =∑n−1

i=1 F
−1(Ui)+F−1(V ).

• Otherwise, X =∑N(λ)
i=1 F−1(Ui).

Example 1. Suppose N(λ) is a Poisson random variable with mean λ and the ξi are
unit-mean exponential random variables. The left panel of Figure 2 shows a sample
path of this construction as a function of λ (for fixed Ui) with λ0 = 12. As we de-
crease λ from 12, the first drop in N occurs near 11.5, but X changes continuously
across that point. The next discontinuity in N occurs near 10.5 and there X is dis-
continuous as well. The probability that X has a discontinuity in (λ0−Δ,λ0) is the
probability of two or more Poisson events in this interval and is therefore o(Δ). The
right panel of the figure shows the average over 10 independent paths and illustrates
the smooth dependence on λ in a left neighborhood of λ0 = 12.

Fig. 2 A single path X(1)(λ) (left) and the average of 10 paths X(10)(λ) (right) using the locally
continuous construction near λ0 = 12.

To ensure that this construction leads to unbiased derivative estimates, we need
some conditions:

Assumption 1. All pn(λ) are monotone in λ in the same direction, and EN(λ)<∞.

Assumption 2. Each pn(λ) is differentiable in λ and
∑∞

n=0 |(d/dλ)pn(λ)| is uni-
formly convergent on compact intervals.

This assumption about uniform convergence allows for the application of an ele-
mentary convergence theorem to conclude that

d

dλ
EN(λ)=

∞∑

n=1

(
−dpn(λ)

dλ

)
.

For the rest of this section, we assume that (d/dλ)pn(λ)≤ 0.

Proposition 1. Suppose that Assumptions 1–2 hold. Also, suppose that the distribu-
tion F of the ξi has finite mean, has F(0)= 0, and has a density f that is continuous



Se
co

nd
 p

ro
of

s

104 Paul Glasserman and Kyoung-Kuk Kim

and positive on (0,∞). Let Φ be Lipschitz continuous on [0,∞). Then under the
locally continuous construction for X(λ), we have

d

dλ
E

[
Φ(X(λ))

]
= E

[ d

dλ
Φ(X(λ))

]
.

Proof. There exists M > 0 such that |Φ(x)−Φ(y)| ≤M · |x−y|, for all x,y ≥ 0.
Define a sequence of functions {gα} with α = λ0−λ by

gα = X(λ0)−X(λ)

λ0−λ

which is non-negative by construction. Then,

∣
∣
∣
Φ(X(λ0))−Φ(X(λ))

λ0−λ

∣
∣
∣ ≤ M ·gα.

We will prove the result by applying the generalized dominated convergence theo-
rem to the left hand side of this inequality indexed by α. For this, we need to show
that limα↓0 gα = g for some function g a.s. and that limα↓0 Egα = Eg.

For almost surely any U , there is a left neighborhood of λ0 such that N(λ0) =
N(λ) for all λ in this interval. If N(λ0) = 0, then we have nothing to prove. If
N(λ0)= n > 0, then it is straightforward to see

gα = F−1(V0)−F−1(V )

λ0−λ
→ g

as α goes to zero, where

V0 = U −pn−1(λ0)

pn(λ0)−pn−1(λ0)
, V = U −pn−1(λ)

pn(λ0)−pn−1(λ)

and

g = 1−V0

f (F−1(V0))
· 1

pn(λ0)−pn−1(λ0)
·
(
−dpn−1

dλ
(λ0)

)
.

To show Egα → Eg, we compute as follows:

Egα = EX(λ0)−EX(λ)

λ0−λ
= EN(λ0)−EN(λ)

λ0−λ
·Eξ

→ Eξ · dEN(λ)

dλ
|λ=λ0 = Eξ ·

⎛

⎝−
∞∑

j=0

dpj

dλ
(λ0)

⎞

⎠ .

On the other hand,

Eg =
∞∑

n=1

E

[
1−V0

f (F−1(V0))
|N(λ0)= n

](
−dpn−1

dλ
(λ0)

)
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=
∞∑

j=0

(
−dpj

dλ
(λ0)

)∫ ∞

0

1−F(x)

f (x)
·f (x)dx, (with x = F−1(V0))

−2pt = lim
α

Egα

because V0 is uniform in [0,1] given N(λ0)= n. ()
The analysis and figures above show how the locally continuous construction

smoothes the potential discontinuity in X(λ) at the first discontinuity of N(λ) by
arranging to have ξN(λ) small near the discontinuity. This would not be possible if
the support of F were bounded away from zero, which may raise a question about
the effectiveness of the construction, because F could be nearly flat near zero, and
F−1 thus nearly discontinuous near zero. A closer examination suggests that if F
is nearly flat near zero, then the variance of X(λ0)−X(λ) may be very large. More
precisely, we will show this through an analysis on the mean squared difference. For
this result, we first need an additional assumption:

Assumption 3. The continuous and positive density function f (x) is monotone on
(0,xl)∪ (xu,∞) for some 0 < xl < xu.

Proposition 2. Suppose that f (x) ∼ cx1/β−1 near zero for 0 < β ≤ 1 and that F
has finite variance. Then, under Assumptions 1–3, we have

E

[(
X(λ0)−X(λ)

)2
]
=

∞∑

k=2

(
kVar(ξ)+ k2(Eξ)2−ak

)
P

(
N(λ0)−N(λ)= k

)

+
∞∑

k=0

ψ(bk)P
(
N(λ0)= k+1

)

where ak ∈ [0,Var(ξ)+(2k−1)(Eξ)2], bk = (pk(λ)−pk(λ0))/(pk+1(λ0)−pk(λ0))

and ψ(b)=O(b(1+2β)∧2).

Proof (a sketch). We first note that the assumption on the behavior of f near zero
implies

F(x)∼ cβx1/β, F−1(x)∼ (x/cβ)β.

Let us write the mean squared difference of the left side as

E
[
(X(λ0)−X(λ))2

] =
∞∑

n=2

E

[(
X(λ0)−X(λ)

)2;N(λ0)−N(λ)= n

]

+E

[
F−1(V0)

2;N(λ0)−N(λ)= 1
]

+E

[(
F−1(V0)−F−1(V )

)2;N(λ0)−N(λ)= 0

]

where V0, V are same as defined in Proposition 1. Let us take a look at each term
on the right side.

On the event {N(λ0)−N(λ) = n, N(λ) = k}, the random variable U is con-
strained to be uniform in [pn+k−1(λ0),pn+k(λ0)]∩[pk−1(λ),pk(λ)]. Therefore, the
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first term equals

∞∑

n=2

E

[( n−1∑

i=1

ξi+F−1(V0)
)2|N(λ0)−N(λ)= n

]

P(N(λ0)−N(λ)= n)

and the expectation in the expression is between E[(∑n−1
i=1 ξi)

2] and E[(∑n
i=1 ξi)

2].
From these bounds, it is easy to get the first term in the statement.

As for the second term, straightforward computations yield

E
[
F−1(V0)

2;N(λ0)−N(λ)= 1
]

≤
∞∑

k=0

(pk+1(λ0)−pk(λ0))

∫ 1∧bk

0
F−1(x)2dx

≤
∞∑

k=0

(pk+1(λ0)−pk(λ0))E(ξ
2)∧ (F−1(bk)

2bk
)

with bk = (pk(λ)−pk(λ0))/(pk+1(λ0)−pk(λ0)). Note that F−1(b)2b=O(b1+2β).
Similarly, we compute

E

[(
F−1(V0)−F−1(V )

)2;N(λ0)=N(λ)

]
=

∞∑

k=0

(pk+1(λ0)−pk(λ0))φ(bk)

with φ(b) = (1− b)+
∫ 1

0

(
F−1(x+ (1−x)b)−F−1(x)

)2
dx. We derive upper and

lower bounds for the integral in φ(b). If they are O(b(1+2β)∧2), then the proof is
complete.

Let us denote F(xl), F(xu) by l and u. Without loss of generality, we assume
that l < 1/2 and that f is monotone on (0, l+ ε) for a small positive real number ε.
Then, for a sufficiently small 0 < b ≤ ε/(1− l), we have

∫ l

0

(
F−1(x+ (1−x)b)−F−1(x)

)2
dx

≤
∫ b

0
F−1(2b)2dx+

∫ l

b

(∫ x+(1−x)b

x

1

f (F−1(y))
dy

)2

dx

≤ bF−1(2b)2+
∫ l

b

(1−x)2b2

f (F−1(x))2
dx.

where we used the monotonicity of f . Due to the assumption f (x)∼ cx1/β−1 near
zero, we can find small δ,ε′ > 0 such that (1− ε′)f (x) < cx1/β−1 < (1+ ε′)f (x)
whenever x ≤ δ. Therefore, as long as F−1(b)≤ δ, the last expression becomes less
than

O(b2)+ (1+ ε′)
∫ δ

F−1(b)

b2

cx1/β−1
dx =O(b2)+O(b1+2β)=O(b(1+2β)∧2).
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In a similar fashion, we can show that there is a lower bound of order O(b(1+2β)∧2).
Note that this bound acts as a lower bound for the entire integral over (0,1) instead
of (0, l).

For the integral over (l,1), we observe that
∫ u

l

(
F−1(x+ (1−x)b)−F−1(x)

)2
dx =O(b2)

and that
∫ 1

u

(
F−1(x+ (1−x)b)−F−1(x)

)2
dx ≤ b2

(1−b)3

∫ ∞

xu

F (x)2

f (x)
dx,

which can be shown by a similar argument as above using the monotonicity of f .
Also, it is not hard to see that the last integral is finite. ()

Proposition 2 gives additional information beyond the unbiasedness of the deriva-
tive estimator. For comparison, we examine the mean square difference under a stan-
dard construction in which N(λ) is generated by inversion (using common random
numbers at different values of λ) and the same ξj are used at all values of λ. Under
this construction, we have

E

[(
X(λ0)−X(λ)

)2
]

=
∞∑

k=2

(
kVar(ξ)+ k2(Eξ)2

)
P

(
N(λ0)−N(λ)= k

)

+
∞∑

k=0

E
[
ξ2]

P

(
N(λ)= k|N(λ0)= k+1

)
P

(
N(λ0)= k+1

)
.

The conditional probability in the second term is only of order O(bk). Comparing
this with the corresponding summation in Proposition 2 term by term, we note that
if F−1(x) ∼ xβ near zero for very small β (F being nearly flat), then ψ(bk) in
Proposition 2 is close to O(bk). Thus, the smoothness of the locally continuous
construction degrades to that of the standard construction as F−1 becomes nearly
discontinuous at zero.

For example, let us consider the case of Poisson N(λ) and ξi = Γi(k,1) hav-
ing a gamma distribution with shape parameter k and scale parameter 1. Figure
3 shows sample paths of X for λ0 = 12, k = 3,30, and the averages of 10 sam-
ple paths. We observe that the k = 30 case (for which F is very flat near zero)
does not benefit from the locally continuous construction as much as the k = 3
case.
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Fig. 3 Locally continuous construction of Poisson sum of Γ (k,1) random variables. The figures
show individual paths X(1)(λ,k) (top) and averages over ten paths X(10)(λ,k) (bottom) for k = 3
(left) and k = 30 (right).

4 Application to the Squared Bessel Bridge

We now return to the example of Section 2.2 to show that it falls within the scope of
our unbiasedness result. In particular, we focus on the compound Bessel sum in Y3.

Proposition 3. The Bessel distribution satisfies Assumptions 1–2.

Proof. As observed by Yuan and Kalbfleisch [13], Eη= zIν+1(z)/(2Iν(z)) and this
is finite and differentiable; they also provide an expression for Eη2. Next, recall the
series representation of Iν(z) with ν >−1, z > 0:

Iν(z)=
∞∑

k=0

(z/2)2k+ν

k!Γ (k+1+ν)
.

This is uniformly convergent on compact intervals of ν or z, so we can differentiate
Iν(z) with respect to either variable and get

(∂/∂z)Iν(z)

Iν(z)
=

∞∑

k=0

2k+ν

z
bk(ν,z), (4)

(∂/∂ν)Iν(z)

Iν(z)
=

∞∑

k=0

{
log

z

2
− Γ ′(k+1+ν)

Γ (k+1+ν)

}
bk(ν,z), (5)

because the series in (4)–(5) are uniformly convergent on compact sets.
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Direct computations yield

∂

∂z
P(η ≤ n) = ∂

∂z

n∑

j=0

bj (ν,z)=
n∑

j=0

{
2j +ν

z
− (∂/∂z)Iν(z)

Iν(z)

}
bj (ν,z)

= 2

z

n∑

j=0

∞∑

k=n+1

(j − k)bj (ν,z)bk(ν,z) < 0,

where the last equality comes from (4) and
∑n

j=0
∑n

k=0(j−k)bjbk = 0. In a similar
way, we have

∂

∂ν
P(η ≤ n)=

n∑

j=0

{
log

z

2
− (∂/∂ν)Iν(z)

Iν(z)
− Γ ′(j +1+ν)

Γ (j +1+ν)

}
bj (ν,z)

=
n∑

j=0

∞∑

k=n+1

{
Γ ′(k+1+ν)

Γ (k+1+ν)
− Γ ′(j +1+ν)

Γ (j +1+ν)

}
bj (ν,z)bk(ν,z) > 0.

In the last inequality, we used the relationship Γ (z+1)= zΓ (z) so that

Γ ′(z+1)

Γ (z+1)
= 1

z
+ Γ ′(z)

Γ (z)
.

To prove the uniform convergence of
∑∞

n=0 |(∂/∂z)P(η ≤ n)|, we note that, with
μ := Eη,

∞∑

n=0

(
−∂P(η ≤ n)

∂z

)
= 2

z

∞∑

n=0

n∑

j=0

∞∑

k=0

(k− j)bj bk = 2

z

∞∑

n=0

n∑

j=0

bj (μ− j)

= 2

z

∞∑

n=0

(

−μP(η > n)+
∞∑

j=n+1

jbj

)

= 2

z

(

−μ2+
∞∑

j=0

j2bj

)

and the last term converges to 2Var(η)/z uniformly. For the other partial derivative,
we show that

∑∞
n=N+1(∂/∂ν)P(η ≤ n) is uniformly bounded as follows:

∞∑

n=N+1

∂P(η ≤ n)

∂ν
≤

∞∑

n=N+1

n∑

j=0

∞∑

k=n+1

kbjbk ≤
∞∑

k=N+2

(k−N −1)kbk.

Here we used bj ≤ 1 and the last sum can be made arbitrarily small on compact
intervals of ν by choosing a sufficiently large N . ()

The application of the locally continuous construction to Y3 is illustrated in Fig-
ure 4. The top two figures show averages over 100 and 1000 paths as ν ranges over
the interval [−0.5,0.5]. The bottom two figures show averages over the same num-
ber of paths but using a standard construction in which separate streams of uniform
random variables are used to generate η and the summands Zj . Under the standard
construction, every change in the value of η introduces a discontinuity in Y3; the
figures illustrate the smoothing effect of the locally continuous construction.
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Fig. 4 Averaged paths of Y3 in ν ∈ [−0.5,0.5] using the locally continuous construction (top) and
a standard construction (bottom). The methods are averaged over 100 paths Y (100)

3 (ν) (left) and

1000 paths Y (1000)
3 (ν) (right).

5 Globally Continuous Construction

In this section, we use special properties of the Poisson distribution to develop a
globally continuous construction of X(λ) when N(λ) is Poisson with mean λ. The
Poisson case is of particular interest in many applications, including the Lévy pro-
cess simulation discussed in Section 2.1.

In a slight change of notation, we now use N to denote a unit-mean Poisson
process. Let T1 < T2 < · · · be the jump times of N , and read N(λ) as the number of
Tj that fall in [0,λ]. We will use the spacing between TN(λ) and λ to generate ξN(λ)

in order to make ξN(λ) = 0 at a discontinuity of N(λ).
In more detail, on the event {N(λ)= n}, set

Rn = Tn/λ, Rn−1 = Tn−1/Tn, . . . , R1 = T1/T2.

Then, from standard properties of Poisson processes, it is straightforward to check
that the Rj are conditionally independent given {N(λ)= n} and that they have beta
distributions with parameters j and 1, for j = 1, . . . ,n. This conditional distribution
is simply xj ; we denote it by Fj,n. Now transform the variables to get

ξj = F−1(1−Uj), Uj = Fj,n(Rj ), j = 1, . . . ,n,



Se
co

nd
 p

ro
of

s

Sensitivity Estimates for Compound Sums 111

and set X =∑N(λ)
j=1 ξj . A discontinuity in N(λ) occurs when λ crosses some Tn.

Just at the point at which λ = Tn, we get Rn = 1 and Un = 1 and therefore ξn = 0,
provided F−1(0)= 0.

Algorithm: Globally Continuous Construction

• Set a maximum λ0
• Generate unit-mean Poisson arrival times T1,T2, . . . until Tn ≤ λ0 < Tn+1
• For each λ≤ λ0, determinem such that Tm≤ λ<Tm+1 and calculateR1, . . . ,Rm.
• Set X(λ)=∑m

j=1F
−1(1−Fj,m(Rj ))

To illustrate, we repeat the example of Figure 3 using the new construction in
Figure 5. The global continuity is evident in the figures. In the case k = 30 (on the
right), the discontinuities are replaced with points of steep increase, again because
of the behavior of the distribution F near zero.

Fig. 5 Globally continuous construction of Poisson sum of Γ (k,1) random variables. The figures
show individual paths X(1)(λ,k) (top) and averages over ten paths X(10)(λ,k) (bottom) for k = 3
(left) and k = 30 (right).

This construction yields unbiased derivative estimators. The Poisson distribution
satisfies Assumptions 1–2.

Proposition 4. Suppose that the distribution F of the ξi has finite mean, has F(0)=
0, and has a density f that is continuous and positive on (0,∞). Let Φ be Lipschitz
continuous on [0,∞). Then, under the globally continuous construction for X(λ),
we have
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d

dλ
E

[
Φ(X(λ))

]
= E

[ d

dλ
Φ(X(λ))

]
.

Proof. We proceed as in Proposition 1 with the obvious changes: V0 = 1−(Tn/λ0)
n

and V = 1−(Tn/λ)n given {N(λ)=N(λ0)= n}. Then, straightforward calculations
and the generalized dominated convergence theorem give the result. ()

6 Concluding Remarks

We have derived unbiased derivative estimators for random sums through construc-
tions that preserve continuity in the sum across discontinuities in the number of
summands. The constructions accomplish this by making the last summand zero
at the potential discontinuity. Our first construction provides an interesting exam-
ple yielding an unbiased pathwise estimator despite being only locally continuous.
Our second construction is globally continuous but applies only to compound Pois-
son sums. The compound Poisson case arises in approximating Lévy processes; a
compound Bessel sum arises in exact simulation of the Heston stochastic volatility
model.
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New Perspectives on (0,s)-Sequences

Christiane Lemieux and Henri Faure

Abstract Low-discrepancy sequences that have an optimal value of 0 for their
t-parameter have always been of interest to both theorists and practitioners. How-
ever, in practice the Sobol’ sequence often performs better than the original (0, s)-
sequences in prime bases proposed by Faure in 1982, although the former con-
struction does not have an optimal value of 0 for its t-parameter. In this paper,
we introduce new ideas that can be used to find improved constructions for (0, s)-
sequences in prime bases. To do so, we study them within the framework of gener-
alized Niederreiter sequences, which was introduced by Tezuka in 1993. We take a
closer look at the structure of the corresponding generating matrices, as this helps
us to better understand the differences and analogies between the constructions that
we are interested in. This study is then used to guide our search for improved (0, s)-
sequences, which are shown to perform well on a variety of problems.

1 Introduction

Low-discrepancy sequences are the backbone of quasi-Monte Carlo methods. While
several families of sequences have been proven to have good theoretical properties,
it is often necessary to carefully choose the parameters that determine a given se-
quence so that the resulting approximations work well in practice. In particular,
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(0, s)-sequences are very attractive from a theoretical point of view, because the
value of the quality parameter t for this construction is 0, which means their equidis-
tribution is optimal. However, when used in practice—for problems of large dimen-
sions and with a relatively small number of points—they may not work so well if
their defining parameters are not chosen carefully, which is the case for Faure se-
quences [3]. Similarly, for the widely used Sobol’ sequence, one needs to choose
the so-called direction numbers.

Our goal in this paper is to explore a few ideas leading to concrete (0, s)-
sequence constructions that can be used in practice. We also establish comparisons
between different families of constructions, namely the Sobol’ sequence, the (0, s)-
sequences, and generalized Halton sequences. To do so, it is helpful to use the frame-
work of generalized Niederreiter sequences, which was proposed by Tezuka in [24].

This paper is organized as follows. In Section 2, we provide background informa-
tion on low-discrepancy constructions that are based on van der Corput sequences,
and describe different families to be studied in this paper. We present generalized
Niederreiter sequences in Section 3, but use the language of generating matrices to
explain this construction. We believe this offers easier-to-grasp concepts to read-
ers unfamiliar with the mathematical tools used in Tezuka’s original definitions. In
Section 4, we describe two ideas that each result in concrete recommendations for
specific (0, s)-sequence constructions. Our parameters can be found on the Internet
at [27]. In Section 5, we propose to use the underlying idea at the basis of (0, s)-
sequences to construct sequences that are extensible in the dimension. We show nu-
merical results on a few different problems in Section 6, and conclude in Section 7
with a summary of our findings.

2 Background Information

We start by describing the generalized van der Corput sequence [2], which is ob-
tained by choosing a sequence Σ = (σr)r≥0 of permutations of Zb = {0,1, . . . ,b−
1}. Then, the nth term of the sequence is defined as

SΣb (n)=
∞∑

r=0

σr
(
ar(n)

)
b−r−1,

where ar(n) is the rth digit of the b-adic expansion of n−1=∑∞
r=0 ar(n) b

r . If the
same permutation σ is used for all digits, (i.e., if σr = σ for all r ≥ 0), then we use
the notation Sσb to denote SΣb . The van der Corput sequence in base b is obtained by
taking σr = I for all r ≥ 0, where I stands for the identity permutation over Zb.

Another way of enriching the van der Corput sequence is by applying a linear
transformation to the digits a0(n),a1(n), . . . before outputting a number between 0
and 1 (see in chronological order [22], [3] and [17]). We call this a linearly scram-
bled van der Corput sequence. For a prime base b, it is obtained by choosing a
matrix C with elements in Zb and an infinite number of rows and columns, and then
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defining the nth term of this sequence as

SCb (n)=
∞∑

r=0

xn,r

br+1
in which xn,r =

∞∑

k=0

cr+1,k+1ak(n), (1)

where cr,k is the kth element on the rth row of C. Note that the second summation
is finite and performed in Zb, but the first one can be infinite and is performed in R,
with the possibility that xn,r = b−1 for all but finitely many r .

An important particular case is the one where C is a nonsingular upper triangular
(NUT) matrix, in which case the first summation is finite. Of course, we obtain the
original van der Corput sequence SIb with the identity matrix.

Finally, a van der Corput sequence in base b—either generalized or linearly
scrambled— can be shifted by choosing a number v ∈ [0,1) with base b expansion

v =
∞∑

r=0

vrb
−r−1

and then adding vr (modulo b) to σr
(
ar(n)

)
, or xn,r in SΣb (n), or SCb (n), respectively.

To construct multidimensional sequences in the unit hypercube I s = [0,1)s , we
present two classical approaches based on the one-dimensional case above. The
first one is to juxtapose van der Corput sequences in different bases. This is pre-
cisely the idea behind the Halton sequence [10], whose nth term is defined as Xn =
(Sb1(n), . . . ,Sbs (n)), where the bj ’s, for j = 1, . . . , s, are pairwise coprime. That is,
the j th coordinate is defined using Sbj , the van der Corput sequence in base bj .

A generalized Halton sequence is defined by choosing s sequences of permuta-
tions Σj = (σj,r )r≥0, j = 1, . . . , s. The sequence’s nth point Xn ∈ I s is given by

Xn = (S
Σ1
b1
(n), . . . ,S

Σs

bs
(n)), n≥ 1, (2)

where the bj ’s are pairwise coprime bases. These bj ’s are typically chosen as the
first s prime numbers. In this case, we denote the j th base as pj .

Another approach for defining multidimensional sequences is to choose a base b
and also s matrices C1, . . . ,Cs with elements in Zb — called generating matrices
— and then form a sequence by juxtaposing the s linearly scrambled van der Corput
sequences SC1

b , . . . ,S
Cs
b . This is a special case of the digital sequences proposed by

Niederreiter in his general construction principles [17, p. 306 and 313], [18, p. 63
and 72]. In this paper, for simplicity we focus on prime bases.

As it was the case for the choice of bases in the Halton sequences, the matricesCj

cannot be arbitrary and must be carefully chosen in order to obtain low-discrepancy
sequences, which are sequences for which the star discrepancy satisfies D∗(PN) ∈
O((logN)s). (Several authors have a 1/N factor when defining D∗(PN), for in-
stance [14, 16], but here we use the convention from Number Theory, as in [3, 17].)

It has been proved that both the generalized Halton sequences and several classes
of digital sequences are low-discrepancy sequences.
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While it is possible to obtain bounds on D∗(PN), computing this quantity turns
out to be extremely difficult. However, if we replace the sup norm by the L2-norm,
we obtain discrepancy measures that can be computed in practice. More precisely,
in what follows we work with the L2–discrepancy T (PN), introduced by Morokoff
and Caflisch [16], whose square can be computed as [16, p.1263–1264]

T 2(PN) =
N∑

i=1

N∑

j=1

s∏

k=1

(1−max(Xi,k,Xj,k))min(Xi,k,Xj,k)

−N2−s+1
N∑

i=1

s∏

k=1

Xi,k(1−Xi,k)+N212−s , (3)

where Xi,k is the kth coordinate of the ith point Xi ∈ I s of PN . Hence T (PN) can be
computed in O(N2s). Note that the L2-discrepancy considers boxes not necessarily
anchored at the origin in its definition, by contrast with the star L2-discrepancy (T ∗
in [16], but still denoted T by many authors), for which a formula is given in [26].

We now introduce the fundamental quality parameter t that measures the qual-
ity of a given low-discrepancy sequence. This is achieved by the general concept
of (t, s)-sequences in base b, originally introduced by Niederreiter in [17] to give a
general framework for various constructions of s-dimensional low-discrepancy se-
quences and to obtain further ones. In this framework, smaller values of the integer
t ≥ 0 give smaller discrepancies. In order to adapt to important new constructions,
Tezuka [24] and, a bit later, Niederreiter and Xing [19] have been led to generalize
the original definition by using the truncation operator, defined as follows (see [19,
p.271] and the examples below, after Prop.1, where the truncation is required).

Truncation: Let x =∑∞
i=1 xib

−i be a b–adic expansion of x ∈ [0,1], with the
possibility that xi = b−1 for all but finitely many i. For every integer m≥ 1, define
[x]b,m =∑m

i=1 xib
−i (depending on x via its expansion).

An elementary interval in base b is an interval of the form [ab−d, (a+ 1)b−d)
with integers a,d such that d ≥ 0 and 0≤ a < bd .

We first consider the one-dimensional case, where we say that a sequence (Xn)n≥1
(with prescribed b-adic expansions for each Xn) is a (t,1)-sequence in base b if for
all integers l ≥ 0, m ≥ t , every elementary interval E with λ(E) = bt−m contains
exactly bt points of the point set {[Xn]b,m ; lbm+1≤ n≤ (l+1)bm},where the nota-
tion λ(·) refers to the Lebesgue measure. The original definition of (t,1)-sequences
was the same with Xn instead of [Xn]b,m in the definition of the point set above.
These sequences are sometimes called (t,1)-sequences in the narrow sense and the
others just (t,1)-sequences [19, p. 271]. In the following proposition, we deal only
with the most interesting case of (0,1)-sequences. The proof can be found in [7].

Proposition 1. The two generalizations of van der Corput sequences defined above,
SΣb and SCb —where C is such that every left upper m×m submatrix is nonsingular
for all m≥ 1—are (0,1)-sequences in base b.

Here, the truncation is required for sequences SΣb when σr(0) = b− 1 for all
sufficiently large r and for sequences SCb when the matrix C gives digits xn,r = b−1
for all sufficiently large r in (1). See [7] for the details.
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A typical way to ensure that the condition in the preceding proposition holds is to
take C to be an NUT matrix. The corresponding sequence is called an NUT digital
(0,1)-sequence. Note that in this case, it is not necessary to resort to the truncation
since all summations are finite in the definition.

For multidimensional sequences in base b, the same idea is applied, but now to
elementary intervals of the form E = [a1/b

d1, (a1+ 1)/bd1)× ·· ·× [as/bds , (as +
1)/bds ). A sequence (Xn)n≥1 (with prescribed b-adic expansions for each coordi-
nate of Xn) is a (t, s)–sequence in base b (in the broad sense) if for all integers l ≥ 0
and m≥ t , every elementary interval E with λ(E)= bt−m contains exactly bt points
of the point set {[Xn]b,m ; lbm+1≤ n≤ (l+1)bm}.

For multidimensional sequences defined over different bases, similar defini-
tions exist (see [4]) with sets of bases B = (b1, . . . ,bs) and sets of parameters
T = (t1, . . . , ts). But unfortunately, so far the only realization of “low-discrepancy”
(T ,s)-sequences in bases B are generalized Halton sequences for which T =
(0, . . . ,0) and bases from B are pairwise coprime. A blend of Halton and (0, s)-
sequences was also proposed in [4] to obtain extensible sequences, but without fur-
ther investigation. New interesting work in this area has been done by Hofer et al.
[11, 12] in a more general setting. In particular, they give conditions under which
their new sequences are uniformly distributed.

For digital sequences in a given base b, the first construction that was defined
so that t = 0 was given by Faure in [3]. It is obtained by choosing a prime base
b ≥ s and using generating matrices Cj given by the (j −1)th power of the (upper
triangular) Pascal matrix Pb in Zb.

As shown by Tezuka in [25], if we take

Cj = AjP
j−1
b , j = 1, . . . , s (4)

where each Aj is a nonsingular lower triangular (NLT) matrix, then we also get a
(0, s)-sequence. This family of constructions is called generalized Faure sequences
in [25]. Note that the truncation is required for such generalized Faure sequences.

The Sobol’ sequences [22] are digital sequences in base 2 for which t is not
necessarily 0. In fact, a necessary condition for having t = 0 is that we must have
b ≥ s (see [17, Cor. 5.17]). This construction is not as simple as the one from Faure
and requires arithmetic operations on polynomials. The generating matrices are ob-
tained by choosing a primitive polynomial pj (z) in the ring F2[z] of polynomi-
als over the finite field F2, given by pj (z) = zdj + aj,1z

dj−1+ ·· ·+ aj,dj−1 z+ 1,
where each aj,l ∈ F2 and dj is pj (z)’s degree. We then need dj direction numbers
of the form vj,r = mj,r/2r , where mj,r is an odd integer between 1 and 2r for
r = 1, . . . ,dj . Once these dj direction numbers are chosen, the following ones are
obtained through the recurrence

vj,r = aj,1vj,r−1⊕·· ·⊕aj,dj−1vj,r−dj+1⊕vj,r−dj ⊕ (vj,r−dj /2dj ), (5)

where ⊕ represents the addition of vectors with components in F2.
The rth column of Cj is then formed by the base 2 expansion of vj,r . That is,

each direction number is assigned to a column of Cj and fills it with its binary rep-
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resentation. By the definition of the initial vectors vj,1, . . . ,vj,dj and the recurrence
(5) used to obtain the next ones, one can see that each Cj is an NUT matrix. In
turn, based on Proposition 1, this implies that each one-dimensional projection of
the Sobol’ sequence is a (0,1)-sequence (as shown also in [22, Remark 3.5]). This
also implies that Sobol’ sequences do not need truncation in their definition.

In what follows, we want to find ways of selecting simple matrices Aj in (4) so
that the resulting constructions are competitive with the Sobol’ sequence based on
carefully chosen direction numbers. To do so, it is useful to use the framework of
generalized Niederreiter sequences, which include these two families of construc-
tions and can therefore help understanding the analogies between them.

3 Framework of Generalized Niederreiter Sequences

This construction from [24] builds digital sequences in a given base b by first choos-
ing s polynomials p1(z), . . . ,ps(z) in Fb[z], where ej = deg(pj (z)). For each j =
1, . . . , s, we also need a sequence yj,1(z),yj,2(z), . . . of polynomials. These polyno-
mials, when reduced modulo pj (z), must be independent within each group of size
ej . That is the polynomials yj,1(z) mod pj (z),yj,2(z) mod pj (z), . . . ,yj,ej (z) mod
pj (z) must be linearly independent.

We then consider the coefficients a(j)(k, l, r) in the development of

yj,l(z)

pj (z)k
=

∞∑

r=w
a(j)(k, l, r)z−r

and use them to construct the generating matrices. More precisely, for l ≤ ej , the lth
row of Cj is given by a(j)(1, l,1),a(j)(1, l,2), . . . . That is, the lth row contains the
coefficients from development of yj,l(z)/pj (z) for l ≤ ej . Then the next block of ej
rows is based on the coefficients in the development of yj,l(z)/(pj (z))2 and so on.

As shown in [24], a digital sequence constructed in this way has a quality param-
eter t = (e1−1)+ . . .+ (es−1).

The name generalized Niederreiter sequences comes from the fact that this con-
struction builds on the principles proposed by Niederreiter for his construction of
digital (t, s)-sequences [17], also known as Niederreiter sequences, but with a sub-
tle generalization in the way the polynomials yj,l(z) are chosen.

(0,s)-sequences revisited

It is easy to see that the generating matrix resulting from pj (z) = z− j + 1 and

yj,l = 1 for all j, l is the (j −1)th power of the Pascal matrix, P j−1
b . Hence, Faure

sequences are generalized Niederreiter sequences with ej = 1 for all j so that we
find again that they are (0, s)-sequences. However, powers of the Pascal matrix have
ones on their diagonal, which in turn implies that points from these sequences will
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tend to clump along the main diagonal in [0,1)s initially, and the larger b is, the
more time it takes before this behavior goes away.

An important new step was achieved in [5], where it is shown that the L2-
discrepancy T of NUT digital (0,1)-sequences only depend on the diagonal entries
of the generating matrices. Hence the discrepancy T of one-dimensional projections
of Faure sequences can be improved by multiplying on the left the generating matri-
ces P j−1

b by diagonal matrices. For more details, see [6, Corollary 2 and Section 5].
This theoretical result is at the origin of new scramblings for Halton sequences (see
[8]) and Faure sequences (see Sections 4 and 5 below).

The generalization proposed by Tezuka [24] amounts to replacing the yj,l(z) by

arbitrary constants in Zb, i.e., multiply P j−1
b on the left by an NLT matrix, as in (4).

It has been widely used under the name GFaure, in the software FinDer.

Sobol’ sequences revisited

As mentioned in Section 2, here we take pj (z) to be the j th primitive polynomial in
base 2 (sorted in increasing degree). We also need polynomials yj,1(z), . . . ,yj,ej (z)
to initialize each block of ej rows. Note that the requirement that the “direction
numbers” be odd means that yj,1(z) must be of degree ej − 1, yj,2(z) must be of
degree ej −2, and so on, up to yj,ej (z)= 1, which must be of degree 0. Hence, each
generating matrix Cj is NUT, as mentioned before.

Various proposals for finding good direction numbers have been proposed in the
literature [13, 15]. It should be noted that the naive choice of selecting direction
numbers so that the first submatrix is the ej × ej identity Iej is not good. It causes
the same kind of sub-optimal behavior as the one resulting from the fact that we have
ones on the diagonal of the Pascal matrices for the original Faure (0, s)-sequences.
Going further, we can think of the direction numbers as a way of performing a de-
terministic scrambling of the naive Sobol’ sequence, using an NUT block-diagonal
matrix as the scrambling matrix. More formally, we have the following result.

Proposition 2. Let C be a generating matrix for the Sobol’ sequence based on a
primitive polynomial p(z) of degree e, and initial direction numbers given by an
NUT e× e matrix V . Let G be another generating matrix for the Sobol’ sequence
based on p(z) but now with V = Ie. Then we can write C =DG, where

D =

⎛

⎜⎜
⎝

V 0 . . .

0 V
. . .

...
. . .

. . .

⎞

⎟⎟
⎠ .

Proof. Let p(z)= ze+a1z
e−1+·· ·+ae−1z+1. The key point of the proof is to un-

derstand the structure of the matrix C. To do so, it is useful to partition it into blocks
of e×e matrices. Let Bl,c be the cth such matrix on the lth block of e rows that form
C. We will prove that Bl,c has the form VHl,c for some matrix Hl,c independent of
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V , for all l,c ≥ 1. To do so, we introduce two e× e matrices Q and F , defined as

Q=

⎛

⎜⎜⎜⎜
⎝

1 0 . . . 0

ae−1 1
. . .

...
...

. . . 0
a1 a2 . . . 1

⎞

⎟⎟⎟⎟
⎠
, F = (Ie+R2)(Ie+R3) . . . (Ie+Re),

where Rk is an e× e matrix with the first k− 1 terms of its kth column given by
ak−1,ak−2, . . . ,a1 and filled with zeros otherwise.

First, by definition of the Sobol’ sequence we have B1,1 = V . Then, we show by
induction that B1,c = V (QF)c−1 for any c > 1. Hence we need to show that B1,c =
B1,c−1(QF). To do so, we apply the recurrence (5) in two steps: first, we take the
appropriate combinations of columns from B1,c−1 explicitly described by (5). This
step is performed through the multiplication by Q. Then, the kth column in B1,c, for
k = 2, . . . ,e, is recursively updated by adding the appropriate combination of the
k−1 preceding columns. One can easily verify that this is achieved by multiplying
the matrix B1,c−1Q(Ie+R2) . . . (Ie+Rk−1) by (Ie+Rk).

For the next rows of C, one can easily verify that the lth block of e rows of C
starts with l− 1 zero matrices. Then, we have that Bl,l = VF l−1, for any l > 1.
This comes from the last term (vj,r−dj /2dj ) in (5), which has the effect of pasting
Bl−1,l−1 into Bl,l . But at the same time, we need to take into account the effect of
the recurrence (5) on Bl,l . This is achieved by successively multiplying by terms of
the form (Ie+Rk), for k = 2, . . . ,e.

For c > l, we have that Bl,c = (Bl,c−1Q+Bl−1,c−1)F , where the first term
Bl,c−1QF corresponds to the application of (5) but without the (vj,r−dj /2dj ) term,
which is handled separately by the second term Bl−1,c−1F ).

Hence for all l,c ≥ 1, Bl,c = VHl,c for some matrix Hl,c independent of V .
Therefore, the generating matrix G has submatrices of the form Gl,c = Hl,c, and
hence C is obtained by multiplying (from the left) each submatrix Gl,c in G by V ,
which amounts to setting C =DG. ()

We can use this result to draw an interesting analogy with (0, s)-sequences. In-
deed, for (0, s)-sequences, e = 1 and so from the point of view of Proposition 2,
finding “good” direction numbers amounts to choosing one factor fj for each di-
mension j and then use Aj = fj I , where I is the N×N identity matrix. This is
precisely the type of simple scrambling that we choose to focus on in this work.
Note that the resulting matrix Cj (4) has diagonal entries given by fj .

4 New Efficient Scramblings of (0,s)-Sequences

Here we propose two ways of constructing a (0, s)-sequence. Both suggestions
amount to carefully choose the matrices Aj in (4). In both cases, as announced
above in our interpretation of Proposition 2, we take Aj to be of the form Aj = fj I ,
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where fj is an appropriately chosen factor. The choice of this factor is based on
the same ideas as those used in [8] to build generalized Halton sequences. For this
reason, we first briefly recall our method from [8].

Generalized Halton sequences from [8]

The approach here is to first build a “short list” of at most 32 multipliers based
on the criterion θ

f
p (1)/ logp described in [6], which is related to a bound on the

L2-discrepancy of Sf Ip . More precisely, θfp (1) is defined as [6, Prop. 2]

θ
f
p (1)= max

1≤N≤p

(

T 2(N,S
f I
p )− N2

12p2

)

,

where T (N,S) measures the L2-discrepancy of the first N points of the sequence
S. Multipliers f for which θ

f
p (1) is small thus give rise to good one-dimensional

sequences. While the construction of this short list rests on a nice theoretical result,
we use a more pragmatic method to select a multiplier from this list. Our idea is to
make sure that two-dimensional projections over nearby indices are well distributed,
hence avoiding the most well-known defect of the original Halton sequences [16].

That is, to select a multiplier fj for the j th coordinate, we use the criterion

τ
W,N0
j (f1, . . . ,fj−1,f )= max

1≤l≤W
T (N0, (S

fj−l
pj−l ,S

f
pj )), (6)

where W and N0 have to be chosen, and f1 = 1 since we use p1 = 2. That is,
for each candidate f in the short list for pj , we compute the value T of the L2-
discrepancy for the first N0 points of the two-dimensional sequence based on the
(j − l)th and j th coordinates (using the multipliers fj−l chosen for the (j − l)th
coordinate, and the candidate f under study, respectively), for l = 1, . . . ,W , where
W is the “window” size of the criterion. Then we keep the worst (largest) of these
W values of T as our quality measure for f . The multiplier for pj is chosen as the
one that minimizes τW,N

j (f1, . . . ,fj−1,f ) among all candidates in the short list.

Construction 1 for (0,s)-sequences: GF1

Our first idea is to choose b to be the smallest prime larger or equal to s—as typ-
ically done when building (0, s)-sequences—and then let Aj = fj × I where the
multipliers fj are chosen similarly as in the approach described above for gener-
alized Halton sequences. More precisely, we build a list L containing the m best
multipliers f according to θ

f
b , where m is approximately equal to b/2. This is a

valid approach since any NUT matrix C with diagonal entries given by f is such
that T (N,Sfp )= T (N,SCp ) [5]. We set f1 equal to the best multiplier in L and then
choose, for every j = 2, . . . , s, the multiplier fj = f ∈ L that minimizes
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τj (N0,W)= max
1≤l≤W

T (N0, (S
Cj−l
b ,SCb )),

where Cj−l = fj−lP j−l−1
b and C = fP

j−1
b .

The results reported in Section 6 were done with N0 = 2500 and W = 7, which
are the values used in [8]. As discussed in [8], taking N0 = 2500 is somewhat arbi-
trary but ensures N0 > b in our examples and appears to be an appropriate length
to discriminate “good” sequences from “bad” sequences. Note that the construction
of the “short list” of multipliers is done independently of N0, as it is based on the
criterion θfp (1), which provides a bound on the discrepancy for all N .

Construction 2 for (0,s)-sequences: GF2

The second idea starts with a somewhat unusual choice, which is to take the base b
to be about twice as large as the dimension s. More precisely, we take b the smallest
prime larger than 2s. A larger base implies a larger choice of multipliers, and so by
taking b≈ 2s, we can simply set Aj = fj I as in the first proposal, but with fj equal

to the multiplier f with the j th smallest value for θfb . This is a very simple method,
as no search based on two-dimensional projections needs to be performed. One
simply needs to order the multipliers according to θfb , which can be done quickly.

5 A Construction Extensible in the Dimension–GF3

Because (0, s)-sequences need to be defined in a base b ≥ s, they do not have the
property of being extensible in the dimension, which we now define.

Definition 1. A family of constructions is extensible in the dimension if, for every
s ≥ 1, an s-dimensional sequence {Xi, i ≥ 1} in that family can be transformed into
an r-dimensional sequence {X̃i, i ≥ 1} in that family, where r > s, in such a way
that Xi equals the first s coordinates of X̃i .

From their definition, it is clear that Sobol’ and Halton sequences are exten-
sible in the dimension. The problem with (0, s)-sequences is that if we choose a
base b ≥ s, then for any r > b we need to choose a new base in order to define a
(0, r)-sequence, and thus we cannot simply extend each s-dimensional point to an
r-dimensional one.

Now, if we weaken the property of (0, s)-sequences by introducing another qual-
ity parameter to replace t , then we will be able to create a construction that is closely
connected to (0, s)-sequences, but has the advantage of being extensible in the di-
mension. So first, we define this new quality parameter, which has similarities with
other criteria discussed in, e.g., [14].

Definition 2. For an s-dimensional digital sequence {X1,X2, . . .} in base b and in-
teger k ≤ s, its quality parameter tk , is defined as the smallest value so that each
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projection of the form

{(Xi,j1,Xi,j2 , . . . ,Xi,jr ), i ≥ 1}
with 1≤ r ≤ k, j1 < · · ·< jr and jr − j1 < k, is a (tk, r)-sequence.

The quality parameter tk thus focuses on projections over indices j1, . . . ,jr that span
a range no larger than k. Note that for a (t, s)-sequence, we have ts = t .

The idea is then to fix the base b, and for any dimension s ≥ 1, construct an
s-dimensional digital sequence in base b using the generating matrices

Cj = AjP
j−1
b , j = 1, . . . , s, (7)

where Aj = f(j mod m)I and m ≈ b/2. As for the GF-2 construction, f(j mod m) is

the multiplier in Zb with the (j mod m)th smallest value of θfb .
Note that the matrices Aj make the period of the sequence C1,C2, . . . longer than

that of the sequence Pb,P 1
b ,P

2
b , . . ., which equals b since P j

b = P
j+lb
b for any l ≥ 1.

Furthermore, as done in our numerical experiments, we can add a random shift as
in Section 2 to these sequences, which completely breaks the periodic behavior of
the sequence’s coordinates for a given point, much like the use of a shift modulo
1 breaks the periodic behavior of the coordinates of points from a Korobov lattice
when the number of points N is smaller than s. We also have the following result,
which can be easily proved using the well-known fact that any projection of a (0, s)-
sequences has a quality parameter t = 0.

Proposition 3. For any s ≥ 1, the s-dimensional digital sequence in base b based
on the generating matrices (7) has a quality parameter tb = 0.

Note that this construction can handle problems where the dimension is un-
bounded, because once b and m are chosen and the factors f ∈ Zb are sorted ac-
cording to θ

f
b , no extra parameters need to be chosen. Korobov lattices also have

this property, since the only parameter that needs to be chosen is the generator a
of the lattice. It should be noted, however, that when s ≥ b this construction is not
uniformly distributed. Also, because of its periodic behavior and the fact that it has
some bad projections, it may give erroneous results when used to integrate certain
classes of functions which heavily depend on the subset of variables corresponding
to these projections. Hence this construction should be used carefully. A possible
class of functions for which it could be proved to do well are those having finite-
order weights, as defined in [21].

6 Numerical Results

In this section, we compare the performance of different low-discrepancy sequences
on a few problems. Our main goal is to illustrate the importance of the parameter
choice for each construction. Hence we compare the (i) original Halton sequences
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(H); (ii) generalized Halton sequence proposed and recommended in [8] (GH); (iii)
the naive Sobol’ sequence where the direction numbers are set to the unit vectors
(S); (iv) the Sobol’ sequence with direction numbers from [15] (GS); (v) the original
(0, s)-sequence from [3] (F), and (vi) the alternatives GF-1 and GF-2 described
in Section 4. We refer to the group GH, GS, GF-1 and GF-2 as the “scrambled
constructions”, and the remaining ones as the “non-scrambled” ones.

For each integration problem f , we show the estimated variance of the average

QN,M = 1

NM

M∑

l=1

N∑

i=1

f (Xl
i),

where Xl
i = (Xl

i,1, . . . ,X
l
i,s) is obtained by shifting each of the s individual (general-

ized/linearly scrambled) van der Corput sequences forming the construction under
study by a random shift as described in Section 2, for l = 1, . . . ,M . The number
of points N considered are of the form N = 2000k for k = 1, . . . ,50, and we use
M = 25 i.i.d. random shifts to estimate the variance. For comparison, we show the
estimated variance σ̂ 2/NM of the Monte Carlo estimator based onNM evaluations,
where σ̂ 2 is estimated using a grand total of 100000M simulations (or computed
exactly when possible). Due to lack of space, we do not show comparative results
based on the deterministic error or the average absolute error, as in [8].

We first consider a mortgage-backed security problem from [1]. Here the function
f represents the discounted cash-flows paid by this security, which in turns come
from a pool of mortgages where the mortgagors have the option of prepaying their
entire balance at any time, with no penalty. The cash flows and discount factors
both depend on a random interest rate process. The integral I (f ) corresponds to the
theoretical price for this security and cannot be determined exactly.

As can be seen in Figure 1, the scrambled constructions do significantly better
than the non-scrambled ones for this problem. In fact, some of the non-scrambled
sequences do worse than Monte Carlo.

We then consider a digital option problem. This example has been used by Papa-
georgiou in [20] to show that the Brownian bridge technique—popular in financial
problems—does not always help quasi-Monte Carlo methods. Hence for problems
like this, it is important to have access to low-discrepancy sequences that work well,
even in large dimensions. Here also, as seen in Figure 2, the scrambled constructions
clearly do better than the non-scrambled ones.

The next three problems look at test-functions defined over I s that have been
used in the literature [8, 23], and are given by

g1(X) =
96∏

j=1

(1+0.25(Xj −0.5)); g2(X)=
75∏

j=1

|4Xj −2|+ (75− j)2

1+ (75− j)2
;

g3(X) = α120π
−60 cos

⎛

⎜
⎝

√√
√√√

1

2

120∑

j=1

[Φ−1(Xj )]2
⎞

⎟
⎠ ,
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Fig. 1 MBS problem (s = 360): the scrambled constructions perform much better than the non-
scrambled ones.

where α120 is such that g3 integrates to 1 and Φ is the CDF of a standard normal.
The first function is such that constructions with good low-dimensional projec-

tions over all indices should do relatively well on this problem, while constructions
whose low-dimensional projections deteriorate as they are defined over larger in-
dices should not perform well. Results are shown on Figure 3.

Indeed, as before the scrambled versions (especially Sobol’ and the two GF’s) do
much better than Monte Carlo and the non-scrambled constructions. Note that the
naive Sobol’ “S” is clearly worse than Monte Carlo.

The second function is such that the coordinates are in increasing order of im-
portance, which means sequences whose coordinates with higher indices are not
so well distributed will do badly on this problem. As we see on Figure 4, the non-
scrambled sequences have a variance much larger than for the scrambled sequences.
It is worth noting that the GF-2 construction, which does not pay attention to two-
dimensional projections as GF-1 does, has a variance significantly larger than the
other scrambled sequences, although not as bad as the non-scrambled sequences.

Finally, the results shown on Figure 5 for g3 confirm once again the superiority
of the scrambled sequences, this time on a problem where f is not a product. Table
1 summarizes which methods perform best for each function for N = 100000 (vari-
ance within a factor of two of the smallest variance). We see GS and GF1 are always
among the best. The construction GF2 is less competitive, but we are confident that
its performance would improve significantly if multipliers were selected with the
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Fig. 2 Digital option with s = 75: here also, the scrambled constructions perform much better.

help of two-dimensional projections as in GF1 (but still with the larger base), which
is in our plans for the near future.

Table 1 Best methods for each function.

MBS Dig g1 g2 g3

GS,GF1,GH GS,GF1 GS,GF2,GF1 GH,GS,GF1 GS,GF1,GH

We end with some results showing the performance of the construction described
in Section 5, which is extensible in the dimension and can therefore handle a prob-
lem in any dimension. The problem considered here is a simple queueing system
where clients arrive according to a Poisson process with frequency 1/minute, and
the service times are exponentially distributed with mean 55 seconds. We wish to
determine the expected number of clients, among the first 1000 ones, who wait more
than 5 minutes in the queue before being served. Since we need to generate one in-
terarrival time and one service time per client, the dimension s of this problem is
2000. We compare the performance of the GF-3 construction in base b = 727 with
an extensible Korobov lattice taken from [9] (based on the generator a = 14471)
and the Monte Carlo method. Results are shown on Figure 6. Both low-discrepancy
sequences do much better than Monte Carlo on this problem, and the simple GF-3
sequence is competitive with the extensible Korobov one.
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Fig. 3 Function g1 where s = 96: the scrambled sequences GS, GF1 and GF2 are best and some
non-scrambled constructions do worse than MC.

7 Conclusion

In this paper, we proposed two new ways of choosing parameters for (0, s)-sequences
that attempt to correct some of the problems encountered in large dimensions by the
original construction of Faure. Our approach shares similarities with other ideas
used for the Halton and Sobol’ sequence. Numerical results on various problems
suggest that for all three families, the constructions based on carefully chosen pa-
rameters can perform significantly better than the more naive choices. Furthermore,
we saw that the new constructions are competitive with the Sobol’ sequence, which
is popular among practitioners.

We proposed a new construction based on (0, s)-sequences where we fix the
base b and allow s > b. Hence this construction is extensible in the dimension and
can handle problems of unbounded dimension. Our numerical results done with
s = 2000 suggest it is a promising approach, at least for some classes of problems.

For future research, we plan to extend our search for efficient scramblings, for
example by building NLT scrambling matrices Aj—not just diagonal—and also by
fine-tuning the multipliers for GF-2 and GF-3 so that the resulting sequences have
good low-dimensional projections, as done for the GF-1 construction. We would
also like to study further the properties of the GF-3 construction, so as to get a
better understanding of the classes of functions for which it can perform well.
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Fig. 4 Function g2 where s = 75: here GF2 does not do as well as GH, GS and GF1, but is still
better than the non-scrambled sequences.
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2. Faure, H.: Discrépance des suites associées à un système de numération (en dimension un).
Bull. Soc. Math. France 109, 143–182 (1981)
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Variable Subspace Sampling and Multi-level
Algorithms

Thomas Müller-Gronbach and Klaus Ritter

Abstract We survey recent results on numerical integration with respect to mea-
sures μ on infinite-dimensional spaces, e.g., Gaussian measures on function spaces
or distributions of diffusion processes on the path space. Emphasis is given to
the class of multi-level Monte Carlo algorithms and, more generally, to variable
subspace sampling and the associated cost model. In particular we investigate
integration of Lipschitz functionals. Here we establish a close relation between
quadrature by means of randomized algorithms and Kolmogorov widths and quan-
tization numbers of μ. Suitable multi-level algorithms turn out to be almost optimal
in the Gaussian case and in the diffusion case.

1 Introduction

Let μ be a Borel probability measure on a Banach space (X,‖·‖X), and let F denote
a class of μ-integrable functionals f : X → R. In the corresponding quadrature
problem we wish to compute

S(f )=
∫

X

f (x)μ(dx)

for f ∈ F by means of randomized (Monte Carlo) algorithms that use the values
f (x) of the functional f at a finite number of sequentially (adaptively) chosen points
x ∈ X.
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The classical instance of this quadrature problem is given by X=R
d and μ being

the uniform distribution on [0,1]d , say, or the d-dimensional standard normal distri-
bution. In the present paper we are mainly interested in infinite-dimensional spaces
X. The classical instance of infinite-dimensional quadrature is path integration with
respect to the Wiener measure μ on X = C([0,1]) or, more generally, quadrature
with respect to a Gaussian measure μ on a function space X.

Further important instances of quadrature problems arise for stochastic (partial)
differential equations, and here the measure μ is usually given only implicitly, since
it depends on the solution process of the equation. We have dim(X) <∞ if μ is a
marginal distribution of the solution of an SDE and dim(X)=∞ for quadrature on
the path space. For SPDEs, both the marginal and the path dependent case lead to
infinite-dimensional quadrature problems.

The present paper is motivated by the following developments. On the one
hand a new class of algorithms, namely multi-level Monte Carlo algorithms, has
been introduced by Heinrich [18] and Giles [14]. On the other hand infinite-
dimensional quadrature problems have been studied from a complexity point of
view by Wasilkowski and Woźniakowski [37] and Hickernell and Wang [21]. The
purpose of this paper is to illustrate the approach and the results from [5], which
provides a link between the two developments and which establishes the concept of
approximation of distributions as the basis for integration of Lipschitz functionals
f on infinite-dimensional spaces X. Furthermore, we provide a continuation of the
survey paper [30] on strong and weak approximation of SDEs with a new focus on
multi-level Monte Carlo algorithms.

The content of this paper is organized as follows. In Section 2 we present multi-
level Monte Carlo algorithms in general terms together with the particular case of
multi-level Euler Monte Carlo algorithms for SDEs, which serve as a basic example
in the sequel.

Section 3 is devoted to the presentation of a reasonable cost model for the
analysis of infinite-dimensional quadrature problems. We distinguish between full
space sampling, variable subspace sampling, and fixed subspace sampling. In the
latter case an algorithm may only evaluate the integrands f at the points in a
finite-dimensional subspace X0 ⊂ X, which may be chosen arbitrarily but which is
fixed for a specific algorithm. We add that fixed subspace sampling is frequently
used for infinite-dimensional quadrature problems. In contrast, a multi-level al-
gorithm uses dependent samples in a hierarchy of finite-dimensional subspaces
X1 ⊂ X2 ⊂ . . .⊂ X with only a small proportion taken in high-dimensional spaces.
For both variants of subspace sampling the cost per evaluation at x ∈ X is given
by the dimension of the (minimal) subspace containing x. Full space sampling per-
mits evaluations anywhere in X at cost one, which is perfectly reasonable for finite-
dimensional quadrature problems; in the infinite-dimensional case its main purpose
is to establish lower bounds.

Section 4 contains an analysis of multi-level algorithms. In the particular case of
Lipschitz continuous integrands we provide upper error bounds for these algorithms
in terms of average Kolmogorov widths of the measure μ, see Theorem 3.
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In Section 5 we introduce the concept of minimal errors, which allows a rigorous
comparison of the power of full space sampling, variable subspace sampling, and
fixed subspace sampling.

In Section 6 we focus on the Lipschitz case and we present upper and lower
bounds for the minimal errors in terms of average Kolmogorov widths and quanti-
zation numbers. Since the latter two quantities can equivalently be defined in terms
of the Wasserstein distance on the space of Borel probability measures on X our
error estimates exhibit the tight connection between quadrature by means of ran-
domized algorithms and approximation of the underlying measure μ by means of
probability measures with a finite-dimensional or finite support. These results are
applied to quadrature with respect to Gaussian measures μ and with respect to the
distributions of the solutions of SDEs. Suitable multi-level algorithms turn out to be
almost optimal in both cases.

2 Multi-level Algorithms

Multi-level Monte Carlo methods have been introduced by Heinrich [18] and Hein-
rich and Sindambiwe [20] for computation of global solutions of integral equations
and for parametric integration, respectively. Moreover, the authors have shown that
suitable multi-level algorithms are (almost) optimal in both cases. See [19] for
further results and references. In their work finite-dimensional quadrature prob-
lems arise as subproblems and the Monte Carlo methods take values in infinite-
dimensional Banach spaces Y. Here we are interested in the dual situation of
infinite-dimensional quadrature with real numbers as outputs of Monte Carlo al-
gorithms, i.e., we have Y= R.

In the context of quadrature problems for diffusion processes multilevel algo-
rithms have been introduced by Giles [14], while a two level algorithm has already
been considered by Kebaier [22]. Both papers also include numerical examples from
computational finance, see also [15, 16].

In order to describe the multi-level approach in general terms it is convenient to
assume that μ is the distribution of an X-valued random element of the form

X = ϕ(X̃)

for some random element X̃ taking values in a Banach space (X̃,‖ · ‖X̃) and some
measurable mapping

ϕ : X̃→ X.

As the key assumption we suppose that we have a sequence of measurable map-
pings

ϕ(k) : X̃→ X

at hand, which provide approximations
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X(k) = ϕ(k)(X̃)

to X. Hence
E(f (X(k)))= E(f (ϕ(k)(X̃)))

may serve as an approximation to

S(f )= E(f (X))= E(f (ϕ(X̃))).

Example 1. A typical example is provided by an SDE

dX(t)= a(t,X(t))dt+b(t,X(t))dX̃(t), t ∈ [0,1],
with initial value

X(0)= ξ ∈ R
m,

drift coefficient
a : [0,1]×R

m→ R
m,

diffusion coefficient
b : [0,1]×R

m→ R
m×d,

and with a d-dimensional Brownian motion X̃. In this case X̃ = C([0,1],Rd) and
X = C([0,1],Rm) are the spaces of continuous functions on [0,1] taking values in
R
d and R

m, respectively, and ϕ maps the driving Brownian motion X̃ to the solution
process X. The mapping ϕ(k) may correspond to the piecewise linear interpolation
of the Euler scheme with step size δ(k) = 2−(k−1). The time discretization is then
given by

t
(k)
i = i δ(k), i = 0, . . . ,2k−1,

and we have
X
(k)
0 = ξ

and

X
(k)
i+1 =X

(k)
i +a(t

(k)
i ,X

(k)
i )δ(k)+b(t

(k)
i ,X

(k)
i )

(
X̃(t

(k)
i+1)− X̃(t

(k)
i )

)
. (1)

Finally, the random element X(k) = ϕ(k)(X̃) is given by the piecewise linear inter-
polation of X(k)

0 , . . . ,X
(k)

2k−1 at the nodes t (k)0 , . . . , t
(k)

2k−1 .

For a Gaussian measure μ on X it is reasonable to take X̃ = X, X̃ = X, and the
identity function ϕ. Metric projections ϕ(k) onto an increasing sequence of finite-
dimensional subspaces of X may be used for approximation of X.

The classical Monte Carlo approximation to E(f (X(k))) is based on independent
copies X̃1, . . . , X̃n of X̃ and given by the random variable

A(f )= 1

n

n∑

�=1

f (ϕ(k)(X̃�)). (2)
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For its mean square error we clearly have

E(S(f )−A(f ))2 = 1

n
Var(f (X(k)))+b2

k(f ) (3)

with the bias
bk(f )= E(f (X(k)))−S(f ).

The actual computation of a realization of A(f ) requires simulation of the distribu-
tion of X(k) and evaluation of f at randomly chosen points from the range of ϕ(k).

Note that

E(f (X(k)))= E(f (X(1)))+
k∑

j=2

E(f (X(j))−f (X(j−1))),

where f (X(j))= f (ϕ(j)(X̃)) and f (X(j−1))= f (ϕ(j−1)(X̃)) are coupled via X̃. In
the multi-level approach each of the expectations on the right-hand side is approxi-
mated separately by means of independent, classical Monte Carlo approximations.
With n1, . . . ,nk denoting the corresponding numbers of replications and with inde-
pendent copies

X̃j,1, . . . , X̃j,nj , j = 1, . . . ,k,

of X̃ the multi-level approximation is given by the random variable

Ak(f )= A(1)(f )+
k∑

j=2

A(j)(f ) (4)

where

A(1)(f )= 1

n1

n1∑

�=1

f (ϕ(1)(X̃1,�)) (5)

and

A(j)(f )= 1

nj

nj∑

�=1

(f (ϕ(j)(X̃j,�))−f (ϕ(j−1)(X̃j,�))) (6)

for j = 2, . . . ,k. For the mean square error of Ak(f ) we get

E(S(f )−Ak(f ))
2 =

k∑

j=1

vj (f )

nj
+b2

k(f ) (7)

where
v1(f )= Var(f (X(1)))

and
vj (f )= Var(f (X(j))−f (X(j−1)))
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for j = 2, . . . ,k. The actual computation of a realization of Ak(f ) requires sim-
ulation of the distribution of X(1) and the joint distribution of X(j) and X(j−1)

for j = 2, . . . ,k. Furthermore, evaluation of f at randomly chosen points from the
ranges of ϕ(1), . . . ,ϕ(k) is needed.

Typically the variances vj (f ) and the bias bk(f ) are decreasing with increasing
values of j and k, respectively, while the computational cost is increasing. One
therefore has to properly balance these effects. A comparison of (3) and (7) reveals
that the multi-level approach is a variance reduction technique.

Remark 1. The error formula (7) is a consequence of Bienaymé’s equality for real-
valued random variables, which does not extend to general Banach spaces. Thus,
for the analysis of multi-level algorithms taking values in such a space the so-called
Rademacher type of this space plays an important role, see [18, 19, 20].

Example 2. Let us present the details for a multi-level Euler algorithm in the case of
an SDE, see Example 1. For notational convenience we consider a scalar equation,

i.e., m= d = 1. We use
d= to denote equality in distribution of two random elements.

The simulation of ϕ(1)(X̃1,�) and (ϕ(j)(X̃j,�),ϕ
(j−1)(X̃j,�)) in (5) and (6) may be

based on i.i.d. standard normally distributed random variables Z(j)

i,� for j = 1, . . . ,k,

�= 1, . . . ,nj , and i = 1, . . . ,2j−1 as follows. We put

U
(j)

0,� = ξ

as well as

U
(j)

i+1,� = U
(j)
i,� +a(t

(j)
i ,U

(j)
i,� )δ

(j)+b(t
(j)
i ,U

(j)
i,� )

√
δ(j) Z

(j)

i+1,�

for i = 0, . . . ,2j−1−1, cf. (1). Furthermore, if j > 1, we put

V
(j)

0,� = ξ

as well as

V
(j)

i+1,� = V
(j)
i,� +a(t

(j−1)
i ,V

(j)
i,� )δ

(j−1)

+b(t
(j−1)
i ,V

(j)
i,� )

√
δ(j−1)/2

(
Z
(j)

2i+1,�+Z
(j)

2i+2,�

)

for i = 0, . . . ,2j−2−1.
We stress that the corresponding piecewise linear interpolationsU(j)

� andV (j)
� , re-

spectively, are coupled, since both are based on the random vector (Z(j)

1,�, . . . ,Z
(j)

2j−1,�
).

On the other hand, U(j−1)
� and V (j)

�′ are independent with U(j−1)
�

d= V
(j)

�′
d=X(j−1).

Altogether we obtain independent random elements

U
(1)
1 , . . . ,U(1)

n1
,

(U
(2)
1 ,V

(2)
1 ), . . . , (U(2)

n2
,V (2)

n2
),
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. . .

(U
(k)
1 ,V

(k)
1 ), . . . , (U(k)

nk
,V (k)

nk
)

taking values in C([0,1]) or (C([0,1]))2, respectively, whose distributions satisfy

U
(1)
�

d=X(1)

and
(U

(j)

� ,V
(j)

� )
d= (X(j),X(j−1)).

Consequently

Ak(f )
d= 1

n1

n1∑

�=1

f (U
(1)
� )+

k∑

j=2

1

nj

nj∑

�=1

(f (U
(j)

� )−f (V
(j)

� )).

We add that scaling of step sizes for the Euler scheme has already been used in a
bias reduction technique by means of extrapolation, see [2, 35].

3 A Cost Model for Variable Subspace Sampling

In this section we present a cost model for the analysis of multi-level algorithms
and, more generally, for the complexity analysis of infinite-dimensional quadrature
problems. See [5] for details.

We assume that algorithms for the approximation of S(f ) have access to the
functionals f ∈ F via an oracle (subroutine) that provides values f (x) for points
x ∈ X or a subset thereof. The cost per evaluation (oracle call) is modelled by a
measurable function

c : X→ N∪{∞}.
We define the cost of a computation as the sum of the cost of all oracle calls that
are made during the computation. For a randomized algorithm the cost defines a
random variable (under mild measurability assumptions), which may also depend
on f ∈ F . This random variable is henceforth denoted by costc(A,f ).

Let us look at the particular case of a randomized quadrature formula

A(f )=
n∑

�=1

a� f (X�) (8)

with deterministic weights a� ∈R and random elements X� taking values in X. This
class of randomized algorithms obviously contains every Monte Carlo method (2)
and every multi-level algorithm (4), where n = n1+ 2

∑k
j=2nj in the latter case.

The cost of a randomized quadrature formula is given by
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costc(A,f )=
n∑

�=1

c(X�).

Now we discuss specific choices of c. In the cost model given by

c = 1 (9)

evaluation of an integrand f is possible at any point x ∈ X at cost one. In this
model, which is called full space sampling, costc(A,f ) is the number of evaluations
of the integrand. For finite-dimensional quadrature, i.e., if dim(X) <∞, full space
sampling is the common choice in the literature.

However, if dim(X)=∞, then full space sampling seems to be too generous and
therefore of limited practical relevance. It is more reasonable and partially motivated
by the multi-level construction to consider variable subspace sampling instead. In
any such model we consider a sequence of finite-dimensional subspaces

{0}� X1 ⊂ X2 ⊂ . . .⊂ X,

and we define the cost function c by

c(x)= inf{dim(Xj ) : x ∈ Xj }. (10)

In particular, in the setting of a multi-level algorithm (4),

Xj = span

(
j⋃

i=1

ϕ(i)(X̃)

)

(11)

is a natural choice, and the cost of this algorithm then satisfies

costc(Ak,f )≤ n1 dim(X1)+
k∑

j=2

nj (dim(Xj )+dim(Xj−1)) (12)

in the corresponding variable subspace model.
We write xk - yk for sequences of positive real numbers xk and yk , if xk ≤ γ yk

holds for every k ∈ N with a constant γ > 0. Furthermore, xk " yk means xk - yk
and yk - xk .

Example 3. Consider the spaces Xj according to (11) in the setting from Example 2.
Here, Xj = span(ϕ(j)(X̃)) is the space of piecewise linear functions in X=C([0,1])
with equidistant breakpoints i 2−(j−1) and we have dim(Xj )= 2j−1+1. It follows

that 1/nj
∑nj

�=1f (U
(j)
� ) can be computed at cost nj (2j−1+1), and we get

costc(Ak,f )≤ n1 2+
k∑

j=2

nj (2
j−1+2j−2+2)"

k∑

j=1

2j nj (13)

for the multi-level algorithm (4).
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Finally we discuss fixed subspace sampling. In this case, evaluations are possible
only at points in a finite-dimensional subspace

{0}� X0 ⊂ X.

For every such evaluation its cost is given by dim(X0). Thus

c(x)=
{

dim(X0), if x ∈ X0,

∞, otherwise.
(14)

Clearly fixed subspace sampling constitutes a particular case of variable subspace
sampling.

For both kinds of subspace sampling we think of bases associated to the sub-
spaces, so that c(x) is the (minimal) number of real coefficients needed to represent
x and this representation is actually submitted to the oracle.

Example 4. Obviously the multi-level Euler algorithm from Example 2 may also be
analyzed in the fixed subspace model defined by X0 = span(ϕ(k)(X̃)), which leads
to

costc(Ak,f )≤
k∑

j=1

nj (2
k−1+1)" 2k

k∑

j=1

nj .

This analysis, however, would be inadequate, since it does not capture the fact that
a large proportion of samples is taken in low-dimensional spaces.

Remark 2. We stress that costc(A,f ) is a rough measure of the computational cost
for applying the algorithm A to the integrand f , since it only takes into account the
information cost, which is caused by the evaluations of f . All further operations
needed to compute a realization of A(f ) are not considered at all.

In a more detailed analysis it is appropriate to take the real number model of
computation as a basis for quadrature problems. See [32, 36] for the definition of
this model. Informally, a real number algorithm is like a C-program that carries out
exact computations with real numbers. Furthermore, a perfect generator for random
numbers from [0,1] is available and elementary functions like exp, ln, etc. can be
evaluated. Finally, algorithms have access to the integrands f ∈ F via the oracle
(subroutine). We think that these assumptions are present at least implicitly in most
of the work dealing with quadrature problems.

For simplicity we assume that real number operations as well as calls of the
random number generator and evaluations of elementary functions are performed
at cost one. Furthermore, in case of μ being the distribution of a diffusion process,
function values of its drift and diffusion coefficients are provided at cost one, too.
Then the total cost of a computation is given by costc(A,f ) plus the total number
of real number operations, calls of the random number generator, evaluations of
elementary functions, and, eventually, function evaluations of drift and diffusion
coefficients.
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Example 5. In the analysis according to Remark 2 the right-hand side in (13) still
is an upper bound for the cost of the multi-level Euler Monte Carlo algorithm, up
to a constant. Indeed, the number of arithmetic operations and calls of the random
number generator as well as the number of evaluations of the drift coefficient a and
diffusion coefficient b that are needed to compute 1/nj

∑nj
�=1 f (U

(j)
� ) are bounded

by the number nj of replications times the number 2j−1 of time steps, up to a con-
stant. Hence costc(Ak,f ) properly reflects the computation time in practice.

Example 6. SDEs also give rise to finite-dimensional quadrature problems, where
μ is the distribution of the solution X at time t = 1, say. Then full space sampling
provides the appropriate cost model if only the cost of evaluating the functional f
is taken into account, and we get

costc(Ak,f )≤ n1+2
k∑

j=2

nj "
k∑

j=1

nj

for the multi-level algorithm according to Example 3. In this way, however, we
would ignore the impact of the step size on the computational cost of the Euler
scheme. Hence an analysis according to Remark 2 is necessary, and then we once
more get the right-hand side of (13) as an upper bound for the cost.

4 Analysis of the Multi-level Algorithm

In the sequel we consider a sequence of mappings ϕ(k) with associated bias and
variance functions bk and vj , respectively, see Section 2. Furthermore, we consider
the corresponding variable subspace model with cost function c, see (10) and (11).

4.1 General Results

Suppose that there exist real numbers M > 1 and γ,ρ,τ > 0 such that

|bk(f )| ≤ γ M−k ρ,
(
vj (f )

)1/2 ≤ γ M−j τ , dim(Xj )≤ γ Mj . (15)

We use Ak to denote the multi-level approximation given by (4) with the numbers
of replications defined by

nj =
{⌈

Mk 2ρ−j (1/2+τ)⌉, if τ ≥ 1/2,
⌈
Mk(2ρ+1/2−τ)−j (1/2+τ)⌉, if τ < 1/2

for j = 1, . . . ,k. By a+ =max(a,0) we denote the positive part of a ∈ R.
The following result is due to Giles, see [14] for the case ρ ≥ 1/2.
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Theorem 1. Assume that (15) holds and put

ρ̃ =min(ρ,1/2)

as well as
Γk = costc(Ak,f ).

Then there exists a constant γ̃ > 0, which may depend on M,γ,ρ,τ , such that the
multi-level approximation Ak satisfies

(
E(S(f )−Ak(f ))

2)1/2 ≤ γ̃

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Γ
−ρ̃
k , if τ > 1/2,

Γ
−ρ̃
k log(Γk) if τ = 1/2≤ ρ,

Γ
−ρ̃
k (log(Γk))1/2 if τ = 1/2 > ρ,

Γ
−ρ/(1+2(ρ−τ)+)
k if τ < 1/2.

Proof. First assume that τ ≥ 1/2. Due to (7) and the definition of nj ,

E(S(f )−Ak(f ))
2 -

k∑

j=1

M−j 2τ M−(k 2ρ−j (1/2+τ))+M−k 2ρ

-M−k 2ρ
k∑

j=1

M−j (τ−1/2)+M−k 2ρ

-
{
M−k 2ρ, if τ > 1/2,

M−k 2ρ k, if τ = 1/2.

By (12),

Γk ≤ 2
k∑

j=1

nj dim(Xj )

-
k∑

j=1

(
1+Mk 2ρ−j (1/2+τ))Mj

-Mk+Mk 2ρ
k∑

j=1

Mj (1/2−τ)

-Mk+
{
Mk 2ρ, if τ > 1/2,

Mk 2ρ k, if τ = 1/2.

Furthermore,
Γk ≥ n1 dim(X1).Mk 2ρ,

which implies
log(Γk). k.
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Finally, use the relations

M−k 2ρ " (Mk+Mk 2ρ)−2ρ̃

and

M−k 2ρ k "
{
(Mk+Mk 2ρ k)−2ρ̃ k2, if ρ ≥ 1/2,

(Mk+Mk 2ρ k)−2ρ̃ k, if ρ < 1/2

to finish the proof for τ ≥ 1/2.
Next, consider the case τ < 1/2. Then

E(S(f )−Ak(f ))
2 -

k∑

j=1

M−j 2τ M−(k (2ρ+(1/2−τ))−j (1/2+τ))+M−k 2ρ

"M−k 2ρ

and

Γk -
k∑

j=1

(
1+Mk(2ρ+(1/2−τ))−j (1/2+τ))Mj

"Mk+Mk(2ρ+1−2τ)

"Mk(1+2(ρ−τ)+),

which completes the proof.

Remark 3. For finite-dimensional quadrature a variant of Theorem 1 is applicable, if
the underlying definition of the computational cost is chosen according to Remark
2. Instead of the bound on dim(Xj ) in (15) one has to assume that the cost for
simulation of (f (X(j)),f (X(j−1))) is bounded by γ Mj . Actually, this variant is
close to the analysis of the multi-level algorithm in [14, Theorem 3.1].

Next, we discuss the performance of the classical Monte Carlo approximation
under the assumption (15). Clearly,

(
Var(f (X(k))

)1/2 ≤
k∑

j=1

(
vj (f )

)1/2
,

so that (15) implies

|bk(f )| ≤ γ M−k ρ, Var(f (X(k)))≤ γ, dim(Xk)≤ γ Mk (16)

with some constant γ > 0.
Assume that (16) holds. We use A′k to denote the classical Monte Carlo approxi-

mation (2) with the number of replications defined by

n= �Mk 2ρ	
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and we put
Γ ′k = costc(A

′
k,f ),

where c is the cost function given by (14) for the appropriate fixed subspace model
with X0 =Xk . Then it is straightforward to check that there exists a constant γ̃ > 0,
which may depend on M,γ,ρ, such that

(
E(S(f )−A′k(f ))2

)1/2 ≤ γ̃
(
Γ ′k
)−ρ/(1+2ρ)

. (17)

Remark 4. We compare the multi-level algorithm with the classical Monte Carlo
approximation on the basis of the upper error bounds provided by Theorem 1 and
(17), respectively.

Up to logarithmic factors, the corresponding orders of convergence of these
bounds in terms of powers of the cost are given by

θ∗(ρ,τ )=
{

min(1/2,ρ), if τ ≥ 1/2,

ρ/(1+2(ρ− τ)+), if τ < 1/2

for the multi-level algorithm, and

θ(ρ)= ρ/(1+2ρ)

for the classical approach. Put τ̃ =min(1/2,τ ). We always have

1 <
θ∗(ρ,τ )
θ(ρ)

≤ θ∗(̃τ ,τ )
θ (̃τ )

= 1+2 τ̃ ≤ 2

and

lim
ρ→0

θ∗(ρ,τ )
θ(ρ)

= lim
ρ→∞

θ∗(ρ,τ )
θ(ρ)

= 1.

4.2 Lipschitz Continuous Integrands

Now we turn to the particular case of Lipschitz continuous integrands, as we assume
that

|f (x)−f (y)| ≤ ‖x−y‖X, x,y ∈ X. (18)

Moreover, we put X(0) = 0 and

δj =
(
E‖X−X(j)‖2

X

)1/2

for j = 0, . . . ,k.
We immediately get

bk(f )≤ δk

as well as
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vj (f )≤ E‖X(j)−X(j−1)‖2
X ≤ (δj + δj−1)

2

for j = 1, . . . ,k. The analysis for Lipschitz continuous integrands therefore corre-
sponds to the diagonal case ρ = τ in Theorem 1.

We select mappings ϕ(j) such that

dimspan((ϕ(j)(X̃)))≤ 2j , (19)

and for any integer N ≥ 16 we define the parameters of the multi-level algorithm
AN by

k = log2(N/8)� (20)

and
nj =

⌈
2k−j /(3k)

⌉
(21)

for j = 1, . . . ,k. See [5, Lemma 3] for the following result.

Theorem 2. Under the assumptions (18)–(21) the multi-level algorithmAN satisfies

costc(AN,f )≤N

and
(
E(S(f )−AN(f ))

2)1/2 ≤ 12
√

2

(
log2N

N

k∑

j=0

2j δ2
j

)1/2

.

Proof. Note that (19) implies dim(Xj ) ≤ 2j+1− 2 for Xj according to (11), and
therefore

costc(AN,f )≤ 2n1+
k∑

j=2

32j nj ≤ 2k+3 ≤N

follows from (12), (20), and (21). Moreover

E(S(f )−AN(f ))
2 ≤

k∑

j=1

(δj + δj−1)
2

nj
+ δ2

k

≤ 2

n1
δ2

0+
k−1∑

j=1

2

(
1

nj
+ 1

nj+1

)
δ2
j +2

(
1

nk
+ 1

2

)
δ2
k

≤ 18k

2k

k∑

j=0

2j δ2
j ,

which completes the proof.

Example 7. In the situation of Example 3 the estimate (19) is satisfied. Moreover, it
is well known that (under standard smoothness conditions for the drift and diffusion
coefficient of the SDE)

δj ≤ cp 2−j/2

for all spaces X= Lp([0,1]) with 1≤ p <∞ and
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δj ≤ c∞ j 2−j/2

for X= C([0,1]). Hence

(
E(S(f )−AN(f ))

2)1/2 ≤ 12
√

2cp
log2N

N1/2

for X= Lp([0,1]) and

(
E(S(f )−AN(f ))

2)1/2 ≤ 12
√

2c∞
(log2N)2

N1/2

for X = C([0,1]). Analogous results are valid for systems of SDEs. See, e.g., [29,
30] for results and references.

Note that Asian as well as look-back options lead to Lipschitz-continuous inte-
grands. We refer to [14, 16] for a corresponding analysis and numerical experiments
using multi-level Euler Monte Carlo algorithms, while a multi-level Milstein Monte
Carlo algorithm is employed in [15].

Recall that δj is based on the choice of the mapping ϕ(j) : X̃→ X. Minimizing
δj subject to a constraint

dim(span(ϕ(j)(X̃)))≤ κ

with κ ∈ N, leads to the notion of average Kolmogorov widths of order two, which
are defined by

d(r)κ = inf
dim(X0)≤κ

(
E inf
x0∈X0

‖X−x0‖rX
)1/r

(22)

with r = 2. Here the infimum with respect to x0 ∈ X0 corresponds to the best ap-
proximation of any realization of X by elements from the subspace X0, and ϕ(j) is
a metric projection of X̃ onto X0. The quality of this subspace is measured by an
average distance of X to X0, and minimization over all subspaces with dimension at
most κ leads to the average Kolmogorov width d(r)κ . We add that limκ→∞ d

(r)
κ = 0,

if X is separable and E‖X‖r
X
<∞. Average Kolmogorov widths and their relation

to further scales of approximation quantities for random elements were studied in
[4, 27, 28], see also [34].

We now suppose that the sequence of Kolmogorov widths d(2)κ is regularly vary-
ing of index −ρ ∈ ]−∞,0[, i.e.,

d(2)κ = κ−ρ L(κ) (23)

with a slowly varying function L : [1,∞[ → ]0,∞[. This means that L satisfies
limx→∞L(r x)/L(x)= 1 for every r > 0. By definition L is almost increasing if

inf
x0≤x<y

L(y)/L(x) > 0
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for some x0 > 0, see [3].

Theorem 3. Assume that (23) holds. If

(i) ρ �= 1/2 or
(ii)ρ = 1/2 and L is bounded or almost increasing,

then there exists a constant γ > 0 and a sequence of multi-level algorithms AN such
that

costc(AN,f )≤N

and

(
E(S(f )−AN(f ))

2)1/2 ≤ γ

⎧
⎪⎨

⎪⎩

N−1/2 (log2N)1/2 if ρ > 1/2,

max(N−1/2,d
(2)
N ) log2N if ρ = 1/2,

d
(2)
N log2N if ρ < 1/2.

Proof. Consider the multi-level algorithmAN from Theorem 2, where the mappings
ϕ(j) are chosen such that

δj ≤ 2d(2)
2j
.

By assumption,
d
(2)
2j
= 2−j ρ L(2j ).

Since costc(AN,f )≤N and

E(S(f )−AN(f ))
2 ≤ 576

log2N

N

k∑

j=0

2j (1−2ρ) (L(2j ))2,

it remains to show that

k∑

j=0

2j (1−2ρ) (L(2j ))2 - (
max

(
1,N1−2ρ (L(N))2

)
log2N

)ρ̃
(24)

with ρ̃ = 0 if ρ > 1/2 and ρ̃ = 1 otherwise.
First assume that ρ > 1/2. Then (1−2ρ)/2 < 0, which implies

lim
j→∞2j (1−2ρ)/2 (L(2j ))2 = 0,

since the function L2 is slowly varying as well. Consequently,

k∑

j=0

2j (1−2ρ) (L(2j ))2 -
k∑

j=0

2j (1−2ρ)/2 - 1.

Next assume that 0 < ρ < 1/2. Then

(L(x))2/(L(y))2 - (y/x)1−2ρ
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for 1≤ x ≤ y, and therefore

k∑

j=0

2j (1−2ρ) (L(2j ))2 -
k∑

j=0

2j (1−2ρ) (N/2j )1−2ρ (L(N))2

-N1−2ρ (L(N))2 log2N.

Finally, consider the case ρ = 1/2. By assumption L is bounded or almost in-
creasing, and therefore

k∑

j=0

2j (1−2ρ) (L(2j ))2 =
k∑

j=0

(L(2j ))2 -max(1, (L(N))2) log2N,

which completes the proof.

Remark 5. The error bound in Theorem 3 can be slightly improved in the case ρ <
1/2 if the slowly varying function L is almost increasing. Then

(
E(S(f )−AN(f ))

2)1/2 ≤ γ d
(2)
N (log2N)1/2

for some constant γ > 0.

Example 8. Consider an SDE, and let X=C([0,1],Rm) or X=Lp([0,1],Rm) with
1 ≤ p <∞. Then (under appropriate smoothness conditions on the coefficients of
the SDEs)

d(2)κ " κ−1/2,

see [5, Prop. 3]. Hence the estimate from Example 7 can be slightly improved for
X= C([0,1],Rm) to an upper bound of order log2N/N

1/2.

Remark 6. Our proof of Theorem 3 is based on inequality (24), which is equivalent
to

k∑

j=0

(L(2j ))2 -max
(
1, (L(2k))2

)
k (25)

in the case ρ = 1/2. Note that the latter inequality does not hold without an ad-
ditional assumption on the slowly varying function L. For example, consider the
function

L(x)= exp
(
(log2 x)

1/3 cos((log2 x)
1/3)

)

with x ≥ 1. Then L is slowly varying and we have

limsup
k→∞

(
max

(
1, (L(2k))2

)
k
)−1

k∑

j=0

(L(2j ))2 =∞.
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5 Minimal Errors in Different Cost Models

In order to determine the power of variable subspace sampling, and in particular
the power of multi-level algorithms, we consider the worst case errors and cost of
randomized algorithms A on a class F of integrands f : X→ R. These quantities
are defined by

e(A)= sup
f∈F

(
E(S(f )−A(f ))2

)1/2

and
costc(A)= sup

f∈F
Ecostc(A,f ),

if the cost per evaluation of f ∈ F is modelled by c : X→ N∪{∞}.
Actually we have already used the worst case point of view in the previous sec-

tion. For instance, with F =Lip(1) denoting the class of all functionals f that satisfy
(18), the error bound from Theorem 2 is equivalent to

e(AN)≤ 12
√

2

(
log2N

N

)1/2
(

k∑

j=0

2j δ2
j

)1/2

,

and obviously
costc(AN)≤N.

We extend our analysis beyond the class of multi-level algorithms, as we consider
the class Aran of all randomized algorithms. See, e.g., [5] for the formal definition.
Here we only mention that Aran contains in particular all random variables of the
form

A(f )= φ(f (X1), . . . ,f (Xn))

with any choice of a joint distribution of (X1, . . . ,Xn) on Xn and any measurable
mapping φ : Rn → R. Note that randomized quadrature formulas are a particular
instance thereof, see (8).

For comparing the power of different sampling regimes it does not suffice to
establish upper bounds for the error and cost of specific algorithms. Instead, one has
to study minimal errors and to establish lower bounds.

Let Cfix denote the set of all cost functions given by (14) with any finite-
dimensional subspace {0} � X0 ⊂ X, let Cvar denote the set of all cost func-
tions given by (10) with any increasing sequence of finite-dimensional subspaces
{0}� Xi ⊂ X, and let Cfull consist of the constant cost function one, see (9). For

samp ∈ {fix,var, full}
and N ∈ N we introduce the N -th minimal error

eran
N,samp = inf{e(A) : A ∈Aran, ∃c ∈ Csamp : costc(A)≤N}.
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According to this definition a most favorable cost model c ∈ Csamp is used for as-
sessing the quality of an algorithm A ∈ Aran. We add that minimal errors are key
quantities in information-based complexity, see, e.g., [30, 31, 34, 36].

Clearly
eran
N,full ≤ eran

N,var ≤ eran
N,fix,

and these quantities allow us to compare the different sampling regimes. For in-
stance, variable subspace sampling is superior to fixed subspace sampling for a
class of integrands F and a measure μ iff the minimal errors eran

N,var are significantly
smaller than the minimal errors eran

N,fix. Note that a lower bound for eran
N,fix and an

upper bound for eran
N,var are needed to establish this conclusion. Conversely, a lower

bound for eran
N,var and an upper bound for eran

N,fix are needed to prove that variable
subspace sampling is not superior to fixed subspace sampling.

6 Optimal Quadrature of Lipschitz Functionals

Throughout this section we assume that

F = Lip(1).

In this case the minimal errors for the quadrature problem can be estimated from
above and below in terms of average Kolmogorov widths, see (22), and quantization
numbers. A partial result was already formulated in Theorem 3.

The quantization numbers of order r ≥ 1 are defined by

q(r)n = inf|X0|≤n

(
E min
x0∈X0

‖X−x0‖rX
)1/r

.

Both, average Kolmogorov widths and quantization numbers correspond to a best
approximation from optimally chosen subsets X0 ⊆X, subject to a constraint on the
dimension of the linear subspace X0 or the size of the finite set X0. Quantization of
random elements X that take values in finite-dimensional spaces X has been studied
since the late 1940’s, and we refer to the monograph [17] for an up-to-date account.
For random elements X taking values in infinite-dimensional spaces X, quantization
has been studied since about ten years. Results are known for Gaussian processes,
see, e.g., [7, 10, 12, 24, 25], and for diffusion processes, see [5, 8, 9, 26].

In the sequel we assume that q(1)n <∞. Clearly, limn→∞ q
(r)
n = 0 if X is separable

and E‖X‖r
X
<∞.

In the following theorem the upper bounds on eran
N,full and eran

N,fix as well as all
lower bounds are due to [5]. See Theorem 3 for the upper bound on eran

N,var.

Theorem 4. For full space sampling

N1/2 sup
n≥4N

(q
(1)
n−1−q(1)n )- eran

N,full -N−1/2 q
(2)
N .
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For variable subspace sampling

max(eran
N,full,d

(1)
2N)- eran

N,var,

and, under the assumption of Theorem 3,

eran
N,var -max(N−1/2,d

(2)
N ) log2N.

For fixed subspace sampling

inf
κ n≤N max(eran

n,full,d
(1)
κ )- eran

N,fix - inf
κ n≤N(n

−1/2+d(2)κ ).

Remark 7. Clearly d
(r)
κ and q

(r)
n only depend on the distribution μ of X, and they

can equivalently be defined in terms of the Wasserstein distance on the space of
Borel probability measures on X. See, e.g., [5] for these facts and for further ref-
erences. Thus Theorem 4 relates quadrature of Lipschitz functionals by means of
randomized algorithms to approximation of μ by distributions with finite support
and distributions concentrated on finite-dimensional subspaces, and the latter con-
straints reflect the restrictions on evaluation of the functionals in the three sampling
regimes.

We add that an analogue analysis can be carried out for quadrature of Lipschitz
functionals by means of deterministic algorithms only. In the setting of full space
sampling it is well known that this quadrature problem is equivalent to the quanti-
zation problem in the sense that the corresponding minimal errors satisfy

edet
N,full = q

(1)
N . (26)

See [5] for details and for further references.

Remark 8. The following algorithms achieve the upper bounds in Theorem 4. For
full space sampling we may use quantization for variance reduction, see [5, Thm.
2] for details. For variable subspace sampling we may use the multi-level algorithm
according to Theorem 3. For fixed subspace sampling we may choose mappings
ϕ(k) such that

dim(span(ϕ(k)(X̃)))≤ k

and (
E‖X−X(k)‖2

X

)1/2 ≤ 2d(2)k

and employ the classical Monte Carlo algorithm (2), see [5, Thm. 4].

6.1 Gaussian Measures

In this section we study the case of a zero mean Gaussian measure μ on a separable
Banach space X. In order to apply Theorem 4 we have to know the asymptotic
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behaviour of the average Kolmogorov widths and the quantization numbers. To this
end we consider the small ball function

ψ(ε)=− lnμ({x ∈ X : ‖x‖ ≤ ε}), ε > 0,

of μ, and we assume that there exist constants α > 0 and β ∈ R such that

ψ(ε)" ε−α (lnε−1)β (27)

as ε tends to zero. This implies

q(r)n " (lnn)−1/α (ln lnn)β/α,

and
d(r)κ " κ−1/α (lnκ)β/α,

see [7, Thm. 3.1.2] and [4, Cor. 4.7.2], respectively.
Typically, (27) holds for infinite-dimensional spaces X, see, e.g., [23] for re-

sults and further references. For example, if μ is the distribution of a d-dimensional
Brownian sheet on X= L2([0,1]d) then α = 2 and β = 2(d−1), see [6, 13].

Essentially the following results are a consequence of Theorems 2 and 4, see [5,
Sec. 8].

Theorem 5. For variable subspace sampling the minimal errors are bounded as
follows.
If α > 2, then

N−1/α (lnN)β/α - eran
N,var -N−1/α (lnN)β/α+1/2.

If α = 2 and β �= −1, then

N−1/2 (lnN)β/2 - eran
N,var -N−1/2 (lnN)(β/2+1/2)++1/2.

If α = 2 and β =−1, then

N−1/2 (lnN)−1/2 - eran
N,var -N−1/2 (lnN)1/2 (ln lnN)1/2.

If 0 < α < 2, then
eran
N,var -N−1/2 (lnN)1/2

and
limsup
N→∞

eran
N,varN

1/2 (lnN)1+1/α (ln lnN)−β/α > 0.

Theorem 5 provides sharp upper and lower bounds on the minimal errors for
variable subspace sampling, up to logarithmic factors and up to the fact that one
of the lower bounds is established only for an infinite sequence of integers N . The
order of the polynomial term N−γvar is

γvar =min(1/2,1/α).
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We add that the upper bounds hold for suitable multi-level algorithms, which thus
turn out to be almost optimal for variable subspace sampling, see [5].

Theorem 6. For full space sampling the minimal errors satisfy

eran
N,full -N−1/2 (lnN)−1/α (ln lnN)β/α

and
limsup
N→∞

eran
N,fullN

1/2 (lnN)1+1/α (ln lnN)−β/α > 0.

Roughly speaking, Theorem 6 determines the asymptotic behaviour of the min-
imal errors for full space sampling, and the order of the polynomial term N−γfull

is
γfull = 1/2.

We conclude that variable subspace sampling is as powerful as full subspace sam-
pling iff α ≤ 2 and, consequently, suitable multi-level algorithms are almost optimal
even in a much stronger sense in this case. As a specific example we mention any
fractional Brownian motion with Hurst parameter H ∈ ]0,1[ either on X=C([0,1])
or on X= Lp([0,1]) with 1 ≤ p <∞. In all cases we have α = 1/H and therefore
γfull = γvar iff H ≥ 1/2.

Theorem 7. For fixed subspace sampling the minimal errors satisfy

eran
N,fix -N−1/(2+α) (lnN)β/(2+α)

and

limsup
N→∞

eran
N,fixN

1/(2+α) (lnN)(2+2α−αβ)/(α(2+α)) (ln lnN)−2β/(α(2+α)) > 0.

Ignoring again logarithmic factors as well as the shortcoming of the lower bound
result, Theorem 7 states that the minimal errors for fixed subspace sampling behave
like N−γfix with order

γfix = 1/(2+α).

Clearly, γfix < γvar for all α > 0 so that variable subspace sampling is always su-
perior to fixed subspace sampling, and this superiority is maximal for α = 2 when
γvar = 1/2 = 2γfix. The dependence of the orders γvar, γfull, and γfix on the param-
eter α of the small ball function (27) is illustrated in Figure 6.1, which summarizes
the essential content of Theorems 5 to 7.

6.2 Diffusion Processes

In this section we consider the distribution μ of an m-dimensional diffusion process
X on the space X=C =C([0,1],Rm) or on a space X=Lp =Lp([0,1],Rm) with
1≤ p <∞. More precisely, X is given by
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Fig. 1 Dependence of γvar, γfull, γfix on α.

dXt = a(Xt )dt+b(Xt )dWt ,

X0 = u0 ∈ R
m (28)

for t ∈ [0,1] with an m-dimensional Brownian motion W , and we assume that the
following conditions are satisfied:

(i) a : Rm→ R
m is Lipschitz continuous

(ii) b : Rm→ R
m×m has bounded first and second order partial derivatives

and is of class C∞ in some neighborhood of u0
(iii)detb(u0) �= 0

We first present bounds for the quantization numbers and the average Kol-
mogorov widths. Let X= C or X= Lp. The quantization numbers q(r)n satisfy

q(r)n " (lnn)−1/2

for every r > 0. The average Kolmogorov widths d(r)κ satisfy

d(r)κ " κ−1/2

for every r > 0. See [5, Prop. 3].
The estimates from Theorems 5–7 with α = 2 and β = 0 are valid, too, in the

diffusion case, see [5, Sec. 9].

Theorem 8. Let X = C or X = Lp. For full space sampling the minimal errors
satisfy

eran
N,full -N−1/2 (lnN)−1/2

and
limsup
N→∞

eran
N,fullN

1/2 (lnN)3/2 > 0.
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For fixed subspace sampling the minimal errors satisfy

eran
N,fix -N−1/4

and
limsup
N→∞

eran
N,fixN

1/4 (lnN)3/4 > 0.

For variable subspace sampling the minimal errors satisfy

N−1/2 - eran
N,var -N−1/2 lnN.

For full space and fixed subspace sampling the lower bounds from Theorem 8
can be improved in the case X= C, see [5, Thm. 12].

Theorem 9. Let X= C. For full space sampling the minimal errors satisfy

eran
N,full .N−1/2 (lnN)−3/2.

For fixed subspace sampling the minimal errors satisfy

eran
N,fix .N−1/4 (lnN)−3/4.

Remark 9. For a Gaussian measure μ on an infinite-dimensional space, as studied
in Section 6.1, as well as for μ being the distribution of the solution of an SDE
on the path space, the corresponding quantization numbers q(1)N essentially behave
like powers of lnN , asymptotically. Observing (26) we conclude that in both cases
quadrature of arbitrary Lipschitz functionals is intractable by means of deterministic
algorithms.

7 Concluding Remarks

The majority of results presented in this survey is concerned with Lipschitz con-
tinuous integrands f . The multi-level approach, however, is not at all linked to any
kind of smoothness assumption on f . Instead, only bias and variance estimates are
needed, see Theorem 1, and there are good reasons to consider classes F of inte-
grands that either contain non-Lipschitz functionals or are substantially smaller than
Lip(1).

Motivated by applications from computational finance non-continuous integrands
are considered in [1] and [16]. These authors establish new results on strong approx-
imation of SDEs, which in turn are used in the multi-level approach. In particular
the computation of the expected payoff for digital and barrier options is covered by
this work.

For finite-dimensional spaces X much smaller classes F of integrands than
Lip(1) are studied since long. With a view towards infinite-dimensional integra-
tion as a limiting case, tractability results for d-dimensional integration are most
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interesting, since they provide bounds on the minimal errors with an explicit depen-
dence on the dimension d . We refer to the recent monograph [33]. Here weighted
Hilbert spaces with a reproducing kernel play an important role, and in this set-
ting full space sampling for infinite-dimensional quadrature case has already been
analyzed in [21].

As for the class F of functionals, the multi-level approach also does not rely on
specific properties of the measure μ. Actually, only suitable subspaces have to be
identified and the simulation of two-level couplings of corresponding distributions
must be feasible. So far, most of the work on multi-level algorithms is dealing with
SDEs that are driven by a Brownian motion, and results for Gaussian measures μ
are available as well. Recent progress in a different direction is made in [11], which
provides the construction and analysis of a multi-level algorithm for Lévy-driven
SDEs.
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differential equations, work in progress.

12. S. Dereich, M. Scheutzow, High-resolution quantization and entropy coding for fractional
Brownian motion, Electron. J. Probab. 11, 700–722 (2006).

13. J.A. Fill, F. Torcaso, Asymptotic analysis via Mellin transforms for small deviations in L2-
norm of integrated Brownian sheets, Probab.Theory Relat. Fields 130, 259–288 (2004).

14. M.B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56, 607–617 (2008).



Se
co

nd
 p

ro
of

s

156 Thomas Müller-Gronbach and Klaus Ritter

15. M.B. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, in:
Monte Carlo and Quasi-Monte Carlo Methods 2006 (A. Keller, S. Heinrich, H. Niederreiter,
eds.), pp. 343–358, Springer-Verlag, Berlin (2008).

16. M.B. Giles, D.J. Higham, X. Mao, Analysing multi-level Monte Carlo for options with non-
globally Lipschitz payoff, Finance and Stochastics 13, 403–413 (2009).

17. S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions, Lect. Notes in
Math. 1730, Springer-Verlag, Berlin (2000).

18. S. Heinrich, Monte Carlo complexity of global solution of integral equations, J. Complexity
14, 151–175 (1998).

19. S. Heinrich, Multilevel Monte Carlo methods, in: Large Scale Scientific Computing, Lect.
Notes in Comp. Sci. 2179 (S. Margenov, J. Wasniewski, P. Yalamov, eds.), pp. 58–67,
Springer-Verlag, Berlin (2001).

20. S. Heinrich, E. Sindambiwe, Monte Carlo complexity of parametric integration, J. Complexity
15, 317–341 (1999).

21. F.J. Hickernell, X. Wang, The error bounds and tractability of quasi-Monte Carlo algorithms
in infinite dimension, Math.Comp. 71, 1641–1661 (2001).

22. A. Kebaier, Statistical Romberg extrapolation: a new variance reduction method and applica-
tions to option pricing, Ann. Appl. Prob. 15, 2681–2705 (2005).

23. W.V. Li, Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and ap-
plications, in: Stochastic Processes: Theory and Methods, Handbook of Statist., Vol. 19,
(D.N. Shanbhag, C.R. Rao, eds.), pp. 533–597, North-Holland, Amsterdam (2001).

24. H. Luschgy, G. Pagès, Functional quantization of Gaussian processes, J. Funct. Anal. 196,
486–531 (2002).

25. H. Luschgy, G. Pagès, Sharp asymptotics of the functional quantization problem for Gaussian
processes, Ann. Appl. Prob. 32, 1574–1599 (2004).

26. H. Luschgy, G. Pagès, Functional quantization of a class of Brownian diffusions: a construc-
tive approach, Stochastic Processes Appl. 116, 310–336 (2006).

27. V.E. Maiorov, Widths and distribution of values of the approximation functional on the
Sobolev space with measure, Constr. Approx. 12, 443–462 (1996).
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Markov Chain Monte Carlo Algorithms: Theory
and Practice

Jeffrey S. Rosenthal

Abstract We describe the importance and widespread use of Markov chain Monte
Carlo (MCMC) algorithms, with an emphasis on the ways in which theoretical anal-
ysis can help with their practical implementation. In particular, we discuss how to
achieve rigorous quantitative bounds on convergence to stationarity using the cou-
pling method together with drift and minorisation conditions. We also discuss recent
advances in the field of adaptive MCMC, where the computer iteratively selects
from among many different MCMC algorithms. Such adaptive MCMC algorithms
may fail to converge if implemented naively, but they will converge correctly if cer-
tain conditions such as Diminishing Adaptation are satisfied.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms were first introduced in statistical
physics [17], and gradually found their way into image processing [12] and statis-
tical inference [15, 32, 11, 33]. Their main use is to sample from a complicated
probability distribution π(·) on a state space X (which is usually high-dimensional,
and often continuous, e.g. an open subset of Rd ). In particular, MCMC has revo-
lutionized the field of Bayesian statistical inference, where π(·) would usually be
a posterior distribution which is otherwise intractable but which can (hopefully) be
easily sampled using MCMC.

In brief, MCMC proceeds as follows. We define a Markov chain P(x, ·) on X that
leaves π(·) stationary. We first sample X0 from some (simple) initial distribution on
X . We then iteratively sample Xn from P(Xn−1, ·), for n= 1,2,3, . . .. The hope is
that for “large enough” n, the distribution of Xn will be approximately equal to π(·),
Department of Statistics
University of Toronto
Toronto, Ontario, Canada
url: http://probability.ca/jeff/

P. L’Ecuyer, A.B. Owen (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008,
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i.e. P(Xn ∈A)≈ π(A) for all measurable A⊆X . If so, then Xn is approximately a
sample from π(·). And, once we can generate samples from π(·), then we can easily
use those samples to approximately compute any quantities of interesting involving
probabilities or expectations with respect to π(·).

Such algorithms have become extremely popular in Bayesian statistics and other
areas. At last count, the MCMC Preprint Service lists about seven thousand research
papers, and the phrase “Markov chain Monte Carlo” elicits over three hundred thou-
sand hits in Google. As a result of this popularity, many people are using MCMC
algorithms without possessing much knowledge of the theory of Markov chains or
probability, and there has been some divorce between theoreticians and practitioners
of MCMC.

Despite this, there are a number of ways in which theory has had, and continues
to have, important implications for the practical use of MCMC. In this paper, we
concentrate on two areas: theoretical bounds on time to stationarity (Section 3), and
validity of adaptive MCMC algorithms (Section 4); for additional background see
e.g. [24] and the references therein.

2 Asymptotic Convergence

The first and most basic question about MCMC is whether it converges asymptoti-
cally, i.e. whether it is true that for sufficiently large n, the distribution of Xn is close
to π(·). This is a bare minimal requirement for an MCMC algorithm to be “valid”.

On a finite state space X , it is well known that if a time-homogeneous Markov
chain is irreducible and aperiodic, then it has a unique stationarity distribution π(·),
to which it will converge in distribution as n→∞.

In this context, “irreducible” means that for all x,y ∈ X , y is accessible from x,
i.e. there is n ∈ N such that Pn(x,{y}) ≡ P(Xn ∈ {y} |X0 = x) > 0. This is clearly
impossible on a continuous (uncountable) state space X , since the subset {y ∈ X :
∃n ∈ N, P n(x,{y}) > 0} is always countable. However, it is possible to weaken
the condition “irreducible” to that of φ-irreducible, meaning there exists a non-zero
σ -finite measure φ on X such that for all measurable A ⊆ X with φ(A) > 0, and
all x ∈ X , there exists n ∈ N such that Pn(x,A) > 0. It is then well known (see
e.g. [18, 33, 24]) that if a Markov chain (on a general countably-generated state
space X ) is φ-irreducible and aperiodic, and possesses an stationarity probability
distribution π(·) (which is no longer guaranteed), then asymptotic convergence still
holds, and in fact

lim
n→∞ sup

A⊆X
|Pn(x,A)−π(A)| = 0 , π-a.e. x ∈ X . (1)

For example, if the Markov chain transition probabilities all have positive den-
sities with respect to Lebesgue measure on Rd , then we can simply let φ(·) be
Lebesgue measure, to see that φ-irreducibility is satisfied (and aperiodicity follows
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immediately as well). More generally, φ-irreducibility follows if the n-step transi-
tions Pn(x, ·) have positive densities on subsets which expand to X as n→∞.

Such considerations are usually sufficient to easily guarantee asymptotic conver-
gence of MCMC algorithms which arise in practice. However, results such as (1)
only apply when n→∞. This leads to numerous questions, such as: How large
must n be before Pn(x,A) ≈ π(A)? And, how can the Markov chain be modified
to make this convergence faster? Each of these questions can be approached experi-
mentally, through repeated simulation and analysis of output for specific examples.
However, they can also be considered theoretically, as we now discuss.

3 Quantitative Convergence Bounds

In this section, we consider the question of how to obtain rigorous, quantitative
bounds on the total variation distance to stationarity of a Markov chain {Xn} to its
stationary distribution π(·), i.e. how to bound

‖L(Xn)−π‖ := sup
A⊆X

|P(Xn ∈ A)−π(A)| .

Of course, if the Markov chain is complicated and high dimensional (as we assume
here), then L(Xn) is complicated too, so our task is non-trivial.

While there are many approaches to this problem, the one we shall consider here
is based on the coupling inequality. Specifically, let {Xn} and {X′n} be two different
copies of the Markov chain, each marginally following the transition probabilities
P(x, ·). Assume that {X′n} was started in stationarity, so that P(X′n ∈A)= π(A) for
all n and A. Then by writing P(Xn ∈A)= P(Xn ∈A, Xn =X′n)+P(Xn ∈A, Xn �=
X′n), and similarly for X′n, it follows that

‖L(Xn)−π‖ = supA⊆X |P(Xn ∈ A)−π(A)|
= supA⊆X |P(Xn ∈ A)−P(X′n ∈ A)|
= supA⊆X |P(Xn ∈ A, Xn �=X′n)−P(X′n ∈ A, Xn �=X′n)|
≤ P(Xn �=X′n) .

In other words, to bound ‖L(Xn)− π‖, it suffices to “force” Xn = X′n with
high probability. However, this presents its own challenges. In particular, if X is
continuous, then if {Xn} and {X′n} proceed independently, then we will usually
have P(Xn = X′n) = 0, which is of no help. On the other hand, if we can define
{Xn} and {X′n} jointly in a way that increases P(Xn = X′n), then this can help to
bound convergence. One way to accomplish this is with small sets, as we discuss
next.
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3.1 Minorisation Conditions (Small Sets)

Suppose we know that P(x, ·)≥ ε ν(·), for all x ∈C ⊆X , for some “overlap” prob-
ability measure ν(·). That is,

P(x,A) ≥ ε ν(A), x ∈ C, A⊆ X . (2)

Such inequalities are called minorisation conditions, and the subset C is called a
small set. For background, see e.g. [18, 24].

For example, if P(x,dy) has a density f (x,y) with respect to Lebesgue measure
λ(·), and f (x,y) ≥ δ for x ∈ C and y ∈ B, then (2) is satisfied with ε = δ λ(B) and
ν(A) = λ(A∩B)/λ(B). In particular, it is often easy enough to verify (2) even if
the details of the transitions P(x, ·) are quite complicated.

If (2) holds, then whenever (Xn−1,X
′
n−1) ∈ C×C, we can use Nummelin split-

ting [20, 18, 24] to jointly update Xn and X′n in such a way that Xn = X′n with
probability at least ε. Thus, we have managed to “force” Xn = X′n with non-zero
probability, as desired.

Putting this together, it follows that for any j ∈ N,

‖L(Xn)−π‖ ≤ (1− ε)j +P(Nn−1 < j), (3)

where Nn−1 = #{m : 0≤m≤ n−1, (Xm,X
′
m) ∈ C×C} is the number of “oppor-

tunities” that the two chains have had to couple by time n.
If C =X , then Nn−1 = n, and (3) reduces (with j = n) simply to ‖L(Xn)−π‖ ≤

(1− ε)n. This is a very precise and useful inequality, which gives an exponentially-
decreasing upper bound on the distance to stationarity, depending only on the value
of ε from (2).

However, in typical MCMC applications it will not be possible to take C = X
due to the inherently “unbounded” nature of the Markov chain. In this case, we
need other methods to control Nn. One idea is through a drift condition, as we now
discuss.

Remark. Of course, strictly speaking, MCMC algorithms are always run on real
computers which are finite-state machines, so in some sense the state space X is
always finite. But it is much more useful to model the state spaces as being truly in-
finite, rather than try to obtain bounds based on some machine-imposed truncation.

3.2 Drift Conditions

Suppose there is some function V : X → [0,∞), and λ < 1 and Λ<∞, such that

E
(
V (Xn) |Xn−1 = x

)
≤ λV (x)+Λ, x ∈ X . (4)
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Such inequalities are called drift conditions. Intuitively, (4) means that when the
chain is at large values of V , it will tend to “drift” towards smaller V values.

For this to be useful, we need to be able to couple the chains when they are at
small values of V . So, suppose further that (2) is satisfied with C = {x ∈X : V (x)≤
D} for some D > 0, i.e. that

P(x, ·) ≥ ε ν(·) , ∀x with V (x)≤D. (5)

Condition (4) then implies that the pair {(Xn,X
′
n)} will tend to “drift” towards C×

C, so hopefully P(Nn−1 < j) will be small, thus making the bound (3) useful.

3.3 An Explicit Convergence Bound

Putting this all together proves the following bound [28, 30]. (For related results and
discussion see [19, 27, 10, 8, 5, 24].)

Theorem 1. If the drift condition (4) and minorisation condition (5) hold, with D >
2Λ

1−λ , then for any integer 0≤ j ≤ n,

‖L(Xn)−π‖ ≤ (1− ε)j + α−n+j−1Δj

(
1+ Λ

1−λ
+E

(
V (X0)

)
)
, (6)

where α = 1+D
1+2Λ+λD > 1 and Δ= 1+2(λD+Λ).

If we set j = cn� in (6) for appropriate small c > 0, then this provides a quanti-
tative, exponentially-decreasing upper bound on ‖L(Xn)−π‖, easily computed in
terms of only the quantities ε from (5) and λ and Λ from (4).

The question remains whether the bound (6) is useful in genuinely complicated
MCMC algorithms. We now consider an example.

3.4 A 20-Dimensional Example

We now consider a specific 20-dimensional MCMC algorithm. It corresponds to a
model for a James-Stein shrinkage estimator, and is a version of a Gibbs sampler
related to “variance components models” and “random-effects models”, as applied
to data from baseball hitting percentages; for details see [29] and the references
therein.

For present purposes, we need know only that the Markov chain’s state space is
given by

X = [0,∞)×R×R18 ⊆ R20 ,

and that if we write the chain’s state at time n as Xn = (A(n),μ(n),θ
(n)
1 , . . . θ

(n)
18 ),

then given Xn−1, the chain generates Xn by:
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A(n) ∼ IG

(
15

2
, 2+ 1

2

∑
(θ

(n−1)
i − θ

(n−1)
)2
)
;

μ(n) ∼ N
(
θ
(n−1)

, A(n)/18
)
;

θ
(n)
i ∼ N

(
μ(n)β+YiA

(n)

β+A(n)
,

A(n)β

β+A(n)

)

, 1≤ i ≤ 18 ;

where β is a known positive constant, {Yi} are the known actual data values, and

θ
(n) = 1

18

∑18
i=1 θ

(n)
i . Here N(m,v) is a normal distribution with mean m and vari-

ance v, while IG(a,b) is an inverse-gamma distribution with density proportional
to e−b/xx−(a+1). This chain is specifically designed so that it will have a station-
ary probability distribution π(·) equal to the posterior distribution for the particular
Bayesian statistical model of interest.

This chain represents a typical statistical application of MCMC. In particular, the
state space is high-dimensional, and the transition densities are known but messy
functions of data values without any particularly nice structure or symmetry. We
know the chain has a stationarity distribution π(·), but know little else.

On the positive side, it is easily seen that the transition densities for this chain
are positive throughout X . So, the asymptotic convergence (1) must hold. However,
quantitative bounds on the time to stationarity are more challenging, and might at
first glance appear intractable. However, using Theorem 1, we are able to achieve
this.

Our first challenge is to verify the drift condition (4). To do this, we choose the
drift function

V (A,μ,θ1, . . . ,θ18)=
18∑

i=1

(θi−Y)2 ,

where Y = 1
18

∑18
i=1Yi . (Intuitively, V measures how far our current vector of values

are from the “center” of the given data.) It is then messy but reasonably straightfor-
ward to compute [29] that (4) is satisfied with λ= 0.000289 and Λ= 0.161.

Our next challenge is to verify the minorisation condition (5). To do this, we take
D = 1, and compute [29] that (5) is satisfied with ε = 0.0656.

We then apply Theorem 1 to conclude that, starting with θ(0)i = Y for all i (say),
and setting j = n/2 (for n even, say), we have

‖L(Xn)−π‖ ≤ (0.967)n+ (0.935)n(1.17) .

This is the precise quantitative bound that we sought. In particular, with n = 140,
we have that

‖L(X140)−π(·)‖ ≤ 0.009 < 0.01 .

In other words, we have proved that the chain will “converge” (to within 1% of
stationarity) after at most 140 iterations.

Although this is just an upper bound on convergence (and, indeed, convergence is
probably actually achieved after 10 or fewer iterations), it is the only known rigorous
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bound. And, since it is very quick and easy to run the Markov chain for 140 iterations
on a computer, this bound is of clear practical benefit. Similar bounds have been
obtained for other practical examples of MCMC, see e.g. [28, 16].

Remark. We refer to this example as 20-dimensional since the state space is an
open subset of R20. However, since the θi are conditionally independent given A

and μ, one could also say that this Gibbs sampler has just three components, A, μ,
and θ , where θ happens to live in R18 instead of R.

4 Adaptive MCMC

For a given state space X and target probability distribution π(·), there are many
possible MCMC algorithms which will converge asymptotically. An important prac-
tical question is, which MCMC choice is “best”, or at least good enough to converge
after a feasible number of iterations?

Even within a given class of MCMC algorithms, choices of related tuning pa-
rameters can be crucial in the algorithms success. A number of recent papers
[14, 1, 3, 25, 26, 34, 4, 2] have considered the possibility of having the computer
modify the Markov chain transitions while the chain runs, in an effort to seek better
convergence. This raises a number of theoretical and practical issues, which we now
discuss.

4.1 A Toy Example

Suppose π(·) is a simple distribution on the trivial state space X = {1,2,3,4,5,6},
with π(x) > 0 for all x ∈X . (For definiteness, take π(x)= 0 for x �∈X .) Fix γ ∈N,
e.g. γ = 2. Consider a “random-walk Metropolis” (RWM) algorithm, defined as
follows:
• Given Xn, first propose a state Yn+1 ∈ Z, with

Yn+1 ∼ Uniform{Xn−γ, . . . ,Xn−1,Xn+1, . . . ,Xn+γ } .
• Then, with probability min[1, π(Yn+1)

/
π(Xn)], accept this proposal by set-

ting Xn+1 = Yn+1.
• Otherwise, with probability 1−min[1, π(Yn+1)

/
π(Xn)], reject this proposal

by setting Xn+1 =Xn.

It is easily seen that these transition probabilities have π(·) as a stationary dis-
tribution, and are irreducible and aperiodic, so we have asymptotic convergence as
in (1), for any choice of γ ∈ N. (This example is discussed in [3, 25]; for an inter-
active display see [31].)

However, this still leaves the question of choice of γ . If γ = 1, the chain will
move at most one unit at each iteration, leading to slow convergence. On the other
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hand, if say γ = 50, then the chain will usually propose values outside of X which
will all be rejected, again leading to slow convergence. Best is a “moderate” value
of γ , e.g. γ = 4.

In a more complicated example, the best choice of a tuning parameter (like γ )
will be far less obvious. So, we consider the possibility of automating the choice of
γ . As an example, we might adapt γ as follows:
• Start with γ set to Γ0 = 2 (say).
• Each time a proposal is accepted, set Γn+1 = Γn+ 1 (so γ increases, and the

acceptance rate decreases).
• Each time a proposal is rejected, set Γn+1 = max(Γn− 1, 1) (so γ decreases,

and the acceptance rate increases).

This appears to be a logical way for the computer to seek out good choices of
γ , and in simulations [31] it appears to work well for a while. However, if (say)
π{2} is very small, then the chain will eventually get “stuck” with Xn = Γn = 1 for
long stretches of time. This is due to a certain asymmetry: for the adaptive chain,
entering the region {Xn = Γn = 1} is much easier than leaving it. In particular, this
adaptive chain does not converge to π(·) at all, but rather may converge to a different
distribution giving far too much weight to the state 1. That is, the adaption – which
attempted to improve the convergence – actually ruined the convergence entirely.

4.2 An Adaptive MCMC Convergence Theorem

In light of counter-examples like the above, we seek conditions which guarantee
that adaptive MCMC schemes will in fact converge. One such result is the follow-
ing, from [25]; for related results see e.g. [1, 3, 34, 4, 2]. To state it, define the “ε
convergence time function” Mε : X ×Y→ N by

Mε(x,γ ) = inf
{
n≥ 1 : ‖Pn

γ (x, ·)−π(·)‖ ≤ ε
}
.

Theorem 2. An adaptive scheme {(Xn,Γn)}, using transition kernels {Pγ }γ∈Y will
converge, i.e. limn→∞‖L(Xn)−π(·)‖ = 0, assuming (i) π(·) is stationary for each
individual Pγ , and (ii) the “Diminishing Adaptation” property that

lim
n→∞ sup

x∈X
‖PΓn+1(x, ·)−PΓn(x, ·)‖ = 0

in probability, and (iii) the “Containment” property that for all ε > 0, the values
{Mε(Xn,Γn)} remains bounded in probability as n→∞.

In this theorem, condition (i) is basic to any adaptive MCMC algorithm, and (ii)
can be ensured by careful design of the adaption, while (iii) is an unfortunate tech-
nical condition though it is nearly always satisfied in practical examples [4]. Fur-
thermore, these same conditions also guarantee central limit theorems (CLTs) for
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adaptive MCMC with bounded functionals, though not necessarily with unbounded
functionals [34].

In light of this theorem, we see that the toy example of 4.1 satisfies conditions (i)
and (iii), but not (ii). However, (ii) will be satisfied, and the chain will converge to
π(·), if we modify the adaption so that at time n, it only adapts with probability
p(n) for some probabilities p(n)→ 0, otherwise the value of γ is left unchanged.
In particular, we could choose, say, p(n) = 1/n, in which case we would still have∑

n p(n) = ∞ and thus still have an infinite amount of adaptation, and yet still
guarantee convergence.

4.3 A 100-Dimensional Example

For complicated examples in high dimensions, adaption is not as trivial as for the
example of Section 4.1, but it is still quite feasible.

For example, it is known (see [23] and the references therein) that if target distri-
bution π(·) is (approximately) a high-dimensional normal distribution with covari-
ance Σ , then the optimal Gaussian proposal distribution for a RWM algorithm is
equal to N(x, (2.38)2d−1Σ).

Now, the target covariance Σ is generally unknown, but it can be approximated
by Σn, the empirical covariance of the first n iterations of the Markov chain. This
suggests [14, 26] an adaptive MCMC algorithm with proposal distribution at the nth

iteration given by the mixture distribution

Qn(x, ·) = 0.95 N
(
x, (2.38)2d−1Σn

)
+ 0.05 N

(
x, (0.1)2d−1 Id

)

[if Σn is non-singular, otherwise say Qn(x, ·) = N
(
x, (0.1)2d−1 Id

)
]. Such algo-

rithms will generally satisfy condition (ii) of Theorem 2, and furthermore will sat-
isfy condition (iii) provided the tails of π(·) are not too heavy [4].

If we run [26] this algorithm on an example in dimension d = 100, then a trace
plot of the first coordinate (plotted against iteration number) looks as follows:

A close inspection of this plot shows that the first coordinate is initially “stuck” at
values very close to 0. Then, after about 300,000 iterations, the empirical Σn gets
close to the trueΣ , so the adaptive algorithm “finds” good proposal distributions and
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starts mixing well. At this point, the first coordinate mixes nicely and efficiently over
values concentrated between about −1 and 1, corresponding to accurate samples of
the first coordinate from the true target distribution π(·).

This interpretation can be confirmed by looking at a plot of the sub-optimality
factor bn ≡ d

(∑d
i=1λ

−2
in

)
/
(∑d

i=1λ
−1
in

)2, where {λin} are the eigenvalues of the

matrix Σ
1/2
n Σ−1/2. This quantity bn is known [23] to measure the convergence

slow-down factor of a chain using the covariance estimate Σn obtained after n itera-
tions, compared to a chain using the true covariance Σ . The plot clearly shows that
the values of bn are initially very large, and then get close to 1 after about 300,000
iterations:

This further confirms that after about 300,000 iterations, the adaptive scheme “finds”
good values of Σn which accurately approximate Σ , leading to fast and accurate
convergence. And, since the 100× 100 covariance matrix Σ involves 5,050 un-
known values, it seems clear that this optimisation could not have been done man-
ually, and that the adaptive MCMC scheme really was essential to achieving fast
convergence to π(·). Similar success has been found in other high-dimensional ex-
amples (see e.g. [14, 26]), and we expect that adaptive MCMC will be used more
often in the years ahead.

5 Connection with QMC?

In the context of a conference on “MCQMC”, it is reasonable to ask about the place-
ment of MCMC algorithms in the Monte Carlo (MC) / Quasi-Monte Carlo (QMC)
divide.

For the most part, MCMC algorithms are squarely on the MC side, using pseu-
dorandom number generators to power the iterations according to (approximately)
the laws of probability. Furthermore, much of the theoretical analysis, including that
discussed herein, uses probability theory and assumes the algorithms follow prob-
abilistic laws. However, it has been observed [21, 6, 22] that it is also possible to
power MCMC algorithms using quasi-random sequences.

In principle, QMC is “smarter” than just using (pseudo)random numbers, so
should be better. Furthermore, it is known [13, 7, 6] that using e.g. antithetic or
other not-entirely-random variates can sometimes speed up MCMC convergence.
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So, it seems that future MCMC work – both applied and theoretical – might make
more use of quasi-randomness and thus make more of a leap towards the QMC
world.

However, many of the ideas considered herein – ideas like “irreducible”, “cou-
pling”, “minorisation”, “drift”, “Diminishing Adaptation”, “Containment”, etc. –
all use probabilistic intuition and it is not clear how to translate them into QMC
ideas. Furthermore, in many cases we may not know enough about the (compli-
cated, messy, high-dimensional) target distribution to design QMC effectively, and
it might be easier to verify “weak” conditions like minorisation and drift.

Thus, in this paper, we have treated the algorithms as being “truly random”, i.e.
within the context of traditional Monte Carlo. However, we look forward to more
QMC ideas finding their way into MCMC in the future.

6 Summary

The main points of this article may be summarised as follows:
• MCMC algorithms are extremely widely used, in Bayesian statistics and else-

where.
• Quantitative convergence bounds are a very important topic for MCMC, with

both practical and theoretical implications.
• An approach using the coupling inequality, together with minorisation and

drift conditions, can provide specific, useful bounds (like “140”) on the convergence
times even of rather complicated Markov chains on continuous, high-dimensional
state spaces.
• For a given problem, many different MCMC algorithms are available, and it

can be difficult (though very important) to choose among them.
• Adaptive MCMC is a promising recent method of getting the computer to help

find better MCMC algorithms during the course of a run.
• Naive application of adaptive MCMC may fail to converge to π(·).
• However, theorems are available which prove the validity of adaptive MCMC

under certain conditions which can often be verified for specific adaptive schemes.
• Adaptive MCMC works well in some high-dimensional statistics-related ex-

amples, including an adaptive random-walk Metropolis (RWM) algorithm in di-
mension 100.
• While MCMC is traditionally on the “MC” side of the MC / QMC divide, we

anticipate greater connections between MCMC algorithms and quasi-Monte Carlo
ideas in the future.

And more generally:
• Theory informs the applied use of MCMC in many ways, thus providing an

excellent arena in which mathematical results can have a genuine and widespread
impact on applications of algorithms.
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It is to be hoped that many experts in MC and QMC will get more interested
in MCMC algorithms, and make further theoretical contributions to this interesting
and widely applicable area.
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MINT – New Features and New Results

Rudolf Schürer and Wolfgang Ch. Schmid

Abstract (t,m,s)-nets are among the best methods for the construction of low-
discrepancy point sets in the s-dimensional unit cube. Various types of construc-
tions and bounds are known today. Additionally there exist many propagation rules
connecting nets to other mathematical objects.

The MINT database developed by the authors is one of the most elaborate and
convenient tools for accessing information on many aspects of nets. In this article
we provide new information about MINT.

We also develop several new constructions by generalizing methods from coding
theory and show how these methods can be used for obtaining new (t,m,s)-nets. In
many cases the development of these new methods has been guided by MINT.

1 Introduction

The concepts of (t,m,s)-nets and (t, s)-sequences provide powerful methods for
the construction of low-discrepancy point sets in the s-dimensional unit cube. A
detailed theory was developed in [17] (see also [19, Chapter 4] for a survey or [22]
for recent results).

So far an overwhelming variety of different constructions as well as bounds
exists. Additionally the existence of nets and sequences is often linked to other
mathematical objects, e.g. algebraic function fields, linear codes, orthogonal ar-
rays, or even other nets and sequences. Connections of this type are usually re-
ferred to as “propagation rules”, and many such rules are known. A series of papers
[15, 6, 20, 21] gives an overview of important approaches. There have also been
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172 Rudolf Schürer and Wolfgang Ch. Schmid

attempts to determine the best nets available in a given setting by the publication
of tables of net parameters in [15, 6] and, with a slightly different intention, in [2].
However, parts of these tables were outdated before the articles appeared in print.

The most convenient and up-to-date access to such tables is provided by MINT
(acronym for “Minimal t”), our web-based database system which is available on
the Internet at the address

http://mint.sbg.ac.at/

This system overcomes the former problems of printed tables and provides a number
of hitherto unavailable services to the scientific community, many of them described
and discussed in [32, 33].

After the introduction of basic notations and concepts we present new features of
the MINT database.

Then we describe several new propagation rules for ordered orthogonal arrays
and generalized codes. These rules have been found by generalizing existing ones
which have been known so far only for orthogonal arrays or linear codes (direct
product method, construction X, generalized matrix-product construction). This
work has been guided on the one hand by the information in MINT about opti-
mal parameters, on the other hand by the objective to enhance our database and to
improve the data in the tables. Furthermore, we show the improvements of these
new methods in examples determined by MINT.

2 Basic Notations and Concepts

Nets and Sequences

A (t,m,s)-net in base b is a point set with bm points in the s-dimensional half-open
unit cube [0,1)s with certain distribution properties. The concept has been intro-
duced by Niederreiter in [17], generalizing the special cases with b = 2 considered
by Sobol′ [36] and with t = 0 and b prime considered by Faure [9]. An excellent
introduction to this area of research can be found in Chapter 4 of Niederreiter’s
monograph [19].

The definition of (t,m,s)-nets is as follows:

Definition 1. Let 0 ≤ t ≤m and b ≥ 2 be integers. A multiset of M = bm points in
[0,1)s is a (t,m,s)-net in base b if every interval

s∏

i=1

[
ai

bdi
,
ai+1

bdi

)
(1)

with non-negative integers ai,di , ai < bdi for i = 1, . . . , s, and
∑s

i=1 di =m− t (i.e.,
volume 1/bm−t ) contains exactly bt points of the multiset.

http://mint.sbg.ac.at/


Se
co

nd
 p

ro
of

s

MINT – New Features and New Results 173

Fig. 1 A (0,4,2)-net in base b = 2 and all intervals of the form (1) with volume 1/24.

Example 1. Figure 1 shows the 24 = 16 points in [0,1)2 of a (0,4,2)-net in base
b= 2. The five small images contain the same point set together with all 80 intervals
of the form described in (1) with volume 1/24 = 1/16. It is easy to verify that each
of these intervals contains exactly one point of the net.

In [17] it is shown that the star discrepancy of a (t,m,s)-net N can be bounded
by

D∗M(N )≤ c(s,b)bt
logs−1M

M
+O

(
bt logs−2M

)
,

where c(s,b) is a constant depending only on s and b. Hence, for given b, s, and m,
the term bt controls the star discrepancy of N and a low star discrepancy can only
be expected for small values of t . Thus t is called the quality parameter of N and
one is primarily interested in (t,m,s)-nets with t-values being as small as possible.
In particular (t,m,s)-nets are low discrepancy point sets provided that the quality
parameter t is bounded for M = bm→∞ (which turns out to be possible).

The main goal of MINT is to determine for which quadruples (b, t,m,s) a
(t,m,s)-net in base b can exist and for which it cannot. An important subclass of
nets are digital nets:

Definition 2. A (t,m,s)-net in a prime power base b is a digital (t,m,s)-net over Fb

if the b-adic digit vectors of the points (interpreted as vectors over Fb using arbitrary
bijections {0, . . . ,b−1} ↔ Fb) form a vector space over Fb.

An important tool for the construction of (digital) nets are (digital) (t, s)-sequences,
which can be thought of as an infinite nesting of (digital) nets with size m =
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t, t + 1, . . . (for a formal definition see [17], [19], and [26]). Every (t, s)-sequence
in base b yields (t,m,s+1)-nets in base b for all m ≥ t [17, Theorem 5.15], every
digital (t, s)-sequence over Fb yields digital (t,m,s+1)-nets over Fb for all m ≥ t

[26, Lemma 1 and 2], and every digital (t, s)-sequence is also a (t, s)-sequence.
Well-known constructions for (t, s)-sequences include the sequences due to

Sobol′ [36], Faure [9], Niederreiter [18], and Niederreiter and Xing [25, 26, 27, 37].

Ordered Orthogonal Arrays

Ordered orthogonal arrays (OOAs) were introduced independently in [10] and [16]
in an attempt to formalize the underlying combinatorial structure of (t,m,s)-nets:

Definition 3. Let M , s, T , and k ≤ sT denote non-negative integers and let Sb
denote a set of cardinality b ≥ 2. Let S(s,T )b denote the set of sT -tuples over Sb
indexed by elements from {1, . . . , s} × {1, . . . ,T }. An ordered orthogonal array
OOA(M,s,Sb,T ,k) is a multiset A of M elements of S(s,T )b such that each pos-
sible projection on k coordinates indexed by

(1,1), . . . , (1,k1) | · · · | (s,1), . . . , (s,ks)
with k1 + . . .+ ks = k is balanced, i.e., each of the bk possible k-tuples over Sb
appears the same number of times (namely M/bk times) in such a projection. The
parameter T is called the depth, k the strength of the OOA. The M elements of A
are called runs of A.

For a prime power b, an OOA A is called linear over the finite field Fb if Sb = Fb

and A is a vector space over Fb.

Note that an OOA(M,s,Sb,1,k) (i.e., an OOA with depth 1) is an orthogonal
array OA(M,s,Sb,k). Thus OOAs are a generalization of orthogonal arrays (OAs).
It is easy to see that an OOA with depth T ′ < T (and otherwise unchanged parame-
ters) can be constructed from an OOA with depth T simply by discarding columns
(i,j) with j > T ′. In particular, an OA can be obtained from every OOA, whereas
the embedding of an OA in an OOA with depth T > 1 is not always possible.

The connection between nets and OOAs has been established in [10, 16], where
it is shown that a (digital) (m− k,m,s)-net in base b is equivalent to a (linear)
OOA(bm,s,{0, . . . ,b−1},m,k):
• The OOA A is obtained from the net N based on the b-adic expansion of the

coordinates of its points. Every point y= (y1, . . . ,ys) ∈N ⊂ [0,1)s yields a run
(x(i,j))(i,j)∈{1,...,s}×{1,...,m} of A with x(i,j) = ⌊

bjyi
⌋

mod b.
• On the other hand, a net N ′ with the same parameters as N can be recovered

from A using the points

y′ = (y′1, . . . ,y′s) with y′i =
m∑

j=1

x(i,j)

bj
.
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Thus OOAs establish a framework for discussing nets (for T = m) as well as OAs
(for T = 1).

Generalized Codes

In the following let b be a prime power. For a linear OA A ⊆ F
(s,1)
b

∼= F
s
b one can

consider the dual

A⊥ := {
x ∈ F

s
b : 〈x,y〉 = 0 for all y ∈A

}
.

It is well-known that if A has strength k, the Hamming distance of two different
vectors in A⊥ is at least k+1. Thus the dual of a linear OA(bm,s,Fb,k) is a linear
[s,s−m,k+1]-code over Fb and vice versa. This result can be generalized to OOAs
in the following way [13, 24]:

Definition 4. Let n, s, T , and d ≤ sT + 1 denote non-negative integers and let Fb

denote the finite field with b elements. Define the weight function w : F(s,T )
b → N0

as

w(x(1,1), . . . ,x(1,T ) | · · · | x(s,1), . . . ,x(s,T )) :=
s∑

i=1

min
{
j ∈ N0 : x(i,j+1) = . . .= x(i,T ) = 0

}

and the metric d on F
(s,T )
b as d(x,y) := w(x−y).

A non-empty subset C ⊆ F
(s,T )
b is a generalized ((s,T ),N,d)-code if |C| = N

and d(x,y) ≥ d for all x �= y ∈ C. If C is a linear subspace of F
(s,T )
b , then C is a

generalized linear [(s,T ),n,d]-code with n= dimC, i.e., n= logb N .
We omit the term “generalized” if the meaning is clear.

Note that for depth T = 1 this definition coincides with the usual definition of
linear codes. To be precise, every linear [(s,1),n,d]-code is a linear [s,n,d]-code
over the same field and vice versa. The duality between linear OAs and linear codes
can be generalized in the following form: the dual of a linear OOA(bm,s,Fb,T ,k)

is a linear [(s,T ),sT −m,k+1]-code over Fb and vice versa [13, 24].
Figure 2 sums up the dependencies between all described classes of objects. Ar-

rows indicate that the existence of an object with given parameters b, s, t , and (ex-
cept for sequences) m implies the existence of another object with the same param-
eters. To establish non-existence results, implications run in the opposite direction.
MINT tracks the existence of all these objects (except of the non-linear (general-
ized) codes in the bottom row) in order to establish upper and lower bounds on their
parameter range. Since March 2007 the information for other objects but nets and
sequences is not only calculated in the back-end, but can actually be queried using
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Fig. 2 Classes of objects tracked by MINT.

Table 1 MINT can create tables for the following projections.

Find depending on Restriction

t,k (m,s), (m,n), or (s,n) none
s,n (t,m), (t,k), or (m,k) none

t,m,n (s,k) none
m,k (t, s) T =∞
t,m,s (k,n) T <∞
m,s,k (t,n) T <∞

the web front-end (see the following section). MINT as described in [32] was only
aware of sequences, nets, and OAs.

3 New Features in MINT

An in-depth discussion of the basic functionality provided by MINT, in particular
the generation of parameter tables and construction trees for (t,m,s)-nets, can be
found in [32]. Here we focus on more advanced and new features which have been
implemented after the publication of [32].

The arguably most important new feature in MINT is querying information about
other objects than nets and sequences. It is now possible to obtain information about
orthogonal arrays and linear codes, as well as about OOAs and generalized linear
codes with depth T > 1.

When MINT is used for querying results for (generalized) linear codes, the orig-
inal set of parameters (code length s, dimension of the dual OOA m, strength of the
dual OOA k, and quality parameter of the net t) becomes inappropriate. Therefore,
the additional parameters n (for the dimension of the code) and d (for its minimum
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Fig. 3 Screenshot of MINT: a maximal-d-table for linear codes over F2, showing the largest min-
imum distance d known for [s,n,d]2-codes with given s and n.

distance) have been introduced. Obviously these parameters depend on each other,
satisfying the relations m= t+ k, d = k+1, and m+n= T s. Even though the full
information was contained in the database from the very beginning of MINT, these
additional parameters extend the number of use cases significantly. Since for every
query the optimal value of one parameter is determined based on two other given
parameters, the number of possible queries has multiplied due to the introduction of
the additional parameters n and d . Table 1 lists all possible cases for selecting given
and dependent parameters. The variable d is not included because it can always be
used instead of k, due to the relation d = k+1.

A priori it is not apparent that all 10 query types are well defined. As a matter of
fact it turns out that some of them can only be used for certain depths. These restric-
tions are listed in the third column of Table 1. For details on how these restrictions
arise see [33].

Figure 3 contains a screenshot of MINT showing a maximal-d-table for linear
codes over F2. Asking for the largest possible minimal distance d of an [s,n,d]b-
code is a very common question in the field of coding theory. MINT can now answer
this question, even though it is translated behind the scenes into the questions for
the largest strength k = d−1 of a linear OA(bs−n,s,Fb,k).
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Fig. 4 Screenshot of MINT: a maximal-k-table for linear OOA(2m,(m+n)/3,F2,3,k), i.e., for
linear OOAs with depth T = 3 over F2 with given dimension m and codimension n.

MINT is able to generate parameter tables for all depths and all projections which
are mathematically well defined, provided the requested data is in the range included
in the database. Some of these combinations yield rather unexpected results, which
give new insight into the geometry of the parameter range of OOAs. For example
Figure 4 shows a maximal-k-table for linear OOA(2m,(m+n)/3,F2,3,k), i.e., for
linear OOAs with depth T = 3 over F2 with given dimension m and codimension
n. This query is only defined if m+n is a multiple of the depth 3, resulting in the
banded structure of the table. The limits of k when n or m tends towards infinity
exist or diverge, respectively, if they are defined to take only those m and n into
account whose sum is a multiple of 3. Furthermore, note that the table shows upper
as well as lower bounds on k, and that these bounds coincide for many cases, even
though no extensive work on OOAs in depth T = 3 has been done.

Figure 5 contains another interesting example. It shows upper bounds on the
maximal length s of linear OOAs and generalized linear codes with depth T = 3 over
F2 for given code dimension n and quality parameter t . Translated to the language of
codes, the net’s quality parameter t corresponds to the Singleton defect of the code,
i.e., the difference between the minimum distance d and its upper bound T s−n+1
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Fig. 5 Screenshot of MINT: a maximal-s-table for linear OOA(23s−n,s,F2,3,3s − n− t) or
[(s,3),n,3s−n− t+1]2-codes, i.e., for linear OOAs or generalized linear codes with depth T = 3
over F2 with given code dimension n and Singleton defect t .

given by the (generalized) Singleton bound [31]. Codes with Singleton defect t = 0
are commonly known as maximum distance separable or MDS codes. Thus the first
line of the table gives the maximum length of generalized MDS codes with depth
T = 3 over F2.

For dimension n≤ 1 the length is unbounded due to the existence of trivial codes
with arbitrary length. For n≤ bT extended (generalized) Reed–Solomon codes [31]
show that a length of s = b+1 can be reached; in this example this coincides with
the upper bounds established using the linear programming bound (see [12]). For
n > bT , however, the analogy to ordinary codes breaks: Whereas for T = 1 the
existence of MDS codes with length s = n+ 1 is easily established, it turns out
that for T ≥ 3 there exist dimensions n for which no generalized MDS code can be
constructed at all. These cases are marked by the crosses in the table. As n increases,
larger values of t are affected, too. More details on generalized MDS codes can be
found in [7] (see also [34] and [31]).

One more example is given in Figure 6. It shows details about upper and lower
bounds on the optimal t-parameters of (t,19,71)-nets in base b = 4. A feature



Se
co

nd
 p

ro
of

s
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Fig. 6 Screenshot of MINT: details about the optimal t parameter of (digital) (t,19,71)-nets in
base b = 4.

which has been added recently is that MINT is now able to handle propagation rules
with an arbitrary number of parents. In this example the generalized (u,u+ v)-
construction for nets (Section 5 and [23]) is applied to four different nets in order to
construct the digital (12,19,71)-net over F4.

Furthermore note that OOAs with depth 1 < T < k are used in the construction
tree if they occur as intermediate results between the application of otherwise un-
related propagation rules. The (1,4,17)-net (the third building block of the final
(12,19,71)-net) is constructed based on an OA(44,17,F4,3), i.e., the depth of the
OA has to be increased from T = 1 (the OA) to at least T = k = 3 (equivalent to the
net). Since the embedding from T = 1 to T = 2 is done with a different propagation
rule than from T = 2 to T = 3, both propagation rules are listed, generating and
using the intermediate OOA with depth T = 2.

Finally, note that MINT often provides additional information for the applied
constructions, propagation rules, and bounds. For example, when the generalized
Rao bound [14] is applied for proving the non-existence of a (6,18,60)-net in base
4, the exact lower bound on the number of points is given.
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One new feature in MINT is noteworthy for everyone who has ever struggled with
adapting to unfamiliar variable naming conventions: It is now possible to freely con-
figure the variable names used by MINT, e.g. one can rename an “[s,n,d]b-code”
(MINT’s default notation) to an “[n,k,d]q -code” (the standard naming convention
in coding theory) by a single mouse click.

4 New Nets based on OOA Propagation Rules

Since many constructions are known for linear codes, using them as building blocks
for nets suggests itself. To this end, the depth of the OOA has to be increased from 1
to k. Whereas decreasing the depth of an OOA (without affecting other parameters)
is trivial, increasing the depth is not possible in general. To overcome this problem,
the following coding-theoretic construction for nets [2] can be used:

1. Start with a linear OOA(bm,T s,Fb,1,k) with T = 1, i.e., an orthogonal array,
which is the dual of a linear code.

2. Fold it to obtain a linear OOA(bm,s,Fb,T ,k) (by a simple rearrangement of the
basis vectors).

3. A Gilbert–Varšamov (GV) argument [2] shows that the depth can be increased to
k such that an OOA(bm,s,Fb,k,k) is obtained, which is equivalent to an (m−
k,m,s)-net.

Direct Product of OOAs

Coding-theoretic constructions for nets can be improved by applying a propagation
rule for OOAs between Step 2 and 3. Propagation rules are methods for constructing
an OOA based on another one. Many propagation rules are known for orthogonal
arrays and linear codes. A comprehensive introduction to the theory of codes is
given in [11]. We have generalized more than a dozen of these rules to the setting
of OOAs. Some of them seem to be particularly useful for the construction of new
nets.

Lemma 1. If A is a (linear) OOA(bm,s,Sb,T ,k) and S
(1,T )
b is the complete

OOA(bT ,1,Sb,T ,T ) (consisting of all possible runs), then A×S
(1,T )
b is a (linear)

OOA(bm+T ,s+1,Sb,T ,k).

The proof is straightforward and has been given in [33]. Based thereupon, a new
infinite family of nets can be obtained. These parameters were unknown for u≥ 6.

Theorem 1. A digital (3u−3,3u+3,2u)-net over F2 exists for all u≥ 1.

Proof. Applying Lemma 1 to the OOA(23u+1,2u−1,F2,2,6) from [1] give a linear
OOA(23u+3,2u,F2,2,6) for all u ≥ 1. Based thereupon, a GV-argument (see [2])
shows that the OOA can indeed be embedded in a digital net. ()
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Many other nets (with previously unknown parameters) can be obtained using
Lemma 1 and similar methods:

Corollary 1. (t,m,s)-nets with the following parameters exist:
over F2 over F3 over F4 over F5 over F7 over F8

(15,23,40) (8,16,23) (21,43,42) (5,12,26) (12,29,39) (16,34,66)
(17,23,128) (18,36,29) (37,60,131) (26,55,56) (16,37,49) (17,37,66)
(103,189,66) (24,50,33) (38,62,131) (61,100,253) (25,54,73) (31,67,98)

(45,87,57) (39,64,131) (62,102,253) (30,66,79) (41,86,130)
(40,66,131) (63,104,253) (36,77,97) (48,101,145)
(41,68,131) (64,106,253)

(65,108,253)

Proof. We prove only the first result. All other results are established similarly (see
MINT for details). From a digital (21− 8,21,39)-net over F2 constructed in [8] a
linear OOA(221,39,F2,2,8) can be obtained by reducing T to 2. Lemma 1 gives a
linear OOA(223,40,F2,2,8), which can be embedded in a (23−8,23,40)-net over
F2 using a GV argument. ()

Construction X

The following two results generalize Construction X from coding theory [11, Ch. 18,
§7] and establish a method for obtaining nested generalized codes from (t, s)-
sequences.

Theorem 2. Let C1 denote a linear [(s,T ),n1,d1]-code, which is a subcode of a lin-
ear [(s,T ),n2,d2]-code C2, and let Ce denote a linear [(se,T ),ne,de]-code, all over
the same field. Then a linear [(s+ se,T ),n1+ne,d2+de]-code can be constructed
provided that n1+ne ≤ n2 and d2+de ≤ d1.

Proof. Let G1, G2, and Ge denote the generator matrices of C1, C2, and Ce, respec-
tively, such that the rows of G1 are a subset of the rows of G2. Let G′2 denote the
ne× s matrix consisting of ne rows of G2 that are not in G1. Then the new code is
defined by the (n1+ne)× ((s+ se),T ) generator matrix

G :=
(

G1 0n1×(se,T )

G′2 Ge

)
.

G obviously generates an [(s+ se,T ),n1+ne]-code C, so it remains to show that
the minimum distance of C (which is given by the minimum weight of all non-
zero codewords) is at least d2+ de. All code words formed by a non-trivial linear
combination of the first n1 rows of G have a weight of at least d1 ≥ d2+de because
these are essentially the code words of C1 with seT additional 0’s appended. All
other non-zero code words have a weight of at least d2+ de because they are built
using a non-zero code word from C2 next to a non-zero code word from Ce. ()
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Remark 1. Usually Ce will be chosen such that n2 = n1+ne and d1 = d2+de, how-
ever in some situations a smaller value of ne or de may also yield good results.

Remark 2. Note that the linear case of Lemma 1 can be derived from Theorem 2
as follows: Let C1 = C2 = A⊥ and apply Construction X using the auxiliary
[(1,T ),0,T +1]-code Ce. Then take the dual of the resulting code.

Lemma 2. Given a digital (t, s)-sequence over Fb and a fixed positive integer T ≥
t/s, one can construct a chain of linear generalized codes C0 ⊂ ·· · ⊂ CsT−t with
parameters [(s,T ),n,sT −n− t+1] for n= 0, . . . , sT − t .

Proof. We show the construction of the dual codes. Let S be a (digital) (t, s)-
sequence in base b. We can construct (linear) OOA(bt+k, s,Sb,T ,k) AT ,k for all
T ≥ 1 and all integers k with 0 ≤ k ≤ sT − t by taking the first bt+k runs of S
(which gives an OOA(bt+k, s,Sb,∞,k)) and reducing its depth to T . ()
Remark 3. These OOAs are weaker than the (linear) OOA(bt+k, s+1,Sb,T ,k) ob-
tained by the usual construction of a net from a sequence followed by extracting the
embedded OOA from the net. However, the OOAs AT ,k from Lemma 2 have the
additional property that AT ,k ⊂AT ,k+1. In the linear case, AT ,k is a linear subspace
of AT ,k+1 and A⊥T ,k+1 ⊂A⊥T ,k .

Based thereupon many nets with new parameters can be found.

Corollary 2. The following nets exist:
over F2 over F3 over F4 over F7 over F8

(107,198,67) (47,92,57) (22,45,43) (12,28,40) (18,39,68) (43,91,131)
(48,94,58) (30,60,56) (16,36,50) (18,40,67) (44,94,131)
(48,95,57) (17,39,50) (19,42,67) (49,104,145)
(56,109,66) (26,57,74) (32,69,99) (51,109,146)
(56,110,65) over F5 (37,80,97) (33,72,99) (53,114,148)
(59,118,65) (27,58,56) (39,85,99) (34,75,99) (53,115,145)
(60,119,67) (42,89,130)

Proof. We only show the existence of a (47,92,57)-net over F3. All other results
are established similarly (see MINT for details).

An algebraic function field with full constant field F3, genus 40 and at least 56
rational places exists. Based thereupon a (40,55)-sequence over F3 can be obtained
using Niederreiter–Xing’s construction [26]. Lemma 2 with T = 5 yields a general-
ized [(55,5),190,46]-code C1 and [(55,5),198,38]-code C2. Theorem 2 applied to
C1 ⊂ C2 with a [(3,5),8,8]-code Ce results in a [(58,5),198,46]-code or (after tak-
ing the dual) an OOA(392,58,F3,5,45). A GV-argument establishes the existence
of the (47,92,57)-net over F3. ()
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5 A Generalized Matrix-Product Construction for Generalized
Codes

The following construction is a generalization of the Blokh–Zyablov concatenation
[4] (stated in modern terms and including many examples in [5, Section 4.1.9]) to
generalized codes with arbitrary depth. We will see that this construction is highly
powerful and a large number of well-known constructions can be derived from it as
simple corollaries. The name of this construction is due to previous generalizations
in [3] and [23] (see our remarks subsequent to Theorem 4).

Theorem 3. Let
{0} = C′0 ⊂ C′1 ⊂ ·· · ⊂ C′r = F

(s′,T ′)
b

denote a chain of linear [(s′,T ′),n′j ,d ′j ]b-codes (the inner codes) and let v1, . . . ,vs′T ′ ∈
F
(s′,T ′)
b denote vectors such that C′j is generated by v1, . . . ,vn′j for j = 1, . . . , r .

Furthermore let Cj denote (not necessarily linear) ((s,T ),Nj ,dj )bj -codes with
bj = bej and ej := n′j −n′j−1 for j = 1, . . . , r (the outer codes).

Then an
((ss′,T T ′),N1 · · ·Nr, min

1≤j≤r|Cj |>1

djd
′
j )b-code

can be constructed as

C :=
⎧
⎨

⎩

r∑

j=1

ϕj (xj ) : xj ∈ Cj for j = 1, . . . , r

⎫
⎬

⎭
, (2)

where ϕj : F(s,T )
bj

→ F
(ss′,T T ′)
b replaces each symbol (regarded as a vector of length

ej over Fb) of a codeword from Cj by the corresponding linear combination of the ej
vectors vn′

j−1+1, . . . ,vn′j . The elements in the resulting vector are grouped such that

column (a′,τ ′) (with 1 ≤ a′ ≤ s′ and 1 ≤ τ ′ ≤ T ′) from C′j and column (a,τ ) (with
1≤ a ≤ s and 1≤ τ ≤ T ) from Cj determine column ((a−1)s′ +a′, (τ −1)T ′ +τ ′)
in the resulting code word in C.

Remark 4. Using the trivial [(s,T ),0, sT + 1]-code {0} as Cj for one or more j ’s
is perfectly valid and can lead to good results in certain cases. Since the minimum
distance sT +1 does not affect the minimum distance of C at all, these codes can be
excluded in the calculation of the minimum distance of C (therefore the additional
condition “

∣∣Cj
∣∣> 1” in the range of the minimum).

Remark 5. The construction is linear, i.e., if C1, . . . ,Cr are linear [(s,T ),nj ]-codes,
then C is a linear [(ss′,T T ′),e1n1+ . . .+ernr ]-code and its generator matrix can be
determined easily: Applying ϕj to an Fb-linear generator matrix of Cj yields ejnj
additional rows of the generator matrix of C.

Proof (of Theorem 3). The length ss′, the depth T T ′, and the alphabet size b of C
follow from the definition of ϕj . |C| is given by N1 · · ·Nr provided that the gener-
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ated code words are distinct, which is shown by the following examination of the
minimum distance of C.

Consider two arbitrary codewords x,y ∈ C and let xj ,yj ∈ Cj denote the code
words in the original codes defining x and y (cf. (2)). If xj = yj for all j = 1, . . . , r ,
then x = y and nothing needs to be shown. Thus, let u denote the smallest in-
teger such that xu �= yu. We have 1 ≤ u ≤ r and |Cu| > 1. Write xu − yu =(
c(k,l)

)
(k,l)∈{1,...,s}×{1,...,T }.

Since ϕj is linear,

x−y=
u−1∑

j=1

ϕj (xj −yj )+ϕu(xu−yu)+
r∑

j=u+1

ϕj (xj −yj )

with the first sum being a concatenation of code words from C′u−1 and the second
sum equal to 0. ϕu(xu− yu) is a concatenation of code words from C′u \ C′u−1 (for
non-zero c(k,l)) and 0∈ C′u (for all (k, l)with c(k,l)= 0). Since the sum of a codeword
from C′u\C′u−1 and one from C′u−1 is again in C′u\C′u−1, there is a corresponding code
word of weight at least d ′u in x−y for each non-zero c(k,l).

Now let ϕ(c(k,l)) denote the code word from C′u generated by c(k,l). Write
w(xu−yu)=∑s

k=1 τk with 0 ≤ τk ≤ T and c(k,τk) �= 0 for τk �= 0. Similarly, write

w(ϕ(c(k,l)))=∑s′
j=1 τ

′
(k,l),j . Then we have

d(x,y) = w(x−y)

=
s∑

k=1

s′∑

j=1

{
(τk−1)T ′ + τ ′(k,τk),j if τk �= 0 and τ ′(k,τk),j �= 0

0 otherwise

≥
s∑

k=1
τk>0

s′∑

j=1

τkτ
′
(k,τk),j

=
s∑

k=1
τk>0

τkw(ϕ(c
(k,τk)))

≥ w(xu−yu)d ′u ≥ dud
′
u ,

which concludes the proof. ()
In the important case that the inner codes are normal codes (i.e., T ′ = 1) a slightly

stronger result is possible, which often leads to improved parameters. It allows to
use codes with different lengths as outer codes.

Theorem 4. Let C′0 ⊂ . . . ⊂ C′r as in Theorem 3, but restricted to T ′ = 1. Let
v1, . . . ,vs′ be defined as in Theorem 3, but assume (without loss of generality) that
the first i− 1 elements of vi are 0. In other words, (v1, . . . ,vs′)T forms an s′ × s′
upper triangular matrix.

Let bj and ej be defined as in Theorem 3. For positive integers s1 ≤ s2 ≤ ·· · ≤ sr
let Cj denote a (not necessarily linear) ((sj ,T ),Nj ,dj )bj -code for j = 1, . . . , r .

Then an
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((s1e1+ . . .+ srer ,T ),N1 · · ·Nr, min
1≤j≤r|Cj |>1

djd
′
j )b-code

can be constructed.

Proof. The construction is performed in three steps:

1. Let s := sr and create new codes Dj by embedding each code Cj in F
(s,T )
bj

by

prepending 0 ∈ F
(s−sj ,T )
bj

to each code word.

2. Obtain a new code D by applying Theorem 3 using C′1, . . . ,C′r as inner codes and
D1, . . . ,Dr as outer codes.

3. For i = 1, . . . , s′ choose j minimal such that e1+ . . .+ej ≥ i and construct a code
C from D by deleting all columns (k,τ ) in D with k = 0s′ + i,1s′ + i, . . . , (s−
sj −1)s′ + i.
The total number of deleted blocks is e1(s−s1)+ . . .+er(s−sr ), thus the length
of C is s1e1+ . . .+ srer . The deleted positions are 0 ∈ F

T
b for each ϕj (xj ), either

due to a 0 in vi or due to a 0 appended to xj ∈ Cj , thus neither the dimension nor
the minimum distance of D is affected.

()
Remark 6. For T ′ > 1 only weaker results are possible. The reason is that for T ′ = 1
the matrix (v1, . . . ,vs′)T is in upper triangular form and can be used for cancelling
one additional block in each row. This is not possible for T ′ > 1, because in this
setting an additional block can only be cancelled every T ′ rows.

A large number of well-known constructions turn out to be special cases of The-
orem 3 or 4.

• As already stated in the introduction to this section, the restriction of Theorem 3
to normal codes (i.e., T = T ′ = 1) has been given in essentially complete form
by Blokh and Zyablov in [4], which predates all other publications by more than
two decades. The only other restrictions in this work are that only the case for
b = 2 and for linear codes is considered.

• The complete result of Theorem 4 for T = T ′ = 1 and linear codes can be found
(without proof, but with many examples) in [5].

• The constructions in [28] and [3] are essentially equivalent to T = T ′ = 1, e1 =
·· · = er = 1, and s1 = ·· · = sr .

• The matrix-product construction for digital nets presented in [23] considers the
case ej = 1 for all j , for linear codes, and uses upper triangular NSC (non-
singular by columns) matrices for obtaining the vectors vi , which is essentially
equivalent to restricting the inner codes to (truncated) Reed–Solomon codes [30].

• For r = 2, v1 = (1,1), v2 = (0,1), and e1 = e2 = 1 we obtain the well-known
(u,u+ v)-construction, which is due to [29] for depth 1 and s1 = s2, [35] for
depth 1 and s1 ≤ s2, and [2] for generalized codes.

• The (u,u+ av,u+ v+w)-construction follows for r = 3, v1 = (1,1,1), v2 =
(0,a,1) with a /∈ {0,1}, v3 = (0,0,1), and e1 = e2 = e3 = 1.
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• Concatenation of the inner code C′i with the outer code C1 can be achieved by
setting e1 = i and using a trivial [s′,0, s′ +1]-code for j > 1.

• The trace code from F
bs
′ to Fb is obtained by using vi = ei for i = 1, . . . , s′,

r = 1, and e1 = s′.

Finally we show that Theorem 4 is applicable to digital nets in its full generality:

Corollary 3. Let v1, . . . ,vs′ and C′j , bj , and ej for j = 1, . . . , r be defined as in
Theorem 4. For positive integers s1 ≤ s2 ≤ ·· · ≤ sr let Nj denote digital (tj ,mj ,sj )-
nets over Fbj .

Then a digital (t,m,s)-net over Fb with

s =
r∑

j=1

ej sj ,

m=
r∑

j=1

ejmj ,

and
t ≤m+1− min

1≤j≤r(mj − tj +1)d ′j

can be constructed.

Proof. Set dj := mj − tj + 1 for j = 1, . . . , r and T := maxj=1,...,r dj d
′
j − 1. Each

net Nj defines a linear OOA(b
mj

j ,sj ,Fbj ,T ,dj − 1), which is the dual of a linear
[(sj ,T ),T sj −mj ,dj ]bj -code Cj . Applying Theorem 4 using C′1, . . . ,C′r as inner
codes and C1, . . . ,Cr as outer codes yields an

[(s,T ),
r∑

j=1

ej (T sj −mj),d]b-code C

with
d = min

1≤j≤r dj d
′
j = min

1≤j≤r(mj − tj +1)d ′j .

The dual of C is a linear
OOA(bm,s,Fb,T ,d−1)

because

T s−
r∑

j=1

ej (T sj −mj)=
r∑

j=1

ejmj =m.

This OOA can be embedded in a digital (m+1−d,m,s)-net over Fb because T ≥
d−1. ()
Example 2. Choose the Reed–Solomon codes over F4 with dimensions 0, . . . ,4 as
C′0 ⊂ . . .⊂ C′4, i.e., C′j is a [4,j,5−j ]4-code and ej = 1 for all j = 0, . . . ,4. Using a
(0,1,17)-net as N1, a (1,3,17)-net as N2, a (1,4,17)-net as N3, and a (4,11,20)-
net as N4 (all digital over F4), Corollary 3 yields a digital (t,m,s)-net over F4 with
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s = 17+17+17+20= 71, m= 1+3+4+11= 19, and

t ≤ 19+1−min{2 ·4,3 ·3,4 ·2,8 ·1} = 19+1−8= 12.

No (t,19,71)-net over F4 with a lower t value is known, as we can retrieve in MINT
(see Figure 6).
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9. Faure, H.: Discrépance de suites associées à un système de numération (en dimension s). Acta
Arithmetica 41, 337–351 (1982)

10. Lawrence, K.M.: A combinatorial characterization of (t,m,s)-nets in base b. Journal of Com-
binatorial Designs 4(4), 275–293 (1996)

11. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
Amsterdam (1977)

12. Martin, W.J.: Linear programming bounds for ordered orthogonal arrays and (t,m,s)-nets.
In: H. Niederreiter, J. Spanier (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp.
368–376. Springer-Verlag (2000)

13. Martin, W.J., Stinson, D.R.: Association schemes for ordered orthogonal arrays and (t,m,s)-
nets. Canadian Journal of Mathematics 51(2), 326–346 (1999)

14. Martin, W.J., Stinson, D.R.: A generalized Rao bound for ordered orthogonal arrays and
(t,m,s)-nets. Canadian Mathematical Bulletin 42(3), 359–370 (1999)

15. Mullen, G.L., Mahalanabis, A., Niederreiter, H.: Tables of (t,m,s)-net and (t, s)-sequence
parameters. In: H. Niederreiter, P.J.S. Shiue (eds.) Monte Carlo and Quasi-Monte Carlo Meth-
ods in Scientific Computing, Lecture Notes in Statistics, vol. 106, pp. 58–86. Springer-Verlag
(1995)

16. Mullen, G.L., Schmid, W.Ch.: An equivalence between (t,m,s)-nets and strongly orthogonal
hypercubes. Journal of Combinatorial Theory, Series A 76(1), 164–174 (1996)

17. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatshefte für Mathe-
matik 104(4), 273–337 (1987)

http://www.mathi.uni-heidelberg.de/~yves/Matritzen/OOAs/q=2/M2(39,7,21,8).html
http://www.mathi.uni-heidelberg.de/~yves/Matritzen/OOAs/q=2/M2(39,7,21,8).html
http://www.mathi.uni-heidelberg.de/~yves/Matritzen/OOAs/q=2/M2(39,7,21,8).html


Se
co

nd
 p

ro
of

s

MINT – New Features and New Results 189

18. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. Journal of Number Theory
30(1), 51–70 (1988)

19. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF
Regional Conference Series in Applied Mathematics, vol. 63. SIAM Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (1992)

20. Niederreiter, H.: Constructions of (t,m,s)-nets. In: H. Niederreiter, J. Spanier (eds.) Monte
Carlo and Quasi-Monte Carlo Methods 1998, pp. 70–85. Springer-Verlag (2000)

21. Niederreiter, H.: Constructions of (t,m,s)-nets and (t, s)-sequences. Finite Fields and Their
Applications 11(3), 578–600 (2005)

22. Niederreiter, H.: Nets, (t, s)-sequences, and codes. In: A. Keller et al. (eds.) Monte Carlo and
Quasi-Monte Carlo Methods 2006, pp. 83–100. Springer-Verlag (2008)
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Recursive Computation of Value-at-Risk and
Conditional Value-at-Risk using MC and QMC

Olivier Bardou, Noufel Frikha, and Gilles Pagès

Abstract Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are two
widely-used measures in risk management. This paper deals with the problem of
estimating both VaR and CVaR using stochastic approximation (with decreasing
steps): we propose a first Robbins-Monro (RM) procedure based on Rockafellar-
Uryasev’s identity for the CVaR. The estimator provided by the algorithm satisfies
a Gaussian Central Limit Theorem. As a second step, in order to speed up the initial
procedure, we propose a recursive and adaptive importance sampling (IS) procedure
which induces a significant variance reduction of both VaR and CVaR procedures.
This idea, which has been investigated by many authors, follows a new approach
introduced in Lemaire and Pagès [20]. Finally, to speed up the initialization phase
of the IS algorithm, we replace the original confidence level of the VaR by a deter-
ministic moving risk level. We prove that the weak convergence rate of the resulting
procedure is ruled by a Central Limit Theorem with minimal variance and we illus-
trate its efficiency by considering typical energy portfolios.
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France
e-mail: gilles.pages@upmc.fr

P. L’Ecuyer, A.B. Owen (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008,
DOI 10.1007/978-3-642-04107-5 11, © Springer-Verlag Berlin Heidelberg 2010

193

mailto:olivier-aj.bardou@gdfsuez.com
mailto:noufel-externe.frikha@gdfsuez.com
mailto:gilles.pages@upmc.fr
http://dx.doi.org/10.1007/978-3-642-04107-5_11


Se
co

nd
 p

ro
of

s

194 Olivier Bardou, Noufel Frikha, and Gilles Pagès

1 Introduction

Following financial institutions, energy companies are developing a risk manage-
ment framework to face the new price and volatility risks associated to the growth
of energy markets. Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are
certainly the best known and the most common risk measures used in this context,
especially for the evaluation of extreme losses potentially faced by traders. Naturally
related to rare events, the estimation of these risk measures is a numerical challenge.
The Monte Carlo method, which is often the only available numerical device in such
a general framework, must preferably be associated to efficient variance reduction
techniques to remedy its slow convergence rate.

By definition, the VaRα of a given portfolio at a specified level α ∈ (0,1) is the
lowest amount not exceeded by the loss with probability α. The CVaRα is the con-
ditional expectation of the portfolio’s losses above the VaRα . Compared to VaR,
CVaR is known to have better properties. It is a coherent risk measure in the sense
of Artzner, Delbaen, Eber and Heath, see [2]. The most commonly used method to
compute VaR is the inversion of the simulated empirical loss distribution function
using Monte Carlo or historical simulation tools. Another well-known method relies
on linear or quadratic expansion of the distribution of the loss see e.g. [6], [7], [14],
[15] and [24]. However, such approximations are no longer acceptable when con-
sidering portfolios over a long time interval as it is often the case in energy markets
(1 year up to 10 years) or when the loss is a functional of a general path-dependent
Stochastic Differential Equation (SDE).

In the context of hedging or optimizing a portfolio of financial instruments by
reducing the Conditional Value-at-Risk, it is shown in [23] that it is possible to com-
pute both VaR and CVaR (actually calculate VaR and optimize CVaR) by solving
a convex optimization problem with a linear programming approach. It consists in
generating loss scenarios and then in introducing constraints in the linear program-
ming problem. Although a different problem is addressed in this paper, the method
described in [23] can be used to compute both VaR and CVaR. The advantage of
such an approach is that it is possible to estimate both VaR and CVaR simultane-
ously and without assuming that the market prices have a specific distribution like
normal or log-normal. The main drawback is that the dimension (number of con-
straints) of the linear programming problem to be solved is equal to the number
of simulated scenarios. In our approach, we are not constrained by the number of
generated sample paths used in the estimation.

The idea to compute both VaR and CVaR with one procedure comes from the
fact that they appear as the solutions and the value of the same convex optimisation
problem (see Proposition 1) as demonstrated in [23]. Moreover, the convex objec-
tive function of the minimization problem reads as an expectation and its gradient
too, so that a method to estimate both quantities is to devise a stochastic gradient
algorithm and an averaging procedure. Thus, we derive a global recursive procedure
which is an alternative method compared to the basic two step procedure which con-
sists in first estimating the VaR using the inversion of the empirical function method
and then estimating the CVaR by averaging. This optimization approach provides
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a convex Lyapunov function (the gradient of the objective function) for the system
which allows to derive the almost sure (a.s.) convergence of the VaR procedure.
Moreover, the implementation of the algorithm is very easy. From a practical point
of view, there is no reason to believe that this procedure behaves better than this
alternative method. However, the proposed algorithm is just a building block of a
recursive and adaptive IS procedure. As a matter of fact, basically in this kind of
problem we are interested by events that are observed with a very small probability
(usually less that 5%, 1% or even 0.1%) thus we obtain few significant replications
to update our estimates. When α is close to 1 (otherwise it is not a numerical chal-
lenge), VaR and CVaR are fundamentally related to rare events thus as a necessary
improvement, we also introduce a recursive variance reduction method. To compute
more accurate estimates of both quantities of interest, it is necessary to generate
more samples in the tail of the loss distribution, the area of interest. A general tool
used in this situation is IS. The basic principle of IS is to modify the distribution of
the loss by an equivalent change of measure to obtain more “interesting” samples
that will lead to better estimates of the VaR and CVaR. The main issue is to find the
right change of measure (among a parametrized family) that will induce a signifi-
cant variance reduction. In [10], the VaRα is estimated by using a quantile based on
a weighted empirical distribution function and combined with a projected IS algo-
rithm. This kind of algorithm is known to converge after a long stabilization phase
and provided that the sequence of compact sets has been specified appropriately.
Specifying adequately the sequence of compact sets is a significant challenge. Our
IS parameters are optimized by an adaptive unconstrained (i.e., without projections)
RM algorithm which is combined with our VaR-CVaR procedure. The fact that our
estimates for both VaR and CVaR are recursive makes the algorithm well suited for
the recursive IS procedure.

One major issue that arises when combining the VaR-CVaR algorithm with the
recursive IS procedure is to ensure importance sampling parameters do move appro-
priately toward the critical risk area. They may remain “stuck” at the very beginning
of the IS procedure. To circumvent this problem, we make the confidence level α
slowly increase from a low level (say 50%) to the true value of α by introducing
a deterministic sequence αn that converges to α at a prespecified rate. This kind
of incremental threshold increase has been proposed previously in [25] in a differ-
ent framework (use of cross entropy). We finally discuss the possibility of plugging
low-discrepancy sequences instead of pseudo-random numbers in the VaR-CVaR
algorithm.

The paper is organized as follows. In Section 2 we briefly present the VaR-CVaR
Robbins Monro algorithm in its first and naive version. It’s a building block that
is necessary in order to combine it with adaptive IS. Then, we introduce and study
the adaptive variance reduction procedure and present how it modifies the asymp-
totic variance of our first CLT in Section 2.2. Numerical illustrations are given in
Section 3.
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2 Design of the VaR-CVaR Stochastic Approximation Algorithm

2.1 Devise of a VaR-CVaR Procedure (First Phase)

2.1.1 Definition of the VaR and the CVaR

We consider that the loss of the portfolio over the considered time horizon can be
written as a function of a structural finite dimensional random vector, i.e., L= ϕ(X)

where X is a R
d -valued random vector defined on the probability space (Ω,A,P)

and ϕ : Rd → R is a Borel function. Thus, ϕ is the function describing the com-
position of the portfolio which remains fixed and X is a structural d-dimensional
random vector used to model the market prices over a given time interval. We only
rely on the fact it is possible to sample from the distribution of X. For instance,
in a Black-Scholes framework, X is generally a vector of Brownian increments re-
lated to the Euler scheme of a diffusion. The VaR at level α ∈ (0,1) is the lowest
α-quantile of the distribution ϕ(X):

VaRα(ϕ(X)) := inf {ξ | P(ϕ(X)≤ ξ)≥ α} .
Since limξ→+∞P(ϕ(X)≤ ξ)= 1 and limξ→−∞P(ϕ(X)≤ ξ)= 0, the VaR always
exists. We assume that the distribution function of ϕ(X) is continuous (i.e., without
atoms) thus the VaRα is the lowest solution of the equation:

P(ϕ(X)≤ ξ)= α.

Another risk measure generally used to provide information about the tail of the
distribution of ϕ(X) is the Conditional Value at Risk (CVaR) (at level α). Assuming
that ϕ(X) ∈ L1(P), the CVaR is defined by:

CVaRα(ϕ(X)) := E [ϕ(X)|ϕ(X)≥ VaRα(ϕ(X))] .

2.1.2 Stochastic Gradient and Averaging Procedure: A Naive Approach

In this paragraph, we present the framework and the first building block of the VaR-
CVaR algorithm. Obviously, there is no reason to believe that this first and naive
version can do better than others method, like the inversion of the empirical distri-
bution function. However, our quantile estimate has the advantage to be recursive
thus it can be combined later with a recursive IS algorithm in a suitable way.

Proposition 1. Let V be the function defined on R by: ξ �→ ξ+ 1
1−αE [(ϕ(X)− ξ)+)].

Suppose that the distribution function of ϕ(X) is continuous. Then, the function V

is convex, differentiable and the VaRα(ϕ(X)) is any point of the set:

argmin V = {
ξ ∈ R | V ′(ξ)= 0

}= {ξ | P(ϕ(X)≤ ξ)= α}
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where V ′ is the derivative defined of V . Moreover, for every ξ ∈ R, V ′(ξ) =
E [H1(ξ,X)] where

H1(ξ,x) := 1− 1

1−α
1{ϕ(x)≥ξ}.

Furthermore, CVaRα(ϕ(X))=minξ∈RV (ξ).

Proof. Since the function ξ �→ (ϕ(x)− ξ)+, x ∈ R
d , is convex, the function V is

convex. P(dw)-a.s., H1(ξ,X(w)) exists at every ξ ∈ R and

P(dw)-a.s., |H1(ξ,X(w))| ≤ 1∨ α

1−α
.

Thanks to Lebesgue Dominated Convergence Theorem, one can interchange dif-
ferentiation and expectation, so that V is differentiable with derivative V ′(ξ) =
E [H1(ξ,X)] = 1− 1

1−αP(ϕ(X) > ξ) and reaches its absolute minimum at any ξ∗
satisfying P(ϕ(X) > ξ∗)= 1−α , i.e., P(ϕ(X)≤ ξ∗)= α. Moreover,

V (ξ∗)= ξ∗E[1ϕ(X)>ξ∗ ]+E[(ϕ(X)− ξ∗)+]
P(ϕ(X) > ξ∗)

= E
[
ϕ(X)|ϕ(X) > ξ∗

]
.

This completes the proof. ()
Since we are looking for ξ for which E [H1(ξ,X)]= 0, we implement a stochas-

tic gradient descent derived from the Lyapunov function V to approximate ξ∗ :=
VaRα(ϕ(X)), i.e., we use the RM algorithm:

ξn = ξn−1−γnH1(ξn−1,Xn), n≥ 1 (1)

where (Xn)n≥1 is an i.i.d. sequence of random variables with the same distribution
as X, independent of ξ0, with E [|ξ0|] <∞ and (γn)n≥1 is a positive deterministic
step sequence (decreasing to 0) satisfying

∑

n≥1

γn =+∞ and
∑

n≥1

γ 2
n <+∞. (2)

A natural idea in order to estimate C∗ :=CVaRα is to devise an averaging procedure
of the above quantile search algorithm, namely C0 and for n= 1, 2, ...,

Cn = 1

n

n−1∑

k=0

ξk+ 1

1−α
(ϕ(Xk+1)− ξk)+ = Cn−1− 1

n
H2(ξn−1,Cn−1,Xn). (3)

where H2(ξ,c,x) := c− ξ − 1
1−α (ϕ(x)− ξ)+. The resulting algorithm reads for

n≥ 1: {
ξn = ξn−1−γnH1(ξn−1,Xn), ξ0 ∈ R

Cn = Cn−1− 1
n
H2(ξn−1,Cn−1,Xn), C0 = 0.

(4)

At this stage, we are facing a two-time scale algorithm in (4), i.e., with different steps
γn and 1/n. Since H1 is free of Cn, we know that the stepsize sequence that provides
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the best convergence rate (see e.g. [9]) is γn = γ1/n where γ1 has to be chosen
adequately. So we verify a posteriori that the resulting algorithm could theoretically
be reduced to a one-time-scale procedure. Our numerical experiments indicate that
the one-time scale procedure provides less variance during the first iterations than
others procedures with different steps size. A slight modification consists in using
both procedures with the same step size (γn)n≥1 satisfying condition (2) (for more
details about the different possible choice we refer to [3]). The resulting algorithm
can be written as for n≥ 1

{
ξn = ξn−1−γnH1(ξn−1,Xn), ξ0 ∈ R,

Cn = Cn−1−γnH2(ξn−1,Cn−1,Xn), C0 = 0.
(5)

The recurrence for (ξn) does not involve (Cn) so its a.s. convergence is ensured by
the classical RM Theorem (see e.g. [9]). Then, it is possible to show that Cn con-
verges a.s. toward C∗ provided that the distribution function of ϕ(X) is continuous
and increasing and that ϕ(X) is square integrable (we refer to [3] for a proof). To
achieve the best convergence rate, we are led to introduce the Ruppert and Polyak’s
averaging principle (see [17] and [26]). If we set γn = cn−p, with 1

2 <p < 1, c > 0
in (5) and compute the Césaro means of both components

{
ξn := 1

n

∑n
k=1 ξk = ξn− 1

n+1 (ξn− ξn)

Cn := 1
n

∑n
k=1Ck = Cn− 1

n+1 (Cn−Cn)
(6)

where (ξk,Ck), k ≥ 0 is defined by (5) then, provided that

E
[|ϕ(X)|2a]<+∞ for some a > 1, (7)

and that the distribution of ϕ(X) has a positive probability density fϕ(X) on its
support, we obtain asymptotically efficient estimators which satisfy the Gaussian
CLT:

√
n

(
ξn− ξ∗

Cn−C∗

)
L→N (0,Σ) (8)

where the asymptotic covariance matrix Σ is given by

Σ =
⎛

⎝
α(1−α)
fϕ(X)(ξ

∗)
α

(1−α)fϕ(X)(ξ∗)E
[
(ϕ(X)− ξ∗)+

]

α
(1−α)fϕ(X)(ξ∗)E

[
(ϕ(X)− ξ∗)+

] 1
(1−α)2 Var(ϕ(X)− ξ∗)+

⎞

⎠ . (9)

Remark 1. The result above is not surprising. The asymptotic variance of the quan-
tile estimate based on the inversion of the empirical distribution function is the same
than the one of our procedure ξn, see for example [27], page 75.

The bottleneck in using the above algorithm lies in its very slow convergence ow-
ing to the fact that P(ϕ(X) > ξ∗)= 1−α is close to 0 in practical implementations,
so that we observe few significant replications to update our estimates. Moreover,
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in the bank and energy sectors, practitioners usually deal with huge portfolio com-
posed by hundreds or thousands of risk factors and options. The evaluation step of
ϕ(X) may require a lot of computational time. Consequently, to achieve accurate
estimates of both VaRα and CVaRα with reasonable computational effort, the above
algorithm (6) needs to be speeded up by an IS procedure to recenter simulation
“where things do happen”, i.e., scenarios for which ϕ(X) exceeds ξ .

2.2 Variance Reduction Using Adaptive Recursive Importance
Sampling (Final Phase)

In this section, we investigate the IS by translation. We show how the IS algorithm
investigated in [20] can be combined adaptively with our first algorithm. Conse-
quently, every new sample is used to dynamically optimize the IS change of measure
and the estimate of both VaR and CVaR.

2.2.1 Some Background on Recursive IS

Suppose that F(X) is a square integrable random variable such that P(F (X) �= 0) >
0 and where X is a random vector with density function p over R

d . The main idea
of IS by translation, applied to the computation of E[F(X)], is to use the invariance
of the Lebesgue measure by translation: it follows that for every θ ∈ R

d ,

E[F(X)]=
∫

Rd

F (x)p(x)dx=
∫

Rd

F (x+θ)p(x+θ)dx=E

[
F(X+ θ)

p(X+ θ)

p(X)

]
.

(10)
Among all these random vectors with the same expectation, we want to select the
one with the lowest variance, i.e., the one with lowest quadratic norm

Q(θ) := E

[
F 2(X+ θ)

p2(X+ θ)

p2(X)

]
, θ ∈ R

d .

A reverse change of variable shows that:

Q(θ)= E

[
F 2(X)

p(X)

p(X− θ)

]
, θ ∈ R

d . (11)

Now if the density function p of X satisfies

(i) p is log-concave and (ii) lim‖x‖→+∞p(x)= 0 (12)

where ‖.‖ denotes the Euclidean norm, and

Q(θ) <+∞, ∀θ ∈ R
d (13)
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then, one shows that the function Q is finite, convex and goes to infinity at infinity,
thus argminθ Q =

{
θ ∈ R

d | ∇Q(θ)= 0
}

is non empty, where ∇Q is the gradient
of Q (for a proof, we refer to [20]). If ∇Q admits a representation as an expectation,
then it is possible to devise a recursive RM procedure to approximate the optimal
parameter θ∗, namely

θn = θn−1−γnK(θn−1,Xn), n≥ 1 (14)

where K is naturally defined by the formal differentiation of Q, for every x ∈ R
d :

K(θ,x)= F 2(x)
p(x)

p2(x− θ)
∇p(x− θ). (15)

Since we have no knowledge about the regularity of F and do not wish to have any,
we differentiate the second representation of Q in (11) and not the first one. IS using
stochastic approximation algorithms has been investigated by several authors, see
e.g. [16], [11] and [13] in order to “optimize” or “improve” the change of measure
in IS by a RM procedure. It has recently been studied in the Gaussian framework
in [1] where (15) is used to design a stochastic gradient algorithm. However, the
regular RM procedure (14) suffers from an instability issue coming from the fact
that the classical sub-linear growth assumption in quadratic mean in the Robbins-
Monro Theorem

∀θ ∈ R
d, E

[
K(θ,X)2

] 1
2 ≤ C (1+‖θ‖) (16)

is only fulfilled when F is constant, due to the behavior of the annoying term
p(x)/p(x− θ) as θ goes to infinity. Consequently, θn can escape at infinity at al-
most every implementation as pointed out in [1]. To circumvent this problem, a
“projected version” of the procedure based on repeated reinitializations when the
algorithms exits from an increasing sequence of compact sets (while the step γn
keeps going to 0) was used. This approach is known as the projection “à la Chen”.
It forces the stability of the algorithm and prevents explosion. Recently, IS using
stochastic algorithm was deeply revisited in [20] to remove the constraints intro-
duced by the original algorithm. Moreover, this construction is extended to a large
class of probability distributions and to diffusion process. Thanks to another trans-
lation of the variable θ , it is possible to plug back the parameter θ “into” F(X), the
function F having in common applications a known behavior at infinity.

2.2.2 Unconstrained Adaptive Importance Sampling Algorithm Applied to
the VaR-CVaR Procedure

Applied to the problem we are dealing with, the main idea is to twist (by translation)
the distribution of X in order to minimize the asymptotic variance of the two com-
ponents in the CLT (8): the asymptotic variances of the VaRα and CVaRα algorithm
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Var
(

1ϕ(X)≥ξ∗
)

fϕ(X)(ξ∗)
= α(1−α)

fϕ(X)(ξ∗)
and

Var
(
(ϕ(X)− ξ∗)+

)

(1−α)2
.

By importance sampling, it is not possible to modify the quantity fϕ(X)(ξ∗) since it
is an intrinsic constant which appears in the CLT (8) through the Jacobian matrix of
h, where h(ξ,C) := E [H(ξ,C,X)] and H(ξ,C,X) := (H1(ξ,C,X),H2(ξ,C,X)).
Consequently, we are led to find the parameters θ∗ and μ∗ minimizing the two
functionals:

Q1(θ,ξ
∗) :=E

[
1{ϕ(X)≥ξ∗}

p(X)

p(X− θ)

]
, Q2(μ,ξ

∗) :=E

[
(
ϕ(X)− ξ∗

)2
+

p(X)

p(X−μ)

]

(17)
under the conditions that for every (ξ,θ) ∈ R×R

d ,

E

[
(
1+ (ϕ(X)− ξ)2+

) p(X)

p(X− θ)

]
<+∞ (18)

and
∀ξ ∈ argmin V, P(ϕ(X) > ξ) > 0. (19)

By differentiation we easily prove that

∇θQ1(θ,ξ
∗) = E

[
1ϕ(X)≥ξ∗

p(X)

p2(X− θ)
∇p(X− θ)

]
, (20)

∇μQ2(μ,ξ
∗) = E

[(
ϕ(X)− ξ∗

)2
+

p(X)

p2(X−μ)
∇p(X−μ)

]
. (21)

The key idea is to introduce a third change of probability in order to control the
annoying terms p(X)/p(X− θ), p(X)/p(X−μ) by plugging back the parameters
θ and μ into 1{ϕ(X)≥ξ∗} and ϕ(X) respectively. Now we follow [20] to design a reg-
ular unconstrained Robbins-Monro algorithm which converges a.s. to the optimal
parameters θ∗ and μ∗ (without risk of explosion) provided the growth of x �→ ϕ(x)

at infinity can be explicitly controlled. From now on, we assume that there exist two
positive constants a, C > 0 such that

∀x ∈ R
d, |ϕ(x)|2 ≤ C ea‖x‖. (22)

We make the following assumption on the probability density p of X

∃b ∈ [1,2] such that

{
(i)

‖∇p(x)‖
p(x)

=O(||x||b−1) as ‖x‖→∞
(ii) ∃ ρ > 0 such that log(p(x))+ρ ‖x‖b is convex.

(23)
Then, one shows that under the conditions (18), (19), (22), (23), Q1 and Q2 are both
finite and differentiable on R

d with gradients given by
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∇Q1(θ,ξ
∗) := E

⎡

⎢⎢⎢
⎣

1ϕ(X−θ)≥ξ∗
p2(X− θ)

p(X)p(X−2θ)

∇p(X−2θ)

p(X−2θ)
︸ ︷︷ ︸

W1(θ,X)

⎤

⎥⎥⎥
⎦
, (24)

∇Q2(μ,ξ
∗) := E

⎡

⎢⎢⎢
⎣
(
ϕ(X−μ)− ξ∗

)2
+

p2(X−μ)

p(X)p(X−2μ)

∇p(X−2μ)

p(X−2μ)
︸ ︷︷ ︸

W2(μ,X)

⎤

⎥⎥⎥
⎦
. (25)

We refer to [20] for a proof. The two last expressions may look complicated at
first glance but, in fact, the weight term of the expectation involving the probability
density can be easily controlled by a deterministic function of θ . For instance, when

X
d=N (0;1),

W1(θ,X)= eθ
2
(2θ −X)

and more generally, under conditions (18) and (23), there exist two constants A and
B such that

|W1(θ,X)| ≤ e2ρ|θ |b (A‖x‖b−1+A‖θ‖b−1+B) (26)

so that this weight can always be controlled by a deterministic function of θ (for
more details, one can refer to [20]). Then by setting,

W̃1(θ,X) := e−2ρ|θ |bW1(θ,X), W̃2(μ,X) := e−2ρ|θ |b−a(‖μ‖2+1)W2(μ,X),

we can define K1 and K2 by

K1(ξ
∗,θ,x) := 1ϕ(X−θ)≥ξ∗W̃1(θ,x), K2(ξ

∗,μ,x) := (
ϕ(X−μ)− ξ∗

)2
+ W̃2(μ,x)

so that they satisfy the linear growth assumptions (16) and
{
θ ∈ R

d | E[K1(ξ
∗,θ,X)

]= 0
}
=
{
θ ∈ R

d | ∇Q1(θ,ξ
∗)= 0

}
,

{
μ ∈ R

d | E[K2(ξ
∗,μ,X)

]= 0
}
=
{
μ ∈ R

d | ∇Q2(μ,ξ
∗)= 0

}
.

Now, since we do not know either ξ∗ and C∗ (the VaRα and the CVaRα) respectively
we make the whole procedure adaptive by replacing at step n, these unknown param-
eters by their running approximation at step n−1. This finally justifies to introduce
the following global procedure. One defines the state variable Zn := (ξn,Cn,θn,μn)

where ξn, Cn denote the VaRα and the CVaRα approximations, θn, μn denote the
variance reducers for the VaR and the CVaR procedures. We update this state vari-
able recursively by

Zn = Zn−1−γnL(Zn−1,Xn), n≥ 1 (27)

where (Xn)n≥1 is an i.i.d. sequence with the same distribution as X, and L is defined
as follow L(z,x)= (L1(ξ,θ,x), L2(ξ,C,μ,x), K1(ξ,θ,x), K2(ξ,μ,x)) with
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L1(ξ,θ,x) := e−ρ‖θ‖b
(

1− 1

1−α
1{ϕ(x+θ)≥ξ}

p(x+ θ)

p(x)

)
(28)

L2(ξ,C,μ,x) := C−
(
ξ + 1

1−α
(ϕ(x+μ)− ξ)+

p(x+μ)

p(x)

)
. (29)

Theorem 1. (a) Convergence. Suppose E
[
ϕ(X)2

]
< +∞. Assume that conditions

(18), (19), (22), (23) are fulfilled and that the step sequence (γn)n≥1 satisfies (2).
Then,

Zn
a.s.−→ z∗ := (ξ∗,C∗,θ∗α,μ∗α)

where (Zn)n≥0 is the recursive sequence defined by (27), where C∗ = CVaRα and

(ξ∗,θ∗α,μ∗α) ∈ T ∗ :=
{
(ξ,θ,μ) ∈ R×R

d ×R
d : ξ ∈ argminV,

∇Q1(θ,ξ)= ∇Q2(μ,ξ)= 0
}
.

(b) Ruppert and Polyak CLT. Suppose that the assumptions of (a) hold and that the
density fϕ(X) of ϕ(X) is positive on its support, differentiable, and that (7) hold. Let
(ξn,Cn)n≥1 be the sequence defined by:

ξn := ξ0+ ...+ ξn−1

n
, Cn := C0+ ...+Cn−1

n
. (30)

This sequence satisfies the following CLT:

√
n

(
ξn− ξ∗
Cn−C∗

)
L→N (0,Σ∗) (31)

where the elements of Σ∗ are given by

Σ∗
1,1 =

1

fϕ(X)(ξ∗)
Var

(
1{ϕ(X+θ∗α )≥ξ∗}

p(X+ θ∗α)
p(X)

)
,

Σ∗
1,2 = Σ∗

2,1 =
Cov

((
ϕ(X+μ∗α)− ξ∗

)
+

p(X+μ∗α)
p(X)

,1{ϕ(X+θ∗α )≥ξ∗}
p(X+θ∗α )
p(X)

)

(1−α)fϕ(X)(ξ∗)
,

Σ∗
2,2 = Var

((
ϕ(X+μ∗α)− ξ∗

)
+
p(X+μ∗α)

p(X)

)
.

Proof. We give a summary of the arguments. (a) First one shows that the sequence
(ξn,θn,μn) converges a.s. using the classical Robbins-Monro Theorem (see e.g. [9]
or [12]). Then, the a.s. convergence of (Cn)n≥1 follows. (b) One applies the Ruppert
and Polyak’s Averaging Principle following a version established in [9] (p.169). ()
Remark 2. There exists a CLT for the sequence (Zn)n≥1 and for its empirical mean
(Zn)n≥1 thanks to the Ruppert and Polyak averaging principle. We only stated the
result for the components of interest (the ones which converge to VaR and CVaR).
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Now, let us point out an important issue. The IS procedure raises an important prob-
lem that can be noticed if we consider (27) and the definition of the two functions
K1 and K2 in (29). It is due to the fact that basically, we are dealing with rare events
to update the VaR and the IS procedures. Somehow, we have two RM procedures
(ξn)n≥1 and (θn,μn)n≥1 that are in competitive conditions, i.e., on one hand, we
added an IS procedure to (ξn)n≥1 to improve the convergence toward ξ∗, and on the
other hand, the adjustment of the parameters (θn,μn) are based on samples Xn+1
satisfying ϕ(Xn+1− θn) > ξn and ϕ(Xn+1−μn) > ξn which tend to become rare
events. Somehow, we “postponed” the problem resulting from rare events on the
IS procedure itself which may “freeze”. To circumvent this problem, we are led to
slightly modify the IS procedure.

2.2.3 How to Control the Move to the Critical Risk Area

In order to control the growth of θn and μn at the beginning of the algorithm, since
we have no idea on how to twist the distribution of ϕ(X), we can move slowly
toward the critical risk area at level α in which ϕ(X) exceeds ξ by replacing α by a
deterministic non decreasing sequence αn that converges to α in (27) and (29). This
kind of incremental threshold increase has been proposed previously in [25]. By
doing so, we only modify the VaR computation procedure ξn. Our aim is to devise an
artificial VaR companion procedure which will be dedicated to the optimization of
the IS parameters and not to the computation of VaR-CVaR. This VaR algorithm will
move slowly to the tail distribution of ϕ(X) and hence will drive the IS parameters.
In practice, we decide to plug a deterministic stepwise constant sequence, i.e., we
set αn = 50% for the first 3000-5000 first iterations then we set αn = 80% for 3000-
5000 first iterations and finally set αn = α when the sequence (θn,μn) has almost
converged. Numerically speaking, this kind of stepwise growth leads to a stable
IS procedure. The function L1 in (27) now depends of the current step n of the
procedure, namelyL1,n(ξn−1,Xn)= 1− 1

1−αn 1{ϕ(Xn)≥ξn−1} and the VaRα algorithm
ξn becomes

ξ̂n = ξ̂n−1−γnL1,n(ξ̂n−1,Xn), n≥ 1, ξ̂0 ∈ L1(P). (32)

If we replace ξn by ξ̂n into the procedure devised in (27), we obtain a new IS algo-
rithm defined by for n≥ 1

⎧
⎨

⎩

θ̂n = θ̂n−1−γnL3

(
ξ̂n−1, θ̂n−1,Xn

)
, θ0 ∈ R

d,

μ̂n = μ̂n−1−γnL4

(
ξ̂n−1, μ̂n−1,Xn

)
, μ0 ∈ R

d .
(33)

To establish the convergence of this new procedure, we rely on the Robbins-Monro
Theorem with remainder sequence (see e.g. [12]). Finally, we use (27) to estimate
the couple (ξ∗, C∗) in which (θn, μn) is replaced by (θ̂n, μ̂n). One shows that this
new sequence (ξn, Cn, θ̂n, μ̂n) satisfies the same CLT.
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Remark 3. When dealing with loss distribution depending on a path-dependent SDE
X, one can also replace the IS based on mean translation in a finite dimensional
setting by its equivalent based on a Girsanov transformation ([12] and [20]).

2.3 Quasi-Stochastic Approximation

It is rather natural to plug quasi-random numbers instead of pseudo-random num-
bers in a recursive stochastic approximation. In this framework, the loss distribution

ϕ(X) is replaced by Ψ (U) where U
d= U ([0,1]q) and ϕ(X)

d= Ψ (U). Such an idea
goes back to [19] in a one dimensional setting. We denote by F the loss distribution
function. We make the following assumption on Ψ ,

Ψ is continuous and ∀ u ∈ R, P(Ψ (U)= u)= 0. (34)

Let x := (xn)n≥1 be a uniformly distributed sequence over [0,1]q with low discrep-
ancy, i.e., the star discrepancy of the first n terms (see [21]) is O

(
n−1 (log(n)q)

)
.

From a theoretical point of view, the convergence of (ξn,Cn) can be derived from
the weak convergence (see e.g. [5]) of FΨ

n := 1
n

∑n
k=1 δΨ (xk) to F . For any subset A

of R, δx denotes the unit mass at x defined by δx(A) = 1A(x). We write D∗n(x,Ψ )

for the star discrepancy of the first n terms of x associated to the system and defined
naturally by

D∗n(x,Ψ ) := sup
u∈R

∣∣∣
∣∣
1

n

n∑

k=1

1Ψ (xk)≤u−F(u)

∣∣∣
∣∣
.

Suppose that (34) is satisfied. Suppose moreover that Ψ is Lipschitz and that the
probability density function f of Ψ (U) is bounded. Using theoretical results about
Jordan discrepancy (see [21], page 17), one can show that

ln(x) := max
1≤k≤n

kD∗k (x,Ψ )= o
(
n

1− 1
q
+ε)

, ∀ ε > 0.

Theorem 2. Let H1 : R×[0,1]q → R and H2 : R2×[0,1]q → R defined by:

H1(ξ,x) := 1− 1

1−α
1Ψ (x)≥ξ and H2(ξ,C,x) :=C−

(
ξ + 1

1−α
(Ψ (x)− ξ)+

)
.

Suppose that condition (34) is satisfied. Suppose that Ψ is Lipschitz and f is
bounded. Let γ := (γn)n≥1 be a non-increasing deterministic sequence of gain pa-
rameters satisfying

∑
γn =+∞, γnln→ 0 and

∑

n≥1

max
(
γn−γn+1,γ

2
n

)
ln <+∞. (35)

Then, the recursive procedure defined for every n≥ 1 by
{
ξn = ξn−1−γnH1(ξn−1,xn),

Cn = Cn−1−γnH2(ξn−1,Cn−1,xn),
(36)
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satisfies:
ξn→ ξ∗ and Cn→ C∗ as n→∞.

Proof. We give a summary of the arguments. Let L be the continuously differen-
tiable Lyapunov function defined for every x ∈ R by L(x) = √

1+ (x− ξ∗)2. A
Taylor expansion of L at ξn leads to

L(ξn+1)≤ L(ξn)−γn+1L
′(ξn)H1(ξ

∗,x)+Cγ 2
n+1

for some positive constant C. Using (35) and successive Abel transforms, one de-
duces the convergence of L(ξn) and then the convergence of ξn toward ξ∗. Then, the
convergence of Cn can be deduced easily. ()
Although, we do not have the rate of convergence of (36), in [19] some a priori
error bounds (for some specific RM algorithms) show that using low-discrepancy
sequences instead of pseudo-random numbers may significantly accelerate the con-
vergence.

3 Numerical Illustrations

The assets are modeled as geometric Brownian Motions. We assume an annual risk
free interest rate of r = 5% and volatility σ = 20%.

Example 1. We consider a portfolio composed of a short position in a power plant
that produces electricity from gas, day by day with a maturity of T = 1 month and 30
long positions in calls on electricity day-ahead prices all with the same strike K =
60. Electricity and gas initial spot prices are Se0 = 40 $/MWh and Sg0 = 3 $/MMBtu
(British Thermal Unit) with a Heat Rate equals hR = 10 Btu/kWh and generation
costs C = 5$/MWh. The loss can be written

30∑

k=1

er(T−tk)
((
Setk −hRS

g
tk
−C

)
+−

(
Setk −K

)
+
)
+ erT (C0−P c

0 )

where P c
0 ≈ 149.9 is an estimate of the price of the option on the power plant (ob-

tained by Monte Carlo using 500 000 samples) and C0 is the price of the call op-
tions which is equal to 3.8. We use four different values of the confidence level
α = 95%, 99%, 99.5%, and 99.9% for this example. In the RM procedure (27),
we set the step sequence γn = 1

np+100 , where p = 3/4. Choosing the stepsize se-
quence is an important challenge for the analyst who wishes to apply this method.
The numerical results are reported in Table 1. The first column denotes the num-
ber of steps used in the Robbins-Monro procedure in (27). The columns VaR and
CVaR corresponds to the estimations of the VaRα and the CVaRα using (30). The
columns VRVaR and VRCVaR denote variance reduction ratios estimations for both
VaR and CVaR procedures. Variance Ratios (VR) corresponds to an estimate of the
asymptotic variance using (6) divided by an estimate of the asymptotic variance
using (27).
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Example 2. We consider a portfolio composed of short positions in 10 calls and 10
puts on each of 5 underlying assets, all options having the same maturity of 0.25
years. The strikes are set to 130 for calls, to 110 for puts and the initial spot prices
to 120. The underlying assets are assumed to be uncorrelated. We only consider the
confidence level α= 95%. We compare the performance of quasi-stochastic approx-
imation using a Sobol sequence (see e.g. [21]) and stochastic approximation for the
computation of the VaRα with IS using pseudo-random numbers. The dimension
d of the structural vector X is equal to 5. Note that Ψ is not continuous in this
example. In the RM procedure, we merely set γn = 1

n+100 in (36). The numerical
results are summarized in the figure below. The graph on the left depicts the VaR
estimations using the procedure (27) with pseudo-random numbers (dotted line) and
using (36) (normal line) for several number of RM steps. A good approximation of
VaRα is 362. The graph on the right depicts the log-distance of the VaR estimates to
this approximation using pseudo-random numbers (dotted line) and using a Sobol
sequence (normal line).

Table 1 Example 1. VaR, CVaR using IS procedure. VRVaR, VRCVaR: variance reduction ratios.

Number of steps α VaR CVaR VRVaR VRCVaR

10 000 95 % 115.7 150.5 3.4 6.8
99 % 169.4 196.0 8.4 12.9
99.5% 186.3 213.2 13.5 20.3
99.9% 190.2 219.3 15.3 32.1

100 000 95 % 118.7 150.5 4.5 8.7
99 % 169.4 195.4 12.6 17.5
99.5% 188.8 212.9 15.6 29.5
99.9% 197.4 217.4 21.3 35.5

500 000 95 % 119.2 150.4 5.0 9.2
99 % 169.8 195.7 13.1 18.6
99.5% 188.7 212.8 17.0 29.0
99.9% 198.8 216.8 24.8 46.8
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Adaptive Monte Carlo Algorithms Applied to
Heterogeneous Transport Problems

Katherine Bhan, Rong Kong, and Jerome Spanier

Abstract We apply three generations of geometrically convergent adaptive Monte
Carlo algorithms to solve a model transport problem with severe heterogeneities in
energy. In the first generation algorithms an arbitrarily precise solution of the trans-
port equation is sought pointwise. In the second generation algorithms the solution
is represented more economically as a vector of regionwise averages over a fixed
uniform phase space decomposition. The economy of this representation provides
geometric reduction in error to a precision limited by the granularity of the imposed
phase space decomposition. With the third generation algorithms we address the
question of how the second generation uniform phase space subdivision should be
refined in order to achieve additional geometric learning. A refinement strategy is
proposed based on an information density function that combines information from
the transport equation and its dual.

1 Introduction

The radiative transport equation (RTE) is used to model a wide assortment of phe-
nomena, including the operation of nuclear reactors [5], the use of lasers to analyze
normal and diseased states in tissue and organs [11], the remote identification of
oil and gas deposits [20] and the detection of land mines [17], [18]. The RTE de-

Katherine Bhan, Jerome Spanier
Beckman Laser Institute
University of California, Irvine
Irvine, California
url: http://www.bli.uci.edu

Rong Kong, Jerome Spanier
Claremont Graduate University,
Claremont, California
url: http://www.cgu.edu

P. L’Ecuyer, A.B. Owen (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008,
DOI 10.1007/978-3-642-04107-5 12, © Springer-Verlag Berlin Heidelberg 2010

209

http://www.bli.uci.edu
http://www.cgu.edu
http://dx.doi.org/10.1007/978-3-642-04107-5_12


Se
co

nd
 p

ro
of

s

210 Katherine Bhan, Rong Kong, and Jerome Spanier

scribes the movement of the radiation (in the form of neutrons, photons, electrons,
positrons) through the physical system (nuclear reactor, animal or human tissue, ge-
ological formations) and their interactions with the atomic nuclei, molecules, atoms
and cells of the environment according to basic laws that characterize these interac-
tions.

The general RTE can be written in integral form as

"(P)=
∫

#

K(P,P′)"(P′)dP′ +S(P) (1)

where the source term, S, describes the distribution of initial interactions, or colli-
sions, throughout the physical phase space # and the kernel K describes how par-
ticles are absorbed, scattered and transported from state P′ to state P of the phase
space #. The space, #, consists of vectors P that describe the location, kinetic energy
or velocity of the particle, and the unit direction of its motion through the system.
The RTE solution "(P) describes the density of radiation at each state P of #.

Monte Carlo (MC) is preferred as the most accurate, and, for many realistic prob-
lems, the only method of solving the RTE. However, the convergence rate of conven-
tional MC (CMC) is slow: as dictated by the central limit theorem, CMC variance

decreases at a rate proportional to W− 1
2 , where W is the number of independent

samples. In the context of solving (1) with MC, the samples are random walks ini-
tiated by the source of radiation (nuclear fission, fiber-optic laser sources), trans-
ported to their initial collision states P0 described by the function S(P) and thereby
moved from state Pi to state Pi+1 as described by the transport kernel K(Pi+1,Pi).

The (infinite-dimensional) sample space of all such random walks is constructed as
described in detail in [22].

The economist Milton Friedman and the statistician Samuel S. Wilks are usu-
ally credited with developing the statistical sampling procedure known as sequen-
tial sampling during the 1940’s. Their classified work at Columbia University was
unified and described in the seminal book [23]. Similar ideas were developed for
accelerating the convergence of Monte Carlo solutions of matrix problems by John
Halton in [7], [8] and [10]. Halton also discusses the application of these ideas to
the solution of nonlinear systems in [9]. Interest in extending Halton’s methods to
continuous transport problems at Los Alamos National Laboratory and at Claremont
Graduate University led to publications [3, 4, 14, 16] in which new, geometrically
convergent algorithms were pioneered to overcome the slow convergence of CMC
for RTE solutions. These first generation (G1) algorithms achieved this by repre-
senting the RTE solution as an infinite series of basis functions and estimating a
finite number of the expansion coefficients. Using a sequential strategy, these co-
efficients are estimated in successively improving batches or stages, for which the
information collected in the previous stages was used to guide the random walks
in the next stage. When this is done properly, the statistical error after stage s is
reduced (with probability 1) through multiplication by a factor λ < 1 [15]. This
geometric convergence can then produce exponential decreases in statistical error,
and thus exponential increases in computational efficiency, provided that the cost of
simulation in each adaptive stage can be controlled.
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Most realistic problems modeled with the RTE are heterogeneous; that is, the
material properties vary greatly across the physical system. These variations are
captured by the coefficients of the RTE, or cross sections1, that, together with the
scattering phase function that describes directional changes, characterize the kernel
K in equation (1). For instance, when neutrons move about in a nuclear reactor, or
when photons of light propagate through human tissue, both scattering and absorp-
tion cross sections are frequently modelled as discontinuous, regionwise constant
functions of the particle’s position in space. Another classic example relevant to
nuclear reactor calculations is the occurrence of a severe heterogeneity in the en-
ergy variable as seen, e.g., by the rapid changes of the total cross section of cer-
tain isotopes, such as iron, over a narrow energy interval. Developing geometrically
convergent algorithms for transport problems that are described by cross sections
with steep gradients and/or discontinuities is particularly important, as solving such
problems with high accuracy using CMC is impractical.

An essential first step in evaluating the potential of any adaptive algorithm for
achieving geometric convergence for such challenging real problems is to test them
on model transport problems. It is desirable that such model problems represent
realistic heterogeneities present in each independent variable of the RTE, such as
space, angle and energy. In [12] we introduced the new algorithms and applied them
to a simple one dimensional homogeneous problem modeling interactions of light
with tissue. In [15] we established rigorously the geometric convergence of the G1
method for quite general transport problems. In this paper we address heterogeneity
in the energy variable.

In Section 2 of this paper we describe the model transport problems and their
governing equations drawn from [4] on which our algorithms were tested and men-
tion briefly the deterministic solutions used to validate our new MC algorithms. In
Section 3 we outline the first generation (G1) adaptive methods that are based on
global expansions of the solution in Legendre polynomials and report the difficul-
ties encountered with the G1 solution for the problems studied here. In Section 4
we discuss the rationale for the development of the second generation (G2) adaptive
algorithms introduced in [12] that are based on histogram fits to the solution for a
given phase space decomposition. We comment on advantages of the G2 versus the
G1 strategy and observe that the G2 solution converges rapidly to regionwise av-
erages of the RTE solution. Following the G1/G2/G3 algorithmic framework intro-
duced in [12], in Section 5 we describe how the geometric learning achieved by the
G2 algorithm can be extended by intelligent refinement of the phase space decom-
position. For the G3 adaptive algorithm we propose a strategy for such intelligent
mesh refinement based on simulations of both forward- and backward-moving ran-
dom walks. In Section 6 we summarize our conclusions from the study and outline
a continuing research plan for future work.

1 Cross sections are defined to be the probabilities of interaction per unit distance travelled. For
details see discussion in Section 2.
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2 The Model Problem and Equations

The problems described in [4] model energy-dependent neutron transport that is
coupled with energy-independent photon transport in one spatial dimension. In an
operating nuclear reactor, neutrons are created as a by-product of nuclear fission at
high energies and they undergo random walks throughout the reactor as they col-
lide with the atomic nuclei present. As they collide, they lose energy. Eventually, a
fraction of the high energy (fast) neutrons survive to much lower energies (less than
1 eV) where they are in thermal equilibrium with their environment. Such “slow”
neutrons may then interact with atoms of fissile material to create new high en-
ergy neutrons for the next “generation”. Occasionally, photons are produced as a
by-product of other neutron interaction events and the photons then are transported
throughout the reactor until they are also absorbed or leave the physical system. At-
tention may focus in any such experiment on portions of the distribution of neutrons,
in energy, location and direction, that affect the operation of the system, or that of
the neutrons or photons at positions distant from their origin, as these may then pose
radiation hazards to the immediate environment.

The transport of either neutrons or photons is described by fundamental quanti-
ties called cross sections, denoted σ, that provide the coefficients for the RTE. These
cross sections - so-named because at many energies they are comparable to the phys-
ical cross section of the atomic nucleus with which they interact - depend on both
the kinetic energy of the particle and its position, but not its direction. The cross
sections serve to quantify the various probabilities of interaction of the random-
walking neutrons or photons with the various nuclei. For our purposes, the cross
sections characterize the probability density functions used to carry out the Monte
Carlo simulation. Thus, if σ (E) is the (total) neutron cross section (assumed here
for simplicity to be independent of position in the system being modeled), the dis-
tance s between successive collisions for neutrons is sampled from the probability
density function

T (s,E)= σ (E)e−σ(E)s, 0 < s ≤∞. (2)

The cross sections σ (E) are experimentally determined, often very complicated
functions of the energy (and, in general, the position) of the particle as it travels
through the medium. For example, the neutron cross section for iron drops by a
factor of 100 in the energy range [0.025 MeV, 0.027 MeV] (1 MeV = 1 million
electron volts, which is roughly the lower extremity of the energy released in nuclear
fission). According to the formula (2), when the cross section falls by two orders of
magnitude, the distances between successive collisions are greatly magnified. This
means that in a problem in which attention is focused on radiation far from the
source, nearly all of the penetrating particles must have scattered into this narrow
energy range at some time during their random walks. So the twin characteristics of
a very challenging reactor problem, but nevertheless one that arises in practice, are
both a rapidly changing cross section and a focus on deeply penetrating particles.
These are the characteristics that Booth embodied in the model problems he studied
in [4], which we describe next.
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Booth assumes that neutrons originate with energy 1 MeV at the origin of a semi-
infinite line 0 ≤ x <∞ (see Fig. 1) and move only in the direction of increasing x.
While this problem greatly simplifies the representation of physical reality, even the
motion along a line serves to illustrate the real complexity to be found in fully three
dimensional reactor systems. For example, a more realistic forward and backward
(and even sideways, as in three dimensions) motion of neutrons would delay con-
tributions from photons that reach great distances from the radiation source, but the
same effect can be achieved in Booth’s model problem by allowing x to reach very
large values since it is not restricted at all. At each collision, the neutron may be
absorbed with constant probability pa or it may be scattered forward with probabil-
ity ps = 1−pa . These probabilities will, in a general transport problem, depend on
position but are treated as constant here in order to focus on the unique challenge
posed by the severe energy heterogeneity for σ (E). If a neutron scattering collision
occurs at energy E′, a new energy E is sampled from

p(E′ → E)=
{

1
E′ , 0≤ E ≤ E′
0, otherwise.

(3)

which is an assumption often adopted in the fast neutron energy range. The neu-
tron’s position x thus steadily increases and its energy E steadily decreases until it
is absorbed. When the neutron is absorbed, a photon is assumed to be emitted in the
positive x direction. The cross section for photons is assumed (for simplicity) con-
stant, γ , independent of position and energy and Booth further assumes that every
photon is absorbed on its first collision. The problem identified in [4] is to estimate
the number of photons reaching a point x = z arbitrarily distant from the origin.
In the simulation itself, the code does not actually transport the photons when each
neutron is absorbed at a position x, but rather calculates the expected contribution,
exp[−γ (z−x)], to the number of photons reaching z from a neutron absorption at x.

We point out that our adaptive methods are based upon the use of correlated sam-
pling, while Booth’s adaptive methods are based on the use of importance sampling.
Thus, the importance function, J (P), is introduced in [4]. This function satisfies a
transport equation that is dual to the RTE (1):

J (P)=
∫

#

K∗(P,P′)J (P′)dP′ +S∗(P), (4)

where K∗(P,P′)=K(P′,P) and S∗(P) is a detector function. The importance func-
tion may be interpreted as the expected value of the estimating random variable, or
tally, from a particle originating at P. From the duality between equations (1) and
(4) it follows easily (see also [22]) that reciprocity

∫

#

"(P)S∗(P)dP=
∫

#

J (P)S(P)dP (5)

is satisfied for the solutions of the original and the dual RTE. Therefore, estimating
by Monte Carlo the linear functional

∫
#
"(P)S∗(P)dP of the RTE solution "(P)



Se
co

nd
 p

ro
of

s

214 Katherine Bhan, Rong Kong, and Jerome Spanier

may also be accomplished by estimating the linear functional
∫
#
J (P)S(P)dP of the

dual RTE solution, J (P).
For the coupled neutron/photon problem described above and illustrated in Fig. 1,

Booth arrives at the importance function equation

J (x,E)=
∫ z−x

0
T (s,E) (6)

{
pa exp(−γ [z− (x+ s)])+

∫ E

0
psp(E→ E′)J (x+ s,E′)dE′

}
ds

that expresses the expected photon tally at z from a neutron at position x < z with
energy E. To derive this equation, Booth states that for a neutron at position x with

Fig. 1 Schematic of the model problem physics.

energy E, the factor T (s,E) is the probability of colliding after moving a distance
s beyond x. On the right hand side of equation (6), this factor is multiplied by the
sum of the probability that this collision will result in the neutron’s absorption at
x+ s together with the expected (photon) tally from all other events produced by
a neutron scattering event at x+ s (and a reduction in energy there from E to E′).
Booth then argues that the function J (0,E), whose estimates we seek, factors into
a function J (E) of energy alone with an exponential scaling factor:

J (0,E)= exp(−γ z)J (E).
He then arrives at the equation for the importance function:

J (E)= S(E)+
∫ 1

0
K(E,E′)J (E′)dE′, (7)

where the source is

S(E)= pa
σ(E)

σ(E)−γ
(8)

and the kernel is given by

K(E,E′)= ps
σ (E)

σ(E)−γ
p∗(E′ → E), (9)
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where

p∗(E′ → E)= p(E→ E′)=
{

1
E
, 0≤ E′ <E ≤ 1

0, otherwise.
(10)

Notice that the condition γ < σ(E) is required in order to guarantee that the source
S(E) is positive. The constant γ, which is the cross section for photons, may be ad-
justed to vary the difficulty of the problem. Small values of γ produce near-certainty
that each neutron absorbed will generate a photon that reaches large distances z from
the origin, while values of γ close to σ(E) produce much shorter photon flights,
thereby reducing photon tallies at large z.

As an importance function, J (E) is the solution to the transport equation that is
dual, or adjoint to the one that describes the physics of the problem. This can be
appreciated by comparing equations (10) and (3): scattering in the adjoint equation
(10) from E′ to E is exactly the reverse of scattering in equation (3) that describes
the physics. Thus, while neutrons lose energy when scattered, the scattering events
in the importance equation result in energy increases. It is the integral transport
equation (7) that provides the starting point for our research.

Booth identified in [4] two test problems, Problem 1 and Problem 2, to portray,
respectively, steep gradients and discontinuities in the energy total cross section,
σ(E). Following [4], for Problem 1 we model a cross section “notch” by subtracting
a Gaussian distribution from a unit cross section. The formula employed is

σ(E)= 1−0.9exp[−u2(E)/2]
where u(E) = E−μ√

v
and μ = 0.4 and

√
v = 0.1. Such a notch models the cross

section behavior typical of that seen near so-called “resonance” energies. At a reso-
nance energy E, nuclides such as iron appear to present greatly magnified “targets”
for a nuclear interaction with a neutron of energy E, while at an energy only slightly
removed in either direction, the apparent target size is reduced by factors of 100 or
more compared with the physical size of the nucleus.

Fig. 2 Cross section σ(E) dependence on E: (a) rapidly varying for Problem 1 and (b) discontin-
uous for Problem 2.



Se
co

nd
 p

ro
of

s

216 Katherine Bhan, Rong Kong, and Jerome Spanier

In the second test problem, Problem 2, the cross section is modeled as

σ(E)= 1+H(0.4−E)

where H(·) is the Heaviside function. Plots of σ(E) are shown in Fig. 2. While
such Problem 2 step functions are non-physical in terms of energy treatment, they
are commonplace in modeling the spatial behavior of particle cross sections, where
the abrupt changes model physically distinct reactor materials (e.g., water and iron)
that are immediately adjacent to each other in the reactor assembly. Here, and in
Booth’s work, the interest is in observing whether such actual discontinuities pose
special challenges for the adaptive algorithms or not.

From equation (2) it follows that the average distance between successive colli-
sions for neutrons at energy E is 1

σ(E)
. Also, for a photon to be detected, the neutron

that generated it must travel very far from x = 0; hence, such a neutron must have
acquired one or more energies for which σ(E) is small. We observe that since the
energy in equation (7) can only increase because of (10), the value of J at some
E = Etest is affected by the behavior of J (E) for all values of E ≤ Etest. That is
why we have selected several different values of test points in energy, Etest, to test
the accuracy of our algorithms, with Etest = 1 presenting the greatest computational
challenge.

We implemented two deterministic methods with which to compare our MC so-
lution:

A. a recursion method that generates the first N+1 terms in the Neumann series
for J (E);

B. numerical integration based on an adaptive Simpson’s rule strategy [19] of an
ordinary differential equation equivalent to (7) (the number of integration grid
points is set to N ).

Both of these methods produced a reasonably good approximation to J (E) and
served as a useful reference in debugging our initial Monte Carlo code. For Problem
2 integration of the equivalent ordinary differential equation yielded a solution in
closed form for which J (1) = 1.175656679. However, evaluation of the determin-
istic solutions for Problem 1 had to be carried out numerically, hence their accuracy
depends on the number of iterations, N.

In Table 1 we provide the estimates of J (1) for Problem 1 produced by each
deterministic method. As one method converges from above and the other one from
below, we can only conclude that 1.7107 < J(1) < 1.7260. Ultimately we decided
that our G3 algorithm produced the most accurate estimate, 1.17142, of J (1) for
Problem 1 (See Section 5).
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Table 1 Deterministic estimates of J (1). N = number of iterations.

N A B

102 1.9849 1.6394
103 1.8094 1.6874
104 1.7478 1.7046
105 1.7260 1.7107

3 G1 Solution

Generation 1 adaptive algorithms strive for knowledge of the RTE solution point-
wise with arbitrary precision everywhere. The solution is represented by a truncated
series in each independent variable of the RTE in terms of orthogonal basis func-
tions, such as Legendre polynomials. The expansion coefficients are estimated by
Monte Carlo in batches, or stages. At stage 0 random walks are sampled as in con-
ventional Monte Carlo in order to obtain the initial estimates of the coefficients. That
is, referring to equation (1), the position, energy and direction at an initial collision
state P inside the phase space # is generated by sampling from the source function
S(P), and the kernel K is then used to model transitions from the initial collision
state P0 to its next one, P1, and to all subsequent states Pk until the particle is either
absorbed or leaves the physical system of interest.

In each subsequent adaptive stage the sampling of each random walk is altered
according to a learning mechanism that enables the variance in the estimates to re-
duce geometrically. When the sequential use of correlated sampling is employed, for
example, such a learning mechanism is provided by a “reduced” source. In sequen-
tial correlated sampling, transitions from state to state continue to be modeled by
using the RTE kernel K, but instead of the physical source S(P), a reduced source
is used to generate initial collision states. The reduced source for the adaptive stage
k+1 in terms of the reduced source at stage k is given by

S(k+1)(P)≡ S(k)(P)+
∫

#

K(P,P′)ψ̃(k)(P′)dP′ − ψ̃(k)(P), S(0)(P)= S(P) (11)

where ψ̃(k)(P) is the correction obtained in stage k to the truncated series repre-
senting the solution. By adding together corrections from each stage s, ψ̃(s)(P), the
approximate RTE solution is reconstructed

"̃(k)(P)= ψ̃(0)(P)+ ψ̃(1)(P)+· · ·+ ψ̃(k)(P)

and the convergence of ψ̃(k)(P) to zero thus controls the convergence of the approx-
imate RTE solution "̃(k)(P) to the truncated infinite series expansion of the exact
RTE solution, "M(P), where M is the number of expansion coefficients used to
represent the exact solution "(P). The reduced source is also called the residual,
or equation error, associated with the solution expansion at stage k: it describes the
extent to which the k−th stage solution fails to satisfy the original RTE integral
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Fig. 3 Comparison of the 12-th and 100-th order Legendre polynomial G1 solution for J (E) with:
(a) more accurate G3 solution for Problem 1 and (b) analytical solution for Problem 2.

equation. Hence, the residual can be used to determine the corrections needed at
each stage to improve the solution estimate. As the reduced source converges to
zero, the series expansion converges to the transport equation solution.

Although, as shown in [13, 15], theoretically an unlimited precision is possible
with G1 methods, we found that achieving decent accuracy in practice comes at a
high computational cost even for the one dimensional model problems we studied.
When solving Problem 1 with the G1 algorithm, for example, we had to use at
least 200 coefficients in the Legendre series for J (E) so that the series adequately
captures the highly non-polynomial shape of the solution (see Fig. 3 (a)). Using this
representation and 106 random walks in each of the 7 adaptive stages we obtained
4 decimal digits of accuracy in the estimate of the solution at its peak near E = 0.4
and it took about 8 hours to converge. We obtained similar results for Problem 2
(see Fig. 3 (b)). Each dotted and dashed line in Fig. 3 represents the 12- and 100-th
order Legendre series G1 solution, respectively. The solid lines represent the most
accurate solution for each problem.

Various shortcomings of the G1 solution, such as the appearance of polynomial
artifacts, high computational cost and the need for a separate expansion in each
independent variable of the RTE, preclude the current G1 strategy to be used to
solve realistic transport problems in several variables efficiently. As alluded to in
[12], unless the proper basis functions are derived based on knowledge of the spec-
tral properties of the transport operator, no single orthogonal basis can adequately
represent all RTE solutions. These considerations led us to the second generation
algorithms described in the next section.

4 G2 Solution

The motivation behind the G2 method is that, in practice, one rarely needs to know
the solution of the transport equation with perfect accuracy at every point of the
phase space. Instead, MC estimates of the integrals of the solution weighted by
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detector function(s) measuring certain reaction rates are required. For example, for
non-invasive detection of tissue abnormalities using light, the measurements of light
reflected from the tissue are taken by fiber optic detectors placed at the tissue sur-
face. In order to solve such problems well, it is only neccessary to achieve ac-
curacy that is consistent with the limits of precision obtained by the actual mea-
suring devices. Thus, the perfection sought by the G1 algorithm is not necces-
sary.

Suppose, then, that interest focuses only on estimating one or more weighted
integrals over the phase space # such as

∫
#
"(P)S∗(P)dP of the solution " with

high precision, where S∗(P) is a detector function. We can model the algorithm
after the one described in Section 3 by replacing the global Legendre polynomial
approximation by a local one defined over each subregion. For region i the G2
algorithm finds an approximation "̃a,i of the average value of " over #i ,

"a,i(P)=
{ 1

vol(#i )

∫
#i
"(P′)dP′, if P ∈ #i

0, if P /∈ #i (12)

Now let "̃(0)
a,i (P) denote an initial estimate of "a,i(P) obtained from a conventional

Monte Carlo simulation. Replacement of the continuous function "̃ by the piece-
wise constant function "̃

(0)
a,i in equation (11) and iteration produces an appropriate

reduced source for the new G2 adaptive algorithm:

S(k+1)(P)≡ S(k)(P)− ψ̃(k)
a (P)+

∫

#

K(P,P′)ψ̃(k)
a (P′)dP′,S(0)(P)= S(P) (13)

where the function ψ̃
(k)
a is the correction from stage k to the approximate solution

from previous stages. The G2 adaptive algorithm is described more fully in [2, 12].
We have implemented this algorithm and observe that it achieves very rapid con-

vergence to estimates of the solution averages in only a few adaptive stages. The
geometric learning ceases when the locally constant approximation "̃a(P ) of the
transport solution " has been stabilized. Because such an approximate solution,
which is discontinuous, cannot satisfy the original RTE pointwise (except in the
trivial case that the latter is globally constant), the precision achievable is limited by
the variation of the solution over each subregion of the decomposition.

When this G2 algorithm was applied to the energy problem described in Section
2, we found that it can produce quite good quality maps of the solution of the J

equation. Fig. 4 displays these maps for crude and fine energy meshes, consisting
of, respectively, 20 and 100 subintervals in E. Solid lines represent the G3 solution.
With 103 random walks per subinterval and 10 adaptive stages the run time cor-
responding to the crude mesh results was less than 1 sec, while for a fine mesh it
took about 10 sec. In the next pair of plots we examine the error of the G2 solution
carefully. In Fig. 5 we plot on a log10 scale the variance corresponding to the G2
solution with the fine mesh and two choices of the test point: (a) Etest = 0.1 and (b)
Etest = 0.4. These plots reveal that the G2 algorithm achieves stable convergence for
an “easy” Etest = 0.1, while for a “hard” point Etest = 0.4, although G2 converges
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Fig. 4 G2 solution, J(E), for Problem 1 with: (a) crude phase space subdivision (20 subintervals)
and (b) fine phase space subdivision (100 subintervals).

Fig. 5 Variance in G2 solution on a log10 scale, Problem 1: (a) Etest = 0.1 and (b) Etest = 0.4.

geometrically, it cannot achieve the same accuracy as for the “easy” test point. As
expected, we observe similar results for all E beyond the peak value at E = 0.4.

The geometric learning power of this G2 algorithm alone should make possible
the accurate solution of many RTE problems not currently accessible by conven-
tional MC. However, we would like to be able to increase this accuracy when it is
required. To do this, we need to be able to refine an initial decomposition of the
phase space # in an intelligent way to achieve the accuracy needed. In other words,
in case the precision reached when the G2 geometric learning stops is insufficient,
we want to be able to extend it by an appropriate refinement of the phase space.
What is needed is an automated strategy for determining which subregions are most
important to refine, and by how much. Such a strategy is described in the following
section.

5 G3 Solution

The mechanism we propose to exhibit how to refine any phase space decomposi-
tion intelligently is to combine information collected from particle trajectories con-
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structed according to the original RTE with information collected from trajectories
sampled according to an adjoint RTE. Let "(P) denote the RTE solution and "∗(P)
denote the adjoint RTE solution. Because the product function I (P) = "(P) ·"∗(P)
combines the intensity of radiation at P with the likelihood that radiation at P will
actually reach the detector, this function quantifies the data on which intelligent grid
refinement should be based.

We call the I (P) function the information density function (IDF) and it can be
applied quite generally to RTE problems involving full spatial, angular, energy and
time dependence. In [1, 6, 21, 24], this function is sometimes called a response or
contributon function, and it was used in the early literature to study RTE problems,
mainly of nuclear radiation shielding type − problems characterized by their focus
on events with low probability outcomes in a simulation.

The detailed knowledge of the function I pointwise throughout the phase space
poses a daunting problem, even more so than capturing the RTE solution " every-
where since I obeys a complicated RTE that involves both " and "∗. However,
we can quite easily estimate integrals of I over an arbitrary decomposition of # by
combining information from two G2 algorithm applications, one to obtain an ap-
proximate " solution and the other an approximate "∗ solution. These regionwise
constant approximations, "a and "∗a , can then be multiplied together in each sub-
region and the resulting approximation Ia can be integrated easily to produce the
required approximate integrals of I .

We apply these general ideas to the specific problems described in Section 2.
Suppose then that the initial decomposition of the energy interval [0,1] consists of
R subintervals: [0,1] = ∪R−1

i=1 [Ei−1,Ei)∪ [ER−1,ER] and denote, as before, the
importance function by J (E) and the solution of the equation dual to the equation
(7) by J ∗(E). Suppose that we set the accurate estimation of J (1) to be our goal.
Since

J (1)=
∫ 1

0
J (E)δ(E−1)dE (14)

our detector function, S∗(E) = δ(E− 1). This detector function is the source term
in the equation dual to (7):

J ∗(E)= S∗(E)+
∫ 1

0
K∗(E,E′)J ∗(E′)dE′

= δ(E−1)+
∫ 1

0
K(E′,E)J ∗(E′)dE′. (15)

We remark here in passing that since J (E) satisfies the adjoint RTE, J ∗(E), as
its dual, satisfies the RTE that describes the physics in the coupled neutron-photon
problem.

Let J= (J1, J2, ...,JR) and J∗ = (J ∗1 , J ∗2 , ...,J ∗R) denote the vector solutions ob-
tained by applying the G2 algorithm to the transport equations for J (E) and J ∗(E),
respectively. Thus, Jn and J ∗n are approximations to the average values of, respec-
tively, J and J∗ over the n−th subinterval, [En−1,En). The product In = JnJ

∗
n may
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Fig. 6 Error in G3 solution on a log10 scale: (a) Problem 1 and (b) Problem 2.

then be integrated over [En−1,En) and interpreted as an estimate of the total infor-
mation value of that region.

Our mesh refinement algorithm based on this idea does the following:

1. Choose Imin =min1≤n≤R {In} .
2. Determine the integer part of In/Imin, [In/Imin].
3. If [In/Imin] = in, partition the n−th subinterval into in equal subintervals.
4. Redefine J,J∗ over the new energy mesh and apply the G2 algorithms to find
estimates of the averages of J (E) and J ∗(E) over the refined energy mesh.
5. Repeat these steps until the values of In are approximately independent of n.

The convergence of the G3 method for Problem 1 and Problem 2 is indicated in
Fig. 6. We plot, on a log10 scale, the absolute value of the residual (equation (13))
with a dotted line and the variance with a solid line.

For Problem 1 at stage 0 we start the algorithm with a crude mesh of 20 subin-
tervals, 100 random walks per subinterval and run 5 stages of G2 on a fixed mesh.
Having completed the G2 learning we proceed to the next phase. In each new phase
the energy mesh is refined as described above. At the end of this run we have ob-
tained an energy mesh consisting of highly non-uniform 12257 subintervals.

Table 2 Comparison of relative efficiencies, Problem 1.

Alg. Stages Est J (1) |Res.| Var Time, sec. Rel. Eff.

determ. - [1.7107;1.7260] - - - -
CMC 1 1.6333 7.9×10−2 4.0 1 1

G2 10 1.7134 8.1×10−4 1.1×10−3 33 109
G3 45 1.7142 1.1×10−5 1.3×10−6 20277 155

In Tables 2 and 3 we compare the performances of the G2, G3 algorithms for
Problem 1 and Problem 2, respectively, and contrast it with conventional Monte
Carlo (CMC). We use relative efficiency to assess the performance of each algo-
rithm. If TA is the time it takes for an algorithm to achieve a specified variance,
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Table 3 Comparison of relative efficiencies, Problem 2.

Alg. Stages Est J (1) |Res.| Var Time, sec. Rel. Eff.

exact - 1.175656 - - - -
CMC 1 1.1781 2.4×10−2 1.5×10−2 2 1
G2 5 1.1755 2.4×10−5 3.2×10−6 11 856
G3 35 1.1756 3.0×10−6 1.3×10−8 186 12079

we can use the central limit theorem to extrapolate to the time it would take for the
CMC, TCMC, to achieve the same variance. The relative efficiency is defined to be
the ratio of these times:

Rel. Eff.= TCMC

TA
. (16)

Traditionally, the figure of merit, FM,

FM = 1

Var×Run Time
, (17)

is used to compare different CMC algorithms since the decrease in variance (denoted
Var) in non-adaptive MC is roughly inversly proportional to run time, so (17) is a
measure of algorithm performance that is roughly independent of the number of
samples. We use (16) in place of (17) since the variance in our new algorithms
decreases at a rate that is faster than linear with the number of samples used.

6 Summary

We have seen that G2 algorithms are capable of providing both good histogram fits
to RTE solutions and tally estimates with relatively low computational expenditure.
It is conceivable that many transport problems of only average complexity can be
analyzed with the help of the G2 method alone based on reasonably fine meshes.
For those problems for which the G2 errors are still too large, we have presented
a new G3 algorithm capable of extending the geometric convergence of G2, based
on intelligently refined crude meshes. We have used IDF integrals over the mesh
subdivisions to guide the mesh refinement strategy. The combined G2-G3 technique
should significantly reduce the computational cost of many more transport problems
than with G2 used alone.

For the problems described in [4] and studied here we have shown that gains over
conventional costs by several orders of magnitude are achieved when these methods
are applied. We have also learned that the presence of discontinuities in the cross
section data, such as would appear in all realistic transport problems composed of
materials of different physical composition, do not seem to cause any degradation in
the quality of G3 learning. This may be the case because the G2-G3 method depends
on the combined behavior in each region of both the solution and the adjoint solution
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of the RTE, not just on the behavior of either alone. That is, the bad behavior of one
function in some region might be largely negated by the good behavior of the other
solution in the same region, and conversely. Our methods actually produce larger
gains for Problem 2 than for Problem 1, perhaps because in Problem 2 the behavior
is very tame for both solutions over most of the energy range.

We believe that the significance of the accuracy achieved with the G2 and G3
methods is that it is obtainable with relatively simple algorithms that incorporate
features “tuned” to each specific RTE problem. Thus, while it is certainly to be ex-
pected that the number of subdivisions of the phase space will increase with the
dimensionality of the phase space (which is six for the most general steady-state
transport problems), this increase is not controlled by purely geometric factors in
our algorithm design. That is, the growth is governed by the variations in the RTE
and adjoint RTE solutions over the phase space, which does not, in general, lead to
a product space decomposition of the phase space, as would be the case for mul-
tidimensional quadrature. The simple G3 refinement strategy described above that
maintains a fixed number of random walks in each subregion can also be improved
significantly, we believe, in order to control computational costs.

Our recommendation based on this study is that similar investigations are in or-
der for transport problems that exhibit prototype computational challenges in other
phase space variables and in higher dimensions. For example, angular variation is
important in streaming problems and spatial heterogeneities are important in nearly
all real transport problems. If the methods perform well in these problems, we be-
lieve it would be appropriate to add such capability to major production Monte Carlo
codes such as MCNP [5] at LANL for general reactor problems and the Virtual Tis-
sue System [11] being developed at UCI for tissue problems.
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Abstract We revisit a classical problem in rare-event simulation, namely, efficient
estimation of the probability that the sample mean of n independent identically dis-
tributed light tailed (i.e. with finite moment generating function in a neighborhood
of the origin) random variables lies in a sufficiently regular closed convex set that
does not contain their mean. It is well known that the optimal exponential tilting
(OET), although logarithmically efficient, is not strongly efficient (typically, the
squared coefficient of variation of the estimator grows at rate n1/2). After discussing
some important differences between the optimal change of measure and OET (for
instance, in the one dimensional case the size of the overshoot is bounded for the
optimal importance sampler and of order O(n1/2) for OET) that indicate why OET
is not strongly efficient, we provide a state-dependent importance sampling that can
be proved to be strongly efficient. Our procedure is obtained based on computing the
optimal tilting at each step, which corresponds to the solution of the Isaacs equation
studied recently by Dupuis and Wang [8].
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1 Introduction

Let X,X1,X2, ... be a sequence of mean zero independent and identically dis-
tributed (iid) d-dimensional random variables (rv’s). Assume that A is a sufficiently
regular (see Section 5) convex set for which 0 /∈ A. We further assume that A
satisfies a technical condition, which is detailed in Section 5. We revisit a funda-
mental problem in the theory of rare-event simulation, namely that of computing
αn = P (Sn/n ∈ A) for n large, where Sn = X1+X2+ ...+Xn. In particular, we
consider the setting in which X is light-tailed. The purpose of this paper is to pro-
vide the first simulation estimator for which it can be proven that the number of
simulation runs needed to compute αn to a given relative accuracy remains bounded
as a function of the parameter n.

To fix ideas, consider the one dimensional case in which A= (β,∞) for β > 0. It
is well known that the use of importance sampling, as implemented through optimal
exponential tilting (OET), provides an estimator that is “logarithmically efficient”
as n↗∞ (in the sense that the squared coefficient of variation grows subexponen-
tially) [12]. Recall that OET involves an importance distribution in which each of
the summands is independently sampled from that member of the natural exponen-
tial family having mean β, see e.g., [12, 13]. In fact, it can be further shown that
OET provides the only iid importance sampling algorithm that achieves logarithmic
efficiency [2]. This might not be surprising, given that asymptotically, as n→∞,
OET agrees with the conditional distribution of the Sk’s (k < n) given {Sn > nβ}
(see Proposition 2 below). It is a simple calculation to check that the conditional
distribution is in fact the ideal importance sampling change of measure since it cre-
ates an unbiased estimator with zero-variance. We will commonly refer to it as the
zero-variance change of measure.

However, it turns out that the squared coefficient of variation [ratio of second
moment of estimator to probability of interest squared, see Eq. (5)] associated with
OET does increase as n↗∞, so that the number of samples required to compute
αn to a given relative accuracy increases as a function of n. In fact, in Section 2,
we prove that under mild conditions, the squared coefficient of variation grows at
rate O

(
n1/2

)
. The reason that OET becomes less efficient with the growth of n has

to do with the fact that OET fails to agree with the conditional distribution (zero-
variance change of measure) at scales finer than that of the Law of Large Numbers
(LLN). As one illustration of this phenomenon, Proposition 3 establishes that the
“overshoot” Sn−nβ > 0 is asymptotically exponentially distributed as n↗∞ under
the conditional distribution. In particular the moments of the overshoot stay bounded
as n grows. However, due to the Central Limit Theorem (CLT), the OET produces
an overshoot of order n1/2. In other words, the OET tends to bias the increments
excessively when the random walk is relatively close to reaching the boundary β,
thereby inducing a large overshoot.

An algorithm having the property that the sample size required to compute αn to
a given relative accuracy is bounded as a function of n is called a “strongly efficient”
algorithm (equivalently estimator) [2, 10]. To produce a strongly efficient estimator,
we use “optimal state-dependent exponential tilting” (OSDET). In the one dimen-
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sional case, this corresponds to dynamically updating the OET at each step in the
algorithm based on the current position Sk of the random walk (Sk : k ≥ 0). We ap-
ply OSDET up until we basically reach the boundary (at which point we turn-off
importance sampling) or the distance to the target is sufficiently large relative to the
remaining time horizon (at which point we simply apply OET computed from such
position until the end of the time horizon). It certainly seems intuitively clear that
OSDET will likely reduce the growth of the coefficient of variation as n↗∞ rela-
tive to simply applying OET, but there is no reason to expect that one would obtain a
bounded coefficient of variation. What plays a crucial role is the fact that (under the
assumption that the target set A has a twice continuously differentiable boundary)
the dynamic tilting induced by OSDET induces a twice continuously differentiable
mapping given by the large deviations rate function. An additional polynomial decay
rate of order O

(
n−1/2

)
necessary to control the behavior of the squared coefficient

of variation arises thanks to the fact that the conditional expected value of a second
order term in the Taylor expansion of this mapping has exactly the right behavior to
control (after combining the contributions of all time steps) the previous polynomial
decay rate. This result is stated in Lemma 2 and used in Proposition 4.

Let us briefly connect our work with the game-theoretic approach introduced by
Dupuis and Wang in [8]. It turns out that the OSDET corresponds to applying im-
portance sampling according to the solution to the associated Isaacs equation (Sec-
tion 3.4 of [8]). They prove that if such a solution is continuously differentiable then
one has a logarithmically efficient estimator. In our setting the solution to the Isaacs
equation we work with is in fact twice continuously differentiable in the interior. By
applying OSDET in a region where the large deviations scaling is applicable (i.e.
before we basically reach the target level or the distance to the level is very large
relative to the remaining time horizon), we obtain strong efficiency. It is important to
note, however, that our sampler uses a small layer at the boundary to avoid sampling
at the point where the solution to the Isaacs equation fails to be twice continuously
differentiable. Our work then suggests a connection between the degree of smooth-
ness of the solution to the associated Isaacs equation and the efficiency strength of
the corresponding importance sampling estimator.

In previous works on importance sampling and large deviations settings for sam-
ple means, proofs of strong efficiency have been limited to systems with heavy tailed
characteristics [5] or Gaussian increments [4]. The contribution of our paper is to
construct an importance sampling algorithm that can be used in a general class of
light tailed distributions that is also provably strongly efficient.

Our proof of strong efficiency relies on the analysis of several martingales that
arise naturally from the description of the algorithm, and is of independent interest.
Given that OSDET achieves bounded relative error, it may not be surprising then
that OSDET also induces a bounded overshoot as n↗∞.

The rest of the paper is organized as follows. Sections 2 to 4 concentrate on the
one dimensional case. Section 2 describes explicitly our assumptions and collects
some needed results from the theory of large deviations. Section 3 introduces the
algorithm explicitly and provides a heuristic analysis behind its efficiency. The rig-



Se
co

nd
 p

ro
of

s

230 Jose H. Blanchet, Kevin Leder, and Peter W. Glynn

orous details are given in Section 4, where we also show that the overshoot under
OSDET remains bounded as n↗∞. Section 5 treats the multidimensional case.

2 Large Deviations Results for Light Tailed Sums

In this section, we concentrate on the one dimensional case and present some auxil-
iary results from the theory of large deviations that will be useful for the description
and analysis of our algorithm.

We start with listing the assumptions underlying our development in Sections 2
to 4.

i) EX = 0 and Var(X)= σ 2

ii) The log-moment generating function (ψ (θ) : θ ∈ R), defined as ψ (θ) =
logE exp(θX), is assumed to be steep to the right in the sense that for each w > 0
there exists θw > 0 such that ψ ′ (θw)= w.

iii) We assume that infθ≥0ψ
′′ (θ) > 0.

iv) The random variable (rv) X is nonlattice (i.e. the characteristic function has
modulus strictly less than one except at the origin).

Assumption i) is obviously introduced without loss of generality. The steepness
assumption is standard in the large deviations literature and it is useful to rule out
distributions with extremely light tails (in particular with compact support). As-
sumption iii) although satisfied by most models of practical interest beyond light-
tailed random variables with finite support (in particular, the condition allows Gaus-
sian, gamma random variables and mixtures thereof) is more technical and is ap-
plied only in Lemma 2. Nevertheless, such a condition certainly rules out tails that
are lighter than Gaussian. The last assumption is again common in the development
of exact asymptotics in large deviations, which are required in our setting because
we are concerned with strong efficiency rather than logarithmic efficiency.

We are now ready to describe some results from large deviations that will be
useful in our development. The so-called rate function plays a crucial role in the
theory of large deviations. In our context, we work with a variant of the standard
rate function, J (·), defined for w ≥ 0 by

J (w)� max
θ≥0
[θw−ψ (θ)]. (1)

The standard rate function is defined by optimizing θ ∈ (−∞,∞). Both J (·) and
the standard rate function agree on the positive real line. In particular, note that we
have for w ≥ 0

J (w)� wθw−ψ (θw) and J ′(w)= ψ ′−1(w)= θw. (2)

For w < 0 we have that J (w) ≡ 0 and that J (·) is continuously differentiable at
zero. The algorithmic implication of defining J (·) in this way, as we shall see, is
that no importance sampling is applied when one reaches the level above nβ. Note,
however, that J (·) is not twice continuously differentiable at zero.
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Finally, the natural exponential family (Fθ : θ ∈ R) generated by the distribution
F (·) = P (X ≤ ·) is defined via

dFθ = exp(θx−ψ (θ))dF. (3)

The distribution Fθ is also said to be “exponentially tilted” by the parameter θ . Let
Pθ (·) be the product probability measure generated by Fθ (for θ ∈ R) under which
the Xi’s are iid and let Eθ (·) be the corresponding expectation operator associated
with Pθ (·). We often use the notation EJ ′(w) (·), which just means Eθw (·).

We shall need the following elementary properties of the rate function.

Proposition 1. If Assumption ii) is in force, then

J (w)= σ 2w2/2+O
(
w3)

as w↘ 0. Moreover, for each w ∈ (0,∞) we have

J (w+h)= J (w)+ θwh+O
(
h2)

as h−→ 0 (uniformly over w ∈ [ε,1/ε] for fixed ε > 0). In fact, for each w > 0, the
function J (w+·) is infinitely differentiable at zero and its Taylor series converges
in a neighborhood of the origin.

Proof. First it is clear from the formula (2) that on the positive line J (·) inherits the
smoothness properties of ψ(·), this gives the last two results of the above proposi-
tion. The first two results follow from a Taylor expansion of the function J (·) and
therefore by necessity a Taylor expansion of θw which is obtained using the inverse
function theorem. ()

Large deviations theory is intended to both address the question of how to com-
pute asymptotics for rare event probabilities and to describe the conditional behavior
of the underlying system given the occurrence of the rare event. The following result
is a celebrated large deviations asymptotic approximation due to Bahadur and Rao
[3] that will be useful in our development.

Theorem 1. Under assumptions i), ii) and iv) above,

P (Sn > nβ)= exp(−nJ (β))
θβ

√
2πnψ ′′

(
θβ
) (1+o(1))

as n↗∞ for fixed β > 0.

The following proposition provides an asymptotic description of the conditional
behavior of the process (Sk : 0≤ k ≤ n) given that Sn >βn (as n↗∞) and provides
rigorous support for the claim that the asymptotic conditional distribution of the
increments given {Sn > nβ} is Pθβ (·), for a proof see, e.g., [6].



Se
co

nd
 p

ro
of

s

232 Jose H. Blanchet, Kevin Leder, and Peter W. Glynn

Proposition 2. Suppose that i), ii) and iv) are in force. Then, for any positive inte-
gers k1 < k2 < ... < km <∞ and for each xk1, ...,xkm , continuity points of F (·) ,

P
(
Xk1 ≤ xk1, ...,Xkm ≤ xkm

∣∣Sn > nβ
)−→ Fθβ

(
xk1

)
...Fθβ

(
xkm

)

as n↗∞.

While the above result describes the behavior of a typical increment under the
conditioning, the proposition below provides an asymptotic description of the lim-
iting overshoot Sn−nβ > 0.

Proposition 3. Assume that i), ii) and iv) hold and put β > 0. Then, for all x > 0

lim
n→∞P (Sn−nβ > x|Sn > nβ)= exp

(−θβx
)

Proof. Note that from Theorem 1 we have that

lim
n→∞

P (Sn > nβ+x)

P (Sn > nβ)
= lim

n→∞P (Sn > nβ+x)enJ (β)θβ

√
2πnψ ′′(θβ).

Thus it remains to show that

lim
n→∞P (Sn > nβ+x)enJ (β)θβ

√
2πnψ ′′(θβ)= e−θβx .

Following the notation of [7], Theorem 3.7.4, define the following

Yi = Xi−β
√
ψ ′′(θβ)

, ψn = θβ

√
nψ ′′(θβ), Wn = 1√

n

n∑

i=1

Yi and Fn(y)= P(Wn ≤ y).

Then a simple calculation (see [7], page 111, for details) gives

P (Sn > nβ+x)enJ (β)θβ

√
2πnψ ′′(θβ)= ψn

√
2π

∫ ∞

θβx/ψn

e−ψnydFn(y).

One can now follow nearly the same procedure as in the proof of Theorem 3.7.4 of
[7], the only difference being the lower limit of integration. Due to the fact that our
lower limit of integration is θβx/ψn the limit of the previous display is e−θβx, as
desired. ()

The previous result implies that Pθβ (·) does not accurately describe the behav-
ior of the random walk, conditioned on {Sn > nβ}, at time n. In particular under

Pθβ (·), the CLT implies that n−1/2 (Sn−nβ)
D≈ N

(
0,ψ ′′

(
θβ
))

and thus the over-
shoot is (Sn−nβ) = O

(
n1/2

)
in distribution. On the other hand, Proposition 3 in-

dicates that the conditional overshoot is of order O (1) (in distribution). Therefore,
Pθβ (·) may provide a poor description of the conditional distribution of the random
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walk at scales that are finer than linear (for instance at scales of order n1/2). As a
consequence, it is not surprising that the performance of Pθβ (·) as an importance
sampling distribution degrades when measured at a fine enough scale. In particular,
the estimator induced by Pθβ (·), namely

L= exp
(−θβSn+nψ

(
θβ
))
I (Sn > βn), (4)

is not strongly efficient (i.e., the squared coefficient of variation of the estimator
is unbounded as n ↗ ∞). More precisely, it follows that if cvn (L) denotes the
coefficient of variation of L, then by definition

(cvn (L))
2 �

Varθβ (L)
(
Eθβ (L)

)2
= Eθβ

(
L2
)

P (Sn > nβ)2
−1. (5)

Under Assumptions i), ii) and iv) we have for a positive constant Cβ

Eθβ

(
L2)= Eθβ

[
e2nψ(θβ)−2θβSnI (Sn > nβ)

]
= E

[
enψ(θβ)−θβSnI (Sn > nβ)

]

= e−nJ (β)P (Sn > nβ)E
{
exp

[−θβ(Sn−nβ)
] |Sn > nβ

}

∼ Cβ√
n
e−2nJ (β)E

{
exp

[−θβ(Sn−nβ)
] |Sn > nβ

}= Cβ

2
√
n
e−2nJ (β).

where we use Theorem 1 for the approximation, and Proposition 3 for the final
equality. Using Theorem 1 once more we see that as n→∞, (cvn (L))2 =O

(
n1/2

)
.

In our next section, we examine the form of the optimal change of measure and
propose an importance sampling distribution that improves upon Pθβ by achieving
a bounded squared coefficient of variation.

3 A Proposed Algorithm and Intuitive Analysis

The basic idea of our algorithm is that at each discrete time step (provided the ran-
dom walk is inside a compact set to be described later) one recomputes the OET
change of measure. There are two stopping criteria that must be introduced and that
we shall discuss in more detail.

The algorithm is explicitly defined as follows. The constant λ below can be cho-
sen arbitrarily as long as λ > 2β, (this is required in the proof of Proposition 5
below).

Algorithm 1
Set w = β > 1/n1/2, L= 1, s = 0, s̄ = 0, k = 0, and λ > 2β.
Repeat STEP 1 until n= k OR w ≤ 1/(n− k)1/2 OR w > λ.

STEP 1: Sample X from Fθw [defined by equations (2) and (3)] and set

L←− exp(−θwX+ψ (θw))L,
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s←− s+X,

k←− k+1,

w←− (nβ− s)/(n− k).

STEP 2: If k < n sample Xk+1, ...,Xn iid rv’s from Fθw and set

s̄←−Xk+1+ ...+Xn,

L←− exp(−θws̄+ (n− k)ψ (θw))L.

STEP 3: Output Yn = L× I (s+ s̄ > nβ)

The intuition behind the stopping conditions indicated in STEP 2, namely w ≤
1/(n− k)1/2 or w > λ, is the following. First, when w ≤ 1/(n− k)1/2 there is no
need for applying importance sampling sequentially until the end as the event of
interest is not rare any more (we have reached the Central Limit Theorem region).
It seems intuitive that if one replaces w ≤ 1/(n− k)1/2 simply by w ≤ 0 (i.e. stop
if we reach the boundary) then one still should obtain strong efficiency. Our analy-
sis, however, requires a stopping criterion that is slightly removed from the origin,
such as the one that we impose here. This criterion is used in the proof of Lemma
2 below and basically is imposed to deal with the fact that J (·) is not twice con-
tinuously differentiable at the origin. Now, whenever we have that w > λ, for some
large constant λ, then we are approaching a scaling for which the large deviations
asymptotics (which motivate the design of the algorithm) are no longer applicable
(i.e. a situation where the distance to the target is no longer linearly related to the
time to go). At that point, we simply apply the tilting once and for all up until the
end of the time horizon.

The estimator Yn obtained from the algorithm above can be expressed as follows.
First, define

Wj = (nβ−Sj )/(n− j) (6)

for 0 ≤ j ≤ n− 1, and Wn � 0. Next define the following stopping times τ (n)1 =
inf{0≤ k < n :Wk > λ}, τ (n)0 = inf{k ≥ 0 : nβ−Sk ≤ (n− k)−1/2}, and

τ (n) = τ
(n)
0 ∧ τ (n)1 ∧n. (7)

We define (allowing ourselves a slight abuse of notation) the change of measure
used at step j to be

θj � θWj
= J ′

(
Wj

)
. (8)

Let us write

Z1,n = exp

⎛

⎝−
τ (n)−1∑

j=0

(
θjXj+1−ψ

(
θj
))
⎞

⎠ ,
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Z2,n = exp
(
−θτ(n)

(
Sn−Sτ(n)

)+ (n− τ (n))ψ
(
θτ(n)

))
.

We can now define the OSDET (optimal state-dependent exponential tilting) esti-
mator resulting from Algorithm 1 as

Yn = Z1,nZ2,nI (Sn > nβ) (9)

where Xj follows the distribution Fθj for 1≤ j ≤ τ (n) and Xj is sampled according
to the distribution Fθ

τ(n)
for τ (n)+1≤ j ≤ n.

The next section is devoted to the rigorous efficiency analysis of Yn. However,
before we provide the full details behind such analysis we will spend the rest of
this section explaining the main intuitive steps. It turns out that the most important
contribution comes from term Z1,n, so this object will be the focus of our discussion
here. A substantial portion of the technical development in the next section is dedi-
cated to showing that for any p≥ 1 supn≥1 Ẽ

(
(n− τ (n))p

)
<∞, where Ẽ (·) is used

throughout the rest of the paper to denote the expectation operator induced by the
importance sampling strategy described in Algorithm 1 (see Proposition 5 below).
This in turn is used to argue that the sum in the exponent in Z1,n has basically n−m
terms (where m is a constant).

The next results allows us to express the exponent in Z1,n in terms of a telescopic
sum involving the function J (·).
Lemma 1. For 0 ≤ j ≤ n− 2 let wj+1 (x) = (nβ− s−x)/(n− j − 1) and wj =
(nβ− s)/(n− j), if (n− j)−1/2 <wj < λ then

(n− j −1)J
(
wj+1 (x)

)− (n− j)J
(
wj

)

=−J ′ (wj

)
x+ψ

(
θj
)

+ (x−wj)
2

(n− j −1)

∫ 1

0

∫ 1

0
J ′′
(
wj +vu(wj+1 (x)−wj)

)
ududv.

In addition,

J ′′
(
wj

)−1 = EJ ′(wj )

(
Xj+1−wj

)2 = VarJ ′(wj )

(
Xj+1

)
.

Remark: A convenient representation that we will use in the future is

∫ 1

0

∫ 1

0
J ′′
(
wj +vu(wj+1 (x)−wj)

)
ududv (10)

= E
(
J ′′
(
wj +VU(wj+1 (x)−wj)

)
U
)

where U and V are independent uniformly distributed random variables over [0,1].
Proof. The result is shown by looking at a Taylor expansion of J

(
wj+1(x)

)
about

the point wj . Recall that by definition J (·) is twice differentiable on R\{0} and
differentiable on R. Note that
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wj+1(x)= wj + 1

n− j −1

(
wj −x

)
. (11)

On the other hand,

J
(
wj+1(x)

)−J (wj )=
∫ 1

0
J ′(wj +u(wj+1 (x)−wj))(wj+1 (x)−wj)du (12)

and

J ′(wj +u(wj+1 (x)−wj))−J ′(wj ) (13)

=
∫ 1

0
J ′′
(
wj +vu(wj+1 (x)−wj)

)
u(wj+1 (x)−wj)dv.

Note that the integral representation in the previous display is valid for any values
of wj , wj+1 (x) and u because J ′′ (·) is continuous except at the origin. Combining
(11), (12) and (13) we obtain that

J
(
wj+1(x)

)= J (wj )+ 1

n− j −1
(wj −x)J ′(wj )

+ (wj −x)2

(n− j −1)2

∫ 1

0

∫ 1

0
J ′′
(
wj +vu(wj+1 (x)−wj)

)
ududv.

The second statement follows from the relationship between ψ and J . ()
We now provide an intuitive analysis of Zn,1. Using the previous result, the defi-

nition of θj in (8), and assuming

∫ 1

0

∫ 1

0
J ′′
(
wj +vu(wj+1 (x)−wj)

)
ududv ≈ J ′′(wj )/2

we obtain (using formally τ (n) ≈ n−m for some positive integer m)

logZn,1 =−
τ (n)−1∑

j=0

(
θjXj+1−ψ

(
θj
))

≈
n−m−1∑

j=0

(
(n− j −1)J

(
Wj+1

)− (n− j)J
(
Wj

))

− 1

2

n−m−1∑

j=0

J ′′
(
Wj

)

(n− j −1)
(Xj+1−Wj)

2

=−nJ (β)−mJ (Wn−m)− 1

2

n−m−1∑

j=0

J ′′
(
Wj

)
(Xj+1−Wj)

2

(n− j −1)
.

Under the sampler we have that Sn−m ≈ (n−m)β with high probability and there-
fore mJ (Wn−m)≈mJ (β). One then arrives at the following plausible upper bound
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(for some constant c ∈ (0,∞))

ẼZ2
n,1 ≤ cexp(−2nJ (β))n−1

× Ẽ exp

⎛

⎝−
n−m−1∑

j=0

(
J ′′
(
Wj

)
(Xj+1−Wj)

2

(n− j −1)
− 1

n− j −1

)⎞

⎠ .

The main issue then becomes understanding the behavior of the expectation

Ẽ exp

⎛

⎝−
n−m−1∑

j=0

(
J ′′
(
Wj

)
(Xj+1−Wj)

2

(n− j −1)
− 1

n− j −1

)⎞

⎠ . (14)

The crucial observation is that Wj ∈ ((n− j)−1/2,λ) throughout the course of the
algorithm and that the random variables

J ′′
(
Wj

)
(Xj+1−Wj)

2

(n− j −1)
− 1

n− j −1

are martingale differences with conditional variance of order O
(
1/(n− j −1)2

)
.

So, working backwards in time, we shall argue that (14) remains bounded as n↗∞,
thereby concluding that ẼZ2

n,1 ≤ cP (Sn > nβ)2 for some constant c ∈ (0,∞).
It is important to note that the fact that J (·) is twice continuously differentiable

on (0,∞) seems crucial for the development.
The next section is devoted to the proof of the following result.

Theorem 2. For each p > 1,

sup
n≥1

ẼY
p
n

P (Sn > nβ)p
<∞.

Note that the result stated in Theorem 2 is in fact stronger than just bounded
relative error for the estimator, since the result is stated for arbitrary p > 1. For a
discussion on the benefits of establishing this stronger result see [11].

4 Rigorous Efficiency Analysis

In order to provide the proof of Theorem 2 we need the following result which is a
companion to Lemma 1.

Lemma 2. In the context of Lemma 1 and equation (10), assume that 0≤ j ≤ n−2,
(n− j)−1/2 < wj ≤ λ. Let U and V be independent, uniformly distributed random
variables also independent of Xj+1 given wj . Set

ηj+1
(
Xj+1

)= VU
(
wj+1

(
Xj+1

)−wj

)= VU
wj −Xj+1

n− j −1
.
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Then, there exists a constant c (λ) ∈ (0,∞) such that
∣∣∣∣∣
EJ ′(wj )

(
J ′′
(
wj +ηj+1

(
Xj+1

))
(Xj+1−wj)

2U

(n− j −1)

)

− 1

2(n− j −1)

∣∣∣∣∣
≤ c (λ)

(n− j)2
.

Proof. Define η̃
(
Xj+1,wj

) .= wj +ηj+1(Xj+1). Then note that

∣∣∣
∣EJ ′(wj )

(
J ′′
(
η̃
(
Xj+1,wj

))
(Xj+1−wj)

2U
)− 1

2

∣∣∣
∣

=
∣
∣
∣EJ ′(wj )

((
J ′′
(
η̃
(
Xj+1,wj

))−J ′′
(
wj

))
U
(
Xj+1−wj

)2
)∣∣
∣

≤ EJ ′(wj )

(∣
∣J ′′

(
η̃
(
Xj+1,wj

))−J ′′
(
wj

)∣∣(Xj+1−wj

)2
)
.

Let κ > 0 fixed (to be chosen later) and write

EJ ′(wj )

(∣
∣J ′′

(
η̃
(
Xj+1,wj

))−J ′′
(
wj

)∣∣(Xj+1−wj

)2
)

= EJ ′(wj )

(∣∣J ′′
(
η̃
(
Xj+1,wj

))−J ′′
(
wj

)∣∣(Xj+1−wj

)2 ; η̃ (Xj+1,wj

)≤ 0
)

+EJ ′(wj )

(∣∣J ′′
(
η̃
(
Xj+1,wj

))−J ′′
(
wj

)∣∣(Xj+1−wj

)2 ; η̃ (Xj+1,wj

) ∈ (0,κ)
)

+EJ ′(wj )

(∣∣J ′′
(
η̃
(
Xj+1,wj

))−J ′′
(
wj

)∣∣(Xj+1−wj

)2 ; η̃ (Xj+1,wj

)
> κ

)
.

Let us write I1, I2 and I3 for the last three expectations in the previous display
respectively. We have for any positive even integer m, that on wj ∈ ((n− j)−1/2,λ)

I1 = J ′′
(
wj

)
EJ ′(wj )

((
Xj+1−wj

)2 ;wj +VU
wj −Xj+1

n− j −1
≤ 0

)

= J ′′
(
wj

)
EJ ′(wj )

((
Xj+1−wj

)2 ;VU Xj+1−wj

n− j −1
≥ wj

)

≤ J ′′
(
wj

)
EJ ′(wj )

((
Xj+1−wj

)2 ;VU Xj+1−wj

n− j −1
≥ 1

(n− j)1/2

)

= J ′′
(
wj

)
EJ ′(wj )

((
Xj+1−wj

)2 ;VU (
Xj+1−wj

)≥ (n− j −1)

(n− j)1/2

)

≤ J ′′
(
wj

)
(n− j)m/2

(n− j −1)m
EJ ′(wj )

((
Xj+1−wj

)m+2
)
≤ c (λ)

(n− j)m/2
.

In the penultimate inequality we have used E
(
Z2;Z/a > 1

) ≤ E
(
Z2+m/am

)
for

a > 0 any random variable Z, and positive, even integer m, and in the last line we
use the fact that wj ∈ ((n− j)−1/2,λ). Next, we have that
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I2 = EJ ′(wj )

(∣∣J ′′
(
η̃
(
Xj+1,wj

))−J ′′
(
wj

)∣∣(Xj+1−wj

)2 ; η̃ (Xj+1,wj

) ∈ (0,κ)
)

≤ sup
0<s<κ

∣∣J ′′′ (s)
∣∣EJ ′(wj )

(∣∣ηj+1(Xj+1)
∣∣ (Xj+1−wj

)2 ; η̃ (Xj+1,wj

) ∈ (0,κ)
)

≤ sup
0<s<κ

∣∣J ′′′ (s)
∣∣EJ ′(wj )

(∣
∣Xj+1−wj

∣
∣3

n− j −1
; η̃ (Xj+1,wj

) ∈ (0,κ)
)

≤ c (λ)

n− j
.

for some constant c (λ) ∈ (0,∞) (this follows because J (·) is smooth on (0,κ)).
Finally, we can use the relationship J ′′(θ)= 1/ψ ′′

(
J ′(θ)

)
to see that if κ > λ

I3 = EJ ′(wj )

(∣
∣J ′′

(
η̃
(
Xj+1,wj

))−J ′′
(
wj

)∣∣(Xj+1−wj

)2 ; η̃ (Xj+1,wj

)
> κ

)

≤ 1

infθ≥0ψ ′′ (θ)
EJ ′(wj )

(
(
wj −Xj+1

)2 ;VU wj −Xj+1

n− j −1
> κ−wj

)

≤ 1

infθ≥0ψ ′′ (θ)
EJ ′(wj )

(
(
wj −Xj+1

)2 ;VU wj −Xj+1

n− j −1
> κ−λ

)

≤ 1

infθ≥0ψ ′′ (θ)

EJ ′(wj )

((
wj −Xj+1

)2+m)

(κ−λ)m (n− j −1)m
≤ c (λ)

(n− j)m
,

where the previous inequality follows from Assumption 2 just as we did for the
previous to last line in the analysis of I1. Combining our estimates for I1, I2 and I3
we obtain the result. ()

We will now use the previous result to analyze the second moment of Yn under the
law induced by the importance sampling distribution P̃ associated with Algorithm
1. First we need to define the following terms. For 0≤ j ≤ n−2, define,

Dj+1
(
Xj+1,wj

)= E
[
J ′′
(
wj +ηj+1

(
Xj+1

))
(Xj+1−wj)

2U |Xj+1
]
.

Next, for 0≤ j ≤ n−2, dj+1
(
wj

)= EJ ′(wj )

(
Dj+1

(
Xj+1,wj

))
. Finally, write

Dj+1
(
Xj+1,wj

)= (
Dj+1

(
Xj+1,wj

)−dj+1
(
wj

))
I
(
τ (n) > j

)
(15)

and note that the Dj+1
(
Xj+1,Wj

)
’s form a sequence of martingale differences. We

then have the following bound.

Proposition 4. There exists a constant m(λ) ∈ (0,∞) such that

Y
p
n ≤m(λ)

exp(−pnJ (β))(n− τ (n)+1
)p/2

np/2
exp

⎛

⎝−
n−2∑

j=0

pDj+1
(
Xj+1,Wj

)

2(n− j)

⎞

⎠ .

Proof. First note that Lemma 1 guarantees that given Wj = wj , for j ≤ n−2

−θjXj+1+ψ
(
θj
)= (n− j −1)J

(
wj+1

(
Xj+1

))− (n− j)J
(
wj

)
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− Dj+1
(
Xj+1,wj

)

2(n− j −1)
.

Therefore, on τ (n) = n we have that

−
τ (n)−1∑

j=0

(
θjXj+1−ψ

(
θj
))=−

n−2∑

j=0

(
θjXj+1−ψ

(
θj
))− (θn−1Xn−ψ (θn−1))

=−nJ (β)−
n−2∑

j=0

Dj+1
(
Xj+1,wj

)

2(n− j −1)
+J (Wn−1)− (θn−1Xn−ψ (θn−1)) .

On the other hand,

J (Wn−1)− (Xnθn−1−ψ (θn−1))= θn−1 (Wn−1−Xn)=−θn−1 (Sn−nβ) .

Therefore,

YnI
(
τ (n) = n

)≤ exp

⎛

⎝−nJ (β)−
(
τ (n)−1

)∧(n−2)∑

j=0

Dj+1
(
Xj+1,wj

)

2(n− j)

⎞

⎠I (Sn > nβ).

Similarly, on τ (n) < n we have

−
τ (n)−1∑

j=0

(
θjXj+1−ψ

(
θj
))=−

(τ (n)−1)∧(n−2)∑

j=0

(
θjXj+1−ψ

(
θj
))

(16)

=−nJ (β)+
(
n− τ (n)

)
J
(
Wτ(n)

)−
(τ (n)−1)∧(n−2)∑

j=0

Dj+1
(
Xj+1,Wj

)

2(n− j)
.

On the other hand, we can use the definition of J and θ to get the following equality
on τ (n) < n

(n− τ (n))ψ
(
θτ(n)

)− θτ(n)
(
Sn−Sτ(n)

)=−
(
(n− τ (n))J

(
Wτ(n)

)+ θτ(n) (Sn−nβ)
)
.

Recalling the definition of our estimator, Yn we obtain that

YnI (τ
(n) < n)≤ exp

⎛

⎝−nJ (β)−
(
τ (n)−1

)∧(n−2)∑

j=0

Dj+1
(
Xj+1,wj

)

2(n− j)

⎞

⎠I (Sn > nβ).

Therefore, we obtain that

Yn ≤ exp

⎛

⎝−nJ (β)−
(
τ (n)−1

)∧(n−2)∑

j=0

Dj+1
(
Xj+1,wj

)

2(n− j)

⎞

⎠I (Sn > nβ). (17)
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On the other hand, one can use the fact that Dj = 0 for j > τ(n) to see,

−nJ (β)−
(
τ (n)−1

)∧(n−2)∑

j=0

Dj+1
(
Xj+1,wj

)

2(n− j)
=−nJ (β)−

n−2∑

j=0

Dj+1
(
Xj+1,Wj

)

2(n− j)

−
(τ (n)−1)∧(n−2)∑

j=0

(
dj+1

(
Wj

)

2(n− j)
− 1

2(n− j)

)
−

(τ (n)−1)∧(n−2)∑

j=0

1

2(n− j)
.

We now use Lemma 2 to bound the penultimate term in the previous display,
∣
∣
∣
∣
∣
∣

(τ (n)−1)∧(n−2)∑

j=0

(
dj+1

(
Wj

)

2(n− j)
− 1

2(n− j)

)
∣
∣
∣
∣
∣
∣
≤ c (λ)

∞∑

j=1

j−2 <∞. (18)

Next using standard bounds on harmonic numbers we have the following

(τ (n)−1)∧(n−2)∑

j=0

1

n− j
≥

n∑

j=1

1

j
−

n−τ (n)+1∑

j=1

1

j
≥ log(n)− log

(
n− τ (n)+1

)
− 1

2
. (19)

Putting the estimates from bounds (16), (18), (19) together into (17) we see that
there exists a constant m(λ) ∈ (0,∞) such that

Yn ≤m(λ)I (Sn ≥ nβ)exp

⎡

⎣−nJ (β)−
n−2∑

j=0

Dj+1
(
Xj+1,Wj

)

2(n− j)

⎤

⎦
(
n− τ (n)+1

n

)1/2

.

The result then follows. ()
Recall that we use Ẽ (·) to denote the change of measure induced by Algorithm

1. The previous proposition indicates that

ẼY
p
n ≤ m(λ)e−pnJ (β)

np/2
Ẽ

⎛

⎝exp

⎛

⎝−
n−2∑

j=0

pDj+1
(
Xj+1,Wj

)

2(n− j)

⎞

⎠
(
n− τ (n)+1

)p/2

⎞

⎠ .

Using the Cauchy-Schwarz inequality, we obtain

(
ẼY

p
n

)2 ≤ m(λ)e−2pnJ (β)

np
Ẽ
(
n− τ (n)+1

)p
Ẽ exp

⎛

⎝−
n−2∑

j=0

pDj+1
(
Xj+1,Wj

)

(n− j)

⎞

⎠ .

(20)

In order to verify strong efficiency of the algorithm it suffices to show that

Ẽ

⎛

⎝exp

⎛

⎝−
n−2∑

j=0

pDj+1
(
Xj+1,Wj

)

(n− j)

⎞

⎠

⎞

⎠=O (1) ,
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Ẽ
((
n− τ (n)+1

)p)=O (1)

as n↗∞. We first establish the required property for Ẽ
((
n− τ (n)+1

)p)
.

Proposition 5. For any p ∈ (1,∞) we have that

sup
n≥1

Ẽ
((
n− τ (n)

)p)
<∞.

Proof. By definition Ẽ[(n− τ (n))p] =∑n−1
k=1(n− k)pP̃ (τ (n) = k) and

P̃
(
τ (n) = k

)
≤ P̃

(
τ (n) > k−1,Wk ≥ λ

)
+ P̃

(
τ (n) > k−1,Wk ≤ 1/(n− k)1/2

)
.

Now, define the martingale difference D̃j =
(
Wj −Wj−1

)× I
(
τ (n) > j −1

)
(for

1≤ j ≤ n−1) and note that (recall that W0 = β)

P̃
(
τ (n) > k−1,Wk ≥ λ

)
= P̃

⎛

⎝τ (n) > k−1,
k∑

j=1

D̃j ≥ λ−β

⎞

⎠ ,

P̃
(
τ (n) > k−1,Wk ≤ (n− k)−1/2

)
= P̃

⎛

⎝τ (n) > k−1,
k∑

j=1

D̃j ≤ (n− k)−1/2−β

⎞

⎠ .

We will show that there exists a constant m1 ∈ (0,∞) such that

P̃

⎛

⎝
k∑

j=1

D̃j ≥ λ−β

⎞

⎠≤m1 exp
(−(n− k)1/3) . (21)

To see this, note that given Wk−1 = wk−1 we can write

D̃k =
(
wk−1−Xk

n− k

)
I (τ (n) > k−1).

Thus, if η ∈ (0,∞) then Ẽ
(

exp
(
ηD̃k

)∣∣
∣D̃1, ..., D̃k−1

)
= exp

(
χk
( η
n−k

))
, where

χk

(
η

n− k

)
= ηwk−1I

(
τ (n) > k−1

)

n− k

+ψ

(
−ηI (τ (n) > k−1

)

n− k
+ θk−1

)

−ψ (θk−1) .

If η = (n− k)1/3, then because τ (n) > k − 1 (which implies Wk−1 ∈ (1/(n−
k)1/2,λ)), the smoothness of ψ , and ψ ′ (θk−1) = wk−1, we can use a Taylor ex-
pansion with remainder term to see that there exists a constant m2 (λ) ∈ (0,∞) such
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that

χk

(
η

n− k

)
≤ m2 (λ)

(n− k)4/3
.

Applying the previous considerations subsequently for j = k− 1,k− 2, ...,1 we
obtain that

Ẽ

⎛

⎝exp

⎛

⎝(n− k)1/3
k∑

j=1

D′j

⎞

⎠

⎞

⎠≤ exp

⎛

⎝
k∑

j=1

m2 (λ)

(n− j)4/3

⎞

⎠=m1.

Chebyshev’s inequality then yields inequality (21) as indicated. A completely anal-

ogous estimate can be obtained for P̃
(∑k

j=1 D̃j ≤ (n− k)−1/2−β
)
.

Therefore we conclude that

Ẽ
((
n− τ (n)

)p)=
n−1∑

k=1

(n− k)pP̃
(
τ (n) = k

)
≤ 2

n−1∑

k=1

(n− k)pm1 exp
(−(n− k)1/3) ,

which is clearly bounded as n↗∞. ()
Finally, we turn to the remaining result required to establish strong efficiency.

Proposition 6. For each η > 0 and p > 1 we have that

sup
n≥1

Ẽ

⎛

⎝exp

⎛

⎝−p
n−2∑

j=0

ηDj+1
(
Xj+1,Wj

)

(n− j)

⎞

⎠

⎞

⎠<∞.

Proof. We have that for any η > 0, given Wj = wj , on τ (n) > j and 0≤ j ≤ n−2

Ẽ

(

e
− pηDj+1(Xj+1,wj )

(n−j)

∣∣
∣∣∣
X1, ...,Xj

)

= exp

(
ξj

(
− p

n− j
ηI
(
τ (n) > j

)
,wj

))
,

where ξj
(
θ,wj

)= log Ẽ exp
(
θDj+1

(
Xj+1,wj

))
.

From the definition of Dj+1, and the convexity of J (·) observe that ξj
(
θ,wj

)
<

∞ for θ < 0. Moreover, we have that ξ ′j
(
0,wj

)= 0 and therefore on τ (n) > j (which

implies that (n− j)−1/2 ≤ wj ≤ λ) there exists m3 (λ) ∈ (0,∞) such that

ξj

(−pη
n− j

)
≤ p2η2

2(n− j)2
sup

−η/(n−j)≤θ≤0
ξ ′′j (θ)≤

p2η2m3 (λ)

2(n− j)2
.

Iterating the previous calculations for j = n−2,n−3, ...,0 we obtain that

Ẽ

⎛

⎝exp

⎛

⎝−p
n−2∑

j=0

ηDj+1
(
Xj+1,Wj

)

(n− j)

⎞

⎠

⎞

⎠≤ exp

⎛

⎝
n−1∑

j=1

η2m3 (λ)

2(n− j)2

⎞

⎠=O (1)

as n↗∞, which yields the result. ()
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Theorem 2 follows easily from the previous two propositions by recalling the
bound in display (20).

In the Introduction we emphasized the distinction between OET and the zero-
variance change of measure in the sense that the overshoot is controlled as n↗∞
under the zero-variance change of measure but grows under OET. As the next result
shows, under our sampler the overshoot stays bounded in expectation.

Proposition 7.
sup
n≥1

Ẽ (|Sn−nβ|) <∞.

Proof. We first write Ẽ |Sn−nβ| ≤ Ẽ|Sn−Sτ(n) |+ Ẽ|Sτ(n) −nβ|.
We analyze the latter term first, therefore note that

|Sτ(n) −nβ| ≤ |Sτ(n)−1− (τ (n)−1)β|+ |Xτ(n) − (n− τ (n)+1)β|
≤ 2λ(n− τ (n)+1)+|Xτ(n) |,

where the second inequality follows from the definition of τ (n) and that λ > β. Of
course the expected value of n−τ (n) stays bounded as n↗∞ thanks to Proposition
5. Therefore it remains to look at the expected value of Xτ(n) based on the value of
τ (n). In particular, we have that

Ẽ|Xτ(n) | =
n−1∑

j=0

Ẽ
(
|Xj+1|;τ (n) = j +1,τ (n) > j

)

≤
n−1∑

j=0

Ẽ
(
|Xj+1|2;τ (n) > j

)1/2
P̃
(
τ (n) = j +1

)1/2
.

It follows from steepness and the fact that τ (n) > j that there exists a constant
c0 (λ) ∈ (0,∞) such that Ẽ( |Xj+1|2 |τ (n) > j)≤ c0 (λ).

As we established in the proof of Proposition 5, it follows that P̃ (τ (n) = j+1)≤
m1 exp

(−(n− j)1/3
)

for some constant m1 ∈ (0,∞). Therefore, we obtain that

sup
n≥1

Ẽ|Xτ(n) | ≤ c0 (λ)
1/2m

1/2
1

∞∑

j=1

exp
(
− j1/3/2

)
<∞ (22)

and thus, supn≥1E
[|Sτ(n) −nβ|]<∞.

The proof will be completed once we show that Ẽ
[|Sn−Sτ(n) |

]
stays bounded

with n. First, note that

Ẽ
(
|Sn−Sτ(n) |;τ (n)0 ≤ τ

(n)
1

)
≤ (E|X1|) Ẽ(n− τ

(n)
0 ).

Observe E|X1| appears because from time τ
(n)
0 + 1 up to n the sampling is done

under the original / nominal distribution. Again we can use Proposition 5 to bound
the expectation of n− τ (n). Thus it suffices to consider
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Ẽ
(
|Sn−Sτ(n) |;τ (n)0 > τ

(n)
1

)
.

Let us define,

μ(W
τ
(n)
1
)= Ẽ

(∣∣∣X
τ
(n)
1 +1

∣∣∣
∣∣W0, ...,Wτ

(n)
1
,τ

(n)
1

)
=
∫ ∞

−∞
|x|exp

(
θ
τ
(n)
1
x−ψ

(
θ
τ
(n)
1

))
dF(x).

Using the triangle inequality, conditioning and Cauchy-Schwarz we get the follow-
ing,

Ẽ
(
|Sn−Sτ(n) |;τ (n)1 < τ

(n)
0

)
≤ Ẽ

⎛

⎜
⎝

n∑

j=τ (n)1 +1

∣
∣Xj

∣
∣ ;τ (n)1 < τ

(n)
0

⎞

⎟
⎠

≤
n−1∑

k=1

n∑

j=k+1

Ẽ
(∣
∣Xj

∣
∣ ;τ (n)1 = k

)
≤

n−1∑

k=1

(n− k)Ẽ
(
μ(W

τ
(n)
1
);τ (n)1 = k

)

≤ Ẽ
(
μ(W

τ
(n)
1
)2
)1/2 n−1∑

k=1

(n− k)
(
P̃
(
τ
(n)
1 = k

))1/2
.

As we noted before, from the proof of Proposition 5, it follows that

sup
n≥1

n−1∑

k=1

(n− k)P̃
(
τ
(n)
1 = k

)1/2
<∞.

It now remains to show that Ẽ(μ(W
τ
(n)
1
)2) stays bounded as n goes to infinity. Notice

that 0 ≤W
τ
(n)
1
≤ 2λ+|X

τ
(n)
1
|. A similar analysis behind Eq. (22) then allows us to

conclude
sup
n≥1

Ẽ(W
τ
(n)
1
)2 <∞. (23)

Observe that W
τ
(n)
1
= ∫∞

−∞ x exp[θ
τ
(n)
1
x−ψ(θ

τ
(n)
1
)]dF(x) therefore

μ
(
W

τ
(n)
1

)
=W

τ
(n)
1
+2

∫ 0

−∞
|x|exp

(
θ
τ
(n)
1
x−ψ

(
θ
τ
(n)
1

))
dF(x)

≤W
τ
(n)
1
+2

∫ 0

−∞
|x|exp

(
−ψ

(
θ
τ
(n)
1

))
dF(x).

Due to strict convexity, the fact that ψ (0)= 0, and ψ ′ (0)= 0 we have that ψ (θ)≥ 0
for θ ≥ 0, thus

μ(W
τ
(n)
1
)≤W

τ
(n)
1
+2E|X1|.

The proof is completed by combining the bound in the previous display with the
result from (23). ()
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5 The Multidimensional Case

A vector x ∈ Rd is always assumed to be a column vector, and we denote its trans-
pose by xT . Therefore the inner product of two vectors x,y is denoted by xT y. The
Hessian matrix of a function f : Rd → R is denoted by D2f . In this section we
impose the following assumptions:

[i]
(
X̃j : j ≥ 1

)
is a sequence of iid d-dimensional random vectors with mean

zero and continuous distribution.
[ii] Let A be a closed convex set for which 0 /∈ A.
[iii] Given φ ∈R

d define %(φ)= logE exp
(
φT X̃j

)
, put I (z)=maxφ∈Rd (φT z−

%(φ)) and suppose that there exists ξ∗ ∈ A and φ∗ ∈ R
d such that

I (ξ∗)= φT∗ ξ∗ −%(φ∗)= inf
z∈AI (z) . (24)

[iv] Assume there is a local change of coordinates T : Rd−1 ⊃ U → ∂A (where
U is an open set) so that the Hessian of I ◦T is well defined and positive definite at
T −1(ξ∗), see [1] for details.

[v] Define Xj = φT∗ X̃j and put ψ (θ)= logE exp
(
θXj

)
for θ ∈ R. Suppose that

ψ (·) satisfies Assumptions ii) and iii) from Section 2.
Assumption [iv] in particular requires ∂A to be twice continuously differentiable

at ξ∗. The geometric interpretation, explained in [9] and [1], is that the boundary of
∂A must be more flat than the level curve of I corresponding to the value I (ξ∗) at
ξ∗. If assumption [iv] is violated then our algorithm is still logarithmically efficient.
However, the relative error will grow at a polynomial rate which can be shown to be
not larger than that of OET.

Analogous to the one-dimensional setting we define the exponential family
(F̃φ : φ ∈ R

d) generated by the distribution F̃ (·) = P(X̃ ≤ ·) (inequality is taken
componentwise)

dF̃φ = exp
(
φT x−%(φ)

)
dF̃ .

Note that by the definition of φ∗ and ξ∗,

ξ∗ = E
[
X̃ exp

(
φT∗ X̃

)]

E
[
exp

(
φT∗ X̃

)] and thus φT∗ ξ∗ =
E
[
φT∗ X̃ exp

(
φT∗ X̃

)]

E
[
exp

(
φT∗ X̃

)] .

We define β = φT∗ ξ∗ and use exactly the same notation as in Section 2 in the
context of equations (3), (1) and (2). So, we see that θβ = 1 and J (β) = I (ξ∗).
Moreover, since the analysis of the estimator will be reduced to the one dimensional
setting taking advantage of the random variables Xj ’s defined in Assumption [iv],
we also refer the reader to the definitions of Wj , the associated stopping time τ (n),
the change of measure θj and the likelihood ratio in equations (11), (7), (8) and (9).

Under Assumptions [i] to [v] we shall develop a strongly efficient estimator for

computing P
(
S̃n/n ∈ A

)
as n↗∞ where S̃n = X̃1+ ...+ X̃n. First, let us recall

the following result from [9].
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Theorem 3. Under Assumptions [i] to [iv] there exists a constant c (A) such that

P
(
S̃n/n ∈ A

)∼ c (A)

n1/2
exp(−nJ (β)) (25)

as n↗∞.

The previous result allows us to reduce, under assumptions [i] to [v], the multi-
dimensional case problem to the one dimensional case studied in Sections 3 and 4.
Note that Assumptions [ii] and [iv] are particularly important because they ensures
that the premultiplying constant in (25) is c (A)/n1/2 (i.e. the same order as in the
one dimensional case). The premultiplying factor can in fact take the form c(A)nγ

for −∞ < γ ≤ (d− 2)/2. Only with Assumptions [ii] and [iv] are we assured that
γ =−1/2, [9] addresses the issue of identifying γ for smooth Borel subsets of Rd .
If γ = 1/2 then modulo constants P(S̃n ∈ nA) behaves like P(Sn ≥ nβ). In order
for that to occur one must ensure that the boundary of A does not curve away too
sharply from the level set of I at the dominating point ξ∗, Assumption [iv] ensures
that the curvature of A with respect to I is sufficiently small.

We now provide an explicit description of the proposed algorithm.
Algorithm 2

Set w = β = φT∗ ξ∗ > 0, L= 1, s = 0, s̄ = 0, k = 0, and λ a large positive constant.
Repeat STEP 1 until n= k OR w ≤ (n− k)−1/2 OR w ≥ λ.

STEP 1: Sample X̃ from F̃θwφ∗ and set

L←− exp
(−θwφT∗ X̃+ψ (θw)

)
L,

s←− s+X,

k←− k+1,

w←− (
nβ−φT∗ s

)
/(n− k).

STEP 2: If k < n sample X̃k+1, ..., X̃n iid rv’s from F̃θwφ∗ and set

s̄←− X̃k+1+ ...+ X̃n,

L←− exp
(−θwφT∗ s̄+ (n− k)ψ (θw)

)
L.

STEP 3: Output Zn = L× I (s+ s̄ ∈ nA).

Theorem 4. Let Ẽ (·) be the expectation operator associated with the change of
measure described by Algorithm 2. Then, for each p > 1 we have

sup
n≥1

Ẽ
(
Z
p
n

)

P
(
S̃n/n ∈ A

)p <∞.

Proof. Since I
(
S̃n ∈ nA

) ≤ I (Sn ≥ nβ) = I
(
Sn ≥ nφT∗ ξ∗

)
we obtain that the esti-

mator obtained by running Algorithm 2 is bounded by
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Yn = exp

⎛

⎝−
τ (n)−1∑

j=0

(
θjXj+1−ψ

(
θj
))
⎞

⎠

× I (Sn ≥ nβ)exp
(
−θτ(n)

(
Sn−Sτ(n)

)+ (n− τ (n))ψ
(
θτ(n)

))
.

Therefore

sup
n≥1

ẼZ
p
n

P (S̃ ∈ nA)p ≤ sup
n≥1

ẼY
p
n

P (Sn ≥ nβ)p
sup
n≥1

P(Sn ≥ nβ)p

P (S̃ ∈ nA)p .

The proof is completed by using Theorems 1 and 3 because supn≥1
P(Sn≥nβ)
P (S̃n∈nA) <∞.
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Distribution of Digital Explicit Inversive
Pseudorandom Numbers and Their Binary
Threshold Sequence

Zhixiong Chen, Domingo Gomez, and Arne Winterhof

In memory of Edmund Hlawka

Abstract We study the distribution of s-dimensional points of digital explicit in-
versive pseudorandom numbers with arbitrary lags. We prove a discrepancy bound
and derive results on the pseudorandomness of the binary threshold sequence de-
rived from digital explicit inversive pseudorandom numbers in terms of bounds on
the correlation measure of order k and the linear complexity profile. The proofs are
based on bounds on exponential sums and earlier relations of Mauduit, Niederre-
iter and Sárközy between discrepancy and correlation measure of order k and of
Brandstätter and the third author between correlation measure of order k and linear
complexity profile, respectively.

1 Introduction

Inversive methods are attractive alternatives to the linear method for generating
pseudorandom numbers, see the recent surveys [11, 12, 17]. In this paper we ana-
lyze the distribution of digital explicit inversive pseudorandom numbers introduced
in [13] and further analyzed in [6, 13, 14, 15, 16].
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Let q = pr be a prime power and Fq the finite field of order q. Let

γ =
{
γ−1, if γ ∈ F

∗
q,

0, if γ = 0.

We order the elements of Fq = {ξ0,ξ1, . . . , ξq−1} using an ordered basis {γ1, . . . ,γr }
of Fq over Fp for 0≤ n < q,

ξn = n1γ1+n2γ2+·· ·+nrγr ,

if
n= n1+n2p+·· ·+nrp

r−1, 0≤ ni < p, i = 1, . . . , r.

For n ≥ 0 we define ξn+q = ξn. Then the digital explicit inversive pseudorandom
number generator of period q is defined by

ρn = αξn+β, n= 0,1, . . .

for some α,β ∈ Fq with α �= 0.
If

ρn = cn,1γ1+ cn,2γ2+·· ·+ cn,rγr

with all cn,i ∈ Fp, we derive digital explicit inversive pseudorandom numbers of
period q in the interval [0,1) by defining

yn =
r∑

j=1

cn,jp
−j , n= 0,1, . . . . (1)

For s ≥ 1 the distribution of points (yn,yn⊕1, . . . ,yn⊕(s−1)), where n⊕ k = d if
ξn+ ξk = ξd , 0 ≤ n,k,d < q, was studied in [13]. Here we study the distribution
of the points (yn+d1 , . . . ,yn+ds ) for any integers 0 ≤ d1 < · · · < ds < q and the
integer addition +. We prove a discrepancy bound which is based on estimates for
exponential sums generalizing the earlier result of the first author [3] for s = 2 using
some additional ideas.

As applications we use some results of [4] and [1] to derive bounds on the cor-
relation measure of order k and linear complexity profile of the binary sequences
Rq = (r0, r1, . . . , rq−1) defined by

rn =
{

0, if 0≤ yn <
1
2 ,

1, if 1
2 ≤ yn < 1,

0≤ n < q. (2)

Note that for such applications a discrepancy bound with arbitrary lags 0 ≤ d1 <

· · ·<ds <q is needed. Most known discrepancy bounds on nonlinear pseudorandom
numbers found in the literature consider only the special lags di = i − 1 for i =
1, . . . , s. In many cases the analysis of the discrepancy becomes much more intricate
for arbitrary lags, see for example [10].
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We recall that the correlation measure of order k, introduced by Mauduit and
Sárközy in [5], is an important measure of pseudorandomness for finite binary se-
quences. For a finite binary sequence

SN = {s0, s1, . . . , sN−1} ∈ {0,1}N,
the correlation measure of order k of SN is defined as

Ck(SN)=max
M,D

∣∣
∣
∣
∣

M∑

n=1

(−1)sn+d1+sn+d2+···+sn+dk
∣∣
∣
∣
∣
,

where the maximum is taken over all D = (d1, . . . ,dk) with non-negative integers
0 ≤ d1 < · · · < dk and M such that M + dk ≤ N − 1. For a “good” pseudorandom
sequence SN , Ck(SN) (for “small” k) is small and is ideally greater than N1/2 only
by at most a power of logN , see [2].

The linear complexity profile is an important cryptographic characteristic of
pseudorandom sequences. A low linear complexity profile has turned out to be un-
desirable for cryptographical applications.

For a T -periodic binary sequence ST = (s0, s1, . . . , sT−1) over F2, the linear com-
plexity profile L(ST ,N) is the function which is defined as the shortest length L of
a linear recurrence relation over F2 for N > 1

sn+L = cL−1sn+L−1+·· ·+ c0sn, 0≤ n≤N −L−1,

which is satisfied by this sequence.
The discrepancy bound is proved in Section 2, and the bounds on the correlation

measure of order k and the linear complexity profile are given in Sections 3 and 4.

2 Discrepancy Bound

In this section we estimate the discrepancy of the points

Yn = (yn+d1 , . . . ,yn+ds ) ∈ [0,1)s, n= 0,1, . . . ,N −1,

for any non-negative integers d1, . . . ,ds with 0 ≤ d1 < · · · < ds < q and 1 ≤
N ≤ q. We recall that the discrepancy of the points Y0, . . . ,YN−1, denoted by
DN(d1, . . . ,ds), is defined by

DN(d1, . . . ,ds)= sup
J⊆[0,1)s

∣∣∣
∣
A(J,N)

N
−|J |

∣
∣∣
∣ ,

where A(J,N) is the number of points Y0, . . . ,YN−1 which hit the box J =
[α1,β1)× ·· · × [αs,βs) ⊆ [0,1)s , the volume |J | of an interval J is given by∏s

i=1(βi −αi) and the supremum is taken over all such boxes, see e.g. [9].
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Theorem 1. Let y0,y1, . . . be the sequence defined by (1). For any non-negative
integers d1, . . . ,ds with d1 < · · ·< ds < q and 1 ≤ N ≤ q, the discrepancy DN(d1,

. . . ,ds) of the points

Yn = (yn+d1 , . . . ,yn+ds ) ∈ [0,1)s, n= 0,1, . . . ,N −1,

satisfies

DN(d1, . . . ,ds)=O(N−12r+rsrsq1/2(logq)s(1+ logp)r),

where the implied constant is absolute.

Proof. Let λij ∈ Fp (1 ≤ i ≤ s,1 ≤ j ≤ r) be not all zero and put ep(x) =
exp(2π

√−1x/p) and

SN = SN(λ11, . . . ,λsr )=
N−1∑

n=0

ep

⎛

⎝
s∑

i=1

r∑

j=1

λij cn+di ,j

⎞

⎠ ,

where the ci,j are defined in (1). According to [9, Proposition 2.4, Theorem 3.12
and Lemma 3.13] we have

DN(d1, . . . ,ds)� 2s(logq)s
1

N
max

λ11,...,λsr
|SN(λ11, . . . ,λsr )| , (3)

where the maximum is taken over all nonzero vectors (λ11, . . . ,λsr ) ∈ F
sr
p \

{(0, . . . ,0)}. Hence it suffices to estimate SN above.
Let {γ ′1, . . . ,γ ′r } be the dual basis of the ordered basis {γ1, . . . ,γr } of Fq over Fp.

Then we have

SN =
N−1∑

n=0
ep

(
s∑

i=1

r∑

j=1
λijTr(γ ′j ρn+di )

)

=
N−1∑

n=0
ep

(

Tr

(
s∑

i=1

r∑

j=1
λij γ

′
j ρn+di

))

=
N−1∑

n=0
ψ

(
s∑

i=1
μiρn+di

)
,

where Tr denotes the absolute trace of Fq , ψ is the additive canonical character of
Fq and

μi =
r∑

j=1

λij γ
′
j , i = 1, . . . , s.

Since λij ∈ Fp (1 ≤ i ≤ s,1 ≤ j ≤ r) are not all zero and {γ ′1, . . . ,γ ′r } is a basis of
Fq over Fp, it follows that μ1, . . . ,μs are not all zero.

First we present three auxiliary steps for the proof.
(i). We call a set of the form {δ+n1γ1+·· ·+nrγr : 0 ≤ ni < Ni, i = 1, . . . , r}

for some integers 0 ≤ N1, . . . ,Nr ≤ p and δ ∈ Fq a box. Note that the empty set is
also a box and that the intersection of a family of boxes is the union of at most 2r
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boxes. (For r = 1 this is trivial and in general each r-dimensional box is the direct
product of r one-dimensional boxes.)

As in the proof of [7, Theorem 2], it can be verified that for 0 ≤ τ,m < q there
are only 2r−1 different ω ∈ Fq , namely,

ω = w2γ2+·· ·+wrγr , w2, . . . ,wr ∈ {0,1}, (4)

such that
ξm+τ = ξm+ ξτ +ω,

where we used the definition ξm+q = ξm, m = 0, . . . ,q− 1. We are going to prove
that the sets

Sτ,ω = {ξm : 0≤m< q, ξm+τ = ξm+ ξτ +ω}
are boxes. For 0≤ τ,m < q, let

τ = τ1+ τ2p+·· ·+ τrp
r−1, 0≤ τ1,τ2, . . . ,τr < p

and
m=m1+m2p+·· ·+mrp

r−1, 0≤m1,m2, . . . ,mr < p.

Put

w1 = 0, wi+1 =
{

1, if mi + τi+wi ≥ p,

0, otherwise,

for i = 1,2, . . . , r . We get

m+ τ = z1+ z2p+·· ·+ zrp
r−1, 0≤ z1,z2, . . . ,zr < p

where
zi =mi+ τi+wi−wi+1p, 1≤ i ≤ r.

Then we get
ξm+τ = ξm+ ξτ +ω,

where
ω = w2γ2+·· ·+wrγr .

Note that for fixed τ and ω the sets Sτ,ω define a partition of Fq and we have

Sτ,ω = {δ+u1γ1+·· ·+urγr : 0≤ uj < kj ,j = 1, . . . , r},
where

δ =
r−1∑

j=1
wj+1=1

(p− τj −wj)γj

and

kj =
⎧
⎨

⎩

p− τj −wj , if wj+1 = 0,1≤ j < r,

τj +wj , if wj+1 = 1,1≤ j < r,

p, if j = r.
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So the sets Sτ,ω are all boxes.

(ii). For 0≤ d1 < d2 < · · ·< ds < q and ω1, . . . ,ωs ∈ Fq of the form (4) the sets

Sd1,ω1 ∩·· ·∩Sds,ωs = {ξn : 0≤ n < q,ξn+di = ξn+ ξdi +ωi, i = 1, . . . , s}
are unions of at most 2r boxes. As in the proof of [7, Theorem 4] for 1 ≤ N ≤ q,
below we verify that the intersection of a box B with {ξ0, . . . , ξN−1} is a union of r
boxes. Write B ′ = B ∩{ξ0, . . . , ξN−1}.

Let l =
⌊

logN
logp

⌋
+1, we write

N = v1+v2p+·· ·+vlp
l−1, 0≤ v1,v2, . . . ,vl < p.

We give a partition for B ′ by defining

V2,ω = {ξm ∈ B|m1 ≤ v1,m2 = v2, . . . ,ml = vl},
Vj,ω = {ξm ∈ B|0≤m1, . . . ,mj−2 < p,

mj−1 ≤ vj−1−1,mj = vj , . . . ,ml = vl},
where j = 3,4, . . . , l, and
V1,ω = {ξm ∈ B|0≤m1, . . . ,ml−1 < p, ml ≤ vl−1}.

It is easy to see that each Vj,ω is a box since on the coefficients of the ξm only
possibly more constraints are added.

In summary, there are 2(r−1)s possible choices for ω1, . . . ,ωs ∈ Fq . For fixed
ω1, . . . ,ωs ∈ Fq , Sd1,ω1 ∩ ·· · ∩ Sds,ωs is a union of at most 2r boxes B, while
B ∩{ξ0, . . . , ξN−1} is a union of r boxes Vj,ω.

(iii). Let B = {δ + n1γ1 + ·· · + nrγr : 0 ≤ ni < Ni, i = 1, . . . , r} with 0 ≤
N1, . . . ,Nr ≤ p and δ ∈ Fq be a box. By [18, Lemma 6], we have

∑

ς∈F∗q

∣∣∣∣∣∣

∑

ξ∈B
ψ(ςξ)

∣∣∣∣∣∣
< q(1+ logp)r .

Now we continue the proof. Let

I(ω1, . . . ,ωs)= Sd1,ω1 ∩·· ·∩Sds,ωs ∩{ξ0, . . . ,ξN−1}.
We note that if ξdi +ωi = ξdj +ωj for i < j , then there is no n with 0≤ n < q such
that

ξn+di = ξn+ ξdi +ωi and ξn+dj = ξn+ ξdj +ωj .

Otherwise, suppose n0 is such a value then ξn0+di = ξn0+dj , which leads to di ≡ dj
(mod q), a contradiction. So for ωi,ωj with ξdi +ωi = ξdj +ωj ,

Sdi ,ωi ∩Sdj ,ωj = ∅,
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which leads to
I(ω1, . . . ,ωs)= ∅.

In such case |I(ω1, . . . ,ωs)| = 0. Hence we obtain

SN =
N−1∑

n=0
ψ

(
s∑

i=1
μiρn+di

)

=
N−1∑

n=0
ψ

(
s∑

i=1
μiαξn+di +β

)

= ∑

ω1,...,ωs

∑

ξ∈I(ω1,...,ωs)

ψ

(
s∑

i=1
μiα(ξ + ξdi +ωi)+β

)

= ∑

ω1,...,ωs

∑

x∈Fq

ψ

(
s∑

i=1
μiα(x+ ξdi +ωi)+β

)

∑

ξ∈I(ω1,...,ωs)

1
q

∑

ς∈Fq

ψ(ς(x− ξ))

= 1
q

∑

ω1,...,ωs

∑

ς∈Fq

∑

ξ∈I(ω1,...,ωs)

ψ(−ςξ)
∑

x∈Fq

ψ

(
s∑

i=1
μiα(x+ ξdi +ωi)+β+ςx

)

= ∑

ω1,...,ωs

|I(ω1,...,ωs)|
q

∑

x∈Fq

ψ

(
s∑

i=1
μiα(x+ ξdi +ωi)+β

)

+ 1
q

∑

ω1,...,ωs

∑

ς∈F∗q

∑

ξ∈I(ω1,...,ωs)

ψ(−ςξ)
∑

x∈Fq

ψ

(
s∑

i=1
μiα(x+ ξdi +ωi)+β+ςx

)
.

By [8, Theorem 2] (see also [19, Lemma 1] or [13, Lemma 1]) the sum over x has
absolute value O(sq1/2) if the rational functions in the argument are not of the form
Ap−A. This implies

SN � 2(r−1)ssq1/2+2(r−1)s · sq1/2 · 1

q

∑

ς∈F∗q

∣∣∣∣∣∣

∑

ξ∈I(ω1,...,ωs)

ψ(ςξ)

∣∣∣∣∣∣
.

In fact in the proof above we only consider the case when I(ω1, . . . ,ωs) �= ∅,
which leads to ξdi +ωi �= ξdj +ωj for all i �= j . So both rational functions

s∑

i=1

μi(α(X+ ξdi +ωi)+β)−1

and s∑

i=1

μi(α(X+ ξdi +ωi)+β)−1+ςX

are not of the form Ap−A, where A is a rational function over Fq , by [19, Lemma
2] or [13, Lemma 2].

Now according to Steps (ii) and (iii) above, we have
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∑

ς∈F∗q

∣∣∣∣∣
∑

ξ∈I(ω1,...,ωs)

ψ(ςξ)

∣∣∣∣∣
≤ 2r

∑

ς∈F∗q

∣∣∣∣∣

l∑

j=1

∑

ξ∈Vj,ω
ψ(ςξ)

∣∣∣∣∣

≤ 2r
l∑

j=1

∑

ς∈F∗q

∣∣∣∣∣
∑

ξ∈Vj,ω
ψ(ςξ)

∣∣∣∣∣

� 2r lq(1+ logp)r ≤ 2r rq(1+ logp)r .

Putting everything together, we obtain

SN =O
(

2(r−1)s2r rsq1/2(1+ logp)r
)
.

Now (3) yields the theorem. �

Note that the bound converges slowly if s is large.

3 Correlation Measure of Order k

The correlation measure of order k = 2 of Rq satisfies

C2(Rq)=O(q1/2(logq)2(1+ logp)r)

with implied constant depending on r , see [3]. In this paper, we now extend this
result to the case of k > 2.

Theorem 2. The correlation measure of order k of Rq defined by (2) satisfies

Ck(Rq)=O(2r2(r+1)krkq1/2(logq)k(1+ logp)r).

Proof. By [4, Theorem 1] and Theorem 1, we have

∣∣∣∣
M∑

n=1
(−1)rn+d1+···+rn+dk

∣∣∣∣≤ 2kMDM+dk (d1, . . . ,dk)

= O(2r2(r+1)krkq1/2(logq)k(1+ logp)r)

and the result follows. �

Note that the result is only nontrivial if p is large enough.

4 Linear Complexity Profile

In [1, Theorem 1], Brandstätter and the third author used the correlation measure of
order k to estimate the linear complexity profile for some related binary sequence



Se
co

nd
 p

ro
of

s

Distribution of Inversive Pseudorandom Numbers 257

ST :
L(ST ,N)≥N − max

1≤k≤L(ST ,N)+1
Ck(ST ) (5)

where 2≤N ≤ T −1.
Combining (5) and Theorem 2 we get a lower bound on the linear complexity

profile of Rq after simple calculations.

Corollary 1. The linear complexity profile of Rq defined by (2) satisfies

L(Rq,N)=Ω

(
log(Nq−1/22−r r−1(1+ logp)−r )

r+ log logq

)
, 2≤N < q.
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Extensions of Fibonacci Lattice Rules

Ronald Cools and Dirk Nuyens

Abstract We study the trigonometric degree of pairs of embedded cubature rules
for the approximation of two-dimensional integrals, where the basic cubature rule
is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply
doubling the points which results in adding a shifted version of the basic Fibonacci
rule. An explicit expression is derived for the trigonometric degree of this particular
extension of the Fibonacci rule based on the index of the Fibonacci number.

Dedicated to Ian Sloan’s 70th birthday.

1 Introduction

We consider the approximation of integrals

I [f ] :=
∫

[0,1)s
f (x)dx

by weighted sums of function values. In practice one wants more than one such ap-
proximation to obtain information on the accuracy of the approximation. In order to
approximate an integral together with an error estimate, one often uses two approxi-
mations Q1[f ] and Q2[f ]. Then |Q1[f ]−Q2[f ]| can be used as an approximation
of the error of the less precise rule. (In practice it is often used as an estimate of the
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error of the most expensive rule, while hoping that this is the most precise. Practical
robust error estimates are based on more than one such combinations.)

Given a cubature formula

Q1[f ] =
N∑

j=1

wj f (xj )

for the approximation of an integral I [f ], we are interested in a cubature formula

Q2[f ] =
N∑

j=1

w̄j f (xj )+
N+M∑

j=N+1

w̄j f (xj )

that reuses the function evaluations of Q1 and is “better”. The quality criterion used
in this paper is the trigonometric degree, and the cubature formulas will be lattice
rules. For other criteria, see [4].

A cubature formula of trigonometric degree d integrates correctly trigonometric
polynomials of degree d . Specifically in s dimensions, it integrates exp(2π ir · x)
correctly for all r= (r1, r2, . . . , rs) ∈ Zs that satisfy |r| :=∑s

k=1 |rk| ≤ d .
Embedded pairs of quadrature and cubature formulas of algebraic degree were

already studied a long time ago (see, e.g., [6, 2, 3]). We are unaware of an attempt
to do this for the trigonometric case. This paper describes a first attempt, limited to
the 2-dimensional case. More examples of this type might eventually lead to similar
theoretical insights as in the algebraic case.

In the following section we present the necessary background and notation in
s dimensions. In §3 we will present the well known class of 2-dimensional Fibonacci
lattice rules and known results on their trigonometric degree. In §4 we will investi-
gate a particular extension of these rules to obtain an embedded pair and in §5 we
compare their quality with what is theoretically the best possible result.

2 A Short Course on Lattice Rules

For a thorough introduction on lattice rules, we refer tot [9]. Results on the trigono-
metric degree of lattice rules up to that date were mainly published in the Russian
literature and summarized in [1].

Definition 1. A multiple integration lattice Λ in Rs is a subset of Rs which is dis-
crete and closed under addition and subtraction and which contains Zs as a subset.

A lattice rule for approximating an integral over [0,1)s is a cubature formula
where the N points are the points of a multiple integration lattice Λ that lie in [0,1)s
and all points have the same weight 1/N .

Definition 2. The dual of the lattice Λ is Λ⊥ := {r ∈ Rs : r ·x ∈ Z,∀x ∈Λ}.
A lattice Λ can be specified by an s× s matrix M known as a generator matrix,

whose rows generate the lattice. This means that all elements of Λ are of the form
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x= λM , where λ ∈Zs . The dual lattice Λ⊥ then has generator matrix B = (M−1)T .
Since Λ is an integration lattice, its dual Λ⊥ is an integer lattice and is generated by
an integer-valued matrix B.

The dual of a multiple integration lattice plays an important role in the error rep-
resentation and is the main tool to prove our results. Assume that f can be expanded
into an absolutely convergent multiple Fourier series

f (x)=
∑

r∈Zs

a(r)e2π ir·x with a(r)=
∫

[0,1)s
e−2π ir·x f (x)dx,

then the error is given by the next theorem. Note that this assumption limits the
functions to be 1-periodic in each dimension.

Theorem 1. [10] Let Λ be a multiple integration lattice. Then the corresponding
lattice rule Q has an error

Q[f ]− I [f ] =
∑

r∈Λ⊥\0
a(r).

The trigonometric degree of a lattice rule can be determined from the dual lattice:

d(Q) := min
r∈Λ⊥\0

|r|−1 .

There is a diamond shaped region (a crosspolytope to be precise) with no points
of the dual lattice except the origin inside, and some points on its boundary. The
1-norm of points on the boundary is d+1.

Central symmetry (of the integration region and the points in the cubature for-
mulas) plays an important role in the algebraic case. If this symmetry is present,
then the cubature formula integrates the odd polynomials exactly automatically. The
lower bound for the number of points required is also fundamentally different for
the even and the odd degrees. The role that central symmetry plays in the algebraic
case is played by shift symmetry in the trigonometric case [5].

Definition 3. A cubature formula Q for an integral I on [0,1)s is shift symmetric if,
whenever (x(j)1 , . . . ,x

(j)
s ) is a point of the formula, then so is (x(j)1 + 1

2 , . . . ,x
(j)
s + 1

2 ),
with both points having the same weight.

The point (x(j)1 + 1
2 , . . . ,x

(j)
s + 1

2 ) in the above theorem should actually be inter-
preted modulo 1, i.e., wrapped around the edges of the unit cube. However, since
we are assuming periodic functions we loosen the notation and do not write the
traditional fractional braces around the points to denote the modulo 1.

From Definition 3 it follows that N is even for a shift symmetric cubature for-
mula. Furthermore, because a shift symmetric cubature formulas is automatically
exact for all trigonometric monomials of odd degree, such a cubature formula has
an odd trigonometric degree, see [5]. Finally note that a lattice rule is shift symmet-
ric if and only if ( 1

2 , . . . ,
1
2 ) is a point of the lattice.
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3 Fibonacci Lattice Rules

We will restrict our investigations in this paper to two dimensions, starting from
a well known family of lattice rules. Let Fk be the kth Fibonacci number, defined
by F0 := 0, F1 := 1 and Fk := Fk−1+Fk−2 for 1 < k ∈ N. Consider the following
lattice rules:

Lk[f ] = 1

Fk

Fk−1∑

j=0

f

(
j

Fk
,
jFk−1

Fk

)
(1)

and

L′k[f ] =
1

Fk

Fk−1∑

j=0

f

(
j

Fk
,
jFk−2

Fk

)
.

Lattice rules of this form are called Fibonacci lattice rules. The two rules given
above are geometrically equivalent, meaning that one point set can be changed into
the other one by symmetry operations of the unit cube [9]. In this case a reflection on
the second coordinate axis maps Lk to L′k since jFk−1 ≡−jFk−2 (mod Fk). Geo-
metrically equivalent lattice rules have the same trigonometric degree, as is obvious
from their dual lattices.

The kth Fibonacci number Fk is even if and only if k is a multiple of 3. This
can be observed by looking at the Fibonacci sequence modulo 2: (Fk mod 2)k≥1 =
(1,1,0, 1,1,0, 1,1,0, . . .), i.e., the 2nd Pisano period is 3. Only in these cases are
the Fibonacci lattice rules shift symmetric. Indeed, the point of Lk generated by

j = Fk/2 is
(

1
2 ,

Fk−1
2

)
and this then maps to

( 1
2 ,

1
2

)
.

The trigonometric degree of Fibonacci lattice rules is known explicitly.

Theorem 2. [1] If k= 2m+1 andm≥ 2 then the Fibonacci lattice rule has trigono-
metric degree Fm+2−1. If k = 2m then the Fibonacci lattice rule has trigonometric
degree 2Fm−1.

Shift symmetric lattice rules have an odd trigonometric degree [5]. The converse
is not always true. A rule of odd trigonometric degree is not necessarily shift sym-
metric. The family of Fibonacci lattice rules has many examples of this.

The proof in [1] of the above theorem is based on the dual lattice. We sketch it
here because we will use the same technique in §4 and because it reveals a structure
in the lattice. Starting from the evident generator matrix, e.g., for k = 2m+1

M =
( 1

F2m+1

F2m
F2m+1

0 1

)

it follows that B = (M−1)T =
(
F2m+1 0
−F2m 1

)
is a generator matrix for the dual lat-

tice. When U is any unimodular matrix then UB is also a generator matrix. (A
unimodular matrix is a square integer matrix with determinant +1 or −1.) Using

the unimodular matrix U =
(

Fm Fm+1
−Fm−1 −Fm

)
, it is shown that
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B = UA with A=
(

Fm (−1)m+1Fm+1
Fm+1 (−1)mFm

)
. (2)

Hence, A is also a generator matrix of this dual lattice. Then, it is proven that no
nonzero combination of the rows of this matrix leads to a point with 1-norm smaller
than the claimed degree.

Observe that the generator matrix A (2) of the dual lattice is an orthogonal matrix
(modulo Fk = F2m+1 = F 2

m+F 2
m+1). In other words, both generating vectors are

orthogonal and have the same length (in 2-norm). So the Fibonacci lattice for odd
k has a square unit cell, i.e., this lattice corresponds to a rotated regular grid. This
fact was obtained in a different way, and explicitly recognized by Niederreiter and
Sloan [8].

4 An Extension of Fibonacci Lattice Rules

We are interested in lattice rules that extend Fibonacci lattice rules so that we obtain
an embedded pair of lattice rules. The aim is to obtain a pair that requires less
function evaluations than two rules of the corresponding degrees. We are partially
successful in that respect.

Consider the lattice rule

Qk[f ] = 1

2Fk

2Fk−1∑

j=0

f

(
j

2Fk
,
jFk−1

2Fk

)
. (3)

This lattice is shift symmetric if Fk−1 is odd. Indeed for j = Fk the point
(

1
2 ,

Fk−1
2

)

is generated. Whenever Fk−1 is odd, this maps to
( 1

2 ,
1
2

)
.

Next we will show that (3) can be seen as a Fibonacci lattice Lk plus a shifted
version of the same Fibonacci lattice. The above rule can be split in two sums,
separating even and odd values of j :

Qk[f ] = 1

2Fk

Fk−1∑

j=0

f

(
j

Fk
,
jFk−1

Fk

)
+ 1

2Fk

Fk−1∑

j=0

f

(
2j +1

2Fk
,
(2j +1)Fk−1

2Fk

)

= 1

2Fk

Fk−1∑

j=0

f

(
j

Fk
,
jFk−1

Fk

)
+ 1

2Fk

Fk−1∑

j=0

f

(
j

Fk
+ 1

2Fk
,
jFk−1

Fk
+ Fk−1

2Fk

)
.

Thus the lattice rule (3) is given by the original rule (1) plus the original rule shifted
by (1,Fk−1)/(2Fk). (The weights are adjusted in the obvious way.) We will now
show a formula for its trigonometric degree.

Theorem 3. The lattice rule given by (3) for k = 6m+α, with α = 0,1, . . . ,5, has
trigonometric degree F3m+α−1+F3m+1−1.



Se
co

nd
 p

ro
of

s

264 Ronald Cools and Dirk Nuyens

Proof. The proof technique we use here was sketched at the end of §3.
The cubature formula (3) with k = 6m+α is a lattice rule with generator matrix

of the corresponding lattice:

M =
(

1
2F6m+α

F6m+α−1
2F6m+α

0 1

)

.

We will instead investigate the minor modification of this matrix

M =
(

1
2F6m+α

(−1)mF6m+α−1
2F6m+α

0 (−1)m

)

.

If m is even, this is the same. If m is odd, we investigate a geometrically equivalent
lattice. As mentioned before, geometrically equivalent lattice rules have the same
trigonometric degree.

A generator matrix of the corresponding dual lattice is

B = (M−1)T =
(

2F6m+α 0
−F6m+α−1 (−1)m

)
.

Observe that the matrix

C =
(

F3m+1 −2F3m
−F3m/2 F3m−1

)

is an integer unimodular matrix. Indeed, we observed in §3 that F3m is an even
number and, making use of Cassini’s identity, see (5) below, it follows that

det(C)= F3m+1F3m−1−F 2
3m = (−1)3m = (−1)m.

We will first show that

A=
(

2F3m+α 2F3m
−F3m+α−1 F3m+1

)
(4)

is another generator matrix for the dual lattice. This follows from CA = B. It re-
quires some Fibonacci magic to show this. The relevant relations for the sequel
are [7]

FkFn+1+Fk−1Fn = Fn+k,
Fn+1Fn−1−F 2

n = (−1)n. (5)

It follows that

CA =
(

2F3m+1F3m+α+2F3mF3m+α−1 2F3m+1F3m−2F3mF3m+1

−F3mF3m+α−F3m−1F3m+α−1 −F 2
3m+F3m−1F3m+1

)

=
(

2F3m+1F3m+α+2F3mF3m+α−1 0
−F3mF3m+α−F3m−1F3m+α−1 (−1)3m

)
= B.



Se
co

nd
 p

ro
of

s

Extensions of Fibonacci Lattice Rules 265

Fig. 1 The different regions to consider for (i,j) when taking linear combinations of the rows of
the dual matrix A given by (4).

The points on the dual lattice are generated as

(i, j)A= (i2F3m+α− jF3m+α−1, i2F3m+ jF3m+1)

for all i,j ∈ Z. The corresponding lattice rule has trigonometric degree F3m+α−1+
F3m+1− 1 if all points of the dual lattice, except the point (0,0), lie outside or on
the boundary of the diamond shaped region:

|i2F3m+α− jF3m+α−1|+ |i2F3m+ jF3m+1| ≥ F3m+α−1+F3m+1. (6)

(Some points fall exactly on the boundary, e.g., when i = 0 and j = 1.) We prove this
inequality for different cases of (i,j). For brevity we name parts of the inequality
as follows

β(α) := |i2F3m+α− jF3m+α−1|,
δ := |i2F3m+ jF3m+1|,

γ (α) := F3m+α−1+F3m+1,

so that we have to prove for all α = 0,1, . . . ,5: β(α)+ δ ≥ γ (α). This is a tedious
exercise in proving the bound for all different cases. For reference the reader is
referred to Fig. 1 on different occasions during the proof, which depicts the possible
integer values that the (i,j) can take in generating the dual lattice points.
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1. If i = 0 then β(α)+ δ = |j |(F3m+α−1+F3m+1) ≥ F3m+α−1+F3m+1 since we
must have |j | ≥ 1.

2. If j = 0 then β(α)+δ= |i|(2F3m+α+2F3m)≥F3m+α−1+F3m+1 since we must
have |i| ≥ 1 and 2F3m ≥ F3m+F3m−1 = F3m+1.

3. If ij < 0 (i.e., opposite signs) then β(α)= |i|2F3m+α+|j |F3m+α−1≥F3m+α−1+
F3m+1 since 2F3m+α ≥ F3m+α+F3m+α−1 = F3m+α+1 ≥ F3m+1 for all α ≥ 0.

We have now checked (and crossed out) the 2nd and 4th quadrant, marked with
ij ≤ 0 on Fig. 1, to fulfill (6).

4. For ij > 0 (i.e., same signs) we first look at

β(α)= |i2F3m+α− jF3m+α−1|
= |(2i− j)F3m+α−1+2iF3m+α−2|.

Again here we consider separate cases based on the signs of the two terms.
But note first that δ = |i|2F3m + |j |F3m+1 ≥ 2F3m + F3m+1, so we always
trivially have the F3m+1 term from γ (α) and we can close a case quickly if
β(α) ≥ F3m+α−1. Also note that we can get extra terms of F3m and F3m+1 by
having larger bounds on respectively |i| and |j |.
a. If 2i− j = 0 then β(α)= 2|i|F3m+α−2 ≥ 2F3m+α−2 ≥ F3m+α−1.
b. If (2i−j) i > 0 (i.e., same signs) then β(α)= |2i−j |F3m+α−1+2|i|F3m+α−2≥

F3m+α−1.

At this time we have checked the largest parts of the 1st and 3rd quadrant,
marked with (2i− j)i ≥ 0 on Fig. 1, to fulfill (6) as well.

c. If (2i− j) i < 0 (i.e., opposite signs) then we have more work. First observe
that from (2i− j) i < 0 we can conclude that |j | > 2, i.e., |j | ≥ 3. (This is
also visible on the figure.) We can thus refine our estimate for δ in this case to

δ = |i2F3m+ jF3m+1|
= |i|2F3m+|j |F3m+1

≥ 2F3m+3F3m+1

= 2F3m+2+F3m+1

= F3m+2+F3m+3

= F3m+4.

(The different expressions become useful in the following.)
Now we consider the cases for the different values of α since we can easily
obtain the required result by filling in the values, except for the case α = 5
where more work is needed.
i. If α = 0,1,2,3,4 then we get the following results:
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α γ (α)= F3m+α−1+F3m+1

0 F3m−1+F3m+1
1 F3m+F3m+1 = F3m+2
2 F3m+1+F3m+1 = 2F3m+1
3 F3m+2+F3m+1 = F3m+3
4 F3m+3+F3m+1 = F3m+2+2F3m+1

We note that for all of these values of α we have that δ ≥ γ (α) (using the
refined estimate for δ for all conditions we have set).

ii. If α = 5 then

β(5)= |i2F3m+5− jF3m+4|,
δ = F3m+4,

γ (5)= F3m+4+F3m+1,

where we thankfully use the refined value of δ to only have to show β(5)≥
F3m+1. We can rewrite β(5) as follows

β(5)= |i2F3m+5− jF3m+4|
= |(10i−3j)F3m+1+2(3i− j)F3m|.

Set a = 10i−3j and b = 3i− j and consider the different sign settings.
A. If a= 0 then we need integer solutions of i = 3

10j . This means |j | ≥ 10
(and |i| ≥ 3) and we can make a new refinement for δ, δ ≥ 6F3m+
10F3m+1, which solves this case since we have (2F3m+ 3F3m+1)+
F3m+1 = F3m+4+F3m+1.

B. If b= 0 then we obtain j = 3i and as such a= 10i−9i = i from which
it follows that β(5) = F3m+1. I.e., for i = 1 and j = 3 we get a point
on the boundary.

C. If a b > 0 then the result is trivial as clearly then β(5)≥F3m+1+2F3m.

We now have checked the darkest marked part on Fig. 1 to fulfill (6)
and are left with the narrow white wedge in between j = 10

3 i and j =
3i.

D. If a b < 0 then we either have
{

10i−3j < 0
6i−2j > 0

or

{
10i−3j > 0
6i−2j < 0

⇔ 10
3 i < j < 3i ⇔ 3i < j < 10

3 i.

From the inequality on the left side follows that both i and j should be
negative, while the inequality on the right side makes it that both i and
j are positive. Combined we can write:

3|i|< |j |< 10
3 |i|.

This means |j | ≥ 4 (and is easily checked on the figure). Refining the
estimate of δ we get
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δ = |i|2F3m+|j |F3m+1

≥ 2F3m+4F3m+1

= (2F3m+3F3m+1)+F3m+1

= F3m+4+F3m+1,

and thus δ ≥ γ (5).

This completes our proof. ()
The result of the theorem is put together in Table 1. It is clear from the table

that the cases for α = 1,2,3 are not interesting. The extended rules have the same
degree as the original rules, and the number of additional points is the same as for
the original rule. In other words, using the embedded rules costs the same as using
two rules. In the next section we will show that the remaining cases are however
interesting.

Table 1 Trigonometric degrees of Qk for the different cases of Theorem 3 compared to the degree
of the basic rule Lk .

k mod 6 k mod 2 k mod 3 d(Lk) d(Qk) comparison
0 0 0 2F3m−1 2F3m+F3m−3−1 higher ∗
1 1 1 F3m+2−1 F3m+2−1 equal
2 0 2 2F3m+1−1 2F3m+1−1 equal
3 1 0 F3m+3−1 F3m+3−1 equal
4 0 1 2F3m+2−1 2F3m+2+F3m−1−1 higher ∗∗
5 1 2 F3m+4−1 F3m+4+F3m+1−1 higher

Note that the line marked with a star (∗) includes k = 6, i.e., m = 1 and α = 0.
In this exceptional case d(Lk) = d(Qk) since then F3m−3 = F0 = 0. For all other
values of k ≡ 0 (mod 6) the rule Qk does have a higher degree than the basic rule
Lk . For the double starred line (∗∗) there is no such problem if one allows negative
indices for the Fibonacci numbers (see, e.g., [7]). For k = 4, i.e., m= 0 and α = 4,
we then have d(Q4)= F3+F1−1= 2, while d(L4)= 2F2−1= 1.

Initially, we recognised the five different cases, and we attempted proofs for each
α using a generator matrix that suited each case best. There are indeed other useful
generator matrices of the dual lattice. We can, e.g., rewrite the matrix A used in the
previous proof:

A=
(

2F3m+α 2F3m
−F3m+α−1 F3m+1

)
=
(
F3m+2+α−F3m−1+α F3m+2−F3m−1

−F3m+α−1 F3m+1

)
.

This can be transformed as follows
(

1 −1
0 1

)
A=

(
F3m+2+α F3m−2
−F3m+α−1 F3m+1

)
.

For specific values of α this generator matrix is more convenient.
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Of special interest is the case α = 5. It causes extra difficulties in the general
proof given above. If treated separately, that part of the proof becomes easier. The
difficult part is to show that the generator matrix B can be transformed to

A=
(

F3m+1 F3m+α−1
−F3m+α−1 F3m+1

)

by a unimodular matrix if α = 5. With hindsight, this matrix was guessed after the
general proof was established. Once this is established, proving the degree of the
lattice rule is straightforward. This case is special because now there are four points
(instead of two) of the dual lattice, one in each quadrant, lying on the boundary. This
lattice has a square unit cell. This special structure is immediately evident from the
matrix given above, but not from the matrix used in the general proof.

5 Final Remarks

Not all pairs of embedded cubature rules are interesting from a practical point of
view. Let Nopt

d denote the number of points used by an optimal rule of degree d , i.e.,
one with the lowest number of points. If we have two embedded rules of respectively
degree d1 and d2 with N the total number of points, and d1 < d2, then a measure for
its quality is

γ := N

N
opt
d1
+N

opt
d2

.

Obviously, we prefer rules with γ < 1.
Lower bounds on the number of points needed to achieve a given trigonometric

degree are known (see, e.g., [1, 5, 4]). In two dimensions the lower bound for a
degree d rule is given by

N ≥N
opt
d :=

{
2m2+2m+1, for d = 2m,

2(m+1)2, for d = 2m+1.

Furthermore, lattice rules are known that attain this lower bound (see, e.g., [1, 5]).
In Table 2 it can be seen that for the cases k = 6m, 6m+ 4 and 6m+ 5 investi-

gated above, we have that γ < 1. The data in Table 2 was computationally verified
completely up to k = 54.
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Table 2 Comparison for the trigonometric degrees of the embedded rule Qk based on the Fi-
bonacci rule Lk with the lower bounds for the same degrees. Here α = k mod 6, d1 = d(Lk),
N = 2Fk and d2 = d(Qk). For k = 6 the value of γ should be ignored since there d1 = d2.

k α Fk d1 N
opt
d1

N d2 N
opt
d2

N
opt
d1
+N

opt
d2

γ

4 4 3 1 2 6 2 5 7 0.857
5 5 5 2 5 10 3 8 13 0.769
6 0 8 3 8 16 3 8 16 1.000

10 4 55 9 50 110 10 61 111 0.991
11 5 89 12 85 178 15 128 213 0.836
12 0 144 15 128 288 17 162 290 0.993
16 4 987 41 882 1974 46 1105 1987 0.993
17 5 1597 54 1513 3194 67 2312 3825 0.835
18 0 2584 67 2312 5168 75 2888 5200 0.994
22 4 17711 177 15842 35422 198 19801 35643 0.994
23 5 28657 232 27145 57314 287 41472 68617 0.835
24 0 46368 287 41472 92736 321 51842 93314 0.994
28 4 317811 753 284258 635622 842 355325 639583 0.994
29 5 514229 986 487085 1028458 1219 744200 1231285 0.835
30 0 832040 1219 744200 1664080 1363 930248 1674448 0.994
34 4 5702887 3193 5100818 11405774 3570 6376021 11476839 0.994
35 5 9227465 4180 8740381 18454930 5167 13354112 22094493 0.835
36 0 14930352 5167 13354112 29860704 5777 16692642 30046754 0.994
40 4 102334155 13529 91530450 204668310 15126 114413065 205943515 0.994
41 5 165580141 17710 156839761 331160282 21891 239629832 396469593 0.835
42 0 267914296 21891 239629832 535828592 24475 299537288 539167120 0.994
46 4 1836311903 57313 1642447298 3672623806 64078 2053059121 3695506419 0.994
47 5 2971215073 75024 2814375313 5942430146 92735 4299982848 7114358161 0.835
48 0 4807526976 92735 4299982848 9615053952 103681 5374978562 9674961410 0.994
52 4 32951280099 242785 29472520898 65902560198 271442 36840651125 66313172023 0.994
53 5 53316291173 317810 50501915861 106632582346 392835 77160061448 127661977309 0.835
54 0 86267571272 392835 77160061448 172535142544 439203 96450076808 173610138256 0.994
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Efficient Search for Two-Dimensional Rank-1
Lattices with Applications in Graphics

Sabrina Dammertz, Holger Dammertz, and Alexander Keller

Abstract Selecting rank-1 lattices with respect to maximized mutual minimum
distance has been shown to be very useful for image representation and synthesis
in computer graphics. While algorithms using rank-1 lattices are very simple and
efficient, the selection of their generator vectors often has to resort to exhaustive
computer searches, which is prohibitively slow. For the two-dimensional setting,
we introduce an efficient approximate search algorithm and transfer the principle
to the search for maximum minimum distance rank-1 lattice sequences. We then
extend the search for rank-1 lattices to approximate a given spectrum and present
new algorithms for anti-aliasing and texture representation in computer graphics.

1 Introduction

Due to their algorithmic efficiency, rank-1 lattices [17, 20] and rank-1 lattice se-
quences [9, 10] are very interesting objects for computer graphics [3, 4]: The n

points xi of an s-dimensional rank-1 lattice

Ln,g :=
{

xi := i

n
g mod 1 : i = 0, . . . ,n−1

}
⊂ [0,1)s (1)

are generated by a suitable vector g∈N
s . Rank-1 lattices Ln,a in Korobov form [20]

use generator vectors of the restricted form g= (1,a,a2, . . . ,as−1).
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Using a van der Corput sequence (radical inverse) Φb in base b [17] instead of
the fraction i

n
extends rank-1 lattices to rank-1 lattice sequences

LΦb
g := {xi :=Φb(i) ·g mod 1 : i ∈ N0} ⊂ [0,1)s (2)

in the sense that for any m ∈N0 the first bm points x0, . . . ,xbm−1 are a rank-1 lattice
Lbm,g [10]. Thereby the van der Corput sequence Φb mirrors the b-ary representa-
tion of an integer i at the decimal point

Φb(i) : N0 −→ Q∩[0,1)
i =

∞∑

j=0

aj (i)b
l �−→

∞∑

j=0

aj (i)b
−j−1, (3)

where aj (i) denotes the j -th digit of the integer i represented in base b.
In [4] we investigated the concept of maximized minimum distance (MMD) rank-

1 lattices with applications to image synthesis and representation. Since lattices are
closed under addition and subtraction, the minimum distance

dmin(Ln,g) :=min0<i<n‖xi‖ (4)

of a rank-1 lattice Ln,g is determined by the minimum norm of the lattice points
themselves. In this paper we use the L2-norm on the unit torus unless noted other-
wise.

Algorithms for computing the shortest vector in a general lattice have been de-
veloped in [5, 7, 12] and efficient implementations exist even for higher dimensions
[14]. Specializing the setting to rank-1 lattices in two dimensions allows one to take
simpler approaches, as for example the Gaussian basis reduction [11, 18]. This basis
reduction is a simple algorithm to efficiently determine a lattice basis where the first
basis vector is the shortest vector in the lattice and thus yields its minimum distance.
In two dimensions, this algorithm computes a Minkowski-reduced basis and has a
computational complexity of O(logn) which is sufficient for our application [11].

The problem of constructing lattices with longest possible shortest nonzero vec-
tors for a given lattice density is connected to the problem of finding the densest
packing of spheres which has been studied for a long time [1, 16, 19]. Computer
searches for good lattices based on the lengths of shortest nonzero vectors have
been reported in [13, 15] for example. They focus on the dual lattice, though, and
use either exhaustive or random searches, the latter of which poses the problem of
deciding how much time to spend on the search process. Due to the low-dimensional
structure of many graphics applications, we will consider only s = 2 dimensions
henceforth. However, the number of potential generator vectors for the number n of
points required in graphics applications is so large that a naïve search algorithm for
MMD rank-1 lattices as well as tables become prohibitive in time and space. For
image storage or sampling it is not uncommon have n > 40002.

We present efficient approximate search algorithms for MMD rank-1 lattices and
sequences, and introduce a method that searches rank-1 lattices to better represent
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and integrate functions with an anisotropic Fourier spectrum. The findings result
in new algorithms for anti-aliasing and texture representation [3], i.e. numerical
integration and function approximation.

2 Efficient Search by Restricting the Search Space

There exists a construction for MMD rank-1 lattices [2], where the generator vector
g and the number of lattice points n are described by the sequence of convergents
of the continued fraction equal to

√
3. However, the number n of points of this con-

struction increases very fast, reducing their applicability in practical applications.
For other n the generator vector has to be determined by computer search. The
naïve algorithm enumerates all possible generator vectors in order to find MMD lat-
tices. Already for only s = 2 dimensions, scanning O((n−1)2) candidates becomes
prohibitive for large n as used in our applications. Restricting the search space to
lattices in Korobov form (i.e. g= (1,a)), the minimum distance can be determined
efficiently, as described in [12]. However, not all MMD rank-1 lattices can be rep-
resented in Korobov form [4]. For example the MMD rank-1 lattice for n = 56
points has the generator vector g= (4,7). In the following we examine a restriction
of the search space for which the efficient search algorithm resembles rasterization
algorithms as used in computer graphics. This search is not restricted to Korobov
lattices and we show that it can find MMD rank-1 lattices that cannot be represented
in Korobov form. This allows a much more flexible use of rank-1 lattices.

2.1 Approximate Search for MMD Rank-1 Lattices

In order to enable an accelerated search for MMD rank-1 lattices we restrict the
search space to a small subset of all possible lattice generator vectors. We base our
restriction on two observations: First, for any lattice there is more than one gener-
ator vector for the identical lattice. For example if the number n of lattice points is
prime, all lattice points scaled by n are generator vectors and thus the shortest vec-
tor is generator vector, too. For arbitrary n we noticed that it is still often the case
that the shortest vector is also a generator vector. The second observation is, that
the largest possible minimum distance l would result from a point set, whose trian-
gulation consists of only equilateral triangles [1] (analogue to hexagonal lattices).
This distance is an upper bound on the maximized minimum distance that can only
be approximated by rank-1 lattices. Equating the area A = 1

n
of the basis cell of a

rank-1 lattice and twice the area of such an equilateral triangle of side length l yields

A= 1

n
= 2

(
1

2
· l ·h

)
, h= l ·

√
3

2
⇐⇒ l =

√
2

n ·√3
. (5)
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Fig. 1 Idea of the restricted search space.

Fig. 2 Difference n · l − |g| of the maximally
possible length l scaled by n and the shortest
generator vector of the exhaustive search for
n= 4, . . . ,10000.

With the assumption that the generator vector is also the shortest vector it would
suffice to search the integer generator vector only within a circle of the radius n ·
l. However as noted above this is not always the case. Experiments showed that
using a slightly larger upper bound allows one to find better lattices. To perform the
approximate search we restrict the search space for the generator vectors g to a ring
around the origin with inner radius r and outer radius R, where r = n · l− k

2 <n · l <
n · l+ k

2 = R and k is a selected positive integer (see Figure 1).
By rasterizing this ring on the integer lattice Z

2 using efficient algorithms from
computer graphics [8], all potential generator vectors are enumerated. However, due
to symmetry only one eighth of the ring needs to be rasterized (see Figure 3). Fix-
ing the ring width k independent of n, the rasterization runs in O(n · l) = O(

√
n)

time. The approximate search then runs in O(
√
n logn) time, where the minimum

distances are computed using the Gaussian basis reduction.

2.1.1 Restriction of the Search Space

We computed the difference n · l−‖g‖ for n= 4, . . . ,10000, where ‖g‖ is the length
of the shortest generator vectors found by the exhaustive search. Generator vectors
are integer vectors and therefore l has to be scaled by n. Note that when the generator
vector of the MMD lattice is not the shortest vector the difference can be negative.
The graph in Figure 2 justifies the approach to restrict the search space to a ring of a
fixed width. Due to the complexity of the exhaustive search, the range of n > 10000
has been investigated for random samples only. An empirically chosen value of
k = 6 has proven to be a reasonable ring width as described now.
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2.1.2 Numerical Evidence

For n = 4, . . . ,10000 and k = 6 we now compare the approximate rasterization
search to the exact exhaustive search. In 99.1% (i.e. 9908 out of 9997 cases), the
approximate algorithm finds the optimal generator vector with respect to maximized
minimum distance. The percentage of lattices for which a generator vector coincides
with a shortest vector equals 71% (7098 cases), whereas in 28.1% (2810 cases)
a generator vector producing a lattice with maximum possible minimum distance
is determined inside the ring with width k even if the generator vector is not the
shortest vector. Otherwise the new search algorithm yields a maximized minimum
distance that is never worse than 90% of the optimum.

The restricted search always yields the correct results for n being prime. We
showed above that it is likely to also find generator vectors for MMD rank-1 lattices
for arbitrary n. Additionally if the best lattice is not found, at least an acceptable one
is found (i.e. one with a minimum distance not worse than 90% of the optimum).
Examples for the different cases are visualized in Figure 3. The search space is
depicted by the light gray squares, which represent the rasterized region of a ring
with radius n · l and width k = 6. Due to a very simple rasterization algorithm the
rasterized region is slightly larger than required. The light gray circle is of radius
n · l, while the black circle’s radius is the maximized minimum distance MMDe
determined by the exhaustive search. The set of generator vectors which result from
this exhaustive search algorithm and lie in the displayed range are plotted using
hollow dots. The solid dots belong to the lattice generated by the displayed vector
as one element of the generator vectors resulting from the approximate search with
maximized minimum distance MMDr.

In order to show the improvements of our new algorithm we compare the best
lattice found in Korobov form with minimum distance (MMDk) and the resulting
maximized minimum distance using the approximate search (MMDr). In Figure
4 the ratio MMDk/MMDr for n = 4, . . . ,10000 is plotted. As is apparent from
the graph the new search yields nearly optimal results with respect to the search

Fig. 3 Illustration of the rasterization search. (a) n= 127, MMDr =MMDe. The generator vector
g = (12,1) is a shortest vector in the lattice. (b) n = 134, MMDr =MMDe. g = (12,5) does not
correspond to a shortest vector. (c) n= 210, MMDr < MMDe.
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criterion and delivers better results than the Korobov form in most cases. More
precisely MMDr ≥ MMDk in 99.1% of the cases, of which for 6.2% we have
MMDr >MMDk, if the MMD rank-1 lattice cannot be represented in Korobov form,
and MMDr =MMDk in 92.9% of the cases.

Fig. 4 Ratio MMDk/MMDr for n ∈ [4,131072).

2.2 Search for MMD Rank-1 Lattice Sequences

Using a fixed n for the number of lattice points is often insufficient for graphics ap-
plications. For example hierarchical representations of images or progressive sam-
pling need a varying number of sample points. Lattice sequences can provide this
functionality and we examine two approaches in this section how to construct rank-1
lattice sequences with MMD property.

As defined in Section 1, a rank-1 lattice sequence L
Φb
g contains a sequence of

rank-1 lattices Lbm,g for m ∈ N0. We search for rank-1 lattice sequences with maxi-
mized minimum distance in the sense that the weighted sum

mmax∑

m=mmin

(dmin(Lbm,g))
2bm (6)

is maximized. Scaling the squared minimum distance by bm assigns equal impor-
tance to all lattices of the sequence since the area of a basis cell is 1

bm
.

2.2.1 Lattice Sequences based on an Initial MMD Rank-1 Lattice

One way of constructing a MMD rank-1 lattice sequence is by taking a generator
vector g of a MMD rank-1 lattice Lbm,g and using it in Equation (2). For q ∈ N0

and a fixed m, each set of points {xq·bm, . . . ,x(q+1)bm−1} ⊂ L
Φb
g is a copy of Lbm,g

shifted by Δ(q) := Φb(q)b
−mg [10]. The minimum distance of all copies is iden-
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Fig. 5 The shifted lattices L8,(1,3)+Δ(q) = L8,(1,3)+Φ2(q)2−3(1,3) for q = 0,1,2,3 from the

lattice sequence LΦ2
(1,3).

Fig. 6 The lattices L2m,(1,3) of the lattice sequence L
Φ2
(1,3) started with the initial MMD rank-1

lattice L8,(1,3).

tical, as dmin is shift invariant. For the example of LΦ2
(1,3) this structural property

[9] is depicted in Figure 5. We now consider a two-dimensional generator vector
g = (g1,g2) with gcd(n,g1,g2) = 1. Then all points of the rank-1 lattice sequence
L
Φb
g lie on at most nh = g1+ g2− 1 hyperplanes, independent on the number of

points. As a consequence, all points of the previous example LΦ2
(1,3) reside on three

hyperplanes (induced by the generator vector), as illustrated in Figure 6. This means
that the generator vector has to be modified such that the undesirable uniform bound
on the minimum distance induced by the number of hyperplanes is improved.

Considering generator vectors of the form

gi,j := (g1+ i ·bm,g2+ j ·bm) for i,j ∈ N0,

we have gi,j ≡ g mod bm. As a consequence Lbm,g = Lbm,gi,j , i.e. the minimum
distance remains unchanged for bm points. However, the upper bound on the number
of hyperplanes is increased to nh = g1+ i · bm+ g2+ j · bm− 1, as desired. For
example LΦ2

(41,11) with (41,11)= (1+5 ·8,3+1 ·8) does not restrict points to only

three hyperplanes, but for n = 8 points generates the same rank-1 lattice as LΦ2
(1,3),

i.e. L8,(1,3) = L8,(41,11) (compare Figures 6 and 7).
The search procedure is started by selecting both a minimum number of points

bmmin and maximum bmmax . First a search of the previous section is run to find an



Se
co

nd
 p

ro
of

s

278 Sabrina Dammertz, Holger Dammertz, and Alexander Keller

Fig. 7 Searching an MMD rank-1 lattice sequence for the initial lattice L23,(1,3) (see Figure 6)

and mmax = 7, yields LΦ2
(41,11) with g5,1 = (1+ 5 · 23,3+ 1 · 23) = (41,11). The gray lines show

all possible hyperplanes. For each lattice of the rank-1 lattice sequence we compare its minimum
distance d(m) := dmin(Lbm,g)

2bm to the maximum minimum distance that can be obtained by a
single MMD rank-1 lattice.

initial MMD rank-1 lattice generator vector g for bmmin points. Then the sum of
minimum distances (6) is evaluated for each potential generator vector gi,j in order
to find the maximum, where the search range is determined by

g1+ i ·bmmin ≤ bmmax ⇒ i ≤ bmmax −g1

bmmin
< bmmax−mmin and

g2+ j ·bmmin ≤ bmmax ⇒ j ≤ bmmax −g2

bmmin
< bmmax−mmin .

Due to symmetry, an obvious optimization is to bound the range of j by bmmax−mmin−
i. Again, minimum distances are computed using the Gaussian basis reduction. An
example result of the search is illustrated in Figure 7, where minimum distances
obtained by the rank-1 lattice sequence are compared to the distances that can be
obtained by rank-1 lattices alone.

2.2.2 Approximate Search by Restricting the Search Space

In the second approach the search is not based on an initial MMD rank-1 lattice.
Instead we choose mmin = 1 and fix a value for mmax, looking for a generator vector
that maximizes Equation (6).
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Fig. 8 L
Φ3
(47,19) in base b = 3. For each lattice of the rank-1 lattice sequence we compare its min-

imum distance d(m) := dmin(Lbm,g)
2bm to the maximum minimum distance that can be obtained

by a single MMD rank-1 lattice.

In order to accelerate the search process, the search space can be restricted using
the same strategy as in the rasterization search algorithm for rank-1 lattices (see Sec-
tion 2.1). Then the search space is the union of the restricted search spaces forLbm,g,
1<m≤mmax. In experiments, the restricted search achieved the same results as the
exhaustive computer search for nmax := bmmax ≤ 256 and b= 2,3,4, simultaneously
reducing the run-time from O(n2

max lognmax) to O(√nmax lognmax).
We compare the two search approaches presented in this section by summing the

minimum distances of the first bm points of each sequence

7∑

m=2

d(m)=
7∑

m=2

dmin(Lbm,g)
2bm.

Although the second approach is more general than the first one, the lattices pro-
duced by the sequence might not necessarily have the maximal possible minimum
distance for the corresponding n= bm points, which is assured at least for the initial
lattice in the first approach. Figure 8 shows the resulting lattice sequence for b = 3
and mmax = 7, while Table 1 shows the results of the numerical comparison. By
definition for m= 2 the lattice of the sequence LΦ3

(82,129) represents an MMD rank-1

lattice, whereas for m = 3 the rank-1 lattice of the sequence LΦ3
(47,19) achieves the

largest possible minimum distance as well.
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Table 1 Comparing the lattice sequences LΦ3
(82,129) and L

Φ3
(47,19) with respect to the minimum dis-

tance of the first bm points of the lattice sequence for b= 3 and 2≤m≤ 7. The initial MMD rank-1
lattice for LΦ3

(82,129) is given by L32,(1,3).

m d(m) first approach d(m) second approach

2 9 5
3 25 26
4 34 65
5 229 113
6 745 701
7 1033 2117

Σ 2075 3027

3 Search of Anisotropic Rank-1 Lattices to Approximate Spectra

In many graphics applications the image functions exhibit a strong anisotropic be-
havior in their Fourier spectrum. By constructing rank-1 lattices with knowledge of
these functions the image quality can be improved. The Fourier transform of the
Shah function

XLn,g(x) :=
∑

p∈Zs

δ(x−B ·p)

over the lattice Ln,g with basis B, where δ(x) is Dirac’s delta function, yields an-
other Shah function over its dual latticeL⊥n,g [6]. This means that we can describe the
spectrum Sn,g of Ln,g by the fundamental Voronoi cell of the dual lattice L⊥n,g.We
characterize the shape of this cell by two parameters, namely by its orientation −→ω L

and by its width wL, which are computed by means of the basis B⊥ of L⊥n,g. Given
a lattice basis B = (b1b2)

t, where t means transposed, the dual basis can be easily
determined by B⊥ = (B−1)t. In order to assure that B⊥ spans the Delaunay triangu-
lation and thus the Voronoi diagram, the dual basis has to be reduced, for example
using the Gaussian basis reduction. Let

v :=
{

b⊥1 +b⊥2 if b⊥1 ·b⊥2 < 0
b⊥2 −b⊥1 otherwise

be the diagonal of the basis cell spanned by b⊥1 and b⊥2 , such that v and b⊥1 or
v and b⊥2 form a valid basis of the dual lattice as well. Then we approximate the
orientation of the fundamental Voronoi cell by

−→ω L := b⊥2 +v=
{

2 ·b⊥2 +b⊥1 if b⊥1 ·b⊥2 < 0
2 ·b⊥2 −b⊥1 otherwise.

(7)

The width wL of Sn,g is defined as the length of the shortest basis vector normalized
by the hexagonal bound l, i.e.



Se
co

nd
 p

ro
of

s

Efficient Search for Two-Dimensional Rank-1 Lattices with Applications in Graphics 281

wL = ||b
⊥
1 ||

l ·n . (8)

Note that l ·n also represents an upper bound on the maximized minimum distance
of the dual lattice, as the length of shortest vector in L⊥n,g corresponds to the length
of the shortest vector in Ln,g scaled by n [4].

The spectrum Td,w, according to which we want to search the rank-1 lattice, is
specified by its main direction, i.e. orientation, d ∈ R

2 and its width w. The two-
dimensional vector d and the scalar w are passed as an input parameter to the lattice
search by an application. The width w takes values in the range of [0,1] and repre-
sents the measure of desired anisotropy. The most anisotropic spectrum is denoted
by w = 0, whereas w = 1 represents the isotropic one. Note that we have to allow
gi = 0, i = 1,2 for the generator vector in order to be able to approximate spectra
aligned to axes of the Cartesian coordinate system.

For n ∈ N the search algorithm steps through all distinct lattices. This can be
realized for example by using an n×n array, where the generator vectors of iden-
tical lattices are marked. Given any g ∈ [0,n)2, the set of vectors yielding iden-
tical lattices is {k · g mod n : gcd(n,k) = 1,k = 1, . . . ,n− 1}. After computing a
Minkowski-reduced basis of the dual lattice, the orientation and width of the fun-
damental Voronoi cell are determined according to Equations (7) and (8). Then the
lattices are sorted with respect to |wL−w|. For the smallest difference we choose
the lattice, whose orientation −→ω L best approximates the main direction d of Td,w.
Thereby the similarity

sim= d ·−→ω L

‖d‖ · ‖−→ω L‖
between those two vectors is measured by calculating the cosine of the angle be-
tween −→ω L and d. Figure 9 shows an example for anisotropic rank-1 lattices having
n = 56 points, where the spectrum is specified by d = (cosα,sinα) with α = 303◦
and the width varies from 0.1 to 1.0 in steps of 0.1. Using the Gaussian basis reduc-
tion for the lattice basis search, the algorithm runs in O(n2 logn) time.

4 Weighted Norms

So far we considered rank-1 lattices only on the unit square. However, graphics ap-
plications often require arbitrary rectangular regions. Just selecting a corresponding
region of the lattice defined in the entire real space and scaling it to the unit square
is not an option as this would destroy for example the needed periodicity and com-
plicate address computations in image applications. We now show how to extend
our approximate search for isotropic and anisotropic rank-1 lattices to such regions.

All that needs to be done is considering the weighted norm ||Brxi || in the defini-
tion of the minimum distance in Equation (4) instead of the Euclidean norm where
Br describes the transformation of the unit square to the desired region. Note that as
before the distance to the origin has to be computed with respect to the unit torus.
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Fig. 9 Resulting spectra for a fixed direction d= (cos 303◦,sin 303◦) and width varying from 0.1
to 1.0.

Fig. 10 Searching on a rectangular domain. Left: MMD rank-1 lattice L512,(4,45) in a domain of
width-to-height ratio x : y = 4 : 1 in world coordinates. Right: The same lattice in the scaled basis
with x : y = 1 : 1. The search region becomes an ellipse.

Approximate Search for MMD rank-1 lattices

For the special case of scaled rectangular domains, i.e.Br= (br
1br

2)=
(
(x,0)t(0,y)t

)
,

the rasterization search can be adapted easily. Therefore the lattice basis B has to be
transformed into world coordinates before computing its determinant, i.e. area A.
For the “weighted” lattice basis Bw = Br ·B the area of the basis cell is

A= |detBw| = |detBr| · |detB| = x ·y
n

⇒ l =
√

2 ·x ·y
n ·√3

in analogy to Equation (5).
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Since we perform the rasterization directly in the sheared basis, the short-
est vectors lie within an ellipse (see Figure 10). Its axes ax = ((n · l)/x,0)t and
ay = (0, (n · l)/y)t result from transforming the circle axes ((n · l),0)t and (0, (n · l))t
into the sheared basis Br of the actual region.

As the rasterization runs in less than O(||ax || + ||ay ||), with ||ax ||, ||ay || ∈
O(
√
n), we still have a run-time complexity of O(

√
n). Finally the Gaussian basis

reduction needs to be adapted to weighted norms in order to compute the minimum
distance. For that purpose the only modification consists in weighting the initial ba-
sis before performing the reduction steps. Therefore the search algorithm maintains
a run-time complexity of O(

√
n logn).

Anisotropic Rank-1 Lattices

Using the algorithm from Section 3 with weighted norms only requires to transform
the desired main direction d ∈ R

2 into the sheared basis Br of the desired domain.

5 Applications in Computer Graphics

The search algorithms from Section 2.1 allow one to find suitable generator vectors
for the graphics applications introduced in [3, 4] much faster. Here, we introduce
two new applications of anisotropic rank-1 lattices.

5.1 Anti-Aliasing by Anisotropic Rank-1 Lattices

In graphics applications rank-1 lattices can be used to integrate the image function
over the pixels. By adapting the quadrature rule to the Fourier spectrum of the im-
age function in a way that more of the important frequencies are captured, aliasing
artifacts can be reduced. The improved anti-aliasing is illustrated by a comparison
in Figure 11.

Given the algorithm from Section 3, an anisotropic MMD rank-1 lattice is spec-
ified by the main direction d and the width w. We globally assume maximum
anisotropy by fixing w = 0. The main direction d is determined by projecting the
normal of the first object intersected by a ray through the center of a pixel onto the
image plane and normalizing the resulting vector. This way the samples from the
anisotropic rank-1 lattice in the pixel become isotropic and more uniform, when
projected onto the surface seen in the scene (see Figure 12 on the left). As a conse-
quence the texture is averaged more efficiently, resulting in reduced aliasing. Note
that for this argument, we assumed only one plane perpendicular to the normal seen
through a pixel, which is a useful approximation in many cases.
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Fig. 11 An infinite checker board rendered with 16 samples for each pixel. The left image uses
the same MMD rank-1 lattice L16,(1,4) for all pixels, while in the right image an anisotropic MMD
rank-1 lattice adapted to the spectrum of each pixel is used. Clearly some aliases under the horizon
become much more attenuated.

As the perspective projection does not have an impact on the variance of the
checker board until a certain distance from the camera, anisotropic rank-1 lattices
are used only for those pixels for which the hit point of a ray through a pixel mid-
point and the checker board exceeds a certain distance to the camera (which is de-
termined experimentally for this special setting). Otherwise MMD rank-1 lattices
are used per pixel.

In Figure 12 on the right, we compared the anisotropic rank-1 lattices to MMD
rank-1 lattices and jittered grid by computing the L2-norm of a converged reference
image to the corresponding test images for an increasing number of sampling points
per pixel. Note that both axes in the error graph are scaled logarithmically and that
the reference image was computed by applying a jittered grid sampling pattern with
1024× 1024 samples at each pixel. We observe that using the anisotropic rank-1
lattice outperforms the other sampling patterns especially for lower sampling rates.
In contrast to the MMD rank-1 lattices, the error curve of the anisotropic lattices
does not expose a strong oscillation any more.

Fig. 12 Left: The arrows indicate the pixels and directions for which anisotropic rank-1 lattices
are used. Right: Comparison of the anisotropic rank-1 lattices, to MMD rank-1 lattices and jittered
grid.
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Fig. 13 Magnifications of the highlighted squares in the texture on the left represented on the
regular grid, MMD rank-1 lattice, and anisotropic rank-1 lattice by 16384 pixels each. Note that
for the anisotropic rank-1 lattice the mean square error (MSE) to the high resolution reference on
the right is about half of the regular and MMD rank-1 lattice.

5.2 Rank-1 Lattice Images and Textures

In [4] the Voronoi diagram of MMD rank-1 lattices was used as an approximation
to hexagonal pixel layout. While the visual quality at the same number of pixels
was superior to classic rectangular layouts, the algorithms were simpler than for
hexagonal layouts.

If now an image, or more specifically a texture, exposes an anisotropy, anisotropic
MMD rank-1 lattices can be used to further improve the visual appearance, i.e. the
approximation power. This is illustrated in Figure 13 for a wood grain texture, which
exposes one main direction with large variance.

The parameters for determining the anisotropic MMD rank-1 lattice are com-
puted from the structure tensor of each pixel. Without loss of generality let λ1,i >

λ2,i be the eigenvalues of the structure tensor and v1,i and v2,i the corresponding
eigenvectors for each pixel i ∈ [0,xRes · yRes). Then the main direction d is com-
puted by averaging the eigenvector of the largest eigenvalue over all pixels. The
width

w = 1.0− 1

Amax
·

xRes·yRes∑

i=0

λ1,i

λ2,i

subtracts the normalized texture anisotropy from 1, since 0 means maximum
anisotropy for the search algorithm from Section 3. The normalization constant
Amax must be determined experimentally for a set of textures.

In Figure 14 isotropic rank-1 lattice textures are compared to anisotropic ones by
means of the L2-error of the test images to a reference solution for an increasing
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Fig. 14 Error graph showing the different approximation qualities measured with respect to a
reference image.

number of lattice points for the source image of Figure 13. As can be seen from the
error graph, the anisotropic rank-1 lattice textures are superior, as they are able to
capture even small details, which are lost in the isotropic case.

6 Conclusions

We introduced algorithms that efficiently search for generator vectors of rank-1 lat-
tices and sequences with important new applications in computer graphics. Useful
results were obtained for both image synthesis and representation. Future research
will concentrate on applications of rank-1 lattice sequences and the fast search of
generator vectors for the anisotropic case.

Acknowledgements The authors would like to thank mental images GmbH for support and fund-
ing of this research.
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Parallel Random Number Generators Based on
Large Order Multiple Recursive Generators

Lih-Yuan Deng, Jyh-Jen Horng Shiau, and Gwei-Hung Tsai

Abstract Classical random number generators like Linear Congruential Generators
(LCG) and Multiple Recursive Generators (MRG) are popular for large-scale sim-
ulation studies. To speed up the simulation process, a systematic method is needed
to construct and parallelize the random number generators so that they can run si-
multaneously on several computers or processors. LCGs and MRGs have served as
baseline generators for some parallel random number generator (PRNG) constructed
in the literature. In this paper, we consider the parallelization problem particularly
for a general class of efficient and portable large-order MRGs, in which most co-
efficients of the recurrence equation are nonzero. With many nonzero terms, such
MRGs have an advantage over the MRGs with just a few nonzero terms that they can
recover more quickly from a bad initialization. With the special structure imposed
on the nonzero coefficients of the new class of generators, the proposed PRNGs can
be implemented efficiently. A method of automatic generation of the corresponding
MRGs for parallel computation is presented.

1 Introduction

Many scientific researches as well as technology developments demand large- or
very-large-scale simulation studies. Random number generators (RNG) definitely
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plays a crucial role in these scientific applications. For example, we need good
RNGs for Monte Carlo integration, computer modeling, and simulations.

To speed up the simulation process, it is common to run simulations in parallel on
several processors. Thus a systematic method is needed to construct and parallelize
the random number generators so that they can run simultaneously on multiple com-
puters or processors. A good parallel random number generator (PRNG) is desired
to have the following features: (i) the individual generator should possess all the nice
properties of a good RNG, such as uniformity, “randomness”, equi-distribution over
high dimensions, etc.; (ii) the sequences generated from different processors should
be “independent”; (iii) a new and distinct RNG can be automatically constructed
when needed.

To construct a PRNG, we usually need a baseline generator. For this, two popular
RNGs, Linear Congruential Generators (LCG) and Multiple Recursive Generators
(MRG), are often used. For various methods of using LCG or MRG to construct
PRNG, see [8, 11, 15], and the references cited therein. Among these methods, a
fairly common strategy to generate separate sequences for different processors is
using a skip-ahead scheme on the same RNG.

Another approach is to use different multipliers for different processors. Deng
[2] proposed an automatic generating method to construct many maximum-period
MRGs from a single MRG. Based on his method, recently, for the case of Sophie-
Germain primes, Deng, Li, and Shiau [4] developed an efficient method to generate
primitive polynomials from an already known primitive polynomial, from which
maximum-period MRGs can be produced for PRNGs. In this paper, we modify this
algorithm for the case of non-Sophie-Germain primes.

The class of the baseline generators used in [4] to develop PRNGs is the DX-
k generators proposed by Deng and Xu [6]. It is a special class of MRGs with
equal and only up to four nonzero coefficients in the k-th order recurrence equation,
hence is very efficient in computation. However, an RNG with very few nonzero
coefficients usually has a drawback of “bad initialization effect”, namely, when the
k-dimensional state vector is close to the zero vector, the subsequent numbers gen-
erated may stay within a neighborhood of zero for quite many of them before they
can break away from this near-zero land, a property apparently not desirable in the
sense of randomness. Consequently, two generated sequences using the same DX
generator with nearly identical state vectors may not depart from each other quickly
enough. This “bad initialization effect” was observed by Panneton, L’Ecuyer, and
Matsumoto [14] for MT19937, a popular generator proposed by Matsumoto and
Nishimura [13].

To avoid the above potential problem, Deng, Li, Shiau, and Tsai [5] consid-
ered MRGs with very few zero coefficients. To make such generators efficient and
portable, they proposed selecting the same nonzero value for all coefficients in the
recurrence equation. With this feature, the proposed generators (named the DL gen-
erators) can be implemented efficiently via a higher-order recurrence with very few
nonzero coefficients.

In this paper, we extend the PRNG construction method given in [4] to the DL
generators and a new class of efficient generators called DT generators.
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The remaining of the paper is organized as follows. In Section 2, we review
some results of the classical MRG, in particular the DL generators, and describe the
proposed DT generators. In Section 3, we describe the new automatic generating
method for parallel MRGs designed particularly for non-Sophie-Germain primes.
We then present efficient implementations of PRNGs when using DL and DT gen-
erators as baseline generators.

2 MRGs and Classes of Efficient Generators

An MRG of order k generates pseudo random numbers sequentially based on the
following linear recurrence equation:

Xi = (α1Xi−1+·· ·+αkXi−k) mod p, i ≥ k, (1)

where the multipliers α1, · · · ,αk and prime modulus p are all positive integers, and
X0, · · · ,Xk−1 are k initial seeds that are not zeroes. The corresponding characteristic
polynomial has the following form:

f (x)= xk−α1x
k−1−·· ·−αk. (2)

If f (x) is a primitive polynomial modulo p, then the MRG in (1) can achieve the
maximum period of pk − 1. See Knuth [7]. A maximum-period MRG of order k
enjoys a nice equi-distribution property up to k dimensions. See [12].

2.1 Searching for Large-Order MRGs

Alanen and Knuth [1] and Knuth [7] described some conditions for a polynomial
to be a primitive polynomial. The major difficulty is on factoring a large number.
L’Ecuyer, Blouin, and Couture [10] proposed a method that can bypass this diffi-
culty and found some maximum-period MRGs of order up to 7 by finding p such
that (pk−1)/(p−1) is a prime. Later, following the same idea of bypassing factor-
ization, Deng [2] developed an efficient algorithm that are able to find maximum-
period MRGs of large order by providing an early exit strategy for failed searches.

In addition, one can also require that both p and Q≡ (p−1)/2 are prime num-
bers. For a given k, requiring that both R(k,p) and Q are primes was the strategy
used in L’Ecuyer [9], where a short list of parameters that satisfy these conditions
was also given, as well as tables of specific MRGs. If p and Q are both primes,
Q is commonly called a Sophie-Germain prime number and p is usually called
a “safe prime” in the area of cryptography. However, there is no particular strong
advantage to choose a “safe prime” in the area of computer simulation. Denote
SG≡ {p | both p and (p−1)/2 are primes} and NSG≡ {p | p is a prime and (p−
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1)/2 is not a prime}. For convenience, primes in SG and NSG will be referred to
as SG-primes and NSG-primes, respectively, hereafter.

Table 1 lists examples of p being NSG-primes as well as SG-primes with respect
to some order k, for which (pk − 1)/(p− 1) is prime. Because of the limited time
and space, we only consider the smallest prime k in each interval of 100 starting
from k = 101 to k = 4001. From Table 1, we can see that, NSG-primes are greater
than SG-primes for the same k. Hence the MRG constructed with a NSG-prime
has the advantage of slightly longer period length (i.e.,pk − 1) than its SG-prime
counterpart.

Table 1 List of w (with p = 231−w) of NSG-primes and SG-primes for various k.

k w (NSG) w (SG) k w (NSG) w (SG)
101 699 82845 2111 3637 3536385
211 8839 841329 2203 126831 6043089
307 3279 52545 2309 155391 340185
401 41685 57189 2411 127197 9256449
503 3637 174489 2503 50301 13539249
601 5067 1327485 2609 99625 8811681
701 15847 220665 2707 38571 1113585
809 699 2010789 2801 85141 1095609
907 8811 4400889 2903 136035 14055825

1009 107979 2368869 3001 32725 3058401
1103 118075 7316361 3109 28537 6741129
1201 14157 1113705 3203 107589 4718889
1301 11235 1070901 3301 56607 14881185
1409 125947 4320189 3407 54451 6243009
1511 55719 2771205 3511 158155 1412961
1601 40087 368961 3607 27159 1026585
1709 34915 1032441 3701 38857 11576625
1801 65335 5789241 3803 13525 32058129
1901 99777 267321 3907 305925 17381649
2003 44961 44961 4001 30801 4412481

The primes considered in [3], [4], and [5] are mostly SG-primes. In this paper,
we also consider NSG-primes as listed in Table 1 to construct PRNGs.

2.2 Efficient Classes of DL and DT Generators

Deng, Li, Shiau, and Tsai [5] considered a class of DL-k generators as

Xi = B(Xi−1+Xi−2+·· ·+Xi−k) mod p, i ≥ k. (3)

That is, MRGs with αi =B for i = 1,2, · · · ,k. Such generators can be implemented
efficiently by

Xi =Xi−1+B(Xi−1−Xi−(k+1)) mod p, i ≥ k+1. (4)
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While DL generators can escape quickly from a near-zero k-dimensional state
vector, it will stay in near-zero states for a long time for large k, when its k-
dimensional state vector is of the form (0, · · · ,0,−v,v)′ for any nonzero integer
v.

To avoid this problem, we can consider a new class called DT generators, which
has many nonzero terms with geometric weights:

Xi = (BkXi−1+Bk−1Xi−2+·· ·+BXi−k) mod p, i ≥ k. (5)

Similar to DL generators, DT generators can be efficiently implemented by the (k+
1)-order equation below:

Xi = ((B−1+Bk)Xi−1−Xi−k−1) mod p, i ≥ k+1, (6)

where D ≡ (B−1+Bk) mod p can be pre-computed.
A DT generator with multiplier B could also stay in near-zero states for a long

time, when k is large and the state vector is of the form (0, · · · ,0,−v,Bv)′. But this
most likely would only happen when one purposely chooses an initial state vector
of the above form with the pre-specified multiplier B.

For SG-primes and NSG-primes listed in Table 1, we find DL and DT genera-
tors via computer search and list them in Tables 2 and 3, respectively. Unlike DL
generators, we choose the smallest B for DT generators, because the multipliers (in
the form of a geometric sequence) in the recurrence equation of a DT generator are
all different. We have conducted an empirical study and found that all the listed DL
and DT generators pass the Crush battery of TestU01 test suite.

Table 2 List of w and B of DL-k generators with modulus p = 231−w corresponding to NSG-
primes and SG-primes for various k. where B = xddddd with x = 10737.

k w (SG) B w (NSG) B k w (SG) B w (NSG) B

101 699 x41777 82845 x41723 2111 3637 x39400 3536385 x25977
211 8839 x41453 841329 x41805 2203 126831 x38735 6043089 x41471
307 3279 x41594 52545 x41682 2309 155391 x41131 340185 x39495
401 41685 x41092 57189 x41021 2411 127197 x38767 9256449 x37213
503 3637 x33579 174489 x40808 2503 50301 x28943 13539249 x40713
601 5067 x41559 1327485 x41084 2609 99625 x34382 8811681 x25313
701 15847 x38803 220665 x40279 2707 38571 x35221 1113585 x41455
809 699 x40699 2010789 x40429 2801 85141 x23130 1095609 x31033
907 8811 x38326 4400889 x38083 2903 136035 x40760 14055825 x28445

1009 107979 x39780 2368869 x37435 3001 32725 x39004 3058401 x41224
1103 118075 x41439 7316361 x38922 3109 28537 x37000 6741129 x40319
1201 14157 x37498 1113705 x41605 3203 107589 x41736 4718889 x40314
1301 11235 x40131 1070901 x39703 3301 56607 x29509 14881185 x40195
1409 125947 x37395 4320189 x35452 3407 54451 x25629 6243009 x41500
1511 55719 x36725 2771205 x38144 3511 158155 x26113 1412961 x38372
1601 40087 x36626 368961 x41683 3607 27159 x14920 1026585 x38483
1709 34915 x40775 1032441 x38218 3701 38857 x37074 11576625 x40341
1801 65335 x26147 5789241 x41319 3803 13525 x08780 32058129 x08122
1901 99777 x39543 267321 x39927 3907 305925 x39218 17381649 x41047
2003 44961 x41810 44961 x41810 4001 30801 x28037 4412481 x35759
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Table 3 List of w and B of DT-k generators with modulus p = 231−w corresponding to NSG-
primes and SG-primes for various k.

k w (SG) B w (NSG) B k w (SG) B w (NSG) B

101 699 231 82845 83 211 8839 170 841329 547
307 3279 366 52545 502 401 41685 569 57189 345
503 3637 2198 174489 861 601 5067 1283 1327485 960
701 15847 2405 220665 266 809 699 923 2010789 1810
907 8811 5725 4400889 2361 1009 107979 2558 2368869 1097

1103 118075 1071 7316361 952 1201 14157 1800 1113705 3000
1301 11235 477 1070901 637 1409 125947 9459 4320189 1611
1511 55719 5142 2771205 1206 1601 40087 1540 368961 3411
1709 34915 14914 1032441 1620 1801 65335 898 5789241 2164
1901 99777 5449 267321 2918 2003 44961 667 44961 667
2111 3637 4697 3536385 967 2203 126831 855 6043089 3189
2309 155391 6522 340185 1964 2411 127197 242 9256449 1897
2503 50301 10133 13539249 1967 2609 99625 2468 8811681 1287
2707 38571 1775 1113585 3980 2801 85141 316 1095609 5098
2903 136035 1458 14055825 4217 3001 32725 9633 3058401 8581
3109 28537 6594 6741129 3960 3203 107589 2471 4718889 416
3301 56607 1269 14881185 11703 3407 54451 3154 6243009 4646
3511 158155 3608 1412961 5935 3607 27159 7855 1026585 550
3701 38857 7604 11576625 11923 3803 13525 4874 32058129 2395
3907 305925 1063 17381649 1252 4001 30801 8272 4412481 4790

3 Automatic Generating Method for Parallel MRGs

3.1 Constructing MRGs with Different Multipliers

It is well known that, if f (x) is an irreducible polynomial, then c−kf (cx) and
xkf (c/x) are also irreducible polynomials for any nonzero constant c. Using this
fact, Deng, Li, and Shiau [4] developed an automatic generating algorithm that is
most suitable for SG-primes. When p is an NSG-prime, this algorithm still works
if the condition gcd(k,p−1)= 1 holds. We remark that this condition holds for all
of the NSG-primes listed in Table 1. One slight drawback is the number of different
maximum-period MRGs can be produced is fewer than that with SG-primes. Next,
we provide a simple alternative automatic generating algorithm for both SG-primes
and NSG-primes.

Algorithm. Let f (x) in (2) be a primitive polynomial corresponding to a DL or a
DT generator in which the nonzero coefficient is B as in Equation (3) or (5). The
steps below will randomly generate a set of maximum-period MRGs.

1. Whenever a new processor is initiated, continue generating a new dn via a simple
LCG: dn =Wdn−1 mod p until gcd(kdn−1,p−1)= 1, where W is a primitive
element modulus p.

2. Compute cn = Bdn mod p and the primitive polynomial G(x) by
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G(x)= c−kn f (cnx)≡ xk−g1x
k−1−g2x

k−2−·· ·−gk mod p. (7)

3. The new processor can use the newly constructed maximum-period MRG corre-
sponding to the characteristic polynomial G(x) in (7) as follows:

Xi = g1Xi−1+·· ·+gkXi−k mod p. (8)

When the baseline generator is a DL or DT generator, the generated MRGs have
k nonzero terms. Next, we present efficient implementations for the constructed
MRGs in (8).

3.2 Construction of Parallel MRGs from DL-k and DT-k

Given a maximum-period DL generator in (3), say, from Table 2, we can use the cor-
responding characteristic polynomial f (x) = xk−Bxk−1−·· ·−Bx−B to create
a set of k-th degree primitive polynomials as G(x)= c−kf (cx) mod p with c in the
set of numbers {cn} obtained in Step 2 of the above algorithm. For a DL generator,
G(x) in (7) has gi = c−iB mod p (or gi = c−1gi−1 mod p).

Then the MRG in (8) can be efficiently implemented by the following recurrence
equation of order (k+1) with only two nonzero terms:

Xi = (c−1+g1)Xi−1− c−1gkXi−(k+1) mod p, i ≥ k+1.

Then, since gi = c−iB mod p, we have

Xi = (c−1(B+1))Xi−1− c−(k+1)BXi−(k+1) mod p, i ≥ k+1.

For the DT generator in (5), the characteristic polynomial is f (x) = xk −
Bkxk−1− ·· · −B2x −B. Given a maximum-period DT generator in Table 3, we
can similarly produce MRGs in (8), where

gi = c−iBk−i+1 mod p (or gi = c−1B−1gi−1 mod p).

This MRG can be efficiently implemented by the recurrence of order (k+1) below:

Xi = (c−1B−1+ c−1Bk)Xi−1− c−(k+1)Xi−(k+1) mod p, i ≥ k+1,

which has only two nonzero terms left.
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2. Deng, L.Y.: Generalized mersenne prime number and its application to random number gen-

eration. In: H. Niederreiter (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp.
167–180. Springer-Verlag (2004)

3. Deng, L.Y.: Issues on computer search for large order multiple recursive generators. In: S.
Heinrich, A. Keller, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006,
pp. 251–261. Springer-Verlag (2008)

4. Deng, L.Y., Li, H., Shiau, J.J.H.: Scalable parallel multiple recursive generators of large order.
Parallel Computing 35, 29–37 (2009)

5. Deng, L.Y., Li, H., Shiau, J.J.H., Tsai, G.H.: Design and implementation of efficient and
portable multiple recursive generators with few zero coefficients. In: S. Heinrich, A. Keller,
H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 263–273. S.
Heinrich and A. Keller and H. Niederreiter (2008)

6. Deng, L.Y., Xu, H.: A system of high-dimensional, efficient, long-cycle and portable uniform
random number generators. ACM Transactions on Modeling and Computer Simulation 13(4),
299–309 (2003)

7. Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms, third
edn. Addison-Wesley, Reading, MA. 1998)

8. L’Ecuyer, P.: Random numbers for simulation. Communications of the ACM 33(10), 85–97
(1990)

9. L’Ecuyer, P.: Good parameter sets for combined multiple recursive random number generators.
Operations Research 47, 159–164 (1999)

10. L’Ecuyer, P., Blouin, F., Couture, R.: A search for good multiple recursive linear random num-
ber generators. ACM Transactions on Modeling and Computer Simulation 3, 87–98 (1993)

11. L’Ecuyer, P., Simard, R., Chen, E.J., Kelton, W.D.: An objected-oriented random-number
package with many long streams and substreams. Operations Research 50(6), 1073–1075
(2002)

12. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications, revised edn.
Cambridge University Press, Cambridge, MA. (1994)

13. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM Transactions on Modeling and Computer Sim-
ulation 8(1), 3–30 (1998)

14. Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators based on linear
recurrences modulo 2. ACM Transactions on Mathematical Software 32(1), 1–16 (2006)

15. Srinivasan, A., Mascagni, M., Ceperley, D.: Tesitng parallel random number generators. Par-
allel Computing 29, 69–94 (2003)



Se
co

nd
 p

ro
of

s

Efficient Numerical Inversion for Financial
Simulations

Gerhard Derflinger, Wolfgang Hörmann, Josef Leydold, and Halis Sak

Abstract Generating samples from generalized hyperbolic distributions and non-
central chi-square distributions by inversion has become an important task for the
simulation of recent models in finance in the framework of (quasi-) Monte Carlo.
However, their distribution functions are quite expensive to evaluate and thus nu-
merical methods like root finding algorithms are extremely slow. In this paper
we demonstrate how our new method based on Newton interpolation and Gauss-
Lobatto quadrature can be utilized for financial applications. Its fast marginal gen-
eration times make it competitive, even for situations where the parameters are not
always constant.

1 Introduction

The evaluation of the quantile function of a given distribution is an inevitable task
in the framework of Quasi-Monte Carlo methods (QMC) or for copula methods.
Unfortunately, fast and accurate implementations of such functions are available
only for a few of the important distributions, e.g., for the Gaussian distribution.
Otherwise, one has to invert one’s cumulative distribution function (CDF), for which
it is usually easier to find a ready-to-use implementation (or at least a published
algorithm). This procedure is called the inversion method in the random variate
generation literature. Thus one has to apply some numerical root finding algorithms,
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usually Newton’s method, variants of the secant method or interval bisection. Such
an approach is even necessary for standard distributions having shape parameters.
Then numerical inversion is combined with rough approximations to get starting
points for recursive algorithms, see, e.g., the implementation of quantile functions
for Gamma and t distributions in R [12].

For the fixed parameter case, i.e., when we have to draw (large) samples from
the same distribution, a table based approach combined with interpolation is much
faster. Possible implementations are proposed in [2, 6, 14]. Although the compu-
tation of the necessary coefficients during the setup can be quite expensive these
methods are applicable to all distributions that fulfill some regularity conditions
(like smooth and bounded density) and they have fast marginal generation times
that hardly depend on the target distribution.

Recent developments of more realistic models for the dynamics of asset prices,
interest or exchange rates lead to an increased application of less frequently used
distributions. During the MCQMC’08 conference in Montreal we were impressed
to see how many talks dealt with models that require the simulation of the variance
gamma distribution or more generally of the generalized hyperbolic distribution.
Also several authors report the good fit of the generalized hyperbolic distribution to
daily stock-returns (see, e.g., [1] and [3]). Both at the conference and in the literature
we observed that most researchers seemingly considered generating generalized hy-
perbolic random variates by inversion as too slow or even impossible. An exception
was the talk by Tan [7] who used the algorithm described in [6]. He also mentioned
that the setup took a long time. The slow setup is due to the fact that this algo-
rithm requires the CDF which is extremely expensive for the generalized hyperbolic
distribution. This talk motivated us to demonstrate the practical application of our
recently proposed algorithm [5] to such distributions. It only requires the probability
density function (PDF) of the target distribution and computes the CDF during the
setup. The synergy of using interpolation together with numerical integration speeds
up the setup for the generalized hyperbolic distribution by about hundred times com-
pared to methods that are based on the direct evaluation of the CDF. Moreover, the
algorithm allows to control the accuracy of the approximate inverse CDF.

A second numerically difficult distribution required in financial simulations is
the non-central chi-square distribution. It is, e.g., required for simulating the incre-
ments of the well known Cox-Ingersoll-Ross model for the dynamics of short-term
interest rates. Here the application of inversion algorithms is more difficult as the
non-centrality parameters λ varies. Nevertheless, as the value of λ is close to 0 for
all practically relevant choices of the parameters of that process, we were able to
apply our algorithm for this simulation problem.

In this paper we explain the main idea of our newly proposed algorithm and dis-
cuss how an inaccurate evaluation of the PDF influences the error of the algorithm.
We then develop the details necessary for its application to two simulation problems
of quantitative finance requiring the generalized hyperbolic distribution with fixed
parameters and the non-central chi-square distribution. A ready-to-use implementa-
tion of our new black-box algorithm can be found as method PINV in our library
UNU.RAN [9, 10].



Se
co

nd
 p

ro
of

s

Efficient Numerical Inversion for Financial Simulations 299

All our experiments were performed in R as it provides a convenient platform
for interactive computing. Densities for our target distributions are already available
and the package Runuran [9] provides an interface to our C library. Of course our
experiments can be conducted using C or any appropriate computing environment
that provides an API to use a C library.

2 The Automatic Algorithm

Our algorithm has been designed as a black-box algorithm, i.e., the user has to pro-
vide a function that evaluates the PDF together with a “typical” point of the target
distribution, and a maximal tolerated approximation error. As it is not tailored for
a particular distribution family it works for distributions with smooth and bounded
densities but requires some setup where the corresponding tables have to be com-
puted. We only sketch the basic idea and refer the reader to [5] for all details (includ-
ing the pseudo-code) and for arguments for the particular choice of the interpolation
method and quadrature rule.

Measuring the Accuracy of Approximate Inversion

A main concern of any numerical inversion algorithm must be the control of the
approximation error, i.e., the deviation of the approximate inverse CDF F−1

a from
the exact function F−1. We are convinced that the u-error defined by

εu(u)= |u−F(F−1
a (u))| (1)

is well-suited for this task. In particular it can easily be computed during the setup
and it can be interpreted with respect to the resolution of the underlying uniform
pseudo-random number generator or low discrepancy set (see [5] for details). We
therefore call the maximal tolerated u-error the u-resolution of the algorithm and
denote it by εu in the sequel. We should mention here that the x-error, |F−1(u)−
F−1
a (u)|, may be large in the tails of the target distribution. Hence our algorithms

are not designed for calculating exact quantiles in the far tails of the distribution.

Newton’s Interpolation Formula and Gauss-Lobatto Quadrature

For an interval [bl,br ] we select a fixed number of points bl = x0 < x1 < · · ·< xn =
br and compute ui = F(xi) = F(xi−1)+

∫ xi
xi−1

f (x)dx recursively using u0 = 0.
The numeric integration is performed by means of Gauss-Lobatto quadrature with
5 points. The integration error is typically much smaller than the interpolation er-
ror and can be controlled using adaptive integration. We then construct a polyno-
mial Pn(x) of order n through the n+ 1 pairs (ui,xi), thus avoiding the evaluation
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of the inverse CDF F−1. The coefficients of the polynomial are calculated using
inverse Newton interpolation. Note that using numeric integration is often more
stable than the direct use of an accurate implementation of the CDF due to loss
of significant digits in the right tail. The interpolation error can be computed dur-
ing the setup. It is possible to search for the maximal error over [F(bl),F (br)],
but we suggest to use a much cheaper heuristic, that estimates the location of the
maximal error using the roots of Chebyshev polynomials. The intervals [bl,br ] are
constructed sequentially from left to right in the setup. The length of every in-
terval is shortened till the estimated u-error is slightly smaller than the required
u-resolution.

Cut-off Points for the Domain

The interpolation does not work for densities where the inverse CDF becomes too
steep. In particular this happens in the tails of distributions with unbounded do-
mains. Thus we have to find the computational relevant part of the domain, i.e., we
have to cut off the tails such that the probability of either tail is negligible, say about
5% of the given u-resolution εu. Thus it does not increase the u-error significantly.
We approximate the tail of the distribution by a function of the form x−c fitted to
the tail in a starting point x0 and take the cut-off value of that approximation.

3 Considerations for Approximate Densities

The error control of our algorithm assumes that the density can be evaluated pre-
cisely. However, in practice we only have a (albeit accurate) approximate PDF fe(x)

available. The pointwise error of the corresponding approximate CDF Fe is bounded
by the L1-error of fe which is defined by

|F(x)−Fe(x)| ≤ L1-error= ε1 =
∫ ∞

−∞
|f (x)−fe(x)|dx .

Hence, the total resulting maximal u-error of the approximation F−1
a is bounded

by εu + ε1. Thus, if we can obtain an upper bound ε̃1 for the L1-error, we can
reduce the parameter εu of our algorithm by ε̃1 to get an algorithm that is guaranteed
to have the required u-resolution. (Of course this requires that ε1 is sufficiently
small.)

The L1-error can be estimated by means of high precision arithmetic (we used
Mathematica [15] for this task). We compared our implementation of a partic-
ular PDF with one that computes 30 significant decimal digits at 500,000 equi-
distributed points and calculated the L1-error.
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4 The Generalized Hyperbolic Distribution

The generalized hyperbolic distribution is considered to be a more realistic albeit nu-
merically difficult model for the increment of financial processes or the marginal dis-
tributions of portfolio risk. However, for both, the generation of a variance gamma
process using QMC as well as the generation of the marginal distribution from (e.g.)
a t-copula the inversion method is inevitable. We therefore discuss here the applica-
tion of our numerical inversion algorithm to that important distribution family.

Our tests were performed with the parameter values estimated for four different
German stocks in [11]. We first estimated the L1-errors of our implementation of
the PDF (using the R library function for the modified Bessel function of third kind)
which was always below 10−15, i.e., close to machine precision of the double format
of the IEEE floating point standard.

Our numerical inversion algorithm works for all parameter sets. A u-resolution
of 10−12 and an order n= 5 for the polynomial interpolation requires 140 intervals
and the setup was executed in less than 0.2 seconds. This is about 100 times faster
than using the inversion algorithm of [6] that requires the CDF instead of the PDF.
The observed u-error remained always below the required u-resolution (we used
R package ghyp [4] as an independent implementation of the CDF of the general-
ized hyperbolic distribution). The marginal execution time is very fast, less than 0.2
seconds for generating one million variates. So including the setup we are able to
sample 107 variates of a generalized hyperbolic distribution in less than 2 seconds
which is quite fast. Compared to inversion using the quantile function of the ghyp
package, that requires 35 seconds to generate 1000 variates, the speed up factor is
105 which is impressive.

This means that for the realistic return model using the t-copula with generalized
hyperbolic marginals our new numeric inversion allows to obtain precise estimates
of value at risk or expected shortfall in acceptable time. In that model the return
distribution of the d assets of the portfolio has different parameters. As the genera-
tion of a return vector requires the evaluation of the inverse CDF of each of these d
parameter sets it is therefore necessary to start the simulation with calculating d sets
of constants that are stored in d different “generator objects”. Thus our numeric in-
version algorithm can be used in this semi-varying parameter situation, also values
of d around 50 or 100 are no problem.

5 The Non-Central Chi-Square Distribution

The density of the non-central chi-square distribution is difficult to evaluate. Its R
implementation uses the representation of the non-central chi-square distribution
as a Poisson mixture of central chi-square distributions [8, p. 436]. The density is
bounded for ν ≥ 2 degrees of freedom. Our numerical estimation shows that the
L1-error of the R implementation is never larger than 10−14. So our algorithm can
be applied to get a fast and sufficiently accurate inversion algorithm for the non-
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central chi-square distribution. An u-resolution of 10−12 and an order n= 5 for the
polynomial interpolation requires a bit more than 200 intervals for all parameter
values of our experiments. The setup together with the generation of 106 variates by
inversion took about 0.27 seconds and was thus faster than generating 100 variates
by inversion using the built in R function qchisq. So here the algorithm reached a
speed-up factor above 104. Note that our inversion algorithm is also about 30 percent
faster than using the random variate generation function rchisq that is using the
mixture representation of the non-central chi-square distribution and is therefore not
an inversion algorithm.

Random Variate Generation for the CIR Model

The Cox-Ingersoll-Ross or CIR model is a well known single factor interest rate
model defined by the stochastic differential equation

drt = κ(θ − rt )dt+σ
√
rtdωt .

The increments of the process rt for a time jump of size T follow a multiple of
the non-central chi-square distribution with ν = 4κ θ/σ 2 degrees of freedom and
non-centrality parameter λ= (1− exp(−κ T ))σ 2 rt exp(−κ T )/κ .

So path simulation requires only the generation of non-central chi-square vari-
ates. For fixed process parameters, ν is fixed, whereas λ depends on the current
value rt and thus changes for every call. The changing parameter situation seems
to be an obstacle for using a table based inversion algorithm. But a closer look at
the formula for λ shows that for sensible process parameters, λ is always close to 0.
To check this observation we investigated a total of 24 parameter sets estimated in
[13] for the overnight rates of European interbank, of London interbank for Euro,
and the overnight rates for Poland, Slovakia, Hungary and the Czech Republic. The
parameters were estimated for the four quarters of 2003 separately. Assuming that
rt is not larger than 10θ and trying values of T between 0.001 and 1 it turns out
that we always had λ < 0.011. As ν is fixed and the range of possible λ values is so
small, we can use our inversion algorithm for this varying parameter situation. The
simplest approach is to run the setup of the algorithm for the parameters (ν,λ = 0)
and for (ν,λ= 0.011). To make inversion for an arbitrary value of λ in (0,0.011) we
calculate both x-values, that for (ν,λ = 0) and (ν,λ = 0.011), and then use linear
interpolation in λ. It is enough to use εu = 10−10 such that the result of the simple
linear interpolation in λ has an u-error smaller than 10−7 for ν ≥ 6 and smaller than
3.5 ·10−7 for ν ≥ 3.

Remark 1. As λ is so close to zero we first thought that it could be enough to use
λ = 0 (i.e., inversion with the ordinary chi-square distribution) as approximation.
But that simple approximation leads, e.g., for ν = 4 and λ = 0.005 to a u-error
larger than 10−3 which is certainly not acceptable.

If smaller u-errors or larger λ values are required one may use quadratic inter-
polation in λ. For example for λ ≤ 0.1 we run the setup and store the respective
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library(Runuran) ## load library

qnccsi <- function(u, nu, lambda) {
## approx. inverse CDF of non-central chi-square distribution.
## u ... probabilities (vector of length n)
## nu ... degrees of freedoms (numeric)
## lambda ... non-central values (vector of lenght n)
## quadratic interpolation for lambda.
## (default) uresolution=1e-10 for generator PINV

# maximum of non-centrality parameter
maxlambda <- max(lambda)
# "typical" point of distributions
xc <- 0.5*nu
# generators for distributions
myf0 <- function(x) dchisq(x,df=nu,ncp=0)
gen0 <- pinv.new(pdf=myf0,lb=0,ub=Inf,center=xc)
myf1 <- function(x) dchisq(x,df=nu,ncp=maxlambda*0.5)
gen1 <- pinv.new(pdf=myf1,lb=0,ub=Inf,center=xc)
myf2 <- function(x) dchisq(x,df=nu,ncp=maxlambda)
gen2 <- pinv.new(pdf=myf2,lb=0,ub=Inf,center=xc)
# generate points from these distributions
x0<-uq(gen0,u); x1<-uq(gen1,u); x2<-uq(gen2,u)
# interpolate for particular non-centrality parameters
lam <- lambda*2/maxlambda-1
x <- 0.5*(((x0+x2)*lam+(x2-x0))*lam)+x1*(1-lam*lam)
# return random sample
x

}

## draw a random sample with randomly selected lambda values
x <- qnccsi(u=runif(1e6),nu=20,lambda=runif(1e6)*0.1)

Fig. 1 R code for approximate inverse CDF of a non-central chi-square distribution with nu de-
grees of freedom (fixed) and varying non-centrality parameter lambda. (This code requires R
version 2.8.1 or later since otherwise dchisq hangs.)

constants for λ0 = 0, λ1 = 0.05, and λ2 = 0.1. For an arbitrary λ ≤ 0.1 and u we
evaluate the inverse CDF and calculate xi =F−1(u,λi) for i = 0,1,2 using the three
stored tables. The final result is then obtained using quadratic interpolation of the
three pairs (λi,xi). Figure 1 lists an R function that implements such an approach.
Using quadratic interpolation in λ we observed an u-error smaller than 1.5 · 10−7

for ν ≥ 3, λ ≤ 0.1 and an u-error smaller than 2.3 · 10−8 for ν ≥ 6, λ ≤ 0.1. The
u-error is more than 100 times smaller than when using linear interpolation for those
parameter values. Of course the quadratic interpolation and the evaluation of three
quantiles takes some time. Generating 106 variates for varying λ-values with the
R code in Fig. 1 takes about 0.7 seconds. Compared to the 2.5 seconds it takes to
generate 1000 of the same variates with the built-in quantile function of R we can
still observe a speed-up factor above 3000.
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Equidistribution Properties of Generalized Nets
and Sequences

Josef Dick and Jan Baldeaux

Abstract Generalized digital nets and sequences have been introduced for the nu-
merical integration of smooth functions using quasi-Monte Carlo rules. In this pa-
per we study geometrical properties of such nets and sequences. The definition of
these nets and sequences does not depend on linear algebra over finite fields, it
only requires that the point set or sequence satisfies certain distributional proper-
ties. Generalized digital nets and sequences appear as special cases. We prove some
propagation rules and give bounds on the quality parameter t .

1 Introduction

In this paper we study the equidistribution properties of generalized digital nets
and sequences as introduced in [2], see also [1, 3]. Such nets and sequences have
been introduced since they can achieve arbitrarily high convergence rates of the
integration error when used in a quasi-Monte Carlo rule as quadrature points. To be
more precise, if the function f : [0,1]s → R, s ≥ 1, under consideration has mixed
partial derivatives up to order α ≥ 1 in each variable which are square-integrable,
then the integration error is of O(q−(βn−t)(βn− t)sα), for a digital (t,α,β,n×
m,s)-net over Fq . Explicit constructions of digital (t,α,β,n×m,s)-nets over Fq

with βn= αm and t bounded independently of m are also given in [1, 2]. Note that
a digital (t,α,β,n×m,s)-net over Fq has qm points.

In the next section we define digital (t,α,β,n × m,s)-nets and digital
(t,α,β,σ,s)-sequences and recall some of their properties as well as explicit con-
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structions from [2]. In Section 3, generalized nets and sequences are introduced.
In order to do so, we introduce the concept of a generalized elementary interval
in Subsection 3.1. We prove some properties of such sets and then give the defini-
tion of (t,α,β,n,m,s)-nets and (t,α,β,σ,s)-sequences. In Subsection 3.2, prop-
agation rules for these types of point sets and sequences are shown and we also
prove some lower and upper bounds on the quality parameter t . In particular, we
show that the quality parameter t of a (t,α,β,σ,s)-sequence with smallest possi-
ble value of t satisfies t " α2s, which also holds for digital sequences. For the re-
mainder of the paper we use the following nomenclature: (t,α,β,n,m,s)-nets and
(t,α,β,σ,s)-sequences as introduced in Section 3 of this paper will be referred to as
generalized nets and generalized sequences, digital (t,α,β,n×m,s)-nets and dig-
ital (t,α,β,σ,s)-sequences, as introduced in [2], will be referred to as generalized
digital nets and generalized digital sequences, (t,m,s)-nets and (t, s)-sequences,
[9, 10] will be referred to as classical nets and classical sequences, digital (t,m,s)-
nets and digital (t, s)-sequences, [9, 10] as classical digital nets and classical digital
sequences.

2 Definition of Digital (t,α,β,n×m,s)-Nets and Digital
(t,α,β,σ,s)-Sequences

Before providing a geometric approach to digital (t,α,β,n×m,s)-nets, we need to
recall the following concepts: We start with the digital construction scheme, which
digital (t,α,β,n×m,s)-nets are based upon. This digital construction scheme stems
from the construction of digital (t,m,s)-nets, see [10].

Throughout the paper N denotes the set of natural numbers and N0 the set
of nonnegative integers. Having defined digital (t,α,β,n×m,s)-nets and digi-
tal (t,α,β,σ,s)-sequences, we will explain the meaning of the parameters in Re-
mark 1.

Definition 1. Let q be a prime power and let n,m,s ≥ 1 be integers. Let C1, . . . ,Cs

be n×m matrices over the finite field Fq of order q. Now we construct qm points in
[0,1)s : For 0≤ h < qm let h= h0+h1q+·· ·+hm−1q

m−1 be the q-adic expansion
of h. Consider an arbitrary but fixed bijection ϕ : {0,1, . . . ,q−1} → Fq . Identify h
with the vector h= (ϕ(h0), . . . ,ϕ(hm−1))

� ∈ F
m
q , where� denotes the transpose of

the vector. For 1≤ j ≤ s, multiply the matrix Cj by h, i.e.,

Cjh := (yj,1(h), . . . ,yj,n(h))
� ∈ F

n
q,

and set

xh,j := ϕ−1(yj,1(h))

q
+·· ·+ ϕ−1(yj,n(h))

qn
.
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The point set
{
x0, . . . ,xqm−1

}
is called a digital net (over Fq ) (with generating ma-

trices C1, . . . ,Cs). For n,m=∞ we obtain a sequence {x0,x1, . . . }, which is called
a digital sequence (over Fq ) (with generating matrices C1, . . . ,Cs).

It is clear from the definition, that all the information about the properties of
the point set is contained in the generating matrices C1, . . . ,Cs . Hence in order to
be able to deal with the properties of these point sets, it is enough to introduce a
criterion on the generating matrices. To define such a criterion we first define the
dual space [4, 5, 11] of the generating matrices C1, . . . ,Cs ∈ F

n×m
q for a digital net,

given by
D = {k ∈ N

s
0 : C�1 k1+·· ·+C�s ks = 0 ∈ F

m
q },

where for k = (k1, . . . ,ks) with kj = kj,0+ kj,1q + ·· · we define the vector kj =
(kj,0, . . . ,kj,n−1)

� ∈ F
n
q .

The following criterion was first introduced in the context of applying digital
nets to the numerical integration of smooth functions, see [2]: For k ∈ N and α ≥
1 let μα(k) = a1 + ·· · + amin(ν,α), where k = κ1q

a1−1 + ·· · + κνq
aν−1 with 0 <

κ1, . . . ,κν < q and 1 ≤ aν < · · · < a1. Further we set μα(0) = 0. For a vector k =
(k1, . . . ,ks)∈N

s
0 we defineμα(k)=μα(k1)+·· ·+μα(ks). The following definition

was motivated in [3].

Definition 2. Let n,m,α ∈ N, let 0 < β ≤ min(1,αm/n) be a real number, and let
0≤ t ≤ βn be a nonnegative integer. Let Fq be the finite field of prime power order q
and letC1, . . . ,Cs ∈F

n×m
q withCj = (cj,1, . . . ,cj,n)T . If for all 1≤ ij,νj < · · ·< ij,1,

where 0≤ νj for all j = 1, . . . , s, with

s∑

j=1

min(νj ,α)∑

l=1

ij,l ≤ βn− t

the vectors
c1,i1,ν1

, . . . ,c1,i1,1 , . . . ,cs,is,νs , . . . ,cs,is,1

are linearly independent over Fq , then the digital net with generating matrices
C1, . . . ,Cs is called a digital (t,α,β,n×m,s)-net over Fq .

If t is the smallest nonnegative integer such that the digital net generated by
C1, . . . ,Cs is a digital (t,α,β,n×m,s)-net, then we call the digital net a strict
digital (t,α,β,n×m,s)-net.

Note that the condition
∑s

j=1
∑νj

l=1 ij,l ≤ βn− t implies that ij,1 ≤ n, as β ≤ 1
and t ≥ 0.

Similarly, we can recall the definition of digital (t,α,β,σ,s)-sequences over Fq

from [2].

Definition 3. Let α,σ ≥ 1 and t ≥ 0 be integers and let 0 < β ≤ α/σ be a real num-
ber. Let Fq be the finite field of prime power order q and let C1, . . . ,Cs ∈ F

∞×∞
q

with Cj = (cj,1,cj,2, . . .)�. Further let Cj,σm×m denote the left upper σm×m sub-
matrix of Cj . If for all m> t/(βσ) the matrices C1,σm×m,. . . ,Cs,σm×m generate a
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digital (t,α,β,σm×m,s)-net, then the digital sequence with generating matrices
C1, . . . ,Cs is called a digital (t,α,β,σ,s)-sequence over Fq .

If t is the smallest nonnegative integer such that the digital sequence generated
by C1, . . . ,Cs is a digital (t,α,β,σ,s)-sequence, then we call the digital sequence a
strict digital (t,α,β,σ,s)-sequence.

Remark 1. In the following we explain the meaning of the parameters t , α, β, n, m
and s used in the context of generalized digital (t,α,β,n×m,s)-nets; see also [2,
Remark 4.5]:

• s denotes the dimensionality of the point set;
• the logarithm in base q of the number of points is m, i.e., a digital (t,α,β,n×

m,s)-net has qm points;
• n denotes the number of rows of the generating matrices and therefore corre-

sponds to the maximum number of non-zero digits in the base q expansion of
each coordinate of each point; hence n determines how precise each point is
placed in the unit cube, which has a direct influence on the convergence of the
integration error as can be seen from the next point;

• βn− t denotes the quality of the point set, which can be referred to as the strength
of the net; in particular, the integration error is O(q−βn+t (βn− t)αs);

• digital (t,α,β,n×m,s)-nets were introduced in the context of numerical inte-
gration, where α is a variable parameter, which denotes the smoothness of the
integrand. We assume that the smoothness α is not known explicitly.

Finally, following [2], we now recall a method of explicitly constructing digital
(t,α,β,n×m,s)-nets, which was first presented in [2, Section 4.4]. This way we
obtain digital (t,α,min(1,α/d),dm×m,s)-nets for all α ≥ 1, where d ∈ N is a
parameter which can be chosen freely.

Let d ≥ 1 and let C1, . . . ,Csd be the generating matrices of a digital (t ′,m,sd)-
net; we recall that many explicit examples of such generating matrices are known,
see e.g., [6, 7, 8, 10, 12, 18] and the references therein. As we will see later, the
choice of the underlying digital (t ′,m,sd)-net has a direct impact on the bound on
the t-value of the digital (t,α,min(1, α

d
),dm×m,s)-net, which was proven in [2].

Let Cj = (cj,1, . . . ,cj,m)� for j = 1, . . . , sd; i.e., cj,l are the row vectors of Cj . Now

let the matrix C(d)
j consist of the first rows of the matrices C(j−1)d+1, . . . ,Cjd , then

the second rows of C(j−1)d+1, . . . ,Cjd , and so on, in the order described in the fol-

lowing: The matrix C
(d)
j is a dm×m matrix; i.e., C(d)

j = (c(d)j,1, . . . ,c
(d)
j,dm)

�, where

c(d)j,l = cu,v with l= (v−j)d+u, 1≤ v≤m, and (j−1)d <u≤ jd for l= 1, . . . ,dm
and j = 1, . . . , s. We remark that this construction can be extended to digital
(t,α,β,σ,s)-sequences by letting C̃j = (̃cj,1, c̃j,2, . . . )�, for j = 1, . . . , sd , denote

the generating matrices of a digital (t ′, sd)-sequence; the resulting matrices C̃(d)
j ,

j = 1, . . . , s, are now∞×∞matrices, where again we have C̃(d)
j = (̃c(d)j,1, c̃

(d)
j,2, . . .)

�,

where c̃(d)j,l = c̃u,v with l= (v−j)d+u, v≥ 1, and (j−1)d < u≤ jd for l= 1,2, . . .
and j = 1, . . . , s.

The following result improves [2, Theorem 4.11] for some cases. For a proof
see [4].
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Theorem 1. Let d ≥ 1 be a natural number and let C1, . . . ,Csd be the generat-
ing matrices of a digital (t ′,m,sd)-net over the finite field Fq of prime power

order q. Let C(d)
1 , . . . ,C

(d)
s be defined as above. Then for any α ∈ N, the matri-

ces C(d)
1 , . . . ,C

(d)
s are the generating matrices of a digital (t,α,min(1,α/d),dm×

m,s)-net over Fq with

t =min(α,d)min

(
m,t ′ +

⌊
s(d−1)

2

⌋)
. (1)

Furthermore, the matrices C̃
(d)
1 , . . . , C̃

(d)
s obtained from the generating matrices

C̃1, . . . , C̃sd of a digital (t ′, sd)-sequence over Fq are the generating matrices of
a digital (t,α,min(1,α/d),d,s)-sequence over Fq with

t =min(α,d)

(
t ′ +

⌊
s(d−1)

2

⌋)
.

In the following example we show that the above result cannot be improved on
in general.

Example 1. Let d = 2 and s= 1 and generate a digital (t,α,min(1,α/2),2m×m,1)-
net over Fq from a digital (0,m,2)-net over Fq (such nets exist, for example one
can take the Hammersley net). Then Theorem 1 implies that we can choose t =
min(α,2)0+min(α,2)1 ·1/2� = 0, which is already best possible.

On the other hand it can be checked that the bound on the t-value in Theo-
rem 1 for particular digital nets is not necessarily best possible. That is, if we use a
strict digital (t ′,m,sd)-net over Fq for the construction of the generating matrices

C
(d)
1 , . . . ,C

(d)
s , then these generating matrices do not necessarily generate a strict

digital (t,α,β,n×m,s)-net over Fq , where t is given by (1). This is illustrated in
the next example.

Example 2. The following matrices generate a strict digital (1,3,4)-net over F2 and
stem from a Niederreiter-Xing sequence as implemented by Pirsic [16]:

C1 =
⎛

⎝
1 1 1
0 1 0
0 0 0

⎞

⎠ ,C2 =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ ,C3 =
⎛

⎝
1 1 0
1 0 0
0 0 1

⎞

⎠ ,C4 =
⎛

⎝
0 1 1
1 1 0
1 1 1

⎞

⎠ .

Using the method described in [2, Section 4.4] with d = 2, we construct the gener-
ating matrices C(2)

1 and C(2)
2 , which are given by:

C
(2)
1 =

⎛

⎜⎜⎜
⎜
⎜
⎜
⎝

1 1 1
1 0 0
0 1 0
0 0 1
0 0 0
0 1 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

,C
(2)
2 =

⎛

⎜⎜⎜
⎜
⎜
⎜
⎝

1 1 0
0 1 1
1 0 0
1 1 0
0 0 1
1 1 1

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

.
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For any α ≥ 2, Theorem 1 yields a digital (4,α,1,6× 3,2)-net and for α = 1 a
digital (2,1,1/2,6×3,2)-net.

We now show that the exact t-value of this digital net is smaller than the one
obtained from Theorem 1. It can be confirmed by inspection that the matrices C(2)

1

and C
(2)
2 generate a digital (2,α,1,6× 3,2)-net for all α ≥ 2, by checking that for

all 1≤ ij,νj < · · ·< ij,1, where 0≤ νj , j = 1,2, with

2∑

j=1

min(νj ,α)∑

l=1

ij,l ≤ 6−2= 4

the vectors c(2)1,i1,ν1
, . . . ,c(2)1,i1,1

,c(2)2,i2,ν2
, . . . ,c(2)2,i2,1

are linearly independent over F2.

Furthermore, it can be confirmed that the two matrices C(2)
1 and C(2)

2 do not generate
a digital (1,α,1,6×3,2)-net for any α ≥ 2, as for ν1 = 0, ν2 = 2, i2,2 = 1, i2,1 = 4,
c(2)2,i2,1

and c(2)2,i2,2
are linearly dependent. Hence, for any α ≥ 2, the matrices C(2)

1 and

C
(2)
2 generate a strict digital (2,α,1,6×3,2)-net.

For α = 1 on the other hand, it can be checked that the matrices C(2)
1 and C

(2)
2

generate a strict digital (0,1,1/2,6×3,2)-net.
Thus, for this example, Theorem 1 does not yield the best possible result for any

α ≥ 1.

Next we present an example which might be counterintuitive at first: We present
a strict digital (2,3,4)-net, which generates a strict digital (1,α,1,6×3,2)-net for
any α ≥ 2, and, for α = 1, a strict digital (0,1,1/2,6×3,2)-net.

Example 3. The following matrices generate a strict digital (2,3,4)-net over F2:

K1 =
⎛

⎝
1 1 0
1 0 0
1 1 0

⎞

⎠ ,K2 =
⎛

⎝
1 0 1
1 0 1
0 0 0

⎞

⎠ ,K3 =
⎛

⎝
0 0 1
1 0 0
0 0 1

⎞

⎠ ,K4 =
⎛

⎝
0 1 0
0 1 0
0 0 0

⎞

⎠ .

Using the method described in [2, Section 4.4] with d = 2, we construct the gener-
ating matrices K(2)

1 and K(2)
2 , which are given by:

K
(2)
1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 1 0
1 0 1
1 0 0
1 0 1
1 1 0
0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,K
(2)
2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 1
0 1 0
1 0 0
0 1 0
0 0 1
0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

For any α ≥ 2, Theorem 1 yields a digital (6,α,1,6× 3,2)-net, and for α = 1 a
digital (3,1,1/2,6×3,2)-net.

As in Example 2, it can be confirmed by inspection that the matrices K(2)
1 and

K
(2)
2 generate a digital (1,α,1,6× 3,2)-net for all α ≥ 2. Furthermore, it can be
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confirmed that the two matrices K(2)
1 and K(2)

2 do not generate a digital (0,α,1,6×
3,2)-net for α ≥ 2, as for ν1 = 2, ν2 = 2, i1,2 = 1, i1,1 = 2, i2,2 = 1 and i2,1 = 2,
k(2)1,i1,2

, k(2)1,i1,1
, k(2)2,i2,2

and k(2)2,i2,1
are linearly dependent, where k(2)j,i denotes the ith

row of the matrix K(2)
j .

For α = 1 on the other hand, it can be checked that the matrices K(2)
1 and K

(2)
2

generate a strict digital (0,1,1/2,6×3,2)-net.

The last two examples show that Theorem 1 does not always yield the best pos-
sible bounds on the t-value for digital (t,α,β,n×m,s)-nets constructed from par-
ticular classical digital nets. (This could mean that it might be possible to improve
the bound on the t-value for generalized digital nets constructed from particular
classical nets (or sequences).) On the other hand, at least for digital (t,α,β,σ,s)-
sequences, we will see below that Theorem 1 does yield the asymptotically optimal
dependence of the t-value on α and s, see Theorem 7 below.

Remark 2. Note that even though the strict digital (1,3,4)-net used in Example 2
has a better t-value (in the classical sense) than the strict digital (2,3,4)-net in Ex-
ample 3, the latter generates the better digital (t,α,1,6× 3,2)-net for any α ≥ 2,
as measured by the generalized t-value. However, it is possible to find a strict dig-
ital (1,3,4)-net which generates a strict digital (1,α,1,6×3,2)-net for any α ≥ 2.
Consider for example

K̃1 =
⎛

⎝
1 1 0
1 0 0
1 1 0

⎞

⎠ , K̃2 =
⎛

⎝
1 0 1
1 1 1
0 0 0

⎞

⎠ , K̃3 =
⎛

⎝
0 0 1
1 0 0
0 0 1

⎞

⎠ , K̃4 =
⎛

⎝
0 1 0
1 1 1
0 0 0

⎞

⎠ .

Remark 3. It can be checked that the matrices C(2)
1 and C

(2)
2 from Example 2 can

also be interpreted as generating matrices of a digital (0,3,2)-net over F2. However,
if we set C̃2 = C

(2)
2 , but

C̃1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 1 1
1 0 0
0 1 1
0 0 1
0 0 0
0 1 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

we have an example of a strict digital (2,α,1,6×3,2)-net over F2, α ≥ 2, which is
a strict digital (1,3,2)-net.

3 Equidistribution Properties of Generalized Nets and Sequences

Generalized digital nets and sequences, as introduced in [2], rely on linear alge-
bra over finite fields. The quality of such point sets is determined by linear in-
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dependence properties of the generating matrices. In this section we remove this
restriction by introducing the essential geometrical properties satisfied by digital
(t,α,β,n×m,s)-nets and digital (t,α,β,σ,s)-sequences. This is analogous to the
link between (t,m,s)-nets and digital (t,m,s)-nets in the classical theory (or (t, s)-
sequences and digital (t, s)-sequences), where the former includes the latter as a
special case and (t,m,s)-nets (and (t, s)-sequences) are defined using only geomet-
rical features of the point set.

3.1 Definition of (t,α,β,n,m,s)-Nets and
(t,α,β,σ,s)-Sequences

We recall that the definition of (t,m,s)-nets is based on the concept of an el-
ementary interval, see e.g. [10]. In the following we introduce a concept anal-
ogous to that of an elementary interval, namely that of a generalized elemen-
tary interval. Before we do so we need some notation: let ν = (ν1, . . . ,νs), let
|ν|1 =∑s

j=1 νj , let iν = (i1,1, . . . , i1,ν1 , . . . , is,1, . . . , is,νs ), let aν ∈ {0, . . . ,q−1}|ν|1 ,
and let aν = (a1,i1,1 , . . . ,a1,i1,ν1

, . . . ,as,is,1, . . . ,as,is,νs ), where the components ij,l
and aj,l , l = 1, . . . ,νj , do not appear in the vectors iν and aν in case νj = 0.

By a generalized elementary interval we mean a subset of [0,1)s of the form

J (iν,aν)

=
s∏

j=1

q−1⋃

aj,l=0

l∈{1,...,n}\
{
ij,1,...,ij,νj

}

[
aj,1

q
+·· ·+ aj,n

qn
,
aj,1

q
+·· ·+ aj,n

qn
+ 1

qn

)
,

where q ≥ 2 is an integer and where for j = 1, . . . , s we have 1≤ ij,νj < · · ·< ij,1 ≤
n in case νj > 0 and {ij,1, . . . , ij,νj } = ∅ in case νj = 0.

We note that a generalized elementary interval is not always an elementary inter-
val, but can be a union of several elementary intervals, see for example Figure 1.

Generalized elementary intervals posses properties similar to those of classical
elementary intervals as we show in the following.

Lemma 1. Let ν ∈ {0, . . . ,n}s and iν be defined as above and fixed. Then the gener-
alized elementary intervals J (iν,aν) for aν ∈ {0, . . . ,q−1}|ν|1 , form a partition of
[0,1)s , i.e.

⋃
aν∈{0,...,q−1}|ν|1 J (iν,aν)= [0,1)s and J (iν,aν)∩J (iν,a′ν)= ∅, for all

aν �= a′ν ∈ {0, . . . ,q−1}|ν|1 .

Proof. First we have

⋃

aν∈{0,...,q−1}|ν|1
J (iν,aν)



Se
co

nd
 p

ro
of

s

Equidistribution Properties of Generalized Nets and Sequences 313

=
s∏

j=1

q−1⋃

aj,l=0
l∈{1,...,n}

[
aj,1

q
+·· ·+ aj,n

qn
,
aj,1

q
+·· ·+ aj,n

qn
+ 1

qn

)

= [0,1)s .
To show the second part, we note that, for iν fixed and aν �= a′ν , there exists a j ∈

{1, . . . , s}, and a k∈ {ij,1, . . . , ij,νj
}
, such that aj,k �=a′j,k . Let x=(x1, . . . ,xs) where

each coordinate xj , j = 1, . . . , s, has base q expansion xj = xj,1q
−1+xj,2q−2+ . . .

(we assume that for each j ∈ {1, . . . , s} infinitely many xj,k �= q − 1). Then x ∈
J (iν,aν) if and only if for all j = 1, . . . , s and all k ∈ {ij,1, . . . , ij,νj } we have xj,k =
aj,k . But as there exists a j and k such that aj,k �= a′j,k , x cannot be in J (iν,aν) and
J (iν,a′ν) simultaneously. Hence J (iν,aν)∩J (iν,a′ν)= ∅ and the result follows.

�

In the following lemma, we compute the volume of a generalized elementary
interval.

Lemma 2. Let ν, iν and aν be as above. Then the volume of J (iν,aν) is q−|ν|1 .

Proof. Let ν and iν be fixed. Then we have seen in Lemma 1 that the J (iν,aν),
aν ∈ {0, . . . ,q−1}|ν|1 form a partition of [0,1)s . From the definition of generalized
elementary intervals one can see that Vol(J (iν,aν))=Vol(J (iν,a′ν)) for all aν,a′ν ∈
{0, . . . ,q−1}|ν|1 , where Vol(J ) denotes the volume of an interval J , as the intervals
J (iν,aν) and J (iν,a′ν) are only shifted versions of each other. Hence

Vol(J (iν,aν))= 1

|{aν ∈ {0, . . . ,q−1}|ν|1}| =
1

q |ν|1
.

�

We are now in a position to define a (t,α,β,n,m,s)-net, which is based on the
concept of a generalized elementary interval and Lemma 2.

Definition 4. Let n,m,α ≥ 1 be natural numbers, let 0 < β ≤ 1 be a real number,
and let 0≤ t ≤ βn be an integer. Let q ≥ 2 be an integer and P ={x0, . . . ,xqm−1}⊆
[0,1)s be a point set in the s-dimensional unit cube, s ≥ 1. We say that P is a
(t,α,β,n,m,s)-net (in base q), if for all integers 1≤ ij,νj < · · ·< ij,1, where νj ≥ 0,
with

s∑

j=1

min(νj ,α)∑

l=1

ij,l ≤ βn− t,

where for νj = 0 we set the empty sum
∑0

l=1 ij,l = 0, the generalized elementary
interval J (iν,aν) contains exactly qm−|ν|1 points of P for each aν ∈{0, . . . ,q−1}|ν|1 .

Remark 4. Note that qm−|ν|1 = qmVol(J (iν,aν)). For an interval J ⊆ [0,1)s and
a point set P ⊂ [0,1)s , let |P(J )| denote the number of points of P in J . Then
Definition 4 says that the proportion of points of P in J (iν,aν), which is given by
|P(J (iν,aν))|/|P([0,1)s)|, equals the volume of J (iν,aν).



Se
co

nd
 p

ro
of

s

314 Josef Dick and Jan Baldeaux

Fig. 1 The picture shows a (2,α,1,6,3,2)-net in base 2 for any α≥ 2 and a generalized elementary
interval J (iν ,aν), where ν1 = ν2 = 1, i1,1 = i2,1 = 2, and ai1,1 = 0 and ai2,1 = 1.

Remark 5. Note that (t,α,β,n,m,s)-nets can only exist for parameters t , α, β, n,
m, s where the definition implies that ν1+·· ·+νs ≤m.

Consider for example the choice of parameters β = 1, t = α = s = 2, m = 3
and n= 6; such a (2,2,1,6,3,2)-net can exist, since if ν1+ ν2 > 3 we have for all

choices of 1 ≤ ij,νj < · · · < ij,1 ≤ 6, for j = 1,2, that
∑s

j=1
∑min(νj ,α)

l=1 ij,l > 4 =
βn− t . (On the other hand, that does not imply that such a net really does exist, it
only allows for the possibility to exist.)

But a (0,2,1,6,3,2)-net, i.e. we set t = 0 and leave the remaining parame-
ters unchanged, cannot exist, since we could choose ν1 = ν2 = 2, i1,1 = i2,1 = 2
and i1,2 = i2,2 = 1, in which case we have i1,1 + i1,2 + i2,1 + i2,2 = 6 = βn− t ,
and thereby obtain a generalized elementary interval which has to contain exactly
qm−ν1−ν2 = q−1 points, which is of course absurd. Hence t = 0 is not possible for
this choice of parameters. (Regarding t = 1, we have explicitly constructed digital
(1,2,1,6×3,2)-nets in Example 3 and Remark 2, which by Theorem 6 below also
form a (1,2,1,6,3,2)-net.)
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Remark 6. We obtain the definition of a classical (t,m,s)-net from Definition 4 by
setting α= β = 1, n=m, and considering all ν1, . . . ,νs ≥ 0 so that

∑s
j=1 νj ≤m− t ,

where we set ij,k = νj − k+ 1 for k = 1, . . . ,νj . Hence a (t,1,1,m,m,s)-net is a
(t,m,s)-net.

We shall now discuss the additional parameters α,β, and n, which do not appear
in the definition of classical (t,m,s)-nets. The case α = 1 is strongly related to
classical (t,m,s)-nets. We can, w.l.o.g., choose νj , j = 1, . . . , s so that

∑s
j=1 νj =βn�− t and set ij,l = νj +1− l for l = 1, . . . ,νj , as in this case we obtain the most

stringent condition on the points, i.e., all other conditions are automatically included
in this choice of the ij,l . Then a (t,1,β,n,m,s)-net is a classical (t ′,m,s)-net with
t ′ =m−βn�+ t .

We have the following theorem.

Theorem 2. Assume that n,m,α ∈ N, 0 < β ≤ 1 a real number, and 0≤ t ≤ βn an
integer, such that there exists a (t,α,β,n,m,s)-net in base q. For 1 ≤ j0 ≤ s let
0≤ �j0 < j0 be given by �j0 ≡m (mod j0). Then for j0 = 1, . . . , s we have

βn− t < αm− j0
α(α−1)

2
+α, for m≥ αj0,

and
βn− t <

1

2
αj0

⌊
m

j0

⌋
+ (�j0 +1)

(⌊
m

j0

⌋
+1

)
, for m< αj0.

Proof. As elaborated in Remark 5, for every choice of 1≤ ij,νj < · · ·<ij,1, νj ≥0,

for j = 1, . . . , s, with
∑s

j=1
∑min(νj ,α)

l=1 ij,l ≤ βn− t , we must have that |ν|1 ≤m.
Let 1≤ j0 ≤ s and let

νj =
⎧
⎨

⎩

m/j0�+1 for 1≤ j ≤ �j0 +1,
m/j0� for �j0 +2≤ j ≤ j0,

0 for j0+1≤ j ≤ s.

Further set ij,l = νj + 1− l for l = 1, . . . ,νj for j = 1, . . . ,j0. Note that for this
choice of ν1, . . . ,νs we have

|ν|1 = j0

⌊
m

j0

⌋
+�j0 +1= j0

m−�j0

j0
+�j0 +1=m+1.

Consider the case where α ≤ m/j0�. Then

s∑

j=1

min(νj ,α)∑

l=1

ij,l = j0

(⌊
m

j0

⌋
+
⌊
m

j0

⌋
−1+·· ·+

⌊
m

j0

⌋
− (α−1)

)
+α(�j0 +1)

= αj0

⌊
m

j0

⌋
− j0

α(α−1)

2
+α(�j0 +1)

= αj0
m−�j0

j0
− j0

α(α−1)

2
+α�j0 +α
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= αm− j0
α(α−1)

2
+α.

Thus we get a contradiction if the last term is smaller or equal to βn− t and hence
the first result follows.

Now we consider the case where α ≥ m/j0�+1. Then

s∑

j=1

min(νj ,α)∑

l=1

ij,l = j0

(⌊
m

j0

⌋
+
⌊
m

j0

⌋
−1+·· ·+1

)
+ (�j0 +1)

(⌊
m

j0

⌋
+1

)

= j0
m/j0�(m/j0�+1)

2
+ (�j0 +1)

(⌊
m

j0

⌋
+1

)

≤ 1

2
αj0

⌊
m

j0

⌋
+ (�j0 +1)

(⌊
m

j0

⌋
+1

)
.

Again we get a contradiction if the last term is smaller or equal to βn− t and hence
also the second result follows.

�

Note, Theorem 2 implies for α = 1,2 that βn− t < αm+ 1 (choose j0 = 1)
and, based on the proof of Theorem 2, one can show that βn− t < αm for α ≥ 3
(choose j0 = 1). Thus, as βn− t < αm+ 1, we can w.l.o.g. choose β and n such
that βn < αm+1 (for βn ≥ αm+1 we must have t > 0, hence we do not exclude
any cases by choosing βn < αm+1), or if β is such that βn is an integer, we have
β ≤ αm/n.

Choosing j0 = s in Theorem 2 and estimating �j0+1≤ j0, we obtain the follow-
ing corollary.

Corollary 1. Assume that n,m,α ∈N, 0 < β ≤ 1 a real number, and 0≤ t ≤ βn an
integer, such that there exists a (t,α,β,n,m,s)-net in base q. Then we have

βn− t < αm− s
α(α−1)

2
+α, for m≥ αs,

and

βn− t <
1

2
αm+m+ s, for m< αs.

As in the classical case, we can also define sequences.

Definition 5. Let α,σ ≥ 1, t ≥ 0 be integers, and 0<β ≤ 1 be a real number. Let S=
{x0,x1, . . . } be a sequence of points in [0,1)s . Then S is a (t,α,β,σ,s)-sequence in
base q if for all k ≥ 0 and m > t/(βσ) we have that xkqm,xkqm+1, . . . ,x(k+1)qm−1
is a (t,α,β,σm,m,s)-net in base q.

Remark 7. We obtain the definition of a classical (t, s)-sequence from Definition 5
and Remark 6 by setting α = β = σ = 1. Hence a (t,1,1,1, s)-sequence is a (t, s)-
sequence.
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3.2 Some Properties of (t,α,β,n,m,s)-Nets and
(t,α,β,σ,s)-Sequences

In this subsection we establish a few propagation rules for (t,α,β,n,m,s)-nets
and (t,α,β,σ,s)-sequences in base q. Furthermore, we establish that every digital
(t,α,β,n×m,s)-net over Fq is a (t,α,β,n,m,s)-net in base q and that every digital
(t,α,β,σ,s)-sequence over Fq is also a (t,α,β,σ,s)-sequence in base q. Finally,
we produce lower and upper bounds on the quality parameter t for (t,α,β,σ,s)-
sequences.

The following theorem is in analogy to [2, Theorem 4.10].

Theorem 3. Let P be a (t,α,β,n,m,s)-net in base q and let S be a (t,α,β,σ,s)-
sequence in base q. Then we have the following:

(i) P is a (t ′,α,β ′,n,m,s)-net for all 0 < β ′ ≤ β and all t ≤ t ′ ≤ β ′n, and S is a
(t ′,α,β ′,σ,s)-sequence for all 0 < β ′ ≤ β and all t ≤ t ′.

(ii) P is a (t ′,α′,β ′,n,m,s)-net for all α′ ≥ 1 where β ′ = βmin(α,α′)/α and t ′ =
�tmin(α,α′)/α	, and S is a (t ′,α′,β ′,σ,s)-sequence for all α′ ≥ 1 where β ′ =
βmin(α,α′)/α and where t ′ = �tmin(α,α′)/α	.

(iii) Any (t,α,β,σ,s)-sequence is a (t,α,β,σ ′, s)-sequence for all 1≤ σ ′ ≤ σ .
(iv) Any (t,α,β,n,m,s)-net is a classical (m−βn/α�+ �t/α	,m,s)-net and any

(t,α,β,σ,s)-sequence with α = βσ is a classical (�t/α	, s)-sequence.

Proof. For the first part note that β ′n− t ′ ≤ βn− t and hence the condition on P in
Definition 4 is either the same or weaker. The same holds for S, hence the first part
follows.

To prove the second part we consider firstly the case α′ ≥ α. Let 1≤ ij,νj < · · ·<
ij,1, νj ≥ 0, for j = 1, . . . , s with

s∑

j=1

min(νj ,α′)∑

l=1

ij,l ≤ βn− t.

As
s∑

j=1

min(νj ,α)∑

l=1

ij,l ≤
s∑

j=1

min(νj ,α′)∑

l=1

ij,l

and P is a (t,α,β,n,m,s)-net, it follows that J (iν,aν) contains qm−|ν|1 points for
all admissible aν and hence this case follows for nets.

Let now α′ < α and assume

s∑

j=1

min(νj ,α′)∑

l=1

ij,l ≤ β ′n− t ′ = α′

α
βn−

⌈
t
α′

α

⌉
.

As
1

α

s∑

j=1

min(νj ,α)∑

l=1

ij,l ≤ 1

α′
s∑

j=1

min(νj ,α′)∑

l=1

ij,l ,
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it follows that
s∑

j=1

min(νj ,α)∑

l=1

ij,l ≤ α

α′
(β ′n− t ′)≤ βn− t.

As P is a (t,α,β,n,m,s)-net, it follows that J (iν,aν) contains exactly qm−|ν|1
points for all admissible aν , completing the proof for nets. For sequences the re-
sult follows from the result for nets and Definition 5.

For the third part we have to show that every point set xkqm, . . . ,x(k+1)qm−1
is a (t,α,β,σ ′m,m,s)-net. We know that this point set is a (t,α,β,σm,m,s)-net
from Definition 5. As σ ′m− t ≤ σm− t this follows as the condition on the points
xkqm, . . . ,x(k+1)qm−1 can only become weaker, which implies the result.

For the last part we use (ii), which shows that every (t,α,β,n,m,s)-net P is
also a (�t/α	,1,β/α,n,m,s)-net. After Remark 6, it was shown that Definition 4
implies that a (t,1,β,n,m,s)-net is a (t ′,m,s)-net, with t ′ = m−βn�+ t , hence
P is also a classical (t ′,m,s)-net, where

t ′ =m−
⌊
β

α
n

⌋
+
⌈
t

α

⌉
.

Now consider a (t,α,β,σ,s)-sequence x0,x1, . . . . For any k ≥ 0, the set of points
xkqm, . . . ,x(k+1)qm−1 forms a (t,α,β,σm,m,s)-net. Hence the above result implies
that this is a classical (t ′,m,s)-net where

t ′ =m−
⌊
β

α
σm

⌋
+
⌈
t

α

⌉
=
⌈
t

α

⌉
.

As xkqm, . . . ,x(k+1)qm−1 is a classical (t ′,m,s)-net for all k ≥ 0, the result follows.

�

Remark 8. By Theorem 3, a (2,α,1,6,3,2)-net, α ≥ 2, is a classical (4− 6
α
�,3,2)-

net. By the forthcoming Theorem 6, the digital (2,α,1,6× 3,2)-net from Remark
3 is a (2,α,1,6,3,2)-net, hence we have an example of a (2,α,1,6,3,2)-net which
is a strict (1,3,2)-net. See also Figure 1 for an example of a (2,α,1,6,3,2)-net,
which is a (0,3,2)-net.

In part (iv) of the above theorem we had the restriction that α = βσ . If S is a
(t,α,β,σ,s)-sequence with α > βσ , then we cannot use (iv) of the above theorem
to imply that S is a classical (t ′, s)-sequence, as then we would obtain a t ′-value of
the subnets xkqm, . . . ,x(k+1)qm−1 which grows with m. Hence we do not obtain a
classical sequence this way. On the other hand, we always have α ≥ βσ , as we show
in the following theorem.

Theorem 4. Assume that t,α,σ,s ∈ N, and β ∈ R, 0 < β ≤ 1 are such that there
exists a (t,α,β,σ,s)-sequence. Then βσ ≤ α.

Proof. Let x0,x1, . . . be a (t,α,β,σ,s)-sequence. Then the set of points x0, . . . ,

xqm−1 forms a (t,α,β,σm,m,s)-net for all m> t/(βσ).
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Assume to the contrary that α < βσ . As βσm− t < αm+ 1, which was shown
after the proof of Theorem 2, we can choose an m large enough to obtain a contra-
diction. Hence βσ ≤ α.

�

Digital sequences for which α = βσ are of interest, as in this case we get the
optimal rate of convergence of the integration error for functions with square inte-
grable partial mixed derivatives of order α in each variable, whereas for α > βσ we
do not get the optimal rate, see [2]. But for the case α = βσ we get the following
bound on the value of t from Theorem 2.

Theorem 5. Assume that t,α,σ,s ∈N, and β ∈R, 0 < β ≤ 1, are such that α = βσ

and such that there exists a (t,α,β,σ,s)-sequence. Then for all α ≥ 2 we have

t > s
α(α−1)

2
−α.

Proof. Let m0 = αs. Then the first qm0 points of a (t,α,β,σ,s)-sequence form a
(t,α,β,σm0,m0, s)-net. By Corollary 1 we obtain that

βσm0− t < αm0− s
α(α−1)

2
+α.

By substituting α for βσ in the last equation we obtain the result.

�

The next theorem establishes that a digital (t,α,β,n×m,s)-net over Fq is a
(t,α,β,n,m,s)-net in base q and analogously for sequences. This also yields ex-
plicit constructions of (t,α,β,n,m,s)-nets and (t,α,β,σ,s)-sequences as digital
constructions are known from [2].

Theorem 6. Every digital (t,α,β,n×m,s)-net over Fq is a (t,α,β,n,m,s)-net in
base q and every digital (t,α,β,σ,s)-sequence over Fq is a (t,α,β,σ,s)-sequence
in base q.

Proof. Assume we are given an arbitrary generalized elementary interval

J (iν,aν)

=
s∏

j=1

q−1⋃

aj,l=0

l∈{1,...,n}\
{
ij,1,...,ij,νj

}

[
aj,1

q
+·· ·+ aj,n

qn
,
aj,1

q
+·· ·+ aj,n

qn
+ 1

qn

)
,

for some given values of ν, iν , and aν such that 1 ≤ ij,νj < · · · < ij,1, j = 1, . . . , s,
νj ≥ 0, and

s∑

j=1

min(νj ,α)∑

l=1

ij,l ≤ βn− t. (2)
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We have to show that J (iν,aν) contains exactly qm−|ν|1 points of the digital
(t,α,β,n×m,s)-net, which we denote by x0, . . . ,xqm−1. Let xh = (xh,1, . . . ,xh,s)

and xh,j = xh,j,1q
−1+xh,j,2q

−2+ . . . be the q-adic representation of xh,j .
Then for each 0 ≤ h < qm it follows that xh ∈ J (iν,aν) if and only if xh,j,k =

aj,k for all k ∈ {ij,1, . . . , ij,νj
}

and all j = 1, . . . , s. The value of xh,j,k is obtained
from the digital construction scheme in the following way: Let C1, . . . ,Cs denote
the generator matrices of the digital (t,α,β,n×m,s)-net over Fq . Then xh,j,k =
ϕ−1(cj,kh), where cj,k denotes the kth row of Cj . Thus cj,kh= ϕ(xh,j,k).

Let C = (c�1,i1,1 , . . . ,c
�
1,i1,ν1

, . . . ,c�s,is,1, . . . ,c
�
s,is,νs

)� and further we define the

vector b = (ϕ(a1,i1,1), . . . ,ϕ(a1,i1,ν1
), . . . ,ϕ(as,is,1), . . . ,ϕ(as,is,νs ))

�. Then, by the
above, it follows that xh ∈ J (iν,aν) if and only if Ch= b.

We now investigate how many solutions h the system of equations Ch = b has.
As (2) is satisfied, Definition 2 implies that the rows of the matrix C are linearly
independent. As C has |ν|1 (|ν|1 ≤ m) rows, there are exactly qm−|ν|1 solutions to
this system, and hence qm−|ν|1 of the x0, . . . ,xqm−1 fall into J (iν,aν), which shows
that every digital (t,α,β,n×m,s)-net is also a (t,α,β,n,m,s)-net.

Now we turn to sequences. Let x0,x1, . . . be a digital (t,α,β,σ,s)-sequence over
the finite field Fq . Let k≥ 0 andm> t/(βσ). Then the point set x�qm, . . . ,x(�+1)qm−1
can be obtained from the digital construction scheme with an added digital shift, i.e.,
there are matrices C1, . . . ,Cs ∈ F

n×m
q and vectors dj,� = (dj,1,�, . . . ,dj,n,�)

� ∈ F
n
q ,

1 ≤ j ≤ s, which depend on �, such that xh,j,k = ϕ−1(cj,kh+ dj,k,�). Thus we
have cj,kh = ϕ(xh,j,k)− dj,k,� ∈ Fq . For some given generalized elementary in-
terval J (iν,aν) we have xh ∈ J (iν,aν) if and only if cj,kh= ϕ(aj,k)−dj,k,� for all
k ∈ {i1,1, . . . , i1,ν1 , . . . , is,1, . . . , is,νs } and j = 1, . . . , s. Thus the same argument as
for nets applies and the result follows.

�

Definition 6. Let q be a prime power. Then let dq(α,s) denote the smallest value of
t such that there exists a digital (t,α,β,σ,s)-sequence over the finite field Fq with
α = βσ .

The analogy of Definition 6 for classical digital sequences, i.e. the case α = 1,
has already appeared in [13], see also [14, Definition 8]. For α = β = σ = 1, i.e.
digital (t, s)-sequences, it is true that

s

q−1
−O(logs) < dq(1, s)≤ c

logq
s+1,

for all s ≥ 1, where c > 0 is an absolute constant. The lower bound was shown in
[17] and also holds for (t, s)-sequences, whereas the upper bound can be found in
[13, Theorem 4] and [14, Corollary 1]. Improved results for several special values
of q can also be found in [15].

The following theorem now considers the case α ≥ 2.

Theorem 7. Let q be a prime power. Then for all s ≥ 1 and α ≥ 2 we have
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s
α(α−1)

2
−α < dq(α,s) ≤ sα2 c

logq
+α+α

⌊
s(α−1)

2

⌋
,

where c > 0 is an absolute constant.

Proof. The lower bound is taken from Theorem 5. To prove the upper bound we use
Theorem 1 with d = α to obtain a digital (t,α,1,α,s)-sequence over Fq with

t = αt ′ +α

⌊
s(α−1)

2

⌋
,

where t ′ is the quality parameter of the classical digital (t ′, sα)-sequence upon
which the construction is based. From [13, Theorem 4], [14, Corollary 1] we know
that there exist digital (t ′, s)-sequences for which t ′ ≤ c

logq s+ 1. Upon combining
the last two formulae, where we replace s with αs in the last formula as we consider
(t ′, sα)-sequences, the result follows.

�

Note that the bounds in Theorem 7 also apply to (non-digital) (t,α,β,σ,s)-
sequences with α = βσ and t value as small as possible.
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6. H. Faure, Discrépance de suites associées à un système de numération (en dimension s). Acta
Arith., 41, 337–351, 1982.

7. H. Niederreiter, Constructions of (t,m,s)-nets and (t, s)-sequences. Finite Fields Appl., 11,
578–600, 2005.

8. H. Niederreiter, Nets, (t, s)-sequences and codes. In: A. Keller, S. Heinrich, and H. Niederre-
iter (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 83–100, Springer, Berlin,
2008.



Se
co

nd
 p

ro
of

s

322 Josef Dick and Jan Baldeaux

9. H. Niederreiter, Point sets and sequences with small discrepancy. Monatsh. Math., 104, 273–
337, 1987.

10. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF
Regional Conference Series in Applied Mathematics, Vol. 63, Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA, 1992.

11. H. Niederreiter and G. Pirsic, Duality for digital nets and its applications. Acta Arith., 97,
173–182, 2001.

12. H. Niederreiter and C.P. Xing, Global function fields with many rational places and their
applications. In: G.L. Mullen and P.J.-S. Shiue (eds.), Finite fields: theory, applications, and
algorithms (Waterloo, ON, 1997), Contemp. Math., Vol. 225, pp. 87–111, Amer. Math. Soc.,
Providence, RI, 1999.

13. H. Niederreiter and C. Xing, Low-discrepancy sequences and Global Function Fields with
Many Rational Places. Finite Fields Appl., 2, 241–273, 1996.

14. H. Niederreiter and C.P. Xing, Quasirandom points and global function fields. In: Finite Fields
and Applications, S. Cohen and H. Niederreiter, volume 233 of London Math. Soc. Lecture
Note Ser., pages 269–296. Cambridge University Press, Cambridge, 1996.

15. H. Niederreiter and C.P. Xing, Rational points on curves over finite fields: theory and appli-
cations, London Mathematical Society Lecture Note Series, Vol. 285, Cambridge University
Press, Cambridge, 2001.

16. G. Pirsic, A software implementation of Niederreiter-Xing sequences. In: K.T. Fang, F.J. Hick-
ernell, and H. Niederreiter (eds.), Monte Carlo and quasi-Monte Carlo methods 2000, pp.
434–445, Springer Verlag, Berlin, 2002.
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Implementation of a Component-By-Component
Algorithm to Generate Small Low-Discrepancy
Samples

Benjamin Doerr, Michael Gnewuch, and Magnus Wahlström

Abstract In [B. Doerr, M. Gnewuch, P. Kritzer, F. Pillichshammer. Monte Carlo
Methods Appl., 14:129–149, 2008], a component-by-component (CBC) approach
to generate small low-discrepancy samples was proposed and analyzed. The method
is based on randomized rounding satisfying hard constraints and its derandomiza-
tion. In this paper we discuss how to implement the algorithm and present first
numerical experiments. We observe that the generated points in many cases have a
significantly better star discrepancy than what is guaranteed by the theoretical upper
bound. Moreover, we exhibit that the actual discrepancy is mainly caused by the un-
derlying grid structure, whereas the rounding errors have a negligible contribution.
Hence to improve the algorithm, we propose and analyze a randomized point place-
ment. We also study a hybrid approach which combines classical low-discrepancy
sequences and the CBC algorithm.

1 Introduction

The star discrepancy of an N -point set Ps = {p0, . . . ,pN−1} in the s-dimensional
unit cube [0,1]s is defined by

D∗N(Ps) := sup
x∈[0,1]s

|Δs(x,Ps)| .

Here the discrepancy function Δs of the set Ps is given, for x = (x1, . . . ,xs), by
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Δs(x,Ps)= λs([0,x))− 1

N

N−1∑

j=0

1[0,x)(pj ),

where λs is the s-dimensional Lebesgue measure and 1[0,x) is the characteristic
function of the s-dimensional half-open box [0,x)= [0,x1)×·· ·× [0,xs).

It is well known that the star discrepancy is intimately related to multivari-
ate integration. If we have a function f defined on [0,1]s and a point set Ps =
{p0, . . . ,pN−1}, then the Koksma-Hlawka inequality states

∣
∣
∣
∣
∣

∫

[0,1]s
f (x)dx− 1

N

N−1∑

k=0

f (pk)

∣
∣
∣
∣
∣
≤D∗N(Ps)V (f ),

where V (f ) denotes the variation of f in the sense of Hardy and Krause, see, e.g.,
[11, 12]. Thus for multivariate integration it is important to find small point sets with
low discrepancy.

For fixed dimension s various N -point sets Ps have been constructed satisfying

D∗N(Ps)≤ CPs
log(N)s−1N−1 , N ≥ 2 , (1)

with CPs
a suitable constant depending on Ps , see, e.g., [12]. These constructions

typically suffer from two difficulties. One is that often the constantCPs
is not known

sufficiently well or depends unfavorably on the dimension s. The other is that these
bounds for large s and moderate N unfortunately give no useful information, since
log(N)s−1N−1 is an increasing function in N for N ≤ es−1.

A bound more helpful for high-dimensional integration was established by Hein-
rich et al. [10]. They proved in a non-constructive way that there is a constant c > 0
such that for all s,N ∈ N an N -point set Ps ⊆ [0,1)s exists satisfying

D∗N(Ps)≤ cs1/2N−1/2. (2)

Which point sets do satisfy bounds like (2)? Discrepancy calculations performed by
Thiémard [17, 18] indicate that known constructions which exhibit the asymptotic
behavior (1) may not satisfy (2). As pointed out in [9], actually the seemingly easier
question if any of the known constructions of low-discrepancy point sets PN,s sat-
isfies estimates of the form D∗N(PN,s)≤ csκN−α for all s,N ∈ N, where c,κ,α are
positive constants not depending on N and s, still remains open.

In [1, 3] the first non-trivial deterministic algorithmic point constructions were
proposed whose star discrepancy grows for a fixed number of points with respect to
the dimension s at most like

√
s. A drawback of these algorithms is their large run-

time. A considerable speed-up was achieved by Kritzer, Pillichshammer and the first
two authors [2]. They perform the derandomization in a component-by-component
(CBC) fashion. An additional advantage of this new algorithm is that it allows a
simple exact computation of the star discrepancy of the output point set.

The disadvantage is that the theoretical upper bound on the star discrepancy of
the generated points grows like s3/2 (if one generates the set component by com-
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ponent starting in dimension 1) instead of like
√
s. The paper gives no indication

of whether this is likely to happen in practice or not. A second question left open
in [2] is how useful it is in practice to extend given low-discrepancy point sets in the
dimension via the CBC algorithm. This approach is related to padding quasi-Monte
Carlo (QMC) by Monte Carlo (MC), see also Sect. 3.5.

For these reasons, we implemented the CBC algorithm in the programming lan-
guage C99. In this paper, we describe some details of the implementation and report
the results of several numerical experiments. Among other outcomes, they show that
the discrepancy of the point sets constructed by our algorithm for reasonable settings
grows only linearly in the dimension s. Also, we do observe a significant advantage
of extending existing good point sets in small dimensions via our approach to higher
dimensions.

Another motivation for this paper from a different subarea of discrepancy theory
is the following. There is a vast literature on the theory of randomized rounding
and its derandomization, starting with the monograph of Spencer [16] and the cel-
ebrated paper of Raghavan [14]. But although derandomization is an algorithmic
tool, seemingly none of these publications cares about practical aspects as, e.g., ex-
plicit descriptions of the resulting algorithms, the run-times of algorithms, or the
rounding errors observed in practice. It seems that this work, together with [4] are
the first to fight this short-coming.

2 Description of the Algorithm

2.1 General Method

The CBC approach presented in [2] aims at using an existing (s− 1)-dimensional
low-discrepancy point set to construct an s-dimensional one. Let a point set Ps−1 =
{y0, . . . ,yN−1} ⊂ [0,1)s−1 be given. For an integer ms ≥ 2 the algorithm determines
numbers X0, . . . ,XN−1, each chosen from the set

Gs =
{

1

2ms

,
3

2ms

, . . . ,
2ms−1

2ms

}
(3)

and returns a point set Ps = Ps(X0, . . . ,XN−1) := {(y0,X0), . . . , (yN−1,XN−1)} ⊂
[0,1)s . If we choose

ms =ms(N) :=
⌈√

N√
2

(
s log

(
ρ′(N,s)

)+ log(4)
)−1/2

⌉

, (4)

where
ρ′(N,s)= 2

√
e(max{1,N/((1+2log(2))s)})1/2,

then the output set Ps satisfies the discrepancy bound
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D∗N(Ps)≤
(√

3+ 1√
2

) √
s√
N

(
log

(
ρ′(N,s)

)+ 1

s
log(4)

)1/2

+D∗N(Ps−1). (5)

Here we confine ourselves to sets Ps that are subsets of the anisotropic grid

Gs :=G1×·· ·×Gs,

where Gd is defined as in (3) and (4), but with s replaced by d for d = 1, . . . , s. Let

G∗d :=
{

1

md

,
2

md

, . . . ,
md −1

md

,1

}

for d = 1, . . . , s, and let
G∗s :=G∗1×·· ·×G∗s .

Let t1, . . . , tn, n :=Πs
d=1md , be an enumeration of G∗s and

T ∗s := {[0, ti ) | i = 1, . . . ,n}.
When deciding the values for X0, . . . ,XN−1 ∈ Gs , our algorithm tries to obtain a
low discrepancy in all boxes of T ∗s . As described in [2], this together with the fact
that Ps ⊂ Gs allows to calculate the exact star discrepancy of the output set within
the course of the algorithm without essentially increasing the effort.

Formulation as Rounding Problem

The CBC algorithm derandomizes randomized rounding satisfying hard constraints.
To describe it more precisely, let us formulate our problem as a rounding problem.

As discussed before, if Ps−1 = {y0, . . . ,yN−1} ⊂ Gs−1 is given, we aim at finding
X0, . . . ,XN−1 ∈ Gs such that Ps = {(yj ,Xj ) : 0 ≤ j < N} has small discrepancy
in the sense of (5).

Let X be the set of all x ∈ [0,1]{0,...,N−1}×{1,...ms } such that x1ms = 1N . Let
x ∈ X be defined by xjk = 1

ms
for all j,k. A rounding of x is an x ∈ X ∩

{0,1}{0,...,N−1}×{1,...ms }. That is, each xjk is a rounding of xjk and the hard con-
straints

∑ms

k=1 xjk = 1 for all j are satisfied.
Let us define the linear function A : R{0,...,N−1}×{1,...ms } → R

n by

A(x)i =
N−1∑

j=0

ms∑

k=1

xjk1[0,ti )(yj , k̂) for i = 1, . . . ,n;

here we used the shorthand k̂ = 2k−1
2ms

for the kth point of Gs . If x ∈ X is binary, put

Xj = k̂j for j = 0,1, . . . ,N −1, where kj is the index for which xjkj = 1. Then

P(x) := P(X0, . . . ,XN−1)= {(yj ,Xj ) : 0≤ j < N}
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is an N–point set in Gs ⊂ [0,1]s and A(x)i equals |P(x)∩[0, ti )|. In [2, Sect. 4] an
elementary calculation showed that

D∗N(P(x))≤ 1
N
‖A(x)−A(x)‖∞+D∗N(Ps−1)+ 1

2ms
. (6)

This implies that point sets P(x) with small discrepancy correspond to roundings
x ∈ X of x with small rounding error ‖A(x)−A(x)‖∞.

Solving the Rounding Problem

How does our algorithm generate roundings x that satisfy the hard constraints∑ms

k=1 xjk = 1 for all j and exhibit a small rounding error? The randomized con-
struction is to choose for each j independently a kj ∈ {1, . . . ,ms} at random such
that P[kj = k] = xjk for all j,k. Then for all j we define binary random variables
Xjk by Xjk = 1 if and only if k= kj , and Xjk = 0 otherwise. Note that any outcome
of X lies in X . Put

σ :=
√
N√
2

(
s log(ρ′(N,s))+ log (4)

)1/2
. (7)

As shown in [2], we get P :=∑
i P[|(A(X−x))i | ≥ σ ] ≤ 1/2 (“small initial failure

probability”). In particular, there is an x ∈ X such that |(A(x−x))i | ≤ σ for all i.
We can compute such roundings x by derandomizing the probabilistic construc-

tion above. For k = 1, . . . ,ms , let us consider the conditional probability

Pk :=
∑

i

P
[|(A(X−x))i | ≥ σ

∣∣k0 = k
]
.

Since P =∑ms

k=1
1
ms
Pk , there is a 1≤ k∗0 ≤ms such that Pk∗0 ≤P ≤ 1/2 (“decreasing

failure probability”). Next, let

Pk∗0k :=
∑

i

P
[|(A(X−x)i | ≥ σ

∣∣k0 = k∗0 ,k1 = k
]
.

Again, Pk∗0 =
∑ms

k=1
1
ms
Pk∗0k , and there is a 1≤ k∗1 ≤ms such that Pk∗0k∗1 ≤Pk∗0 ≤ 1/2.

Proceeding like this we end up with k∗0 , . . . ,k∗N−1 such that

Pk∗0 ...k∗N−1
:= P

[|(A(X−x))i | ≥ σ
∣∣∀0≤ j < N : kj = k∗j

]≤ 1/2.

Since Pk∗0 ...k∗N−1
involves no randomness, we actually have Pk∗0 ...k∗N−1

= 0. Then we
define x as follows: For each 0≤ j < N , we set xjk∗j := 1 and xjk := 0 for all other
k. This yields a binary x ∈ X such that |(A(x−x))i | ≤ σ for all i.

In practice we usually cannot compute the conditional probabilities Pk∗0k∗1 ... in
time polynomially bounded in N , ms and n. However, we can compute (in polyno-
mial time) upper bounds Uk∗0k∗1 ... for the exact conditional probabilities Pk∗0k∗1 ... such
that the following key properties are maintained:

• Small initial (estimated) failure probability: U < 1.
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• Decreasing (estimated) failure probability: For all 0≤ � < N and k∗0 , . . . ,k∗�−1 ∈{1, . . . ,ms} there is a 1≤ k ≤ms such that Uk∗0k∗1 ...k∗�−1k
≤ Uk∗0k∗1 ...k∗�−1

.

The quantities Uk∗0k∗1 ... are called pessimistic estimators for the conditional prob-
abilities Pk∗0k∗1 .... This notion was introduced by Raghavan [14], who also showed
that such pessimistic estimators exist for the conditional probabilities that occur in
our derandomization.

To achieve that the initial estimated failure probabilityU is less than one, we have
to choose σ in equation (7) to be

√
6 times larger than there. This choice implies

that the output set Ps of the CBC algorithm satisfies the discrepancy bound (5).
With suitable implementation, the run-time of the derandomized algorithm is

O(nNms). Under the assumption s ≤N/3, this is

O(nNms)=O

⎛

⎝ csN
s+3

2

s
s
2+ 3

4 log
(
N
s

) s+1
2

⎞

⎠ ,

where c is some constant independent of N and s.
We can use the derandomized algorithm iteratively. That is, we first use it to

generate a point set P1 ⊂ [0,1) and then to repeatedly add dimensions until we
obtain the desired point set Ps . When doing so, the final point set Ps satisfies the
discrepancy estimate

D∗N(Ps)≤
(√

3+ 1√
2

)
s3/2

√
N

(
log

(
ρ′(N,s)

)+ 1

s
log(4)

)1/2

.

2.2 Implementation Details

As seen in the previous subsection, we estimate the probability that some box [0, ti )
receives too few or too many points by the sum (taken over the boxes) of the proba-
bilities that the box has too few or too many points. We shall estimate such a failure
probability by the sum of the two probabilities that (i) the box receives too few and
(ii) too many points. For the case that the box receives too many points, [14, Sect. 3]
gives an upper bound on the failure probability of

exp(−c+i W+
i )

N−1∏

j=0

( m∑

k=1

x̃jk exp(1[0,ti )(yj , k̂)c
+
i )

)
, (8)

where c+i , W+
i and x̃jk are as follows.

By x̃jk we denote the expected value of the random variable Xjk if it has not
been rounded, or the outcome of the rounding thereafter. Here and in the following,
probabilities, expectations etc. refer to the randomized construction which we aim
to derandomize. At no occasion, our algorithm will use randomness itself. Let Wi

denote the expected number of points to lie in the box [0, ti ). By construction, it
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is equal to number of points Nλs([0, ti )) we aim at having in the box [0, ti ). Let
W+

i ≥Wi be the maximum number of points we want to tolerate in this box. Define
δ+i via (1+ δ+i )Wi =W+

i and c+i := log(1+ δ+i ).
With these constants, the sum in equation (8) simplifies as follows. Let yj ∈

Ps−1 be such that yj lies in the projection of [0, ti ) to the first s− 1 coordinates.
If (Xjk)

m
k=1 is unrounded, then

∑m
k=1 x̃jk exp(1[0,ti )(yj , k̂)c

+
i )= 1+ δ+i ti (s), where

ti (s) is the last coordinate of ti . If (Xjk)
m
k=1 is rounded, this sum evaluates to either

1+ δ+i or 1, depending on whether the j th point of Ps was placed inside box [0, ti )
or not.

The case that the box receives too few points is not covered by Raghavan, but
can be treated similarly by regarding the probability that the complement of the box
receives too many points. Ignoring points that already miss box [0, ti ) due to an
earlier coordinate, the formulas work out the same, with ti (s) replaced by 1− ti (s),
and with a different error tolerance δ−i .

Thus we can compute the pessimistic estimator efficiently: when determining the
rounded value for (̃xjk)mk=1 for some j , we only need to replace the terms involving
these variables with the ms possible choices for (̃xjk)mk=1. This can be done quite
efficiently in time O(nms), and both computing the initial value of the estimator
and computing all subsequent values takes time O(nNms).

The discussion so far works for all values of δ+i and δ−i , provided the initial
estimator evaluates to less than one. Potentially, since these represent guarantees on
the star discrepancy of Ps , they seem to provide many opportunities for minimizing
the resulting discrepancy by setting them according to a desired total discrepancy
bound. In practice, however, we observed best results by choosing each δ+i and δ−i
in such a way that the corresponding failure probability was just less than 1/(2n).
The values for δ+i and δ−i leading to these failure probabilities can be approximated
conveniently via binary search.

To compute the discrepancy of the resulting point set, we could track the updates
of the pessimistic estimators (since, as noted above, they contain a factor 1+ δ+i
for each point placed inside the corresponding box). However, since the points are
placed along a grid of reasonable size, it is just as practical to calculate the discrep-
ancy explicitly in a naive way, that is, looking at all boxes constructible from the
coordinates used by the point set, as described in [2, equation (4.1)] or [7, equa-
tion (1)].

3 Numerical Experiments

In our numerical experiments we use the star discrepancy of an output set as mea-
sure of quality. Calculating the actual star discrepancy of an arbitrary given set is
a difficult problem, which was proved to be NP -hard in [7]. Also all known algo-
rithms that approximate the star discrepancy up to some user-specified error have a
run-time exponential in s and only a very limited range of application, see [17, 18, 6]
and the references therein. If we construct an s-dimensional point set component by
component via the CBC algorithm starting in dimension 1, then the output set is
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a subset of the relatively small grid Gs and its exact discrepancy can be calculated
without essentially increasing the effort. But if we start in some dimension 1≤ s′<s

with a given point set and extend it via the CBC algorithm to an s-dimensional point
set (cf. Sect. 3.5) or if we randomize the output set (cf. Sect. 3.4), then the exact cal-
culation of the star discrepancies will in general be infeasible. That is why we have
to use in such cases different estimators of quality.

As for the memory and time requirements of the algorithm, and more gener-
ally the instance sizes for which our algorithm is feasible, the answer depends on
whether memory or time is the critical issue. Since the algorithm very frequently
needs to ask the question “does point number i lie inside box number j?”, it speeds
up the execution time significantly to store the answers to these questions in a data
structure. If this is done, then the key issue becomes one of memory usage—at
s = 10 and 500 points, the execution time on our computation server is roughly
twenty minutes, but the memory requirements exceed 2 GB. On the other hand,
without such caching, the running time for the same instance setting rises to need
several hours. Going up from 500 to 1000 points at s = 10 scales the number of
grid boxes by a factor of fifteen, and so would be infeasible with both our variants.
In the rest of this section, when we talk about infeasible instances, we mean that
the memory requirements for the caching method significantly exceed 2 GB. Our
computation server is equipped with AMD Opteron 2220 SE 2.8 GHz processors
and 16 GB of memory.

3.1 Dependence on the Dimension

An obvious disadvantage of the CBC approach of [2] compared to the multi-
dimensional approach of [1] is how the discrepancy guarantee depends on the di-
mension s. While the latter has a discrepancy guarantee roughly proportional to s1/2,
the discrepancy guarantee of the CBC approach contains a factor of s3/2.

To see to which extent the point sets actually display this disadvantage, we com-
puted point sets of 1000 points each in dimension s = 2, . . . ,8 via the CBC algo-
rithm. Their discrepancies together with the theoretical guarantees proven in [2] are
depicted in Figure 1. We should be cautious here, since we do not know how the
discrepancies behave in higher dimensions. However, our data gives the impression
that the actual discrepancies are not of order s3/2, but rather depend linearly on the
dimension.

3.2 Analysing the Discrepancy: Rounding Error vs. Placement
Error

The description of the CBC approach in the previous section reveals that the increase
of the discrepancy in a single iteration stems from two causes. One is the rounding
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Fig. 1 Predicted and actual discrepancies of 1000 points constructed via the CBC approach.

error inflicted by the derandomized rounding procedure. This is the term 1
N
||A(x)−

A(x)||∞ in (6), which is of order O(
√

log(|G∗s |)/N), where we recall that |G∗s | =∏s
d=1md . The other is the additional error stemming from placing the points on

the grid Gs in the sth coordinate, that is, by putting each point in the middle of an
interval defined by Gs . This error was bounded by 1/(2ms) in (6).

If we regard the outcome of all iterations, then the notion of rounding error nat-
urally becomes the maximum discrepancy in a box aligned with the grid G∗s . We
define

R(Ps) := max
x∈G∗s

|Δs(x,Ps)| . (9)

The additional error stemming from placing the points in the center of the grid cells
of G∗s (placement error) can be bounded by what we shall call the grid gap

Δ(m1, . . . ,ms) := 1−
s∏

d=1

(1−1/(2md)).

Indeed, if P∗s is an arbitrary N -point set in [0,1)s , and if Ps is the set we get after
translating each point of P∗s into the center of the grid cell of G∗s it is contained in,
then we get

D∗N(Ps)−Δ(m1, . . . ,ms)≤D∗N(P∗s )≤D∗N(Ps)+Δ(m1, . . . ,ms).
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In [2], the grid widths md were chosen in a way that the estimates for the round-
ing error and the placement error in a single iteration were roughly equal, and hence
their sum was nearly minimized. Note that a finer grid naturally reduces the place-
ment error, but at the same time increases the rounding error due to the

√
log |G∗s |

term in the error bound (which is known to actually occur in many rounding prob-
lems). Since the actual discrepancies are much smaller than the predicted ones, it
makes sense to analyze the contributions that each cause makes, and possibly adjust
the trade-off between rounding error and placement error.

To this purpose, let us first note that the estimate for the placement error can-
not be improved, and in consequence, that it always is a lower bound for the re-
sulting discrepancy. Indeed, let P be any subset of the grid Gs (as, e.g., an output
set of the CBC algorithm). Let zε := (1− 1/(2m1)+ ε, . . . ,1− 1/(2ms)+ ε) for
a small ε > 0. Then |Δs(zε,P)| = 1− λs([0,zε)) = 1−∏s

d=1(1− 1/(2md)+ ε).
Hence limε→0 |Δs(zε,P)| =Δ(m1, . . . ,ms). Thus Δ(m1, . . . ,ms) is a lower bound
of D∗N(P).

A comparison of the actual discrepancy of point sets Ps in different dimensions
s with the corresponding grid gap Δ(m1, . . . ,ms) and the occurring rounding error
can be found in Figure 2; the data points relevant to this discussion are those labeled
“standard grid”.

The surprising results visible in the figure is that for these data points, the discrep-
ancyD∗N(Ps) is in every case very close to the trivial lower bound ofΔ(m1, . . . ,ms).
This is good news in the sense that the rounding procedure contributes almost noth-
ing to the discrepancy. Furthermore, it means that an output set Ps of the CBC
algorithm of size N has more or less the same discrepancy as the full grid Gs , whose
cardinality is roughly of order O(Ns/2/

√
s!) – note that for the interesting case of s

not too small and s�N the output set Ps is a sparse subset of the grid Gs .

3.3 Finetuning the Algorithm

In the light of the previous insight, it makes sense to run the algorithm with finer
grids than what was proposed in [2]. This would increase the currently almost non-
existing rounding error and reduce the currently dominant grid gap. Unfortunately,
since the run-time of our algorithm is linear in the grid size, it also increases the
run-time.

Figure 2 presents some data of this type. Besides showing what constructions
are possible in reasonable time, we see the following. Clearly, making the grid finer
does reduce the grid gap significantly. When taking twice as many grid subdivisions
in each dimension, however, the rounding error remains insignificant compared to
the grid gap. (We may appreciate this from the practical point of view, since it seems
that we take full advantage of the finer grid.)

For the grid with four times the number of subdivisions, we do observe a visible
rounding error, even if it is still small compared to the grid gap. This means that
here we are getting closer to the optimal balance of rounding and placement error.
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Fig. 2 Discrepancies, grid gaps and rounding errors observed for N = 1000 when using the grid
proposed in [2] (“standard grid”, ms grid lines in dimension s), and grids with two (“2–grid”) and
four (“4–grid”) times the number of grid subdivisions in each dimension.

Unfortunately, taking an even finer grid was not feasable. Already conducting the
s = 5 experiment in the last grid took 4.5 hours of computation time (using the
caching method, requiring 3 GB of memory; see beginning of Section 3).

3.4 Randomization of the Output Set

In the previous subsection, we saw that taking a finer grid does reduce the grid gap,
but at the cost of computation times that quickly make this approach infeasible.
Hence taking finer grids generally did not suffice to reduce the grid gap to an extent
that the discrepancy guarantee was not dominated by the grid gap.

To overcome this issue, we now propose an additional idea to reduce the place-
ment error and prove superior bounds on it. The idea is simple: Instead of placing
the points on the centers of the grid cells, we place them on randomly chosen loca-
tions in the grid cell they belong to. Let us make this more precise: We consider the
partition B∗ of [0,1)s into n axis-parallel half-open boxes of equal size with centers
in Gs and right upper corners in G∗s . We transform the output set Ps of the CBC
algorithm into a set P∗s by substituting in each box B ∈ B∗ the points p ∈Ps ∩B by
random points p∗ that are independently and uniformly distributed within B. This
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randomization may enhance the quality of the output set and has the advantage that
Δ(m1, . . . ,ms) is not necessarily any longer a lower bound for D∗N(P∗s ).

The practical problem that occurs now is that the actual star discrepancy of P∗s
would be much harder to calculate than the one of the subset Ps of Gs . Therefore
we use an estimator for the discrepancy of P∗s , which we describe here shortly. To
this purpose let us restate a definition and a lemma from [3].

Definition 1. A finite set Γ ⊂ [0,1]s is called a δ-cover of [0,1]s if for every
y = (y1, . . . ,ys) ∈ [0,1]s there are x = (x1, . . . ,xs),z = (z1, . . . ,zs) ∈ Γ ∪{0} with
λs([0,z))−λs([0,x))≤ δ and xi ≤ yi ≤ zi for all 1≤ i ≤ s.

Lemma 1. Let Γ be a δ-cover of [0,1]s . Then for any N -point set Ps ⊂ [0,1)s we
have D∗N(Ps)≤DΓ

N(Ps)+ δ, where DΓ
N(Ps)=maxx∈Γ |Δs(x,Ps)|.

Let R(Ps) be the rounding error defined in (9). It is not hard to see that G∗s is a
δ-cover for

δ = 1−
s∏

d=1

(
1− 1

md

)
.

Due to Lemma 1 we get thus D∗N(P∗s ) ≤ R(P∗s )+ δ = R(Ps)+ δ. But we can give
a much better estimate: For 0 < δ′ ≤ δ and p ∈ (0,1) define now

θ = θ(p,δ,δ′)=
(
δ+2R(Ps)

2N

)1/2(
log

(
2

p

)
+Q(δ′)

)1/2

,

where

Q(δ′)=min

{
s log(k), log

(
2sss

s!
)
+ s log((δ′)−1+1)

}

and

k = k(δ′, s)=
⌈

s

s−1

log(1− (1− δ′)1/s)− log(δ′)
log(1− δ′)

⌉

+1.

Theorem 1. D∗N(P∗s )≤ R(Ps)+ θ(p,δ,δ′)+ δ′ with probability at least 1−p.

The proof employs Hoeffding’s large deviation bound for all test boxes [0,x),
with x from a minimal δ′-cover G′. To perform a union bound, the results [3,
Thm.2.3] and [6, Thm.1.15] are used to upper-bound the cardinality of G′.

In our tests we chose p = 0.05 and used the estimator

R(Ps)+ min
0<δ′≤δ

(
θ(0.05,δ,δ′)+ δ′

)
,

which is an upper bound for D∗N(P∗s ) with probability at least 95%.
Figure 3 shows the resulting estimates for the discrepancies of randomized output

sets P∗s in dimension s = 10 for values of N between 50 and 500, together with the
corresponding rounding and placement errors of the related (deterministic) output
sets Ps . These experiments strongly indicate that the final (local) randomization
procedure enhances the quality of the output sets significantly, since the estimated
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discrepancies are all clearly smaller than the corresponding grid gaps, which are
lower bounds for the discrepancies of the (non-randomized) output sets. Therefore
the randomized CBC method seems to be a promising alternative to the conventional
CBC method which overcomes the lower discrepancy bound in form of the grid gap.

Fig. 3 Comparison of the estimated discrepancy of 10-dimensional randomized output sets with
the corresponding rounding errors and grid gaps.

In Table 1 we listed the run-times of the randomized CBC algorithm for some
representative values of N . Note that the CBC algorithm used is the version with
higher memory requirements (see beginning of Section 3), and that the time needed
for the final randomization of the point set is negligible.

Table 1 Times for creating point sets using the randomized CBC method.

N Running time, s = 5 Running time, s = 10
100 0.037s 0.598s
300 0.644s 1m45.967s
500 2.196s 20m49.5s

3.5 A Hybrid Approach: Extending Halton-Hammersley Point Sets

One of the strengths of the CBC method is that we may also use it to extend an
existing point set to one in higher dimension. This could be a promising idea, be-
cause the classical constructions lead to very good point sets in small dimensions.
This advantage is used by a related idea called padding quasi-Monte Carlo (QMC)
by Monte Carlo (MC) – there a low-discrepancy sequence is extended in the di-
mension by choosing the additional coordinates randomly, see, e.g., [15, 13, 5]. The
resulting point sets show in many applications a better performance than pure QMC
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or MC points. Here we want to study whether the same is true for extending low-
discrepancy point sets by the CBC algorithm. Therefore, we pursue the following.

Fix N , the number of points to be constructed, and s, the dimension the final
point set shall have. For some s′ ≤ s, let P∗

s′ be a Halton-Hammersley point set of N
points in dimension s′ (see, e.g., [8] or [12]). Then we perform s−s′ CBC iterations
to obtain an N -point set Ps in [0,1)s . We want to stress that in our experiments the
decisions of the CBC algorithm which additional components to choose to extend
Ps′ are only based on the discrepancies induced by all boxes of the form [0, t),
t ∈ G∗d , d = s′ + 1, . . . , s. (In general it would be possible to substitute G∗d by a
finer grid whose projection onto the first s′ components is the grid generated by the
coordinate values of the points of Ps′ . But such an s′-dimensional grid is already of
size Θ(Ns′) and will therefore increase the computation time crucially.) If s′ ≥ 1,
the resulting point set Ps is not any longer a subset of the (relatively small) grid
Gs . For s = 10 and N in the hundreds this means practically that calculating the
exact discrepancy of Ps is in general infeasible. Therefore we restrict ourselves to
computing the rounding errors of the resulting point sets, as defined in (9).

We performed our experiments for s = 10. The results for s′ = 0 (the pure CBC
approach), 3, 5, 7 and 10 (the pure 10–dimensional Halton-Hammersley set) and
N = 50,100,150, . . . ,500 are depicted in Figure 4.

The results support our theoretical considerations. For small numbers of points,
the relatively large discrepancy of high-dimensional Halton-Hammersley sets leads

Fig. 4 Rounding errors of 10-dimensional point sets stemming from different versions of the hy-
brid approach (starting with a 3, 5 and 7 dimensional Halton-Hammersley set and then adding
dimensions via the CBC approach), together with the two pure approaches.
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to inferior results for large values of s′. For larger numbers of points, the pure
Halton-Hammersley set is not very good, but becomes better than the pure CBC
construction. Better results are obtained for the intermediate values s′ = 3,5,7.
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Quasi-Monte Carlo Simulation of Diffusion in a
Spatially Nonhomogeneous Medium

Rami El Haddad, Christian Lécot, and Gopalakrishnan Venkiteswaran

Abstract We propose and test a quasi-Monte Carlo (QMC) method for solving
the diffusion equation in the spatially nonhomogeneous case. For a constant diffu-
sion coefficient, the Monte Carlo (MC) method is a valuable tool for simulating the
equation: the solution is approximated by using particles and in every time step the
displacement of each particle is drawn from a Gaussian distribution with constant
variance. But for a spatially dependent diffusion coefficient, the straightforward ex-
tension using a spatially variable variance leads to biased results. A correction to the
Gaussian steplength was recently proposed and provides satisfactory results. In the
present work, we devise a QMC variant of this corrected MC scheme. We present
the results of some numerical experiments showing that our QMC algorithm con-
verges better than the corresponding MC method for the same number of particles.

1 Introduction

The random walk technique is commonly used for investigating processes involving
the diffusion of substances. In the case of a constant diffusion coefficient D0, the
substance is modelled by an assemblage of discrete particles. Time is discretized and
in a short time interval Δt , each particle is moved with an increment chosen from a
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Gaussian distribution with variance 2D0Δt . Advantages of the MC method include
the simplicity of the algorithm and the ability to deal with complicated geometries.
A disadvantage is that many runs are often needed to obtain reliable mean values.

In some cases, one may have a diffusion coefficient that varies with position. The
naive extension of the constant diffusion coefficient case is to use a spatially variable
variance 2D(x)Δt . It is found in practice that this leads to an apparent advection in
directions of decreasing diffusivity and a concentration of particles in regions of
low diffusivity [4, 1, 2]. This can be explained as follows (see [4]). Let c denote the
concentration, i.e., the solution of the diffusion equation. If everything is smooth,
one can define (at least in the one-dimensional case) a new coordinate system and
a transformed concentration γ such that the diffusion coefficient becomes constant.
But the transformed equation includes advection in directions of increasing diffusiv-
ity. The naive approach of MC simulation neglects this advection and leads to biased
results. A simple correction to the Gaussian steplength has been recently proposed
[1]. It was shown that the procedure gives satisfactory results.

One possibility to improve the accuracy of the MC method is to replace pseudo-
random numbers with quasi-random numbers; in addition, sorting the ensemble of
particles at each time step can improve convergence [8].

In this paper we propose a quasi-Monte Carlo version of the corrected MC al-
gorithm of [1]. It aims to solve problems involving the diffusion of substances in a
spatially nonhomogeneous medium. The quasi-random numbers used are (t,m,s)-
nets: we refer to [9] for a comprehensive and detailed exposition of the theory of
(t,m,s)-nets and (t, s)-sequences. The number of simulation particles can vary with
time: to make a proper use of the better uniformity of nets, we split the ensemble of
particles into subsets after each time step.

The paper is organized as follows. In Section 2, we recall the classical MC
scheme for the simulation of diffusion in a one-dimensional homogeneous medium
and we introduce a QMC version of the algorithm. In Section 3, we consider the
nonhomogeneous case and we present the correction to the Gaussian steplength
proposed in [1]. In Section 4, we describe the QMC strategy for the corrected
scheme. In Section 5, we report the results of numerical experiments that compare
our method with standard MC through the simulation of diffusion of calcium ions
in both cases of constant and variable diffusivity. Conclusions are stated in the final
section.

2 Simulation of Diffusion Using a Random Walk Method

The diffusion equation describes the transport of molecules from regions of high
concentration to those of low concentration, attributed to Brownian motion. For the
simplest case of an infinite 1-dimensional medium, the equation is as follows.

∂c

∂t
(x, t) = ∂

∂x

(
D
∂c

∂x

)
(x, t), x ∈ R, t > 0, (1)

c(x,0) = c0(x), x ∈ R, (2)
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where c(x, t) is the concentration of particles at location x and time t and D =
D(x, t) is the diffusion coefficient.

Mass conservation is expressed as:

∀t > 0
∫

R
c(x, t)dx =

∫

R
c0(x)dx, (3)

if we suppose that c0 is a nonnegative integrable function.
Diffusion processes arise in many engineering applications, and a large body of

numerical methods exists for the solution of the diffusion equation. When other
mechanisms (convection or reaction) besides diffusion are involved, standard com-
putational algorithms (finite differences or finite elements methods) may suffer from
problems associated with the discretization techniques. In such situations, grid-free
methods are developed. Here we explore the simulation of diffusion using stochastic
particle methods [3].

In the case of a constant diffusion coefficient D0, equation (1) can be written

∂c

∂t
(x, t)=D0

∂2c

∂x2
(x, t). (4)

The fundamental solution of equation (4) is

E(x, t) := e−x2/4D0t

√
4πD0t

, x ∈ R, t > 0.

Hence, if a particle is released from the origin, the probability of finding it in an
infinitesimal range dx around x after a time step Δt is fX(x)dx, where

fX(x)= e−x2/4D0Δt

√
4πD0Δt

. (5)

This is the density of a Gaussian distribution with zero mean and variance 2D0Δt .
This gives the basis of the random walk scheme for solving the diffusion equa-

tion. The simulation is conducted by first samplingN particles from the initial distri-
bution c0(x). Time is discretized using a time step Δt . At every time step, each par-
ticle is moved by a random displacement drawn from a Gaussian distribution with
mean zero and variance 2D0Δt : the random distance Δx that the particle moves can
be computed as

Δx =√
2D0ΔtZ, (6)

where Z is a standard Gaussian random variable.
A deterministic version of the previous algorithm was proposed in [8] and gener-

alized to the multidimensional case in [6]. In the MC scheme, the standard Gaussian
random variable can be generated from (uniform) pseudo-random numbers using
inversion technique. A simple replacement of these numbers by quasi-random ones
may destroy the method, because the quasi-random points are highly correlated. It
was found that if the particles are relabeled according to their position at each time
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step, the difficulty disappears: an error bound is given in arbitrary dimension; the
results of numerical experiments in one and two dimensions show that the QMC
version outperforms the original MC method (see [6]). The reordering technique
was first used in [5] for the QMC simulation of the Boltzmann equation. We sketch
the quasi-random walk method described in [6].

We consider equation (4) and we normalize the initial data so that
∫

R
c0(x)dx = 1. (7)

Let M+(R) denote the set of all measurable nonnegative functions on R. Using the
fundamental solution E(x, t), we can write for t ≥ 0 and Δt ≥ 0:

c(x, t+Δt)=
∫

R
E(x−y,Δt)c(y, t)dy, x ∈ R. (8)

We choose integers b ≥ 2, m ≥ 0 and we put N := bm. We generate N samples
x0
j , 0≤ j < N (particles) from the initial probability distribution. This can be done

by the inversion method:
x0
j := C−1

0 (ξj ), (9)

where C0(x) is the initial cumulative distribution function

C0(x) :=
∫ x

−∞
c0(y)dy,

and {ξ0, . . . , ξN−1} is a one-dimensional low discrepancy point set. A possible
choice is

ξj := 2j +1

2N
for 0≤ j < N,

since the minimum of the discrepancy is attained for these points (see [9]). For
the quasi-random walks, we need a low discrepancy sequence: Y = {y0,y1, . . .} ⊂
[0,1)2. For n ∈ N, denote

Yn := {y� : nN ≤ � < (n+1)N}.
If Π ′ and Π ′′ are the maps defined by

Π ′(u) := u1, Π ′′(u) := u2, u= (u1,u2) ∈ [0,1)2,
we assume that for all n ∈ N,

Π ′Yn is a (0,m,1)-net in base b, (10)

Π ′′Yn ⊂ (0,1). (11)

We discretize time into intervals of length Δt ; we set tn := nΔt and cn(x) :=
c(x, tn). Assuming that we have computed an approximation cn of cn by a sum of
Dirac masses (particles) located at positions xn0 , . . . ,x

n
N−1:
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cn := 1

N

∑

0≤j<N
δxnj
≈ cn,

we compute an approximation cn+1 at time tn+1 in two steps.
(1) Sorting the particles. The particles are labeled such that

xn0 ≤ xn1 ≤ ·· · ≤ xnN−1. (12)

This reordering was first introduced in [5]. It guarantees convergence of the scheme
(see [6]).

(2) Updating the positions of particles through QMC integration. Replacing c by
cn on the right hand side of equation (8), we define an approximation of the solution
at time tn+1 of the form:

c̃n+1(x) := 1

N

∑

0≤j<N
E(x−xnj ,Δt).

Consequently, for all χ ∈M+(R) we have
∫

R
χ(x)̃cn+1(x)dx = 1

N

∑

0≤j<N

∫ 1

0
χ
(
xnj +

√
2D0ΔtΦ

−1(u)
)
du, (13)

where Φ is the standard normal cumulative distribution function. Let 1j denote the
indicator function of the interval

Ij :=
[
j

N
,
j +1

N

)
.

To χ ∈M+(R), we associate Cnχ the function defined on [0,1)× (0,1) by

Cnχ(u) :=
∑

0≤j<N
1j (u1)χ

(
xnj +

√
2D0ΔtΦ

−1(u2)
)
, u= (u1,u2).

Then

∀χ ∈M+(R)
∫

R
χ(x)̃cn+1(x)dx =

∫

(0,1)2
Cnχ(u)du. (14)

Using QMC integration, we determine the approximation cn+1 by:

∀χ ∈M+(R)
∫

R
χ(x)cn+1(x)= 1

N

∑

0≤k<N
Cnχ(ynN+k). (15)

This can be reworded as follows. For u ∈ [0,1), put j (u) := Nu�, where x� de-
notes the greatest integer ≤ x. It follows from (10) that the mapping

� ∈ {nN,nN +1, . . . , (n+1)N −1} → j (y�,1)

is one-to-one. Then, the positions at time tn+1 are defined by:
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xn+1
j (ynN+k,1) = xnj (ynN+k,1)+

√
2D0ΔtΦ

−1(ynN+k,2), 0≤ k < N (16)

(note that condition (11) ensures that it is possible to compute Φ−1(ynN+k,2)).
The convergence of the algorithm was established and the results of numerical
experiments were reported in [6]. The following kind of convergence is guaran-
teed (here we restrict ourselves to the one-dimensional case for simplicity). Let
Xn := {xnj : 0 ≤ j < N} be the set of approximating particles at time tn, and
D∗N(Xn;cn) be the star cn-discrepancy of Xn, defined as

D∗N(Xn;cn) := sup
y∈R

∣
∣
∣

1

N

∑

0≤j<N
1y(x

n
j )−

∫

R
1y(x)cn(x)dx

∣
∣
∣,

where 1y denotes the indicator function of the interval (−∞,y). This is the Kol-
mogorov distance of the distributions defined by cn and cn. Then it is proved
that D∗N(Xn;cn) = O(N−1/2). This is a worst-case error estimate, so the result is
stronger than the probabilistic rate of O(N−1/2) for MC. The computational ex-
periments indicate that a significant improvement is achieved over standard MC
simulation. The convergence rate of QMC in the one-dimensional test cases chosen
in [6] is O(N−0.71).

For MC, the positions of the particles are updated as follows:

xn+1
j = xnj +

√
2D0ΔtznN+j , 0≤ j < N, (17)

where {z� : �≥ 0} is a sequence of normally distributed random numbers, with mean
0, and variance 1.

In some applications, one may have a diffusion coefficient that varies with dis-
tance. In this case, straightforward modification of the previous method, involving
replacing the constant diffusion coefficient by the spatially dependent one in the
steplength formula, leads to a systematic error. A correction to the steplength was
proposed by Farnell and Gibson [1]. We recall their algorithm in the next section.

3 Correction to the Steplength

We suppose that the diffusion coefficient D(x) > 0 depends on position. Let x0 ∈R
and fX be the probability density function:

fX(x) := e−x2/4D(x0)Δt

√
4πD(x0)Δt

.

If Δx := √2D(x0)ΔtZ is the uncorrected steplength, it is related to a uniform ran-
dom deviate U by:

U =
∫ Δx

−∞
fX(x)dx. (18)

If fW is the density function of the exact steplength Δw, then
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U =
∫ Δw

−∞
fW(w)dw. (19)

The correction ε satisfies: Δw =Δx+ ε. Equations (18)–(19) lead to:

∫ Δx

−∞
fX(x)dx =

∫ Δx

−∞
fW(w)dw+

∫ Δx+ε

Δx

fW (w)dw

=
∫ Δx

−∞
fW(w)dw+ εfW (Δx)+O(ε2),

if fW is differentiable. The first order correction term is then:

ε =
∫ Δx
−∞ fX(x)dx−

∫ Δx
−∞ fW(w)dw

fW(Δx)
. (20)

This formula is not computationally convenient, since it requires the evaluation of
integrals; we are looking for an easily computable correction. We first consider the
linear case.

Linearly varying diffusion coefficient. We suppose that

D(x) :=D0(1+αx),

where D0 > 0 and α are constants. In this case, if c0 = δ0, the solution of the diffu-
sion equation (1)–(2) is, for 1+αx > 0:

c(x, t)= 1

D0|α|t e−(2+αx)/D0α
2t I0

(
2
√

1+αx

D0α2t

)

, (21)

where I0 is the modified Bessel function. Hence the density function of the exact
steplength is given by:

fW(w)= 1

D0|α|Δt e−(2+αw)/D0α
2ΔtI0

(
2
√

1+αw

D0α2Δt

)

. (22)

Using an asymptotic expansion of I0, we can write, for small values of Δt and
w =O(

√
Δt):

fW(w)= e−w2/4D0Δt

√
4πD0Δt

(
1− α

4
w+ α

8D0Δt
w3+O(w2)

)
. (23)

Putting this into equation (20), we get:

ε ≈ ε1 :=
αD0Δt

2 + α(Δx)2

4

1− αΔx
4 + α(Δx)3

8D0Δt

. (24)

If a particle starts from 0, the corrected steplength is Δx+ε1, with Δx given by (6).
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General variable diffusion coefficient. In the general case, we use a local linear
approximation of D(x). If x0 denotes the location of a particle, we write:

D(x0+Δx)=D(x0)

(
1+ D′(x0)

D(x0)
Δx

)
+O((Δx)2). (25)

The random distance that the particle located at x0 moves in a time interval Δt is
Δx+ ε, with

Δx := √
2D(x0)ΔtZ and

ε :=
D′(x0)Δt

2 + D′(x0)(Δx)
2

4D(x0)

1− D′(x0)Δx
4D(x0)

+ D′(x0)(Δx)
3

8(D(x0))
2Δt

,

where Z is a standard Gaussian random variable.
In the next section, we propose a QMC version of the corrected random walk

scheme described above.

4 QMC Scheme in a Nonhomogeneous Medium

The scheme is based on the QMC method described in Section 2. To make a better
use of the outstanding uniformity of nets, the number of particles of this method
was kept constant. In some cases, the number of particles used may vary in time.
We generalize the method so that it can be applied to this case.

4.1 Approximation with a Fixed Number of Particles

Let b≥ 2,m≥ 0 andN := bm. We use a low discrepancy sequence Y ={y0,y1, . . .}⊂
[0,1)2. If Yn denotes the n-th segment of length N of the sequence, we suppose
that conditions (10) and (11) are fulfilled. Let Δt be a time step, tn := nΔt , and
cn(x) := c(x, tn) for n ∈ N. We are looking for an approximation of cn of the form

cn := 1

N

∑

0≤j<N
δxnj

,

where xn0 , . . . ,x
n
N−1 are the positions of the particles at time tn. The algorithm con-

sists of several steps.
Initialization. We introduce a set of N particles sampled from the initial dis-

tribution c0. The locations {x0
0 , . . . ,x

0
N−1} may be defined by equation (9). In our

numerical experiments, the particles are released from a point source at origin; in
this case we take x0

0 = ·· · = x0
N−1 := 0.
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Displacement of particles. Suppose that at time tn, the particles are in positions
xn0 ,x

n
1 , . . . ,x

n
N−1. We determine the positions at time tn+1 in two steps.

• Reordering of particles. This means relabeling the particles so that

xn0 ≤ xn1 ≤ ·· · ≤ xnN−1. (26)

• Quasi-random walk. For u ∈ [0,1), put j (u) := Nu�. For x ∈ R and u ∈ (0,1),
let

f (x,u) :=√
2D(x)ΔtΦ−1(u),

and

ε(x,u) :=
D′(x)Δt

2 + D′(x)(f (x,u))2
4D(x)

1− D′(x)f (x,u)
4D(x) + D′(x)(f (x,u))3

8(D(x))2Δt

.

The new positions (at time tn+1) are computed as follows:

xn+1
j (ynN+k,1) = xnj (ynN+k,1)+f (xnj (ynN+k,1),ynN+k,2)+ ε(xnj (ynN+k,1),ynN+k,2),

for 0≤ k < N .

4.2 Approximation with a Varying Number of Particles

In the QMC algorithm of Section 2, the number N of numerical particles is kept
constant and equal to a power of some prime base b, i.e. N = bm, for some integer
m> 0. This condition ensures that the mapping

� ∈ {nN,nN +1, . . . , (n+1)N −1} → j (y�,1)

is one-to-one: each particle corresponds to a point of a (0,m,1)-net.
In the particular application of interest to us, physical particles (calcium ions)

are released from a point source over time intervals. We choose some base b. As the
number of particles is changing, it is not always equal to a power of b. If N is the
number of particles at time tn, we write the digit expansion of N in base b:

N =
∞∑

i=0

ai(N)bi,

where 0≤ ai(N)< b and ai(N)= 0 for all sufficiently large i. The set ofN particles
is split into a0(N) subsets of size b0, a1(N) subsets of size b1, and so forth. Each
subset is treated apart (for relabeling and displacement). At the end of the time step
all the subsets are merged in one set of N particles. Then we can add to the system
the new particles that are released from the source during the time interval.
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5 Numerical Examples

In this section, we assess the accuracy of the QMC algorithm described above and
we compare it to a classical MC scheme. We are interested in biological applications
and the context is Ca2+ diffusion inside the neuromuscular junction of the crayfish
[7]. Ions are released from a point source as the result of a train of action potentials
arriving at that location, with each impulse resulting in release. These ions then dif-
fuse independently through the surrounding medium and act on receptors at certain
distances from the release point, chosen as the origin of the x-axis.

We have performed three series of numerical experiments:

1. constant diffusion coefficient with a periodic instantaneous emission of particles;
2. variable diffusion coefficient with a periodic instantaneous emission of particles;
3. variable diffusion coefficient with a non-instantaneous periodic emission of par-

ticles.

In the first case, the exact solution is available, so that we can verify that the new
method gives the correct answer and is more accurate than the MC scheme, using
the same number of simulation particles. In the other cases, where no analytical
solution is known, the results are compared with those given by a MC simulation
using a very large number of simulation particles.

The quasi-random sequences used in the simulation is the (0,2)-sequence of
Faure in base b = 2 (see [9] for details). We consider three successive emissions of
particles. The period is equal to 10; the final time is then T = 30. The number of time
steps is P = 187500 (62500 time steps per period). Hence Δt := T/P = 1.6 10−4.
The number of particles released in every period is N = 213.

The concentration in a space interval is computed as the number of particles in
the interval divided by the total number of particles. To smooth the curves and to
make comparison clearer, we average the results over a time interval of amplitude
0.16. We compare the MC and QMC results by calculating the time evolution of the
concentration of ions in the following space intervals:

[40,60], [100,120], [180,200].

5.1 Constant Diffusion Coefficient and Instantaneous Emission

Here D = 4000. The results of simulations are compared with the exact solution
which is available in this case. The concentrations in the varying intervals are shown
in Figure 1. The QMC results agree closely with the analytical solution; they clearly
outperform the MC outputs. We compute the mean of the absolute error in concen-
tration on the intervals chosen: the results of MC and QMC simulations are com-
pared in Table 1.
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Fig. 1 Constant diffusion coefficient and instantaneous emission. Time evolution of the concentra-
tion in the intervals [40,60] (up), [100,120] (middle), and [180,200] (down). Comparison of MC
(left) and QMC (right) simulations.
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Table 1 Mean error in concentration on three space intervals: MC vs. QMC.

Space interval [40,60] [100,120] [180,200]
MC 0.001590 0.001384 0.001038
QMC 0.000146 0.000181 0.000172

5.2 Variable Diffusion Coefficient and Instantaneous Emission

We consider the spatially varying diffusion coefficient used in [1], after nondimen-
sionalization:

D(x) := D̂(1−0.8u(x)), (27)

where D̂ := 4000 and

u(x) := 1

2
(tanh(A(b−x))+1), A= 3.5 10−2, b = 200.

In this case, no exact solution is known. We compare the results with the outputs of
a MC simulation using 220 particles. The concentrations are displayed in Figure 2.
Once again, the quasi-random strategy produces more accurate approximations than
the standard random walk method. The mean of the absolute error in concentration,
for both MC and QMC, is reported in Table 2 (here the error of a computation is
defined as the absolute difference between the result of a given simulation and the
result of the MC simulation using 220 particles).

Table 2 Mean error in concentration on three space intervals: MC vs. QMC.

Space interval [40,60] [100,120] [180,200]
MC 0.002445 0.001798 0.000906
QMC 0.000342 0.000247 0.000178

5.3 Variable Diffusion Coefficient and Non-Instantaneous
Emission

We use the same diffusion coefficient (27) as in the previous experiment but here
the ions are released over a time interval of length 1.31072 following the arrival
of each impulse (one particle is released from x = 0 at every time step Δt). As
before, no exact solution is available and we take as a reference the result of a
MC simulation with 220 particles. Figure 3 shows the outputs of the computations.
Using quasi-random numbers in place of pseudo-random numbers and reordering
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Fig. 2 Variable diffusion coefficient and instantaneous emission. Time evolution of the concentra-
tion in the intervals [40,60] (up), [100,120] (middle), and [180,200] (down). Comparison of MC
(left) and QMC (right) simulations.
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the particles clearly reduce scattering in the results. The mean of the absolute error
in concentration is computed and MC and QMC results are compared in Table 3
(the error is defined as before).

Table 3 Mean error in concentration on three space intervals: MC vs. QMC.

Space interval [40,60] [100,120] [180,200]
MC 0.001993 0.001801 0.000876
QMC 0.000516 0.000235 0.000207

6 Conclusion

In this paper, we have proposed a QMC method for the simulation of diffusion
equation in a spatially nonhomogeneous medium. The method generalizes the QMC
algorithm described in [6] in the case of a constant diffusion coefficient.

Time is discretized and diffusion is simulated by the random walk displacement
of a set of particles. The scheme uses a (0,2)-sequence in some base b in place
of random numbers and the particles are reordered according to their position at
every time step. The usual Gaussian steplength appropriate for a constant diffusion
coefficient is modified by using a correction arising from the spatial dependence [1].
If the number of simulation particles varies with time, the set of particles is split into
subsets after each time step, in order to make a proper use of the great uniformity of
(0,m,1)-nets. The particles of each subset are reordered and move independently
of those of the other groups. The results of numerical experiments show a strong
improvement over standard random walk.

The calculations presented here have been given in one dimension. Multidimen-
sional versions of the QMC algorithm for a constant diffusion coefficient are cov-
ered in [6]. A direction for future research would be to apply the algorithm proposed
here for a non-constant diffusion coefficient to higher dimensions. Other directions
include the implementation of boundary conditions and the development of a QMC
version of an alternative method for simulating diffusion in a spatially nonhomo-
geneous medium, which is based on a biased random walk on an asymmetrical
lattice [2].

Acknowledgements We thank the Editor Art B. Owen and two anonymous reviewers for several
suggestions that helped to clarify the paper.
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Fig. 3 Variable diffusion coefficient and non-instantaneous emission. Time evolution of the con-
centration in the intervals [40,60] (up), [100,120] (middle), and [180,200] (down). Comparison
of MC (left) and QMC (right) simulations.



Se
co

nd
 p

ro
of

s
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L2 Discrepancy of Two-Dimensional Digitally
Shifted Hammersley Point Sets in Base b

Henri Faure and Friedrich Pillichshammer

Abstract We give an exact formula for the L2 discrepancy of two-dimensional dig-
itally shifted Hammersley point sets in base b. This formula shows that for certain
bases b and certain shifts the L2 discrepancy is of best possible order with respect to
the general lower bound due to Roth. Hence, for the first time, it is proved that, for
a thin, but infinite subsequence of bases b starting with 5,19,71, . . ., a single per-
mutation only can achieve this best possible order, unlike previous results of White
(1975) who needs b permutations and Faure & Pillichshammer (2008) who need 2
permutations.

1 Introduction and Statement of the Results

For a finite point set P = {x1, . . . ,xN } of N ≥ 1 (not necessarily distinct) points in
the unit-square [0,1)2 the L2 discrepancy is defined by

L2(P) :=
(∫ 1

0

∫ 1

0
|E(x,y,P)|2 dx dy

)1/2

,

where the discrepancy function is given as E(x,y,P) = A([0,x)× [0,y),P)−
Nxy, where A([0,x)× [0,y),P) denotes the number of indices 1 ≤ M ≤ N for
which xM ∈ [0,x)× [0,y). The L2 discrepancy is a quantitative measure for the
irregularity of distribution of P , i.e., the deviation from perfect uniform distribution
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modulo one, which has a close relationship with the worst-case and average-case er-
rors of quasi-Monte Carlo integration of functions from certain function classes. An
introduction to the theory of uniform distribution modulo one and the discrepancy
of sequences can be found in the books of Kuipers & Niederreiter [11] or of Drmota
& Tichy [3]. Concerning the relationship between L2 discrepancy and quasi-Monte
Carlo integration we further refer to [16, 19, 20] for example.

It was first shown by Roth [15] (see also [11, Chapter 2, Section 2]) that there is
a constant c > 0 with the property that for the L2 discrepancy of any finite point set
P consisting of N points in [0,1)2 we have

L2(P)≥ c
√

logN. (1)

In this paper we will consider the L2 discrepancy of so-called digitally shifted
Hammersley point sets in base b with bn points. These point sets form a sub-class
of generalized Hammersley point sets in base b (the Hammersley point set is also
known as Roth net for b = 2), which can be considered as finite two-dimensional
versions of the generalized van der Corput sequences in base b as introduced by
Faure [5].

Throughout the paper let b ≥ 2 be an integer and let Sb be the set of all permu-
tations of {0,1, . . . ,b−1}.
Definition 1 (generalized Hammersley point set). Let b ≥ 2 and n ≥ 0 be inte-
gers and let Σ = (σ0, . . . ,σn−1) ∈ Sn

b . For an integer 1 ≤ N ≤ bn, write N − 1 =
∑n−1

r=0 ar(N)br in the b-adic system and define SΣb (N) :=∑n−1
r=0

σr (ar (N))

br+1 . Then the
generalized two-dimensional Hammersley point set in base b consisting of bn points
associated with Σ is defined by

HΣ
b,n :=

{(
SΣb (N),

N −1

bn

)
: 1≤N ≤ bn

}
.

In case of σi = σ for all 0≤ i < n, we also write Hσ
b,n instead of HΣ

b,n. If σ = id, the
identical permutation, then we obtain the classical two-dimensional Hammersley
point set in base b.

Exact formulas for the L2 discrepancy of the classical two-dimensional Ham-
mersley point set Hid

b,n in base b have been proved by Vilenkin [17], Halton &
Zaremba [9] and Pillichshammer [13] in base b= 2 and by White [18] and Faure &
Pillichshammer [8] for arbitrary bases. These results show that the classical Ham-
mersley point set cannot achieve the best possible order of L2 discrepancy with
respect to Roth’s general lower bound (1).

The first who obtained the best possible order of L2 discrepancy for finite two-
dimensional point sets was Davenport [2], with a modification of so-called (Nα)-
sequences (α having a continued fraction expansion with bounded partial quotients),
more precisely with the set consisting of the 2M points

({±Nα}, N
M

)
for 1≤N ≤M

where M is a positive integer and {x} denotes the fractional part of x.
Next, observing that {−Nα} = 1−{Nα}, Proinov [14] obtained the same result

with the same set where generalized van der Corput sequences take the place of
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(Nα)-sequences and he named this process symmetrization of a sequence. Later
on, the same process was used by Chaix & Faure [1] for infinite van der Corput
sequences (improving at the same time the constants of Proinov) and by Larcher &
Pillichshammer [12] for (0,m,2)-nets and (0,1)-sequences in base 2. It is important
to note that all these results using the symmetrization process give the exact order
with bounds only for the implied constants whereas in the following, with various
cleverly generalized Hammersley point sets, different authors obtain exact formulas
and hence exact values for the implied constants.

Below we first give a survey of results concerning generalized Hammersley point
sets with best possible order of L2 discrepancy together with some comparisons
between the methods, showing the interest in considering only one permutation,
i.e., a single sequence Hσ

b,n.
First results were available in base b = 2: Let id be the identity and id1(k) :=

k+ 1 (mod 2) be the digital shift in base 2; then Halton & Zaremba [9] and later,
in a much more general form, Kritzer & Pillichshammer [10] gave sequences of
permutations Σ ∈ {id, id1}n (although they did not use this terminology), for which
the generalized Hammersley point set HΣ

2,n in base 2 achieves the best possible order
of L2 discrepancy in the sense of Roth (1). For more detailed results we refer to [10].

Results for arbitrary bases were first given by White [18] who generalized the
result from [9] in a certain way. He considered sequences Σ of the form

Σ = (id0, id1, . . . , idb−1, id0, id1, . . . , idb−1, . . .) (2)

of length n where idl(k) := k+ l (mod b) for 0 ≤ l,k < b (White did not use this
terminology). The permutations idl are called digital shifts in base b; they are natural
generalizations of the digital shift in base 2 used by Halton & Zaremba and Kritzer
& Pillichshammer. For this specific Σ , White gave an exact formula for the L2
discrepancy of the corresponding generalized Hammersley point set. Essentially this
formula states that

(
L2(HΣ

b,n)
)2 = n

(b2−1)(3b2+13)

720b2
+O(1) (3)

whenever Σ is of the form (2).
Setting b = 2 in this formula gives the same sequence as in [9] and the simplest

sequence in [10], that is Σ = (id0, id1, id0, id1, . . .), with the same constant 5/192.
Note that we need only two permutations and therefore the formula for base 2 starts
being valid for integers n ≥ 2, that is, sets of 22 = 4 points at least, which is very
few.

The problem for arbitrary b is that we need n ≥ b, i.e., sets of bb points at least.
Even for small bases like b = 10 the property requires sets consisting of more than
1010 points which is far away from usual numbers of points allowed in quasi-Monte
Carlo simulation. If we want to use generalized Hammersley point sets in applica-
tions (image-processing, optimization of printers for instance), we must find a better
way than White (in fact White used a trick due to Halton & Warnock, see [18, p.
221]) to improve the L2 discrepancy of the original Hammersley point sets.
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Another approach consists of using the so-called swapping permutation τ defined
by τ(k)= b−k−1, for 0≤ k < b, instead of shifts (the term swapping is introduced
and justified in [6] and [7, Section 2]). Applied to theL2 discrepancy of Hammersley
point sets, this generalization gives formula (3) with the simplest sequence Σ =
(id0,τ, id0,τ, . . .) in arbitrary bases. We refer to [8] for detailed proofs together
with extensions to the Lp discrepancy. Once again, we need only two permutations
but our results are valid for arbitrary bases whereas Halton & Zaremba and Kritzer
& Pillichshammer deal only with base 2. We also remark that in base 2, shift and
swap is the same permutation, so that [8] fully generalizes the results of [9] (for L2
discrepancy) and [10] from base 2 to base b.

Now, after White who needs b permutations and Faure & Pillichshammer who
need two, the question arises if only one permutation is enough to get the same
property, i.e., the best order of L2 discrepancy.

In this paper, we consider this question for shifts in base b and we deal with se-
quences of permutations of the form Σl := (idl , . . . , idl ) for arbitrary fixed integer
0≤ l < b, i.e., with our notation after Definition 1, we study generalized Hammers-
ley point sets Hidl

b,n. We call such sets digitally shifted Hammersley point sets in base
b. We can prove an exact formula for the L2 discrepancy of these sets which permits
to answer the question above for the sub-class of digitally shifted Hammersley point
sets. The proof relies on the approach of [8] and uses the fundamental Lemmas 1
and 2 from this paper. However here, for the first time, we have to manage with true
permutations while in [8] we dealt with identity only (τ being simply a mirror of it);
on the other hand, we obtained more results in this specific case.

Section 2 contains prerequisites and auxiliary results, and Section 3 contains the
proof of the following result:

Theorem 1. For the L2 discrepancy of a digitally shifted Hammersley point set
Hidl
b,n, with integers b ≥ 2, 0≤ l < b and n≥ 1, we have

(
L2

(
Hidl
b,n

))2

=
(
n

b

(
b2−1

12
− l(b− l)

2

))2

− 1

2bn
n

b

(
b2−1

12
− l(b− l)

2

)

+n

b

(
b2−1

12
− l(b− l)

2
+ (b2−1)(3b2+13)

720b

)
+ 3

8
+ 1

4bn
− 1

72b2n
.

If we choose l = 0 then Hid0
b,n is the classical Hammersley point set and our for-

mula recovers [8, Theorem 1] and [18, Eq. (15)].
From Theorem 1 one can see that for certain values of b and l one can obtain

the optimal order of L2 discrepancy in the sense of Roth (1) with a single shift.
In this case the implied leading constant is the same as in White’s and Faure &
Pillichshammer’s result (3).

Corollary 1. For integers b ≥ 2, 0≤ l < b and n≥ 1 we have
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(
L2

(
Hidl
b,n

))2 = n
(b2−1)(3b2+13)

720b2
+ 3

8
+ 1

4bn
− 1

72b2n
(4)

if and only if b satisfies the Pell-Fermat equation b2− 3c2 = −2 with a suitable
integer c and l = 1

2 (b± c).

All solutions of this equation are given by b+c
√

3=±(1+√3)(2+√3)m with
m ∈ N0.

Proof. Of course Eq. (4) holds if and only if b2−1
12 = l(b−l)

2 and this is equivalent to

l = 1
2

(
b±

√
b2+2

3

)
. Since l is an integer this is equivalent to b2+2

3 = c2 for some

integer c or equivalently b2−3c2 =−2. Note that all solutions (b,c) have to consist
of odd b and c only. This is in accordance with the fact that l= 1

2 (b±c) is an integer.
For z= x+y√d and its conjugate z= x−y√d we writeN(z)= z ·z= x2−y2d .

It is known (see, for example [4]) that the general solution z (if it exists) of a Pell-
Fermat equation N(z) = a can be obtained as the product of the solution of the
special Pell-Fermat equationN(z)= 1, which is given by z=±(z0)

m, m∈N, where
z0 > 1 is the minimal solution, with a special solution of N(z)= a with 0≤ z≤ z0.

In our case we have the minimal solution z0 = 2+√3 and the special solution
1+√3. Hence, all solutions are given by z=±(1+√3)(2+√3)m, m ∈ N0. ()

The first few of the infinitely many pairs (b, l) for which Eq. (4) holds are
(5,1), (5,4), (19,4), (19,15), (71,15), (71,56), (265,56), (265,209), (989,209),
(989,780), (3691,780), (3691,2911), . . . .

Hence, we have proved that for a thin (but infinite) subsequence of bases b a
single shift only is sufficient to obtain the optimal order of L2 discrepancy. Between
the necessity of b shifts with White’s method and the few bases we have found with
a single shift, there are surely many other possibilities. Finding such alternatives
will need more investigations and we plan to pursue this work in the near future.

2 Auxiliary Results

In this section we provide the main tools for the proof of Theorem 1. The analysis
of the L2 discrepancy is based on special functions which have been first introduced
by Faure in [5] and which are defined as follows.

For σ ∈Sb let Zσ
b = (σ (0)/b,σ (1)/b, . . . ,σ (b−1)/b). For h ∈ {0,1, . . . ,b−1}

and x ∈ [(k−1)/b,k/b), where k ∈ {1, . . . ,b}, we define

ϕσb,h(x)=
{
A([0,h/b);k;Zσ

b )−hx if 0≤ h≤ σ(k−1),
(b−h)x−A([h/b,1);k;Zσ

b ) if σ(k−1) < h < b,

where here for a sequence X = (xM)M≥1 we denote by A(I ;k;X) the number of
indices 1 ≤M ≤ k such that xM ∈ I . Further, the function ϕσb,h is extended to the
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reals by periodicity. Note that ϕσb,0 = 0 and ϕσb,h(0) = 0 for any σ ∈ Sb and any
0≤ h < b.

Furthermore, we define ϕσb :=
∑b−1

h=0ϕ
σ
b,h and φσb :=

∑b−1
h=0(ϕ

σ
b,h)

2. Note that ϕσb
is continuous, piecewise linear on the intervals [k/b,(k+1)/b] and ϕσb (0)= ϕσb (1).
For example for σ = id we have

ϕid
b,h(x)=

{
(b−h)x if x ∈ [0,h/b],
h(1−x) if x ∈ [h/b,1], (5)

from which one obtains (see [8, Lemma 3] for details) that for x ∈ [ k
b
, k+1

b

]
, 0 ≤

k < b, we have

ϕid
b (x)=

b(b−2k−1)

2

(
x− k

b

)
+ k(b− k)

2
(6)

and

φid
b (x)= (1−x)2

k(k+1)(2k+1)

6
+x2 (b− k)(b− k−1)(2b−2k−1)

6
. (7)

From (6) we immediately obtain for y ∈ [0, 1
b

)
the equation

b−1∑

k=0

ϕid
b

(
k

b
+y

)
= b(b2−1)

12
. (8)

Sometimes we will use the following property from [1, Propriété 3.4] stating that

(ϕσb,h)
′(k/b+0)= (ϕid

b,h)
′(σ (k)/b+0). (9)

Here and later on by f ′(x+0) we mean the right-derivative of the function f at x.
The following lemma gives a relationship between the family of ϕσb,h functions

with respect to the permutations id and idl .

Lemma 1. For any 0≤ h, l < b and x ∈ [0,1] we have

ϕ
idl
b,h(x)= ϕid

b,h

(
x+ l

b

)
−ϕid

b,h

(
l

b

)
(10)

and in particular,

ϕ
idl
b (x)= ϕid

b

(
x+ l

b

)
−ϕid

b

(
l

b

)
.

Proof. It is enough to show that the equality holds for x = k/b, k ∈ {0, . . . ,b− 1}.
Since the functions ϕσb,h are continuous and linear on

[
j
b
,
j+1
b

)
, 0≤ j < b, invoking

Eq. (9) we have

ϕ
idl
b,h

(
k

b

)
= 1

b

k−1∑

j=0

(
ϕ

idl
b,h

)′(j
b
+0

)
= 1

b

k−1∑

j=0

(
ϕid
b,h

)′
(

idl (j )

b
+0

)
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= 1

b

k+l−1∑

j=l

(
ϕid
b,h

)′
(
j

b
+0

)
= ϕid

b,h

(
k+ l

b

)
−ϕid

b,h

(
l

b

)

as desired. ()
The following lemma provides a formula for the discrepancy function of gener-

alized Hammersley point sets.

Lemma 2. For integers 1≤ λ,N ≤ bn and Σ = (σ0, . . . ,σn−1) ∈Sn
b we have

E

(
λ

bn
,
N

bn
,HΣ

b,n

)
=

n∑

j=1

ϕ
σj−1
b,εj

(
N

bj

)
,

where the εj = εj (λ,n,N) can be given explicitly.

A proof of this result together with formulas for εj = εj (λ,n,N) can be found
in [8, Lemma 1].

Remark 1. Let 0≤ x,y ≤ 1 be arbitrary. Since all points from HΣ
b,n have coordinates

of the form α/bn for some α ∈ {0,1, . . . ,bn−1}, we have

E(x,y,HΣ
b,n)= E(x(n),y(n),HΣ

b,n)+bn(x(n)y(n)−xy), (11)

where for 0≤ x ≤ 1 we define x(n) :=min{α/bn ≥ x : α ∈ {0, . . . ,bn}}.
Now we will give a series of lemmas with further, more involved properties of

the functions ϕσb,h, ϕσb and φσb . The first result is a special case of [8, Lemma 2] (see
there for a proof).

Lemma 3. For 1≤N ≤ bn and 0≤ j1 < j2 < · · ·< jk < n we have

bn∑

λ=1

k∏

i=1

ϕ
σji
b,εji

(
N

bji

)
= bn−k

k∏

i=1

ϕ
σji
b

(
N

bji

)

and
bn∑

λ=1

k∏

i=1

(
ϕ
σji
b,εji

(
N

bji

))2

= bn−k
k∏

i=1

φ
σji
b

(
N

bji

)
.

Lemma 4. For 0≤ h < k < n and 0≤ l < b we have

bn∑

N=1

ϕ
idl
b

(
N

bh

)
ϕ

idl
b

(
N

bk

)
= bn

(
b2−1

12
−ϕid

b

(
l

b

))2

.

Proof. Using Lemma 1 we have

bn∑

N=1

ϕ
idl
b

(
N

bh

)
ϕ

idl
b

(
N

bk

)
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=
bn∑

N=1

ϕid
b

(
N

bh
+ l

b

)
ϕid
b

(
N

bk
+ l

b

)
+bn

(
ϕid
b

(
l

b

))2

−ϕid
b

(
l

b

) bn∑

N=1

ϕid
b

(
N

bh
+ l

b

)
−ϕid

b

(
l

b

) bn∑

N=1

ϕid
b

(
N

bk
+ l

b

)
. (12)

Let N =N0+N1b+·· ·+Nn−1b
n−1 be the b-adic expansion of N ∈ {0, . . . ,bn−1}.

From the periodicity of ϕid
b and using Eq. (8) we obtain

bn∑

N=1

ϕid
b

(
N

bh
+ l

b

)
=

b−1∑

N0,...,Nn−1=0

ϕid
b

(
N0+·· ·+Nn−1b

n−1

bh
+ l

b

)

= bn−h
b−1∑

N0,...,Nh−1=0

ϕid
b

(
N0+·· ·+Nh−1b

h−1

bh
+ l

b

)

= bn−h
bh−1−1∑

N=0

b−1∑

Nh−1=0

ϕid
b

(
N

bh
+ Nh−1+ l

b

)

= bn−h
bh−1−1∑

N=0

b−1∑

z=0

ϕid
b

(
N

bh
+ z

b

)
= bn

b2−1

12
. (13)

Similar reasoning as above and noting that h < k gives

bn∑

N=1

ϕid
b

(
N

bh
+ l

b

)
ϕid
b

(
N

bk
+ l

b

)

= bn−k
bk−1∑

N=0

ϕid
b

(
N

bh
+ l

b

)
ϕid
b

(
N

bk
+ l

b

)

= bn−k
bk−1−1∑

N=0

ϕid
b

(
N

bh
+ l

b

) b−1∑

z=0

ϕid
b

(
N

bk
+ z

b

)

= b2−1

12

bn−1∑

N=0

ϕid
b

(
N

bh
+ l

b

)
= bn

(
b2−1

12

)2

. (14)

Now the result follows from inserting (13) and (14) into (12). ()
Lemma 5. For 0≤ k < n and 0≤ l < b we have

bn∑

N=1

φ
idl
b

(
N

bk

)
= bn

(
b4−1

90b
+ b(b2−1)

36b2k

)
+bnφid

b

(
l

b

)

−bn−1

12
l(b− l)(1+b2+ lb− l2).

Proof. We have



Se
co

nd
 p

ro
of

s

L2 Discrepancy of Digitally Shifted Hammersley Point Sets 363

φ
idl
b

(
N

bk

)
=

b−1∑

h=0

(
ϕ

idl
b,h

(
N

bk

))2

=
b−1∑

h=0

(
ϕid
b,h

(
N

bk
+ l

b

)
−ϕid

b,h

(
l

b

))2

= φid
b

(
N

bk
+ l

b

)
+φid

b

(
l

b

)
−2

b−1∑

h=0

ϕid
b,h

(
N

bk
+ l

b

)
ϕid
b,h

(
l

b

)
.

By using the periodicity of φid
b we obtain

bn∑

N=1

φid
b

(
N

bk
+ l

b

)
= bn−k

bk∑

N=1

φid
b

(
N

bk

)
= bn−k

b−1∑

j=0

(j+1)bk−1
∑

N=jbk−1+1

φid
b

(
N

bk

)
.

For jbk−1+1 ≤ N ≤ (j +1)bk−1 we have j/b < N/bk ≤ (j +1)/b and hence we
can use Eq. (7) to obtain

bn∑

N=1

φid
b

(
N

bk
+ l

b

)
= bn−k

b−1∑

j=0

(j+1)bk−1
∑

N=jbk−1+1

[(
1− N

bk

)2
j (j +1)(2j +1)

6

+
(
N

bk

)2
(b− j)(b− j −1)(2b−2j −1)

6

]

= bn
(
b4−1

90b
+ b(b2−1)

36b2k

)
.

Furthermore we have
bn∑

N=1

b−1∑

h=0

ϕid
b,h

(
N

bk
+ l

b

)
ϕid
b,h

(
l

b

)
=

b−1∑

h=0

ϕid
b,h

(
l

b

) bn∑

N=1

ϕid
b,h

(
N

bk
+ l

b

)
.

Using the periodicity of ϕid
b,h and Eq. (5) for the innermost sum we obtain

bn∑

N=1

ϕid
b,h

(
N

bk
+ l

b

)
= bn−k

bk−1∑

N=0

ϕid
b,h

(
N

bk

)

= bn−k
⎛

⎝
hbk−1∑

N=0

(b−h)
N

bk
+

bk−1∑

N=hbk−1+1

h

(
1− N

bk

)⎞

⎠

= bn−1 (b−h)h

2
.

Hence, using again Eq. (5),

bn∑

N=1

b−1∑

h=0

ϕid
b,h

(
N

bk
+ l

b

)
ϕid
b,h

(
l

b

)
= bn−1

2

b−1∑

h=0

ϕid
b,h

(
l

b

)
(b−h)h

= bn−1

2

(
l−1∑

h=0

(b−h)h2
(

1− l

b

)
+

b−1∑

h=l
(b−h)2h

l

b

)
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= bn−1

24
l(b− l)(1+b2+ lb− l2).

The result follows. ()
Lemma 6. For 0≤ h < n and 0≤ l < b we have

bn∑

N=1

Nϕid
b

(
N

bh
+ l

b

)
= b2n b

2−1

24
+ bnl(b− l)

12b
(3b−bh(b−2l)).

Proof. Splitting up the range of summation we have

bn∑

N=1

Nϕid
b

(
N

bh
+ l

b

)
=

bn−h+1−1∑

k=0

(k+1)bh−1
∑

N=kbh−1+1

Nϕid
b

(
N

bh
+ l

b

)
.

For 0≤ k < bn−h+1 let k = qb+ r with integers 0≤ r < b and 0≤ q < bn−h. Then
for kbh−1+ 1 ≤ N ≤ (k+ 1)bh−1 we have r/b ≤ N/bh− q ≤ (r + 1)/b. Hence,
if 0 ≤ r < b− l, then 0 ≤ (r + l)/b ≤ N/bh− q + l/b ≤ (r + l+ 1)/b ≤ 1 and if
b− l ≤ r < b, then 0≤ (r+ l−b)/b ≤N/bh−q+ l/b−1≤ (r+ l−b+1)/b < 1.
Using the periodicity of ϕid

b and Eq. (6) we therefore obtain

bn∑

N=1

Nϕid
b

(
N

bh
+ l

b

)
=

b−1∑

r=0

bn−h−1∑

q=0

qbh+(r+1)bh−1
∑

N=qbh+rbh−1+1

Nϕid
b

(
N

bh
−q+ l

b

)

=
b−l−1∑

r=0

bn−h−1∑

q=0

qbh+(r+1)bh−1
∑

N=qbh+rbh−1+1

Nϕid
b

(
N

bh
−q+ l

b

)

+
b−1∑

r=b−l

bn−h−1∑

q=0

qbh+(r+1)bh−1
∑

N=qbh+rbh−1+1

Nϕid
b

(
N

bh
−q+ l

b
−1

)

=
b−l−1∑

r=0

bn−h−1∑

q=0

qbh+(r+1)bh−1
∑

N=qbh+rbh−1+1

N

(
b(b−2(r+ l)−1)

2

(
N

bh
−q− r

b

)

+ (r+ l)(b− r− l)

2

)

+
b−1∑

r=b−l

bn−h−1∑

q=0

qbh+(r+1)bh−1
∑

N=qbh+rbh−1+1

N

(
b(b−2(r+ l−b)−1)

2

(
N

bh
−q− r

b

)

+ (r+ l−b)(2b− r− l)

2

)

= b2n b
2−1

24
+ bnl(b− l)

12b
(3b−bh(b−2l)).

This is the desired result. ()
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3 The Proof of Theorem 1

First we show a discrete version of Theorem 1. The following result is a generaliza-
tion of [8, Lemma 6]. The original is obtained when putting l = 0 below.

Lemma 7. For 0≤ l < b we have

1

b2n

bn∑

λ,N=1

E

(
λ

bn
,
N

bn
,Hidl

b,n

)
= n

b

(
b2−1

12
− l(b− l)

2

)
(15)

and

1

b2n

bn∑

λ,N=1

(
E

(
λ

bn
,
N

bn
,Hidl

b,n

))2

(16)

=
(
n

b

(
b2−1

12
− l(b− l)

2

))2

+n
(b2−1)(3b2+13)

720b2
+ 1

36

(
1− 1

b2n

)
.

Proof. We just give the (much more involved) proof of Eq. (16). Using Lemmas 2,
3, 4 and 5 we have

1

b2n

bn∑

λ,N=1

(
E

(
λ

bn
,
N

bn
,Hidl

b,n

))2

= 1

b2n

bn∑

λ,N=1

n∑

i,j=1

ϕ
idl
b,εi

(
N

bi

)
ϕ

idl
b,εj

(
N

bj

)

= 1

b2n

n∑

i=1

bn∑

N=1

bn∑

λ=1

(
ϕ

idl
b,εi

(
N

bi

))2

+ 1

b2n

n∑

i,j=1
i �=j

bn∑

N=1

bn∑

λ=1

ϕ
idl
b,εi

(
N

bi

)
ϕ

idl
b,εj

(
N

bj

)

= 1

b2n

n∑

i=1

bn∑

N=1

bn−1φ
idl
b

(
N

bi

)
+ 1

b2n

n∑

i,j=1
i �=j

bn∑

N=1

bn−2ϕ
idl
b

(
N

bi

)
ϕ

idl
b

(
N

bj

)

= 1

b

n∑

i=1

((
b4−1

90b
+ b(b2−1)

36b2i

)
+φid

b

(
l

b

)
− l(b− l)(1+b2+ lb− l2)

12b

)

+n2−n

b2

(
b2−1

12
−ϕid

b

(
l

b

))2

=
(
n

b

(
b2−1

12
−ϕid

b

(
l

b

)))2

− n

b2

(
b2−1

12
−ϕid

b

(
l

b

))2

+nb
4−1

90b2
+ 1

36

(
1− 1

b2n

)
+ n

b

(
φid
b

(
l

b

)
− l(b− l)(1+b2+ lb− l2)

12b

)

=
(
n

b

(
b2−1

12
− l(b− l)

2

))2

+n
(b2−1)(3b2+13)

720b2
+ 1

36

(
1− 1

b2n

)
,
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where for the last equality we used that ϕid
b (l/b) = l(b− l)/2 according to Eq. (6)

and φid
b (l/b)= (1− l/b)2l(l+1)(2l+1)/6+(b− l)(b− l−1)(2b−2l−1)l2/(6b2)

according to Eq. (7). ()
Now we give the proof of Theorem 1.

Proof. Using Eq. (11) we obtain

(
L2

(
Hidl
b,n

))2 =
∫ 1

0

∫ 1

0

(
E
(
x(n),y(n),Hidl

b,n

)
+bn(x(n)y(n)−xy)

)2
dx dy

= 1

b2n

bn∑

λ,N=1

(
E

(
λ

bn
,
N

bn
,Hidl

b,n

))2

+2bn
bn∑

λ,N=1

∫ λ
bn

λ−1
bn

∫ N
bn

N−1
bn

E

(
λ

bn
,
N

bn
,Hidl

b,n

)(
λ

bn

N

bn
−xy

)
dx dy

+b2n
bn∑

λ,N=1

∫ λ
bn

λ−1
bn

∫ N
bn

N−1
bn

(
λ

bn

N

bn
−xy

)2

dx dy

=: S1+S2+S3.

The term S1 has been evaluated in Lemma 7 and straightforward algebra shows that
S3 = (1+18bn+25b2n)/(72b2n). So it remains to deal with S2.

Evaluating the integral appearing in S2 we obtain

S2 = 1

b3n

bn∑

λ,N=1

(λ+N)E

(
λ

bn
,
N

bn
,Hidl

b,n

)
− 1

2b3n

bn∑

λ,N=1

E

(
λ

bn
,
N

bn
,Hidl

b,n

)

=: S4−S5.

The term S5 can be obtained from Lemma 7, Eq. (15). For S4 we have

S4 = 1

b3n

bn∑

λ,N=1

λE

(
λ

bn
,
N

bn
,Hidl

b,n

)
+ 1

b3n

bn∑

λ,N=1

NE

(
λ

bn
,
N

bn
,Hidl

b,n

)

=: 1

b3n
(S4,1+S4,2).

With Lemma 2, Lemma 3, Lemma 1 and Lemma 6 we obtain

S4,2 = bn−1
n∑

i=1

bn∑

N=1

N

(
ϕid
b

(
N

bi
+ l

b

)
−ϕid

b

(
l

b

))

= b2n−1
n∑

i=1

(
bn
b2−1

24
+ l(b− l)

(
3b−bi+1+2lbi

12b
− bn+1

4

))

= b3n b
2−1

24b
n− b2n

12b2

n∑

i=1

(b− l)l
(
bi(b−2l)+3bn+1)
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= b3n b
2−1

24b
n− b2n

12b
(b− l)l

(
(b−2l)

bn−1

b−1
+3bnn

)
.

We turn to S4,1. We have

Hidl
b,n =

{(
idl(a0)

b
+·· ·+ idl (an−1)

bn
,
an−1

b
+·· ·+ a0

bn

)
: 0≤ ai < b

}

=
{(

x0

b
+·· ·+ xn−1

bn−1
,

id−1
l (xn−1)

b
+·· ·+ id−1

l (x0)

bn

)

: 0≤ xi < b

}

.

Let g : [0,1]2 →[0,1]2 be defined by g(x,y)= (y,x). For l = 0 we have id−1
0 =

id0 and for 0 < l < b we have id−1
l = idb−l . Hence we have Hidl

b,n = g
(
Hidb−l
b,n

)
for

0 < l < b and Hid0
b,n = g

(
Hid0
b,n

)
. Therefore, for 0 < l < b we obtain

S4,1 =
bn∑

λ,N=1

λE

(
λ

bn
,
N

bn
,Hidl

b,n

)
=

bn∑

λ,N=1

λE

(
N

bn
,
λ

bn
,Hidb−l

b,n

)

= b3n b
2−1

24b
n− b2n

12b
(b− l)l

(
(2l−b)

bn−1

b−1
+3bnn

)

where we used the formula for S4,2 in the last equation. The same formula holds
true for l = 0.

Hence we have

S4 = n

b

(
b2−1

12
− l(b− l)

2

)
.

Now we obtain

(
L2

(
Hidl
b,n

))2 =
(
n

b

(
b2−1

12
− l(b− l)

2

))2

+n
(b2−1)(3b2+13)

720b2

+ 1

36

(
1− 1

b2n

)
+ n

b

(
b2−1

12
− l(b− l)

2

)

− n

2bn+1

(
b2−1

12
− l(b− l)

2

)
+ 1+18bn+25b2n

72b2n

which yields the desired result. ()
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1. H. Chaix and H. Faure: Discrépance et diaphonie en dimension un. Acta Arith. 63: 103–141,
1993.

2. H. Davenport: Note on irregularities of distribution. Mathematika 3: 131–135, 1956.
3. M. Drmota and R. F. Tichy: Sequences, Discrepancies and Applications. In: Lecture Notes in

Mathematics, vol. 1651. Springer, Berlin, 1997.
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Vibrato Monte Carlo Sensitivities

Michael B. Giles

Abstract We show how the benefits of the pathwise sensitivity approach to comput-
ing Monte Carlo Greeks can be extended to discontinuous payoff functions through
a combination of the pathwise approach and the Likelihood Ratio Method. With a
variance reduction modification, this results in an estimator which for timestep h

has a variance which is O(h−1/2) for discontinuous payoffs and O(1) for continu-
ous payoffs. Numerical results confirm the variance is much lower than the O(h−1)

variance of the Likelihood Ratio Method, and the approach is also compatible with
the use of adjoints to obtain multiple first order sensitivities at a fixed cost.

1 Introduction

Monte Carlo simulation is the most popular approach in computational finance for
determining the prices of financial options. This is partly due to its computational
efficiency for high-dimensional problems involving multiple assets, interest rates or
exchange rates, and partly due to its relative simplicity and the ease with which it
can be parallelised across large compute clusters. However, the accurate calculation
of prices is only one objective of Monte Carlo simulation. Even more important
in some ways is the calculation of the sensitivities of the prices to various input
parameters. These sensitivities, known collectively as the “Greeks”, are important
for risk analysis and mitigation through hedging.

The pathwise sensitivity approach (also known as Infinitesimal Perturbation
Analysis) is one of the standard techniques for computing these sensitivities [14].
Giles and Glasserman have recently introduced a particularly efficient implementa-
tion of this approach using adjoint techniques [13] which are related to the use of
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reverse mode automatic differentiation [11, 15]. This makes it possible to calculate
an unlimited number of first order sensitivities at a total cost which is comparable
to the cost of the original pricing calculation.

However, the pathwise approach is not applicable when the financial payoff func-
tion is discontinuous, and even when the payoff is continuous and piecewise differ-
entiable, the use of scripting languages in real-world implementations means it can
be very difficult in practice to evaluate the derivative of very complex financial prod-
ucts. One solution to these problems is to use the Likelihood Ratio Method (LRM)
but its weaknesses are that the variance of the resulting estimator is usually O(h−1),
where h is the timestep for the path discretisation, and it can not be combined effi-
ciently with the adjoint approach.

Building on the ideas of L’Ecuyer on hybrid pathwise/LRM sensitivity calcula-
tions [18, 19], this paper presents an idea which combines the pathwise approach for
the stochastic path evolution with LRM for the payoff evaluation. Through the use
of antithetic variates for variance reduction, the variance of the resulting estimator
is O(h−1/2) when the payoff is discontinuous, and O(1) when it is continuous. Nu-
merical examples show it is much more efficient than the standard LRM approach.

2 Pathwise and LRM Sensitivities

Consider the approximate solution of the general SDE driven by Brownian motion,

dSt = a(S, t)dt+b(S, t)dWt, (1)

using the Euler discretisation with timestep h,

Ŝn+1 = Ŝn+a(Ŝn, tn)h+b(Ŝn, tn)'Wn+1. (2)

The Brownian increments 'Wn can be defined to be a linear transformation of a
vector of independent unit Normal random variables Z.

The goal is to efficiently estimate the expected value of some financial payoff
function f (S), and numerous first order sensitivities of this value with respect to
different input parameters such as the volatility or one component of the initial data
S(0). In the simplest cases, f (S) is a function of the value of the underlying solution
S(T ) at the final time T , but in more general cases it might depend on the values at
intermediate times as well.

The pathwise sensitivity approach can be viewed as starting with the expectation
expressed as an integral with respect to Z:

V̂ ≡ E
[
f (Ŝ)

]=
∫
f (Ŝ(Z,θ)) pZ(Z) dZ. (3)

Here θ represents a generic input parameter, and the probability density function for
Z is
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pZ(Z)= (2π)−d/2 exp
(−‖Z‖2

2/2
)
,

where d is the dimension of the vector Z.
If the drift, volatility and payoff functions are all differentiable, (3) may be dif-

ferentiated to give
∂V̂

∂θ
=
∫

∂f

∂Ŝ

∂Ŝ

∂θ
pZ(Z) dZ, (4)

with
∂Ŝ

∂θ
being obtained by differentiating (2) to obtain

∂Ŝn+1

∂θ
= ∂Ŝn

∂θ
+
(
∂an

∂Ŝn

∂Ŝn

∂θ
+ ∂an

∂θ

)
h+

(
∂bn

∂Ŝn

∂Ŝn

∂θ
+ ∂bn

∂θ

)
'Wn+1. (5)

By considering the limit of a sequence of regularised functions, it can be proved
that (4) remains valid when the payoff function is continuous and piecewise dif-
ferentiable, and the numerical estimate obtained by averaging over M independent
path simulations

M−1
M∑

m=1

∂f

∂Ŝ
(Ŝ(m))

∂Ŝ(m)

∂θ

is an unbiased estimate for ∂V̂ /∂θ with a variance which is O(M−1), independent
of h, if f (S) is Lipschitz and the drift and volatility functions satisfy the standard
conditions [17].

Performing a change of variables, the expectation can also be expressed as

V̂ ≡ E

[
f (Ŝ)

]
=
∫
f (Ŝ) pS(Ŝ,θ) dŜ, (6)

where pS(Ŝ,θ) is the probability density function for Ŝ which will depend on all of
the inputs parameters. If this is known, (6) can be differentiated to give

∂V̂

∂θ
=
∫
f
∂pS

∂θ
dŜ =

∫
f
∂(logpS)

∂θ
pS dŜ = E

[
f
∂(logpS)

∂θ

]
.

which can be estimated using the unbiased estimator

M−1
M∑

m=1

f (Ŝ(m))
∂ logpS(Ŝ(m))

∂θ

This is the Likelihood Ratio Method. Its great advantage is that it does not require
the differentiation of f (Ŝ). This makes it applicable to cases in which the payoff
is discontinuous, and it also simplifies the practical implementation because banks
often have complicated flexible procedures through which traders specify payoffs.
However, it does have a number of limitations, one being a requirement of absolute
continuity which is not satisfied in a few important applications such as the LIBOR
market model [14]. Other drawbacks of LRM are that in most cases it gives an es-
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timator with a variance which is O(M−1h−1), becoming infinite as h→ 0 [14],
and there is no way to efficiently incorporate adjoint techniques and hence the com-
putational cost is proportional to the number of first order sensitivities which are
needed.

3 Vibrato Monte Carlo

We now introduce a hybrid combination of pathwise and LRM sensitivity calcula-
tion, applying the pathwise approach to the differentiable path simulation, and using
LRM for the discontinuous payoff evaluation. The idea of combining pathwise and
LRM approaches is not new. L’Ecuyer [18, 19] presented a general framework in
which the two approaches are just special cases of a more general estimator, and
Chen and Glasserman [5] have recently shown that the use of Malliavin calculus
[8, 9] can also be viewed as a hybrid pathwise/LRM combination.

The novelty in the present paper lies in the precise form of the hybrid combina-
tion and the variance reduction which is achieved, making it a very practical method
for finance applications with a discontinuous payoff function.

3.1 Conditional Expectation

The Oxford English Dictionary describes “vibrato” as “a rapid slight variation in
pitch in singing or playing some musical instruments”. The analogy to Monte Carlo
methods is the following: whereas a path simulation in a standard Monte Carlo cal-
culation produces a precise value for the output values from the underlying stochas-
tic process, in the vibrato Monte Carlo approach the output values have a narrow
probability distribution.

This is an example of the use of Conditional Monte Carlo simulation [1], and
generalises an example discussed by Glasserman in section 7.2.3 of his book [14]
as a solution to the problem of computing Greeks for discontinuous payoffs. In his
example, a path simulation for a scalar SDE is performed in the usual way for the
first N−1 timesteps, at each timestep taking a value for the Wiener increment 'Wn

which is a sample from the appropriate Gaussian distribution, and then using (2) to
update the solution. On the final timestep, one instead considers the full distribution
of possible values for 'WN . This gives a Gaussian distribution for ŜN at time T ,
conditional on the value of ŜN−1 at time T−h, with probability density function

pS(ŜN )= 1√
2π σW

exp

(

− (ŜN −μW)
2

2σ 2
W

)

(7)

where

μW = ŜN−1+a(ŜN−1,T−h)h, σW = b(ŜN−1,T−h)
√
h,
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with a(S, t) and b(S, t) being the drift and volatility of the SDE described in (1).
Hence, the conditional expectation for the value of a digital payoff with strike K ,

f (S(T )) = H(S(T )−K)≡
{

1, S(T ) > K

0, S(T )≤K

is

E

[
f (ŜN ) | ŜN−1

]
=

∫ ∞

−∞
H(ŜN−K) pS(ŜN ) dŜN = *

(
μW −K

σW

)

where*(·) is the cumulative Normal distribution function. A Monte Carlo estimator
for the option value is therefore

M−1
M∑

m=1

E[f (ŜN ) | Ŝ(m)N−1] ≡ M−1
M∑

m=1

*

(
μ
(m)
W −K

σ
(m)
W

)

and because the conditional expectation E[f (ŜN ) | ŜN−1] is a differentiable function
of the input parameters the pathwise sensitivity approach can now be applied.

There are two difficulties in using this form of conditional expectation in practice
in financial applications. This first is that the integral arising from the conditional ex-
pectation will often become a multi-dimensional integral without an obvious closed-
form value, and the second is that it requires a change to the often complex software
framework used to specify payoffs.

The solution is to use a Monte Carlo estimate of the conditional expectation, and
use LRM to obtain its sensitivity. Thus, the technique combines pathwise sensitivity
for the path calculation with LRM sensitivity for the payoff evaluation.

3.2 Vibrato Monte Carlo

The idea is very simple; adopting the conditional expectation approach, each path
simulation for a particular set of Wiener incrementsW ≡ ('W1,'W2, . . . ,'WN−1)

(excluding the increment for the final timestep) computes a conditional Gaussian
probability distribution pS(ŜN |W). For a scalar SDE, if μW and σW are the mean
and standard deviation for given W , then

ŜN (W,Z)= μW +σWZ,

where Z is a unit Normal random variable. The expected payoff can then be ex-
pressed as

V̂ = EW

[
EZ[f (ŜN ) |W ]

]
=
∫ {∫

f (ŜN ) pS(ŜN |W) dŜN

}
pW(W) dW.
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The outer expectation/integral is an average over the discrete Wiener increments,
while the inner conditional expectation/integral is averaging over Z.

To compute the sensitivity to the input parameter θ , the first step is to apply the
pathwise sensitivity approach for fixed W to obtain ∂μW/∂θ,∂σW/∂θ. We then
apply LRM to the inner conditional expectation to get

∂V̂

∂θ
= EW

[
∂

∂θ
EZ

[
f (ŜN) |W

]]
= EW

[
EZ

[
f (ŜN )

∂(logpS)

∂θ
|W

] ]
,

where pS is defined in (7) and

∂(logpS)

∂θ
= ∂(logpS)

∂μW

∂μW

∂θ
+ ∂(logpS)

∂σW

∂σW

∂θ
.

The Monte Carlo estimators for V̂ and ∂V̂ /∂θ have the form

M−1
M∑

m=1

Ŷ (m), M−1
M∑

m=1

Ŷ
(m)
θ ,

where Ŷ (m) is an unbiased estimator for EZ

[
f (ŜN ) |W(m)

]
and Ŷ (m)

θ is an unbiased

estimator for EZ

[
f (ŜN )

∂(logpS)
∂θ

|W(m)
]

for a given set of Brownian increments

W(m).
Although the discussion so far has considered an option based on the value of

a single underlying value at the terminal time T , it will be shown that the idea ex-
tends very naturally to multidimensional cases, producing a conditional multivariate
Gaussian distribution, and also to financial payoffs which are dependent on values
at intermediate times.

3.3 Efficient Estimators

It is important that Ŷ and Ŷθ have low variance to minimise the number of path sim-
ulations which must be performed to achieve a given accuracy. Rather than defining
Ŷ (m) to be simply

Ŷ (m) = f (μ
(m)
W +σ

(m)
W Z(m)),

using a single independent Z sample for each Brownian path, it is better use anti-
thetic variates to reduce the variance, noting that

EZ

[
f (ŜN ) |W

]
= EZ

[
1
2

(
f (μW+σWZ)+f (μW−σWZ)

)]
,

and also use multiple independent Z samples for each Brownian path by defining
Ŷ (m) to be
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Ŷ (m) = P−1
P∑

p=1

1
2

(
f (μ

(m)
W +σ (m)W Z(m,p))+f (μ

(m)
W −σ (m)W Z(m,p))

)
.

The optimal number of samples will be considered later, but the variance VZ[Ŷ (m) |W ]
will be particularly small if f (S) is locally differentiable, and in this case a single
Z sample is probably sufficient.

For a scalar SDE and a given W ,

logpS =− logσW − (ŜN −μW)
2

2σ 2
W

− 1
2 log(2π)

and

EZ

[
f (ŜN )

∂(logpS)

∂θ
|W

]
= ∂μW

∂θ
EZ

[
f (ŜN)

∂(logpS)

∂μW

|W
]

+ ∂σW

∂θ
EZ

[
f (ŜN)

∂(logpS)

∂σW
|W

]
.

Looking at the first of the two expectations on the r.h.s., then

EZ

[
f (ŜN )

∂(logpS)

∂μW

|W
]
= EZ

[
Z

σW
f (μW+σWZ)

]

= EZ

[
Z

2σW

(
f (μW+σWZ)−f (μW−σWZ)

)]
.

If f (S) is locally differentiable, this is the expectation of a quantity which is O(1) in
magnitude, and one Z sample is probably sufficient to estimate its value. If f (S) is
discontinuous, then for paths near the discontinuity the expectation is of a quantity
which is O(σ−1

W )=O(h−1/2) and it will be more efficient to use multiple samples
to estimate the expected value.

Similarly, using the additional result that EZ[Z2−1] = 0,

EZ

[
f (ŜN )

∂(logpS)

∂σW
|W

]

= EZ

[
Z2−1

σW
f (μW+σWZ)

]

= EZ

[
Z2−1

2σW

(
f (μW+σWZ)−2f (μW)+f (μW−σWZ)

)]
.

The expression within this expectation is in general no larger than for the previous
expectation, and so the same set of samples will suffice.

Combining these two derivations, we finally define Ŷ (m)
θ to be

Ŷ
(m)
θ = ∂μW

∂θ
Ŷ (m)
μ + ∂σW

∂θ
Ŷ (m)
σ
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where Ŷ (m)
μ and Ŷ (m)

σ are the following averages based on P independentZ samples,

Ŷ (m)
μ = P−1

P∑

p=1

Z(m,p)

2σW

(
f (μ

(m)
W +σ

(m)
W Z(m,p))−f (μ

(m)
W −σ

(m)
W Z(m,p))

)
(8)

Ŷ (m)
σ = P−1

P∑

p=1

(Z(m,p))2−1

2σ (m)W

(
f (μ

(m)
W +σ

(m)
W Z(m,p))−2f (μ(m)

W )

+f (μ
(m)
W −σ

(m)
W Z(m,p))

)

3.4 Multivariate Generalisation

These estimators can be generalised to the case of multiple assets with a multivariate
Gaussian distribution conditional on the set of Wiener increments which lead to
approximation ŜN−1 at time T−h. If μW is now the column vector of conditional
expectations E[ŜN |W ], and ΣW is the covariance matrix, then ŜN can be written as

ŜN (W,Z)= μW +CWZ,

where Z is a vector of uncorrelated unit Normal variables and CW is any matrix
such that ΣW = CW CT

W , with CT
W denoting the matrix transpose. Provided ΣW is

non-singular, the joint probability density function for S is

logpS =− 1
2 log |ΣW |− 1

2 (ŜN −μW)
T Σ−1

W (ŜN −μW)− 1
2d log(2π),

where d is the dimension of Z. Differentiating this (see [7, 20]) gives

∂ logpS
∂μW

= Σ−1
W (ŜN −μW) = C−TW Z,

where C−TW is shorthand for (C−1
W )T , and

∂ logpS
∂ΣW

= − 1
2Σ

−1
W + 1

2Σ
−1
W (ŜN−μW)(ŜN−μW)

T Σ−1
W = 1

2 C
−T
W

(
ZZT−I)C−1

W .

For a given W ,

EZ

[
f (ŜN )

∂(logpS)

∂θ
|W

]
=
(
∂μW

∂θ

)T
EZ

[
f (ŜN)

∂(logpS)

∂μW

|W
]

+ Trace

(
∂ΣW

∂θ
EZ

[
f (ŜN )

∂(logpS)

∂ΣW

|W
])

,

where the trace of a matrix is the sum of its diagonal elements. To obtain efficient
estimators, we again use antithetic variates to get
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EZ

[
f (ŜN )

∂(logpS)

∂μW

|W
]
= EZ

[
1
2

(
f (μW+CWZ)−f (μW−CWZ)

)
C−TW Z

]
,

and we use EZ[ZZT−I ] = 0 to give

EZ

[
f (ŜN )

∂(logpS)

∂ΣW

|W
]

= EZ

[
1
4

(
f (μW+CWZ)−2f (μW)+f (μW−CWZ)

)
C−TW (ZZT−I )C−1

W

]
.

These two results lead to the estimator

Ŷ
(m)
θ =

(
∂μW

∂θ

)T
Ŷ (m)
μ +Trace

(
∂ΣW

∂θ
Ŷ
(m)
Σ

)

where Ŷ (m)
μ and Ŷ (m)

Σ are defined as

Ŷ (m)
μ = P−1

P∑

p=1

(
f (μ

(m)
W +C(m)

W Z(m,p))−f (μ
(m)
W −C(m)

W Z(m,p)) (C
(m)
W )−T Z(m,p)

)

(9)

Ŷ
(m)
Σ = P−1

P∑

p=1

1
4

(
f (μ

(m)
W +σ (m)W Z(m,p))−2f (μ(m)

W )+f (μ(m)
W −σ (m)W Z(m,p))

)

× (C
(m)
W )−T

(
Z(m,p) (Z(m,p))T−I

)
(C

(m)
W )−1.

If the payoff also depends on values at intermediate times τj , not just at maturity,
these can be handled by omitting the simulation time tn closest to each measurement
time τj , using a timestep twice as big as usual for the time interval [tn−1, tn+1].
Using Brownian interpolation conditional on the values Ŝn±1, with constant drift
and volatility based on Ŝn−1, results in a Gaussian distribution for Ŝ(τj ) of the form

Ŝ(τj )= Ŝn−1+ τj − tn−1

2h

(
Ŝn+1− Ŝn−1

)+
√
(tn+1−τj )(τj−tn−1)

2h
Cn−1 Z

where Cn−1C
T
n−1 is the covariance matrix for Ŝn+1 conditional on Ŝn−1, and Z is

again a vector of uncorrelated unit Normal variables. Collectively, the values Ŝ(τj )
form a set with a multivariate Normal distribution, conditional on the set of dis-
crete Wiener increments, with the values at different times being independently dis-
tributed. One can then apply the theory above to obtain the sensitivities.

The Likelihood Ratio Method is not applicable when the covariance matrix Σ is
singular. This situation occurs, for example, in the LIBOR market model driven by
a single Brownian motion [3]. A solution is to introduce an additional diffusion in
the final timestep, for example by replacing Σ by Σ+σI , where I is the identity
matrix. If the extra diffusion is of a similar magnitude (e.g. σ is approximately equal
to the largest eigenvalue of Σ) this will introduce an O(h) bias in the expected
payoff and its sensitivity, but this bias is of the same order of magnitude as the weak
convergence error associated with the Euler approximation.



Se
co

nd
 p

ro
of

s

378 Michael B. Giles

3.5 Optimal Number of Samples

The use of multiple samples to estimate the value of the conditional expectations
is an example of the splitting technique [1]. If W and Z are independent random
variables, then for any function g(W,Z) the estimator

ŶM,P =M−1
M∑

m=1

⎛

⎝P−1
P∑

p=1

g(W(m),Z(m,p))

⎞

⎠

with independent samples W(m) and Z(m,p) is an unbiased estimator for

EW,Z [g(W,Z)]≡ EW

[
EZ[g(W,Z) |W ]

]
,

and its variance is

V[ŶM,P ] =M−1
VW

[
EZ[g(W,Z) |W ]

]
+ (MP)−1

EW

[
VZ[g(W,Z) |W ]

]
.

Applying this general result to our vibrato estimators with P samples for Z for each
simulation path, the variance is of the form

v1M
−1+v2 (MP)−1,

and the cost of computing ŶM,P is proportional to

c1M+ c2MP,

with c1 corresponding to the path calculation and c2 corresponding to the payoff
evaluation. For a fixed computational cost, the variance can be minimised by min-
imising the product

(
v1+v2P

−1) (c1+c2P)= v1 c2P +v1 c1+v2 c2+v2 c1P
−1,

which gives the optimum value Popt =√v2 c1/v1 c2.
c1 is O(h−1) since the cost is proportional to the number of timesteps, and c2

is O(1), independent of h. If the payoff is Lipschitz, then Ŷθ is O(1) for all paths,
and so v1 and v2 are both O(1) and Popt=O(h−1/2). On the other hand, if the
payoff is discontinuous with an O(h1/2) fraction of paths being within O(h1/2) of
the discontinuity (which assumes a locally bounded density for the distribution of
S(T )) then for these paths EZ[Ŷθ |W ]=O(h−1/2) and VZ[Ŷθ |W ]=O(h−1). This
leads to v1 and v2 both being O(h−1/2) and so again Popt=O(h−1/2).

In both cases, as h→ 0, the variance is asymptotically equal to v1M
−1 and the

cost is asymptotically equal to c1M . Thus the use of the vibrato technique does not,
to leading order, increase the variance or the computational cost compared to the use
of exact conditional expectation in the few cases for which this exists in a simple
closed form.
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Fig. 1 Comparison of Vega variance for LRM, pathwise and vibrato estimators.

3.6 Numerical Results

We consider a 2-dimensional Geometric Brownian Motion,

dS(1)t = r S
(1)
t dt+σ (1) S

(1)
t dW(1)

t

dS(2)t = r S
(2)
t dt+σ (2) S

(2)
t dW(2)

t

with parameters r = 0.05, σ (1)= 0.2, σ (2)= 0.3 and correlation %= 0.5 between
the driving Brownian motions. The payoff function is chosen to be a digital call
paying a discounted value of exp(−rT ) if and only if the value of S(1)(T ) exceeds
the strike K . Parameter values T =1,K=100 are used. This very simple example
is chosen so that in Fig. 1 we can compare the variance for the vibrato calculation to
the variance of both the LRM method and also the pathwise method in combination
with the analytic conditional expectation.

The figure shows the increase in the variance of the estimator for one of the
Vegas, ∂V/∂σ (1), as the timestep h is reduced. We see the rapid increase in the
variance of the LRM method which is O(h−1) asymptotically, and the much slower
O(h−1/2) growth in the variance of the two sets of results based on the pathwise
approach. The difference between the pathwise and vibrato results is due to the
number of Z samples used in the vibrato method. Only one sample was used for
the results presented here; increasing this number will lead to the vibrato variance
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converging to the variance of the pathwise method using the analytic conditional
expectation. It is striking how much larger the LRM variance is. With 2 timesteps it
is already 10 times larger than the vibrato method with a single Z sample, while for
128 timesteps it is 200 times larger.

4 Adjoint Pathwise Sensitivity Implementation

There is insufficient space in this paper to fully explain the adjoint implementation,
but it is important to note that the vibrato approach is completely compatible with
an adjoint calculation of the path sensitivity, and thus it is possible to obtain an
unlimited number of first order sensitivities at a cost which is similar to the cost of
the original calculation.

To give an introduction to the ideas, we follow the terminology used by the Auto-
matic Differentiation community [2, 4, 6, 15]. Forward mode sensitivity calculation
(like the standard pathwise sensitivity calculation) starts with a perturbation to an
input and derives the corresponding perturbation to all subsequent variables. Doing
this within a computer program at the level of individual binary operation (e.g. ad-
dition or multiplication) of the form

c = g(a,b)

leads to the corresponding linear perturbation equation

ċ = ∂c

∂a
ȧ+ ∂c

∂b
ḃ

where ċ denotes the derivative of c with respect to the perturbed input parameter.
By contrast, the reverse (or adjoint) mode starts with the fact that the final out-

put of interest has unit sensitivity with respect to itself, and then works backward
through the sequence of computer instructions, to determine the sensitivity of the
final output to changes in the input parameters of each instruction. Assuming that a
and b are only used for the computation of c in the above example (i.e. they are not
used as inputs for any other calculation) the corresponding two adjoint equations
are

a = ∂c

∂a
c, b = ∂c

∂b
c

where a represents the sensitivity of the final output to changes in a.
The key point of the adjoint approach is that by working backwards from the

payoff calculation through the path evolution back to the start, it can compute the
sensitivity of a single output quantity (such as a payoff function) to an unlimited
number of input parameters (such as initial price, interest rate, volatility, etc.) at
a total cost which is little more than the original calculation. For details on this
approach and its use in computational finance, see [11, 13, 16].
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In applying these adjoint ideas to the vibrato approach in this paper, for each
path in the scalar case one would simulate the path up to ŜN−1 and compute the
quantities Ŷμ and Ŷσ as defined in (8). These values correspond to μW and σW , the
sensitivity of the estimated payoff for that path to changes in μW and σW . This is
the initialisation required for the reverse pass of the adjoint path calculation which
will lead to the calculation of θ , the sensitivity of the estimated payoff for that path
to changes in an input parameter θ . Similarly, in the multivariate case the adjoint
initialisation is μW = Ŷμ and ΣW = ŶΣ , where Ŷμ and ŶΣ are as defined in (10).

5 Conclusions and Future Work

In this paper we have introduced the idea of vibrato Monte Carlo sensitivity cal-
culations. This can be viewed as an application of the Conditional Monte Carlo
approach, and is a generalisation of the use of conditional expectation for payoff
smoothing. It leads to a hybrid method for calculating sensitivities, applying path-
wise sensitivity analysis to the path simulation, and the Likelihood Ratio Method
to the payoff evaluation. This offers the computational efficiency of the pathwise
method, particularly when combined with an adjoint implementation, together with
the greater generality and ease-of-implementation of LRM.

Although the paper discusses only first order sensitivities, the approach extends
naturally to higher order derivatives. A similar variance reduction construction for
second order derivatives leads to an estimator with a variance which is O(h−1/2)

for payoffs which are continuous but have a discontinuous derivative, and O(h−3/2)

for payoffs which are discontinuous.
Another direction for future research is the use of the vibrato idea for multilevel

Monte Carlo analysis [12]. Analytic conditional expectation is currently used to
treat discontinuous payoffs to obtain improved convergence rates with the Milstein
scheme [10]. The vibrato approach will allow this to be generalised to multivariate
cases.
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The Weighted Variance Minimization in
Jump-Diffusion Stochastic Volatility Models

Anatoly Gormin and Yuri Kashtanov

Abstract The Monte Carlo method is applied to estimation of options in the case
of a stochastic volatility model with jumps. An option contract has a number of pa-
rameters like a strike, an exercise date, etc. Estimators of option prices with different
values of its parameters are constructed on the same trajectories of the underlying
asset price process. The problem of minimization of the weighted sum of their vari-
ances is considered. Optimal estimators with minimal weighted variance are pointed
out. Their approximations are applied to variance reduction.

1 Introduction

The Monte Carlo method provides a general approach for the options prices val-
uation. It is especially useful in the cases of complicated models, path-dependent
options or multidimensional underlyings. Since the main disadvantage of the Monte
Carlo method is the low rate of convergence, it is important to reduce variances of
estimators.

This problem was investigated by many authors for different models; see for
example [10] in the case of diffusion model or [4], [5] in the case of stochastic
volatility model. The authors use the methods of importance sampling and control
variates to reduce the variance of the particular option estimator and point out the
optimal estimators which reduce the variance to zero. The method of control variates
was used in [11] and [14] in particular jump-diffusion models.
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Stochastic volatility models are considered in detail in [12]. Homogeneous jump-
diffusion models (Levy processes) are described in [2], the optimal hedging strate-
gies for these models are pointed out. More general jump-diffusion models are con-
sidered in [7] and [13], Chapter 8. As mentioned in the last paper, jumps in financial
models “provide a better fit to time series data and greater flexibility in matching
derivative prices”.

Our approach differs from above one. We consider several estimators (on the
same paths of the underlying asset price process) corresponding different param-
eters such as a strike price, a barrier etc. and reduce the weighted sum of vari-
ances. The computation of several options is important in portfolio optimization,
risk management etc. (see [9]). The method of importance sampling was applied in
[3], Chapter 4 to the weighted sum of variances minimization in the case of sev-
eral integrals calculation with respect to one probability measure. We considered
the problem of the weighted variance minimization in [8] in the case of a diffu-
sion model, the methods of importance sampling and control variates were applied
to minimization of the weighted variance. Here we extend the results of [8] to the
case of the stochastic volatility jump-diffusion model (SVJD) and consider several
weighting parameters.

In Section 2 the optimal estimators are pointed out; their specifications for dif-
ferent options are given in Section 3. The optimal estimators can not be applied for
computations directly because they refer to the values, the computation of which
is of the same complexity as the computation of the option prices themself. But if
we have some approximations to these values we can construct unbiased estimators
which have less variance than the standard ones. We compute preliminarily these ap-
proximations on a grid, and then use their linear interpolations in simulations. Due
to the simplicity of this procedure, the time of the trajectory simulation increases
insignificantly. To understand in what cases this variance reduction is effective, note
that the total computational time Tε, where ε is an accuracy of estimation, can be
expressed in the form

Tε = t0+ cα
D

ε2
t1, (1)

where t0 is the time of approximations calculation, t1 is the time of one trajectory
simulation, D is the variance of an estimator, cα is a constant dependent on the
confidence level α. Thus, if we are interested in high accuracy, the estimator with
smaller variance will be more effective however big t0 is.

Approximations of optimal functions are constructed in Section 4; they are used
in estimators which we apply to price valuation. Results of computations are shown
in Section 5.

Below we describe the process of underlying prices St and assume that the
process of interest rate rt has the form rt = r(t,St ). Let (+,F ,P) be a proba-
bility space, Nt be a Poisson process with constant intensity λ. This means that
Nt =∑

n≥1 1{Tn≤t}, where T1, (Tn+1− Tn)n≥1 are i.i.d. exponential random vari-
ables with parameter λ. Let (Yn)n≥1 be a sequence of independent random vari-
ables with a distribution m(dy) on a measurable space (E,E), p(dt,dy) be the
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counting measure of (Tn,Yn)n≥1, and ν(dt,dy)= λm(dy)dt be the compensator of
p(dt,dy). Denote by p̃(dt,dy) the compensated measure p(dt,dy)−ν(dt,dy).

Suppose the vector process (St ,Vt )0≤t≤T has the representation

St =
∫ t

0
μ(τ,Sτ )Sτ dτ +

∫ t

0
σ(τ,Vτ )Sτ dW

1
τ +

Nt∑

n=1

γ (Tn,STn−,Yn)STn− (2)

Vt =
∫ t

0
η(τ,Vτ )dτ +

∫ t

0
θ(τ,Vτ )dW

2
τ , (3)

W ′
t = ρW 1

t +
√

1−ρ2W 2
t ,

where μ(t,St ) = r(t,St )−λ
∫
E
γ (t,St−,y)m(dy), the functions σ , θ are positive,

|ρ| < 1, γ (t,x,y) > −1, and Wt = (W 1
t ,W

2
t )

T is the standard two-dimensional
Brownian motion independent of the sequence (Tn,Yn)n≥1. Let a filtration F =
(Ft )t≥0 be the natural filtration generated by (Wt )t≥0 and (Tn,Yn)n≥1.

Note that if we consider (2), (3) as equations for (St ,Vt ) then under well-known
conditions on the coefficients r , σ , γ , etc. (see [13], Chapter 3), there exists a unique
strong solution. An appropriate choice of the function γ (t,x,y) allows one to con-
struct a process with a state-dependent intensity of jumps (see [7]). Usually the
coefficients η and θ are chosen so that the process Vt has the mean-reversion prop-
erty.

We suppose that there exist constants c1 and c2 such that for almost every k ∈-
a payoff function fk(S) satisfies the inequality fk(S) ≤ c1||S||+ c2 P-a.s., where S
is a random trajectory, ||S|| = sup

t≤T
St .

Let Rt = e−
∫ t

0 rsds , under the measure P the discounted asset price process
(RtSt )0≤t≤T is an Ft -martingale, and we will evaluate the option price given by
the formula Ck = E(RT fk). Let the parameter k take values from a set -. We shall
construct unbiased estimators Ĉk for Ck on the same trajectories of the process
(St )0≤t≤T with the minimal weighted variance

∫

-

Var(Ĉk)Q(dk), (4)

where Var(ξ) = E(ξ −Eξ)2, the measure Q defines the accuracy of Ck estimation.
These weights may be chosen in different ways. The simplest choice is Q{k} =
1; if k is the strike price it is more natural to chose Q{k} = Ṽk , where Ṽk is an
approximation of Vega of the option. For convenience assume that Q(-)= 1.

2 Estimators with the Minimal Weighted Variance

We consider methods of importance sampling and control variates to reduce the
weighted variance.
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Importance sampling. Let υt be an F-adapted two dimensional process, κt (y) be
an F-predictable E-marked process such that κTn(Yn) > −1 for any n ≥ 1. Denote
by ϑ the pair {υ,κ}. Let (Lϑ

t )0≤t≤T be the solution of the equation

dLϑ
t

Lϑ
t−
= υtdWt +

∫

E

κt (y)p̃(dt,dy), Lϑ
0 = 1.

From Itô’s lemma (see [2], Chapter 8) it follows that the solution is given by the
formula

Lϑ
t = exp

(∫ t

0
υsdWs− 1

2

∫ t

0
|υs |2ds−

∫ t

0

∫

E

κs(y)ν(ds,dy)

)
(5)

×
Nt∏

n=1

(
1+κTn(Yn)

)
.

If for each t ∈ [0,T ]

|υt |2+
∫

E

κ2
t (y)m(dy)≤ c(t) P− a.s., (6)

where c(t) ≥ 0 is non-random such that
∫ T

0 c(t)dt <∞, then (Lϑ
t )0≤t≤T is a P-

martingale and ELϑ
T = 1 (see [13], Chapter 3). Therefore, we can define the measure

P
ϑ by dP

ϑ = Lϑ
T dP. Under the measure P

ϑ the process Wυ
t = Wt −

∫ t
0 υsds is a

Wiener process and p(dt,dy) has the compensator (1+ κt (y))ν(dt,dy) (see [13],
Chapter 3). Note that if we define ψt =

∫
E
κt (y)m(dy)+ 1 and ht (y) = (κt (y)+

1)/ψt , then p(dt,dy) has (Pϑ ,Ft )-local characteristics (λψt ,ht (y)m(dy)): under
the new measure P

ϑ , the intensity is equal to λψt and the distribution of marks is

ht (y)m(dy). Let us denote by E
ϑ the expectation under P

ϑ . Define ρϑT =
(
Lϑ
T

)−1

and consider estimators in the form

Ĉk(ϑ)= RT fkρ
ϑ
T . (7)

Control variates. Denote by ϕ the pair {z,ζ }, where (zt )0≤t≤T is an F-adapted two
dimensional process and (ζt (y))0≤t≤T is an F-predictable E-marked process such
that

E

∫ T

0
|zt |2dt <∞, E

∫ T

0

∫

E

ζ 2
t (y)ν(dt,dy) <∞.

In this case Mϕ
t =Mz,ζ = ∫ t

0 zsdWs +
∫ t

0

∫
E
ζs(y)p̃(ds,dy) is a square integrable

martingale (see [2], Chapter 8) and we consider estimators of the form

C̄k(ϕ)= RT fk+M
ϕ
T . (8)

Since E
ϑĈk(ϑ) = EC̄k(ϕ) = Ck , the problems of the weighted variance mini-

mization are reduced to the weighted second moment minimization
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min
ϑ

∫

-

E
ϑ Ĉ2

k (ϑ)Q(dk), (9)

min
ϕ

∫

-

EC̄2
k (ϕ)Q(dk). (10)

First, consider the case of importance sampling. Denote

Ĝ= RT

(∫

-

f 2
k Q(dk)

) 1
2

, (11)

then
∫

-

E
ϑĈ2

k (ϑ)Q(dk)= E
ϑ

(
R2
T

∫

-

f 2
k Q(dk)(ρϑT )

2
)
= E

ϑ
(
ĜρϑT

)2
.

Introduce the martingale μ̂t = E(Ĝ|Ft ).

Theorem 1. There exist an F-adapted process α̂t and an F-predictable E-marked
process β̂t (y) such that

dμ̂t = α̂t dWt +
∫

E

β̂t (y)p̃(dt,dy). (12)

The minimum of (9) equals
(
EĜ

)2
and is attained when

υt = α̂t

μ̂t

, κt (y)= β̂t (y)

μ̂t−
, (13)

if the condition (6) for υ, κ holds.

Proof. The martingale μ̂t is square-integrable and using the martingale representa-
tion theorem (see [13], Chapter 2), we get that there exist processes α̂t , β̂t (y) such
that the differential for μ̂t has the form (12). Define υ̂t , κ̂t (y) as in (13), then from
Itô’s lemma we have

ln μ̂s = ln μ̂0+
∫ s

0

α̂t

μ̂t

dWt − 1

2

∫ s

0

|α̂t |2
μ̂2
t

dt−
∫ s

0

∫

E

β̂t (y)

μ̂t−
ν(dt,dy)

+
∫ s

0

∫

E

ln

(

1+ β̂t (y)

μ̂t−

)

p(dt,dy)

=
∫ s

0
υ̂t dWt − 1

2

∫ s

0
|υ̂t |2dt

−
∫ s

0

∫

E

κ̂t (y)ν(dt,dy)+ ln

(
Ns∏

n=1

(1+ κ̂Tn(Yn))

)

.

Since β̂Tn(Yn) = μ̂Tn − μ̂Tn−, we have κ̂Tn(Yn) = μ̂Tn/μ̂Tn−− 1, and therefore for

any n ≥ 1 κ̂Tn(Yn) > −1 P− a.s. Since υ̂, κ̂ satisfy (6), EL
υ̂,κ̂
T = 1 and we can
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construct the probability measure P
υ̂,κ̂ = P

ϑ̂ with the density

dP
ϑ̂

dP
= Lϑ̂

T = exp
(
ln μ̂t − ln μ̂0

)= Ĝ

EĜ
.

Thus, we have min
ϑ

E
ϑ
(
ĜρϑT

)2 ≤ E
ϑ̂
(
Ĝρϑ̂T

)2 = μ̂2
0. Since for any ϑ

E
ϑ
(
ĜρϑT

)2 ≥ (
E
ϑĜρϑT

)2 = μ̂2
0,

minimum (9) is equal to
(
EĜ

)2
.

Specifications of this result for different options are given in Section 3; their appli-
cation to option valuation is described in Sections 4 and 5.

Now consider the case of control variates. Let Ḡ= RT

∫
-
fkQ(dk), then

∫

-

EC̄2
k (ϕ)Q(dk)= EĜ2+2EḠM

ϕ
T +E

(
M

ϕ
T

)2

= EĜ2−Var(Ḡ)+Var
(
Ḡ+M

ϕ
T

)
. (14)

Denote by μ̄t the martingale E(Ḡ|Ft ).

Theorem 2. The minimum of (10) equals EĜ2−Var(Ḡ) and is attained when

zt =−ᾱt , ζt (y)=−β̄t (y) (15)

where the F-adapted process ᾱt and the F-predictable E-marked process β̄t (y) are
such that dμ̄t = ᾱt dWt +

∫
E
β̄t (y)p̃(dt,dy).

Proof. Note that only the last term in (14) depends on ϕ = {z,ζ } and may be mini-
mized. The martingale μ̄t is square-integrable, then using the martingale represen-
tation theorem (see [13], Chapter 2), we obtain that there exist an F-adapted process
ᾱt and F-predictable E-marked process β̄t (y) such that

E

∫ T

0
|ᾱt |2dt <∞, E

∫ T

0

∫

E

β̄2
t (y)q(dt,dy) <∞

and

μ̄t = μ̄0+
∫ t

0
ᾱt dWt +

∫ t

0

∫

E

β̄t (y)p̃(dt,dy).

If zt =−ᾱt and ζt (y)=−β̄t (y), then

Var
(
Ḡ+M

z,ζ
T

)
= Var(Ḡ+μ0−μT )= Var(μ0)= 0.

Note that if the measure Q is supported at one point, the minimal weighted vari-
ances for importance sampling and control variates methods are equal to zero. In
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other cases the difference of the minimal weighted variances of these methods is
equal to Var(Ĝ)−Var(Ḡ) and depends on fk , Q, -.

3 Application to the Options Valuation

Here specifications of general results in the case of a strike as a weighting parameter
are given. Optimal functions which minimize the weighted variance are pointed out.
Their approximations are given in Section 4 and used for the estimators’ construc-
tion which reduce the weighted variance in Examples 1, 2.
The case of Asian options. Consider Asian options with the payoff function

fK(S)= φK(YT ), YT = 1

T

∫ T

0
Stdt,

where φK(x) is (x−K)+ for a call option and (K − x)+ for a put option. Let the
strikes K ∈-= [K1,K2].
Importance sampling. The functional Ĝ defined in (11) has the form Ĝ=RT Ĥ (YT ),

where Ĥ (x)=
(∫ K2

K1
φ2
K(x)Q(dK)

) 1
2
. ConsideringXt = (St ,Vt ,Yt ) as a 3-dimensional

diffusion process, we obtain

μ̂t = E(Ĝ|Ft )= E

(
Rte

−∫ Tt rsdsĤ

(
Yt + 1

T

∫ T

t

Sτ dτ

)∣∣∣∣Ft

)

= RtE

(
e−

∫ T
t rsdsĤ

(
Yt + 1

T

∫ T

t

Sτ dτ

)∣∣∣∣St ,Yt

)
= Rtu(t,St ,Vt ,Yt ) ,

where

u(t,x,z,ζ )= E

(
e−

∫ T
t rsdsĤ

(
ζ + 1

T

∫ T

t

Sτ dτ

)∣∣∣∣St = x,Vt = z

)
. (16)

Assume that the function u(t,x,z,ζ ) is smooth enough, then using Itô’s lemma for
u(t,Xt ) = u(t,St ,Vt ,Yt ), we get the representation of the P-martingale μ̂t in the
form

dμ̂t = Rt

[
∂u

∂x
(t,Xt )σ (Vt )St + ∂u

∂z
(t,Xt )θtρ

]
dW 1

t +

+Rt

∂u

∂z
(t,Xt )θt

√
1−ρ2dW 2

t +Rt

∫

E

(#u(t,Xt−;y)−u(t,Xt−)) p̃(dt,dy),

where #u(t,Xt ;y)= u(t,St (1+γ (t,St ,y)),Vt ,Yt ). Thus, we obtain the represen-
tations for υt = (υ1

t ,υ
2
t ), κ(t,y) defined in (13):

υ1
t =

u′x(t,Xt )σ (Vt )St +u′z(t,Xt )θtρ

u(t,Xt )
,
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υ2
t =

u′z(t,Xt )θt
√

1−ρ2

u(t,Xt )
, κt (y)= #u(t,Xt−;y)

u(t,Xt−)
−1. (17)

Control variates. In the same way, we can obtain that the optimal processes zt =
(z1
t , z

2
t ) and ζ(t,y) defined in (15) are given by

z1
t =−Rt

(
u′x(t,Xt )σ (Vt )St +u′z(t,Xt )θtρ

)
,z2

t =−Rtu
′
z(t,Xt )θt

√
1−ρ2,

ζ(t,y)= Rt (u(t,Xt−)−#u(t,Xt−;y)) , (18)

where

u(t,x,z,ζ )= E

(
e−

∫ T
t rsdsH̄

(
ζ + 1

T

∫ T

t

Sτ dτ

)∣∣
∣
∣St = x,Vt = z

)
, (19)

the function H̄ (x)= ∫ K2
K1

φK(x)Q(dK). Approximations of functions (16) and (19)
are constructed in Section 4.
The case of Plain Vanilla options. Consider Plain Vanilla options with the pay-
off function φK(ST ) and strikes K ∈ - = [K1,K2]. In the same way as for Asian
options we get that the optimal functions υt , κt (y) for the importance sampling
estimator ĈK(υ,κ) are given in (17), where the process Xt = (St ,Vt ) and

u(t,x,z)= E

(
e−

∫ T
t rsdsĤ (ST )

∣
∣∣St = x,Vt = z

)
. (20)

For the control variates estimator C̄(z,ζ ) optimal zt , ζt (y) are given in (18) with
Xt = (St ,Vt ) and

u(t,x,z)= E

(
e−

∫ T
t rsdsH̄ (ST )|St = x,Vt = z

)
. (21)

The same method as for Asian options is suggested for the function u(t,x,z) ap-
proximation in Section 4.

4 Approximations

Approximations of the function u in (16), (19) allow us to construct approximations
of optimal functions in (17), (18). Note that the unbiasedness of the estimators (7),
(8) doesn’t depend on the accuracy of the optimal functions approximations. The
function u can be approximated by different methods. We use in simulations the
method described below.

Let us define for τ > t , x > 0, the process

S̃t,x(τ )= x exp{μ̃(τ − t)+ σ̃ (Wτ −Wt)}
Nτ∏

n=Nt+1

(1+ γ̃ (Yn)), (22)
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where Wt is the one-dimensional Wiener process, Nt is the Poisson process with
constant intensity λ̃, and m̃(dy) is the distribution of marks, μ̃ = r̃ − 0.5σ̃ 2 −
λ̃
∫
E
γ̃ (y)m̃(dy), the function γ̃ (y) depends only on y, and r̃ , σ̃ are positive con-

stants. Let S̃t = S̃0,S0(t). We approximate the optimal function u(t,x,z,ζ ) in (16),
(19) by an approximation of the function

ũ(t,x,z,ζ )= e−r̃(T−t)EH̃ (ζ + 1

T
ỹt,x), ỹt,x =

∫ T

t

S̃t,x(τ )dτ,

where H̃ is a piecewise linear approximation of H̄ or Ĥ . The first and the second
moment of ỹt,x can be calculated:

Eỹt,x = x

r

(
er̃(T−t)−1

)
, Eỹ2

t,x = 2x2
∫ T−t

0

∫ T−t

u

er(u+v)eMudvdu, (23)

whereM = σ̃ 2+ λ̃∫
B
γ̃ 2(y)m̃(dy) and in the similar way as in [8], the distribution of

ỹt,x can be approximated by the log-normal distribution with the same first two mo-
ments. Thus, we can approximate the expectations E1[α,β)(ỹt,x), Eỹt,x1[α,β)(ỹt,x),
and get an analytic expression for the approximation of ũ. Note that the derivative
of this approximation with respect to z is equal to null.

In the case of Plain Vanilla options the functions (20), (21) are approximated by
ũ(t,x,z) = e−r̃(T−t)EH̃ (Z̃t,x(T )), where H̃ is a piecewise linear function and the
random variable Z̃t,x(T ) has log-normal distribution with the same first and second
moments as S̃t,x(T ).

5 Simulation Results

Here we illustrate the efficiency of above estimators in simulation. The jump-
diffusion stochastic volatility model (2), (3) is considered, where

η(t,Vt )= ξ(η−Vt ), θ(t,Vt )= θ
√
Vt , σ (t,Vt )=

√
Vt , γ̄ (t,St−,z)= ez−1.

That is, we consider the Heston model with jumps. The parameters of the Cox-
Ingersoll-Ross process Vt are as follows: ξ = 10, η = 0.04, θ = 0.2. The measure
m(dz) is the discrete distribution on {U,D} and m(U) = p, m(D) = 1−p, where
U = ln(1.05), D = ln(0.9), p = 0.7. The intensity λ= 5, the correlation coefficient
ρ = −0.5, the interest rate r = 0.05, and μ = r − λ(eD + (eU − eD)p− 1). The
initial stock price S0 = 100 and V0 = 0.04. In all examples the Euler scheme (for
example, see [1]) is applied to simulate the process (St ,Vt ) with the discretization
step equal to 0.001.

We calculate the relative computational costs as the ratio of computational times
R = T (1)/T (0), where T (i) are defined by formula (1); T (0) corresponds to the stan-
dard Monte Carlo and T (1) is a computational time of the estimators under consid-
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eration. For the standard Monte Carlo, we assume t (0)0 = 0, then the ratio is equal
to

R = t
(1)
0

T (0)
+ D(1)

D(0)

t
(1)
1

t
(0)
1

. (24)

To present the results of simulation we introduce the following notations: D = D(1)

D(0) ,

T = t
(1)
0
T (0) , τ = t

(1)
1

t
(0)
1

.

Example 1. Asian call options with strikes K ∈ - = [80,120] and the maturity
T = 1 are estimated. The measure Q is the uniform distribution on -. Divide the set
- into four subsets [80,90), [90,100], (100,110], (110,120]. The methods of im-
portance sampling and control variates are applied for each subset separately. The
estimators (7), (8) are constructed with the approximations of optimal functions
from Section 4. We simulate 104 trajectories of the underlying asset price process.
According to the formula (24) we calculate the relative computational costs R, the
ratio of the weighted variances D, and the value T for importance sampling esti-
mators (subscript is) and control variates (subscript cv). The ratio of times of one
trajectory simulation τ is not greater than 1.1 for importance sampling and 1.06 in
the case of control variates. The results are given in Table 1.

Table 1 The comparison of importance sampling and control variates.

Set [80,90) [90,100] (100,110] (110,120]
Ris 0.147 0.152 0.150 0.138

Rcv 0.12 0.138 0.155 0.175

Dis 0.035 0.036 0.023 0.012

Dcv 0.007 0.018 0.031 0.047

Tis 0.11 0.114 0.113 0.125

Tcv 0.113 0.119 0.123 0.127

It’s interesting to note that the importance sampling works better for the out-of-
the-money options pricing and control variates technique - for the in-the-money op-
tions pricing. For the sets [90,100] and (100,110] the confidence limits of the Asian
call option prices with the confidence level 0.99 are shown in Figure 1. The dashed
lines “Initial” represent confidence limits of the standard Monte Carlo estimator,
the solid lines “CV” represent confidence limits of the control variate estimator for
K ≤ 100, “IS” denotes the confidence limits of the importance sampling estimator
for K > 100.

When we change the probability measure in the case of importance sampling, we
change the drift coefficient of the underlying asset price process, the intensity and
the distribution of marks. In this example we have discrete distributions of marks
m(dz) and its changing corresponds to the probability of upward jump p = m(U)

changing. If we apply importance sampling method for strikes from the set [90,100]
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with constant probability of upward jump p= 0.7, the weighted variance is reduced
3 times. But if we change p, the weighted variance is reduced 21 times and the
graph of the probability-time is shown in Figure 2.

Fig. 1 Asian call option.

Fig. 2 Probability of upward jump.

Example 2. Consider Plain Vanilla options with the exercise date T = 1 and strikes
K ∈ - = {98+ i}10

i=0. Let the measure Q be the measure of the uniform distribu-
tion on -. We simulate 105 trajectories of the underlying asset. The method of
importance sampling reduces the weighted variance 88–fold (Dis = 0.011) with the
relative computational costs Ris = 0.014. The value Tis = 0.0015 and the ratio of
times of one trajectories simulation τis = 1.09. The control variates estimators re-
duce the weighted variance 83–fold (Dcv = 0.012) and Rcv = 0.0145, Tcv = 0.0017,
τcv = 1.06.

Since this example is quite simple, we can use it to compare the effectiveness of
described methods with a simpler one from [6], Example 4.1.4. Let the estimator



Se
co

nd
 p

ro
of

s

394 Anatoly Gormin and Yuri Kashtanov

for CK have the form

RT fK(ST )− e−r̃T
(
fK

(
S̃T
)−EfK

(
S̃T
))
,

where S̃T is defined in (22). Trajectories of the process S̃t and St are simulated using
the same realization of the random variables. Note that the variance reduction for
this estimator is possible because we can construct the process S̃t which is on the
one hand well correlated with St and on another hand is simple enough to calculate
the expectation analytically. This method reduce the weighted variance 78 times
(D = 0.0128), the relative computational costs R = 0.0129, τ = 1.01.

We don’t expect that our methods are more effective for simple models than some
simpler methods; but as we see, their efficiencies are similar.
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(t,m,s)-Nets and Maximized Minimum
Distance, Part II

Leonhard Grünschloß and Alexander Keller

Abstract The quality parameter t of (t,m,s)-nets controls extensive stratification
properties of the generated sample points. However, the definition allows for points
that are arbitrarily close across strata boundaries. We continue the investigation of
(t,m,s)-nets under the constraint of maximizing the mutual distance of the points
on the unit torus and present two new constructions along with algorithms. The first
approach is based on the fact that reordering (t, s)-sequences can result in (t,m,s+
1)-nets with varying toroidal distance, while the second algorithm generates points
by permutations instead of matrices.

1 Introduction

Important problems in image synthesis like e.g. anti-aliasing, hemispherical integra-
tion, or the illumination by area light sources can be considered as low-dimensional
numerical integration problems. Among the most successful approaches to comput-
ing this kind of integrals are quasi-Monte Carlo and randomized quasi-Monte Carlo
methods [9, 13, 2] based on the two-dimensional Larcher-Pillichshammer points
[10], which expose a comparatively large minimum toroidal distance.

These points belong to the class of (t,m,s)-nets in base q (for an extensive
overview of the topic we refer to [12, Ch. 4, especially p. 48]), which is given by
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Fig. 1 The Larcher-Pillichshammer points as an example of a (0,4,2)-net in base 2 superimposed
on all possible elementary intervals. There is exactly one point in each elementary interval.

Definition 1. For integers 0 ≤ t ≤ m, a (t,m,s)-net in base q is a point set of qm

points in [0,1)s such that there are exactly qt points in each elementary interval E
with volume qt−m.

Figure 1 shows an instance of a (0,4,2)-net in base 2 and illustrates the concept
of elementary intervals

E =
s∏

i=1

[
aiq

−bi , (ai +1)q−bi
)
⊆ [0,1)s

as used in the definition, where ai,bi ∈ Z, bi ≥ 0 and 0 ≤ ai < qbi . The concept of
(t,m,s)-nets can be generalized for sequences of points as given by

Definition 2. For an integer t ≥ 0, a sequence x0,x1, . . . of points in [0,1)s is
a (t, s)-sequence in base q if, for all integers k ≥ 0 and m > t , the point set
xkqm, . . . ,x(k+1)qm−1 is a (t,m,s)-net in base q.

Obviously, the stratification properties of (t,m,s)-nets and (t, s)-sequences are
best for the quality parameter t = 0, because then every elementary interval contains
exactly one point, as illustrated in Figure 1. The conception does not consider the
mutual distance of the points, which allows points to lie arbitrarily close together
across shared interval boundaries.

In this paper we continue previous work from [6] that used the minimum toroidal
distance

dmin ({x0, . . . ,xN−1}) := min
0≤u<v<N

‖xu−xv‖T
to classify point sets {x0, . . . ,xN−1}, where the toroidal distance of two points x =
(x1, . . . ,xs) ∈ [0,1)s and y= (y1, . . . ,ys) ∈ [0,1)s is defined as

‖x−y‖T :=
√√√√

s∑

i=1

(min{|xi−yi | ,1−|xi−yi |})2.

Maximizing the shift-invariant measure of toroidal distance further increases unifor-
mity, allows one to tile the resulting point sets, and to consider periodic integrands,
which is especially useful in the aforementioned graphics applications.

In Section 2 we therefore extend the construction of Larcher and Pillichshammer
to s = 3 dimensions resulting in a (0,m,3)-net in base 2, which exhibits a large
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minimum toroidal distance. In Section 3 we then present a new permutation-based
construction for (0,m,2)-nets in base 2, which often have a larger minimum toroidal
distance than can be obtained by any digital net in base 2.

2 A New (0,m,3)-Net in Base 2 with Large Minimum Toroidal
Distance

Although both the Hammersley and Larcher-Pillichshammer points are construc-
tions of (0,m,2)-nets in base 2, the latter have a much larger minimum toroidal
distance [8]. In fact already in [10, 11] the Hammersley points have been identified
to be the worst construction with respect to certain other measures, too.

The extension of the Larcher-Pillichshammer points to s = 3 dimensions has
been an open problem for long. In the following, we present a construction of a
(0,m,3)-net in base 2, where one two-dimensional projection equals the Larcher-
Pillichshammer points [9] and therefore benefits from their large minimum toroidal
distance.

2.1 Digital Nets and Sequences

We briefly summarize necessary notation and algorithmic facts on digital nets and
sequences from [12] in a simplified manner. While in general digital nets and se-
quences are defined using a finite field Fq , with q being a prime power, we only
consider the case q = 2 in the following.

Given suitable m×m-matrices C1, . . . ,Cs over F2, the i-th component of the
n-th point for 1≤ i ≤ s and 0≤ n < 2m can be generated by

x(i)n =
⎛

⎜
⎝

2−1

...

2−m

⎞

⎟
⎠

T ⎡

⎢
⎣Ci

⎛

⎜
⎝

d0(n)
...

dm−1(n)

⎞

⎟
⎠

⎤

⎥
⎦ ∈ [0,1),

where the matrix-vector multiplication has to be performed in F2 and the digits
dk(n) are defined by the binary expansion of

n=
m−1∑

k=0

dk(n)2
k.

The elements of the i-th generator matrix are denoted by c(i)j,r .
The theoretical construction of (t, s)-sequences requires generator matrices of

infinite size. However, in practice this does not pose a problem when enumerating
the points, since dk(n)= 0 for all sufficiently large k and, in addition, we require the
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matrix entries c(i)j,r = 0 for all sufficiently large j [12, p. 72, (S6)]. Therefore, only
finite upper left submatrices have to be considered when generating points. Finally,
due to the finite precision of integer computation, m is finite in any case.

Based on the results in [10, 11, 4], we will consider the (0,1)-sequence in base 2
generated by the non-singular upper triangular matrix

C ′1 :=
({

1 if j ≤ r ,

0 otherwise

)∞

j,r=0

(1)

in order to generate the Larcher-Pillichshammer points [9].

2.2 Reordering the Sobol’-Sequence

We now take a look at the first two components of the Sobol’-sequence [15], which
are a (0,2)-sequence in base 2, and are defined by the infinite upper triangular ma-
trices

C1 :=
(
δj,r

)∞
j,r=0 and C2 :=

((
r

j

)
mod 2

)∞

j,r=0
,

where δj,r = 1 for j = r and zero otherwise. In the above definition and the remain-
der of this work, by a mod m we mean the common residue. That is the nonnegative
value b < m, such that a ≡ b mod m.

Suppose that the infinite matrices C1, . . . ,Cs over F2 generate a (0, s)-sequence
in base 2. Furthermore suppose that the infinite matrix C′1 over F2 generates a (0,1)-
sequence in base 2. This implies that C′1 is a nonsingular upper triangular matrix.
Then a (0, s)-sequence in base 2 is generated by C′1,C2D,. . . ,CsD, where D :=
C−1

1 C′1. This new sequence consists of the same points as before, however, in a
different order. This result is proven in more general form in [5, Prop. 1].

Note that the first generator matrix C′1 is the one of Larcher-Pillichshammer.
Since C1 is the identity, we have D = C−1

1 C′1 = C′1 and obtain

C2D =
((

r

j

)
mod 2

)∞

j,r=0
C′1

=
(

r∑

k=0

(
k

j

)
mod 2

)∞

j,r=0

=
((

r+1

j +1

)
mod 2

)∞

j,r=0
=: C′2, (2)

as the second generator matrix, where the last equality follows from the Christmas
Stocking Theorem.
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Note that the same reordering can be applied to the Faure-sequence [3], which
can be regarded as a generalization of the Sobol’-sequence for any prime base q. An
even more general construction for any prime power base can be found in [12].

2.3 Construction

Combining the component n
2m with the first 2m points of a (0,2)-sequence in base 2

yields a (0,m,3)-net in base 2 (see [12, Lemma 4.22, p. 62]). The relationship of
C′1 and C′2 as expressed in Equation (2) in fact is a property of all (0,2)-sequences
in base 2 generated by non-singular upper triangular matrices [7, Prop. 4]. Conse-
quently fixing the first generator matrix uniquely determines the second generator
matrix and thus the (0,m,3)-net.

In the previous section we reordered the Sobol’-sequence in base 2 such that
one component matches the (0,1)-sequence as defined in [10]. For the construction
of the new (0,m,3)-net in base 2, it is sufficient to consider the matrices C ′1,C′2
from Section 2.2, because for s = b = 2 Sobol’s construction is identical to Faure’s
construction. By construction two dimensions of the resulting three-dimensional net
are the Larcher-Pillichshammer points [9].

In Figure 2 we compared the minimum toroidal distance of the new construction
to the one that uses the original Sobol’ generator matrices C1 and C2. Except for
m= 5 and m= 6, the new construction is by far superior for all m≤ 22. We did not
compute the minimum toroidal distance for m> 22, though.

2.3.1 Implementation

The following code in C99 (the current ANSI standard of the C language) returns
the n-th point of the (0,m,3)-net generated using C′1 and C′2 (see Equations (1) and
(2)) for m < 32 in O(m). The vectorized implementation is based on the fact that
addition in F2 corresponds to the exclusive or operation.

void x_n(unsigned int n, const unsigned int m, float x[3]) {
// first component: n / 2ˆm
x[0] = (float) n / (1U << m);

// remaining components by matrix multiplication
unsigned int r1 = 0, r2 = 0;
for (unsigned int v1 = 1U << 31, v2 = 3U << 30; n; n >>= 1) {
if (n & 1) { // vector addition of matrix column by XOR

r1 ˆ= v1;
r2 ˆ= v2 << 1;

}
// update matrix columns
v1 |= v1 >> 1;
v2 ˆ= v2 >> 1;

}
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// map to unit cube [0,1)ˆ3
x[1] = r1 * (1.f / (1ULL << 32));
x[2] = r2 * (1.f / (1ULL << 32));

}

Fig. 2 A plot of the toroidal distance in [0,1)3 for both the Sobol’ (0,m,3)-net as well as the
(0,m,3)-net constructed using C′1,C′2, where one of the two-dimensional projections equals the
Larcher-Pillichshammer point set. We would like to stress that the minimum distance is scaled
logarithmically, so the absolute difference is very significant for increasing m. In contrast to the
Sobol’-net, the minimum distance decreases smoothly for the new construction.

3 Permutation-Generated (0,m,2)-Nets in Base 2 with Larger
Minimum Toroidal Distance

Taking the integer part of the coordinates of a (0,m,s)-net in base q multiplied
by the number of points qm results in each component being a permutation from
the symmetric group Sqm . For s = 2 dimensions and base q = 2 this is visualized
in Figure 1, where each column and each row (the leftmost and rightmost set of
elementary intervals in the figure) contain exactly one point.

Using Heap’s efficient permutation generation algorithm [14] allows one to
enumerate all permutations π : {0, . . . ,2m−1} → {0, . . . ,2m−1} that represent
(t,m,2)-nets in base 2 with the points 1

2m (n,π(n)) ∈ [0,1)2. We extended this basic
backtracking algorithm by pruning the search tree whenever the elementary-interval
property t = 0 was violated or already a net with larger minimum toroidal distance
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Fig. 3 Examples of the permutation-generated (0,m,2)-nets in base 2 for m= 3, . . . ,8.

than the current one had been found. Verifying the t = 0 property is simple using
the code published in [6, Section 2.2].

Performing such an exhaustive combinatorial computer search seems hopeless
given the number of possible permutations |S2m | = (2m)! and in fact we did not suc-
ceed in running an exhaustive search for m> 5. In these cases we simply generated
random permutations, but kept the backtracking approach mentioned above.

However in [6], we were able to find very regular looking (0,5,2)-nets with
a minimum toroidal distance of

√
32/25 ≈ 0.17677670, which is larger than the

minimum toroidal distance of all possible digital (0,5,2)-nets, where the maximum
is
√

29/25 ≈ 0.1682864.
In continuation of these findings we now present a first construction (see Fig-

ure 3) of such permutation-based nets. In Table 1 we compare the minimum toroidal
distance of different (0,m,2)-nets in base 2. The new permutation construction
clearly features the largest minimum toroidal distance. Due to the novelty of the ap-
proach, we present two different derivations and provide more interpretations than
usually necessary.

3.1 Iterative Construction by Quadrupling Point Sets

Given the search results as displayed in Figure 3, an iterative construction procedure
can be inferred. This procedure repeatedly quadruples an initial point set until the
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Table 1 Comparison of the Hammersley points, the Larcher-Pillichshammer points, the points
resulting from the optimized matrices given in [6], and the new permutation construction with
respect to minimum toroidal distance. Note that for easier comparison all distances have been
multiplied by the number 2m of points of a (0,m,2)-net in base 2 and squared afterwards.

m Hammersley Larcher-Pillichsh. Opt. matrices Permutation
2 2 2 2 2
3 2 5 8 8
4 2 8 13 13
5 2 18 29 32
6 2 32 52 53
7 2 72 100 128
8 2 128 208 241
9 2 265 400 512

10 2 512 832 964
11 2 1060 1600 2048
12 2 2048 3328 3856
13 2 4153 6385 8192
14 2 8192 13312 15424
15 2 16612 25313 32768
16 2 32768 53248 61696

desired number of 2m points is reached. We therefore need to distinguish the cases
of even and odd m as depicted by the examples in Figure 4.

We represent the (0,k,2)-nets in base 2 by
{

1

2k
(u mod 2k,v) : (u,v) ∈ Pk

}
, (3)

where the set Pk contains 2k integer coordinates (u,v).
For odd m the initial point set P1 consists of the points (0,0) and (1,1). The

quadrupling rule to construct a point set Pk+2 := Pk,0∪Pk,1∪Pk,2∪Pk,3 with 2k+2

points from a point set Pk with |Pk| = 2k points is as follows:

Lower left: Pk,0 := {(2u,2v) : (u,v) ∈ Pk}
Lower right: Pk,1 :=

{
(2k+1+2u+1,2v+1) : (u,v) ∈ Pk

}

Upper left: Pk,2 :=
{
(2k+1+2u,2k+1+2v) : (u,v) ∈ Pk

}

Upper right: Pk,3 :=
{
(2k+2+2u+1,2k+1+2v+1) : (u,v) ∈ Pk

}

For even m, the iterative construction is more involved. We start out with four
diagonals, each consisting of four points:

P2,0 := {(w+1,4w) : w = 0, . . . ,3} ,
P2,1 := {(w+5,4w+2) : w = 0, . . . ,3} ,
P2,2 := {(w+9,4w+1) : w = 0, . . . ,3} ,
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Fig. 4 Iterative construction of (0,m,2)-nets in base 2 by quadrupling point sets, where the final
net results from wrapping the points such that they match the unit square. This wrapping corre-
sponds to the modulo operation in Equation (3).

P2,3 := {(w+13,4w+3) : w = 0, . . . ,3} .
The quadrupling rule for even k constructs Pk+2 := P ′′′k,0 ∪P ′′′k,1 ∪P ′′′k,2 ∪P ′′′k,3 from
sets Pk,l for l = 0, . . . ,3 as follows:

1. Multiply all points by two and add an offset for the points in P1 and P3:

P ′k,l :=
{
(2u+ (l mod 2),2v) : (u,v) ∈ Pk,l

}
for l = 0, . . . ,3.

2. Extend the diagonals:

P ′′k,l := P ′k,l ∪
{
(2k−1+u,2k+1+v) : (u,v) ∈ P ′k,l

}
for l = 0, . . . ,3.

3. Combine diagonals:

P ′′′k,0 := P ′′k,0∪P ′′k,1,
P ′′′k,1 := P ′′k,2∪P ′′k,3.

4. Append shifted copies:

P ′′′k,2 :=
{
(2k+1+u,u+1) : (u,v) ∈ P ′′′k,0

}
,

P ′′′k,3 :=
{
(2k+1+v,v+1) : (u,v) ∈ P ′′′k,1

}
.
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Fig. 5 The two cases in the proof corresponding to certain kinds of elementary intervals, illustrated
here for m= 5.

3.2 Direct Construction

As these nets consist of points lying on parallel diagonals similar to rank-1 lattices
[2], a direct construction is possible by computing a single point on each diagonal.
Since the points are evenly spaced along the diagonals, the remaining points follow
immediately. These diagonals are to be understood with a modulo 2m wrap-around
for the first coordinate.

3.2.1 Construction for Odd m

The position of the point with the smallest second coordinate on the d-th diagonal
is given by (2mφ2(d)+ d,d), where 0 ≤ d < 2m2 � and φ2(d) ∈ [0,1) denotes the
van der Corput radical inverse in base 2.

Theorem 1. For odd m, the points
{
(ud,w,vd,w) : 0≤ d < 2m2 �,0≤ w < 2�m2 	

}
,

where

ud,w =
(

2mφ2(d)+d+w ·2m2 �
)

mod 2m, (4)

vd,w = d+w ·2m2 �, (5)

constitute a (0,m,2)-net in base 2 with a minimum toroidal distance of
√

2m. This
distance is measured using components multiplied by 2m, i.e. on integer scale.

Proof. First, we will show that the elementary interval property holds. For each
kind 0 ≤ h ≤ m of elementary intervals, there must be exactly one point in each
integer-scaled elementary interval

[
x ·2h,(x+1)2h

)
×
[
y ·2m−h,(y+1)2m−h

)
,

where 0≤ x < 2m−h and 0≤ y < 2h. Partitioning the set of elementary intervals as
depicted in Figure 5, we need to consider two cases:
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1. We first consider the case
⌈
m
2

⌉≤ h≤m. The width of these kinds of elementary
intervals is larger than their height. Looking at Equation (5), we can see that the⌊
m
2

⌋
least significant bits of vd,w are equal to the bits of d , while the remain-

ing
⌈
m
2

⌉
most significant bits of vd,w are equal to the bits of w. Considering one

horizontal strip of elementary intervals, y determines the h most significant bits
of vd,w. Since h≥ ⌈m2

⌉
, w is completely determined by y. What remains to show

is that for this fixed w, the m−h most significant bits of ud,w differ for suitable
values for d . Analyzing Equation (4), we see that the term w · 2m2 � is constant,
while the addition of d only modifies the

⌊
m
2

⌋
least significant bits. However

{
2mφ2(d) : 0≤ d <

⌊m
2

⌋}
=
{
d ·
⌈m

2

⌉
: 0≤ d <

⌊m
2

⌋}
, (6)

thus due to the addition of 2mφ2(d) it is possible to guarantee that the
⌊
m
2

⌋ ≥
m−h most significant bits of ud,w are different by selecting suitable values for
d . Thus the corresponding points fall into different elementary intervals.

2. Now we consider the case 0≤ h≤ ⌊
m
2

⌋
. The width of these kinds of elementary

intervals is smaller than their height. We consider one vertical strip of elementary
intervals of width 2h. Looking at Equation (4), we can see that the the only way
to achieve consecutive values ud,w equal to x,x+ 1, . . . ,x+ 2h− 1 is by using
consecutive values for d . That is because the terms 2mφ2(d) and w · 2m2 � do
not modify the h ≤ ⌊

m
2

⌋
least significant bits of ud,w. However 2h consecutive

values for d mean that the h ≤ ⌊
m
2

⌋
most significant bits of the values 2mφ2(d)

are different for each d (cf. to Equation (6)). In order to stay in the vertical strip of
elementary intervals determined by x, the h most significant bits of w thus must
be chosen accordingly for each point inside this strip in order to “compensate”
using the term w ·2m2 �. As a consequence of the different values for w it follows
from Equation (5) that the h≤ ⌈m2

⌉
most significant bits of vd,w are different for

each point inside this strip, thus they fall into different elementary intervals.

We now consider the achieved minimum toroidal distance of the point set. Points

on the diagonals are placed with a multiple of the offset
(

2m2 �,2m2 �
)

, so their

squared minimum toroidal distance to each other is

2 ·
(

2m2 �
)2 = 2m.

The squared distance between the diagonals with slope 1 is

2 ·
(

2�m2 	
2

)2

= 2m.

In conclusion, the minimum toroidal distance is
√

2m. As the diagonals can be
tiled seamlessly, the result is identical for the toroidal distance measure. On the
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unit square [0,1)2, we need to divide the point coordinates by 2m, so the minimum

toroidal distance on the unit square is
√

2m
2m =√2−m, which concludes the proof. �

The theorem allows for an additional interpretation of the structure: Using Equa-
tion (4), we can solve for d and w given ud,w:

d = ud,w mod 2m2 �,
w = (ud,w−2mφ2(d)−d) mod 2m

2m2 � .

Inserting these equations into Equation (5) yields

vd,w = d+
(
ud,w−2mφ2

(
ud,w mod 2m2 �

)
−d

)
mod 2m

=
(
ud,w−2mφ2

(
ud,w mod 2m2 �

))
mod 2m, (7)

which can be regarded as replicating a (0,
⌊
m
2

⌋
,2) integer Hammersley-net 2�m2 	

times horizontally, scaling each one vertically by −2�m2 	 and finally adding a linear
component to the combination of nets. The resulting points are wrapped around the
unit square.

3.2.2 Construction for Even m

For even m ≤ 6 the permutation search did not reveal an improvement of the mini-
mum toroidal distance in comparison to the full matrix search. We would like to note
that the permutation search for m= 6 did not finish, though. However, when allow-
ing a distance measure that accounts for a slightly irregular tiling, an approach very
much resembling the previous construction can be taken, yielding the nets shown in
Figure 3.

Using a tiling where each row is shifted by (2m−2,0) relative to its adjacent row
below (see Figure 6), we can get a seamless tiling using 2

m
2 diagonals, each with 2

m
2

points. Again, the points are spaced evenly on each diagonal, this time by the offset
vector (2

m
2 −2,2

m
2 ). The position of the point with the smallest second coordinate

on the d-th diagonal, where d ∈
{

0, . . . ,2
m
2 −1

}
, is given by (2mφ2(d)+

⌊
d
4

⌋+
2
m
2 −2,d). With the modified tiling described above, these diagonals are continued

seamlessly.
These nets cannot be generated via the classical way of using generator matrices

as the point (0,0) is not included.
While we believe that a similar proof for the t = 0 is possible as for the odd m

case, we only verified the t = 0 property using a computer program for all even m≤
22. The minimum toroidal distance equals

√
241 for m= 8 and

√
241 ·2m−8/2m for

all even m where 10 ≤ m ≤ 22. See Table 1 for minimum toroidal distance values
for m < 8. We would like to stress that the modified minimum toroidal distance
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Fig. 6 On the left, the modified tiling for the permutation construction is shown: m is even and
each row of the tiling is shifted by (2m−2,0) relative to its adjacent row below. Using an axis
aligned tiling on the right reveals that all tiles in a row share the same sample pattern, while the
pattern differs by row by a modulo wrap-around in direction of the x-axis.

Fig. 7 By taking 4× 4 modulo-wrapped copies of the same pattern (see Figure 6), we obtain a
larger pattern that is periodic and matches the pixel arrangement. It can be tiled regularly without
a decrease in minimum toroidal distance.

measure that respects the shifts of the rows in the tiling has been used for these
measurements.

Considering a superimposed axis-aligned tiling as illustrated in Figure 6 reveals
that in a row each tile contains the same set of samples, while the set of samples
varies by row. This in turn allows for constructing a larger pattern that consists
of shifted copies of the original pattern as shown in Figure 7. Four rows and four
columns of such modulo-wrapped patterns were combined to generate a larger pat-
tern. This pattern can be tiled regularly without a decrease in minimum toroidal
distance.

3.3 Implementation for General m

Exploiting the fact that we are generating nets in base 2, all operations needed to im-
plement the permutation net constructions described above can be implemented very



Se
co

nd
 p

ro
of

s
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efficiently without any multiplications. A small C++ class that generates the point
sets directly for even and odd m ≥ 4 is available at http://gruenschloss.
org/diag0m2/gendiag0m2.h. In terms of performance, it is comparable to
the generation of rank-1 lattice points and also includes code to generate points
with the modified tiling explained above.

As an example, we would like to show the implementation of Equation (7). Given
the function phi2 to compute the van der Corput radical inverse in base 2 [9], the
implementation y has a one line body.

inline unsigned int phi2(unsigned int bits) { // for 32 bits
bits = (bits << 16) | (bits >> 16);
bits = ((bits & 0x00ff00ff) << 8) | ((bits & 0xff00ff00) >> 8);
bits = ((bits & 0x0f0f0f0f) << 4) | ((bits & 0xf0f0f0f0) >> 4);
bits = ((bits & 0x33333333) << 2) | ((bits & 0xcccccccc) >> 2);
bits = ((bits & 0x55555555) << 1) | ((bits & 0xaaaaaaaa) >> 1);
return bits;

}

inline unsigned int y(const unsigned int x, const unsigned int m) {
return (x - (phi2(x & ˜-(1 << (m >> 1))) >> (32 - m))) & ˜-(1U << m);

}

For successive point requests this can be optimized by precomputing the bitmasks
and the 2m2 � different radical inverse values.

4 Conclusion

We constructed new (0,m,s)-nets in base 2 for s = 2,3, which are constrained by
maximizing the minimum toroidal distance. Especially the (0,m,3)-net has many
applications in computer graphics such as computing anti-aliasing and motion blur
in the Reyes architecture [1].
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Automation of Statistical Tests on Randomness
to Obtain Clearer Conclusion

Hiroshi Haramoto

Abstract Statistical testing of pseudorandom number generators (PRNGs) is in-
dispensable for their evaluation. A common difficulty among statistical tests is how
we consider the resulting probability values (p-values). When we observe a small
p-value such as 10−3, it is unclear whether it is due to a defect of the PRNG, or
merely by chance. At the evaluation stage, we apply some hundred of different sta-
tistical tests to a PRNG. Even a good PRNG may produce some suspicious p-values
in the results of a battery of tests. This may make the conclusions of the test bat-
tery unclear. This paper proposes an adaptive modification of statistical tests: once a
suspicious p-value is observed, the adaptive statistical test procedure automatically
increases the sample size, and tests the PRNG again. If the p-value is still suspi-
cious, the procedure again increases the size, and re-tests. The procedure stops when
the p-value falls either in an acceptable range, or in a clearly rejectable range. We
implement such adaptive modifications of some statistical tests, in particular some
of those in the Crush battery of TestU01. Experiments show that the evaluation of
PRNGs becomes clearer and easier, and the sensitivity of the test is increased, at the
cost of additional computation time.

1 Introduction

Pseudorandom number generators (PRNGs) are computer programs whose purpose
is to produce sequences of numbers that seem to behave as if they were generated
randomly from a specified probability distribution. Here we consider the case where
the outputs of the PRNG imitate independent random variables from the uniform
distribution over the interval [0,1) or over the integers in an interval {0,1,2, . . . ,N}.
Hiroshi Haramoto
Department of General Education, Kure College of Technology, Hiroshima, Japan
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Since PRNGs have a deterministic and periodic output, it is clear that they do
not produce independent random variables in the mathematical sense, and that they
cannot pass all possible statistical tests of uniformity and independence. But some
of them have huge period lengths and turn out to behave quite well in statistical tests
that can be applied in reasonable time. On the other hand, some PRNGs, which are
known to be defective, fail very simple tests [7].

Many statistical tests for PRNGs are proposed. Widely used examples are:
DIEHARD by Marsaglia [16], the test suite of the National Institute of Standards
and Technology (NIST) [24], and TestU01 by L’Ecuyer and Simard [11]. When we
use such a test suite for a PRNG, the result is a long list of p-values, each value
corresponding to each test. It is often difficult to judge whether or not the existence
of a few suspicious but not definitive p-values (say, 10−10 < p < 10−4) implies the
defectiveness of the PRNG.

The aim of this paper is to eliminate this uncertainty, by proposing an adaptive
modification of (essentially any) statistical test for PRNGs. The adaptive version of
a statistical test means that we increase the sample size again and again, until we
observe a definitely small p-value, or an acceptable normal p-value. This method is
not novel; it is commonly used by hand, with heuristics. Our proposal is to automate
this process. The rest of this paper is organized as follows. In Section 2, we review
the statistical tests for PRNGs. We give a detailed description of an adaptive statisti-
cal test in Section 3. In Section 4, we show results of some adaptive statistical tests
on some well known PRNGs.

2 Statistical Tests

Let (a1, . . . ,an) be a sequence in [0,1) generated by some method, i.e., by a PRNG,
which imitates a uniform independent random sequence. Let Yn be a (test) function
of n variables from [0,1)n to R. A statistical test of (a1, . . . ,an) by Yn is a function

TYn : [0,1)n→ [0,1], (a1, . . . ,an) �→ P(Yn(X1, . . . ,Xn)≤ Yn(a1, . . . ,an)) (1)

where X1, . . . ,Xn are random variables with identical, independent distribution
(i.i.d.) uniform in [0,1), and P(Yn(X1, . . . ,Xn)≤ Yn(a1, . . . ,an)) is the probability
that Yn(X1, . . . ,Xn) ≤ Yn(a1, . . . ,an) holds. This probability is called the p-value
of the test. If this value is too close to 0 or too close to 1, the null hypothesis that
a1, . . . ,an are uniform i.i.d is deemed suspicious. (As the editor pointed out, there
are tests where the number n varies according to the values of ai , but here we treat
only the above type of statistical tests.)

If the p-value is extremely small (e.g., less than 10−10), then it is (more or less)
clear that the PRNG fails the test. If the p-value is suspicious but does not clearly
indicate rejection (p = 10−4, for example), it is difficult to judge. When we apply
several tests to a PRNG, p-values smaller than 0.01 or larger than 0.99 are often
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observed (since such values appear with probability 0.02). Therefore, users of test
packages for PRNGs are often troubled by the interpretation of suspicious p-values.

In order to avoid such difficulties, a two-level test is often used, see [1] [4] [5]
[15]. In a two-level test, we fix a test function Yn. At the first level, we apply the test
TYn to the PRNG to be tested, consecutively k times. Then we obtain k of p-values,
p1, . . . ,pk . At the second level, we test these k values under the null hypothesis of
the uniform i.i.d. in the [0,1] interval, by some statistical test such as Kolmogorov-
Smirnov test. The resulting p-value is the result of the two-level test. A merit of the
two-level test is that it tends to give a clearer result, by accumulating the possibly
existing deviation k times. Even if the first-level tests report moderate p-values, the
two-level test may give a definitive p-value such as 10−8. However, the possibility
of getting a suspicious but not definitive p-value still remains.

Moreover, one may suffer from accumulated approximation error in computing
p-values. We often compute p-values by using approximation formula: for exam-
ple, the p-value of χ2-test is computed by using an approximation. Therefore, some
computing error exists in every p-value. Thus, if the p-values of the first level tests
has 1% error in the same direction, and if the second level test uses a large num-
ber of these p-values (say, k = 10000 times), then the second level may detect the
systematic computing error, which may lead to a false rejection [5] [13].

3 Adaptive Statistical Test

An adaptive statistical test requires a test function of variable sample size. That is,
one type of test function Yn of n variables, where n may vary. This is usually the
case: most test statistics for testing PRNGs allow any sample size.

An adaptive statistical test for a PRNG based on Yn is as follows. Fix a moder-
ately large n. We generate n samples a0, . . . ,an−1 using the PRNG, and compute the
corresponding p-value p1 := TYn(a0, . . . ,an−1). If p1 lies in the pre-fixed admissible
interval, say, in [0.1,0.9], then the test ends and does not reject the null hypothesis.
Otherwise, we double the sample size, and generate 2n new samples an, . . . ,a3n−1
using the PRNG, and compute the p-value p2 := TY2n(an, . . . ,a3n−1). If p2 lies in
the admissible interval, then we accept. Otherwise, we double the sample size again,
namely, we generate the next 4n samples using the PRNG, and compute the p-value
p3 for these 4n samples using Y4n. We iterate this process, until reaching one of the
following three cases:

Rejection: the p-value reaches to a prefixed value for the definitive rejection (e.g.
p = 10−8),
Acceptance: the p-value falls in the admissible interval,
Give up: the number of iterations reached to a prefixed number (say, 6) to stop
the test (considering some limitation of memory and/or computation time).

Merits of the adaptive test are:
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1. In most cases, the user obtains clear conclusions. The test takes care of suspicious
p-values, until we conclude that they were obtained only by chance, or that they
expose a systematic deviation. A final suspicious p-value is obtained only in the
“give up” case, which occurs rarely.

2. The approximation errors in computing p-values are not accumulated, contrary
to the the two-level tests described in the previous section. In the adaptive test,
the larger sample size usually results in the smaller approximation error.

Note that such adaptive tests are appropriate for testing PRNGs, but not for gen-
eral statistical tests such as census of population, where the sample size is often
fixed or limited.

As recognized in the introduction, it is not novel to increase the sample size to
resolve the suspicious p-values, and a number of studies exist, which treat delicate
issues arising in adaptive tests. There are statistical tests where one need to change
the parameters and/or the approximation formula of the distribution, according to
the increase of the sample size n. In [9] and [12], the number of the cells in a classical
serial test is kept proportional to n. In [10], n3/(4k) is kept constant. In both cases,
these changes are necessary to keep an asymptotic approximation formula. In [12,
p. 658], the asymptotic formula is changed according to the sample size n.

Below in §4.1 and §4.2, we treat some toy examples, where we may change the
sample size n with keeping other parameters constant. In §4.3, we show a more
serious implementation based on TestU01 [11], where appropriate choices of the
parameters and approximation formulas are processed in the TestU01 library.

Another difficulty is the choice of the first sample size for the adaptive test. Every
PRNG is rejected if the sample size is large enough, but the size depends on the
interaction of the type of the PRNG and the test, and there are some thumb-nail
rules [10], but we do not discuss here. In §4.1, we treat the case where a risky
sample size is known in advance. In §4.3, we are constrained by the sample sizes
selected by TestU01; see below.

4 The Results of Tests

4.1 Weight Distribution Test on FSRs

The weight distribution test is a test on the distribution of 1’s in a pseudorandom
bit sequence x1,x2, . . .. We cut the sequence into subsequences of fixed length (here
we choose the length 94), and count the number of 1’s in each subsequence (i.e.,
the Hamming weight of each subsequence). The number should conform to the
binomial distribution B(94,1/2). Let n be the sample size, namely, the number of
subsequences of length 94 generated to be tested. We categorize the 95 observable
values into several categories by merging, and apply the χ2-test for the goodness-of-
fit of the observed values to the binomial distribution. Note that this test is a variant
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of the Hamming test treated in the next section, and related tests are included in
TestU01 [11, Section 5.2.1].

The tested generator is a trinomial based feedback shift register (FSR) generator,
defined by the recurrence

xj+89 := xj+38+xj

over the two-element field F2 (i.e., every operation is done modulo 2).
This generator is not an excellent generator; it is a toy-model example to explain

how our adaptive test works. Matsumoto-Nishimura [22] computes risky sample size
of such kind of generators, which means that if the sample size is larger than this
size, then a simple weight distribution test will probabilistically reject a generated
sequence with significance level 0.01. Thus, we can know an appropriate sample
size for the test in advance. The risky sample size of the above generator is reported
to be 1.16× 105, so we choose the initial sample size n = 50000 in our adaptive
test. Table 1 lists the results of the adaptive test described above (i.e., the acceptable
interval is [0.1,0.9] and the rejection corresponds to the p-value outside [10−8,1−
10−8]). We apply the same adaptive test to the same generator with three randomly
chosen initial values.

Table 1 Weight distribution test on the generator xj+89 = xj+38+xj .

sample size 50000 100000 200000 400000 result

1st 4.3×10−4 7.4×10−3 1.1×10−3 1.4×10−14 reject
2nd 3.6×10−2 8.6×10−3 1.6×10−5 1.9×10−9 reject
3rd 2.0×10−1 accept

For example, in the first experiment, the p-value with sample size 50000 is 4.3×
10−4. It is suspicious, but not in the clear-rejection area (< 10−8). Accordingly, the
sample size is doubled, and the same test is applied to the new 100,000 samples,
obtaining the p-value 7.4× 10−3. After four iterations, the p-value reaches 1.4×
10−14, and the bias of the weight distribution of the PRNG becomes clear. The result
of the second experiment is similar. The first p-value of the third experiment lies in
the acceptance interval, and hence there is no rejection, this time (could be regarded
as a false-acceptance).

Table 2 shows the result of the same test on a similar generator based on a 5-
term relation xj+89 = xj+57+xj+23+xj+15+xj over F2. The risky sample size is
known to be 6.99×107, so we choose the initial sample size to be 7×107 [22].

4.2 Hamming Weight Test on LCG

Here we treat a classical linear congruential generator (LCG), defined by the recur-
rence

xj+1 = 110351245xj +12345 (mod 231).
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Table 2 Weight distribution test on the generator xj+89 = xj+57+xj+23+xj+15+xj .

sample size 7×107 1.4×108 2.8×108 5.6×108 result

1st 1.8×10−2 4.2×10−5 1.3×10−9 reject
2nd 7.4×10−4 1.1×10−5 2.4×10−10 reject
3rd 3.4×10−2 2.2×10−5 1.8×10−5 4.4×10−33 reject

The outputs (xj ) of this LCG are considered as 31-bit integers. In the Hamming
test, these 31-bit integers are concatenated to be a single bit stream. The bit stream
is divided to consecutive subsequences of 60 bits, and the number of 1’s in each
subsequence is counted. Then, the χ2-test on the null hypothesis of the binomial
distribution B(60,1/2) is applied, in the same way as the previous section. Unlike
the previous generator, we do not have theory that tells us the risky sample size. We
choose the initial sample size n to be 1,000,000. Table 3 shows the results of three
experiments, for randomly chosen initial values.

Table 3 Hamming weight test on the generator xj+1 = 1103515245xj +12345 (mod 231).

sample size 106 2×106 4×106 8×106 result

1st 0.0×100 reject
2nd 2.5×10−2 1.6×10−8 8.1×10−7 0.0×100 reject
3rd 7.0×10−2 3.0×10−3 7.2×10−10 reject

4.3 Crush in TestU01 and the Adaptive Crush

TestU01 by L’Ecuyer and Simard [11] is a strong comprehensive suite of statistical
tests for uniform random numbers. TestU01 has flexible parameters, and hence is
suitable to implement the adaptive version of statistical tests, unlike DIEHARD and
NIST where the sample size is fixed.

There are three related batteries of tests in TestU01, using different sample sizes.
These are the Small Crush, Crush, and Big Crush batteries. Big Crush is the most
serious test battery, containing several statistical tests whose computation time and
the memory consumption is near the limit of our computer, so partly it does not fit
the adaptive version where the sample size is doubled iteratively. So, we choose the
Crush battery as the basis for a battery of adaptive versions.

Among the 144 tests in Crush, 48 are not suitable to create adaptive versions.
More precisely, (1) some of 48 are unable to create adaptive versions due to the lack
of our computing resources, and (2) the remaining 96 are two-level-test versions of
other tests in Crush. We implement adaptive versions of the remaining 96 tests, and
call them the Adaptive Crush battery.
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We apply the Adaptive Crush to the following three generators: an LCG [2] based
on the recurrence

xj+1 = 950706376xj (mod 231−1), (2)

a subtract with borrow (SWB) [18] based on the recurrence

xi = (xi−22−xi−48− ci−1) (mod 232−5), (3)

ci = (xi−22−xi−48− ci−1)/(2
32−5)�, (4)

and TT800 [20].
Table 4, 5, and 6 list the tests for which

• the original Crush (namely the first step of the adaptive version) gives a p-value
in the interval [10−8,1−10−8],

• but the p-value given by the Adaptive Crush lies outside [10−8,1− 10−8] (the
fourth column shows the number of iteration of doubling the sample size until
the p-value was outside [10−8,1−10−8]).

Table 4 Result on xj+1 = 950706376xj (mod 231−1).

test name initial sample size 1st p-value # of iteration final p-value

Gap 5×106 0.0125 2 < 10−300

MaxOft 107 0.9863 2 > 1−10−15

GCD 108 0.9805 3 > 1−10−15

PeriodsInStrings 3×108 1−6.6×10−8 2 > 1−10−15

PeriodsInStrings 3×108 0.9999 2 1−7.3×10−9

Table 5 Result on a subtract with borrow.
test name initial sample size 1st p-value # of iteration final p-value

SimpPoker 107 0.0505 3 6.1×10−13

SimpPoker 107 4.9×10−4 3 3.8×10−14

CouponCollector 107 0.0217 4 1.5×10−11

CouponCollector 107 0.0328 4 6.0×10−15

4.4 Comparison of the Sensitivity

In order to compare the sensitivity between the original Crush and the adaptive
Crush, we apply the same 96 tests as in §4.3 to several PRNGs. Table 7 gives the
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Table 6 Result on TT800.
test name initial sample size 1st p-value # of iteration final p-value

Gap 5×106 1.6×10−4 4 8.9×10−10

RandomWalk1 J 106 6.1×10−5 3 5.2×10−14

HammingIndep 107 8.5×10−3 2 9.5×10−12

number of tests which report a p-value outside [10−8,1− 10−8] by the original
Crush and the adaptive Crush, respectively.

LCG(m,a,c) means the generator which obeys the recurrence xj+1 := (axj +c)

(mod m). LFib(m,r,k,op) uses the recurrence xj := xj−r op xj−k (mod m),
where op is an operation which can be + (addition), − (subtraction), ∗ (multipli-
cation),⊕ (bitwise exclusive-or). The ran3 generator of Press and Teukolsky [23] is
essentially an LFib(109,55,24,−). Unix-randoms are PRNGs that are LFib(232,7,
3,+), LFib(232,15,1,+), LFib(232,31,3,+), with the least significant bit of each
random number dropped. Knuth-ran array2 [4] is LFib(230,100,37,−)[100,1009],
where [100,1009] indicates that from each 1009 successive terms xj from the re-
currence, the first 100 outputs are retained and the others are discarded.

The notation GFSR(k,r) means the GFSR generator, with recurrence of the
form xj := xj−r ⊕ xj−k . T800 and TT800 are twisted GFSR generators proposed
by Matsumoto-Kurita [19] [20]. MT19937 is the Mersenne Twister of Matsumoto-
Nishimura [21]. LFSR113 and LFSR258 are the combined Tausworthe generators
of L’Ecuyer [6] designed for 32-bit and 64-bit computers, respectively. Marsaglia
[17] recommends the 3-shift PRNGs Marsa-xor32 and Marsa-xor64.

SWB(m,r,k) means a subtract with borrow generator, employing the recur-
rence xj := (xj−r − xj−k − cj−1) (mod m), where cj := (xj−r − xj−k − cj−1)�.
SWB(224,10,24)[24, l] is called RANLUX with luxury level � [14] [3]. In its orig-
inal form, it returns 24-bit output values. For our tests, we use a version with 48-bit
of precision obtained by concatenating every pair of the outputs to have a 48-bit
integer. All these generators are copied from the library of TestU01 [11], except for
the above-mentioned modification for SWB.

5 Conclusion

We introduced the notion of an adaptive statistical test. This method clarifies the
conclusion from the test: Suspicious p-values are resolved by doubling the sample
size iteratively. Experiments showed that this method works well in almost all cases.
The sensitivity of the test increased, at the cost of additional computational time. In
the experiments shown in Table 7, the Adaptive Crush consumed 3–5 times longer
time than the original Crush for most cases (of course, it heavily depends on the
number of iterations.)
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Table 7 The number of rejections in the tests.

original crush adaptive crush
LCG(231,65539,0) 86 92
LCG(232,69069,1) 72 74
LCG(232,1099087573,0) 75 81
LCG(246,513,0) 15 19
LCG(248,252144903917,11) 8 8
LCG(248,519,0) 8 12
LCG(231−1,16807,0) 10 19
LCG(231−1,215−210,0) 29 33
LCG(231−1,397204094,0) 6 14
LFib(231,55,24,+) 9 10
LFib(231,55,24,−) 11 11
LFib(248,607,273,+) 3 3
ran3 10 10
Unix-random-32 86 86
Unix-random-64 38 52
Unix-random-128 13 14
Knuth-ran array2 2 2
GFSR(250, 103) 8 10
GFSR(521, 32) 6 6
T800 29 33
TT800 13 17
MT19937 2 2
LFSR113 6 6
LFSR258 6 6
Marsa-Xor32 78 88
Marsa-Xor64 8 8
SWB(224,10,24) 26 28
SWB(224,10,24)[24,48] 3 4
SWB(224,10,24)[24,97] 0 0
SWB(224,10,24)[24,389] 0 0
SWB(232−5,22,43) 8 11
SWB(231,8,48) 10 10

Among the PRNGs tested in this way, we could not find a generator that passes
all the Crush tests but fails one of the adaptive Crush tests. This means that the
sample size of the original Crush is very well chosen.

Acknowledgements I would like to thank Professor Makoto Matsumoto who helped and encour-
aged me constantly, Professor Pierre L’Ecuyer who gave useful comments, Professor Hirokazu
Yanagihara who pointed out the importance of the power of tests, and the anonymous referee
for deep and valuable comments. This research has been supported in part by JSPS Grant-In-Aid
#19204002, #18654021, #21654017 and JSPS Core-to-Core Program No.18005.



Se
co

nd
 p

ro
of

s

420 Hiroshi Haramoto

References

1. G. S. Fishman. Monte Carlo. Springer Series in Operations Research. Springer-Verlag, New
York, 1996. Concepts, algorithms, and applications.

2. G. S. Fishman and L. R. Moore, III. An exhaustive analysis of multiplicative congruential
random number generators with modulus 231− 1. SIAM J. Sci. Statist. Comput., 7(3):1058,
1986.

3. F. James. RANLUX: a Fortran implementation of the high-quality pseudorandom number
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On Subsequences of Niederreiter-Halton
Sequences

Roswitha Hofer

Abstract In this paper we investigate the distribution properties of subsequences
of Niederreiter-Halton sequences. A Niederreiter-Halton sequence is generated by
joining digital (T, s)-sequences in different prime bases. Thus Niederreiter-Halton
sequences are hybrids of digital (T, s)-sequences as mainly introduced by Nieder-
reiter and the van der Corput-Halton sequences, which are joint versions of spe-
cial (0,1)-sequences in different prime bases. As hybrids of well-known low-
discrepancy sequences the distribution properties of such sequences are of great
interest. In this paper we give an overview of existing results. Furthermore, we in-
vestigate the distribution of special types of subsequences, as for example subse-
quences indexed by arithmetic progressions or the subsequence indexed by primes.

1 Introduction

We assume that the basic notions of uniform distribution of a sequence (xn)n≥0 in
the unit cube [0,1)s and its discrepancy DN (star-discrepancy D∗N ) are known. We
just want to emphasize here, that a sequence in the s-dimensional unit cube is called
a “low-discrepancy sequence” if its (star-)discrepancy satisfies the following upper
bound

NDN =O(logs(N)).

Excellent introductions to these and related topics can be found in the book of
Kuipers & Niederreiter [13] or in the book of Drmota & Tichy [4].

In this paper we focus on a special class of sequences, which are hybrids of
digital (T, s)-sequences in prime base q as mainly introduced by Niederreiter and
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of the van der Corput-Halton sequences in different prime bases. We introduce the
notion of “Niederreiter-Halton sequences” to emphasize the hybrid character. We
give the detailed definition.

Definition 1. Let v ∈N and q1, . . . ,qv be different primes. Furthermore, letw1, . . . ,wv

be positive integers. For all l ∈ {1, . . . ,v} let C(l,1), . . . ,C(l,wl) be N×N0-matrices
over Zql (i.e. the finite field of residues modulo ql). We now define a sequence
(xn)n≥0 in [0,1)s with s := w1+·· ·+wv by

xn :=
(
x(1,1)n , . . . ,x(1,w1)

n , . . . ,x(v,1)n , . . . ,x(v,wv)
n

)
.

The component x(l,j)n , for j ∈ {1, . . . ,wl}, l ∈ {1, . . . ,v}, is generated as follows.
Let n= n

(l)
0 +n

(l)
1 ql+n

(l)
2 q2

l +·· · be the ql-ary representation of n. Then we set

C(l,j) ·
(
n
(l)
0 ,n

(l)
1 , . . .

)� =:
(
y
(l,j)

1 ,y
(l,j)

2 , . . .
)� ∈ Zql

and

x
(l,j)
n := y

(l,j)

1

ql
+ y

(l,j)

2

q2
l

+·· · .

Throughout this paper, if nothing else is said, the integers v ≥ 1,w1, . . . ,wv ≥ 1 and
the different primes q1, ...,qv are fixed.

The Niederreiter-Halton sequences contain many well-known low-discrepancy
sequences, e.g., digital (t, s)-sequences in prime base, which were introduced by
Niederreiter (see [17] and [18]) and generalize sequences introduced by Faure [5]
and earlier forms by Sobol [19], or the van der Corput-Halton sequences [7] in
different prime bases. If wl is equal to 1 and C(l,1) is chosen as the unit matrix
for all l ∈ {1, . . . ,v} the construction principle above generates a van der Corput-
Halton sequence. If we set v = 1, Definition 1 is consistent with the definition of
digital (T, s)-sequences in the sense of Larcher and Niederreiter (see [14]), which
generalizes digital (t, s)-sequences over Zq1 introduced by Niederreiter. Hybrids
similar to Niederreiter-Halton sequences have already been introduced by Faure
[6], which are generated by juxtaposing certain components of Faure sequences
(i.e. digital (0, s)-sequences generated by powers of the Pascal-matrices) in different
prime bases. These sequences are also contained in the class of Niederreiter-Halton
sequences.

Since Niederreiter-Halton sequences are hybrids of low-discrepancy sequences,
the investigation of their distribution properties is of great interest. The primary
problem is the classification of the sequences in this family which are uniformly
distributed. The special case where the generator matrices consist of rows of finite
length exclusively was considered in [10]. (We say a row is of finite length if it con-
tains just finitely many entries not equal to zero). It turned out that the investigation
of this special class of Niederreiter-Halton sequences can be reduced to estimates
of the number of solutions of systems of congruences. The application of the Chi-
nese Remainder Theorem is a crucial step in the proofs of statements about certain
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distribution properties of these special sequences. Hence the proof of the following
interesting result is more or less straightforward (see [10]).

Theorem 1. [10, Theorem 2.3] A Niederreiter-Halton sequence generated by matri-
ces consisting of rows of finite length exclusively is uniformly distributed if and only
if for each l ∈ {1, . . . ,v} the corresponding digital (T(l),wl)-sequence is uniformly
distributed.

It is well known, that a digital (T, s)-sequence is uniformly distributed if and only
if limm→∞(m−T(m))=+∞, where T(m) is a quality parameter-function defined
on the rank-structure of the matrices (see for example [18] for more details here).

As mentioned already, the method of proof for Theorem 1 used in [10] is based
on the application of the Chinese Remainder Theorem. Unfortunately, this method
fails for the investigation of the general class of Niederreiter-Halton sequences. Note
that the Chinese Remainder Theorem cannot be applied if we have at least one row
of infinite length in any of the generator matrices. (We say a row is of infinite length
if it contains infinitely many entries not equal to zero). In [10] it was pointed out
that this general case is much more difficult. Nevertheless, Theorem 1 has been
generalized by the following theorem.

Theorem 2. [9, Theorem 4] A Niederreiter-Halton sequence is uniformly distributed
if and only if for each l ∈ {1, . . . ,v} the corresponding digital (T(l),wl)-sequence is
uniformly distributed.

The statement of Theorem 2 can be reworded by: “Every joint version of uniformly
distributed digital (T, s)-sequences in different prime bases remains uniformly dis-
tributed.” The proof (see [9]) is based on methods elaborated by Kim [12] and fur-
ther generalized by Drmota and Larcher [3] and by Hofer [8].

By Theorem 2 the classification of the Niederreiter-Halton sequences that are
uniformly distributed is done and the next question of course is: Are there any new
low-discrepancy sequences amongst the Niederreiter-Halton sequences? Unfortu-
nately, it turns out that this question is a problem of considerable difficulty and it is
still open for future research. There exist estimates of the discrepancy of some spe-
cial Niederreiter-Halton sequences, e.g., an upper bound on the discrepancy for the
special case of Niederreiter-Halton sequences generated by matrices consisting of
rows of finite length exclusively (see [10, Theorem 3.1]), in [11] this upper bound is
studied further and also discrepancy bounds are given for some special Niederreiter-
Halton sequences generated by matrices containing certain infinite rows.

In this paper concentration is laid on subsequences of Niederreiter-Halton se-
quences. The investigation of the distribution properties of subsequences — beyond
mere curiosity — is motivated by the following results about the van der Corput-
Halton sequences.

Theorem 3. [10, Theorem 6.1] Let ωvdC be the van der Corput sequence in base q.
Let u,w ∈ Z with u ≥ 1 and gcd(u,q) = 1. Further define bn = un+w. Then the
sequence ω = (xbn)n≥0 satisfies

D∗N(ω)≤D∗N(ωvdC).
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By Theorem 3 we have found subsequences of the van der Corput sequences that
beat the full sequence. For the s-dimensional van der Corput-Halton sequences we
know subsequences, that are also low-discrepancy sequences.

Theorem 4. [10, Theorem 6.2] Let (xn)n≥0 be the van der Corput-Halton sequence
in relatively prime bases q1, . . . ,qs . Furthermore, let u ∈ N with gcd(u,qi)= 1 for
all i ∈ {1, . . . , s} and let kn = un. Then the sequence ω = (xkn)n≥0 satisfies

D∗N(ω)≤
s∏

i=1

qi−1

2logqi

(logN)s

N
+O

(
(logN)s−1

N

)

,

where the implied factor in the O-notation is independent of N , but depends on
q1, . . . ,qs , u and s.

Of course the constant in this theorem could be improved as it was done for the
full sequence. The latest upper bound for the discrepancy of van der Corput-Halton
sequences was given by Atanassov [2].

Motivated by these results we investigate the distribution properties of subse-
quences of Niederreiter-Halton sequences. Again, the primary problem is to classify
the subsequences which are uniformly distributed.

For the special class of Niederreiter-Halton sequences, which are generated by
matrices consisting of rows of finite length exclusively, useful criteria were found
already [10], e.g.:

Theorem 5. [10, Theorem 4.2] Let (xn)n≥0 be a uniformly distributed Niederreiter-
Halton sequence generated by matrices consisting of rows of finite length exclu-
sively.

(a)Let (kn)n≥0 be a sequence of non-negative integers. If for all positive integers d
the sequence (kn)n≥0 is uniformly distributed modulo (q1 · · ·qv)d , then the sub-
sequence (xkn)n≥0 is uniformly distributed in [0,1)s .

(b)The condition given in (a) for (kn)n≥0 is also a necessary condition for the uni-
form distribution of (xkn)n≥0, if and only if wl = 1 for all l and C(l,1) is a lower
triangular matrix for all l.

In this paper we aim for conditions for uniform distribution of subsequences of
Niederreiter-Halton sequences in the general case. In Section 2 we define the spe-
cial subsequences, which are indexed by the solutions of a system of congruences,
and find both sufficient and necessary conditions such that they are uniformly dis-
tributed. Furthermore, we investigate the subsequences indexed by primes and gen-
eralize [10, Theorem 5.1]. In a short conclusion we summarize the new results ob-
tained in this paper and sketch open problems concerning the distribution properties
of Niederreiter-Halton sequences and their subsequences.
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2 Subsequences

It is easy to check (see proof of necessity [9, Theorem 4]) that a Niederreiter-Halton
sequence is uniformly distributed in [0,1)s if and only if it is dense in [0,1)s . Hence
any subsequence of a not uniformly distributed Niederreiter-Halton sequence cannot
be uniformly distributed, since it is not even dense. Therefore, we reduce our inves-
tigations in this chapter to uniformly distributed Niederreiter-Halton sequences.

For the proofs in this section we will use the following notation for the generator
matrices for any l ∈ {1, . . . ,v},j ∈ {1, . . . ,wl}

C(l,j) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

γ
(l,j)

1,0 γ
(l,j)

1,1 γ
(l,j)

1,2 . . .

γ
(l,j)

2,0 γ
(l,j)

2,1 γ
(l,j)

2,2 . . .

γ
(l,j)

3,0 γ
(l,j)

3,1 γ
(l,j)

3,2 . . .

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠
∈ Zql

N×N0,

where we assume that the r-th row of the matrix C(l,j) is given by γ
(l,j)
r =

(γ
(l,j)
r,t )t≥0 in Zql .
From the definition of a Niederreiter-Halton sequence one can see the connection

to the integer-weighted q-ary sum-of-digits function modulo q. The “weighted q-
ary sum-of-digits function” of a non-negative integer n is defined by

sq,γ (n) :=
∞∑

i=0

niγi,

where γ = (γi)i≥0 is a given weight sequence in R and n = n0+n1q+n2q
2+·· ·

is the q-ary representation of n with 0 ≤ ni ≤ q− 1. Especially, if γ is a sequence
in Z then we call sq,γ (n) the “integer-weighted q-ary sum-of-digits function”.

In the introduction we used the well-established parameter-function T(m) (for
the detailed definition we refer to [18]). For the investigation of the hybrids another
parameter-function based on the rank-structures of the generator matrices turns out
to be useful.

Definition 2. For each l ∈ {1, . . . ,v} and for each choice of non-negative integers
d(l,1), . . . ,d(l,wl) let F (l)(d(l,1), . . . ,d(l,wl)) ∈ N be minimal such that the (d(l,1)+
·· ·+d(l,wl))×F (l)(d(l,1), . . . ,d(l,wl))-matrix formed by

the left upper d(l,1)×F (l)(d(l,1), . . . ,d(l,wl))-submatrix of C(l,1) together with
the left upper d(l,2)×F (l)(d(l,1), . . . ,d(l,wl))-submatrix of C(l,2) together with
...

the left upper d(l,wl)×F (l)(d(l,1), . . . ,d(l,wl))-submatrix of C(l,wl)

has rank d(l,1)+ ·· · + d(l,wl). We set F (l)(d(l,1), . . . ,d(l,wl)) := +∞ if this is not
satisfied for any finite F (l)(d(l,1), . . . ,d(l,wl)).
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In the following a Niederreiter-Halton sequence introduced in Definition 1 will of-
ten be called “digital (F, s)-sequence in bases ((q1,w1), . . . , (qv,wv))” with F :=
(F (1), . . . ,F (v)) and s = w1+·· ·+wv .

Using the parameter-function F, Theorem 2 can be reworded by:
A digital (F, s)-sequence in bases ((q1,w1), . . . , (qv,wv)) is uniformly distributed
if and only if for each l ∈ {1, . . . ,v} the parameter-function F (l) is finite, i.e.
F (l)(d(l,1), . . . ,d(l,wl)) <+∞ for all integers d(l,j) ≥ 0,j ∈ {1, . . . ,wl}.

For the investigation of subsequences we introduce the notion of compatibility
of matrices and additional rows.

Definition 3. Let d ∈ N. For any l ∈ {1, . . . ,v} we call the generator matrices
C(l,1), . . . ,C(l,wl) in Zql and the additional rows given by (ρi,0,ρi,1,ρi,2, . . .) ∈ Z

N0
ql

and i ∈ {1, . . . ,d} “compatible” if the parameter-function F
(l)

defined as follows is

finite. Let F
(l)
(d(l,1), . . . ,d(l,wl)) ∈ N be minimal such that the matrix formed by

the left upper d(l,1)×F
(l)
(d(l,1), . . . ,d(l,wl))-submatrix of C(l,1) together with

the left upper d(l,2)×F
(l)
(d(l,1), . . . ,d(l,wl))-submatrix of C(l,2) together with

...

the left upper d(l,wl)×F
(l)
(d(l,1), . . . ,d(l,wl))-submatrix of C(l,wl) together with

the d additional rows truncated to length F
(l)
(d(l,1), . . . ,d(l,wl))

has full row-rank. We set F
(l)
(d(l,1), . . . ,d(l,wl)) := +∞ if this is not satisfied for

any finite F
(l)
(d(l,1), . . . ,d(l,wl)). We call the parameter-function F

(l)
finite if for all

d(l,1), . . . ,d(l,wl) ∈ N0 we get F
(l)
(d(l,1), . . . ,d(l,wl)) <+∞.

Example 1. The Gray-Code digits of a non-negative integer n in any base q are
given by n

g
i = ni + ni+1 (mod q), i ≥ 0, where the ni are the digits of the q-ary

representation of n. So the van der Corput sequence in prime base q based on Gray-
Code digits is generated by the following matrix.

⎛

⎜⎜⎜
⎜
⎝

1 1 0 0 . . .

0 1 1 0 . . .

0 0 1 1 . . .

...
...
...
...
. . .

⎞

⎟⎟⎟
⎟
⎠
∈ Z

N×N0
q .

It is obvious that the generator matrix and the additional row (10000 . . .) ∈ Z
N0
q are

compatible and F(d)= F(d)+1= d+1.
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2.1 Subsequences Indexed by the Solutions of a System of
Congruences

Here we consider subsequences of Niederreiter-Halton sequences, for which the
indices are given by the solutions (of course in increasing order) of a system of
congruences.

Definition 4. For z ∈ N let p1, . . . ,pz be different primes and let y1, . . . ,yz be posi-
tive integers. For every pair (i,k) with i ∈ {1, . . . ,z},k ∈ {1, . . . ,yi} we are given the
following congruence over Z

N0
pi

(ρ
(i,k)
0 ,ρ

(i,k)
1 , . . .) · (x(i)0 ,x

(i)
1 , . . .)T ≡ b(i,k) (mod pi)

with fixed b(i,k) ∈ Zpi and fixed ρ
(i,k)
h ∈ Zpi for all h ≥ 0. We call a non-negative

integer n a “solution of this system of congruences” if for each i ∈ {1, . . . ,z} the
digit-vector (n(i)0 ,n

(i)
1 , . . .)T given by the pi-ary representation of n= n

(i)
0 +n(i)1 pi+

·· · solves all the yi congruences over Z
N0
pi .

We demand that the system of congruences is not overdetermined, i.e., for every
i ∈ {1, . . . ,z} if we join the yi rows, (ρ(i,k)0 ,ρ

(i,k)
1 , . . .), corresponding to the fixed

prime pi to a matrix, then we can find a finite but sufficiently large t ∈ N such that
the left yi× t-submatrix has full row-rank.

Example 2. The indices given by an arithmetic progression, kb = ub+w,b ∈ N0
and with fixed integers u > 0 and 0 ≤ w < u, can be interpreted as the solutions of
a system of congruences.

We consider the unique prime factorization of u = p
α1
1 · · ·pαmm with αi ≥ 1, 1 ≤

i ≤ m. For each i ∈ {1, . . . ,m} we choose the first αi rows of the unit matrix in
Z

N×N0
pi , which are denoted by Iαi , and get the condition

Iαi · (n(i)0 ,n
(i)
1 , . . .)T = (w

(i)
0 , . . . ,w

(i)
αi−1)

T

over Zpi , where (n
(i)
j )j≥0 are the digits of the pi-ary representation of any non-

negative integer n and w
(i)
0 , . . . ,w

(i)
αi−1 are the first αi digits of the pi-ary represen-

tation of w.
It is easy to check that for all positive integers N we have

{0≤ n < N : n= ub+v with b ∈ N0} = {0≤ n < N : n solves the system above}.
Using the notion of compatibility we find both sufficient and necessary condi-

tions for uniform distribution of any subsequence determined by indices, which can
be interpreted as the solutions of a system of congruences.

Theorem 6. Let (xn)n≥0 be a uniformly distributed digital (F, s)-sequence in bases
((q1,w1), . . . , (qv,wv)). Any subsequence determined by indices, which can be in-
terpreted as the solutions of a system of congruences given in Definition 4, is
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uniformly distributed if and only if for every l ∈ {1, . . . ,v} with ql = pi for some
i ∈ {1, . . . ,z} the generator matrices C(l,1), . . . ,C(l,wl) and the yi additional rows,
(ρ

(i,k)
0 ,ρ

(i,k)
1 , . . .),k ∈ {1, . . . ,yi}, are compatible.

Proof. Let S := {kb : b ∈N0} ⊆N0 be the set of indices, which determines the subse-
quence (xkb )b≥0 and can be interpreted as the solutions of a system of congruences
as given in Definition 4.

We consider elementary intervals of the following form

I =
v∏

l=1

wl∏

j=1

[
a(l,j)

qd
(l,j)

l

,
a(l,j)+1

qd
(l,j)

l

)

,

where d(l,j) are arbitrary non-negative integers and a(l,j) ∈ {0,1, . . . ,qd(l,j)l −1} for
j ∈ {1, . . . ,wl} and l ∈ {1, . . . ,v}. In order to show uniform distribution of the sub-
sequence (xkb )b≥0, it suffices to show that the following relation holds for each such
interval

lim
N→∞

1

B(N)
#{0≤ b < B(N) : xkb ∈ I } = λ(I), (1)

where B(N) := #{0≤ n < N : n ∈ S}.
The set of indices is represented by the solutions of the following system of

congruences (not overdetermined).
Let z be a positive integer. Let p1, . . . ,pz be different primes and y1, . . . ,yz be

positive integers. For i ∈ {1, . . . ,z},k ∈ {1, . . . ,yi} we have

(ρ
(i,k)
0 ,ρ

(i,k)
1 , . . .) · (n(i)0 ,n

(i)
1 , . . .)T ≡ b(i,k) (mod pi)

where n(i)0 +n
(i)
1 pi +·· · is the pi-ary representation of n and b(i,k) ∈ Zpi , ρ

(i,k)
h ∈

Zpi for all h≥ 0.
In the following we show that

lim
N→∞

B(N)

N
= lim

N→∞
1

N
#{0≤ n < N : n ∈ S} = 1

∏z
i=1p

yi
i

and

lim
N→∞

1

N
#{0≤ n < N : xn ∈ I and n ∈ S} = 1

∏z
i=1p

yi
i

·λ(I).

We regard the ql-ary representation of a(l,j)/qd
(l,j)

l = (0.a(l,j)1 a
(l,j)

2 . . .a
(l,j)

d(l,j)
)ql

and observe that the following condition is equivalent to xn ∈ I :

∀l ∈ {1, . . . ,v}∀j ∈ {1, . . . ,wl}∀r ∈ {1, . . . ,d(l,j)} : sql ,γ (l,j)r
(n)≡ a

(l,j)
r (mod ql).

(2)
We can interpret the left hand sides of the congruences, which determine the set

of indices S, as integer weighted pi-ary sum-of-digits functions. Hence the condi-
tion n ∈ S is equivalent to
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∀i ∈ {1, . . . ,z}∀k ∈ {1, . . . ,yi} : spi ,ρ(i,k) (n)≡ b(i,k) (mod pi), (3)

where the sequences ρ(i,k) := (ρ
(i,k)
h )h≥0.

We can count the number of solutions of (3) and also the number of common
solutions of (2) and (3) as in the proof of [9, Theorem 4]. Since we have assumed that
the system of congruences (3) is not overdetermined and that the generator matrices
and the additional rows given by the system of congruences are compatible, we get
the results as claimed above. (We refer the interested reader to [9].)

Altogether we get:

lim
N→∞

1

B(N)
#{0≤ b < B(N) : xkb ∈ I }

= lim
N→∞

N

B(N)

1

N
#{0≤ n < N : xn ∈ I and n ∈ S}

=
z∏

i=1

p
yi
i

1
∏z

i=1p
yi
i

·λ(I),

which completes the proof of sufficiency.
Conversely, if we assume non-compatibility we can find an elementary interval

I such that
1

N
#{0≤ n < N : xn ∈ I and n ∈ S} = 0.

Non-compatibility implies, we have an l ∈ {1, . . . ,v} such that ql = pi for any i ∈
{1, . . . ,z} and that there exist non-negative integers d(l,1), . . . ,d(l,wl) (not all zero)
such that F(d(l,1), . . . ,d(l,wl)) <+∞ but F(d(l,1), . . . ,d(l,wl))=+∞.

Let t ∈N be arbitrary but fixed. We consider the system of congruences given by

the left upper d(l,1)× t-submatrix of C(l,1) together with
the left upper d(l,2)× t-submatrix of C(l,2) together with
...

the left upper d(l,wl)× t-submatrix of C(l,wl)

and we consider the system built by the yi congruences over Zpi of course the rows

(ρ
(i,k)
0 ,ρ

(i,k)
1 , . . .) are also truncated to length t .

Since the corresponding F(d(l,1), . . . ,d(l,wl)) is not finite, we know that there ex-
ist a linear combination of the truncated yi rows and a linear combination of the rows
of the submatrices given above such that the results are equal. We can find some pa-
rameters on the right of the system of congruences given by the submatrices above,
such that there does not exist any common solution. From these parameters we can
derive an elementary interval, which remains empty if we consider the first B(qtl )
points of the subsequence. Since t was arbitrarily chosen we can find an elementary
interval, which remains empty no matter how many points of the subsequence we
consider. Thus the subsequence is not even dense. ()
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Remark 1. In the case where wl = 1 for all l ∈ {1, . . . ,v} and C(l,1) are lower left
triangular matrices with parameter-function F (l)(d)= d , Theorem 5 (compare [10,
Theorem 4.2 (b)]) provides already sufficient as well as necessary conditions for
uniform distribution of a subsequence, namely the sequence of indices (kb)b≥0 has
to be uniformly distributed modulo (qd1 · · ·qdv ) for all positive integers d . It is not
so hard to check, that in the special case of both — a subsequence as considered in
Theorem 6 and a Niederreiter-Halton sequence as considered in [10, Theorem 4.2
(b)] — the condition “compatibility” is equivalent to the condition “the sequence of
indices (kb)b≥0 has to be uniformly distributed modulo (qd1 · · ·qdv ) for all positive
integers d”.

Example 3. By Theorem 6 and Example 2 the subsequence indexed by kb = ub+w

with integers u > 0,0≤ w < u remains uniformly distributed:

• For the van der Corput-Halton sequence in prime bases q1, . . . ,qs if and only if
gcd(u,q1 · · ·qs)= 1.

• For every u.d. digital (T, s)-sequence in prime base q if q does not divide u.
• For the van der Corput-Halton sequence in prime bases q1, . . . ,qs based on the

Gray-Code digits if and only if for all j ∈ {1, . . . , s} we have gcd(u,q2
j ) ∈ {1,qj }.

2.2 Subsequences Indexed by Primes

We cannot find a system of congruences such that its set of solutions is equal to
the set of primes P. Nevertheless, parts of the last subsection and the notion of
compatibility can be used to investigate the subsequence indexed by primes of a
Niederreiter-Halton sequence. We get the following necessary condition for uniform
distribution of subsequences indexed by primes.

Proposition 1. Let (xn)n≥0 be a uniformly distributed digital (F, s)-sequence in
bases ((q1,w1), . . . , (qv,wv)). If the sequence (xpn)n≥1, where pn denotes the n-th
prime, is uniformly distributed, then for each l ∈ {1, . . . ,v} the generator matrices
C(l,1), . . . ,C(l,wl) and the additional row (1000 . . .) are compatible.

Proof. We use here the same notations as in the proof of Theorem 6.
Let assume that there exists l ∈ {1, . . . ,v} and d(l,1), . . . ,d(l,wl) such that for any

choice of truncation of the matrix-rows the row (100 . . .0) (of course truncated as
well) can be written as a linear combination of the corresponding d(l,1)+·· ·+d(l,wl)

truncated rows. We consider the projection of the sequence to the corresponding wl-
dimensional unit-cube and choose the following elementary interval

I =
[
0,1/qd

(l,1)

l

)
×·· ·×

[
0,1/qd

(l,wl )

l

)
.

By our assumption that (100 . . .) can be written as a linear combination of the cor-
responding d(l,1)+ ·· · + d(l,wl) rows it is not so hard to check that the condition
xpn ∈ I implies ql |pn.
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From the construction principle we get xpn ∈ I is equivalent to

⎛

⎜⎜
⎝

γ
(l,j)

1,0 γ
(l,j)

1,1 γ
(l,j)

1,2 . . .

...
...

... . . .

γ
(l,j)

d(l,j),0
γ
(l,j)

d(l,j),1
γ
(l,j)

d(l,j),2
. . .

⎞

⎟⎟
⎠ ·

⎛

⎜⎜
⎝

p
(l)
n,0

p
(l)
n,1
...

⎞

⎟⎟
⎠=

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠

modulo ql for all j ∈ {1, . . . ,wl}. We take the mentioned linear combination of the
d(l,1)+·· ·+d(l,wl) rows and get the condition

(
1 0 0 0 . . .

) ·
(
p
(l)
n,0,p

(l)
n,1,p

(l)
n,2, . . .

)� = (
0
) ∈ Zql .

This implies ql |pn. Hence I contains at most one point, xql . Thus (xpn)n≥1 is not
uniformly distributed. ()

In the case where the generator matrices consist of rows of finite length exclu-
sively the necessary condition in Theorem 1 is also sufficient.

Theorem 7. Let (xn)n≥0 be a uniformly distributed digital (F, s)-sequence in bases
((q1,w1), . . . , (qv,wv)) generated by matrices consisting of rows of finite length
exclusively. The sequence (xpn)n≥1, where pn is the n-th prime, is uniformly dis-
tributed if and only if for each l ∈ {1, . . . ,v} the generator matricesC(l,1), . . . ,C(l,wl)

and the additional row (1000 . . .) are compatible.

For the proof of this theorem we use the prime number theorem for arithmetic pro-
gressions (compare e.g. [1, p.154]).

Lemma 1. For different primes q1, . . . ,qv , given integers d1, . . . ,dv > 0 and r with
gcd(r,q1 · · ·qv)= 1, we have

lim
N→∞

1

N
#
{

1≤ n≤N : pn ≡ r (mod q
d1
1 · · ·qdvv )

}
= 1

ϕ
(
q
d1
1 · · ·qdvv

) ,

where ϕ : N→ N denotes Euler’s totient function.

Proof of Theorem 7: Necessity of compatibility follows from Proposition 1.
For the proof of sufficiency we use the notation as in the proof of Theorem 6. In

order to prove sufficiency we will deduce for each arbitrary elementary interval I
the following relation

lim
N→∞

1

N
#{1≤ n≤N : xpn ∈ I } = λ(I).

We choose positive integers d(1,1), . . . ,d(1,w1), . . . ,d(v,1), . . . ,d(v,wv) arbitrarily but
fixed and set

Ia :=
v∏

l=1

wl∏

j=1

[
a(l,j)

qd
(l,j)

l

,
a(l,j)+1

qd
(l,j)

l

)
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with arbitrarily chosen a(l,j) ∈ {0,1, . . . ,qd(l,j)l −1} for all 1≤ j ≤ wl , 1≤ l ≤ v.
We define a further parameter-function L := (L(1), . . . ,L(v)).
For every l ∈ {1, . . . ,v} and arbitrary non-negative integers d(l,1), . . . ,d(l,wl), let

L(l)(d(l,1), . . . ,d(l,wl)) ∈ N be minimal such that for all j ∈ {1, . . . ,wl} each of the
first d(l,j) rows of C(l,j) has length less than or equal to L(l)(d(l,1), . . . ,d(l,wl)). By
the “length” of a row (c1,c2,c3, . . .) we mean sup{k : ck �= 0}.

From the conditions in Theorem 7 we know that for each l ∈ {1, . . . ,v} we have
L(l) := L(l)(d(l,1), . . . ,d(l,wl)) <+∞,

F (l) := F (l)(d(l,1), . . . ,d(l,wl))≤ L(l)(d(l,1), . . . ,d(l,wl)) <+∞
and compatibility of the generator matricesC(l,1), . . . ,C(l,wl) and (1000 . . .) for each
l ∈ {1, . . . ,v}.

From the construction principle of a Niederreiter-Halton sequence and the con-
dition L(l) <+∞ we get the following condition, which is equivalent to xn ∈ Ia :

For all l ∈ {1, . . . ,v}, j ∈ {1, . . . ,wl}, n solves

⎛

⎜⎜⎜⎜⎜
⎝

γ
(l,j)

1,0 γ
(l,j)

1,1 γ
(l,j)

1,2 γ
(l,j)

1,3 . . . γ
(l,j)

1,L(l)−1

γ
(l,j)

2,0 γ
(l,j)

2,1 γ
(l,j)

2,2 γ
(l,j)

2,3 . . . γ
(l,j)

2,L(l)−1
...

...
...

...
... . . .

γ
(l,j)

d(l,j),0
γ
(l,j)

d(l,j),1
γ
(l,j)

d(l,j),2
γ
(l,j)

d(l,j),3
. . . γ

(l,j)

d(l,j),L(l)−1

⎞

⎟⎟⎟⎟⎟
⎠
·

⎛

⎜⎜⎜⎜
⎝

n
(l)
0

n
(l)
1
...

n
(l)

L(l)−1

⎞

⎟⎟⎟⎟
⎠
=

⎛

⎜⎜⎜⎜
⎝

a
(l,j)

1

a
(l,j)

2
...

a
(l,j)

d(l,j)

⎞

⎟⎟⎟⎟
⎠
,

where the matrix above is the left upper d(l,j) ×L(l)-submatrix of C(l,j), n(l)0 +
n
(l)
1 ql +·· · is the ql-ary representation of n and (0.a(l,j)1 a

(l,j)

2 . . .a
(l,j)

d(l,j)
)ql is the ql-

ary representation of a(l,j)/(qd
(l,j)

l ).
From the Chinese Remainder Theorem it follows, that whether xn ∈ Ia or not is

determined by the residue r of n modulo Q :=∏v
l=1 q

L(l)

l .
We define R := {r ∈Z : 0≤ r <Q}. The set of residues r such that (xQb+r )b≥0 ∈

Ia is denoted by
J (Ia) := {r ∈ R : (xQb+r )b≥0 ∈ Ia}.

Note that we have |J (Ia)| = Q/A, where A :=∏v
l=1 q

∑wl
j=1 d

(l,j)

l is the number of
different elementary intervals of the same order. Furthermore, the sets J (Ia), where
Ia varies over all elementary intervals of fixed order, produce a partition of the
set R.

Note that if the sequence of indices (bn)n≥0 of a subsequence (xbn)n≥0 is uni-
formly distributed among the residue classes modulo qd1 · · ·qdv for all integers d ≥ 1,
then it is not so hard to prove that the subsequence (xbn)n≥0 of a Niederreiter-Halton
sequence generated by matrices consisting of rows of finite length exclusively is
uniformly distributed modulo one (see proof of [10, Theorem 4.2 (a)]).

Unfortunately, the sequence of primes (pn)n≥1 is not uniformly distributed mod-
ulo q

d1
1 · · ·qdvv for any integers dl ≥ 1, l ∈ {1, . . . ,v}, but it is uniformly distributed
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among all residues r with gcd(r,q1 · · ·qv)= 1 (see Lemma 1). We will use this fact
to deduce uniform distribution of (xpn)n≥1 under the conditions in Theorem 7.

In the following we partition the set R again into pairwise disjoint subsets of
equal cardinal number. For each (b1, . . . ,bv) ∈ Zq1 ×·· ·×Zqv we define

K(b1, . . . ,bv) := {r ∈ R : r ≡ bj (mod qj ) for all j ∈ {1, . . . ,v}}.
For the cardinality we have

|K(b1, . . . ,bv)| = Q

q1 · · ·qv
for each (b1, . . . ,bv) ∈ Zq1 ×·· ·×Zqv .

The set of residues r modulo Q with gcd(r,q1 · · ·qv)= gcd(r,Q)= 1 is given by

q1−1⋃

b1=1

· · ·
qv−1⋃

bv=1

K(b1, . . . ,bv).

Since we have presumed compatibility of the generator matrices C(l,1), . . . ,C(l,wl)

and (1000 . . .) for each l ∈ {1, . . . ,v} the subsets defined by

J ′(Ia,b1, . . . ,bv) :=K(b1, . . . ,bv)∩J (Ia),
where (b1, . . . ,bv) varies over all possible values in Zq1 × ·· · ×Zqv represent a
partition of J (Ia) into q1 · · ·qv pairwise disjoint subsets of equal cardinal number
Q/(A ·q1 · · ·qv).

We now compute

1

N
#{1≤ n≤N : xpn ∈ Ia}

= 1

N
#{1≤ n≤N : pn ≡ r (mod Q) with r ∈ J (Ia)}

=
q1−1∑

b1=0

· · ·
qv−1∑

bv=0

1

N
#{1≤ n≤N : pn ≡ r (mod Q), r ∈ J ′(Ia,b1, . . . ,bv)}

=
q1−1∑

b1=0

· · ·
qv−1∑

bv=0

∑

r∈J ′(Ia,b1,...,bv)

1

N
#{1≤ n≤N : pn ≡ r (mod Q)}

︸ ︷︷ ︸
(∗∗)

.

By Lemma 1 we have

lim
N→∞

1

N
#{1≤ n≤N : pn ≡ r (mod Q)} =

{ 1
ϕ(Q)

if gcd(r,Q)= 1,
0 else.

We have gcd(r,Q) = 1 is equivalent to r ∈ K(b1, . . . ,bv) with some (b1, . . .bv) ∈∏v
l=1{1, . . . ,ql−1}. Hence
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lim
N→∞

1

N
#{1≤ n≤N : xpn ∈ Ia} = (q1−1) · · · (qv−1)

︸ ︷︷ ︸
|∏v

l=1{1,...,ql−1}|
· Q

A ·q1 · · ·qv︸ ︷︷ ︸
|J ′(Ia,b1,...,bv)|

· 1

ϕ(Q)︸ ︷︷ ︸
limN→∞(∗∗)

.

Since ql are pairwise different primes we have

ϕ(Q)=Q · q1−1

q1
· · · qv−1

qv
.

This yields

lim
N→∞

1

N
#{1≤ n≤N : xpn ∈ Ia} =

1

A
= λ(Ia)

which completes the proof of Theorem 7 since Ia was arbitrarily chosen. ()
Example 4. By Theorem 7 the van der Corput-Halton sequence in different prime
bases indexed by primes is not uniformly distributed. However the subsequence
indexed by primes of the van der Corput-Halton sequence in different prime bases
based on Gray-Code digits is uniformly distributed. The digital (0,q)-sequence in
any prime base q as introduced by Faure [5] (also by Sobol [19] in base 2) indexed
by primes is not uniformly distributed.

3 Conclusion

In this paper we investigated the distribution properties of subsequences of Nieder-
reiter-Halton sequences. In detail, we considered the primary question, which sub-
sequences are uniformly distributed? We found sufficient as well as necessary con-
ditions for uniform distribution of subsequences determined by indices, which can
be interpreted as the solutions of a certain system of congruences. Furthermore, we
found a necessary condition for the uniform distribution of subsequences indexed
by the set of primes. For the special case where the generator matrices consist of
rows of finite length exclusively, we were able to prove sufficiency of this condition
as well. Whether this condition is also sufficient in the general case or not is an open
question. The method for the investigation of the distribution of Niederreiter-Halton
sequences in general is linked to the joint distribution of the integer-weighted sum-
of-digits function in different prime bases (see [9]). Until now the subsequence in-
dexed by primes of the joint distribution of the integer-weighted sum-of-digits func-
tion in different prime bases is investigated just for the very special one-dimensional
and unweighted case (see [15]). Investigation of the joint and weighted case seems
to be rather difficult.

The question, if there are new low-discrepancy sequences amongst the Nieder-
reiter-Halton sequences and its subsequences, is still open for future research. First
steps concerning the investigation of the discrepancy of Niederreiter-Halton se-
quences are done in [10] and [11]. It seems that the discrepancy of Niederreiter-
Halton sequences and their subsequences can vary significantly with different
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choices of the bases and the matrices. The following example points out this be-
havior.

Example 5. In Reference [10] certain subsequences indexed by arithmetic progres-
sions of the van der Corput-Halton sequences were identified as low-discrepancy
sequences (see Theorem 3 and 4). By contrast the digital (0,2)-sequence in base 2
(xn)n≥0 =: ω as introduced by Sobol [19] and later generalized by Faure [5] is a
well known low-discrepancy sequence, i.e.,

NDN(ω)=O
(
log2(N)

)
.

But for the subsequence ω′ = (x3n)n≥0 we have the following lower bound

NDN(ω
′)≥ cNλ (4)

for all N ∈ N with 0 < λ= log4(3) < 1 and certain c > 0.
This lower bound is a consequence of the following result of Newman [16] on

the sum-of-digits function in base 2:

c1N
λ ≤ #{0≤ n < N : 2|(s2(3n))}−#{0≤ n < N : 2|(s2(3n)−1)} ≤ c2N

λ, (5)

for all N ∈ N where c1,c2 are fixed positive constants.
The relation between (4) and (5) becomes clear if we consider that the second

component of the sequence ω is generated by the Pascal-matrix in base 2,

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 . . .

0 1 0 1 . . .

0 0 1 1 . . .

0 0 0 1 . . .

...
...
...
...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

∈ Z
N×N0
2 .

Hence, a point of the sequence ω′ = (x3n)n≥0 is included in [0,1)× [0,1/2) iff
s2(3n) is even and it is included in [0,1)×[1/2,1) iff s2(3n) is odd. Note that (5)
yields the same lower bound on the discrepancy of the hybrid sequences introduced
in [6] for s ≥ 3.

Altogether it turned out to be very difficult to give a detailed and complete anal-
ysis of the discrepancy of Niederreiter-Halton sequences and their subsequences.

Acknowledgements This research has been supported by a DOC-fFORTE-fellowship of the Aus-
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Correcting the Bias in Monte Carlo Estimators
of American-style Option Values

K.H. Felix Kan, R. Mark Reesor, Tyson Whitehead, and Matt Davison

Abstract Existing Monte Carlo estimators of American option values are consistent
but biased. This article presents a general bias reduction technique which corrects
the bias due to making suboptimal exercise decisions. The derived asymptotic ex-
pression for the bias is independent of dimensionality, holds for very general under-
lying processes and option payoffs, and is easily evaluated. The bias is subtracted
from the estimators at each exercise opportunity in order to produce bias-corrected
estimators. We illustrate how to apply this technique to three methods of generating
estimators — stochastic tree, stochastic mesh and least-squares Monte Carlo. Nu-
merical results demonstrate that for a fixed sample size this technique significantly
reduces the relative error for both high- and low-biased estimators.

1 Introduction

Pricing American options is difficult because the option holder has the right to exer-
cise before the maturity date. This is an optimal stopping-time problem in the sense
that the owner chooses the exercise time to maximize option value. Hence, given
that the option has not yet been exercised at time t , its value is

Bt = sup
t≤τ≤T

E [Pτ |Ft ] , (1)
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where the supremum is taken over all possible stopping times with values in the
interval [t,T ], T is the maturity, Pt is the discounted exercise value at time t and
Ft is the filtration generated by the underlying processes. We focus on valuation, so
work with an equivalent martingale measure. Without loss of generality and with a
gain in clarity, the discounting factor is suppressed throughout this article.

Numerically, an American option value can be approximated by a Bermudan
option value, i.e.,

Bk = max
τ∈[k,...,N ]E [Pτ |Fk] , (2)

where the maximum is taken over all possible discrete stopping times from k to N

and time N is the option maturity. Without ambiguity, we use the term American
option instead of Bermudan option. Several Monte Carlo (MC) approaches have
been developed to estimate the American option value, ranging from earlier work
that focused on parameterizing the early-exercise region based on the form of the
option payoff [17, 4, 10], to recent work on a dual formulation of the problem [1,
12, 16]. In this article, we concentrate on techniques for computing the continuation
value of the contingent claim, which include Broadie and Glasserman’s stochastic
tree and mesh [5, 7], and a modified version of Longstaff and Schwartz’s least-
squares Monte Carlo (LSM) [14] (earlier variants were done by Carrière [8], and
Tsitsiklis and Van Roy [18]).

Valuation of American options can be broken down into two recursive equations

Hk = E [Bk+1|Fk] and (3)

Bk =max(Hk,Pk), (4)

where Hk is the value of holding the option until at least the next exercise opportu-
nity and Bk is the current value of the option (i.e., the greater of the value of holding
or exercising). The terminal condition is HN = 0 since there is no value in holding
the option past expiry.

In MC valuation algorithms an estimator of the continuation value, H̃k , is used in
(3) and (4), giving an option-value estimator of B̃k = max(H̃k,Pk). MC estimators
of the continuation value from the stochastic tree, stochastic mesh, and LSM are
biased but consistent [5, 7, 3, 14, 9]. Furthermore, estimators are either high- or
low-biased and have a close relative with a bias of opposite sign. Though there has
been much work on improving the efficiency of MC estimators through the use of
variance-reduction techniques, very little work has been done on reducing estimator
bias. The obvious approach of averaging the final high- and low- biased estimators
is unsuccessful since the estimators are asymmetric about the true value. A more
successful (ad hoc) approach is to recursively average the high- and low-biased
estimators at each exercise opportunity. This is shown to be reasonably successful
for the stochastic mesh [2], though it has not been shown to be effective for the
stochastic tree and LSM. Two other works that focus on estimator bias are [8] and
[6]. In the former a corrected regression-based estimator is generated at the cost
of a significant increase in estimator variance. In [6] a nonparametric bootstrap is
used to estimate the bias and this is subtracted from the uncorrected stochastic tree
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estimators. The cost of this correction is a significant increase in computational time
and complexity.

Some recent work uses large-sample theory to derive and rigorously justify an
approximation to the stochastic tree estimator bias [20, 21, 22]. In [20] and [21]
heuristic derivations for the approximation to the bias are given for both high- and
low-biased stochastic tree estimators. [21] contains an extensive numerical study
showing the significantly-increased convergence rate of the corrected estimators.
The approximation to the bias is rigorously justified for the high-biased stochastic
tree estimator in [20] and [22]. Furthermore, in [20], corrected versions of the high-
and low-biased stochastic mesh estimators are presented along with substantial nu-
merical results showing the efficacy of the method.

In Section 2 of this paper, the heuristic derivation for the bias approximation is
generalized to accommodate each of the high-biased stochastic tree, mesh and LSM
estimators. The high-biased estimators considered here are those in which the de-
terminer (estimator used for exercise decision) and the propagator (estimator passed
on to preceding exercise opportunity) are the same. A corresponding derivation for
the low-biased case in which the continuation value estimators and the recursive
equations are different from those of the high-biased estimators exists but is not
presented here due to space constraints. The approximation for the bias is used to
construct bias-corrected estimators for the stochastic tree, stochastic mesh, and LSM
in Section 3. Numerical results obtained by applying the bias-correction technique
to a well-studied multivariate pricing problem via these three pricing methods are
presented in Section 4. The numerical results presented here for the tree and mesh
are a small subset of those given in [21] and [20], respectively. The bias-corrected
LSM estimators presented here are unique, as are the numerical results showing the
increased convergence rate of the corrected LSM estimators. Section 5 concludes
the paper.

2 Bias Correction

In this section, a heuristic derivation of an approximation to the time-k estimator
bias is presented. This relies on a normal approximation to the distribution of the
hold-value estimator. The result is then applied in Section 3 to estimators from the
stochastic tree, stochastic mesh and LSM methods. Arguments similar to these for
stochastic tree estimators appear in [21] and [20].

To begin, let H̄k =E[H̃k|Fk]. The time-k bias is defined as H̄k−Hk =E[B̃k+1−
Bk+1|Fk]. An estimator is high-biased if H̄k −Hk > 0 and is low-biased if H̄k −
Hk < 0. Expanding the inner terms of E[B̃k+1−Bk+1|Fk] gives

E
[

max(H̃k+1,Pk+1)−max(Hk+1,Pk+1)
∣
∣Fk

]
. (5)

Adding and subtracting E[max(H̄k+1,Pk+1)|Fk] splits this expression into a local
(6) and a global (7) component
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E
[

max(H̃k+1,Pk+1)−max(H̄k+1,Pk+1)
∣∣Fk

]
(6)

+E
[

max(H̄k+1,Pk+1)−max(Hk+1,Pk+1)
∣∣Fk

]
. (7)

We return to the global component, which represents accumulated bias, at the
end of this section and focus on the local component for now. Let 1A be an indica-
tor function which is equal to one on the set A and is equal to zero otherwise. The
Fk+1-conditional expectation (and, by nested expectation, the Fk-conditional ex-
pectation) of 1H̄k+1>Pk+1

(H̃k+1− H̄k+1) is zero as 1H̄k+1>Pk+1
is Fk+1-measurable

and E[H̃k+1|Fk+1] = H̄k+1. Therefore, this term can be subtracted inside the local
bias expectation (6) without altering the expected value. Doing this, and expressing
the max with indicator functions, gives

E

[
1H̄k+1>Pk+1

1
H̃k+1≤Pk+1

(Pk+1− H̃k+1)

+ 1H̄k+1≤Pk+1
1
H̃k+1>Pk+1

(H̃k+1−Pk+1)

∣
∣
∣Fk

]
(8)

as an equivalent local bias expression. Rewritten using Ỹk+1 = H̃k+1−Pk+1 and
Ȳk+1 = H̄k+1−Pk+1, this is

E

[
1Ȳk+1>01Ỹk+1≤0(−Ỹk+1)+1Ȳk+1≤01Ỹk+1>0(Ỹk+1)

∣∣∣Fk

]
. (9)

Table 1 summarizes (9). It is evident that the local bias component is solely due
to exercising incorrectly (i.e., making the wrong choice between holding and exer-
cising). This implies that significant contributions are limited to the region about the
exercise boundary as even poor estimators are unlikely to result in incorrect exercis-
ing away from the boundary. It is also evident why the estimator is high-biased.

Table 1 Local error in the time-(k+1) hold-value estimator.

Held:
Ỹk+1 > 0

Exercised:
Ỹk+1 ≤ 0

Should Hold:
Ȳk+1 > 0

0 −Ỹk+1

Should Exercise:
Ȳk+1 ≤ 0

Ỹk+1 0

Equation (9) is not too valuable numerically as Ȳk+1 is not directly observable
and replacing it with an estimator immediately collapses the expression to zero. It is
necessary to incorporate additional distributional knowledge. Monte Carlo estima-
tors are (possibly weighted) averages of a typically large number of random vari-
ables. Under very general conditions, the distribution of a normalized and centered
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average or weighted average tends towards that of a normal random variable as the
sample size approaches infinity. Many versions of the central limit theorem (CLT)
provide such a result, ranging from averages of independent, identically distributed
random variables to averages of dependent, non-identically distributed random vari-
ables [19]. Thus, the normal distributional approximation for the distribution of MC
estimators of the hold value is reasonable. We provide further discussion of this in
Section 3 for each of the tree, mesh and LSM estimators.

Returning to the derivation, let V̄k+1 be the Fk+1-conditional variance of B̃k+2
and assume that Ỹk+1 in (9) can be replaced by Ỹ ∗k+1, where the latter is a normally
distributed random variable with mean Ȳk+1 and variance V̄k+1/M (conditional on
Fk+1), and M is the sample size used to calculate Ỹk+1. The bias expression then
becomes

E

[
1Ȳk+1>01Ỹ ∗

k+1≤0(−Ỹ ∗k+1) + 1Ȳk+1≤01Ỹ ∗
k+1>0(Ỹ

∗
k+1)

∣
∣
∣Fk

]
. (10)

Let fȲk+1,V̄k+1|Fk
and f

Ỹ ∗
k+1,V̄k+1|Fk

denote the Fk-conditional joint density func-

tion of (Ȳk+1, V̄k+1) and (Ỹ ∗k+1, V̄k+1), respectively. Writing the bias expression in
integral form gives

∫ ∞

0

∫ ∫

D

|ỹ∗| 1√
v̄/M

φ

(
ỹ∗ − ȳ√
v̄/M

)
fȲk+1,V̄k+1|Fk

(ȳ, v̄) dỹ∗dȳ dv̄, (11)

where D = (0,∞)× (−∞,0] ∪ (−∞,0] × (0,∞) and φ is the standard normal
density function. There are two underlying scales in this integral — the distribution
of Ȳk+1 is nearly invariant as M changes, whereas the conditional distribution of
Ỹ ∗k+1 converges towards a delta function centered at Ȳk+1. Substituting z̄ = ȳ

√
M

and z̃∗ = ỹ∗
√
M separates these two, giving

1

M

∫ ∞

0

∫ ∫

D

|z̃∗| 1√
v̄
φ

(
z̃∗ − z̄√

v̄

)
fȲk+1,V̄k+1|Fk

(
z̄√
M
,v̄

)
dz̃∗dz̄ dv̄. (12)

We see the time-k local bias is O(1/M) due to the combined (O(1/
√
M)) effects of

a decreasing probability of making incorrect stopping decisions and an increasing
probability of those that are made being less significant.

Note that Ỹ ∗k+1, Ȳk+1 and V̄k+1 converge to Yk+1, Yk+1 and Vk+1, respectively,
where Vk+1 is the Fk+1-conditional variance of Bk+2. Therefore, assume both
fȲk+1,V̄k+1|Fk

(z̄/
√
M,v̄) and f

Ỹ ∗
k+1,V̄k+1|Fk

(z̃∗/
√
M,v̄) converge to fYk+1,Vk+1|Fk

(0, v̄)

[20, 22]. Assuming limM commutes with the integration, (12) then becomes asymp-
totically equivalent to

1

M

∫ ∞

0

∫ ∫

D

|z̃∗| 1√
v̄
φ

(
z̃∗ − z̄√

v̄

)
f
Ỹ ∗
k+1,V̄k+1|Fk

(
z̃∗√
M
,v̄

)
dz̃∗dz̄ dv̄. (13)

Undoing the z̃∗ and z̄ substitutions gives
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∫ ∞

0

∫ ∫

D

|ỹ∗| 1√
v̄/M

φ

(
ỹ∗ − ȳ√
v̄/M

)
fỸ ∗

k+1,V̄k+1|Fk
(ỹ∗, v̄) dỹ∗dȳ dv̄. (14)

This expression is special because the ȳ integral can be performed. This yields
∫ ∞

0

∫ ∞

−∞
|ỹ∗| Φ

( −|ỹ∗|√
v̄/M

)
fỸ ∗

k+1,V̄k+1|Fk
(ỹ∗, v̄) dỹ∗ dv̄, (15)

where Φ is the standard normal cumulative distribution function. In expectation
form, this is

E

[

|Ỹ ∗k+1| Φ
( −|Ỹ ∗k+1|√

V̄k+1/M

)∣∣
∣
∣
∣
Fk

]

. (16)

In order to utilize (16) it is necessary to assume that sample quantities (Ỹk+1, Ṽk+1)
can be substituted for the idealized quantities (Ỹ ∗k+1, V̄k+1). Doing so yields

E

[

|Ỹk+1| Φ
(
−|Ỹk+1|√
Ṽk+1/M

)∣∣
∣∣
∣∣
Fk

]

. (17)

Subtracting (17) from the bias gives

E[H̃k|Fk]−Hk−E

⎡

⎣ |Ỹk+1| Φ
(
−|Ỹk+1|√
Ṽk+1/M

)∣∣∣∣∣∣
Fk

⎤

⎦ (18)

= E
[

max(H̃k+1,Pk+1)−max(H̄k+1,Pk+1)
∣∣Fk

]
(19)

+E
[

max(H̄k+1,Pk+1)−max(Hk+1,Pk+1)
∣∣Fk

]
(20)

−E

⎡

⎣ |H̃k+1−Pk+1| Φ
(
−|H̃k+1−Pk|√

Ṽk+1/M

)∣∣∣∣∣∣
Fk

⎤

⎦ , (21)

where (19), (20) and (21) are the local bias, global bias and correction components,
respectively.

The local and correction components asymptotically cancel as the sample size
gets large, leaving just the global component. Applying Jensen’s inequality to move
the absolute value inside the expectation and applying the inequality |max(x,y)−
max(u,v)| ≤ |x−u|+ |y−v| to the absolute value of the global component gives

∣∣E
[

max(H̄k+1,Pk+1)−max(Hk+1,Pk+1)
∣∣Fk

]∣∣ (22)

≤ E
[ ∣∣H̄k+1−Hk+1

∣
∣
∣
∣Fk

]= E
[ ∣∣E

[
H̃k+1

∣
∣Fk+1

]−Hk+1
∣
∣
∣
∣Fk

]
, (23)

which shows it to be bound by the time-(k+1) bias. Similarly the time-(k+1) bias
is bound by the time-(k+2) bias. Continue in this fashion through to the next-to-last
exercise opportunity (N −1) and note that the time-(N −1) hold-value estimator is
unbiased. Thus, the global bias is also accounted for. Specifically, the propagation
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of bias across exercise opportunities is at most of the same order as the difference
between the local bias and the correction component.

As a result, the corrected option-value estimator is obtained by subtracting the
term that approximates the bias from the original estimator in (4), namely

B̃k =max(H̃k,Pk)−|H̃k−Pk| Φ
(
−|H̃k−Pk|√

Ṽk/M

)

. (24)

This general expression is applicable to stochastic tree, stochastic mesh, and
LSM estimators. For a given sample size, its effectiveness at correcting the bias
relies on the accuracy of (i) the normal distributional approximation and (ii) the
sample variance estimator used in place of the true variance.

3 Applications

3.1 Stochastic Tree

This is the most intuitive method to approximate the conditional expectation defin-
ing Hk in (3). From each node, a finite number of iid paths are simulated using the
underlying asset-price processes. The option values can then be evaluated at each
node based on the simulated values. Working backward from the maturity date, the
continuation values are estimated at each node by averaging the option values at suc-
cessive nodes across sample paths, hence determining the optimal stopping times.
More details about the stochastic tree estimator are given in [5].

Let each path be identified by a vector of indices i = i1, ..., iN recording its
branching history from the root, and let each node along a path i be identified by its
depth k. The recursive equations for the high-biased stochastic tree estimator are

H̃ i
k =

1

M

M∑

ik+1=1

B̃ i
k+1 and (25)

B̃ i
k =max(H̃ i

k,P
i
k), (26)

where H̃ i
k is the time-k, path-i continuation value estimator, B̃ i

k is the time-k, path-i
option-value estimator, P i

k is the time-k, path-i exercise value, and M is the number
of branches emanating from each node. We also have the terminal condition that
H̃ i
N = 0 for all i.
The normal approximation to the distribution of the time-k continuation value

estimator follows from the condition that Var(B̃ i
k+1|Fk) <∞. The branches ema-

nating from each node of the tree give option-value estimators, B̃ i
k+1, that are iid

random variables given Fk . In this case the conditions for the standard CLT are sat-
isfied, hence validating the distributional approximation used in going from (9) to
(10). Further, note that Ṽ i

k is an unbiased and consistent estimator of V i
k , as the B̃ i

k
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are iid random variables given Fk . Thus, the corrected estimator is

B̃ i
k =max(H̃ i

k,P
i
k)−|H̃ i

k−P i
k| Φ

(
−|H̃ i

k−P i
k|√

Ṽ i
k/M

)

, (27)

where the sample variance is

Ṽ i
k =

1

M−1

M∑

ik+1=1

⎛

⎝B̃ i
k+1−

1

M

M∑

ik+1=1

B̃ i
k+1

⎞

⎠

2

. (28)

When the corrected option-value estimators for the stochastic tree are averaged
to obtain the continuation value estimator at the previous step, an estimate of (21) is
formed by the law of large numbers that asymptotically cancels with the local bias
(19). This gives rise to the following key result which is formally proven in [20] and
[22] for the high-biased estimator.

Theorem 1. (Bias Correction to o(1/M))

Suppose the following conditions are satisfied: For all k,

1. the fourth moment of Pk+1 is finite;
2. Vk+1 is bounded about the exercise boundary;
3. the Fk-conditional density function of Yk+1 is bounded about the exercise bound-

ary and is continuous there;
4. the Fk-conditional joint density function of Yk+1 and Vk+1 exists about the exer-

cise boundary (possibly in a singular form) and is continuous there.

Then, as M→∞,

M|E[ H̃ c
k

∣∣Fk

]−Hk| → 0 (29)

almost surely, where H̃ c
k is the bias-corrected time-k hold-value estimator.

3.2 Stochastic Mesh

Although the stochastic tree method is very easy to understand, it is impractical
since the number of sample paths increases exponentially with the number of ex-
ercise opportunities. The stochastic mesh method overcomes this problem by sim-
ulating a finite set of M sample paths of the underlying and performing dynamic
programming on this fixed set of paths. At each of the time-k nodes in this mesh,
the option values at each of the time-(k+1) nodes are used to construct the contin-
uation values. In this construction, weights that describe a change-of-measure are
applied to each of the time-(k+1) values to conform with the assumed probability
model for the underlying.

The recursive equations for the high-biased stochastic mesh estimator are
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H̃ i
k =

1

M

M∑

j=1

B̃
j

k+1ω
i,j

k+1 and (30)

B̃i
k =max(H̃ i

k ,P
i
k ), (31)

where H̃ i
k is the time-k, path-i continuation value estimator, B̃i

k is the time-k, path-i
option-value estimator, P i

k is the time-k, path-i exercise value, M is the mesh size or

the number of sample paths, and ωi,j

k+1 are weights describing transition probabilities
between the path i at time k and the path j at time (k+ 1). The terminal condition
is H̃ i

N = 0 for all i.
Note that there are a number of ways to generate the mesh [11]. No matter the

method of mesh construction, H̃ i
k is a weighted average of dependent, identically

distributed random variables, hence the standard CLT does not apply. This depen-
dence also poses a challenge when estimating the variance of H̃ i

k since it is non-
trivial to estimate the covariances of the weighted option-value estimators. Current
research focuses on computing an unbiased and consistent variance estimator for
H̃ i
k and on developing rigorous arguments justifying the normal distributional ap-

proximation.
Given the generality under which CLT’s apply we propose the corrected estima-

tor

B̃i
k =max(H̃ i

k ,P
i
k )−|H̃ i

k −P i
k | Φ

(
−|H̃ i

k −P i
k |√

Ṽ i
k /M

)

, (32)

where the sample variance is

Ṽ i
k =

1

M−1

M∑

j=1

⎛

⎝B̃j

k+1ω
i,j

k+1−
1

M

M∑

j=1

B̃
j

k+1ω
i,j

k+1

⎞

⎠

2

. (33)

This variance estimator neglects the dependence between the option value estima-
tors and is, in general, biased. It is difficult to determine whether the option-value
estimators are positively or negatively correlated. In the former case (33) underesti-
mates the true variance and the bias correction will be too small, whereas in the latter
case, (33) overestimates the true variance and the bias correction will be too large.
The numerical results presented in Section 4 indicate that significant improvements
in the estimator convergence rate are realized using (32) and (33).

3.3 LSM

LSM is similar to the stochastic mesh method. As with the stochastic mesh, dy-
namic programming is done on a fixed set of M simulated sample paths. The LSM
estimator is similar to the stochastic mesh estimator described in [7] except that
the weights implied by a regression are used to replace the likelihood ratio mesh
weights. Compared with the stochastic mesh, LSM is more popular among practi-
tioners because it can be implemented more efficiently. We modify Longstaff and
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Schwartz’s algorithm by using the continuation values estimated by regression for
both determiners and propagators, where the latter are discounted cash flows in their
original algorithm [14]. This modification usually generates high-biased estimates.
A proper choice of basis functions in the regression is critical to the success of the
LSM method.

The conditional expectations defining the continuation values are approximated
by the fitted values of a regression, where the regression coefficients are estimated
by the least-squares method (hence the name least-squares Monte Carlo). Specifi-
cally, discounted approximate option values at time (k+ 1) are regressed against a
set of basis functions evaluated at time k, which should be related to the underlying
processes and the payoff function. Consider the linear regression

B̃i
k+1 = xikβk+ εik, i = 1,2, ...,M, (34)

where xik is a (1×p) vector of basis functions evaluated at time k for path i, βk is
a (p×1) vector of regression coefficients, εik is the time-k, path-i error term, B̃i

k+1
is the time-(k+1), path-i option-value estimator, M is the number of sample paths
and p is the number of basis functions. In matrix form this becomes

B̃k+1 =Xkβk+ εk, (35)

where B̃k+1 = (B̃1
k+1, . . . , B̃

M
k+1)

′, Xk = ((x1
k )
′, . . . , (xMk )′)′, εk = (ε1

k , . . . ,ε
M
k )′ and

′ denotes transpose.
We use standard assumptions on the errors, namely that E[εk|Fk] = 0 and

E[εkε′k|Fk] = diag(σ 2
k,1, . . . ,σ

2
k,M) ≡ Wk , where 0 is the column vector of zeros,

diag(a1, . . . ,aM) is the diagonal matrix with entries (a1, . . . ,aM) and σk,i’s are con-
stants which could be different for different values of i. Note that the assumption of
independence can be relaxed and 2-stage least squares can be used to obtain consis-
tent regression estimators having the desired large-sample distributional properties.
This approach allows one to incorporate dependence among the option-value esti-
mators at the cost of increased computational work. Such a study is the focus of
ongoing work.

The ordinary least-squares regression estimators are

β̃k =
(
X′kXk

)−1
X′kB̃k+1. (36)

With the above assumptions on the errors it is seen that

E
[
β̃k
∣∣Fk

]= βk and (37)

Var
[
β̃k
∣∣Fk

]= (
X′kXk

)−1
X′kWkXk

(
X′kXk

)−1 ≡ V̄k

M
. (38)

Under general conditions, standard regression theory dictates a multivariate nor-
mal approximation to the distribution of β̃k (conditional on Fk) [19]. Specifically,
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β̃k|Fk ∼MVN
(
βk,

V̄k

M

)
, (39)

where MVN (μ̃,Σ) denotes a multivariate normal random vector with mean vec-
tor μ̃ and variance-covariance matrix Σ . An application of the Cramer-Wold device
yields the approximate conditional distribution of the time-k, path-i hold-value es-
timator

H̃ i
k = xikβ̃k|Fk ∼N

(

xikβk,
xikV̄k(x

i
k)
′

M

)

, (40)

where N (μ,σ 2) denotes a normal random variable with mean μ and variance σ 2.
For LSM estimators, these arguments provide the intuition for the substitution that
takes (9) to (10).

The recursive equations for the LSM high-biased estimators are

H̃ i
k = xikβ̃k and (41)

B̃i
k =max(H̃ i

k ,P
i
k ) (42)

with the terminal condition H̃ i
N = 0 for all i.

The corrected LSM estimator is

B̃i
k =max(H̃ i

k ,P
i
k )−|H̃ i

k −P i
k | Φ

(
−|H̃ i

k −P i
k |√

xikṼk(x
i
k)
′/M

)

, (43)

where Ṽk/M = (X′kXk

)−1
X′kW̃kXk

(
X′kXk

)−1, W̃k = diag(ε̃2
k,1, . . . , ε̃

2
k,M) and ε̃2

k,i =
(B̃i

k+1−xikβ̃k)
2. The assumption of independent errors is not generally appropriate

as H̃ i
k is a weighted average of dependent, non-identically distributed random vari-

ables. Thus, a similar comment to that given at the end of Section 3.2 concerning the
effect of using a biased and inconsistent variance estimator in the correction term
applies here.

3.3.1 Remark

In deriving the approximate bias expression for the LSM estimator, it is assumed
that the uncorrected estimator is consistent given a finite set of basis functions. In
general, this is not true. In fact, the estimator is only consistent for the true approxi-
mation value for this set of basis functions. If the true approximation value is equal
to the true option value, then the estimator is consistent for the true option value.
Otherwise, there exists another bias outside the scope of our method. As a conse-
quence, this bias reduction method is not designed to address the choice of basis
functions, a separate problem beyond the scope of this article.
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4 Numerical Results

The bias-corrected estimators are tested on a well-studied example of [7] — an
American-style max-max-call option with five underlying assets and a maturity of
three years. Its payoff function is

(max(S1
T , ...,S

5
T )−K)+ (44)

where K is the strike price, (a)+ denotes max(a,0), and S1, ...,S5 are the underly-
ing asset-price processes. These processes are modeled with uncorrelated geometric
Brownian motions, pay a continuous dividend of 10% and have a volatility of 20%.
The initial prices are all $90, the strike price is $100 and the risk-free interest rate is
5%. The option has three exercise opportunities, one per year.

The numerical example includes the uncorrected and corrected low-biased esti-
mators. Standard path estimators are adopted as the low-biased estimators. A stan-
dard path estimator uses one sample path for the propagator that is independent of
another set of sample paths used to obtain the determiner. The readers are referred to
[11] for a more detailed discussion of the standard path estimator for the stochastic
tree, stochastic mesh and LSM estimators. The correction terms can be derived in a
similar fashion as that for the high-biased estimators [21], but their final expressions
are not reported in this article due to space constraints.

For each sample size, M , a number of independent repeated valuations are per-
formed. The option-value estimators for each repeated valuation are averaged to give
the sample-size-M option value estimator. The combinations of number of repeated
valuations and sample size are chosen for each method to (i) keep the computational
time approximately the same across combinations; and (ii) yield an estimator stan-
dard error of less than 0.02. The combinations used are given in Table 2. For a given
sample size, the estimator standard error is the standard deviation of the hold value
estimators divided by the square root of the number of repeated valuations. Note
that averaging repeated valuations does not change estimator bias, it only affects
estimator variance.

The method of mesh construction used here is the same as in [7]. For LSM twelve
basis functions are used consisting of a constant, the first three Hermite polynomials
in the maximum of the values of the five assets, the values of four assets, the product
of the highest and second highest, second highest and third highest, etc.

Figures 1–3 plot the average relative error with approximate pointwise 95% con-
fidence intervals against sample size for both the original and corrected estimators.
The relative errors are (B̃0−B0)/B0 and (B0− B̃0)/B0 for the high- and low-biased
estimators, respectively, where B0 is the best estimate taken from [21] — an aver-
age of high- and low-biased uncorrected stochastic mesh estimators computed with
a large sample size. Since the estimators are consistent, correcting for bias has no
effect on the relative errors at the largest sample sizes shown here. For all other
cases the correction significantly reduces the bias, with the reduction varying across
estimation scheme, estimator type, and sample size. In particular, the bias reduction
technique seems to work best for the tree and LSM estimators and is more effec-
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Table 2 Number of repeated valuations and the sample size (M) required to compute an option-
value estimator with standard error of less than 0.02.

Tree Mesh LSM

Valuations Sample Size (M) Valuations Sample Size (M) Valuations Sample Size (M)
64000 10 640 2000 6400 200
32000 20 320 4000 3200 400
16000 40 160 8000 1600 800
8000 80 80 16000 800 1600
4000 160 40 32000 400 3200
2000 320 20 64000 200 6400
1000 640 10 128000 100 12800

Fig. 1 Average relative error with approximate pointwise 95% confidence intervals of the original
and corrected stochastic tree estimators against sample size (M).

tive for low-biased estimators. The correction terms for the stochastic tree and LSM
high-biased estimators reduce the relative errors by up to a factor of four, while the
relative error is reduced by a factor of two for the high-biased mesh estimators. This
could indicate that the large-sample distributional approximation to the hold-value
estimator is not as accurate for high-biased mesh estimators or that the hold-value
dependency (ignored here) significantly affects the variance estimator. On the other
hand, the relative errors for low-biased estimators are very close to zero with small
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Fig. 2 Average relative error with approximate pointwise 95% confidence intervals of the original
and corrected stochastic mesh estimators against sample size (M).

sample sizes. Furthermore, Figure 3 reveals that the corrected and uncorrected low-
biased LSM estimators do not seem to converge to the true value as the average
relative error is significantly different from zero. This indicates the importance of
the choice of basis functions as discussed in Section 3.3.1. Nonetheless, the bias-
corrected LSM estimators converge faster to the true approximation value given a
finite set of basis functions.

For a given sample size, bias-corrected estimators have relative error less than
half of the corresponding uncorrected estimators. This implies that the corrected
estimator gives the same level of accuracy as the uncorrected estimator with less
than half the number of sample paths used in each valuation. Since the same level
of accuracy is obtained with a smaller mesh size for the corrected estimator, the
computational speed of the corrected estimator can be further increased by running
repeated valuations of this smaller size (each of which takes less time) in parallel
(on a cluster of workstations). That means that a combination of this bias reduction
method with parallel computing more than doubles (and, in some cases, more than
quadruples) the convergence speed.
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Fig. 3 Average relative error with approximate pointwise 95% confidence intervals of the original
and corrected LSM estimators against sample size (M).

5 Conclusion

We introduced a general technique for reducing the bias of Monte Carlo estima-
tors of American-style options. A five-dimensional max-max call option is used to
test the effects of this bias reduction technique on the stochastic tree, stochastic
mesh and LSM high- and low-biased estimators. Results show that all corrected
estimators significantly outperform their uncorrected counterparts in terms of con-
vergence speed. Other advantages of this technique include that it applies equally
well in an arbitrary number of dimensions, with virtually any reasonable underly-
ing asset-price process and payoff function, and that it contributes little incremental
implementation (altering a few lines of code) and computational costs.

We continue to work on the rigorous justification for convergence of the corrected
stochastic mesh and LSM estimators, including the development of an unbiased
and consistent variance estimator that allows for dependence. Current work also in-
cludes the development of higher order corrections for each of the three valuation
techniques. Additionally, interest lies in applications to duality methods, optimal-
switching time problems, multiple-exercise options and in sensitivity estimators
(e.g., the Greeks). We continue to explore the use of high-performance comput-
ing techniques and variance reduction methods to generate further computational
efficiencies.
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Fast Principal Components Analysis Method for
Finance Problems With Unequal Time Steps

Jens Keiner and Benjamin J. Waterhouse

Abstract The use of the Principal Components Analysis (PCA) method as a vari-
ance reduction technique when evaluating integrals from mathematical finance us-
ing quasi-Monte Carlo point sets suffers from a distinct disadvantage in that it
requires a dense matrix-vector multiplication with O(s2) computations for an s-
dimensional problem. It was shown by Scheicher [18] that the cost of this matrix-
vector multiplication could be reduced to O(s logs) arithmetic operations for prob-
lems where the time steps are equally sized. In this paper we show how we may drop
this requirement and perform the matrix-vector multiplication in O(s logs log(1/ε))
arithmetic operations for any desired accuracy ε > 0.

1 Background

1.1 The Use of Monte Carlo in Finance

Many problems in mathematical finance involve calculating the expected value of
some function G under a Gaussian density and may be formulated as the evaluation
of an integral of the form

E(G)=
∫

Rs

G(w)
1√

(2π)s detC
exp

(
−1

2
wT C−1w

)
dw,
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where C is the symmetric positive definite covariance matrix of the Brownian mo-
tion discretized at timepoints 0 < t1 < t2 < · · ·< ts , given by

C = (
min(ti , tj )

)s
i,j=1 . (1)

It is not difficult to conceive of real-world problems where the dimension s can grow
large. The integral may be written as an integral over the s-dimensional unit cube

E(G)=
∫

[0,1]s
G(AΦ−1(x))dx (2)

where Φ−1(·) is the componentwise inverse cumulative density function of the Nor-
mal distribution, and A is any matrix where AAT = C.

Following Boyle [3], high-dimensional integration problems of the form of (2)
have commonly been approximated using the Monte Carlo (MC) method. Under the
MC method, an integral is approximated by the n-point equal-weight rule

∫

[0,1]s
G(AΦ−1(x)) dx≈ 1

n

n∑

k=1

G(AΦ−1(xk)) (3)

for a set of points x1,x2, . . . ,xn chosen iid from the s-dimensional unit cube.
Recently there has been a great deal of research into quasi-Monte Carlo (QMC)

integration. The QMC method has the same form as the MC method as shown in (3)
except that the points x1,x2, . . . ,xn are chosen deterministically from the unit cube.

In the literature there are three choices of A such that AAT = C which are com-
monly used, namely the “standard” or Cholesky construction, the Brownian Bridge
(BB) construction and the Principal Components Analysis (PCA) construction. In
this paper we will focus on the efficient use of the PCA construction, as first pro-
posed by Acworth, Broadie, and Glasserman [1].

Under the PCA method, APCA is taken to be the scaled eigenvector matrix

APCA = [√λ1v1, . . . ,
√
λsvs] = VΛ1/2,

where λ1, . . . ,λs are the eigenvalues ofC in decreasing order (comprising the entries
in the diagonal matrix Λ) and v1, . . . ,vs the corresponding unit-length eigenvectors
(which form the columns of the matrix V ).

Several papers have appeared which suggest that the PCA method works well for
various problems from mathematical finance. (See for example Acworth et al. [1],
Giles et al. [9] and L’Ecuyer et al. [15].) However, even though the PCA construc-
tion may, for particular problems, require fewer function evaluations to calculate the
value of an integral to within a certain error tolerance, each of these function eval-
uations is more computationally expensive since there is no obvious way to avoid
the matrix-vector multiplication APCAΦ−1(x) in the way it is avoided by the stan-
dard and BB constructions. Under the standard and BB constructions, the matrix
A has structure which may be exploited to allow the matrix-vector multiplication
AΦ−1(x) to be performed in O(s) operations. Hence the use of the PCA method
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increases the computational cost of each function evaluation to O(s2). Additionally,
the eigenvalues and eigenvectors of C need to be calculated, which requires, in gen-
eral, O(s3) operations, although this is only calculated once, rather than for each
function evaluation.

It is therefore tempting to relegate the PCA method to the category of “theoret-
ically interesting” but impractical. This paper is devoted to assuaging this tempta-
tion.

The remainder of this paper is structured as follows. Section 2 proves that
the matrix-vector multiplication for the PCA method may be performed for un-
equal time-steps in O(s logs log(1/ε)) operations. It also contains an algorithm to
demonstrate how to implement the method. Section 3 contains some numerical test-
ing.

2 Fast Matrix-Vector Product for the Principal Components
Analysis Method

We will demonstrate that it is possible to exploit the structure of the problem and to
reduce the cost of the matrix-vector multiplication APCAΦ−1(x) from O(s2) opera-
tions to O(s logs log(1/ε)) operations for any given accuracy ε > 0.

The problem of efficiently computing APCAΦ−1(x) has been considered by
Scheicher [18] for the special case where the time steps are equal in length. That
is, tj − tj−1 = Δt for j = 1, . . . , s and t0 = 0. The method relies on the fact, first
shown by Åkesson and Lehoczky [2], that for the equal time step case, there exist
closed form expressions for both the eigenvalues and eigenvectors of C.

The matrix-vector multiplication of APCAΦ−1(x) is then re-written as a Dis-
crete Sine Transformation and may be performed with O(s logs) operations by
means of a Fast Fourier Transform (FFT). No further pre-computation is neces-
sary since all quantities are known explicitly. See Scheicher [18] for details of this
method.

In reality, time steps in most finance problems are not equally spaced. Often they
will be close to equally spaced, but public holidays, weekends, different numbers of
days in months cause many of the time steps to differ slightly. This means that the
closed form of the eigenvalues and eigenvectors mentioned above no longer hold,
and the FFT cannot be used.

However, in the following section, we will demonstrate that it is still feasible to
efficiently calculate the eigendecomposition of C as well as to perform the corre-
sponding matrix-vector multiplication APCAΦ−1(x). This is done by observing that,
even in the general case, the matrix C as defined in (1) does in fact have structure
that we can exploit. As we will see below, C is a semi-separable matrix, and matri-
ces of this type allow for fast calculation of eigenvalues and eigenvectors as well as
matrix-vector multiplication of scaled eigenvector matrices.
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2.1 Symmetric Semi-Separable Matrices

In this section we will state the definition of symmetric semi-separable matrices and
demonstrate how their structure can be exploited to efficiently obtain their eigen-
values and eigenvectors. In the definition below we use the Matlab notation diag(·),
triu(·) and tril(·) to define the diagonal, strictly upper triangular and strictly lower
triangular parts of a matrix, respectively.

Definition 1. An s× s matrix C is said to be a diagonal plus symmetric generator
representable semi-separable matrix if it can be written in the form

C = diag(d)+ triu(uvT )+ tril(vuT ) for some d,u,v ∈ R
s .

For the rest of this text, a diagonal plus symmetric generator representable semi-
separable matrix will be just called symmetric semi-separable matrix.

Any symmetric matrix C has an eigendecomposition of the form C = VΛV T

with an orthogonal eigenvector matrix V and a real diagonal eigenvalue matrix Λ.
To find the eigenvalues and eigenvectors of an s×s matrix generally requires O(s3)

operations. However, Chandrasekaran and Gu [5] and Mastronardi et al. [17] de-
veloped divide-and-conquer algorithms for symmetric semi-separable matrices to
reduce this computational cost.

2.1.1 Divide-and-Conquer Algorithm

Given a symmetric semi-separable matrix C = diag(d)+ triu(uvT )+ tril(vuT ), we
would like to write this in the form of several smaller symmetric semi-separable
matrices. This can be done in the following way. Take ρ =±1 to be a freely chosen
scalar. Split each of the vectors d, u, v into two vectors with the first s/2� compo-
nents in the first vector, and the remaining components in the second vector. That is,
define d1, d2, u1, u2, v1, v2, an additional vector a and write C such that

d=
(

d1
d2

)
, u=

(
u1
u2

)
, v=

(
v1
v2

)
, a=

(
ρ u1
v2

)
, C =

(
Ĉ1 0
0 Ĉ2

)
+ρ aaT ,

where Ĉ1 and Ĉ2 are defined to the symmetric semi-separable matrices

Ĉ1 = diag
(
d1−ρ diag(u1uT1 )

)+ triu
(
u1(v1−ρu1)

T
)+ tril

(
(v1−ρu1)uT1

)
,

Ĉ2 = diag
(
d2−ρ diag(v2vT2 )

) + triu
(
(u2−ρv2)vT2

) + tril
(
v2(u2−ρv2)

T
)
.

This result can be easily verified. Each of the matrices Ĉ1 and Ĉ2 may now be
themselves decomposed into a similar pattern.

In the conquer phase we re-group the subproblems into larger problems. Suppose
that two symmetric semi-separable matrices Ĉ1 and Ĉ2, obtained from the divide
phase of a symmetric semi-separable matrix C, have the eigendecomposition
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Ĉ1 = V1Λ1V
T
1 and Ĉ2 = V2Λ2V

T
2 ,

with diagonal eigenvalue matrices Λ1 and Λ2 and orthogonal eigenvector matrices
V1 and V2. Then C has the representation

C =
(
V1 0
0 V2

)
(Λ+ρ yyT )

(
V1 0
0 V2

)T
, where Λ=

(
Λ1 0
0 Λ2

)
, y=

(
V1 0
0 V2

)T
a,

and where ρ is defined as it was for the divide phase. Now suppose that we can
efficiently compute the eigendecomposition of the symmetric rank-one modified
diagonal matrix Λ+ρ yyT , which is written as Λ+ρ yyT = UΩUT . We can then
write the eigendecomposition of C as

C =
(
V1 0
0 V2

)
(
UΩUT

)
(
V1 0
0 V2

)T
= V ΩV T , with V =

(
V1 0
0 V2

)
U.

More details are found in Chandrasekaran and Gu [5]. The critical step in the im-
plementation is the eigendecomposition computation of the rank-one modified di-
agonal matrix Λ+ρ yyT and the efficient application of the eigenvector matrix U .
The divide-and-conquer technique relies on being able to efficiently handle these
problems.

2.1.2 Symmetric Rank-one Modified Diagonal Eigenvalue Problem

The problem of determining the eigendecomposition of a rank-one modified diago-
nal matrix Λ+ρ yyT was formulated by Golub [10] and subsequently investigated
by Bunch et al. and others [4, 6, 7, 14, 19, 13].

It is valid to assume that all diagonal entries of Λ are numerically distinct and
that all entries in y are bounded away from zero. If not, we can use the deflation
procedure from Dongarra and Sorensen [7] with the criterion from Gu and Eisenstat
[13] to arrange this. Moreover, we require that by permutations we have ordered
the diagonal entries of Λ to be increasing. The following theorem, restating results
found in Golub [10] and Bunch et al. [4], characterizes the structure of the desired
eigendecomposition.

Theorem 1. Let Λ be a diagonal matrix with entries λ1 < λ2 < · · ·< λs , y a vector
with non-zero entries y1,y2, . . . ,ys , and ρ �= 0. Then for the symmetric rank-one
modified diagonal matrix Λ+ρ yyT the following results hold:

1. The eigenvalues ω1,ω2, . . . ,ωs have the interlacing property
{
λ1 < ω1 < λ2 < ω2 < · · ·< λs < ωs < λs+ρ yT y, if ρ > 0,

λ1+ρ yT y < ω1 < λ1 < ω2 < λ2 < · · ·< ωs < λs, if ρ < 0.

2. The eigenvalues ω1,ω2, . . . ,ωs are solutions to the secular equation
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1+ρ

s∑

j=1

y2
j

λj −ω
= 0. (4)

3. For each eigenvalue ωj , a corresponding unit-length eigenvector uj is given by

uj =±
(

s∑

m=1

y2
m

(
λm−ωj

)2

)−1/2

·
(

y1

λ1−ωj
,

y2

λ2−ωj
, . . . ,

ys

λs−ωj

)T
. (5)

The eigenvalues ωj , j = 1, . . . , s can be efficiently obtained as the zeros of the
rational equation (4) by iterative methods (see Bunch et al. [4] and Li [16]). The
eigenvectors uj have explicit expressions in terms of the entries of the vector y, the
diagonal entries λj and the eigenvalues ωj . It is imperative to use the technique
from Gu and Eisenstat [13] to recompute y for numerical orthogonality.

2.1.3 Efficient Application of the Eigenvector Matrix

An efficient method is needed to apply the eigenvector matrix U , obtained from the
symmetric rank-one modified system Λ+ρ yyT, to an arbitrary vector. We find such
a method by observing that U has the form of a Cauchy-like matrix.

Definition 2. A matrix U is called a Cauchy-like matrix if it is of the form

U =
(

aibj

di− cj

)s

i,j=1
, for a,b,c,d ∈ R

s . (6)

It is easily verified that the eigenvectors u1, . . . ,us of the rank-one modified diagonal
matrix Λ+yyT from Theorem 1 form a Cauchy-like matrix U = [u1, . . . ,us] since

U =
(

yi zj

λi−ωj

)s

i,j=1

, with zj =
(

s∑

m=1

y2
m

(λm−ωj )2

)−1/2

, (7)

where λ1 <λ2 < · · ·<λs are the entries of the diagonal matrix Λ and ω1,ω2, . . . ,ωs
are the eigenvalues of Λ+yyT corresponding to the eigenvectors u1,u2, . . . ,us .

For the divide-and-conquer method, we require efficient methods to apply a
Cauchy-like matrix to a vector. These methods are commonly subsumed under
the name Fast Multipole Method (FMM) and were introduced by Greengard and
Rokhlin [11]. The principle common to all implementations is that a Cauchy-like
matrix can be decomposed into tiles that are well approximated by low-rank ma-
trices. This is done by imposing a tree structure on the nodes di and cj from (6).
Efficient organization of the computation leads to an algorithm for the matrix-vector
multiplication requiring O(s log(1/ε)) computations for an s× s matrix, where ε is
the desired accuracy. It has been shown by Gu and Eisenstat [12] that the method
can be made numerically as stable as the direct computation of the matrix-vector
product.
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2.1.4 Complexity of the Divide-and-Conquer Algorithm

Using plain matrix-vector multiplications, the divide-and-conquer method needs
O(s2) arithmetic operations and memory to compute the full eigendecomposition
of an s× s matrix. To apply the eigenvector matrix to a vector clearly takes O(s2)

operations. However, if we use the FMM to accelerate the calculation of matrix-
vector products, we only need to pre-compute the data that defines the eigenvec-
tor matrix (7) of every rank-one modified system encountered plus a number of
small eigenvector matrices from the bottom of the computation tree. This leads to
an O(s logs log(1/ε)) algorithm for the application of the eigenvector matrix that
needs only O(s logs log(1/ε)) of pre-computed data. The FMM can even be used to
lower time and memory requirements of the pre-computation part to the same order
(see Chandrasekaran and Gu [5]).

2.2 Fast PCA Method and Semi-Separable Matrices

The divide-and-conquer strategy for symmetric semi-separable matrices can be used
to perform the matrix-vector multiplication for the PCA method. The application of
APCA = VΛ1/2 to any vector can be done by scaling the input by the diagonal
entries of Λ1/2 and then using the divide-and-conquer algorithm to apply V . This is
established in the following theorem.

Theorem 2. For 0 < t1 < t2 < · · ·< ts , an arbitrary x ∈ [0,1]s and the matrix C =(
min(ti , tj )

)s
i,j=1, with eigendecomposition C = VΛV T , where the entries of the

diagonal eigenvalue matrix Λ are decreasing, the following hold for any desired
but fixed accuracy ε:

1. The eigenvector matrix V may be applied to any vector in O(s logs log(1/ε))
arithmetic operations. The (one-off) cost for pre-computation can be made
O(s logs log(1/ε)).

2. The matrix-vector multiplication APCAΦ−1(x) where APCA = VΛ1/2 may be
computed in O(s logs log(1/ε)) operations.

Proof. Observe that for t= (t1, t2, . . . , ts)
T and 1= (1,1, . . . ,1)T , the matrix C can

be written in the form

C = diag(t)+ triu(t1T )+ tril(1tT ).

Hence C is a symmetric semi-separable matrix. The statements are then a direct
consequence of the results in the last section. For the second part, note that APCA =
VΛ1/2. That is, for the matrix-vector multiplication APCAΦ−1(x), we cheaply com-
pute z =Λ1/2Φ−1(x) with O(s) operations and then V z in O(s logs log(1/ε)) op-
erations as explained in the last section. The total cost is O(s logs log(1/ε)).
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Algorithm 1 Divide-and-conquer method (precomputation)
% Computes the eigendecomposition of a symmetric semi-separable matrix

A= diag(d)+ triu(uvT)+ tril(vuT).

Input: The vectors d,u,v ∈ R
s .

t := 2, J := ⌈
log(s/t)

⌉
% J = Number of levels−1, where t is the size threshold

r := √‖v‖2/‖u‖2, u := r u, v := r−1 v % Balance norms to prevent overflow.
Â(0,1) := A, d(0,1) := d, u(0,1) := u, v(0,1) := v % Naming convention for decomposition tree.

% Define auxilliary matrices and vectors W(0,1), H(0,1), h(0,1), g(0,1) such that

Â(0,1) = diag
(
d(0,1)

)+diag
(

diag
(
W(0,1)H(0,1)W

T
(0,1)

))

+ triu
(
W(0,1) h(0,1) gT

(0,1)W
T
(0,1)

)+ tril
(
W(0,1) g(0,1) hT

(0,1)W
T
(0,1)

)
.

W(0,1) :=
(
u(0,1) v(0,1)

)
, H(0,1) :=

( 0 0
0 0

)
, h(0,1) :=

( 1
0

)
, g(0,1) :=

( 0
1

)

% Divide phase
for j = 1, . . . ,J do % Traverse all levels.

for k = 1, . . . ,2j−1 do % Split matrices on current level.
ρ(j,k) := ±1 % Can be chosen arbitrarily.

% For r = (j,2k−1), (j,2k), determine Wr , Hr , hr , and gr such that

Âr = diag(dr )+diag(diag(WrHrW
T
r ))+ triu(Wr hr gT

r W
T
r )+ tril(Wr gr hT

r W
T
r ).

% Notation: ( ·)1/2 means first/second half of vector.

d(j,2k−1) := (d(j−1,k))1 d(j,2k) := (d(j−1,k))2

u(j,2k−1) := (u(j−1,k))1 u(j,2k) := (u(j−1,k))2

v(j,2k−1) := (v(j−1,k))1 v(j,2k) := (v(j−1,k))2

Wj,2k−1 :=
(
u(j,2k−1) v(j,2k−1)

)
W(j,2k) :=

(
u(j,2k) v(j,2k)

)

h(j,2k−1) := h(j−1,k) h(j,2k) := h(j−1,k)−ρ(j,k)g(j−1,k)

g(j,2k−1) := g(j−1,k)−ρ(j,k)h(j−1,k) g(j,2k) := g(j−1,k)

H(j,2k−1) :=H(j−1,k)−ρ(j,k)h(j−1,k)hT
(j−1,k) H(j,2k) :=H(j−1,k)−ρ(j,k)g(j−1,k)gT

(j−1,k)

end for
end for
for k = 1, . . . ,2J do % Conquer phase – Solve smallest problems directly.

Â(J,k) = V(J,k) Λ(J,k) V
T
(J,k) % Determine eigendecomposition.

u(J,k) := V T
(J,k)u(J,k), v(J,k) := V T

(J,k)v(J,k) % Update vectors using inverse eigenvector ma-
trix.

end for
for j = J −1, . . . ,0 do % Conquer phase – Combine solutions.

for k = 1, . . . ,2j do

y(j,k) :=
(
ρu(j+1,2k−1)

v(j+1,2k)

)
, Λ̃(j,k) :=

(
Λ(j+1,2k−1) 0

0 Λ(j+1,2k−1)

)

% Note that u(j+1,2k−1) and v(j+1,2k) have already been multiplied by VT
(j+1,2k−1) and

% VT
(j+1,2k), respectively. Eigendecomposition of rank-one modified diagonal matrix:

Λ̃(j,k)+ρ(j,k)y(j,k)yT
(j,k) = U(j,k)Λ(j,k)U

T
(j,k)

uj,k = UT
j,k

(
uj+1,2k−1
uj+1,2k

)
, vj,k = UT

j,k

(
vj+1,2k−1
vj+1,2k

)
% Updated vectors for next level.

end for
end for
Output: The matrices V(J,k) for k = 1, . . . ,2J , U(j,k) for j = 0, . . . ,J −1; k = 1, . . . ,2j , and the
diagonal eigenvalue matrix Λ=Λ(0,1)
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Algorithm 2 Divide-and-conquer method (fast matrix-vector product)
% Computes the matrix-vector product

y= V Λ1/2 x,

% where V and Λ are from the eigendecomposition of a symmetric semi-separable matrix
A= diag(d)+ triu(uvT)+ tril(vuT)= VΛV T.

Input: The matrices V(J,k) for k = 1, . . . ,2J , U(j,k) for j = 0, . . . ,J −1; k = 1, . . . ,2j , and the
diagonal eigenvalue matrix Λ=Λ(0,1) as computed by Algorithm 1, and the vector x.
z(0,1) :=Λ1/2x % Cheap product with diagonal matrix.
for j = 0, . . . ,J −1 do % Traverse all levels

for k = 1, . . . ,2j do % Process all matrices on current level
z(j,k) := U(j,k)z(j,k) % FMM-accelerated matrix-vector products.
z(j+1,2k−1) :=

(
z(j+1,2k−1)

)
1

z(j+1,2k) :=
(
z(j+1,2k−1)

)
2

end for
end for
for k = 0, . . . ,2J do % Process all matrices on smallest level

z(J,k) := V(J,k)z(J,k) % Non-accelerated products with small matrices.
end for
Output: The vector y, that is, the concatenation of the vectors z(J,1),z(J,2), . . . ,z(J,2J ).

Some sample pseudo-code for the divide-and-conquer method is provided in Algo-
rithms 1 and 21. Pseudo-code for the FMM can be found, for example, in [8].

3 Numerical Tests

We have implemented and tested the divide-and-conquer algorithm in double preci-
sion C on an Intel Xeon 3.00 GHz system to compare the FMM accelerated divide-
and-conquer algorithm (F) with the direct matrix-vector multiplication (D). The pa-
rameters for the FMM are chosen to yield maximum accuracy in working precision.
We do not use the FMM to accelerate the pre-computation part. We use the LA-
PACK routine dspev when eigendecompositions need to be calculated explicitly.
This is similar to the routine dsyev called by Matlab internally. In the divide-and-
conquer method, problems smaller than 256× 256 are not decomposed further but
solved directly using dspev. This threshold is specifically chosen to maximize per-
formance for matrix-vector multiplications. The results are shown in Table 1. The
divide-and-conquer method reaches parity with the direct method at a size s between
512 and 1024 and is faster for every larger problem. Also, the divide-and-conquer
method needs substantially less time for pre-computation for s ≥ 512.

An additional side benefit not shown in the table is the more benign memory
requirements as mentioned in Section 2.1. Explicit calculation of the matrix APCA

for s = 32768 would yet require roughly 8GB of memory which might render the

1 A MATLAB implementation of these two algorithms may be downloaded from
http://sourceforge.net/projects/fastpca/

http://sourceforge.net/projects/fastpca/
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Table 1 Computation time for the matrix-vector product w=APCAΦ−1(x) with the direct method
(D) and the FMM accelerated divide-and-conquer method (F). The time in seconds for pre-
computation

(
tDp , tFp

)
and for a single matrix-vector product

(
tDa , tFa

)
, and that value divided by

the respective cost bound are shown for different problems sizes s. Smaller values are better. The
gaps marked with ∗ are unavailable due to excessive time and memory requirements.

s tDp tDa tDa /s
2 tFp tFa tFa /(s logs)

16 2.0E-01 4.7E-07 1.8E-09 2.0E-01 4.7E-07 1.1E-08
32 2.0E-01 2.4E-06 2.4E-09 2.0E-01 2.2E-06 2.0E-08
64 2.1E-01 8.1E-06 2.0E-09 2.1E-01 8.3E-06 3.1E-08

128 2.5E-01 3.1E-05 1.9E-09 2.5E-01 3.1E-05 5.0E-08
256 4.2E-01 1.6E-04 2.5E-09 4.2E-01 1.8E-04 1.3E-07
512 1.7E+00 8.0E-04 3.1E-09 8.7E-01 8.7E-04 2.7E-07

1024 8.9E+00 2.7E-03 2.5E-09 1.0E+00 2.5E-03 3.5E-07
2048 6.2E+01 1.2E-02 2.9E-09 2.6E+00 6.6E-03 4.2E-07
4096 4.5E+02 4.1E-02 2.4E-09 8.2E+00 1.6E-02 4.8E-07
8192 3.7E+03 1.6E-01 2.4E-09 4.2E+01 4.0E-02 5.4E-07

16384 2.9E+04 6.9E-01 2.6E-09 1.8E+02 8.9E-02 5.6E-07
32768 ∗ ∗ ∗ 6.9E+02 2.0E-01 5.8E-07

problem infeasible to solve with the direct method on many platforms. Under the
accelerated FMM the memory requirement for such a calculation is only 900MB.
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2. F. Åkesson and J. Lehoczky. Discrete eigenfunction expansion of multi-dimensional Brown-
ian motion and the Ornstein-Uhlenbeck process. Technical report, Department of Statistics,
Carnegie-Melon University, Pittsburgh, PA, 1998.

3. P. P. Boyle. Options: A Monte Carlo approach. Journal of Financial Economics, 4:323–338,
May 1977.

4. J. R. Bunch, C. P. Nielsen, and D. C. Sorensen. Rank-one modification of the symmetric
eigenproblem. Numer. Math., 31:31–48, 1978.

5. S. Chandrasekaran and M. Gu. A divide-and-conquer algorithm for the eigendecomposition
of symmetric block-diagonal plus semiseparable matrices. Numer. Math., 96:723–731, 2004.

6. J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem.
Numer. Math., 36:177–195, 1981.

7. J. J. Dongarra and D. C. Sorensen. A fully parallel algorithm for the symmetric eigenvalue
problem. SIAM J. Sci. Stat. Comput., 8:139–154, 1987.



Se
co

nd
 p

ro
of

s

Fast PCA for Unequal Time Steps 465

8. A. Dutt, M. Gu, and V. Rokhlin. Fast algorithms for polynomial interpolation, integration and
differentiation. SIAM J. Numer. Anal., 33:1689–1711, 1996.

9. M. B. Giles, F. Y. Kuo, I. H. Sloan, and B. J. Waterhouse. Quasi-Monte Carlo for finance
applications. In G. N. Mercer and A. J. Roberts, editors, Proceedings of the 14th Biennial
Computational Techniques and Applications Conference, CTAC-2008, volume 50 of ANZIAM
J., pages C308–C323, 2008.

10. G. H. Golub. Some modified matrix eigenvalue problems. SIAM Rev., 15:318–334, 1973.
11. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys.,

73:325–348, 1987.
12. M. Gu and S. C. Eisenstat. A stable and fast algorithm for updating the singular value de-

composition. Technical Report YALE/DCS/TR966, Department of Computer Science, Yale
University, New Haven, CT, 1993.

13. M. Gu and S. C. Eisenstat. A stable and efficient algorithm for the rank-one modification of
the symmetric eigenproblem. SIAM J. Matrix Anal. Appl., 15:1266–1276, 1994.

14. W. Kahan. Rank-1 perturbed diagonal’s eigensystem. unpublished manuscript, Department
Computer Science, Stanford University, CA, 1989.

15. P. L’Ecuyer, J.-S. Parent-Chartier, and M. Dion. Simulation of a Lévy process by PCA sam-
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Adaptive Monte Carlo Algorithms for General
Transport Problems
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Abstract Recently there has been a concerted effort to develop adaptively modi-
fied Monte Carlo algorithms that converge geometrically to solutions of the radia-
tive transport equation. We have concentrated on algorithms that extend to integral
equations methods first proposed for matrix equations by Halton in 1962 [Halton,
J., Proc. Camb. Phil. Soc., 58, 57–78 (1962)]. Geometric convergence has been rig-
orously demonstrated [Kong, R., and Spanier, J., J. Comp. Phys., 227(23), 9762–
9777 (2008)] for these “first generation” (G1) algorithms but their practical utility is
limited by computational complexities resulting from the expansion. Recently, we
have developed new adaptive algorithms that overcome most of the computational
restrictions of the earlier algorithms and we have also established the geometric
convergence of these “second generation” (G2) algorithms [Kong, R. and Spanier,
J.: Geometric convergence of second generation adaptive Monte Carlo algorithms
for general transport problems based on sequential correlated sampling. In review].
In this paper we outline the main ideas involved and indicate how the resulting G2
algorithm might be optimized using information drawn from simulations of both the
RTE and the dual RTE. Simple examples will illustrate these ideas and the gains in
computational efficiency that the new methods can achieve.
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1 Introduction

Monte Carlo (MC) simulations have provided a “gold standard” of computational
support for many important problems of science and engineering that are mod-
eled using the radiative transport equation (RTE). This situation has persisted even
though MC converges very slowly when implemented in conventional ways and in
spite of the availability of many faster methods based on approximations to the RTE
(e.g., the diffusion approximation). No doubt one of the reasons for MC’s lasting
prominence in the field is that it is capable of describing the transport medium as ac-
curately as the underlying physics is known. That is, when the sources of radiation,
the material properties and physical characteristics of the medium are described in
detail as input variables and parameters, the MC simulation produces a solution of
the RTE with a precision that is limited only by the total number, W, of independent
random walks generated. Thus, if a method could be devised to dramatically accel-
erate the convergence of MC simulations, its usefulness as a computational standard
would certainly increase.

Computing costs associated with Monte Carlo simulation can be reduced by ap-
plying standard variance reduction methods such as correlated sampling [42, 38],
importance sampling [42, 34, 35, 22, 15] and others [42, 14, 17], but conventional
use of such methods does nothing to alter the underlying rate of convergence. As
well, the success of such methods often relies on the use of auxiliary information
(such as an approximate importance function) and on the user’s skill at applying it to
the MC simulation. This is the case, for example, with the popular weight-windows
scheme [20, 4] used in the MCNP code [21] developed at Los Alamos National
Laboratory. This method attempts to control both the largest and the smallest val-
ues of each estimating random variable by a procedure that depends on generating
a crude estimate of a problem importance function, and by applying splitting and
Russian roulette [42, 12, 11] when estimator values fall outside a pre-established
“window”. In some cases a deterministic calculation supplies this auxiliary infor-
mation [45, 13] and in others, a series of simulations in which increasingly focused
conventional MC solutions are used to control the individual contributions to the
final tallies. Los Alamos staff regularly offer workshops on the use of variance re-
duction techniques in their code MCNP. The manual [4] is used in conjunction with
these workshops and it illustrates a wide variety of variance reduction strategies that
are applied to a sample problem specifically constructed to be computationally chal-
lenging. Gains in efficiency ranging from a few per cent to 1-2 orders of magnitude
are reported in [4] when skillful use is made of variance reduction methods chosen
with the sample problem in mind. In [10], gains reported range from a factor of 1.9
to 75 when weight windows is applied to a deep penetration problem, while more
modest gains (of less than a factor of 10) are described in [37]. Examination of ref-
erences [45, 13, 32] confirms that gains resulting from the use of weight windows
cluster between 10 and 50 with only rare exceptions, even when auxiliary calcu-
lations are used to determine approximate importance functions for each problem.
While gains such as these often mean the difference between running MCNP for
only a few hours or needing weeks or longer of information processing, they offer
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little hope of producing accuracies of a fraction of 1% across the broad spectrum
of radiative transport problems. Furthermore, ad hoc procedures for variance reduc-
tion involve substantial human costs and can greatly increase the investment of both
time and labor in solving a single transport problem in practical situations. What
is badly needed is an automated, highly efficient MC solution algorithm that
“tunes” itself to the specific needs of each RTE problem and requires minimal
or no user intervention.

In 1962, John Halton [16] introduced methods for exponentially accelerating
Monte Carlo solutions of matrix problems by making use of either correlated sam-
pling or importance sampling, sequentially applied. In a series of papers [3, 5, 6, 7],
Booth examined the possibility that adaptive Monte Carlo methods might also be
applied to continuous transport problems by successively improving estimates of
zero variance importance sampling estimators. In related work, Kollman’s Stanford
dissertation [23] showed that the methods Booth was exploring could produce ex-
ponential acceleration of convergence, and in [24] this was proved for finite state
spaces.

Beginning in about 1996, Booth and his co-workers at Los Alamos National Lab-
oratory (LANL) [8, 7, 4, 9] and Spanier and his co-workers at Claremont Graduate
University (CGU) [18, 25, 29, 28, 33, 44, 36, 41, 43] succeeded in extending Hal-
ton’s ideas to Monte Carlo solutions of continuous radiative transport problems.
While the LANL work focused mainly on importance sampling as the variance
reduction mechanism and the CGU group concentrated more on correlated sam-
pling methods, both of these variance reduction techniques were studied by the two
groups. In [40] the authors used a control variates mechanism adaptively to accel-
erate the convergence of estimators for discrete state spaces and showed that expo-
nential acceleration could be achieved under special conditions. Recently [31, 27]
we have demonstrated that the methods discussed in Sections 2 and 3 of this pa-
per converge geometrically for general continuous radiation transport problems. By
geometric convergence we mean methods that produce strict error reduction (with
probability 1)

Em ≤ λEm−1 for 0 < λ < 1

where Em is the error after m adaptive stages. Then we have

Em ≤ λmE0

where E0 is the error produced by any initial estimate; e.g., a modest conventional
MC estimate.

An additional aim of ours has been to devise geometrically convergent algo-
rithms that are fully automated and general - algorithms that can be implemented
with little or no user intervention and apply, in principle, to very general transport
problems. Subject only to very mild conditions1 that guarantee the existence and
uniqueness of the RTE solution [42], the algorithms described here can accommo-

1 The main restriction is that the RTE kernel defines an integral operator whose L∞ norm is strictly
less than 1 (see [31] and [42] for a slightly weaker condition.)
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date very general geometries, boundary conditions and material heterogeneities that
arise in fields as diverse as nuclear reactor design, atmospheric physics, biomed-
ical applications and financial modeling. To date we have developed two differ-
ent sequential correlated sampling strategies for achieving geometric convergence
for general RTE problems and established rigorously their geometric convergence
[31, 27]. The sampling methods used and the random variables that provide the esti-
mates themselves are described in some detail in [26]. In this paper our purpose is to
present the main ideas involved to a broad mathematical audience, exhibit the con-
vergence characteristics of our adaptive algorithms using a very simple model RTE
problem and outline plans for future research. Briefly, having established the geo-
metric convergence of these algorithms in other papers, our goal now is to apply the
new algorithms to increasingly realistic problems making use of major production
Monte Carlo codes (e.g., MCNP [21] at Los Alamos National Laboratory and the
Virtual Tissue Simulator [19] (VTS) currently under development at the University
of California, Irvine). These are very versatile Monte Carlo codes that are designed
for widespread use in the broad research communities they serve.

Our plan to design fast and accurate MC simulations that require little or no
user intervention or special knowledge places severe demands on algorithm design.
This is because real applications are very diverse, often incorporating severe het-
erogeneities in all of the phase space variables. For steady state transport these are
the scalar energy E (or speed v), the spatial variables x,y,z and the directional
variables μ and φ that describe unit vectors on the surface of the unit sphere in 3
dimensions (μ= cosθ, where θ = polar angle, φ = azimuthal angle). The solutions
of such problems can vary by many orders of magnitude over the phase space and
display steep gradients that place extreme demands on algorithms designed to per-
form well irrespective of individual problem details. In this paper our purpose is to
describe the evolution of our thinking about adaptive algorithms that are capable
of meeting these diverse needs, and apply them to a very simple model transport
problem to illustrate their potential. In other papers we will test the methods on pro-
totype problems that are intended to pose specific challenges that arise in practice.
For example, in [2] we apply the methods discussed here to model reactor problems
featuring severe heterogeneities in the energy variable.

2 Problem Setting

Whereas the scalar energy is a key independent variable in RTE problems dealing
with neutron and electron transport, both spatial and directional variation must be
accommodated in nearly all transport problems. Indeed, it is because the RTE so-
lution tends to be highly anisotropic at locations close to sources and detectors, as
well as near internal material interfaces, that approximations such as those based on
diffusion theory prove to be inadequate. Another feature prominent in many trans-
port problems is the dramatic fall in radiation intensity with distance from radiation
sources. Thus, when detectors are very distant from sources of radiation, as in neu-
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tron shielding problems and in many biophotonics problems, if one is to solve such
problems with relative precisions of 1% or less in realistic time frames, it is abso-
lutely essential to achieve effective variance reduction without increasing the com-
putational costs unduly. The utility of our adaptive methods will be severely tested
when our algorithms are fully incorporated into Monte Carlo code systems such as
MCNP and VTS. Here we will only describe a very simple problem with input pa-
rameters chosen to be typical of those encountered in the biomedical applications.
This problem is so simple that one can easily solve it exactly without resorting to
Monte Carlo methods at all, so it provides an excellent first example to study since
relative precisions achieved with our adaptive algorithms can be computed exactly
for it.

A typical optical probe is an instrument that introduces light into tissue from a
laser source at the tissue surface and also collects light reemitted from the surface
using one or more detectors positioned at fixed distances from the source. Light
scattering in tissue is predominantly forward-directed so that many individual scat-
tering events are required to produce an isotropic light distribution (deep in the
interior of tissue) from an initial distribution that is collimated at the light source.
The anisotropic nature of the light distribution in tissue is critical for making accu-
rate predictions in biomedical problems, especially when the distances between the
sources and detectors of the light are small, as in making measurements in small
animal models. Both the forward RTE problem (modeling the light field produced
by the source throughout the tissue) and the inverse RTE problem (characterizing
the tissue properties from information encoded in the reemitted light) are important
in understanding and interpreting light-tissue interactions. Highly accurate forward
representations of the light field are needed to solve the inverse problems, which are
frequently very ill-conditioned.

To introduce our adaptive Monte Carlo methods to researchers who use Monte
Carlo in other than transport settings, we will apply them here to a very simple trans-
port problem modeling a homogeneous slab of tissue of finite thickness T which is
infinite in extent in the other two dimensions. A related one-dimensional family of

Fig. 1 Schematic of the model problem physics.

biomedical examples is studied in [26], while in [31] and [27] we apply the methods
to two dimensional RTE problems.

A light source is introduced at one boundary (prescribed by x = 0) of the tissue
and only forward photon scattering and absorption are permitted throughout the slab
(see Figure 1). In real tissue, the scattering of photons is often modeled using the
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Henyey-Greenstein probability density function that is characterized by specifying
the average cosine of the scattering angle, g :

fHG(cosθ)= 1

2

1−g2

(
1−2g cosθ +g2

)3/2
(1)

where θ is the angle of deflection of the photon following collision. In tissue, g
ranges from 0.7-.97, whereas in our model problem, g = 1. However, this assump-
tion allows us to model this problem using a single spatial variable 0 ≤ x ≤ T and
yet incorporate some realistic practical challenges such as those described earlier.
For this purpose we designate a light source of strength Q0 at x = 0 and describe
the interactions of the light with the tissue chromophores by means of the constants
μa and μs, the optical absorption and scattering coefficients, respectively. The total
attenuation coefficient then becomes μt = μa +μs and characterizes the exponen-
tially distributed distances traveled by photons between their successive collisions
within the tissue. Thus, the function

T (x;y)=
{
μt exp[−μt(x−y)] 0≤ y ≤ x ≤ T

0 otherwise
(2)

is sampled to determine transport from position y to position x. That is, distances
d are sampled from the exponential density function μt exp[−μtd] (0 ≤ d <∞)

to determine the distance d from position y to the next collision position x, and
points x that lie beyond T are rejected because they lie outside the tissue under
investigation. The ratio μs/μt defines the probability that the collision at x produces
(forward) scattering rather than absorption of the photon. This leads to the integral
form of the governing RTE

Ψ (x) = Q0 exp(−μtx)+
∫ T

0
K(x;y)Ψ (y)dy, 0≤ x ≤ T

= S(x)+
∫ T

0
K(x;y)Ψ (y)dy, 0≤ x ≤ T (3)

where

K(x;y)=
{
μs exp[−μt(x−y)] 0≤ y ≤ x ≤ T

0 otherwise.

The solution, Ψ (x), is the expected photon density at x

Ψ (x)=Q0 exp[−μax] 0≤ x ≤ T . (4)

In the most general (steady-state) case, photon transport is modeled in a 5
dimensional phase space Γ = V × S2 consisting of vectors P = (r,Ω), where
r= (x,y,z) ∈V , a closed, bounded subset of R3 and Ω ∈ S2 is the space of unit
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direction vectors that describe the direction of photon transport at each position
(x,y,z). It can be shown [27] that the integral equation

Ψ (P)=
∫

V×S2
Ψ (P′)K(P;P′)dP′ +S(P) (5)

generalizes (3), and this establishes the notation we will adopt throughout the bal-
ance of this paper.

3 First Generation (G1) Methods: Solution Expansion

During the period 1996-2003 we developed adaptive first generation (G1) Monte
Carlo algorithms capable of unlimited precision based on expansion of the RTE
solution or adjoint solution in an infinite series of orthonormal basis functions. That
is, the solution of (5) is represented by

Ψ (P)=
∞∑

i=1

aiBi(P)

and is then truncated after M terms to produce an approximate solution

Ψ̃ (P)=
M∑

i=1

aiBi(P)≈ Ψ (P).

The G1 algorithm then estimates, using conventional MC methods, the expansion
coefficients

ai =
∫

#

Bi(P)Ψ (P) (6)

in a sequence of adaptive stages of ever-increasing accuracy. Details about our se-
quential correlated sampling (SCS) implementation of this strategy can be found in
[28, 31].

Although we have developed G1 algorithms that make use of both correlated
sampling and importance sampling as variance reduction techniques, in recent years
we have concentrated primarily on correlated sampling methods and we restrict our
attention in this paper to these. The basic idea of correlated sampling is to find an
approximation to the solution and develop an equation whose solution provides an
additive correction to that approximation. Then an unbiased estimator of the differ-
ence should have a smaller variance than that of the initial approximation. This basic
variance reduction strategy is then applied recursively in our sequential correlated
sampling (SCS) implementations and leads to a sequence of ever-smaller additive
corrections that provide increasingly accurate reconstructions of the full RTE solu-
tion when added to the initial approximation.
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To implement this idea for integral equations, we begin with an initial approxima-
tion, ψ̃0(P), of the solution and introduce a first correction, ψ1(P), to this solution
by setting

Ψ (P)= ψ̃0(P)+ψ1(P). (7)

Substituting (7) into (5) produces an equation for ψ1

ψ1(P)=
∫

#

K(P,Q)ψ1(Q)dQ+S1(P) (8)

where

S1(P)= S(P)+
∫

#

K(P,Q)ψ̃0(Q)dQ− ψ̃0(P). (9)

Equation (8) can be solved by conventional MC to produce an approximate solution
ψ̃1(P). The reduced source (9) describes the residual - that is, the error made when
the approximation ψ̃0(P) is substituted into the RTE (5). Although this “source” has
only mathematical, not physical relevance to the original biomedical problem (for
example, it will not, in general, be of one sign for all P ∈ #), the function S1(P)
may nevertheless be used to initiate random walks throughout the phase space by
conventional Monte Carlo methods.

Continuing in this way to produce approximate corrections ψ̃j , j = 1, ...,n, we
define the approximate full solution after stage n by setting

Ψ̃ n(P)= ψ̃0(P)+ ψ̃1(P)+· · ·+ ψ̃n(P). (10)

The critical step in implementing this strategy is to define a reduced source for
adaptive stage n as

Sn(P) = Sn−1(P)+
∫

#

K(P,Q)ψ̃n−1(Q)dQ− ψ̃n−1(P) (11)

= S(P)+
∫

#

K(P,Q)Ψ̃ n−1(Q)dQ− Ψ̃ n−1(P).

We have recently established the geometric convergence of Ψ̃ n(P) to Ψ (P) in the
sense of the following theorem: [31].

Theorem 1. Let Ψ̃ n(P) be the approximation to the solution of (5) from adaptive
stage n. Then, under suitable conditions on the source S and kernel K, of the RTE,
for any ε > 0 and any 0<λ< 1, there is a threshold number of random walks, W0,

per stage, that is independent of the stage number n, that assures that the inequality

Pr
{∥∥Ψ − Ψ̃ n

∥
∥∞ ≤ λ

∥∥Ψ − Ψ̃ n−1
∥
∥∞

}
> 1− ε

where ∥
∥Ψ − Ψ̃ n

∥∥∞ =max
P∈#

∣∣Ψ − Ψ̃ n
∣∣

is satisfied for any W ≥W0.
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Fig. 2 Geometric reduction in error, G1 solution.

To illustrate how this G1 algorithm performs, we used it to solve the simple 1D
tissue problem described earlier. We choseQ0= 1, μa = 0.01/mm, μs = 0.99/mm,
T = 100 to specify the problem and the goal was to estimate the average value of
the solution (4) over the final 10 mean free paths of the tissue; i.e., we estimate

1

10

∫ 100

90
Ψ (x)dx = .386902186.

Figure 2 exhibits the clear geometric decrease of the logarithm of the relative
error in this estimate as the number of adaptive stages increases. We have used a
basis set of Legendre polynomials and truncated the RTE solution expansion after
25 terms. Notice that the error reaches machine precision in about 25 adaptive stages
and that the full 30 stage run required less than 2 minutes on a 2.80GHz Pentium 4
computer.

This example is presented just to illustrate typical geometric convergence and
the power of the SCS algorithm in solving very simple problems. While very high
precision can be achieved very quickly with this G1 algorithm in such simple homo-
geneous model problems, that efficiency cannot be maintained when more complex
and heterogeneous problems are attempted. This is because of an explosive growth
in computational complexity caused by the need to calculate vastly increased num-
bers of expansion coefficients in order to achieve useful error levels. Thus, there
is a geometric growth in expansion coefficients with the number of independent
phase space variables. When this reaches 3 or more, and even in 1 or 2 dimensional
problems when the solution deviates sufficiently from a globally defined polyno-
mial, computational efficiency is severely compromised. This should not surprise us
since the “correct” basis set for an efficient global representation of any transport
problem is related to the spectral analysis of the integral operator defined by the
transport kernel; thus, it depends on the details of each problem. No fixed basis will
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suffice to provide accurate and economical representations of the RTE solution for
all RTE problems.

4 Second Generation (G2) Methods: Avoiding Expansion

For reasons such as those just reviewed, we began in 2003 to move away from the
idea of identifying a globally defined RTE function based on truncated infinite se-
ries expansions. Instead, we concentrated on representing RTE solutions locally in
terms of low degree polynomials. That is, we look for simple, spline-like approxi-
mations that give rise to efficient MC implementation methods. Instead of striving
for unlimited accuracy at each point of the phase space, our new goal became to
obtain only the required accuracy at those locations where radiation measurements
are to be made. In other words, we want to model each problem taking into account
only those features essential for accurate estimation of the radiation measurements
planned.

We pose the question: Can we relax the condition of achieving infinite precision
in the RTE solution at every point of the phase space # to the more modest one
of estimating only a small number of linear functionals of the transport solution
(the “measurements”) with sufficient accuracy? That is, can we estimate integrals
such as

∫
#
S∗(P)Ψ (P)dP accurately without estimating Ψ (P) for all P ∈ # (or even

without representing Ψ (P) globally in basis functions)? Our hope in doing so would
be to restore the low computational cost that was the initial promise of geometrically
converging algorithms.

We define a fixed decomposition 2 = {#i}Ri=1 of the underlying phase space
# = ∪Ri=1#i where #i ∩#j = ∅. The simplest local representation of Ψ (P) would
be as a histogram; i.e., a piecewise constant approximation Ψa(P) whose value in
each region is the average of the RTE solution in that region:

Ψa(P)=
{
Ψai = 1

vol(#i )

∫
#i
Ψ (P)dP, P ∈ #i

0, P /∈ #i.
The second generation (G2) method we have developed based on this idea also
uses correlated sampling as its variance reduction mechanism. We simply obtain
an initial piecewise constant approximating RTE solution Ψ̃ 0

a (P) by any means at
our disposal (e.g., from a conventional Monte Carlo simulation using track lengths
in each subregion to estimate regionwise averages of the solution) and then define
a reduced source iteratively by mimicking the formulas we used for our G1 SCS
algorithm.

We define a reduced source for our averaged SCS (ASCS) G2 algorithm by

Sna (P) = Sn−1
a (P)+

∫

#

K(P,Q)ψ̃n−1
a (Q)dQ− ψ̃n−1

a (P) (12)

= S(P)+
∫

#

K(P,Q)Ψ̃ n−1
a (Q)dQ− Ψ̃ n−1

a (P)
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with
S0
a(P)= S(P)

where
Ψ̃ n−1
a (P)= ψ̃0

a (P)+ ψ̃1
a (P)+· · ·+ ψ̃n−1

a (P)

and we follow the same basic algorithm strategy outlined in the previous section and
detailed in [26].

The resulting algorithm has also been shown [27] to produce geometric conver-
gence to a histogram approximation of the RTE solution whose accuracy is deter-
mined by the phase space decomposition 2 chosen. The statement follows:

Theorem 2. Let Ψ̃ n
a (P) be the approximation to the solution from adaptive stage n

produced by the G2 algorithm relative to a phase space decomposition 2. Then,
under suitable conditions on the source S and kernel K, for any ε > 0 and any
0 < λ < 1, there is a threshold number of random walks, W0, per stage, that is
independent of the stage number n, that assures that the inequality

Pr
{∥∥Ψ − Ψ̃ n

a

∥
∥∞ ≤ λ

∥
∥Ψ − Ψ̃ n−1

a

∥
∥∞+ r2

}
> 1− ε

where
r2 = sup

P∈#
|Ψ (P)−Ψa(P)|

is satisfied for any W ≥W0.

Both Theorem 1 and Theorem 2 only establish the existence of threshold num-
bers, W0, of random walks to generate in each adaptive stage to guarantee geometric
convergence. The proofs require only that the kernel K(P,Q) is norm-reducing (see
footnote 1), a condition that is naturally satisfied for the transport problems under
investigation. The bounds provided by the proofs of the theorems are quite conser-
vative so that, in practice, a few inexpensive sample runs need to be made currently
to decide on reasonable choices for W0. This is the approach we have taken in our
work so far; it is explored experimentally (numerically) in the context of the model
2 dimensional problems studied in [31]. In practical applications that make use of
these adaptive methods we expect to provide simple guidelines for the user to make
sensible choices for the key input parameters, such as the number of subregions of
the phase space decomposition and the number of random walks to generate per
subregion. Eventually we hope that spectral analysis of the RTE kernel will yield
more precise estimates of these parameters.

In Figure 3 we illustrate the geometric convergence that results from applying
this G2 ASCS algorithm to the same model slab RTE problem described earlier.
Again we notice the rapid geometric decrease of the logarithm of the relative error
as the number of adaptive stages increases. While only four G2 adaptive stages
are shown in Fig. 3, we actually ran 8 stages of the G2 algorithm, with the tissue
decomposed into 1000 uniform subintervals. Only the first 4 stages are shown in
the figure since there is no appreciable change in the estimates after about the third
stage. We initiated 5 random walks uniformly in each subinterval (making use of a
technique we have described in [31] as “backward sampling”, based on a simulation
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Fig. 3 Geometric reduction in error, G2 solution.

of the RTE that is adjoint to the original RTE) and the total run required only 8
sec. on the same 2.80GHz Pentium 4 computer used to illustrate the G1 algorithm
performance.

The G2 convergence theorem states that the ASCS algorithm converges geomet-
rically to an estimate whose accuracy depends on the chosen decomposition of the
phase space 2, as measured by

r2 =max
P∈#

|Ψ (P)−Ψa(P)| .

Evidently, if 21 is a decomposition of # that is a refinement of 2, then r21 ≤ r2.

This raises a number of interesting questions.

Q1. Can the phase space # be refined intelligently to extend the G2 geometric
convergence to lower error levels?
Q2. If Q1 can be answered affirmatively, what is an optimal strategy for phase
space refinements?

As we will see, we believe that an approach based on accumulating combined
information derived from simulations of both the original and the adjoint RTEs holds
the key to developing a strategy for intelligent non-uniform refinements of #. We
next outline our third generation (G3) algorithm design based on this idea.

5 Third Generation (G3) Algorithms: Intelligent Mesh
Refinement

The idea underlying our G3 algorithm design is intuitively very plausible. Given a
single source of radiation described by the source function S(P) and a single “detec-
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tor” of radiation, described by a detector function S∗(P) (adjoint source), we define
an information density function (IDF)

I (P)= Ψ (P)Ψ ∗(P)

as the product of the solutions of the RTE equation with source S(P) and the adjoint
RTE equation with source S∗(P). This product function, which has been called the
contributon in older literature [47, 46, 1, 39] satisfies an RTE with a number of
interesting properties that are easily derived from the RTE equations for Ψ and Ψ ∗ :

1. The information defined by I (P) is neither absorbed nor does it leak from the
phase space # [47, 46]. That is, the RTE equation that is satisfied by I (P) incor-
porates a kernel that does not allow for absorption, only for scattering from one
direction to another. In [46], this conservation law for information is interpreted
as characterizing a lossless “flow” of information from the source (defined by the
function S(P)) to the “sink” (defined by the function S∗(P))
2. The scattering of I (P), as described by the RTE it satisfies, directs contributon
“flow” from regions of low importance to regions of higher importance, where
importance is measured by the importance function Ψ ∗(P).

Furthermore, because Ψ (P) may be described as the intensity of radiation at P
from the source S while Ψ ∗(P) is the expected contribution to the detector from
a unit weight particle initiated at P, the function I (P) may be interpreted as the
(relative) importance of the point P in transmitting radiation from the source to
the detector. It is this attractive interpretation that suggests that the function I (P)
should be involved intrinsically in designing optimized transport of radiation from
source(s) to detector(s).

We have tested algorithms that make use of this idea on some simple RTE prob-
lems and it seems very promising so far. Our strategy is to initiate a G2 algorithm
based on a relatively crude initial subdivision of the phase space. Theorem 2 assures
that this algorithm will converge to a histogram representation Ψ̃a(P) of the RTE so-
lution Ψ (P), provided a sufficient number W of random walks is used in each stage.
The function Ψ̃a(P) can be used to form an initial estimate of the detector response∫
#
S∗(P)Ψ̃a(P)dP. The accuracy in this initial estimate will, according to Theorem

2, depend on the crudeness of the phase space decomposition 2 used as determined
by r2 = maxP∈# |Ψ (P)−Ψa(P)| . Using the same initial decomposition of #, the
G2 algorithm is also applied to the adjoint RTE with source S∗ and produces a
histogram approximation, Ψ̃ ∗a (P), to the solution of the adjoint RTE, Ψ ∗(P). The
components of these two vector-valued functions consist of estimates of the average
values of the two solutions over the subregions of the phase space decomposition.

Our refinement strategy examines the product of these two functions across the
initial decomposition of the phase space 2 and identifies those subregions #j where
the integral of the product Ψ̃aj · Ψ̃ ∗aj is large and those where it is small. It then uni-
formly subdivides the regions in which the integrals are large while leaving the
regions with very small integrals either undivided or combined, if necessary, to in-
crease their IDF values. The overall goal of the G3 learning is to create a phase
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Fig. 4 Geometric reduction in error, G3 solution.

Table 1 Comparison of efficiencies of each method.

Method S Est |E| T Eff

exact 0 .3869022 - - -
CMC 1 .3400000 5.77×10−2 2.5 1.0
G2 8 .3869062 1.04×10−5 16 4.8×106

G3 8 .3869025 8.16×10−7 328 3.8×108

space refinement 2 of # such that the integrals of the products Ψ̃aj · Ψ̃ ∗aj are approx-
imately independent of j across all subregions defined by 2. A description of the
G3 algorithm strategy may be found in [26].

We have applied this technique to the same model tissue problem discussed ear-
lier and the results are shown in Fig. 4. Here we have applied a strategy that might
be used in a practical problem. Starting with a very crude initial phase space de-
composition 20 of # (10 subintervals over the entire 100 mean free paths of tissue)
and initiating only 5 random walks in each subinterval again, the first 4 stages of
G2 learning produce only about 2 orders of magnitude error reduction because of
the coarseness of the initial decomposition of #. However, the mesh refinement 21
produced by one application of the G3 learning resulted in a total of 5022 subinter-
vals that took advantage of variations in IDF values, as sketched above. This step
added another 4 or so decades of reduction in error. The total G3 run time increased
to about 5.5 minutes because the number of random walks in each subinterval was
maintained at 5, so there was a large increase in the total number of random walks
for the second set of G2 adaptive stages based on the decomposition 21.

In Table 1 we compare the computational efficiencies of a conventional Monte
Carlo (CMC) simulation, our G2 ASCS algorithm, and the G3 mesh refinement
algorithm we just described applied to the model 1D tissue problem. The numbers in
the final column of this table were found by using the central limit theorem to predict
how many independent random walks would be needed by a CMC simulation to
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achieve the error reduction levels of the two adaptive algorithms. In deriving these
estimates we make use of the fact that the relative error (column 3 of the table)
behaves like the square root of the variance of the Monte Carlo estimator [30] so we
can use its square as a measure of the relative variance for each estimator. In general
we would use the variance estimate itself in this computation of efficiencies since
the exact value of the error would not be known.

Taking into account the uncertainties inherent in the mechanisms that supply and
detect radiation in real physical systems, 3-4 digits of precision would be adequate
to distinguish true signals from noise, and therefore suffice in practice. We believe
that the significance of the accuracy achieved with the G2 and G3 methods is that
it is obtainable with relatively simple algorithms that incorporate features “tuned”
to each specific RTE problem. Thus, while it is certainly to be expected that the
number of subdivisions of the phase space will increase with the dimensionality
of the phase space (which is five for the biomedically relevant examples discussed
here), this increase is not controlled by purely geometric factors in our algorithm
design. That is, the growth is governed by the variations in the RTE and adjoint
RTE solutions over the phase space, which does not, in general, lead to a product
space decomposition, as in the case of multidimensional quadrature. The simple
refinement strategy described above that maintains a fixed number of random walks
in each subregion can also be improved significantly, we believe, with algorithm
optimization.

6 Summary, Conclusions and Future Research Directions

We have demonstrated that expansion-free geometric learning is possible. The rig-
orous geometric convergence of the G1 and G2 algorithms has recently been es-
tablished, and we have obtained numerical evidence that supports the theory and
illustrates the latent power in our G2/G3 strategy over existing conventional and
adaptive MC methods. We believe that adaptive MC algorithms of the sort we have
developed here hold the key to making RTE modeling truly practical. We expect that
the new methods will support accurate RTE modeling even in cases of complex ge-
ometric heterogeneity and subtleties in angular variation near sources and detectors.
Our ongoing research is now focused on questions about how to “tune” the G2/G3
algorithm strategy to problem specifics and make use of the IDF to optimize the
geometric and energy/angular details through intelligent phase space refinements.
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On Array-RQMC for Markov Chains: Mapping
Alternatives and Convergence Rates

Pierre L’Ecuyer, Christian Lécot, and Adam L’Archevêque-Gaudet

Abstract We study the convergence behavior of a randomized quasi-Monte Carlo
(RQMC) method for the simulation of discrete-time Markov chains, known as array-
RQMC. The goal is to estimate the expectation of a smooth function of the sample
path of the chain. The method simulates n copies of the chain in parallel, using
highly uniform point sets randomized independently at each step. The copies are
sorted after each step, according to some multidimensional order, for the purpose of
assigning the RQMC points to the chains. In this paper, we provide some insight on
why the method works, explain what would need to be done to bound its conver-
gence rate, discuss and compare different ways of realizing the sort and assignment,
and report empirical experiments on the convergence rate of the variance and of the
mean square discrepancy between the empirical and theoretical distribution of the
states, as a function of n, for various types of discrepancies.

1 Introduction

Quasi-Monte Carlo (QMC) and randomized QMC (RQMC) methods can be quite
effective to estimate an integral when the integrand is reasonably smooth and has
low effective dimension [11, 16, 20]. But when we simulate a system (modeled as a
Markov chain) that evolves over several time steps, and the integrand is a function
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of the sample path, the dimension is typically very large, the effective dimension
can also be large, and RQMC is often not very effective.

A different type of QMC and RQMC methodology, whose RQMC version is
called array-RQMC, has been introduced and developed in [8, 9, 13, 14]. This array-
RQMC algorithm simulates n copies of the chain in parallel. It advances all copies
by one step at each iteration, using an RQMC point set of cardinality n to generate
the transitions of these chains at the given step, and a clever matching of the RQMC
points to the chains. This matching is done by sorting both the chains and the points
according to their successive coordinates. The idea is (loosely speaking) to induce
negative dependence between the n copies, so that the empirical distribution of the
n states at any given step provides a much more accurate approximation of the true
distribution than if the n copies were simulated independently [14]. Empirical ex-
periments have shown that this can improve the simulation efficiency for Markov
chains simulated over several hundred steps, sometimes by factors of over 1000.
Potential applications include queueing systems, option pricing in finance, reliabil-
ity and risk assessment models, image generation in computer graphics, and more
[2, 12, 14, 21].

The aim of this paper is to provide further insight on why the method works, ex-
amine and compare alternative ways of matching the RQMC points to the chains at
each step, and report empirical experiments on the convergence rate of the variance
and of the mean square discrepancy between the empirical and theoretical distribu-
tion of the states, as a function of n, for various types of discrepancies.

The remainder is organized as follows. The Markov chain setting and the estima-
tion problems are defined in Section 2. In Section 3, we explain the array-RQMC
algorithm, provide (heuristic) arguments for why an how the variance of the re-
sulting estimator could converge faster than the Monte Carlo rate of O(1/n), and
discuss what would be the required ingredients to bound this convergence rate. In
Section 4, we examine how to map the chains to the RQMC points at each step. Em-
pirical investigations of the convergence rate of the variance and the mean square
discrepancy are reported in Section 5. A conclusion is given in Section 6.

2 A Markov Chain Setting

We consider a Markov chain model with state space X ⊆ R
�, whose state evolves

according to the stochastic recursion

X0 = x0, Xj = ϕj (Xj−1,Uj ), j ≥ 1,

where x0 is fixed, U1,U2, . . . are i.i.d. uniform random variables over the unit hy-
percube (0,1)d , and ϕj : X × (0,1)d → X is a measurable mapping for each j .
As usual, we assume that the uniform random variables never take the value 0 or
1, to avoid infinite realizations after they are transformed by inversion to normals,
exponentials, etc. We want to estimate
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μ= E[Y ], where Y =
τ∑

j=1

cj (Xj )

for some measurable cost functions cj : X → R, and τ is a fixed positive integer.
This can in fact be generalized to the case where τ is a random stopping time, for
example the first (smallest) time when Xj hits a given subset of states. The array-
RQMC also works in that case, but its performance (in terms of variance reduction)
is usually not as good as when τ is fixed, according to our experiments (see also
[11] for one example).

To estimate μ by ordinary Monte Carlo (MC), we proceed as follows. Given a
large integer n, for each i, i = 0, . . . ,n−1, we generate a sample path of the chain
via

Xi,0 = x0, Xi,j = ϕj (Xi,j−1,Ui,j ), j = 1, . . . ,τ, (1)

where Ui,1, . . . ,Ui,τ are i.i.d. uniform over (0,1)d , and we compute Yi =∑τ
j=1 cj (Xi,j ), the realization number i of Y . These sample paths are independent.

The MC estimator of μ is then

μ̂n = 1

n

n−1∑

i=0

Yi. (2)

For the classical RQMC method, let s = τd and put Vi = (Ui,1,Ui,2, . . . ,Ui,s/d).
Let Pn = {V0, . . . ,Vn−1} ⊂ (0,1)s be an s-dimensional RQMC point set, defined as
a point set with the following properties [15, 17]: (a) each point Vi has the uniform
distribution over (0,1)s , and (b) Pn has low discrepancy in some sense (the precise
meaning would depend on the definition of discrepancy that one would adopt, and
this may depend on the problem context). The RQMC estimator of μ is defined as
in (2):

μ̂rqmc,n = 1

n

n−1∑

i=0

Yi = 1

n

n−1∑

i=0

τ∑

j=1

cj (Xi,j ), (3)

where the Xi,j are also defined as in the MC estimator. One difficulty here is that
the dimension s can be very large when the chain has many steps.

3 The Array-RQMC Algorithm

With the array-RQMC method introduced in [13, 14], we simulate n chains in par-
allel, and use a d-dimensional RQMC point set Pn at each step to advance all the
chains by one step, in a way that at each step j , the empirical distribution of the
set of states Sn,j = {X0,j , . . . ,Xn−1,j } is a very accurate approximation of the theo-
retical distribution of Xj , hopefully more accurate than with standard Monte Carlo.
We want the discrepancy between these two distributions to be as small as possi-
ble, for an appropriate measure of discrepancy whose choice may depend on the
application.
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To explain what this means and why we want to do that, let μj = E[cj (Xj )] be
the expected cost at step j , and

μ̂rqmc,j,n = 1

n

n−1∑

i=0

cj (Xi,j ), (4)

the sample average cost over the n chains at step j . The methods considered in
this paper estimate μj by μ̂rqmc,j,n and are unbiased: E[μ̂rqmc,j,n] = μj (for array-
RQMC, see Proposition 1 below). Our goal is to reduce the variance Var[μ̂rqmc,j,n],
which in this case is the same as the mean square error E[(μ̂rqmc,j,n −μj )

2]. It
would also be nice if we could show (under appropriate conditions) that this variance
converges faster than O(1/n), which is the ordinary MC rate. In the remainder of
this section, we explain (with heuristic arguments) why the array-RQMC appears a
sensible way to achieve that.

Let us assume for now that Xj has the uniform distribution over X = (0,1)� for
each j . This assumption is in force up to the statement of Proposition 1; after that
we will relax it to cover the case of a more general distribution of Xj over R

�. As is
usually done to bound the mean square error for RQMC schemes [3, 4, 5, 11], we
can select a reproducing kernel Hilbert space (RKHS) of functions cj : (0,1)� →
R, from which we obtain a definition of function variation V and a corresponding
definition of discrepancy D for randomized point sets in (0,1)�, such that

E[(μ̂rqmc,j,n−μj )
2] ≤ E[D2(Sn,j )] V 2(cj ), (5)

which provides a variance bound whenever V (cj ) <∞. The next step would be to
make sure that E[D2(Sn,j )] is small for all j , and (ideally) that it converges faster
than O(1/n) for any fixed j .

In the RKHS case, D(Sn,j ) is equal to the integration error of some represen-
ter function ξj (say) that depends on Sn,j , and such that V (ξj ) <∞. If (1) holds
for all i, for some points Ui,j ∈ (0,1)d , then D(Sn,j ) can also be written as the in-
tegration error of ξj ◦ϕj by the (randomized) point set Qn = {(X0,j−1,U0,j ), . . . ,

(Xn−1,j−1,Un−1,j )}. To bound this integration error, we may select another discrep-
ancy D(2) defined over the (�+d)-dimensional unit hypercube, with corresponding
variation V(2), such that for any function g : (0,1)�+d → R with V(2)(g) <∞, the
mean square integration error of g by Qn is bounded by E[D2

(2)(Qn)] ·V 2
(2)(g). This

discrepancy measure D(2) can of course be different from D. Its role is to measure
the departure of the empirical distribution of Qn from the uniform distribution over
(0,1)�+d . If we can show that V(2)(ξj ◦ϕj ) <∞ and that E[D2

(2)(Qn)] =O(n−α+ε)
for any ε > 0 for some constant α > 1, then this would imply that Var[μ̂rqmc,j,n] con-
verges faster than O(1/n), which is what we are trying to achieve. Of course, this
may work only if ξj ◦ϕj has sufficient “smoothness.”

Note that in the points (Xi,j−1,Ui,j ) of Qn, the last d coordinates (the Ui,j )
can be defined via some RQMC scheme, but the Xi,j−1 cannot be chosen; they are
determined by the previous history of the chains. The aim is to select (or generate)
the Ui,j in a way that E[D2

(2)(Qn)] is small.
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In the array-RQMC algorithm defined below, we (try to) achieve this in the fol-
lowing way. We select an (�+d)-dimensional point set

Q̃0
n = {(w0, ũ0), . . . , (wn−1, ũn−1)}

having low-discrepancy with respect to D(2), where wi ∈ [0,1)� and ũi ∈ [0,1)d
(these points are allowed to have zero coordinates). Then we define a randomization
of P̃ 0

n = {ũ0, . . . , ũn−1} with the property that if Pn = (U0, . . . ,Un−1) is (a real-
ization of) the randomized version and if Q̃n is the version of Q̃0

n in which P̃ 0
n is

replaced by its randomized version Pn, then: (a) each Ui is uniformly distributed
over (0,1)d and (b) Q̃n has low discrepancy, in the sense that E[D2

(2)(Q̃n)] is small.

Note that Q̃0
n does not have to be the same at all steps j , but taking the same point

set (with independent randomizations at the different steps) is more convenient and
works fine in practice.

Then we define a permutation πj over {0, . . . ,n−1}, for whichXπj (i),j−1 is close
to wi for each i, as much as possible, so that there is not much difference (loosely
speaking) between the point sets Q̃n and

Qπ
n,j = {(Xπj (0),j−1,U0,j ), . . . , (Xπj (n−1),j−1,Un−1,j )}.

The motivation is that if these two point sets are close to each other, then Qπ
n,j

should also have low discrepancy. This RQMC point set Qπ
n,j is the one that turns

out to be used to approximate the integral of ξj ◦ ϕj at step j of the algorithm.
The wi are fixed once for all and are the same at all steps; their role is only to
define the mapping between the chains and the points of Q̃n. In the case of a one-
dimensional state space (�= 1), we usually take wi = (i+1/2)/n and then the best
permutation πj is the one for which the states Xπj (i),j−1 are sorted in increasing
order, because the wi are sorted in increasing order. The choice of permutations for
higher-dimensional state spaces is less obvious. We discuss it in Section 4.

The array-RQMC algorithm simulates (in parallel) n copies of the chain; it can
be summarized as follows.

Array-RQMC algorithm:
For i = 0, . . . ,n−1, let Xi,0 = x0;
For j = 1,2, . . . ,τ {

Randomize P̃ 0
n afresh (independently of the previous

randomizations) into a new Pn = Pn,j = {U0,j , . . . ,Un−1,j };
For i = 0, . . . ,n−1, let Xi,j = ϕj (Xπj (i),j−1,Ui,j );
Compute the permutation πj+1 for the next step;
}

Estimate μ by the same average Ȳn = μ̂rqmc,n as in (3).

This can be replicated m times to estimate the variance and compute a confidence
interval on μ. The following is proved in [14]:

Proposition 1. (a) Ȳn is an unbiased estimator of μ and (b) the empirical variance
of the m copies of Ȳn is an unbiased estimator of Var[Ȳn].
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So far we have assumed that Xj has the uniform distribution over (0,1)�, which
is of course unrealistic for practical applications. In the case where Xj has a more
general distribution over R

�, the array-RQMC algorithm operates in exactly the
same way. The only changes are in how to define the mappings πj of chains to
points and in the interpretation of the discrepancies.

It is standard in QMC studies to use discrepancies for the uniform distribution
over the unit hypercube (0,1)�, with the understanding that more general distribu-
tions over R

� can be transformed to the uniform distribution, usually via a change
of variables. To follow this path, we assume that Xj has a continuous distribution
and that for each j , there is a bijection ψj : X → (0,1)� such that ψj (Xj ) has the
uniform distribution over (0,1)�. We then define the discrepancy of the states at step
j as

Dj =Dj(Sn,j )=Dj(X0,j , . . . ,Xn−1,j )
def= D(ψj (X0,j ), . . . ,ψj (Xn−1,j )),

whereD is the same as earlier. In (5), V (cj ) also needs to be replaced by V (cj ◦ψ−1
j ).

We emphasize that there is no need to know ψj to run the algorithm. For a
one-dimensional state space, the most natural definition is obviously the standard
probability integral transformation, ψj (x) = Fj (x), where Fj is the cumulative
distribution function (CDF) of Xj . With this definition, the permutation πj will
simply sort the states by increasing order, at each step. In more than one dimen-
sion, this can be generalized as follows [19]: Given Xj = (X

(1)
j , . . . ,X

(�)
j ), let

U
(1)
j = Fj,1(X

(1)
j ) where Fj,1 is the CDF of X(1)

j , then let U(2)
j = Fj,2(X

(2)
j | X(1)

j )

where Fj,2(· | X(1)
j ) is the CDF of X(2)

j conditional on X
(1)
j , and so on. Then put

ψj (Xj ) = Uj = (U
(1)
j , . . . ,U

(�)
j ). When the distribution of Xj is not continuous,

this does not define a bijection, but one could still define ψj by taking U(1)
j as some

solution of U(1)
j = Fj,1(X

(1)
j ), and so on.

It would be nice if we could show, under appropriate smoothness assumptions on
the ϕj and ψj , and with proper choices of discrepancies D and D(2), that

E[D2
j ] ≤ κjn

−α+ε (6)

for any ε > 0, for some α > 1, where κj does not depend on n and grows only
very slowly (or not at all) with j . From this, assuming that the V (cj ◦ψ−1

j ) <∞, it
would follow that Var[(Y0+·· ·+Yn−1)/n] converges as O(n−α+ε). A natural path
to establish such a result would be to show that low mean-square discrepancy E[D2

j ]
is preserved from one step j to the next.

At this time, we do not have a proof. We only have empirical evidence. In our
numerical experiments reported in Section 5, we observed a convergence rate of
O(n−2) for the variance. On the other hand, the convergence rate of the mean square
discrepancy E[D2

j ] (which we estimated only for one-dimensional examples) de-
pends on the choice of discrepancy D. For example, if D is defined as the L2-star
discrepancy, the rates observed empirically are (approximately) O(n−3/2), whereas
with D equal to the discrepancy defined in Eq. (15) of [5], we observe O(n−2).
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4 Mapping the Chains to the Points

We now discuss how to define and implement the one-to-one mapping of the n

points to the n chains in the array-RQMC algorithm, so that each state is assigned
to a representative point that is close to it. As in the previous section, we start with
the simplified case where the chain’s state Xj has the uniform distribution over
(0,1)�.

We consider the following way of mapping the chains to the points, called a
multivariate sort [2, 7]. Select some positive integers n1, . . . ,nν such that ν ≥ � and
n1 · · ·nν = n. Sort the states (i.e., the chains) by their first coordinate, in n1 packets
of size n/n1. This means that any state in a given packet will have its first coordinate
smaller or equal to the first coordinate of any other state in the next packet. Then
sort each packet by the second coordinate, in n2 packets of size n/n1n2, and so on.
When we reach coordinate �, we sort each packet in n� packets of size n/n1 · · ·n�
by the last coordinate. If ν > �, then at the next step we sort each packet into n�+1
packets according to the first coordinate, and so on. As a special case of this, one
can take nj = 2 for all j , with n equal to a power of 2. This corresponds to splitting
each packet of states in two with respect to the next coordinate, and doing this for
each coordinate in a round-robin fashion.

If � is deemed too large, we can map the state space to a lower-dimensional
space as follows. Define a sorting function v : X → [0,1)c, for c < �, and apply the
multivariate sort to the transformed points v(Xi,j ), in c dimensions. The function
v should be selected so that two states mapped to nearby values in [0,1)c should
be approximately equivalent in terms of the probability distribution of future costs
when we are in these two states. In [14], it was assumed that such a mapping was
always used, with c = 1, so v uniquely determined the sort, whence the appellation
“sorting function.”

Figure 1 illustrates the mappings obtained for two choices of n1, namely n1 = n

and n1 = n1/2, for an example with �= 2 and n= 16.
In the more general (and realistic) case where the state space is not [0,1)� but

R
� (or a subset) and the ψj cannot be computed explicitly, a reasonable heuristic

is to simply sort the states in the real space in exactly the same way as in the unit
hypercube. This is what we will do in our examples.

Further discussion and suggestions for the mapping between the points and states
can be found in [21]. On page 675, the authors assume that the points lie in a pre-
defined two-dimensional grid, exactly one point per square of the grid (in our un-
derstanding), and use what they call a Z-curve to order the points. This would work
fine to sort the points of a digital net in base 2, for example. However, sorting the
states (or chains) with this scheme seems problematic, because there is generally not
exactly one state per square of the grid. It would also need to be adapted in some
way for the (usual) case where the state space is unbounded and ψj is unknown (Xj

has an unknown distribution).
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Fig. 1 Two mappings between points and states, in �= 2 dimensions, with n= 16. The black dots
represent the states of the chains, and the white dots are the first 16 points of the two-dimensional
Sobol’ sequence, with a random digital shift. The lines indicate the mapping between the two sets
of points. In the left picture, we have n1 = n, so we sort according to the first coordinate only: the
leftmost state is mapped to the leftmost point, the second leftmost state is mapped to the second
leftmost point, and so on. The right picture is for n1 = n1/2 = 4: we first sort both the points and
the states in four packets according to the first (horizontal) coordinate. The numbers from 1 to 4
indicate the packet number in which each pair ended up in this first sort. Within each packet, the
states are mapped to the points according to the second (vertical) coordinate. The dashed vertical
lines at 1/4, 1/2, and 3/4 separate the Sobol’ points in packets of four, but not the states. These
dashed lines are only for visual intuition; they are not used by the sorting procedure.

5 Empirical Investigations of the Convergence Rate

We now show how the variance and the mean square discrepancy E[D2
j ] (for differ-

ent definitions of D) behave as functions of j and n, for small examples. All mean
square discrepancies and variances were estimated from 100 independent replica-
tions of the array-RQMC estimator.

5.1 Example 1: An Autoregressive Process

Consider a Markov chain defined over the real line by

Y0 = 0, Y1 = Z1, Yj = βYj−1+Zj√
β2+1

for j ≥ 2, (7)

where β ≥ 0 (a constant) and Z1,Z2, . . . are i.i.d. N(0,1) (standard normal). This
is a simple autoregressive process of order one. We have that Yj ∼ N(0,1) and
Xj = Φ(Yj ) ∼ U(0,1), where Φ is the standard normal CDF. The transformed
state Xj has the uniform distribution over (0,1) at each step j , so here we are able
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to compute explicitly the mean square discrepancy E[D2
j ] and to see how it evolves

with j and n. This can be done for this small academic example, but cannot be
done in general for more realistic examples. The Markov chain can also be defined
directly in terms of a stochastic recurrence for Xj , namely X1 = U1 and

Xj = ϕj (Xj−1,Uj )=Φ

(
βΦ−1(Xj−1)+Φ−1(Uj )√

β2+1

)

for j ≥ 2,

where U1,U2, . . . are i.i.d. U(0,1). Note that for β = 0 we have Yj = Zj for all j ,
whereas for β→∞ (in the limit), we have Yj = Z1 for all j .

Our primary interest is in how the variance of μ̂rqmc,j,n behaves as a function
of j and n for various choices of the cost function cj . In view of our discussion in
Section 3, we are also interested in the behavior of E[D2

j ] as a function of j and of n,
for various choices of the discrepancy D. These different discrepancies correspond
to different assumptions on the smoothness of cj and/or different choices of the
RQMC point set Q̃n.

To fix ideas, we consider two specific choices of D. The first one is the L2-star
discrepancy [3]. In one dimension, its square value is the same as the Cramer-von
Mises statistic:

D2(u0, . . . ,un−1)=D2
2,∗(u0, . . . ,un−1)= 1

12n2
+ 1

n

n−1∑

i=0

(wi −ui)
2,

where wi = (i+1/2)/n and 0≤ u0 ≤ u1 ≤ ·· · ≤ un−1 ≤ 1.
We name our second example of D the shift-baker2 discrepancy. In one dimen-

sion, its square is given by

D2
shb(u0, . . . ,un−1) = 1

n2

n−1∑

i=0

n−1∑

j=0

[
16

45

[
B6({ui −uj −1/2})−B6({ui−uj })

]

+ 1

9

[
10B4({ui−uj −1/2})−19B4({ui −uj })

]]
,

where the bold braces mean “mod 1”, and B4 and B6 are the Bernoulli polynomials

B4(u)= u4−2u3+u2− 1

30
and B6(u)= u6−3u5+ 5

2
u4− 1

2
u2+ 1

42
.

This is the discrepancy given in Eq. (15) of [5], without the weights and with a
correction on the coefficient of B4({ui−uj −1/2}). This discrepancy represents the
worst-case mean square error for a class of functions with square integrable second
derivative, with the point set {u0, . . . ,un−1} randomized by a random shift modulo 1
followed by a baker’s transformation [5]. Strictly speaking, this discrepancy would
be appropriate only if we would apply the baker’s transformation to the states Xj

before computing the average cost μ̂rqmc,j,n at each step, and we do not do that.
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We nevertheless examine Dshb as an example to illustrate how the convergence rate
might depend on the choice of discrepancy.

We also consider two choices for the two-dimensional RQMC point set used
at each stage. In the first choice, we take the first n points of the two-dimensional
Sobol’ sequence, where the second coordinate of the points is randomized by a (ran-
dom) left matrix scramble followed by a random digital shift [18]. For our second
choice, we take a Korobov lattice rule with a random shift modulo 1 followed by a
baker’s transformation [5]. For the Korobov rule, for each n, we took the parameter
a (in the usual notation) that gave the smallest shift-baker2 discrepancy in a random
search over 1000 different values. The simulations were done using SSJ [10].

Our first results are for the L2-star D2,∗ and shift-baker2 Dshb discrepancies, for
the Sobol’ point sets. Figure 2 shows our estimate of E[D2

j ] (the sample average

of D2
j over 100 independent replicates of the algorithms, as said earlier) as a func-

tion of j , with n = 4096 points, for β = 0.1, β = 1, and β = 10. The mean square
discrepancy turns out to be quite stable even when we simulate this chain over a
large number of steps. We observed the same behavior as a function of j for other
discrepancies, other RQMC point sets, and also for the variance. This is very en-
couraging. For the shift-baker2 discrepancy and β = 10 (or any large β), E[D2

j ]
increases in a visible way toward an horizontal asymptote as a function of j . Due to
the nature of the recurrence (7), E[D2

j ] turns out to be an exponential smoothing of
the discrepancies of previous steps, plus an additional term.

Fig. 2 Estimate of E[D2
j ] as a function of j for Example 5.1 with n= 4096, for D =D2,∗ (above)

and D =Dshb (below).

For D2,∗, the behavior for β = 10 is essentially the same as for β = 0.1. This also
occurs more generally for any pair (β,1/β) where β > 1, and could be explained
by the fact that it gives a linear combination of two independent standard normals
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Fig. 3 Above: Estimate of log2 E[D2
j ] as a function of log2 n for Example 5.1, for D =D2,∗ and

D =Dshb. Below: Estimate of log2 Var[μ̂rqmc,j,n] as a function of log2 n.

with the coefficients swapped in (7). For Dshb, however, the discrepancy is smaller
for β = 10 than for β = 0.1. In what follows we will only report results for β = 0.1
and β = 1.

Figure 3 shows our estimate of log2 E[D2
j ] as a function of log2n, for the same

values of β, for j = 20 and j = 100, again for the Sobol’ points, for D2,∗ and Dshb.
The expectation was still estimated by the average over 100 independent replica-
tions. For D2,∗, E[D2

j ] seems to converge approximately as O(n−3/2) as a function
of n, and appears independent of j , as in the previous figure. With a Korobov lattice,
the results are almost the same. They are also almost the same for other similar types
of discrepancies such as unanchored L2-discrepancies defined in [4], for example.
For the shift-baker2 discrepancy Dshb, the convergence rate differs and is (empir-
ically) quite close to O(n−2). The bottom part of Figure 3 shows our estimate of
log2 Var[μ̂rqmc,j,n] as a function of log2n, for cost function cj (x) = x, for j = 20
and j = 100. The slope indicates a convergence rate of approximately O(n−2). This
corresponds to the convergence rate of the mean square shift-baker2 discrepancy.
We also tried other smooth cost functions such as cj (x) = x2,

√
x and ln(x) and

the observed rate was the same. The variance reduction factor compared to MC was
also roughly the same for x, x2, and

√
x, but it was approximately ten times smaller
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for ln(x). Here, the n chains were simulated for j steps, the cost was then aver-
aged over the n chains (at step j ) to get one realization of the estimator μ̂rqmc,j,n.
This was repeated m= 100 times, and the variance shown is the empirical variance
of those m observations. The variance reduction factor, defined as the Monte Carlo
variance divided by the array-RQMC variance when the two estimators are based on
an average for n chains, is very roughly 600n when β = 0.1 and j = 100 (although
there is significant fluctuation around this value when we change n and especially
the RQMC point set that is used). The variance is also practically independent of j .

We also tried cj (x) = I(x > 0.5), where I is the indicator function. The (empir-
ical) convergence rate then dropped to approximately O(n−3/2), and the variance
reduction factor with respect to MC was about a hundred times smaller than for x
for n = 210, and a thousand times smaller for n = 220 (that is, about half a million
instead of 500 million). It is encouraging to see that even with such a discontinuous
indicator function, the variance is much smaller than for MC and its convergence
rate is faster (empirically).

5.2 Example 2: An Asian Option

In this example, let 0< t1 < t2 < · · ·< ts = T be fixed numbers (observation times),
r and σ be positive constants, S0 = s0 (a constant), and

Sj = Sj−1 exp[(r−σ 2/2)(tj − tj−1)+σ(tj − tj−1)
1/2Φ−1(Uj )] (8)

where Uj ∼ U(0,1), for j = 1, . . . , s. Define

S̄j = 1

j

j∑

i=1

Si.

We want to estimate
μ= E

[
max

(
0, S̄s−K

)]
.

This estimation problem occurs in pricing an Asian call option for a single asset
whose price evolves as a geometric Brownian motion [6]. Note that μ is then multi-
plied by a constant discount factor, which we ignore here.

To put this model in our framework, we define a Markov chain with state Xj =
(Sj , S̄j ) at step j , and whose transitions obey (Sj , S̄j )= ϕj (Sj−1, S̄j−1,Uj ) where
ϕj is defined via (8) and S̄j = [(j − 1)S̄j−1+ Sj ]/j . The function cj is zero for
j < s and we have cs(Ss, S̄s)=max

(
0, S̄s−K

)
. The estimator is defined by (3) as

usual. Here, τ = s, we have a two-dimensional state space (� = 2), and we use a
two-dimensional sort at each step: we first sort the states in n1 packets of size n/n1
based on S(tj ), then we sort the packets based on S̄j .

In contrast with the previous example, we have no explicit mapping ψj avail-
able to transform the state into a uniform point over the unit square, so we cannot
compute the discrepancy Dj explicitly. However, we can estimate the variance and
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examine its convergence speed as a function of n. Our RQMC point set at each step
is the first n points of a Sobol’ sequence, this time in three dimensions, with coor-
dinates 2 and 3 randomized by a left matrix scramble followed by a random digital
shift.

For a numerical example, we take S(0)= 100, K = 90, T = 240/365, t1 = T −
(s−1)/365, tj − tj−1 = 1/365, r = ln1.09, σ = 0.2, and s = 10 and 60.

Fig. 4 Estimate of log2 Var[μ̂rqmc,n] as a function of log2 n, for Example 5.2 with K = 90, for
s = 10 (above) and s = 60 (below). For s = 10, n≥ 216, and n1 =√n, we made four independent
replicates of the experiment and their results are indicated by small horizontal bars on the graphs.
The line goes through the log of the average variance over these four replicates.
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Figures 4 show the variance as a function of n, again in a log-log scale, for
different choices of n1, for s = 10 and s = 60, respectively. The best results are with
n1 ≈ n1/2, for which the variance seems to converge approximately as O(n−2).

For n1 ≈ n1/3 and n1 ≈ n2/3, the variance is larger (by a factor of about 10
for s = 60, n ≈ 218, and n1 ≈ n1/3, for example). The results are even worse if
we take n1 = 1 or n1 = n, which corresponds to sorting the states by one of their
two coordinates (this is the strategy that was used for this example in [14]). For
s = 60 and n ≈ 218, the variance with the best two-dimensional sort adopted here
is about 400 times smaller than with a sort based on the second coordinate only.
We emphasize that not only the convergence rate of the variance is better than for
MC, but the variance is also much smaller for the range of values of n shown in the
figure. For example, with s = 10, K = 90, and the best sorting strategy (n1 =√n),
the variance reduction factor is approximately 5n. Thus, for n = 220, the variance
with array-RQMC is about five million times smaller than with MC.

Of course, the variance behavior depends on the option and model parameters.
For example, the probability p of a nonzero final payoff becomes very small whenK
is large, and the relative error (the standard deviation divided by the mean) increases
without bound. This is a case of rare event simulation, for which RQMC is not the
right tool. In that situation, we should first apply an appropriate technique such as
importance sampling [1] to smooth out the estimator. Then we can apply RQMC
for further improvement. On the other hand, the convergence rate of the variance
for either MC or array-RQMC does not depend on K or p. With K = 90 and s = 10
as in Figure 4, we have p ≈ 0.87. If we change to K = 111, for example, we get
p ≈ 0.23 and the variance reduction factor of array-RQMC over MC turns out to
be about four times smaller than with K = 90, but we still have (approximately) an
O(n−2) convergence rate for the variance.

We also experimented with the discontinuous payoff function cs(Ss, S̄s) =
max(0, S̄s−K) for S̄s ≥ Ss , and 0 otherwise. In this case, the convergence rate drops
(empirically) to O(n−1.3) with s = 10 and K = 90, and the variance reduction factor
becomes much more modest (5 for n= 210 and 50 for n= 220). Nevertheless, these
factors are non-negligible and this is encouraging.

6 Future Work and Conclusion

The array-RQMC algorithm is a promising methodology for reducing the variance
in the simulation of Markov chains. We believe that plenty of interesting results
on its convergence are waiting to be established, in particular for multidimensional
state spaces, under various sets of assumptions on the transition and cost functions.
Further empirical experimentation is also needed, with large examples, alternative
sorting strategies, and various classes of applications.
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2. El Haddad, R., Lécot, C., L’Ecuyer, P.: Quasi-Monte Carlo simulation of discrete-time Markov

chains on multidimensional state spaces. In: A. Keller, S. Heinrich, H. Niederreiter (eds.)
Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 413–429. Springer-Verlag, Berlin
(2008)

3. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Mathematics of Com-
putation 67, 299–322 (1998)

4. Hickernell, F.J.: What affects the accuracy of quasi-Monte Carlo quadrature? In: H. Niederre-
iter, J. Spanier (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 16–55. Springer-
Verlag, Berlin (2000)

5. Hickernell, F.J.: Obtaining O(N−2+ε) convergence for lattice quadrature rules. In: K.T. Fang,
F.J. Hickernell, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp.
274–289. Springer-Verlag, Berlin (2002)

6. Hull, J.C.: Options, Futures, and Other Derivatives, sixth edn. Prentice-Hall, Upper Saddle
River, N.J. (2006)
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13. L’Ecuyer, P., Lécot, C., Tuffin, B.: Randomized quasi-Monte Carlo simulation of Markov
chains with an ordered state space. In: H. Niederreiter, D. Talay (eds.) Monte Carlo and
Quasi-Monte Carlo Methods 2004, pp. 331–342. Springer-Verlag, Berlin (2006)
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Testing the Tests: Using Random Number
Generators to Improve Empirical Tests

Paul Leopardi

Abstract The implementer of an empirical test for random number generators is
faced with some difficult problems, especially if the test is based on a statistic which
is known only approximately: How can the test be tested? How can the approxima-
tion be improved? When is it good enough? A number of principles can be applied to
these problems. These principles are illustrated using implementations of the over-
lapping serial “Monkey” tests of Marsaglia and Zaman.

1 Introduction

For many empirical tests of random number generators (RNGs), the distribution of
the test statistic is known only approximately or asymptotically. The use of two-level
testing with such empirical tests and “known good” random number generators can
reveal the goodness of fit between the empirical distribution of the test statistic and
the approximate theoretical distribution [10, Section 3.1] [11, Section 3]. Two-level
testing with a battery of tests can reveal which of the tests use approximations which
give a better fit for the size of the test used in the battery.

This paper describes the improvement of the implementation of the overlapping
serial “Monkey” tests of Marsaglia and Zaman [18, 17] in the TestU01 suite [13, 14].

The remainder of this paper is organized as follows. Section 2 describes some of
the principles of two-level testing with a battery of tests. Section 3 describes how
the PseudoDIEHARD battery of TestU01 was tested. Section 4 describes Marsaglia
and Zaman’s Monkey tests, shows how various differences with the TestU01 im-
plementation were detected, gives some new results for the theoretical moments for
these tests, and describes the improvements made to the tests in TestU01. Section
5 summarizes the results of the tests using the improved version of the Pseudo-
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DIEHARD battery of TestU01. Section 6 gives a brief summary of the computation
of the variances which are used in the Monkey tests.

2 Two-Level Testing with a Battery of Tests

The general idea of two-level testing with a battery of tests is that a battery may yield
b p-values; when the battery is repeated r times on disjoint subsequences generated
by an RNG, this yields a set of br p-values. This set is then tested using one or more
statistical tests for uniformity.

Two-level testing with a battery of tests is not a good idea in general if the inten-
tion is to test RNGs, since the individual tests must be short so that the battery can
be repeated enough times to give a meaningful result within a reasonable runtime. A
short test is less likely to give significant results on an individual RNG than a longer
test of the same type. Even worse, since the statistics on which a test is based may
be only approximate, performing a two-level test can lead to false rejection of an
RNG [10, Section 3.1] [11, Section 3]. For example, a series of papers by Kao and
Tang apparently wrongly rejects generators on the basis of failing two-level tests
[7, 25, 26].

The key to understanding repeated testing with a battery of empirical tests is to
realize that the outcome involves two independent null hypotheses.

H0: The RNG under test generates a U(0,1) sequence.
H1: Each test of the battery, when applied to a U(0,1) sequence, yields a p-value

from U(0,1).

These can be combined into the hypothesis:

H2: The battery, when repeatedly applied to the RNG under test, yields a se-
quence of independent p-values from U(0,1).

For a battery of tests on a single RNG, if H2 fails it may be hard to distinguish
failures of H0 from failures of H1. A possible solution is to look for consistent
failures of tests across multiple different “known good” RNGs. This approach may
not always work, since no RNG actually satisfies H0 [10, Section 3.4], but there are
enough RNGs which work well enough to make this approach feasible.

Once a failure of H1 for a test battery is detected, the next step is to repeat testing
but use each type of test in isolation, or equivalently, to extract from each sequence
of p-values produced by a run of the battery those p-values produced by each type
of test.

Some tests of a battery may produce multiple correlated p-values. If this causes
H1 to detectably fail for the battery as a whole, this failure will also be detected for
the individual test.

For tests using a statistic with a discrete distribution, H1 is never strictly true, but
this type of failure may only be revealed when the number of repetitions of the test
is large relative to the number of different p-values which the test can yield.
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Models of an empirical test are given by L’Ecuyer and Hellekalek [12, Sec-
tion 3.1] and by L’Ecuyer and Simard [14, Section 3]. Essentially, a test is a two-step
process.

1. The test generates a value y taken by a test statistic Y , where Y is a real-valued
function of a number of values generated by the RNG.

2. The test computes a p-value p := 1−f (y) by using an approximation f to the
theoretical distribution function F of the test statistic Y , where F is defined by

F(y) := 1−P [Y ≥ y].
Possible causes of the failure of H1 for a particular test may therefore include:

1. The implementation of the test does not match its description in the literature,
and actually generates a test statistic Y ′ �= Y ;

2. The function f is not a good approximation to F for the particular parameters
used by the test;

3. The implementation of the test actually computes a function f ′ �= f , giving a
different approximation to F from the one described in the literature.

Deeper investigation of the cause of the failure of H1 for a particular test may there-
fore require examination of the source code of the test, as well as its description.

3 Initial Testing of PseudoDIEHARD in TestU01

TestU01 is a collection of “Utilities for empirical statistical testing of uniform ran-
dom number generators” [14]. It contains a library of empirical tests, arranged into
batteries. Typical use of TestU01 is to test an RNG using the Small Crush, Crush
and Big Crush batteries in succession. TestU01 also includes the PseudoDIEHARD
battery, which is based on Marsaglia’s DIEHARD battery [16].

To investigate the PseudoDIEHARD battery of TestU01, two high quality gener-
ators were used: Mersenne Twister mt19937 [20, 19], and Brent Xorgens xor4096
[1, 2]. For the remainder of this paper, the Mersenne Twister mt19937 generator is
referred to as MT and the Brent Xorgens xor4096 generator is referred to as BX.
Both generators pass all tests of the Small Crush battery. BX passes all tests of the
Crush and Big Crush batteries while MT fails Crush and Big Crush in tests of linear
complexity [14].

The first testing method used is to perform 64 repetitions of the PseudoDIEHARD
battery using an RNG with each of 4 different seeds, yielding a sequence of
N = 32256 p-values, and submit this sequence to a second-level test. The two-sided
one sample Kolmogorov test is used to compare the empirical cumulative distribu-
tion function (CDF) of the sequence of p-values to the CDF for U(0,1). Hypothesis
H2 is rejected if the second-level test yields a p-value less than 0.001.

The results using TestU01 version 0.6.1 are as follows.
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D p
BX: 0.0118 0.0002466
MT: 0.0136 1.408×10−5

We see that hypothesis H2 is rejected for both generators, throwing suspicion on
hypothesis H1.

One way to gain more confidence in these results is to increase the number of
repetitions. Under hypothesis H0 this should yield an empirical distribution of p-
values which more closely approximates the distribution which is produced by the
PseudoDIEHARD test battery. The results using TestU01 0.6.1 PseudoDIEHARD
repeated 1024 times, giving 129024 p-values each, are as follows.

D p
BX: 0.0113 1.221×10−14

MT: 0.011 5.951×10−14

Figure 1 plots the difference between the p-values from 1024 repetitions of
TestU01 0.6.1 PseudoDIEHARD using BX, sorted in increasing order, and the cor-
responding values of the U(0,1) distribution, in this case the numbers (k−1/2)/N ,
for k from 1 to N = 129024. A systematic pattern resembling a sideways S is easily
visible.

Fig. 1 1024 × PseudoDIEHARD 0.6.1 (BX).

When the p-values for each type of test are extracted from a run of 1024 repe-
titions of TestU01 0.6.1 PseudoDIEHARD, the tests which produce failures of hy-
pothesis H1 are seen to be the Run test, the OQSO test and the DNA test.

The Run test implemented in TestU01 0.6.1 is essentially the test described in the
1981 version of Knuth [8], with a slight difference. The RNG is called n+1 times
rather than n times. The improvement to the Run test, which was incorporated into
TestU01 version 1.2.1, essentially consists of implementing the description given in
the 1998 version of Knuth [9, pp. 66–69]. Details of this improvement are omitted.
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4 Overlapping Serial Tests

Of the 126 p-values generated by PseudoDIEHARD, 82 come from three over-
lapping serial (Monkey) tests [18]: 23 OPSO tests, 28 OQSO tests, and 31 DNA
tests.

These Monkey tests use an alphabet of size α, form a string of length n = 221

by taking n× log2α bits from an RNG, and examine the n− t + 1 overlapping
words of length t . According to [18], the number of missing words should be
approximately normal with expected value μ and variance σ 2 as given by Ta-
ble 1.

Table 1 Marsaglia and Zaman’s 1993 Monkey test means and standard deviations.

α t μ σ

OPSO: 210 2 141909.4653 290.27
OQSO: 25 4 141909.4737 290
DNA: 4 10 141910.5378 290

In TestU01 the Monkey tests are treated as instances of the overlapping Collision
sparse serial tests [13, p. 106, pp. 121–122] [15].

The two-level tests for the Monkey tests use the same method as the Run test.
The PseudoDIEHARD battery is repeated 1024 times. From each subsequence of
126 p-values generated by each repetition, the corresponding p-values are extracted:
28 for the OQSO tests and 31 for the DNA tests.

The Kolmogorov test results using the corresponding sequences of p-values ex-
tracted from 1024 repetitions of the TestU01 0.6.1 PseudoDIEHARD battery are as
follows.

D p
OQSO BX: 0.0085 0.033 11

MT: 0.0061 0.24
DNA BX: 0.0389 < 2.2×10−16

MT: 0.0374 < 2.2×10−16

Hypothesis H2 is rejected for the DNA test for both generators. Figure 2 shows
the difference between the sorted p-values and the U(0,1) distribution for BX. The
distinct sideways S shaped curve of the graph casts suspicion on the variance used
to calculate the p-values for the DNA test.
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Fig. 2 DNA tests from 1024 × PseudoDIEHARD 0.6.1 (BX).

For all three Monkey tests, TestU01 0.6.1 calculates the values k := αt and λ :=
n/αt = 2 and then obtains

μ= ke−λ = 220e−2 > 141909.329955,

σ = ke−λ(1−3e−λ)= 210
√

e−2−3e−4 > 290.3331.

These values of μ and σ agree with those of Table 1 to the nearest integer, except
for the expected value for the DNA test.

As part of the project which produced the DIEHARD battery of tests [16],
Marsaglia in 1995 produced a revised version of his joint paper with Zaman [18].
The newer paper [17] revises the values of σ for the OQSO and DNA tests to 295
and 339 respectively. These revised values were obtained by simulation.

The author submitted a patch to TestU01 to use the revised values of σ for the
OQSO and DNA tests. The patch also sets the number of words used to calculate λ
to n− t + 1 so that λ = (n− t + 1)/k, matching the description of the overlapping
collision test in the User’s Guide [13, Version 0.6.1 p. 121, Version 1.2.1 p. 131].
This patch is used in TestU01 1.2.1.

The Kolmogorov test results, using the corresponding sequences of p-values ex-
tracted from 1024 repetitions of the TestU01 1.2.1 PseudoDIEHARD battery, are as
follows.

D p
OQSO BX: 0.0109 0.002 0921

MT: 0.0093 0.0141
DNA BX: 0.0127 6.802×10−5

MT: 0.0109 0.001 052

Hypothesis H2 is still rejected for the DNA test for BX, and the p-values for DNA
for MT and OQSO for BX are suspiciously low.

Figure 3 shows a U shaped curve which represents the difference between the
sorted p-values for the patched DNA test using BX, and the U(0,1) distribution.
The sideways S shaped curve from Figure 2 is also shown for comparison. It appears
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that at least for the DNA test, TestU01 1.2.1 no longer uses an inaccurate variance
but instead uses an inaccurate mean.

Fig. 3 DNA tests from 1024 × PseudoDIEHARD 1.2.1 (BX).

A deeper investigation into the source code of TestU01 1.2.1 reveals two key
differences between this implementation and Marsaglia and Zaman’s description of
the Monkey tests [18, 17].

1. Different test.
The OPSO, OQSO and DNA tests as described by Marsaglia and Zaman [18, 17]
each use a string of length n. Their implementations in TestU01 use words on a
cycle of length n rather than a string, yielding n not n− t + 1 words of length
t [13, p. 106, pp. 121–122] [15]. This produces a different test with a different
expected outcome.
The expected number of missing words in the cyclic case is different from the
non-cyclic case. Using the methods of Guibas and Odlyzko [6], and Rivals and
Rahmann [23], and Maple code provided by Edlin and Zeilberger [3], the cor-
responding μ for the cyclic versions of the OPSO, OQSO and DNA tests was
calculated to be:

OPSO: 141 909.194 619 723 81
OQSO: 141 909.194 525 907 72
DNA: 141 909.184 583 083 19

The corresponding σ is not yet known.
2. Different number of words.

In the Marsaglia and Zaman [18, 17] (string) versions of the OPSO, OQSO and
DNA tests, the number of words in the sequence is n− t+1. In the TestU01 1.2.1
(cyclic) implementation of these tests, the number of words in the sequence is n,
yet the number of words used to calculate the expected value μ and the variance
σ 2 is n− t+1. As a result, TestU01 1.2.1 sets μ to the following values.
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OPSO: 141 910.329 955
OQSO: 141 912.329 955
DNA: 141 918.329 955

The effect of the combination of differences 1 and 2 results in an inaccurate
expected value being used to calculate the p-value.

Precise values of the expected value and variance for the number of miss-
ing words in the Monkey tests were calculated using the methods of Guibas and
Odlyzko [6], and Rivals and Rahmann [23, 22], with the help of Maple code pro-
vided by Noonan and Zeilberger [21], and Edlin and Zeilberger [3]. Calculation of
the variance for the OPSO test needs the calculation of 6 generating functions, the
OQSO test needs 55, and the DNA test needs 4592. The methods used for the cal-
culation are described in Section 6 below. The resulting values of μ and σ are listed
in Table 2 to 20 decimal places.

Table 2 Improved Monkey test means and standard deviations.

μ σ

OPSO: 141 909.329 955 006 918 91 290.462 263 403 751 797 69
OQSO: 141 909.600 532 131 639 00 294.655 872 365 832 448 93
DNA: 141 910.402 604 762 935 66 337.290 150 690 427 643 65

An improved patch for the TestU01 implementations of the Monkey tests elim-
inates differences 1 and 2 above, and uses the improved means and standard de-
viations listed in Table 2. The Kolmogorov test results using the corresponding
sequences of p-values extracted from 1024 repetitions of the improved TestU01
PseudoDIEHARD battery are as follows.

D p
OQSO BX: 0.008 0.05186

MT: 0.006 0.2456
DNA BX: 0.0038 0.7527

MT: 0.0034 0.8589

5 Final TestU01 Results

The summarized Kolmogorov test results for 1024 repetitions of the Pseudo-
DIEHARD battery, for different versions of TestU01 for the generators MT and
BX, are as follows.
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Version D p
0.6.1 BX: 0.0113 1.221×10−14

MT: 0.011 5.951×10−14

1.2.1 BX: 0.0063 7.01×10−5

MT: 0.0056 0.000 6376
Improved BX: 0.0032 0.1352

MT: 0.0025 0.3982

The improved version no longer results in rejection of hypothesis H2.

6 Computation of the Variances for the Monkey Tests

The following analysis is based on that of Rahmann and Rivals [22]. The problem is
to find the mean and variance of the distribution of the number of missing words in
a random string. A random string S of length n is formed from an alphabet of size
α, with each character equally likely. The string S contains n− t + 1 overlapping
words of length t . There are therefore αn possible strings Si , and αt possible words
Wj .

For the remainder of this section, consider α and t to be fixed. Define the indicator
variable vi,j to be 1 if word Wj is missing from string Si , and 0 otherwise. The
number of words missing from string Si is thus

Xi :=
∑

j

vi,j .

The probability that both words Wj and Wk are missing from a random string S
of length n is

a
(n)
j,k := α−n

∑

i

vi,j vi,k.

Define the generating functions Aj,k(z) :=∑
n a

(n)
j,kz

n and Aj :=Aj,j . Define the

random variable X(n) to be the number of words missing from a random string S of
length n. The expected value of X :=X(n) is then

E[X] = α−n
∑

i

Xi = α−n
∑

i

∑

j

vi,j =
∑

j

a
(n)
j,j .

The variance is Var[X] = E[X2−X]+E[X]− (E[X])2, with

E[X2−X] = α−n
∑

i

∑

j �=k
vi,j vi,k =

∑

j �=k
a
(n)
j,k .
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Given words B and C of length t , with B = B0 . . .Bt−1 etc. define the (word
overlap) correlation vector BC by BCs = 1 if Br+s = Cr for r ∈ {0, . . . , t − s−1},
and BCs = 0 otherwise. Figure 4 shows an example of a correlation vector. The
correlation vectors BB,CC are called autocorrelations [5, 23].

B : D A N G E R
C : A N G E R S

A N G E R S
. . .

BC : 0 1 0 0 0 0

Fig. 4 The correlation vector for the words B=DANGER, C=ANGERS.

For the correlation vector v, define the correlation polynomial

Pv(z) := v0+v1z+ . . .+vt−1z
t−1.

For Pj := PWjWj
, the generating function Aj is given by Guibas and Odlyzko [6,

Theorem 1.1], and Rahmann and Rivals [22, Lemma 2.1] as

Aj(z)= Pj (z/α)

(z/α)t + (1− z)Pj (z/α)
.

For Pg,h := PWg,Wh
, the correlation matrix is Mj,k(z) :=

[
Pj,j (z) Pj,k(z)

Pk,j (z) Pk,k(z)

]
.

Given M :=
[
m11 m12
m21 m22

]
, define MV :=

[
m22 m21
m12 m11

]
and

R(M) :=m11+m22−m12−m21.

Define the equivalence class [M] := {M, MT , MV , MTV }, so that

[Mj,k(z)] = {Mj,k(z), M
T
j,k(z), Mk,j (z), M

T
k,j (z)}.

Note that M ′ ∈ [M] implies detM ′ = detM and R(M ′)= R(M).
The generating functionAj,k for the pairWj,Wk is given by Rahmann and Rivals

[22, Lemma 3.2] as

Aj,k(z)= Qj,k(z/α)

(1− z)Qj,k(z/α)+ (z/α)tRj,k(z/α)
,

where Qj,k(z) := detMj,k(z), and Rj,k(z) := R(Mj,k(z)). See also [6, 21, 24].

Standard methods are used to obtain a
(n)
j,k = [zn]Aj,k(z) from each Aj,k(z). See

e.g. Graham, Knuth and Patashnik [4, Section 7.3].
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We could simply sum a
(n)
j,k for all α2t−αt word pairsWj �=Wk , but for Marsaglia’s

tests, α2t = 240. So instead we enumerate correlation classes and count the word
pairs for each class.

Each word pair Wj ,Wk containing β distinct letters yields a partition of the set
{0, . . . ,2t − 1} into β nonempty subsets, which is equivalent to a restricted growth
string of length 2t having exactly β distinct letters. The string S of length 2t is a
restricted growth string if Sk � Sj + 1 for each j from 0 to k− 1, for k from 1 to
2t−1.

Each permutation of the alphabet preserves the correlation matrix. The set of
word pairs having β distinct letters splits under the symmetry group Sα into orbits
of size α!/(α−β)!.

Define N [M](α) = 3{(j,k) |Mj,k = [M]}, the number of word pairs associated
to the correlation class [M]. For α� 2t , the following algorithm is used to determine
all correlation classes [M], and find N [M](α) for each one.

For each β from 1 to α, for each restricted growth string of length 2t having
exactly β distinct letters:

1. Find the correlation class for the corresponding word pair.
2. Add α!

(α−β)! to the count for the correlation class.

For each correlation class [M], N [M](α) is a polynomial in α of maximum de-
gree 2t . For α > 2t , to find N [M](α), first find N [M](γ ) for γ from 1 to 2t , and
then interpolate the resulting polynomial.
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de Recherche Opérationnelle Université de Montréal (2005). URL http://www.iro.
umontreal.ca/˜simardr/testu01/tu01.html

14. L’Ecuyer, P., Simard, R.: TestU01: a C library for empirical testing of random number gener-
ators. ACM Trans. Math. Software 33(4), Art. 22, 40 (2007)

15. L’Ecuyer, P., Simard, R., Wegenkittl, S.: Sparse serial tests of uniformity for random number
generators. SIAM Journal on Scientific Computing 24(2), 652–668 (2002). DOI 10.1137/
S1064827598349033

16. Marsaglia, G.: The Marsaglia random number CDROM including the Diehard battery of tests
of randomness (1995). URL http://www.stat.fsu.edu/pub/diehard/

17. Marsaglia, G.: Monkey tests for random number generators, (revised extract, 1995). Journal
of Statistical Software 14(13), 1–10 (2005). URL http://www.jstatsoft.org/v14/
i13/supp/1

18. Marsaglia, G., Zaman, A.: Monkey tests for random number generators. Computers and Math-
ematics with Applications 26(9), 1–10 (1993)

19. Matsumoto, M.: Mersenne Twister with improved initialization (2002). URL http://www.
math.sci.hiroshima-u.ac.jp/˜m-mat/MT/MT2002/emt19937ar.html

20. Matsumoto, M., Nishimura, T.: Mersenne Twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM Transactions on Modeling and Computer Sim-
ulation 8(1), 3–30 (1998). DOI 10.1145/272991.272995

21. Noonan, J., Zeilberger, D.: The Goulden-Jackson cluster method: Extensions, applications,
and implementations. J. Difference Eq. Appl. 5, 355–377 (1999)

22. Rahmann, S., Rivals, E.: On the distribution of the number of missing words in random texts.
Combinatorics, Probability and Computing 12, 73–87 (2003)

23. Rivals, E., Rahmann, S.: Combinatorics of periods in strings. Journal of Combinatorial Theory
Series A 104(1), 95–113 (2003)

24. Rukhin, A.L.: Distribution of the number of words with a prescribed frequency and tests of
randomness. Advances in Probability 34(4), 775–797 (2002)

25. Tang, H.C.: A statistical analysis of the screening measure of multiple recursive random num-
ber generators of orders one and two. J. Statist. Comput. Simulation 71(4), 345–356 (2001)

26. Tang, H.C., Kao, C.: Searching for good multiple recursive random number generators via a
genetic algorithm. INFORMS J. Comput. 16(3), 284–290 (2004)

http://dx.doi.org/10.1145/167293.167354
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
http://dx.doi.org/10.1137/S1064827598349033
http://dx.doi.org/10.1137/S1064827598349033
http://www.stat.fsu.edu/pub/diehard/
http://www.jstatsoft.org/v14/i13/supp/1
http://www.jstatsoft.org/v14/i13/supp/1
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://dx.doi.org/10.1145/272991.272995


Se
co

nd
 p

ro
of

s

Stochastic Spectral Formulations for Elliptic
Problems

Sylvain Maire and Etienne Tanré

Abstract We describe new stochastic spectral formulations with very good prop-
erties in terms of conditioning. These formulations are built by combining Monte
Carlo approximations of the Feynman-Kac formula and standard deterministic ap-
proximations on basis functions. We give error bounds on the solutions obtained
using these formulations in the case of linear approximations. Some numerical tests
are made on an anisotropic diffusion equation using a tensor product Tchebychef
polynomial basis and one random point schemes quantized or not.

1 Introduction

The Feynman-Kac formula is a very powerful tool to achieve stochastic represen-
tations of the pointwise solution of numerous partial differential equations like dif-
fusion or transport equations [6, 12]. For instance, let us first consider the Poisson
equation in a bounded domain D ⊂ R

d with a sufficiently smooth boundary ∂D

{ 1

2
Δu(x) = −f (x) x ∈D,
u(x) = g(x) x ∈ ∂D.

(1)

This equation models the temperature u in a domain D with a source term f in D

and a prescribed temperature g on the boundary ∂D. The operator Δ is the Lapla-
cian, that is
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Δu(x)=
d∑

i=1

∂2

∂x2
i

u(x) ∀x(= (x1, · · · ,xd)) ∈D,

which models an isotropic diffusion.
The Laplacian can be replaced by a more general second order linear operator L

Lu(x)=
d∑

i=1

bi(x)
∂

∂xi
u(x)+ 1

2

d∑

i=1

d∑

j=1

ξi,j (x)
∂2

∂xi∂xj
u(x)

to take into account advection and anisotropic diffusions. The functions bi are as-
sumed to be smooth and the matrix ξ(x) with elements ξi,j (x) is assumed to satisfy
ξ(x) = σ(x)σ (x)t for a d× d̃ matrix σ . We also assume standard assumptions on
the uniform ellipticity of the operator.

In the following, we consider the general Dirichlet boundary value problem
{
Lu(x) = −f (x) x ∈D
u(x) = g(x) x ∈ ∂D (2)

whose solution u admits the classical stochastic representation: ∀x ∈D

u(x)= Ex

[
g(XτD)+

∫ τD

0
f (Xs)ds

]
, (3)

where {Xt, t ≥ 0} is the stochastic process (starting at X0 = x) solution of the
stochastic differential equation relative to the operator L

Xt = x+
∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs

and where τD is the exit time of this process from the domain D. The notation Ex

is used for the expectation given that X0 = x. In the particular case of the Poisson
equation, the process {Xt, t ≥ 0} is just the d dimensional Brownian motion.

Gobet and Maire have introduced in [8] sequential Monte Carlo algorithms to
compute global approximations of the solutions by combining this formula and de-
terministic linear approximations. This has led to a geometric reduction up to a
threshold of both the bias and the variance involved in the Monte Carlo computa-
tion of the Feynman-Kac representations [9]. This threshold appears because we use
only a finite number of terms in our deterministic approximation and it is linked to
the error between this approximation and the exact solution. In order to improve the
speed of convergence of the sequential algorithms, we have described new schemes
for the evaluation of the source terms based on the one-random-point method and
quantization techniques [15]. In the case of the Poisson equation, we have made a
new interpretation of the algorithm which has led to a direct spectral formulation
with almost perfect properties in terms of conditioning.

This article is organized as follows. We first recall in Section 2 the main tools
we have introduced in [15] and then, we show how to extend them in the case of
a general elliptic operator. In Section 3, we give some confidence intervals on the
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solution if the approximations of this solution are linear. Finally, we give in Section 4
some numerical results on an anisotropic diffusion over a square domain using an
approximation based on tensor product Tchebychef polynomial interpolation and
either Monte Carlo simulations or quantization tools.

2 The Stochastic Spectral Formulation

2.1 One Random Step Schemes

The goal of this section is to remind of the tools introduced in [15] to compute
Feynman-Kac representations at a numerical cost which is similar for the boundary
and source terms. We also assume that f and g are bounded. Representation (3) is
computed using a Monte Carlo method which requires generally the simulation of
the process {Xt, t ≥ 0} using an approximation scheme {X̂δ

kδ, k ∈ N} like the Euler
scheme [2] with a time step δ. If we estimate that the process leaves the domain D at
time τ̂D with nδ < τ̂D < (n+1)δ (for instance X̂δ

(n+1)δ /∈D or X̂δ
nδ and X̂δ

(n+1)δ are

very close to the boundary),XτD is approximated by X̂δ
τ̂D

using these last two points.

The simplest way to obtain X̂δ
ˆτD is the orthogonal projection of X̂δ

nδ on ∂D. We

approximate g(XτD) by g(X̂δ
τ̂D
). The standard approximation of

∫ τD
0 f (Xx

s )ds by

the rectangle method is δ
∑n

i=1f (X̂
δ
iδ), whose bias is of order δ. For each simulated

trajectory, we can see that many evaluations of the function f are required but we
need only one evaluation of the function g. Thanks to the representation

Ex

[∫ τD

0
f (Xs)ds

]
= Ex

[∫ 1

0
τDf (XyτD )dy

]
= Ex

[
τDf (XUτD)

]

introduced in [15], we can rewrite the Feynman-Kac formula as

u(x)= Ex

[
g(XτD)+ τDf (XUτD)

]
,

where U is a random variable with uniform law on [0,1], independent of the pro-
cess {Xt, t ≥ 0}. We replace the standard approximation by nδf (X̂δ

J δ) where J is
a discrete uniform random variable on the set {1, · · · ,n}. This new estimator uses
now only one evaluation of f and we have showed in [15] that in most situations the
increase of its variance is compensated by the decay of its computational cost. This
is especially true when δ is small, x is away from the boundary and the evaluation
of f is costly.

Remark 1. 1. In the algorithms developed in [9, 15], the evaluation of f is naturally
very costly because f is a sum of a large number of terms of a finite expansion
on basis functions.

2. We generally need to simulate the whole trajectory (for instance with an Euler
scheme) to obtain a realisation of (τD,XUτD).
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3. This approach has the advantage to be adapted to quantization: it is easier to
quantify a random variable in R+ ×D than to quantify the law of the whole
trajectory.

When the operator L is 1
2Δ, the stochastic process to simulate is the Brownian

motion {Bt , t ≥ 0} for which different methods of simulation are available. The
Euler scheme with discretization parameter δ writes

{
B0 = x

B(n+1)δ = Bnδ+
√
δYn

where the {Yn, n ∈ N} are independent standard Gaussian random variables. The
crude version makes the simulation stops once B(n+1)δ /∈D. This leads to approxi-
mations that are of weak order

√
δ. It is possible to take into account the possibility

for the Brownian motion to leave the domain between step n and n+1 and be back
into it at time (n+ 1)δ, to obtain a scheme of weak order δ using the half-space
approximation [7]. Some faster schemes can be used like the walk on rectangles [5]
or the walk on spheres method [20].

We have developed in [15] a one-random-point version of the modified walk on
spheres method introduced in [11]: exactly as for the Euler scheme, we evaluate the
source term at only one random point (in one sphere) of the trajectory. The sphere is
picked at random, proportionally to the square of its radius then the point is picked
in this sphere according to a conditional Green function.

This method has been tested in [15] and appeared as the most efficient in all the
examples we have tried. The one-random-point method has been also used success-
fully in [19] for the exact simulation of prices and hedges in the financial mathemat-
ics context.

2.2 Quantization

In some situations like spectral methods [4] or in the sequential Monte Carlo meth-
ods developed in earlier works [9, 10], the points (x1, · · · ,xN) where the solution
is computed are fixed. We shall describe what can be done in that case for a diffu-
sion equation in a general bounded domain D with a sufficiently smooth boundary.
For a fixed point xi ∈ D, we can already use a Monte Carlo simulation to build a
quadrature formula

u(xi)>
M∑

k=1

1

M
g(Zb

i,k)+
M∑

k=1

τ
(k)
D

M
f (Zs

i,k) (4)

at M random points (Zb
i,1, · · · ,Zb

i,M) of the boundary and (Zs
i,1, · · · ,Zs

i,M) of the
interior of the domain. In order to increase the rate of convergence of this kind of
formula, we can furthermore optimize the locations of the points of evaluations of
both f and g by using quantization techniques [17].
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We explain in detail how these techniques work when one wants to quantify q

points of the boundary term

Exi

(
g(XτD)

)=
∫

∂D

g(z)wb
xi
(y)dy,

where wb
xi
(y) is the density of the exit position of the stochastic process {Xt, t ≥ 0}

starting at the point xi . This density is usually unknown but we need only to sample
from it or from an approximation of it.

Optimal quantization in the quadratic case consists in finding the q points
(zbi,1, · · · ,zbi,q ) on ∂D minimizing the functional

∫

∂D

inf
1≤k≤q d

2(z,zbi,k)w
b
xi
(z)dz,

where d(z,z′) is the geodesic distance on ∂D, that is the minimal length of a path
on ∂D between z and z′. This problem is solved numerically using the competitive
learning vector quantization algorithm (see [3]) which can be described as follows.
We first simulate q independent points according to the density wb

xi
(y). We simulate

one more point Yb
i,1 from the same density and then move a little the closest (among

the q ones) point Zb
i,min along the minimal path between Zb

i,min and Yb
i,1. The new

position Ẑb
i,min satisfies

d(Y b
i,1, Ẑ

b
i,min)= (1− ε1)d(Y

b
i,1,Z

b
i,min)

where ε1 > 0 is a small parameter. The point Yb
i,1 is then removed, another point Yb

i,2
is simulated, ε1 is replaced by ε2 and so on. The sequence (εn)n≥0 is decreasing.
The numerical aspects of the algorithm are discussed in [18] in the case of multidi-
mensional Gaussian densities.

For each quantization point zbi,j a tessel

Ci,j =
{
u ∈ ∂D |d

(
zbi,j ,u

)
< inf

k �=j d
(
zbi,k,u

)
}

is associated. Then the approximation of
∫
∂D

g(y)wb
xi
(y)dy is given by the quadra-

ture formula
q∑

j=1

ai,j g(z
b
i,j )

with ai,j =
(∫

Ci,j
wb
xi
(y)dy

)
. The weights ai,j are computed using Monte Carlo

simulations after convergence of the previous algorithm. These quadrature formulae
are more accurate than Monte Carlo integration in rather low dimensions [17].

For the source term, we have to quantify p points of the joint law of (τD,XUτD).
We now use the Euclidean distance on R+×D to perform the same algorithm which
leads after convergence to the quantization points ((ti,1,zsi,1), · · · , (ti,p,zsi,p)) and the
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corresponding weights (b̃i,1, · · · , b̃i,p). The approximation of the source term can be
written

p∑

j=1

b̃i,j ti,j f
(
zsi,j

)
.

Letting bi,j = b̃i,j ti,j , the final approximation of the solution is

u(xi)>
q∑

j=1

ai,j g
(
zbi,j

)
+

p∑

j=1

bi,j f
(
zsi,j

)
.

Remark 2. 1. For the sake of simplicity, we have not explained how the points Zb
i,k ,

Zs
i,k and the times ti,k involved in (4) are generated. In general, we shall use

the one-random-point version of the Euler scheme X̂δ introducted in Sec. 2.1 to
obtain these quantities.

2. We point out that the quantization described here minimizes the mean square
dispersion (see [16]) of the points. The definition of the quantization does not
depend on the functions f of g.

2.3 Formulation and Asymptotic Properties

We want to compute a global approximation of the solution u and we assume that it
can be written in a linear form

PNu(x)=
N∑

i=1

u(xi)Ψi(x) (5)

for some functions (Ψ1, · · · ,ΨN) that are at least twice continuously differentiable
and some points (x1, · · · ,xN) ∈ DN . The choice of the points xi and the functions
Ψi is obviously crucial for the accuracy of the approximation procedure. We do not
focus here on this hard task but we use standard approximation methods. In the
case of pure interpolation, we have Ψi(xj ) = δi,j , where δ is the Kronecker delta.
The Lagrange polynomials associated to x1, · · · ,xN are a possible choice for these
functions.

We also assume that for every point xi , we can approximate u(xi) via for instance
a numerical approximation of the Feynman-Kac formula by

ũ(xi)=
q∑

j=1

ai,kg(z
δ,b
i,j )+

p∑

j=1

bi,j f (z
δ,s
i,j )

where this approximation is such that

lim
p,q→∞,δ→0

ũ(xi)= u(xi).
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The points zδ,bi,j are located on the boundary ∂D and the points zδ,si,j in D. We now let
rN(x)= u(x)−PNu(x) and write the partial differential equation solved by rN(x).
We have

{
LrN(x) = Lu(x)−LPNu(x)=−f (x)−LPNu(x) x ∈D,
rN(x) = g(x)−PNu(x) x ∈ ∂D.

This equation has the same form as (2). Thanks to (3), we have

rN(x)= Ex

[
(g−PNu)

(
XτD

)+ τD (f +LPNu)
(
XUτD

)]

and hence the approximation

rN(xi)>
q∑

j=1

ai,j (g(z
δ,b
i,j )−PNu(z

δ,b
i,j ))+

p∑

j=1

bi,j (f (z
δ,s
i,j )+LPNu(z

δ,s
i,j )). (6)

Let Ûi = û(xi), the desired approximation of U . The function PNû is obviously
defined by PNû(x) =∑

i û(xi)Ψi(x). We denote by r̂N the right-hand side of (6),
where PNu is replaced by PNû. The N equations r̂N (xi)= û(xi)−PNû(xi) lead to
the linear system CÛ = d with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ci,i =∑q

j=1 ai,jΨi

(
z
δ,b
i,j

)
−∑p

j=1 bi,jLΨi

(
z
δ,s
i,j

)
+1−Ψi (xi)

ci,k =∑q

j=1 ai,jΨk

(
z
δ,b
i,j

)
−∑p

j=1 bi,jLΨk

(
z
δ,s
i,j

)
−Ψk (xi) for i �= k

di =∑q

j=1 ai,j g
(
z
δ,b
i,j

)
+∑p

j=1 bi,j f
(
z
δ,s
i,j

)
.

As we have done in [15], we can look at the asymptotic system we obtain when
p,q→∞ and δ→ 0. The term

q∑

j=1

ai,jΨk(z
δ,b
i,j )−

p∑

j=1

bi,jLΨk(z
δ,s
i,j )

is the approximation at point xi of the solution of the equation

{
Lv(x) = LΨk(x) x ∈D,
v(x) = Ψk(x) x ∈ ∂D

that is v(xi) = Ψk(xi). We deduce immediately that the matrix of the asymptotic
system converges towards the identity matrix of size N . Our goal is now to give,
for fixed values of p,q and δ, a bound on the error we get by using this stochastic
spectral formulation.
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3 Error Bounds Based on Confidence Intervals

3.1 The Unbiased Monte Carlo Case

We first consider that we use Monte Carlo estimators with exact simulations schemes
(which is equivalent to take the time discretization parameter δ = 0 ) for the two
terms of the Feynman-Kac representations. The Monte Carlo estimator of

Exi

[
(g−PNu)(XτD)

]+Exi

[
τD(f +LPNu)(XUτD)

]−u(xi)+PNu(xi)

using qi independent sample values for the first term and pi independent sample
values for the second term can be written as

Y
(b)
i +Y

(s)
i −u(xi)+PNu(xi)

where

Y
(b)
i = 1

qi

qi∑

k=1

(g(zbi,k)−PNu(z
b
i,k)), Y

(s)
i = 1

pi

pi∑

l=1

τ
(i,l)
D (f (zsi,l)+LPNu(z

s
i,l)),

the random points zbi,1, · · · ,zbi,qi are independent copies of the exit position XτD

of the process X starting at xi . The random points and time (zsi,1,τ
(i,1)
D ), · · · ,

(zsi,pi
,τ

(i,pi )
D ) are independent copies of (XUτD ,τD). We are exactly in the situa-

tion of the previous linear system CÛ = d by letting ai,k = 1
qi

and bi,l = 1
pi
τ
(i,l)
D .

Indeed, the law of large numbers shows that the random matrix C converges to the
identity matrix. To give a confidence interval for the solution based on the central
limit theorem, we give confidence intervals for each of the equations of the linear
system. To do this for the equation relative to index i, we define the confidence
interval

Ai =
[

Y
(b)
i +Y

(s)
i − rN(xi)−Cα

(
σ
(b)
i√
qi
+ σ

(s)
i√
pi

)

,

Y
(b)
i +Y

(s)
i − rN(xi)+Cα

(
σ
(b)
i√
qi
+ σ

(s)
i√
pi

)]

(7)

with P(Ui = u(xi) ∈ Ai)≥
(

1−α− βi√
qi

)(
1−α− γi√

pi

)
, where

(
σ
(b)
i

)2 = Var((g−PNu)(X
xi
τD
)),

(
σ
(s)
i

)2 = Var(τD(f +LPNu)(X
xi
UτD

)),

Cα corresponds to the level of confidence α in the Gaussian case and

βi = 0.7655Exi (|(g−PNu)(XτD)|3)
(σ

(b)
i )

3
2

, γi = 0.7655Exi (|τD(f +LPNu)(XUτD)|3)
(σ

(s)
i )

3
2

.
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The constants βi and γi are obtained thanks to the Berry-Esseen inequality [21]
which holds true even if pi and qi are small. This inequality requires the existence
of third moments for (g−PNu)(X

xi
τD ) and τD(f +LPNu)(X

xi
UτD

) which is verified

since g−PNu, f +LPNu are bounded and E(τ 3
D) <∞ (see [6]). Note that for the

sake of simplicity, we have included in the sets Ai the contribution of both source
and boundary terms. We should mention that there is no guaranty that the constants
βi and γi are for instance lower than one. So if pi and qi are very small, our bounds
may not be meaningful. Hence we obtain with probability

P(A1A2 · · ·AN)≥
N∏

i=1

(
1−α− βi√

qi

)(
1−α− γi√

pi

)
= η (8)

a system of inequalities
d−hd ≤ CV ≤ d+hd (9)

where C and d are defined as previously, V ∈ R
N and where

hdi = Cα

(
σ
(b)
i√
qi
+ σ

(s)
i√
pi

)

.

The solution U = (u(x1), · · · ,u(xN)) satisfies (9) with probability at least η. If C is
non-singular, we have hence

∥∥Û −U
∥∥≤ ∥∥C−1

∥∥∥∥CÛ −CU
∥∥≤ ∥∥C−1

∥∥‖hd‖
with probability at least η for any matrix norm. Furthermore

(hdi )
2 ≤ 2C2

α

(
Exi [(g−PNu)

2(XτD)]
qi

+ Exi [τ 2
D(f +LPNu)

2(XUτD )]
pi

)

which gives

(hdi )
2 ≤ 2C2

α

(
supx∈∂D(g−PNu)

2(x)

qi
+ Exi [τ 2

D]supx∈D(f +LPNu)
2(x)]

pi

)
.

From a practical point of view, it can be efficient to choose the values pi and qi to
be different and adapted to the variances of the source and boundary terms. For the
theoretical study, we assume now that pi = qi =M, and we have furthermore

‖hd‖2
2 ≤

2NC2
α

M

[
sup
x∈∂D

(g−PNu)
2(x)+ max

i=1,··· ,N
Exi [τ 2

D] sup
x∈D

(f +LPNu)
2(x)

]
.

(10)
We have finally with probability η (defined in (8)),

∥
∥Û −U

∥∥
2 ≤

∥∥C−1
∥∥

2 ‖hd‖2 .
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We now study if C is regular and how to find a bound on
∥∥C−1

∥∥
2. We write C =

Id−F with

Fi,j =−
M∑

k=1

ai,kΨj (z
δ,b
i,k )−

M∑

l=1

bi,lLΨj (z
δ,s
i,l )+Ψj (xi)

and ∀i,j we obviously have E[Fi,j ] = 0. We choose 0 < β < 1 and we take M

large enough such that P(‖F‖1 ≤ β) with probability η. We have with the same
probability ∥

∥C−1
∥
∥

1 ≤
1

1−β

and finally
∥
∥Û −U

∥
∥

2 ≤
√
N

1−β
‖hd‖2 . (11)

3.2 A Basic One Dimensional Example

The goal of this section is to explain on a trivial example the meaning of the error
bounds we have just obtained. We consider the Laplace equation u′′ = 0 on the
interval D = [0,1] with boundary conditions u(0) = 0, u(1) = 1 which solution is
u(x)= x. There is no source term and so the solution is

u(x)= Px(XτD = 1)u(1)+Px(XτD = 0)u(0)= Px(XτD = 1).

The solution is computed at points x = 1
3 and x = 2

3 . The law of XτD given
that X0 = 1

3 is a Bernoulli random variable W such that P(W = 0) = 2
3 and

the law of XτD given that X0 = 2
3 is a Bernoulli random variable Z such that

P(Z = 0) = 1
3 . We sample directly and exactly from W and Z to obtain our esti-

mates. We denote by p and q the Monte Carlo approximations of these probabil-
ities using M samples. We choose for basis functions the Lagrange polynomials
Ψ1(x)=−3(x− 2

3 ) and Ψ2(x)= 3(x− 1
3 ). The exact solution is in the approxima-

tion space (that is u = P2u, see (5)). Thanks to (10), we have hd = 0. So, if the
spectral matrix C is regular, (11) ensures there is no error on the solution. As we
have Ψ1(0)= 2,Ψ1(1)=−1 and Ψ2(0)=−1,Ψ2(1)= 2, the linear system to solve

is CU = d with C =
(

3p−1 2−3p
3q−1 2−3q

)
and d =

(
1−p

1−q

)
. The vector ( 1

3 ,
2
3 ) is al-

ways a solution of this system but is the unique solution only if C is regular, that
is when det(C)= 3(p−q) �= 0. When M increases, p→ 2

3 and q→ 1
3 at a Monte

Carlo speed. So the probability that p = q decreases quickly with M . Moreover,
even if M = 1, the solution is unique as soon as W �= Z. The probability that the
matrix is singular is

pM = PM(W = Z)=
M∑

k=0

(
M

k

)(
1

3

)M−k(2

3

)k(
M

k

)(
2

3

)M−k(1

3

)k
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=
(

2

9

)M M∑

k=0

(
M

k

)2

,

where

(
M

k

)
are the binomial coefficients. For instance, we have p1 = 4

9 , p10 >
0,054, p20 > 0.01 and p50 > 0.0002. We can conclude that we obtain an exact
solution with a probability pM ≥ 0.99 as soon as M ≥ 20.

3.3 The Biased Monte Carlo Case

We now assume that the process {Xt, t ≥ 0} is approximated by another process
{Xδ

t , t ≥ 0} built using a simulation scheme like the Euler scheme or the walk on
spheres method with a discretization time step δ. We also assume that pi = qi =M .
In this situation we have to compute error bounds for expressions of the form

Ex[g(XτD)+ τDf (XUτD)]−Ex[g(Xδ
τD
)+ τ δDf (X

δ
UτD

)] = e1+ e2

letting

e1 = Ex[g(XτD)−g(Xδ
τD
)] and e2 = Ex[τDf (XUτD)− τ δDf (X

δ
UτD

)].

First, we can notice that for any process {Xδ
s , t ≥ 0}, we always have

|e1| ≤ 2 sup
x∈∂D

|g(x)|

and if Ex[τ δD]<∞,

|e2| ≤ (Ex[τD]+Ex[τ δD]) sup
x∈D

|f (x)| .

If we now really use that {Xδ
t , t ≥ 0} is an approximation of {Xt, t ≥ 0}, we can

expect to have error bounds of the form

|e1| ≤ Cδα sup
x∈∂D

|g(x)|

and also
|e2| ≤ C1δ

β sup
x∈D

|f (x)|

where α,β,C and C1 are non-negative constants. In both cases, we have

|e1+ e2| ≤ μδ sup
x∈∂D

|g(x)|+νδ sup
x∈D

|f (x)|

where μδ and νδ are positive constants which may or may not (if α or β is zero) go

to zero as δ→ 0. As in Sec. 3.1, we need E

[(
τ δD

)3
]
<∞ to apply the Berry-Esseen
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inequality. This condition is satisfied for most of the classical schemes like Euler
scheme or the walk on sphere method (see the Appendix of [9]). If we go back to
our problem, we obtain a new system of inequalities

dδ−hdδ ≤ CδVδ ≤ dδ+hdδ

where Cδ and dδ are defined using Xδ
s and where

∥
∥hdδ

∥
∥2

2 ≤ θ(δ,N,M) sup
x∈∂D

(g−PNu)
2(x)+κ(δ,N,M) sup

x∈D
(f +LPNu)

2(x)

with

θ(δ,N,M)= 4C2
α

(
N

M
+μ2

δ

)
,

κ(δ,N,M)= 4C2
α

(
N

M
max
i=1,N

Exi [(τ δD)2]+ν2
δ

)
.

We have finally with probability η,
∥∥Ûδ−U

∥∥
2 ≤

∥∥C−1
δ

∥∥
2

∥∥hdδ
∥∥

2 ,

where Ûδ is our approximated solution. We observe that in fact the quality of the
simulation scheme and the number of simulations have not such a big impact on∥∥hdδ

∥∥
2 as they influence only the constants θ(δ,N,M) and κ(δ,N,M). This means

that we can have a good enough control on
∥∥hdδ

∥∥
2 even with a very bad simulation

scheme and few simulations. Conversely, we cannot expect a good convergence of
Cδ towards the identity matrix in this last situation so there is a lack of control on∥∥C−1

δ

∥∥
2. This can lead to very large values for

∥∥C−1
δ

∥∥
2 when using polynomial

bases of high degree in the approximation of f and g. This is similar to the bad
conditioning of spectral methods for elliptic problems. We could also find an upper
bound for

∥∥C−1
δ

∥∥
2 as we did in the unbiased case when M is large enough and δ is

small enough.

3.4 Other Cases

Instead of making Monte Carlo approximations of the Feynman-Kac representa-
tions, it might be possible to use other approximation methods like quasi-Monte
Carlo methods or quantization which may have increased rates of convergence. In
such cases, the error bounds do not depend on the central limit theorem via the
variance but on other estimates via the discrepancy or the distortion. Some work has
been done to simulate diffusions at a quasi-Monte Carlo speed first for the heat equa-
tion in R

d see [13] and then for elliptic problems in bounded domains in the context
of domain decomposition [1]. This last approach is very promising but we do not
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know yet how to combine it with the one random point approximation of the source
term. The remaining problem is how to compute a quasi-Monte Carlo approxima-
tion of Ex[τDf (XUτD)]. In Section 2.2, we have described how the quantization
method works in our context and especially how to deal with the source term eval-
uated by the one random point method. In both situations, error bounds in the case
of zero-bias schemes will be deterministic and the speed of convergence is likely to
be faster than the Monte Carlo speed.

4 Numerical Results

We describe our method on equation (2) in the unit square D = [−1,1]2 where

L= 1

2

(
∂2

∂x2
+4

∂2

∂x∂y
+5

∂2

∂y2

)
.

This problem corresponds to a simple example of an anisotropic diffusion. We solve
this equation for three different source terms fi and boundary conditions gi for
which the exact solutions are u1(x,y) = (1−x2)(1−y2), u2(x,y) = (1−x3)(1−
y3) and u3(x,y)= sin

(
(1−x2)(1−2y2)

)
. For example, f1(x,y)= 6−5x2−y2−

8xy and g1(x,y)= 0.
The stochastic process associated to L is solution to the SDE

{
dXt = dB1

t

dYt = 2dB1
t +dB2

t ,

where {B1
t , t ≥ 0} and {B2

t , t ≥ 0} are two independent one dimensional Brownian
motions. In all the following results, we use an Euler scheme with time step δ and
the half-space approximation [7]. For either Monte Carlo simulations or quantiza-
tion and for each of the grid points, we take the same number of points M on the
boundary and in the domain that is pi = qi =M . We approximate our solution us-
ing Tchebychef interpolation polynomials. Hence the N basis functions are the two
dimensional Lagrange polynomials ψi associated to the Tchebychef grid. We use
either Monte Carlo simulations or quantization tools.

We denote by ûi our approximation of ui (i = 1,2,3). We give some criteria to
study our method on these examples. These criteria are the error on the solution
erri = sup |ui− ûi | (where the supremum is taken over the points of the Tchebychef
grid), the condition number κ(C) and the spectral radius of the Jacobi ρ(J ) and
Gauss-Seidel ρ(GS) iteration matrices. We summarize the results in Tables 1 and 2.

In Figure 1, we plot the quantization points on the boundary for point (x0,y0)=
(0,0) and we compare them to the ones obtained in the Brownian case.

We can notice that when the solution is in the approximation space there is almost
no error on the solution. The condition number of the corresponding deterministic
collocation methods is a O(N4) [4]. Here the condition number is very small espe-
cially when using quantization points. When N = 121, we observe that the quan-
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Table 1 Numerical Results for the Monte Carlo procedure with 1000 realisations and a time step
δ = 10−3.

N err1 err2 err3 κ(C) ρ(J ) ρ(GS)

9 3.9×10−16 3.8×10−2 2.7×10−2 1.1 4.9×10−3 4.4×10−2

16 1.5×10−15 3.8×10−15 1.3×10−2 1.4 1.2×10−1 1.6×10−2

121 8.5×10−14 1.1×10−13 1.4×10−4 974 1.74 3.39

Table 2 Numerical Results for quantization procedure withM quantifiers and a time step δ=10−4.

N M err1 err2 err3 κ(C) ρ(J ) ρ(GS)

9 80 4.4×10−16 2.1×10−2 6.3×10−3 1.06 1.5×10−2 2.4×10−3

16 80 5.6×10−16 2.6×10−15 1.7×10−2 1.13 3.2×10−2 7.3×10−3

121 200 2.6×10−15 8.4×10−15 1.3×10−5 8.5 0.46 0.28

tization method is a lot more efficient: it provides a more accurate solution with a
smaller condition number and the Jacobi and Gauss-Seidel method are convergent.

Fig. 1 Quantization points (x0,y0)= (0,0).

5 Conclusion

We have introduced and studied stochastic versions of the collocation method for
the solution of elliptic problems in a bounded domain. We have given asymptotic
properties of the stochastic spectral matrix and error bounds on the approximate
solutions in the very general context of linear approximations. We have proved the
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convergence of the spectral matrix toward the identity matrix when increasing the
number of simulations and decreasing the stepsize of the simulation schemes in-
volved in the approximations of the Feynman-Kac representations. We have also
proved that very accurate solutions can be obtained even when using a small num-
ber of simulations with a poor simulation scheme. Numerical results have confirmed
the efficiency of the method on the Poisson equation [15] and on an anisotropic dif-
fusion in the unit square. We have also paid a special attention to the optimization
of the computation of the Feynman-Kac formula via one random step schemes and
quantization tools. In the spirit of what has been done in [14] for numerical integra-
tion, the combination of stochastic tools and deterministic approximations has led to
stochastic spectral methods which are asymptotically perfect in terms of condition-
ing. Further numerical examples should be performed on more complex domains or
partial differential equations to emphasize the simplicity and efficiency of this new
approach.

Acknowledgements The authors wish to thank the anonymous referee and the associated editor
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Adaptive (Quasi-)Monte Carlo Methods for
Pricing Path-Dependent Options

Roman N. Makarov

Abstract We study a recently developed adaptive path-integration technique for
pricing financial derivatives. The method is based on the rearrangement and split-
ting of path-integral variables to apply a combination of bridge sampling, adaptive
methods of numerical integration, and the quasi-Monte Carlo method. We study
the subregion adaptive Vegas-type method Suave from the CUBA library and pro-
pose a new variance reduction method with a multivariate piecewise constant sam-
pling density. Two models of asset pricing are considered: the constant elasticity of
variance diffusion model and the variance gamma Lévy model. Numerical tests are
done for Asian-type options.

1 Introduction

The idea of using bridge sampling to reduce the effective dimension of a multi-
variate integration problem was proposed in [2] for pricing path-dependent options
under the geometric Brownian motion. Such an approach followed by application
of the quasi-Monte Carlo method becomes a classical example of variance reduc-
tion and is widely used in computational finance. For example, it is successfully
applied to pricing options under the variance gamma model [1]. In reality, the use
of bridge sampling for modern asset price models becomes more complicated and
computationally time consuming. The application of the quasi-Monte Carlo method
and some other variance reduction techniques often requires computations of the in-
verse of a probability distribution function. For many interesting models that arise
in mathematical finance (see, e.g., [4]), the inverse of a distribution function can be
computed only by numerically solving a corresponding differential equation. There-
fore, it is reasonable to consider the minimization of computational cost of a Monte
Carlo algorithm rather than only the minimization of the variance of a random esti-

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada
e-mail: rmakarov@wlu.ca

P. L’Ecuyer, A.B. Owen (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008,
DOI 10.1007/978-3-642-04107-5 34, © Springer-Verlag Berlin Heidelberg 2010

529

mailto:rmakarov@wlu.ca
http://dx.doi.org/10.1007/978-3-642-04107-5_34


Se
co

nd
 p

ro
of

s

530 Roman N. Makarov

mator. As usual, the computational cost is defined here as a product of the variance
of a random estimator and the average computing time per one sample.

Our approach is based on combining the bridge sampling method with adap-
tive Monte Carlo techniques and randomized quasi-Monte Carlo methods (see
[3]). Starting with a path-integral representation of the value of a discretely-
monitored path-dependent option, we rearrange the integral variables and then par-
tition the state space into two subspaces so that the variance of a standard Monte
Carlo estimator of the path integral depends mostly on variables of the subspace of
smaller dimension. Such a subspace can be called the effective subspace. Variables
of the effective subspace explain most of the variability of a sample path and are
used to construct a path “skeleton”. A bridge sampling method is then applied to
fill out gaps between the nodes of the path “skeleton”. The option value is repre-
sented as a double mathematical expectation with respect to the two subspaces, so
the Monte Carlo method can be applied for estimating it. A combination of variance
reduction techniques is applied only in the effective subspace. The main motivation
of such an approach is that variance reduction methods are usually more computa-
tionally time-consuming than a plain Monte Carlo simulation method. As a result,
we can achieve almost the same efficiency in variance reduction as if the variance re-
duction methods were applied to the entire state space but for less cost. We illustrate
efficiency improvements with numerical examples of pricing Asian options under
the variance gamma (VG) exponential Lévy model [11] or the constant variance of
elasticity (CEV) diffusion model [5].

Note that this approach can be also used for the evaluation of multidimensional
integrals, whose variables admit a decomposition into two subsets followed by ap-
plication of conditional Monte Carlo methods.

2 Path-Integral Decomposition Approach

Let us start with a continuous-time stochastic process {S(t)}t≥0 ∈ R+ that models
the price of some financial asset, such as a stock, a commodity, or the value of
a financial index. We assume that there exists a risk-neutral probability measure P

so that the discounted asset price process S̃(t)= e−(r−q)tS(t) is a P-martingale, that
is, EP|S̃(t)| <∞ and EP[S̃(t + τ) | S̃(t)] = S̃(t) holds for all t,τ ≥ 0. Here r ≥ 0
is the constant risk-free interest rate, and q ≥ 0 is the dividend yield rate. We also
assume that S(t) is a solvable Markov process meaning that its transition probability
density function (PDF) p, defined below, is given in closed form:

p(t1, s1, t2, s2)ds2 = Pr{S(t2) ∈ ds2 | S(t1)= s1} , 0≤ t1 < t2, s1, s2 ∈ R+ .

The problem of interest is pricing discretely-monitored path-dependent options.
Let the total time interval [0,T ], T > 0, be discretized with partition T = {ti , i =
0,1, . . . ,n}, so that 0= t0 < t1 < .. . < tn = T . Denote the values of the price process
S(t) at the time points t = ti by Si for all i = 0,1, . . . ,n. The no-arbitrage value V
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of a path-dependent option characterized by its payoff function Λ(s1, s2, . . . , sn) is
given in the form of a mathematical expectation:

V = V (S0,T ,Λ)= EP
[
e−rT Λ(S1,S2, . . . ,Sn) | S(0)= S0

]
. (1)

Using the transition PDF p and exploiting the Markov property of the pro-
cess S, one can construct a multidimensional PDF f of the discretized path S :=
{S1,S2, . . . ,Sn}. For example, assuming that the values Si are sampled sequentially
we have:

f(s,T ;s0)=
n∏

i=1

p(ti−1, si−1, ti , si), s := {si}Ni=1 . (2)

As is well known, the mathematical expectation (1) can then be written in the form
of a path-integral:

V =
∫

R
n+
e−rT Λ(s) f(s,T ;S0)ds . (3)

Consider a decomposition of the set of integration variables s into two disjoint
subsets, s1 and s2, containing d , 1≤ d ≤ n, and n−d variables, respectively:

s= s1∪ s2 := {sn/d ,s2n/d , . . . , sn}∪ {si | i �= kn/d, 1≤ i ≤ n, k ≥ 1}. (4)

Here, we assume that n/d is an integer. According to this partition, the n-dimensional
integral (3) can be written as an integral with respect to s1 and s2:

V =
∫

R
d+

(

f1(s1,T 1;S0)

∫

R
n−d+

f2(s2,T 2;S0,s1,T 1)Λ(s1,s2)ds2

)

ds1 , (5)

where T 1 and T 2 are two disjoint subsets of the time partition T that correspond to
s1 and s2, respectively. The path density f is represented as a product of the marginal
PDF f1 of S1 := {Skn/d}dk=1 and the PDF f2 of S2 := S\S1 conditional on S1. Alter-
natively, one can represent the option value V as a double expectation of the payoff
function

V = EP

S1

[
EP

S2

[
e−rT Λ(S1,S2) | S1] | S(0)= S0

]
. (6)

The multidimensional PDFs f1 and f2 can be represented as products of one-
dimensional transitions density functions depending on algorithms used to sample
S1 and S2. Suppose that the variables of S1 are sampled in a sequential manner.
Then we have

f1(s1,T 1;s0)=
d∏

k=1

p
(
t (k−1)n

d
, s (k−1)

n
d
, t kn

d
, s kn

d

)
. (7)

The variables of S2 are sampled conditionally on values Si obtained previously.
For example, being given S1 we sample S1 ∈ S2 conditional on the values S0
and Sn/d . After that we sample S2 conditional on S1 and Sn/d , and so on, and
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so forth. At the end, we sample Sn−1 conditional on Sn−2 and Sn. The PDF
f2 = f2(s2,T 2;s0,s1,T 1) that corresponds to this sampling technique is (under the
Markov assumption) given by

f2 =
d∏

k=1

kn
d
−1∏

j= (k−1)n
d

+1

p(tj−1, sj−1, tj , sj ) p (tj , sj , tkn/d ,skn/d)

p (tj−1, sj−1, tkn/d ,skn/d)
. (8)

Note that the ratio of transition PDFs in the above equation is a bridge probability
density of Sj conditional on Sj−1 = sj−1 and Skn/d = skn/d . It is easy to show that
the product of the PDFs f1 and f2 defined in (7) and (8), respectively, is exactly
the PDF f given by (2).

To estimate the option value V given by (1) or (6) one can use the Monte Carlo
method. Suppose that the variables of S1 give much larger contributions to the vari-
ance of a random estimator of V in comparison with the variables of S2. We say
that the path integral has effective dimension d in proportion pd if the variables of
S1 account for at least 100 ·pd% of the variance (see [2] for details). For pricing
path-dependent options, it is a fairly typical situation where pd is very close to one
for values d � n. So it is reasonable to apply variance reduction techniques only to
the variables of S1 rather than to all variables. Another reason is that the dimension
of the problem may be very large. For a common option pricing problem, the di-
mension n is of order of several hundreds. The application of some popular variance
reduction methods may slow down considerably the computation algorithm, since
they are usually more time-consuming than a plain Monte Carlo simulation method.
By applying variance reduction methods to the “effective” variables of S1, we can
achieve almost the same efficiency in variance reduction as if these methods were
applied to the whole integral but for less cost. Finally, we note that most methods
of generating quasirandom point sets (or at least their software implementations)
have a restriction on the dimension of points. Typically, the maximum allowable
dimension is 40 (e.g., see [8]).

Let us change the region of integration in (5). Let F1(S1,T 1;S0) be the joint
cumulative distribution function (CDF) corresponding to the PDF f1. By applying
the change of variables defined by F1(S1,T 1;S0)= u, where u∈ (0,1)d , the integral
(5) is transformed as follows:

V =
∫

(0,1)d

(∫

R
n−d+

f2(s2,T 2;S0,s1,T 1)Λ(s1,s2, )ds2

)

du , (9)

where we set s1 = F−1
1 (u;S0,T 1), and F−1

1 is the inverse function. As a result, we
obtain a problem of numerical integration over a unit d-dimensional hypercube.
The internal (n− d)-dimensional integral can be estimated by the Monte Carlo
method. Therefore, the value of V can be estimated using the double randomiza-
tion technique (with possible branching).
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3 Adaptive Integration Methods

3.1 Adaptive Importance and Stratified Samplings

In the Monte Carlo method, one of the most fundamental variance reduction tech-
niques is the importance sampling principle. This principle tells us that to decrease
the variance of a Monte Carlo estimator of a definite integral the sampling density
has to be chosen close enough to the integrand. Of great interest are adaptive nu-
merical integration methods that are problem-independent and allow us to construct
a sampling density during the Monte Carlo simulation.

There are two well known multidimensional adaptive numerical integration al-
gorithms: Vegas and Miser. The Vegas algorithm, invented by Lepage [10, 12], is
a Monte Carlo integration routine that applies adaptive importance sampling. Ve-
gas iteratively builds up a multidimensional sampling PDF as a product of one-
dimensional piecewise constant functions. As a result, Vegas can exhibit significant
improvements, but only as far as the integrand’s characteristic regions are aligned
with the coordinate axes. The Miser integration routine [12] is based on the recursive
stratified sampling on a rectangular grid. Until the requested accuracy is reached,
the region with the largest error at the time is bisected in the dimension in which
the fluctuations of the integrand are reduced most. The number of new samples in
each half is prorated for the fluctuation in that half.

In [7], CUBA—a library for multidimensional numerical integration, is presented.
The CUBA library provides new implementations of four general-purpose multidi-
mensional integration algorithms: Vegas, Suave, Divonne, and Cuhre. Suave (short
for subregion-adaptive Vegas) uses Vegas-like importance sampling combined with
a globally adaptive subdivision strategy similar to that implemented in Miser. Suave
uses global error estimation and terminates when the requested relative or absolute
accuracy is attained. Divonne works by stratified sampling, where the partitioning
of the integration region is aided by methods from numerical optimization. Cuhre
employs a cubature rule for subregion estimation in a globally adaptive subdivision
scheme.

In this paper we are specifically interested in the implementation of the Suave
method since it is an immediate successor of the Vegas routine. The other two rou-
tines do not fit well with our approach.

3.2 Sampling from a Multivariate Piecewise Constant PDF

In this subsection, we present a new approach, when the sampling PDF is a multi-
variate piecewise constant (within rectangles) function. The problem of our interest
is the efficient sampling from such a PDF. In fact, this approach is somewhat anal-
ogous to the stratified sampling method, where the strata correspond to the regions
of constancy of the piecewise constant probability density. Since the PDF is con-
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structed adaptively by sampling points in each stratum, this approach can also be
referred to adaptive methods.

Introduce a partition of a d-dimensional unit hypercube [0,1]d by slicing the cube
into mj equal parts along each coordinate j = 1,2, . . . ,d . For each j = 1,2, . . . ,d ,

introduce Ij (i) :=
[
i−1
mj

, i
mj

]
, i = 1,2, . . . ,mj , mj ≥ 1. The unit hypercube can be

then represented as a union of m1 ·m2 · · ·md disjoint smaller hyper-parallelepipeds
of the form Ci1,i2,...,id := I1(i1)× I2(i2)×·· ·× Id(id), with 1≤ ij ≤mj .

Introduce a piecewise constant probability density f (x1,x2, . . . ,xd) that is con-
stant in each subcube Ci1,i2,...,id . Let f (x1,x2, . . . ,xd)≡ fi1,i2,...,id > 0 in Ci1,i2,...,id

for 1 ≤ ij ≤ mj , j = 1,2, . . . ,d . This density can be written in terms of indicator
functions as follows:

f (x1,x2, . . . ,xd)=
m1∑

i1=1

· · ·
md∑

id=1

fi1,i2,...,id ·1I1(i1)(x1) · · ·1Id (id )(xd), (10)

where 1A(x) := 1 if x ∈ A and 1A(x) := 0 otherwise.
To sample from a piecewise constant PDF, one may use the following algorithm.

First sample a subdomain from the partition of the cube. In the above setting, a sub-
parallelepiped Ci1,i2,...,id is selected with a probability proportional to fi1,i2,...,id .
After that, a point is sampled uniformly in the subdomain selected. This means that
d+1 uniform random numbers are used for each sample value: one random number
is used to choose a subdomain and d variates are used to sample a point in the sub-
domain selected.

Here we study another approach that employs the inverse of a distribution func-
tion. This gives grounds for the use of the quasi-Monte Carlo method. Let us repre-
sent a multivariate PDF f (x1,x2, . . . ,xd) as a product of one-dimensional marginal
and conditional densities:

f (x1,x2, . . . ,xd)= f1(x1)f2(x2|x1) · · ·fd(xd |x1, . . . ,xd−1) . (11)

Now, one can first sample the first coordinate x1 from the marginal density f1(x1)=∫
(0,1)d−1 f (x1,x2, . . . ,xd) dx2 · · ·dxd and then sample xj for each j = 2, . . . ,n from

the density function fj (xj |x1, . . . ,xj−1) conditional on the coordinates x1, . . . ,xj−1.
Introduce the following notation:

Σ1(i1)=
∑

i2,...,id

fi1,i2,...,id ,

Σ2(i1, i2)=
∑

i3,...,id

fi1,i2,...,id ,

. . .

Σd−1(i1, . . . , id−1)=
∑

id

fi1,i2,...,id ,

Σd(i1, . . . , id )= fi1,i2,...,id ,
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where ij = 1, . . . ,mj for each j = 1,2, . . . ,m. Using this notation, we represent
the marginal and conditional density functions f1,f2, . . . ,fd as follows:

f1(x1)=
m1∑

i1=1

Σ1(i1)

m2 · · ·md

1I1(i1)(x1),

f2(x2|x1)=
m2∑

i2=1

m2
Σ2(î1, i2)

Σ1(î1)
1I2(i2)(x2),

. . .

fd(xd |x1, . . .xd−1)=
md∑

id=1

md

Σd(î1, . . . , îd−1, id)

Σd−1(î1, . . . , îd−1)
1Id (id )(xd),

where for each j = 1, . . . ,m− 1 we define îj := arg{ij : 1Ij (ij )(xj ) = 1} . As we
can see, the multivariate PDF f (x1,x2, . . . ,xd) is represented as a product of d
piecewise constant univariate density functions. Therefore, random sampling from
f reduces to sampling successively from d univariate probability distributions. Note
that the ordering of variables x1, . . . ,xd is arbitrary. Therefore, in the implementa-
tion of this method for estimating the integral (9), we can use the ordering from the
bridge sampling method: x1 = u1 �→ Sn/d, x2= u2 �→ Sn/2d , and so on; or the order-
ing from the sequential sampling method: x1 = u1 �→ Sd, x2 = u2 �→ S2d , . . . ,xd =
ud �→ Sn.

4 Asset Pricing Models

4.1 The CEV Diffusion Model

The constant elasticity of variance (CEV) diffusion process {S(t)}t≥0 obeys the sto-
chastic differential equation dS(t)= νS(t)dt+δS(t)β+1dW(t), t ≥ 0, S(0)= S0 >

0, where ν,δ,β are real parameters and {W(t)}t≥0 is a standard Wiener process.
Here we set ν = r−q and assume that δ > 0 and β �= 0.

When β < 0, the boundary s = 0 of the state space (0,∞) is regular. Here we
consider the case when the endpoint s = 0 is a killing boundary. The transition PDF
p0(s0, t0, s, t+ t0)= u0(s,s0, t), s,s0 > 0, t > 0, t0 ≥ 0, for the CEV process S(0)(t)
with zero drift (ν = 0) takes the form

u0(s,s0, t)= s−2β− 3
2 s

1
2
0

δ2|β|t exp

(

− s−2β + s
−2β
0

2δ2β2t

)

I 1
2|β|

(
s−βs−β0

δ2β2t

)

, (12)

where I denotes the modified Bessel function of the second order. The density
u0(s,s0, t) does not integrate (with respect to s) to unity for t > 0, since s = 0 is
an absorbing point, but the driftless CEV process obeys the martingale property:
E[S(0)(t+ τ) | S(0)(t)] = S(0)(t) for all t,τ ≥ 0.
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Note that if the reflecting boundary conditions is imposed at s = 0, then there
is no absorption at the endpoint. The corresponding transition density (for the case
with β < −0.5) is given by (12) with the replacement I 1

2|β|
→ I 1

2β
. The process

S(0)(t) becomes a strict submartingale.
A CEV process S(ν)(t) with nonzero drift parameter ν is obtained from S(0)(t)

by means of scale and time transformation:

S(ν)(t)= eνtS(0)(τ (t)), where τ(t)=
{ 1

2νβ (e
2νβt −1), ν �= 0,

t, ν = 0.
(13)

The resulting transition density pν(s0, t0, s, t + t0) = uν(s,s0, t) with nonzero drift
ν is given by

uν(s,s0, t)= e−νtu0(e
−νt s, s0,τ (t)). (14)

Since the driftless process S(0)(t) obeys the martingale property, we have that
E[S(ν)(t)|S(ν)(0) = S0] = eνtE[S(0)(τ (t))|S(0)(0) = S0] = eνtS0. Hence S(ν)(0)
drifts at a rate ν, and under the risk neutral measure the forward price e−νtS(ν)(t) is
a true martingale.

The Monte Carlo simulation of the CEV diffusion is based on the reduction of
the transition PDF (12) to that of the non-central chi-square distribution. Another
approach presented in [3] relates to the so-called randomized gamma distributions
of the first and second kinds (see [13]). Let G(α,β) denote the gamma distribution
with mean αβ and variance αβ2 (i.e., α is the shape parameter, and β is the scale
parameter). The randomized gamma distribution of the first type is the mixture dis-
tribution G(μ+η+1,θ), where θ > 0, μ >−1 are constants, and η has the Poisson
distribution P(α) with rate α > 0. The randomized gamma distribution of the sec-
ond type is the mixture distribution G(μ+η1+2η2+1,θ), where θ > 0 and μ>−1
are constants, η1 and η2 are independent random variables having the Poisson and
Bessel distributions, respectively. A nonnegative integer random variable Y is said
to be a Bessel random variable BES(μ,b) with parameters μ >−1 and b > 0 if

Pr{Y = n} = (b/2)2n+μ

Iμ(b) n! Γ (n+μ+1)
, n= 0,1,2, . . . .

Sampling from the transition and bridge distributions of the CEV process relies
on the two following results from [3].

For all s0 > 0, t0 ≥ 0, and Δt > 0, the value S(t0+Δt) of a CEV process with drift parameter ν and
without absorption (i.e., s = 0 is a reflecting boundary) conditional on S(t) = s0 is obtained by

generating random variables η ∼ P
(

x0
2Δτ

)
, γ ∼ G

(
1

2β +η+1,2Δτ
)
, and then by setting S(t0+

Δt) := eν(t0+Δt)(γ δ2β2)−1/(2β), where x0 :=
(
e−νt0 s0

)−2β
/(δ2β2) and Δτ := τ(t0+Δt)−τ(t0).

On the other hand, all bridge CEV processes, whether with or without absorption,
are simulated as follows.
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Let 0 ≤ t1 < t < t2 hold, then for all positive values s1 and s2, the value S(t) of the bridge CEV
process with drift ν, conditional on S(t1) = s1 and S(t2) = s2, is obtained by generating inde-

pendent random variables η1(t)∼ P
(

1
2(τ2−τ1)

[
τ2−τ(t)
τ (t)−τ1

x1+ τ(t)−τ1
τ2−τ(t) x2

])
, η2 ∼ BES

(
1

2ϑ ,
√
x1x2

τ2−τ1

)
,

and then by setting S(t) := eνt (γ (t)δ2β2)−1/(2β), where γ (t) ∼ G
( 1

2ϑ +η1(t)+2η2+1,θ(t)
)
,

θ(t) := 2(τ (t)−τ1)(τ2−τ(t))
τ2−τ1

, τi := τ(ti ), and xi :=
(
e−νti si

)−2β

δ2β2
, for i = 1,2.

Another method of sampling CEV paths utilizes the non-central chi-square dis-
tribution χ2

k (λ) with k > 0 degrees of freedom and non-centrality parameter λ > 0.

For all S0 > 0, t0 ≥ 0, and Δt > 0, the value S(t0+Δt) of a CEV process with drift parameter
ν and without absorption conditional on S(t0) = s0 is obtained by generating a random variable
χ ∼ χ2

k (λ) with k= 2+ 1
β

and λ= x0
Δτ

, and then by setting S(t0+Δt) := eν(t0+Δt)(χδ2β2)−1/(2β),

where x0 :=
(
e−νt0 s0

)−2β
/(δ2β2) and Δτ := τ(t0+Δt)− τ(t0).

4.2 The Variance Gamma Model

The variance gamma (VG) process is a three-parameter generalization of the Brow-
nian motion model for the dynamics of the logarithm of the stock price. It is obtained
by evaluating the Brownian motion with drift at a random time given by a Gamma
process (see [11]).

Let B(t;θ,σ ) = θt +σW(t), t ≥ 0, denote a Brownian motion with drift θ and
variance parameter σ . Here W(t) is a standard Brownian motion. The Gamma pro-
cess G(t;μ,ν) with mean rate μ and variance rate ν is a random process with inde-
pendent Gamma increments over nonoverlapping intervals of time. The increment
G(t + τ ;μ,ν)−G(t;μ,ν) over time interval (t, t + τ), t,τ ≥ 0 has the Gamma
distribution with mean μτ and variance ντ .

The VG process X(t;σ,ν,θ) is defined in terms of the Brownian motion with
drift B(t;θ,σ ) and the Gamma process with unit mean rate, G(t;1,ν) as

X(t;σ,ν,θ) := B(G(t;1,ν);θ,σ ).
The PDF of the VG process at time t can be expressed conditional on the realization
of the Gamma time change G as a normal density function. The risk neutral process
for the asset price is given by

S(t) := S0 exp((r−q−ω)t+X(t;σ,ν,θ)), (15)
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where r and q has the same meaning as in Sect. 2 and Sect. 4.1, and the con-
stant ω = ln(1−θν−σ 2ν/2)/ν is chosen so that the discounted asset price process
e−(r−q)tS(t) is a true martingale.

Sampling the variance gamma process relies on the normal, gamma, and beta
probability distributions. One needs first to sample the gamma process and then to
sample the Brownian motion conditional on the obtained values of the stochastic
time process. Let N (μ,σ 2) denote the normal distribution with mean μ and vari-
ance σ 2, and B(α,β) denote the beta distribution. The following algorithm is used
for sampling paths of the VG process.

A gamma process G(t) with parameters (μ,ν) and a Brownian motion with drift B(t) with param-
eters (θ,σ ) can be simulated as follows (see [1] for details).

Sequential sampling of the gamma process: For any 0< t1 < t2 the increment ΔG=G(t2)−
G(t1) has the G((t2− t1)μ

2/ν,ν/μ) distribution.
Bridge sampling of the gamma process: For any 0 < t1 < t < t2 the conditional distribution

of G(t) given G(t1) = G1 and G(t2) = G2 is the same as G1 + (G2 −G1)Y , where Y ∼
B((t− t1)μ

2/ν,(t2− t)μ2/ν).
Sequential sampling of Brownian motion: For any 0< g1 < g2 the increment ΔB =B(g2)−

B(g1) has the N (θ(g2−g1),σ
2(g2−g1)) distribution.

Bridge sampling of Brownian motion: For any 0<g1 <g <g2 the conditional distribution of
B(g) given B(g1)= B1 and B(g2)= B2 is the normal distribution N (aB1+ (1−a)B2,a(g−
g1)σ

2), where a := g2−g
g2−g1

.

5 Numerical Results

In our numerical examples, we deal with discretely-monitored Asian-style options
whose payoff functions depend on an arithmetic average An of the underlying asset
values given by An = 1

n

∑n
k=1 Sk.

In this paper, all computations presented are done for Asian floating strike op-
tions, with the payoff functions ΛC

FS = (SN −AN)
+ and ΛP

FS = (AN − SN)
+ for

the call and put options, respectively, where we define (x)+ :=max{x,0}.
Below, we present numerical results for the two asset price models from Sect. 4.

For each model we test and compare several algorithms: (1) the crude sequential MC
simulation (with pseudorandom numbers used); (2) the partial QMC algorithm with
quasirandom (QR) point sets used for numerical integration in the effective subspace
s1; and (3) the adaptive integration methods, where either the Suave method from
[7] or the PWCPDF method presented in Sect. 3.2 with or without QR points is used
for the variables of s1. For the partial QMC and adaptive integration methods, we
use the bridge sampling (with pseudorandom numbers used) in the subspace s2.

For the randomized quasi-Monte Carlo methods, we employ the algorithm 823
code from [8], where four different constructions of digital sequences (proposed by
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Sobol’, Faure, Niederreiter, and Niederreiter&Xing, respectively) and two types of
random scrambling (proposed by Owen and Faure&Tezuka, respectively) are im-
plemented. The results reported here only for the Sobol’ and Faure point sets ran-
domized by the Owen-scrambling method (see [8] for details).

For the length N of the quasi– or pseudo-random points set we use several values
equal to powers of 2, namely, N = 2k , k = 13,14,15,16. To estimate the variance,
M = 100 randomizations of each multidimensional point set were performed. For
comparing the hybrid algorithms with a plain Monte Carlo method, a crude estimate
was calculated using N ·M sample paths with N = 216. Here, we analyse the vari-
ance reduction and computational cost reduction. The variance reduction factor of
one estimate with respect to a crude MC estimate is given by the inverse ratio of their
sample variances. A computation cost reduction factor (a speed-up factor) is defined
as the inverse ratio of the sample computational costs that are given by the product
of the sample variance and the average running time for one sample. For all hybrid
methods, the internal integral from (9) is estimated by one sample value.

The hybrid QMC/MC algorithms are tested for values of the dimension d equal
to powers of 2 from d = 2 to d = 32. The Suave algorithm works well for values
of d up to 8. The PWCPDF method can be practically applied for values up to
d = 16, since the number of elements in the partition of a unit hypercube grows
exponentially. When d equals 2, 4, 8, or 16 each side of (0,1)d is partitioned into 64,
8, 4, or 2 equal parts, respectively. For the sake of simplicity in the implementation
of the PWCPDF method, each side of a unit hypercube is partitioned into m = 2l

equal parts (for some integer l). The total number of subcubes obtained is equal to
md = 2l·d . For every choice of d , we select l trying to make the method feasible (so
2l·d should not be too big) and efficient (so m= 2l should not be too small).

A piecewise constant PDF is constructed by averaging over 10 points sampled
uniformly and independently in each subcube C. If a QR point set is applied,
the piecewise constant density is constructed once and then it is reused for sam-
pling with all randomized point sets. Note that for a Monte Carlo algorithm with
pseudorandom point sets applied, the values used for constructing the density can
be utilized for the resulting sample estimate as well.

For the adaptive integration algorithms we study two methods of utilizing QR
point sets. One method is when the dimension of QR point sets is the same as the di-
mension d of the adaptive integration method (e.g., see the left and middle plots in
Fig. 3). The other method is when the dimension of QR points is higher than d , so
the first d coordinates of a QR point are used in an adaptive integration routine and
the rest is used in the bridge sampling of the internal integral from (9) (e.g., see
the right plot in Fig. 3).

5.1 Modelling with the VG Process

We use the same VG model parameters as those from [1]: T = 0.40504, ν = 0.2505,
θ = −0.2859, σ = 0.1927, r = 0.0548, and q = 0. The spot price is S0 = 100 and
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the strike price (where applicable) is K = 100. The number of time partition points
is n = 128. Since for sampling each value of S(t) two random variables are re-
quired, the actual dimensionality of the path-integral problem is not 128 but 256.
The bridge sampling method is used for modeling paths. Since we work exclusively
with dyadic partitions of the time interval, a special method from [9] of sampling
from the symmetric (with respect to 1/2) beta distribution is employed.

The numerical results are presented in Figures 1–3. The use of bridge sampling
and adaptive integration methods has no significant effect on the speed of sampling
algorithms, so we report only the variance reduction factors. In the figures we show
the variance reduction achieved for various values of d and N . Recall that the VG
process is obtained as a superposition of Brownian motion and a gamma process.
The PDF of each Si is a mixture of normal and gamma density functions. Therefore,
the actual dimensionality of the problem is 2n, since every value Si is a function of
two independent stochastic factors. Consequently, the actual dimensionality of the
effective subspace s1 is 2d .

Fig. 1 Variance reduction for the adaptive integration methods with using pseudorandom point
sets of lengths 214,215,216 as compared to a plain MC algorithm. The test problem is the pricing
of a floating strike put option under the VG model.

Fig. 2 Variance reduction for the partial QMC methods with using randomized Sobol’ (the left
plot) and Faure (the right plot) QR point sets of lengths 214,215,216 as compared to a plain MC
algorithm. The test problem is the pricing of a floating strike put option under the VG model.
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As follows from results presented in Fig. 1, the adaptive integration methods
do reduce the variance. Both Suave and PWCPDF methods demonstrate their best
results for d = 2. The efficiency of the Suave method drops down considerably
with rise of d from 2 to 8. For d = 8, the Suave method increases the variance, so
the variance becomes much larger than that of the crude MC method. In this case,
the variance reduction factor is very close to zero (less that 1%). The PWCPDF
demonstrates more stable performance while increasing d .

In Figures 2 and 3 we present numerical results obtained with QR point sets used
in place of pseudorandom numbers. Since Sobol’ point sets demonstrated much
better results than Faure point sets for all test conditions, we present the results
achieved with the adaptive integration methods only with the Sobol’ point sets used.
The PWCPDF method with QR point sets works better than Suave because of a sim-
pler yet more efficient use of points. For small values of d equal to 1, 2 or 4, they
produce similar or better performance results than the plain QMC method. For ex-
ample, if d = 2 and N = 216, the variance reduction factors of the partial QMC,
QMC+Suave, QMC+PWCPDF methods are equal to 10.3, 11.7, and 17.4, respec-
tively. For d equal to 8 or 16, the efficiency of the adaptive integration is lower,
and the plain QMC method outperforms both Suave and PWCPDF. The best perfor-
mance of the PWCPDF method is achieved when d = 8 and the dimension of QR
point sets is 32.

5.2 Modelling with the CEV Process

To generate a discretized path S of the CEV process we use a combination of Algo-
rithms 4.1 and 4.1. By sampling from the noncentral chi-square distribution (using
the inverse method) we obtain the skeleton S1. The variables of S2 conditional on
S1 are then sampled from the randomized gamma distribution of the second type.

Fig. 3 Variance reduction for the adaptive integration methods with using randomized Sobol’ QR
point sets of lengths 214,215,216 as compared to a plain MC algorithm. The left and middle plots
demonstrate the performance of Suave and PWCPDF methods, respectively. The right plot shows
the performance of PWCPDF with varying dimensionality of the QR point sets. The test problem
is the pricing of a floating strike put option under the VG model.
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For the plain sequential-modeling Monte-Carlo method, Algorithm 4.1 is the only
necessary tool.

Algorithms 4.1 and 4.1 can be applied only to the CEV diffusion model with-
out absorption. To obtain such a model from an absorbing diffusion, the modified
Bessel function I 1

2|β|
in the transition PDF (12) has to be replaced by I 1

2β
where

β < −0.5. This modification of the transition PDF has to be applied to the density
function f1 in the path integral (5) since this function is just a product of consecu-
tive one-dimensional PDFs given by (12) and (14). As a result, f1 in (5) is replaced
by a product of a non-absorbing density function and the weight function W given
below:

W(S1)=
d∏

k=1

I 1
2|β|

(Yk)

I 1
2β
(Yk)

, where Yk =
e
βν

(
t kn
d
−t (k−1)n

d

)

S
−β
kn
d

S
−β
(k−1)n

d

δ2β2
(
τ(t kn

d
)− τ(t (k−1)n

d
)
) .

The weighted estimator is then a product of the sample value of the payoff function
Λ(S1,S2) and the weight function W(S1). Clearly, the resulting weighted estimator
is an unbiased estimator of V and has a finite variance.

We use the following CEV model parameters: δ= 2500, β =−2.0, r = 0.05, and
q = 0. The spot price is S0 = 100 and the strike price (where applicable) is K = 100.
The parameter δ is chosen so that the local volatility σ(S)/S at the spot S0 is 25%.
The number of time partition points is n= 128.

For the CEV model, the bridge sampling and adaptive integration methods slows
down the computation considerably (see Fig. 4). Therefore, we have to analyze
the computational cost of algorithms rather than the variance reduction only. There
are two main reasons for such a slowdown. First, the bridge sampling involves
the simulation of the Bessel discrete random variable. The acceptance-rejection

Fig. 4 Slowdown factors for the bridge and hybrid algorithms as compared to a plain sequential
Monte Carlo algorithm for a typical problem of option pricing under the CEV process with n= 128.
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method proposed by Devroye in [6] is not very efficient though faster methods may
be developed. Second, the computation of the inverse CDF of the non-central chi-
square distribution requires many arithmetic operations. Another possible approach
is to sample from the randomized gamma distribution (of the first kind) by succes-
sively inverting the Poisson and gamma CDFs. Unfortunately, this method doubles
the problem dimensionality (like for the VG model) since every sample value of
the asset price process now requires sampling two random variables.

6 Conclusions

In this paper, we present the path-integral decomposition method and demonstrate
its applicability to pricing path-dependent options under the two asset pricing mod-
els. This method allows us to combine the (R)QMC method and/or (adaptive) vari-
ance reduction techniques with the bridge sampling MC method. We refer to the
obtained methods as the hybrid methods. Here, we mainly study two variance re-
duction techniques—the Suave and PWCPDF methods. From the results of our nu-
merical tests, we derive the following conclusions. (1) The hybrid methods are more
efficient than a crude MCM only if they applied to a problem with a relatively small
effective dimension d . The variance reduction reaches its maximum at d = 2 or
d = 4 and rapidly drops down with the increase of d . Interestingly, the PWCPDF
method is a bit more efficient than the more complicated adaptive Suave method.
(2) The partial RQMC method generally provides a larger variance reduction than
the adaptive/hybrid methods with the increase of the dimensionality d . The Sobol’
QR point sets perform better than those of Faure. (3) For models with the very ex-
pensive computation of the inverse CDF, hybrid methods may be more efficient than
a plain QMC method. The slowdown factor can almost completely remove the vari-
ance reduction with the increase of d (so d should be small enough). Therefore, the
splitting approach becomes very useful for these models. Notice that one can fur-

Fig. 5 Computation cost reduction for the partial QMC method (the left plot) and adaptive integra-
tion methods (the middle and right plots) with using randomized Sobol’ QR point sets of lengths
214,215,216 as compared to a plain MC algorithm. The test problem is the pricing of a floating
strike put option under the CEV model.
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ther improve the efficiency of hybrid methods by avoiding the computation of the
inverse CDF of S1.
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Monte Carlo Simulation of Stochastic Integrals
when the Cost of Function Evaluation Is
Dimension Dependent

Ben Niu and Fred J. Hickernell

Abstract In mathematical finance, pricing a path-dependent financial deriva-
tive, such as a continuously monitored Asian option, requires the computation of
E[g(B(·))], the expectation of a payoff functional, g, of a Brownian motion, B(t).
The expectation problem is an infinite dimensional integration which has been stud-
ied in [1], [5], [7], [8], and [10]. A straightforward way to approximate such an
expectation is to take the average of the functional over n sample paths, B1, . . . ,Bn.
The Brownian paths may be simulated by the Karhunen-Loéve expansion truncated
at d terms, B̂d . The cost of functional evaluation for each sampled Brownian path is
assumed to be O(d). The whole computational cost of an approximate expectation
is then O(N), where N = nd . The (randomized) worst-case error is investigated as a
function of both n and d for payoff functionals that arise from Hilbert spaces defined
in terms of a kernel and coordinate weights. The optimal relationship between n and
d given fixed N is studied and the corresponding worst-case error as a function of
N is derived.

1 Introduction

Infinite-dimensional integration is widely applied, e.g., in mathematical finance and
quantum physics, and, moreover, it is used as a computational tool to solve parabolic
or elliptic partial differential equations. This paper is motivated by the application
in mathematical finance. The price of a financial option can be computed by taking
an average over possible movements of the underlying asset prices [12]:
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option price= E[payoff].
The payoff function depends on the underlying stochastic model for the asset price,
S(t), which is governed by a stochastic differential equation, for example, the clas-
sical Black-Scholes model takes the form

dS(t)= rS(t)d t+σS(t)dB(t), S(t)= S(0)e(r−σ 2/2)t+σB(t).

Denoting the option price as μ, an arithmetic mean Asian call option is defined as:

payoff(B(·)) = e−rT max

(
1

T

∫ T

0
S(t) d t−K,0

)
,

μ = E[payoff(B(·))], where B(t) is a Brownian motion.

In order to approximate μ, one may simulate n different Brownian sample paths,
B1,B2, . . ., and then take the sample average, i.e. [2],

μ̂= 1

n

n∑

i=1

payoff(Bi(·)). (1)

One important task is to simulate the Brownian path accurately and efficiently.
The most straightforward way is the time discretization methodology based on the
independent increment property of the Brownian motion. The time interval [0,T ]
may be divided into s subintervals, and then B(tk) at a specific time tk = kT /s, k =
1, . . . , s is given by [6]:

B(tk;X1,X2, . . .)=
√
T

s
(X1+X2+·· ·+Xk), (2)

where X1,X2, . . . are i.i.d. N(0,1).
An alternative approach is the Karhunen-Loéve expansion, which is used in [11]

for financial option pricing. By solving the eigenvalue problem of the covariance
operator of B(t), i.e., cov(B(t),B(s)) = min(t, s), the Brownian motion B(t) can
be expanded as an infinite series:

B(t;X1,X2, . . .)=
√

2T
∞∑

j=1

Xj

sin
((
j − 1

2

)
πt/T

)

(
j − 1

2

)
π

,

where X1,X2, . . . are i.i.d. N(0,1). In practical computation, the Karhunen-Loéve
expansion is truncated at a finite dimension, d . The ith approximation of B(t) to be
used in (1) is

Bi(t)≈ B̂d(t;xi,1, . . . ,xi,d )=
√

2T
d∑

j=1

xi,j
sin

((
j − 1

2

)
πt/T

)

(
j − 1

2

)
π

, (3)
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where
{
xi = (xi,1,xi,2, . . . ,xi,d ) ∈ R

d
}n
i=1 might a be simple random sequence,

grid, centroidal Voronoi tessellation, Latin hypercube, or low discrepancy sequence.
The truncated Karhunen-Loéve expansion corresponds formally setting, xi,d+1 =
xi,d+2 = ·· · = 0. The aim of this article is to investigate how the choice of n,d , and
{xi}ni=1 together all affect the accuracy of μ̂. Here, possible errors in evaluating the
payoff are ignored, e.g., for the continuously monitored Asian option, the possible
errors in integrating a stock path over [0,T ] are ignored.

In Section 2, a simple example is shown to illustrate the general idea of the
algorithm, and the tradeoff between choosing n large or d large. Section 3 provides
the worst-case error of the approximation, and also deduces the optimal choice of
n and d given a computational cost budget N = nd , as done in [1], [7] and [8].
In Section 4, a numerical experiment involving the computation of a continuously
monitored geometric mean Asian option price is presented.

2 Illustrative Example

Section 1 describes the problem in the option pricing setting. Here a more gen-
eral case is addressed. The payoff function is replaced by g, i.e., payoff(B(·)) =
g(B(·,X1,X2, . . .)). The aim is to evaluate μ = E[g(B(·;X1,X2, . . .))], where in
the discussion above μ is the option price. The approximation of μ takes the form
of an equally weighted sample average:

μ̂= 1

n

n∑

i=1

g
(
B̂d(·, ;xi,1, . . . ,xi,d )

)
. (4)

Before developing a general theory for this problem, a simple example is given to
illustrate how the error of μ̂ depends both on n and d and how the error analysis is
facilitated by splitting the error into two parts.

Example 1. Evaluate E

[∫ 1
0 B

2(t)d t
]

using (4). In this case

g (B(·;X1,X2, . . .)) =
∫ 1

0
[B(·;X1,X2, . . .)]2 d t =

∞∑

j=1

X2
j

(j − 1
2 )

2π2
,

μ= E[g(B(·;X1,X2, . . .))] =
∞∑

j=1

E[X2
j ]

(j − 1
2 )

2π2
=

∞∑

j=1

1

(j − 1
2 )

2π2
= 1

2
.

The first d terms in the series for μ can be identified as

μd = E[g(B(·;X1,X2, . . .))|Xd+1 =Xd+2 = ·· · = 0]

=
d∑

j=1

E[X2
j ]

(j − 1
2 )

2π2
=

d∑

j=1

1

(j − 1
2 )

2π2
.
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The expression μd is introduced here to facilitate splitting the error. From (4), the
estimator for μ is

μ̂= 1

n

n∑

i=1

g(B̂d(·;xi,1, . . . ,xi,d )) =
d∑

j=1

1
n

∑n
i=1 x

2
i,j

(j − 1
2 )

2π2
.

Then, the error of approximating μ can be written as a sum of two parts:

error
︷ ︸︸ ︷
μ− μ̂=

truncated expansion error
︷ ︸︸ ︷
μ−μd +

finite sample error
︷ ︸︸ ︷
μd − μ̂

=
∞∑

j=d+1

1
(
j − 1

2

)2
π2

︸ ︷︷ ︸
independent of design

+
d∑

j=1

E[X2
j ]− 1

n

∑n
i=1 x

2
i,j

(
j − 1

2

)2
π2

︸ ︷︷ ︸
independent of Xd+1, . . .

.

The first term is independent of the design {x1, . . . ,xn}, whereas the second term is
independent of the coordinates after dimension d .

Simple Monte Carlo Sampling

If {x1, . . . ,xn} is a set of d-dimensional i.i.d. standard normal random variables, the
explicit mean square error (MSE) can be written as a sum of the squared bias and
the variance:

MSE(μ̂) = E
(
μ− μ̂

)2 = (μ−μd)
2+E(μd − μ̂)2

=
⎛

⎝
∞∑

j=d+1

1
(
j − 1

2

)2
π2

⎞

⎠

2

︸ ︷︷ ︸
bias2

+ 1

n

d∑

j=1

2
(
j − 1

2

)4
π4

︸ ︷︷ ︸
variance

.

The bias depends primarily on the truncated dimension d , while the variance de-
pends primarily on the sample size n. They can be approximated by

bias =
∞∑

j=d+1

1

π2(j −1/2)2
∼
∫ ∞

d

1

π2x2
dx = 1

π2d
, as d→∞.

variance = 2

n

d∑

j=1

1

π4(j −1/2)4
= 2

n

1

π4

[ ∞∑

j=1

1

(j −1/2)4
−

∞∑

j=d+1

1

(j −1/2)4

]

∼ 2

n

1

π4

(
π4

6
−
∫ ∞

d

1

x4
dx

)
= 1

3n

(
1− 2

π4d3

)
, as d→∞.
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Hence, the root mean square error (RMSE) is:

RMSE(μ̂)∼
√

1

π4d2
+ 1

3n

(
1− 2

π4d3

)
∼
√

1

π4d2
+ 1

3n
, as d→∞.

Quasi-Monte Carlo Sampling

If {x1, . . . ,xn} is a set of d-dimensional vectors, whose components are the inverse
normal transformations of a low discrepancy sequence, e.g., a scrambled Sobol’
sequence, it is technically more difficult to get an explicit expression for the vari-
ance, however, the bias is the same. It can be observed from the result of numerical
experiments that

RMSE(μ̂)∼
√

1

π4d2
+ C

n2
, as d→∞.

Fig. 1 The relative root mean square error (RMSE) and the empirical optimal convergence rate.

Figure 1 shows that for small, fixed values of d , the relative RMSE converges
very quickly to the limiting value, i.e., the bias. For large values of d , the relative
RMSE is dominated by the sampling error for moderate values of n. The errors
obtained using the optimal n and d for a given N = nd are obtained empirically. The
optimal convergence rate in the simple random sequence case is O(N−1/3), whereas
the scrambled Sobol’ sequence can achieve a superior O(N−1/2) convergence rate.
These empirical orders of convergence, β = 1/3 and 1/2 are determined by the
formula

β = argmax
b

C(b), where C(b)=max{C : C (N/N0)
−b ≤ RMSE(N) ∀N}

The value of N0 corresponds to the midpoint of the values of N considered in the
numerical experiments.
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In the derivation above, the approximation error of μ is conveniently split into
two parts, i.e., the truncated expansion error, and the finite sample error. This split
is exploited in the following section where a worst-case error bound for a general
functional is derived.

3 Worst-Case Error Bound

The problem is to measure how well μ=E[g(B(·;X1,X2, . . .))] is approximated by
μ̂. Here a functional f is defined by f (X1,X2, . . .) = g(B(·;X1,X2, . . .)). Hence,
μ = E[f (X1,X2, . . .)], where (X1,X2, . . .) is an i.i.d. random sequence with com-
mon probability density function ρ1(·). The support of ρ1 is assumed to be I , where
I is some open, half-open, or closed interval, which may be finite, semi-infinite or
infinite. For example, ρ1 might be the uniform density on I = [0,1] or the standard
normal density, which is defined on I = R. The domain of f can be considered to
be IN, where N is the set of natural numbers. Here IN is the set of infinite sequences
whose elements lie in I .

The functional f , which depends on a countably infinite number of variables, is
constructed as the countable sum of functions of a finite number of variables. The
Hilbert space containing f is likewise constructed as the tensor product space of a
countable number of reproducing kernel Hilbert spaces. See similar work in [7] and
[10].

Let K∅ = 1, and so the reproducing kernel Hilbert space H(K∅), with the repro-
ducing kernel K∅ is the Hilbert space of constant functionals, i.e., 〈f∅,g∅〉H(K∅) =
f∅g∅ for all f∅,g∅ ∈H(K∅).

Next, let K1 be a finite valued, symmetric, positive semi-definite kernel on I×I ,
i.e.,

K1(x,y)=K1(y,x), ∀x,y ∈ I,
n∑

i,j=1

biK1(xi,xj )bj ≥ 0, ∀b ∈ R
n, ∀x1, . . . ,xn ∈ I, ∀n ∈ N.

Moreover, let there be some anchor c ∈ I such that

K1(x,c)= 0, ∀x ∈ I. (5a)

This means that the K1 is the reproducing kernel for a Hilbert space, H(K1), of
functions on I that vanish at c, and the only constant function in H(K1) is the zero
function. An example is I = I = R, c = 0 and K1(x,y) = 1

2 |x| + 1
2 |y| − 1

2 |x −
y|. Further assumptions are made on the finiteness of K1 and its integrability with
respect to the probability density ρ1, namely,

h1(x) :=
∫

I

K1(x,y)ρ1(y) dy ∀x ∈ I, (5b)
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h1 ∈H(K1), (5c)

m :=
∫

I
2
K1(x,y)ρ1(x)ρ1(y) dx dy <∞, (5d)

M :=
∫

I

K1(x,x)ρ1(x)dx <∞. (5e)

For the example of K1 mentioned above and ρ1, the standard normal density func-
tion, these conditions are satisfied. The distinction between I and I above means that
the evaluation of f ∈H(K1) at any point x ∈ I is a bounded functional, whereas the
evaluation of f at x ∈ I \ I may be an unbounded functional.

The kernel K1 is the building block used to construct the reproducing kernel for
Hilbert spaces of functions of several variables. Let c = (c,c, . . .). In the previous
examples, c was chosen to be 0. Also, let 1 : d denote the set {1,2, . . . ,d}. For any
u ⊂ N, let |u| denote its cardinality. Define U as the set of subsets of N with finite
cardinality, i.e.,

U= {u⊂ N : |u|<∞} .
Furthermore, let xu denote the vector containing the coordinates of x whose indices
are in u. Let γ = (γ1,γ2, . . .) be a sequence of non-increasing non-negative weights
that satisfy the following summability condition:

∞∑

j=d
γj < αd−2q, γ1 ≥ γ2 ≥ ·· · ≥ 0, (6)

for some positive constants α and q. Given any set u ∈ U, the symmetric, positive
semi-definite kernel

Ku(xu,yu)=
∏

j∈u
γjK1(xj ,yj ),

defines the Hilbert space H(Ku) of functions of |u| variables, and these functions
vanish if any one or more of the coordinates is set to c. The domain of the functions
in H(Ku) can be denoted as Iu. It is also, possible to think of H(Ku) as a Hilbert
space of functionals defined on IN that are constant with respect to the variables xj
with j /∈ u.

Following the argument in [5], it can be shown that H(Ku)
⋂

H(Kv) = {0} for
any u �= v because H(1)

⋂
H(K1)= {0}. An outline of this argument is as follows.

Let f ∈H(Ku)
⋂

H(Kv), and without loss of generality, assume that there exists a
j ∈ u \ v. Since f ∈H(Ku), it follows that f (x) = 0 for all x ∈ Iu∪v with xj = c.
On the other hand, since f ∈H(Kv), it follows that f does not depend on the value
of xj , so f (x)= 0 for all x ∈ Iu∪v .

The Hilbert space of functionals on IN is now defined as an infinite sum of func-
tions from the reproducing kernel Hilbert spaces H(Ku) using the approach in-
troduced by [7]. For any sequence of functions {fu}u∈U with fu ∈ H(Ku), define
f ∈H(K) as a sum of its pieces, sometimes called effects in the statistics literature:

f =
∑

u∈U

fu,
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and define the inner product on this Hilbert space as

〈f,g〉H(K) =
∑

u∈U

〈fu,gu〉H(Ku).

Because H(Ku) and H(Kv) have only the zero function in common for u �= v, they
are orthogonal subspaces of H(K), i.e.,

H(K)=
⊕

u∈U

H(Ku), where H(Ku)⊥H(Kv), ∀u �= v.

The kernel, K , referred to here is formally defined as

K(x,y) :=
∑

u∈U

Ku(xu,yu)=
∞∏

j=1

[1+γjK1(xj ,yj )].

The infinite product defining K(x,y) is not necessarily finite for all x,y ∈ I , par-
ticularly for unbounded K1, and for that reason, the kernel K is not necessarily a
reproducing kernel. Likewise, H(K) is not necessarily a reproducing kernel Hilbert
space, since function evaluation may not be a bounded functional at every point in
IN.

However, for certain points y, function evaluation is bounded. Specifically, con-
sider point of the form y= (yu,c) ∈ IN where u ∈ U, i.e., yj = c for j /∈ u. By the
definition of the Hilbert spaces H(Kv) it follows that fv(yu,c) vanishes for v �⊆ u,
and so f (yu,c)=∑

v⊆u fv(yv). Since this sum is finite, one may write

f (yu,c)=
∑

v⊆u
fv(yv)=

∑

v⊆u
〈Kv(·,yv),fv〉H(Kv) (7)

=
∑

v⊆u
〈Kv(·,yv),fv〉H(Kv)+

∑

v∈U

v�u

〈0,fv〉H(Kv)

=
〈
∑

v⊆u
Kv(·,yv),

∑

v∈U

fv

〉

H(K)

=
〈
∑

v⊆u

∏

j∈v
γjK1(·,yj ),f

〉

H(K)

=
〈
∏

j∈u
[1+γjK1(·,yj )],f

〉

H(K)

= 〈K(·, (yu,c)),f 〉H(K) .

One can claim that |f (yu,c)|<∞ since

|f (yu,c)| =
∣∣〈K(·, (yu,c)),f 〉H(K)

∣∣≤ ‖K(·, (yu,c))‖H(K)‖f ‖H(K).

In addition, (6) implies that

‖K(·, (yu,c))‖2
H(K) =K ((yu,c), (yu,c))=

∏

j∈u

[
1+γjK1(yj ,yj )

]
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≤
∏

j∈u

[
1+γjL

]=
∏

j∈u
exp

(
log(1+γjL)

)≤ exp
(
L
∑

j∈u
γj
)
<∞, (8)

where L=maxj∈uK1(yj ,yj ).
Thus, K(·, (yu,c)) is the representer for function evaluation at (yu,c). From the

formula for f (yu,c) in (7), one can recursively write the effects or pieces of f in
terms of the anchor c as in [5]:

f∅ = f (c), fu(yu)= f (yu,c)−
∑

v⊂u
fv(yv), u ∈ U.

From the argument above, the representer for function evaluation at (y1:d ,cd+1:∞)
is K(d)(·,y1:d), where K(d) is defined by

K(d)(x1:d,y1:d) =
∑

u⊆1:d
Ku(xu,yu)=

d∏

j=1

[1+γjK1(xj ,yj )]

= K ((x1:d ,c), (y1:d ,c)) .

The orthogonality of the subspaces H(Ku) and H(Kv) for u �= v implies that

f1(·,cd+1:∞)⊥ f2−f2(·,cd+1:∞), ∀f1,f2 ∈H(K), (9)

a fact used later to split the error of approximating the integral into two parts. Note
that the Monte Carlo type estimator for the expectation, μ̂, based on {xi,1:d}ni=1 ⊂ I d

can be represented as an inner product in H(K):

μ̂= 1

n

n∑

i=1

f (xi,1:d,c) =
〈

1

n

n∑

i=1

K(d)(·,xi,1:d),f
〉

H(K)

=
〈

1

n

n∑

i=1

K
(·, (xi,1:d ,c)

)
,f

〉

H(K)

. (10)

Having defined the Hilbert space of functionals defined in IN, it is now possible
to define the expectation of such functionals, f . This expectation is constructed
in terms of the expectations of pieces of f . For any u ∈ U, E[fu(Xu)] is a |u|-
dimensional integral, which may represented as

E[fu(Xu)] =
∫

I
u
fu(xu)

∏

j∈u
ρ1(xj ) dxu = 〈hu,fu〉H(Ku)

= 〈hu,f 〉H(K), ∀fu ∈H(Ku), f ∈H(K),

hu(xu)=
∫

I
|u|Ku(xu,yu)

(∏

j∈u
ρ1(yj )

)
dyu

=
∫

I
|u|

(∏

j∈u
γjK1(xj ,yj )ρ1(yj )

)
dyu =

∏

j∈u
γjh1(xj ) ∈H(Ku).
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The formula for hu follows from the reproducing property of the kernel Ku, and
the fact that hu ∈ H(Ku) follows from assumption (5c) on h1. The d-dimensional
approximate expectation μd can be represented as

μd = E[f (X1, . . . ,Xd,c)] = E[f (X)|Xd+1:∞ = c]
=

∑

u⊆1:d
E[fu(Xu)] =

∑

u⊆1:d
μu =

∑

u⊆1:d
〈hu,f 〉H(K)

=
〈 ∑

u⊆1:d
hu,f

〉

H(K)
=
〈
h(d),f

〉

H(K)
,

h(d)(x1:d)=
∑

u⊆1:d
hu(xu)=

d∏

j=1

[
1+γjh1(xj )

]
,

‖h(d)‖2
H(K) =

∑

u⊆1:d
‖hu‖2

H(K) =
d∏

j=1

[1+γjm]<∞

by (6). The finiteness of ‖h(d)‖2
H(K)

is justified by the same argument as in (8).
The expectation of the whole functional is defined as the countable sum of the

expectations of the parts, namely,

μ= E[f (X1,X2, . . .)] :=
∑

u∈U

〈hu,f 〉H(K) = 〈h,f 〉H(K), (11)

h(x) :=
∑

u∈U

hu(xu)=
∑

u∈U

∏

j∈u
γjh1(xj )=

∞∏

j=1

[
1+γjh1(xj )

]
,

‖h‖2
H(K) =

∑

u∈U

‖hu‖2
H(K) =

∞∏

j=1

[1+γjm] ≤ eαm <∞. (12)

By definition and the summability condition on γ in (6), it follows that h ∈H(K),
and so it represents a bounded linear functional on H(K), namely, the expectation.
Note that h(d)(x1:d)= h(x1:d ,cd+1:∞), so it follows that

μd =
〈
h(d),f

〉

H(K)
= 〈h(·,cd+1:∞),f 〉H(K) . (13)

It can be shown by Theorem 1 below that limd→∞μd =μ, since the worst-case bias
in (16) vanishes as d→∞.

Note that μ̂,μ and μd defined in (10), (11) and (13) together all depend on f .
In the discussion that follows, this f dependence is sometimes written explicitly.
In light of the definitions and derivations above, it is now possible to prove the
following worst case error bound for the approximation of the infinite dimensional
integral (expectation) by a finite sum of a finite dimensional approximation to the
functional.

Theorem 1. Suppose that K1 is a symmetric, real-valued, positive semi-definite ker-
nel function defined on I 2 that satisfies the assumptions (5). Here I may be a fi-
nite semi-infinite, or infinite interval. Consider a Hilbert space H(K) of functionals
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f : IN →R, which is defined above in terms of K1 and the weights γj satisfying as-
sumptions (6). Then the worst-case error for approximating the expectation of these
functionals by a Monte Carlo type algorithm is

worst-err({xi,1:d}ni=1;K)= sup
||f ||H(K)≤1

|μ(f )− μ̂(f )|

=
√

worst-bias2(d;K)+D2
({xi,1:d}ni=1;K(d)

)
,

where

worst-bias2(d;K)=
d∏

j=1

[1+γjm]
[ ∞∏

j=d+1

[1+γjm]−1
]
,

D2({xi,1:d}ni=1;K(d))=
d∏

j=1

[
1+γjm

]− 2

n

n∑

i=1

d∏

j=1

[1+γjh1(xi,j )]

+ 1

n2

n∑

i,k=1

d∏

j=1

[1+γjK1(xi,j ,xk,j )].

Proof. The error μ− μ̂ can be written explicitly as a sum of two inner products,
using the expressions derived in (10), (11), and (13):

error
︷ ︸︸ ︷
μ− μ̂=

truncated expansion error
︷ ︸︸ ︷
μ−μd +

finite sample error
︷ ︸︸ ︷
μd − μ̂ (14)

= 〈h−h(·,cd+1:∞),f 〉H(K)

+
〈
h(·,cd+1:∞)− 1

n

n∑

i=1

K(·, (xi,1:d ,c)),f
〉

H(K)
.

The two functionals on the left sides of the inner products in (14) are orthogonal by
(9). This orthogonality, along with the Pythagorean theorem allows one to compute
a tight error bound as follows:

sup
||f ||H(K)≤1

|μ(f )− μ̂(f )|2 = ‖h−h(·,cd+1:∞)‖2
H(K)

+
∥∥∥h(·,cd+1:∞)− 1

n

n∑

i=1

K(·, (xi,1:d ,c))
∥∥∥

2

H(K)
. (15)

The first of these terms is identified as the squared bias, because it does not vanish
even as the sample size tends to infinity:

worst-bias2(d;K) : = ‖h−h(·,cd+1:∞)‖2
H(K) = ‖h‖2

H(K)−‖h(·,cd+1:∞)‖2
H(K)

=
d∏

j=1

[1+γjm]
[ ∞∏

j=d+1

[1+γjm]−1
]
. (16)
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The second term in (15), which is the worst-case error for approximating a d-
dimensional integral by a sample average of function values, is the squared dis-
crepancy, which has arisen in many similar error analysis, e.g., [3]. ()

How fast d goes to ∞ affects how fast the bias vanishes. From the summability
condition on the weights γj in (6) it follows that

∞∏

j=d+1

(1+γjm) = exp
( ∞∑

j=d+1

log(1+γjm)
)
≤ exp

( ∞∑

j=d+1

γjm
)
≤ eαm(d+1)−2q

.

From the above and (12), the squared worst-case bias satisfies

worst-bias2(d;K)≤ eαm
(
eαm(d+1)−2q −1

)
≤ C2

1

d2q
, (17)

where C1 is some constant.
Next, we investigate the mean square discrepancies for the simple i.i.d. random

sequence in the randomized worst-case setting and the discrepancy for the low dis-
crepancy sequence in the worst-case setting.

Simple Monte Carlo Sampling:

For simple Monte Carlo sampling, the mean square discrepancy is given by [3],

E

[
D2

(
{xi,1:d}ni=1;K(d)

)]
= 1

n

⎧
⎨

⎩

d∏

j=1

[1+γjM]−
d∏

j=1

[1+γjm]
⎫
⎬

⎭
≤ C2

2

n
,

where C2
2 =

∏∞
j=1[1+ γjM]−∏∞

j=1[1+ γjm]. Although the convergence rate is
relatively slow, it is dimension independent. Combining this with (17), the random-
ized squared worst-case error satisfies

E

[
sup

‖f ‖H(K)≤1

∣
∣μ̂(f )−μ(f )

∣
∣
]2 ≤ C2

1

d2q
+ C2

2

n
.

Quasi-Monte Carlo Sampling:

Results on strong tractability, e.g., [13], show that it is possible to obtain

D
(
{xi,1:d}ni=1;K(d)

)
≤ C2

np
,

for good designs {xi,1:d} with γj →∞ fast enough. Here C2 is a constant indepen-
dent of d and n but dependent on γ . This implies that the squared worst-case error
for the low discrepancy sequence is



Se
co

nd
 p

ro
of

s

Monte Carlo Simulation of Stochastic Integrals 557

sup
‖f ‖H(K)≤1

∣∣μ̂(f )−μ(f )
∣∣2 ≤ C2

1

d2q
+ C2

2

n2p
. (18)

The value of p is determined by the specific sequence used. Table 1 gives some
values for p depending on q for rank-1 lattices and the Niederreiter (T ,s) sequence
[9, Sec. 4.5]. The simple random i.i.d sequence is a specific choice with p = 1/2.

Table 1 The choice of p and q based on different designs.

Design p

Simple random sequence 1/2
Rank-1 lattices [4] min

(
1,q+ 1

2

)− ε

Niederreiter (T ,s)-sequence (q > 1/2) [14] min
(
1, q2 + 1

4

)− ε

The explicit upper error bounds for the simple random sequence and the low
discrepancy sequence lead to the minimization of the worst-case error, with which
an optimal relationship between the sample size, n, and the truncated dimension, d ,
can be derived. The cost of the approximation algorithm is N = nd , as in the fixed
subspace sampling cost model from [1].

By minimizing the upper bound in (18) with respect to d and n, given a budget
of N = nd , it is found that d should be chosen as

d =
[√

q

p

C1

C2
np
] 1
q =O

(
n
p
q

)
,

min
n,d

nd=N
worst-err(xi,1:d ;K) ≤

[(
q

p+q

)−q/2

C
p

1 C
r
2N

−pq
] 1

p+q

= O
(
N

−pq
p+q

)
.

The above equation describes how to choose d as a function of p,q. The value of
p is commonly determined by the smoothness of the functional and the quality of
the designs as shown in Table 1. The choice of q depends on how fast the weight γj
decays to 0. Its choice for practical applications is still an open question. Note that
for Example 1, q = 1 and p = 1/2 (simple Monte Carlo) or 1 (quasi-Monte Carlo).
This yields values of β = pq/(p+q) corresponding to 1/3 for simple Monte Carlo
sampling and 1/2 for quasi-Monte Carlo sampling, as observed empirically.

4 Numerical Experiment

Section 1 briefly describes the simulation algorithm for option pricing. Here, a con-
tinuously monitored geometric mean Asian option is priced. The payoff of the op-
tion is determined by the geometric mean value of the stock price among the life of
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the option. The payoff function of options involves the max function, which typi-
cally make the integrand non-smooth. Finding a proper kernel K and corresponding
Hilbert space to match realistic option payoff functionals is an open problem, even
in the case of discretely monitored options (finite d). However, most kernels used in
the analysis of quasi-Monte Carlo algorithm assume moderate smoothness.

The numerical experiment given here shows how both d and n affect the approx-
imation error. The explicit analytical formula for the geometric mean Asian option
makes the exact computation of the error possible. The option price and payoff func-
tion under the Black-Scholes model are:

option price= E[payoff(B(·))], where B(t) is a Brownian motion, and

payoff= e−rT max

(
exp

(
1

T

∫ T

0
log

(
S(0)e(r−σ 2/2)t+σB(t)) d t

)
−K,0

)
.

The parameters of the model are: S(0) = 100,K = 100,T = 1, r = 0.03,σ = 0.3.
The simulation algorithm for this pricing problem is from (4). To compare the
Karhunen-Loéve expansion and the discrete time algorithm for generating Brown-
ian motions, their values at times kT /s, k = 1, . . . , s are generated by both methods.
These values are then used to approximate the payoff function. A mid-point rule
is used to approximate the integral with respect to time above. A choice of s = 52
corresponds to weekly sampling and makes the error of approximating the integral
with respect to time negligible compared to the other errors for n up to at least 105

and d up to at least 6. This can be seen from Figure 2 where the relative RMSE
continues to decrease as n increases for d = 6.

Fig. 2 The relative root mean square error and the empirical optimal convergence rate.

In both plots, the truncated dimension is chosen to be d = 1,2,3,4,6 for the
pricing algorithms. The x−axis is the computational cost N = nd . In the MC case,
a pseudo-random sequence is used, while in the QMC case, a scrambled Sobol’
sequence is used. At each stage, 30 replications are implemented to compute the
root mean square error. In addition, the discrete time algorithm is implemented with
N = n to facilitate the comparison with the Karhunen-Loéve expansion method.
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For a Karhunen-Loéve expansion with fixed d , the relative RMSE using either
i.i.d. or scrambled Sobol’ sampling initially decreases as N increases, but eventually
reaches the n = ∞ limit corresponding to the bias. The Sobol’ sampling scheme
reaches this limit for smaller n (or N ) than is the case for i.i.d. sampling because
the former is a superior sampling scheme. It is found empirically by the method
described at the end of Section 2 that the convergence rate using the optimal choices
of n and d with N = nd in the simple random sampling case is approximately
O(N−0.4), while in the scrambled Sobol’ sequence case, the optimal convergence
rate is close to O(N−0.8).

Sobol’ sampling combined with the Karhunen-Loéve expansion yields a smaller
error than Sobol’ sampling combined with the time discretization algorithm. This is
because the time discretization algorithm requires a Sobol’ sequence of dimension
equalling the number of discrete times (s = 52), whereas the Karhunen-Loéve al-
gorithm requires a Sobol’ sequence of dimension equalling the number of terms in
the expansion, here corresponding to d ≤ 6. The Karhunen-Loéve expansion con-
centrates the low frequency behavior of the Brownian motion in the early terms
of the expansion, where the Sobol’ sequence has especially good equi-distribution
properties, something that the time discretization algorithm cannot do.
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Recent Progress in Improvement of Extreme
Discrepancy and Star Discrepancy of
One-Dimensional Sequences

Victor Ostromoukhov

Abstract In this communication, we report on recent progress in improvement of
extreme discrepancy and star discrepancy of one-dimensional sequences. Namely,
we present a permutation of “Babylonian” sequences in base 60, which improves
the best known results for star discrepancy obtained by Henri Faure in 1981 [Bull.
Soc. Math. France, 109, 143–182 (1981)], and a permutation of sequences in base
84, which improves the best known results for extreme discrepancy obtained by
Henri Faure in 1992 [J. Numb. Theory, 42, 47–56 (1992)]. Our best result for star
discrepancy in base 60 is 32209/(35400log60) ≈ 0.222223 (Faure’s best result in
base 12 is 1919/(3454log12) ≈ 0.223585); our best result for extreme discrep-
ancy in base 84 is 130/(83log84) ≈ 0.353494 (Faure’s best result in base 36 is
23/(35log6)≈ 0.366758).

1 Introduction

Variance reduction in quasi-Monte Carlo integration is tightly related to uniformity
of distributions of the point sets, which sample the integrand. Among different met-
rics for evaluation of the uniformity of distributions, star discrepancy and extreme
discrepancy play a special role. In fact, it has been shown [9] that the variance of an
integral estimation is bounded by an expression which depends on star discrepancy
and extreme discrepancies. Schmidt [10] estimated the lower bounds of star and ex-
treme discrepancies for an arbitrary sequence of points. This theoretical estimation
has been later improved by Béjian [1]. A thorough description of the problem, the
main results and the relevant bibliography can be found in Niederreiter’s book [9].

The first low-discrepancy sequences are due to van der Corput [5]. Béjian and
Faure [2] estimated the asymptotic behavior of star and extreme discrepancies of

Victor Ostromoukhov
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the van der Corput sequences. Different constructions for building low-discrepancy
sequences have been proposed and evaluated by Borel [3], Braaten and Weller [4],
Lapeyre and Pagès [8] and Thomas [11]. In 1981, Faure [6] proposed different
generalized (permuted) van der Corput sequences in base 12, having the smallest
asymptotic star and extreme discrepancies. In 1989, Thomas [11] improved Faure’s
result for extreme discrepancy by a small amount. In 1992, Faure [7] further im-
proved extreme discrepancy, using generalized van der Corput sequences in base
36. Faure’s constructions for star discrepancy (1981, base 12) and for extreme dis-
crepancy (1992, base 36) remain the best known to date results for one-dimensional
sequences.

In this paper, we improve Faure’s results for extreme discrepancy and star dis-
crepancy of one-dimensional sequences. Our best result for star discrepancy in
base 60 is 32209/(35400log60) ≈ 0.222223 (Faure’s best result in base 12 is
1919/(3454log12) ≈ 0.223585); our best result for extreme discrepancy in base
84 is 130/(83log84) ≈ 0.353494 (Faure’s best result in base 36 is 23/(35log6) ≈
0.366758).

First, let us recall some definitions commonly used in the specialized literature
[6, 7, 9].

Let X = (xn)n≥1 be a sequence defined on one-dimensional interval [0,1], and
A(α,N,X) the number of n≤N such that 0≤ xn < α. The remainder E is defined
as E(α,N,X) = A(α,N,X)− αN ; E([α,β[;N,X) = E(β,N,X)−E(α,N,X),
where 0≤ xn < α < β ≤ 1.

The extreme discrepancy is defined as D(N,X) = supα,β |E([α,β[;N,X)|, and
the star discrepancy is defined as D∗(N,X)= supα,β |E(α,N,X)|.

The superior limits of extreme and star discrepancy are defined as

s(X)= lim
N
(D(N)/ log(N)

and
s∗(X)= lim

N
(D∗(N)/ log(N).

Given an integer n≥ 1 in b-adic representation
∑∞

j=0 aj (n)n
j and the sequences

of permutations (σj )j≥0 of the set {0,1, . . . ,b−1}, the generalized van der Corput
sequence Sb,σ in fixed base b is defined by

Sb,σ =
∞∑

j=0

σj (aj (n))n
−j−1. (1)

In this article, we consider only position-independent permutations, that is per-
mutations (σj )j≥0 which are identical for any position j in the generalized van der
Corput sequence in Equation (1); j can be omitted.

Let Zσ
b = (σ (0)/b, . . . ,σ (b− 1)/b). For any integer h such that 0 ≤ h < b− 1,

the functions Ψ−b,σ ,Ψ
+
b,σ and Ψb,σ are defined as follows:
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Ψ+b,σ (x)=
{

maxh(A([0,h/b[;k;Zσ
b )−hx) if 0≤ h≤ σ(h−1),

maxh((b−h)x−A([h/b,1[;k;Zσ
b )) if σ (h−1) < h < b,

(2)

Ψ−b,σ (x)=
{

maxh(hx−A([0,h/b[;k;Zσ
b )) if 0≤ h≤ σ(h−1),

maxh(A([h/b,1[;k;Zσ
b )− (b−h)x) if σ (h−1) < h < b,

(3)

and
Ψb,σ (x)= Ψ+b,σ (x)+Ψ−b,σ (x). (4)

The terms α+b,σ ,α
−
b,σ and αb,σ are defined as follows:

α+b,σ = inf
n≥1

sup
x∈R

⎛

⎝1

n

n∑

j=1

Ψ+b,σ
( x

bj

)
⎞

⎠ ,

α−b,σ = inf
n≥1

sup
x∈R

⎛

⎝1

n

n∑

j=1

Ψ−b,σ
( x

bj

)
⎞

⎠ , and

αb,σ = inf
n≥1

sup
x∈R

⎛

⎝1

n

n∑

j=1

Ψb,σ

( x

bj

)
⎞

⎠ . (5)

Three theorems by Faure [6] relate the terms of extreme discrepancy D(Sb,σ ,N)

and star discrepancy D∗(Sb,σ ,N), as well as the partial terms D+(Sb,σ ,N) and
D−(Sb,σ ,N), with functions Ψ+b,σ ,Ψ

−
b,σ and Ψb,σ defined in Equations (2) to (4).

Also, they allow to express the superior limits of extreme discrepancy s(Sb,σ ) and
star discrepancy s∗(Sb,σ ) in terms of α+b,σ ,α

−
b,σ and αb,σ :

Theorem 1 (Faure 1981) The terms of extreme and star discrepancy of Sb,σ can be
expressed, for any N ≥ 1, as follows

D+(Sb,σ ,N)=
∞∑

j=1

Ψ+b,σ
(
N

bj

)
,

D−(Sb,σ ,N)=
∞∑

j=1

Ψ−b,σ
(
N

bj

)
,

D(Sb,σ ,N)=
∞∑

j=1

Ψb,σ

(
N

bj

)
, and

D∗(Sb,σ ,N)=max(D+(Sb,σ ,N),D−(Sb,σ ,N)).

Theorem 2 (Faure 1981) The asymptotic term of the extreme discrepancy of Sb,σ
can be expressed in terms of the constant αb,σ , defined in Equation (5):

s(Sb,σ )= limN→∞
D(Sb,σ ,N)

logN
= αb,σ

logb
.
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Theorem 3 (Faure 1981) LetA⊂N defined asA=⋃∞
H=1AH andAH ={H(H−

1)+1, . . . ,H 2}. Let σ be any permutation of {0, . . . ,b−1}, and τ be a permutation
defined as τ(k) = b− 1− k, where 0 ≤ k ≤ b− 1. Then, the permutation ΣA =
(σj )j≥1 is defined as σj = σ if j ∈ A and σj = τ ◦ σ if j /∈ A. The asymptotic
behavior of the star discrepancy of Sb,ΣA

can be expressed in terms of α+b,σ and

α−b,σ as follows:

s∗(Sb,ΣA
)= limN→∞

D∗(Sb,σ ,N)

logN
= α+b,σ +α−b,σ

2logb
.

2 Main Results

Let σ84 be a permutation in base 84:

σ84 =(0,22,64,32,50,76,10,38,56,18,72,45,6,28,59,79,41,13,67,25,54,

2,36,70,16,48,81,30,61,8,43,74,20,52,4,34,66,15,46,77,26,11,62,

39,82,57,23,69,33,3,51,19,73,42,7,60,29,80,47,14,65,35,1,53,24,

68,12,40,78,58,27,5,44,71,17,55,37,83,21,49,75,9,31,63).
(6)

Theorem 4 Let base b = 84 and the permutation σ84, defined in Equation (6).
The superior limit of the extreme discrepancy of the sequence S84,σ84 is

s(S84,σ84)= 130/(83log84)≈ 0.353494.

Let σ60 be a permutation in base 60:

σ60 =(0,15,30,40,2,48,20,35,8,52,23,43,12,26,55,4,32,45,17,37,

6,50,28,10,57,21,41,13,33,54,1,25,46,18,38,5,49,29,9,58,

22,42,14,34,53,3,27,47,16,36,7,51,19,44,31,11,56,24,39,59).

(7)

Theorem 5 Let base b = 60 and the permutation σ60, defined in Equation (7).
The superior limit of the star discrepancy of the sequence S60,ΣA

is

s∗(S60,ΣA
)= 32209/(35400log60)≈ 0.222223.

3 Upper and Lower Bounds of s(S84,σ84) and s∗(S60,ΣA)

It may be interesting to evaluate numerically the upper and lower bounds of the
extreme discrepancy s(S84,σ84). Here, we follow Faure’s method presented in [6],
Section 5.2.1.
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To obtain a lower bound of s(S84,σ84), we compute (1/ν)Fν(a/(bν−1)) for given
integers a and ν so that 1 ≤ a ≤ bν . For ν = 1 and a = 16, we get s(S84,σ84) ≥
0.353494 · · · = 130/(83log84). Note that we get the same value of s(S84,σ84) by
exact calculation, presented in Section 4.2. To obtain an upper bound, we need to
compute Fn(x) up to a sufficiently big n, then evaluate the expression α. Namely, for
n= 6, F6(x) reaches its maximum at x = 120475271600/846. For this x, s(S84,σ84)

can be calculated: s(S84,σ84)= 207668158967/(131736761856log84)≈ 0.355778.
Therefore, our numerical evaluation of lower and upper bounds of s(S84,σ84) can be
formulated as follows:

0.353494≤ s(S84,σ84)≤ 0.355778.

Note that this numerical estimation already surpasses the best Faure’s result of
s(S36,σ36) in base 36.

Similarly, to obtain a lower bound of s∗(S60,ΣA
), we compute (1/ν)Fν(a/(bν −

1)) for given integers a and ν so that 1 ≤ a ≤ bν . For ν = 2 and a = 1239, we
get s∗(S60,ΣA

) ≥ 0.222218 · · · = 111/(122log60). To obtain an upper bound, we
need to compute Fn(x) up to a sufficiently big n, then evaluate the expression α.
Namely, for n = 8, F8(x) reaches its maximum at x = 57822845901639/608. For
this x, s∗(S60,ΣA

) can be calculated: s∗(S60,ΣA
) ≈ 0.223424. Therefore, our nu-

merical evaluation of lower and upper bounds of s∗(S60,ΣA
) can be formulated as

follows:
0.222218≤ s∗(S60,ΣA

)≤ 0.223424.

Note that this numerical estimation already improves the best Faure’s result of
s∗(S12,ΣA

) in base 12.

4 Proofs

The proofs of Theorems 4 and 5 follow the main line of the proofs provided by
Henri Faure in [6, 7].

First, we build the functions Ψ+b,σ (x), Ψ
−
b,σ (x) and Ψb,σ (x). Then, based on The-

orems 1 and 2, we express s(Sb,σ ) in terms of Ψb,σ . We perform numerical investi-
gation of this function, make an induction hypothesis and prove it.

Similarly, we express s∗(Sb,σ ) in terms of Ψ−b,σ and Ψ+b,σ , based on theorems
Theorems 1 and 3. We make an induction hypothesis and prove it.

As in [6, 7], we introduce the function

Fn(x)=
n−1∑

k=0

Ψ (xbk), (8)

where Ψ (xbk) is the piecewise affine function defined in Equation (4), and express
α = infn≥1(maxx∈[0,1]Fn(x)/n).
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4.1 Function Ψ84,σ84(x)

Finding Ψ+b,σ (x), Ψ
−
b,σ (x) and Ψb,σ (x) is a tedious work. These functions should be

presented as piecewise affine functions on well-defined intervals. As, for definition
of s(S84,σ84), we need the function Ψ84,σ84(x) only, we omit here, for the reasons of
compactness, the intermediate expressions for Ψ+84,σ84

(x) and Ψ−84,σ84
(x).

The exact definition of the function Ψ84,σ84(x) defined on intervals I 1
h =

[h/84, (h+ 1)/84] is presented in Table 1. Each interval I 1
h can also be expressed

as a set of affine subintervals. Thus, the interval [0,1] is expressed as a set of 216
affine subintervals. Figure 1 (left) shows the function Ψ84,σ84(x) visually.

4.2 Proof of Theorem 4

Following [6, 7], we define Ψ−b,σ84
, Ψ+b,σ84

and Ψb,σ84 on intervals Inh = [h/bn,(h+
1)/bn]. The interval Inh is called dominated if there exists a set J of integers with
h /∈ J such that Fn(x) ≤ maxj∈J Fn(x+ (j −h)/bn) for all x ∈ Inh . Otherwise, the
interval is dominant.

Numerical investigations shows that there are three dominant intervals when n=
1: J 1

28,J
1
52 and J 1

55. But, for higher n, there are exactly two dominant intervals. For
example, when n= 2, the dominant intervals are J 2

2420 and J 2
4636. Further numerical

investigations allow us to make the following induction hypothesis: for any n > 1,
the index hn of dominant intervals Jnhn is either

hn =−16

83
+ 509

83
3n+128n−1

Fig. 1 Graphical representation of the functions Ψ84,σ84 (x) and Ψ+60,σ60
(x), as defined in Equations

(2) to (4), for two particular cases explored in this paper. Left: the function Ψ84,σ84 (x). Right: the
function Ψ+60,σ60

(x). Both are defined on the interval [0,1]. Note that Ψ−60,σ60
(x)= 0 on [0,1].
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Table 1 Ψ84,σ84 (x) defined on intervals I 1
h = [h/84, (h+1)/84].

h Ψ84,σ84 (x), maximum of linear functions h Ψ84,σ84 (x), maximum of linear functions

0 {83x} 42 {5−7x,44x−21}
1 {1−x,61x} 43 {22−40x,26x−12}
2 {2−23x,41x} 44 {21−37x,14x−6,59x−30}
3 {3−43x,31x} 45 {15−25x,21x−10,54x−28}
4 {2−11x,41x−1} 46 {18−30x,8x−3,26x−13}
5 {4−43x,21x} 47 {34−58x,11−17x,29x−15}
6 {3−21x,31x−1} 48 {17−27x,11x−5,54x−30}
7 {5−41x,37x−2} 49 {12−18x,16x−8}
8 {6−47x,2−7x,51x−4} 50 {42−68x,27x−15}
9 {5−33x,3−15x,29x−2,55x−5} 51 {36−57x,51x−30,64x−38}
10 {5−29x,27x−2} 52 {14−20x,9−12x,39x−23}
11 {9−57x,5−27x,25x−2} 53 {30−45x,21x−12,46x−28}
12 {8−45x,9x,49x−6} 54 {26−38x,13x−7,33x−20,59x−37}
13 {7−35x,15x−1} 55 {18−25x}
14 {4−15x,37x−5} 56 {23x−14}
15 {10−47x,3−9x,45x−7,61x−10} 57 {24−33x,24x−15}
16 {6−23x,62x−11} 58 {43−60x,16−21x,32x−21,72x−49}
17 {6−22x,12x−1} 59 {10−12x,19x−12}
18 {14−58x,9−35x,15x−2,60x−12} 60 {38−51x,10−12x,20x−13,38x−26}
19 {7−24x,23x−4,57x−12} 61 {35−46x,19−24x,6x−3,59x−42}
20 {8−27x,10x−1} 62 {20−25x,6x−3}
21 {3−6x,25x−5} 63 {9−10x,27x−19}
22 {17−59x,3−6x,24x−5,46x−11} 64 {29−36x,11x−7,24x−17}
23 {12−38x,7−20x,12x−2,51x−13} 65 {48−60x,13−15x,35x−26,58x−44}
24 {7−19x,12x−2} 66 {11−12x,22x−16}
25 {23−72x,11−32x,21x−5,60x−17} 67 {51−62x,23x−17}
26 {9−24x,33x−9} 68 {51−61x,38−45x,9x−6,47x−37}
27 {9−23x} 69 {32−37x,15x−11}
28 {25x−7} 70 {14−15x,35x−28}
29 {22−59x,13−33x,21x−6} 71 {43−49x,9−9x,45x−37}
30 {19−49x,10−24x,9x−2,61x−21} 72 {23−25x,27x−22,57x−48}
31 {10−23x,33x−11} 73 {25−27x,29x−24}
32 {21−51x,8−17x,37x−13} 74 {50−55x,27−29x,15x−12,33x−28}
33 {20−47x,68x−26} 75 {47−51x,7x−5,47x−41}
34 {8−16x,18x−6,47x−18} 76 {35−37x,41x−36}
35 {12−25x,13x−4} 77 {30−31x,23x−20}
36 {14−29x,17x−6} 78 {58−61x,27x−24}
37 {31−67x,41x−17,61x−26} 79 {55−57x,13x−11,31x−28}
38 {12−23x,27x−11,40x−17} 80 {52−53x,31−31x,23x−21}
39 {9−16x,18x−7} 81 {60−61x,31−31x,33x−31}
40 {33−66x,22−43x,7x−2,40x−18} 82 {51−51x,x}
41 {23−44x,7x−2} 83 {83−83x}
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Table 2 Ψ+60,σ60
(x) defined on intervals I 1

h = [h/60, (h+1)/60]. Note thatΨ−60,σ60
(x)= 0 on [0,1].

h Ψ+60,σ60
(x), maximum of linear functions h Ψ+60,σ60

(x), maximum of linear functions

0 {59x} 30 {46x−22}
1 {1−x,44x} 31 {9−14x,26x−12}
2 {2−16x,29x} 32 {20−34x,3−3x}
3 {3−31x,19x} 33 {3−3x,26x−13}
4 {19x,57x−3} 34 {21−34x,17−27x,13x−6}
5 {2−3x} 35 {13x−6}
6 {2−3x} 36 {6−7x}
7 {2−3x} 37 {6−7x,9x−4}
8 {2−3x,19x−1} 38 {9x−4,26x−15}
9 {5−21x} 39 {11−14x}
10 {2−3x,36x−5} 40 {9−11x,29x−18}
11 {6−24x,2−3x} 41 {23−31x}
12 {7x,36x−6} 42 {29x−19,36x−24}
13 {7−24x,16x−2,29x−5} 43 {19−24x,16x−10}
14 {9−31x} 44 {34−44x}
15 {33x−7} 45 {44x−32}
16 {9−27x,3−5x,24x−5} 46 {14−16x,24x−17}
17 {12−36x,3−5x} 47 {30−36x,7−7x}
18 {3−5x,24x−6} 48 {7−7x,29x−22}
19 {13−36x,11x−2} 49 {27−31x,9x−6}
20 {14x−3} 50 {21x−16}
21 {18−46x,5−9x} 51 {18−19x}
22 {5−9x,7x−1} 52 {18−19x,4x−2,36x−30}
23 {7x−1} 53 {23−24x,4x−2}
24 {7−13x} 54 {4x−2}
25 {7−13x,27x−10} 55 {4x−2}
26 {16−33x,12−24x,14x−5} 56 {54−56x,24−24x}
27 {14x−5,36x−15} 57 {24−24x,21x−19}
28 {13−24x,14x−5} 58 {39−39x,x}
29 {24−46x} 59 {59−59x}

or

hn = 16

83
+ 797

83
3n28n−1.

In these intervals, Fn is the affine function in form pn(x−hn/84n)+qn, where the
coefficients pn and qn are either

pn =−61

83
+ 703384n

83
; qn = 130n

83
+ 14342−n21−n

6889
+ 11715

192892

or

pn =−23

83
+ 699584n

83
; qn = 130n

83
+ 14342−n21−n

6889
+ 11715

192892
.

In both cases, max{Fn(x) | x ∈ J nhn} = qn.
Our induction hypothesis can be easily checked for n= 1. Let us suppose that it

holds for an arbitrary n≥ 1. To check that it holds for n+1, we need to add Ψ (xbn)

to Fn(x) on Jnhn and check that Fn+1(x) is still dominant on J n+1
hn+1

. We performed
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this checking for each affine subinterval of definition of the function Ψ84,σ84(x), and
verified that our induction hypothesis holds: the intervals J n+1

hn+1
are dominant.

There, we have proved that

dn = max
x∈[0,1]

Fn(x)/n= qn

and
α84,σ84 = inf

n≥1
dn/n= lim

n→∞dn/n= 130/83.

Consequently,
s(S84,σ84)= 130/(83log84)≈ 0.353494.

4.3 Functions Ψ +
60,σ60

(x) and Ψ −
60,σ60

(x)

For the definition of s∗(S60,ΣA
), we need the function Ψ+60,σ60

(x) and Ψ−60,σ60
(x).

The exact definition of the function Ψ+60,σ60
(x) defined on intervals I 1

h =
[h/60, (h+ 1)/60] is presented in Table 2. Each interval I 1

h is also expressed as a
set of affine subintervals. Thus, the interval [0,1] is expressed as a set of 102 affine
subintervals. Ψ−60,σ60

(x)= 0 on [0,1]. Figure 1 (right) shows the function Ψ+60,σ60
(x)

visually.

4.4 Proof of Theorem 5

In this case, Ψ−60,σ60
(x)= 0 on [0,1]. Consequently, Ψ60,σ60(x)= Ψ+60,σ60

(x).
Numerical investigations shows that there are are exactly two dominant intervals,

for any n≥ 1. When n= 1, the dominant intervals are J 1
21 and J 1

39. When n= 2, the
dominant intervals are J 2

1239 and J 2
2361. Further numerical investigations allow us to

make the following induction hypothesis: for any n ≥ 1, the index hn of dominant
intervals Jnhn is either

hn = 21

61

(
(−1)n−60n

)

or

hn = 1

61

(
21(−1)n+22n+33n5n+1

)
.

In these intervals, Fn is the affine function in form pn(x−hn/60n)+qn, where the
coefficients pn and qn are either

pn = 1793

59
22n+115n− 46

59
; qn = 32209n

17700
+ 4921−2n31−n5−n

3481
+ 82369

104430

or
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pn = 2

59

(
118760n−7

) ; qn = 32209n

17700
+ 4921−2n31−n5−n

3481
+ 82369

104430
,

and max{Fn(x) | x ∈ J nhn} = qn.
Our induction hypothesis can be easily checked for n= 1. Let us suppose that it

holds for an arbitrary n≥ 1. To check that it holds for n+1, we need to addΨ+(xbn)
to Fn(x) on Jnhn and check that Fn+1(x) is still dominant on J n+1

hn+1
. We performed

this checking for each affine subinterval of definition of the function Ψ+60,σ60
(x), and

verified that our induction hypothesis holds: the intervals J n+1
hn+1

are dominant.
There, we have proved that

dn = max
x∈[0,1]

Fn(x)/n= qn

and
α+60,σ60

= inf
n≥1

dn/n= lim
n→∞dn/n= 32209/17700; α−60,σ60

= 0.

Consequently,

s∗(S60,ΣA
)= (α+60,σ60

+α−60,σ60
)/(2log60)= 32209/(35400log60)≈ 0.222223.

5 Search Method

Looking for good permutations for large bases b is a difficult task. In fact, an exhaus-
tive search would require explicit evaluation of b! cases. For example, in base 84,
this would require studying 84!> 10127 sequences, which is obviously not tractable
with modern computers. In this section, we shortly sketch our search method, which
makes this difficult task manageable. We illustrate our method using base b = 84.

Our search method consists in three separate steps. First, we build a (pruned)
tree of all possible permutations. The root node is, by convention, 0. The first level
of the tree contains 83 branches: it can be any number in the range [1, 83]. Ev-
ery branch of the first level contains 82 branches of the second level, etc. We build
the tree, starting from the root. When a new branch is added, this corresponds to
building a partial permutation. For example, adding the branch ‘3’ to the root ‘0’,
is equivalent to building the beginning of the permutation sequence σ = (0,3, . . . ).
At this point, the whole permutation sequence σ is unknown; therefore, we can
not build the functions Ψ−b,σ ,Ψ

+
b,σ and Ψb,σ , as defined in Equations (2) to (4).

Nevertheless, we can evaluate the discrepancy for this partial subset of k elements
(σ (0)/b, . . . ,σ (k−1)/b),k < b. If the discrepancy value of this particular sequence
is bigger than a certain pruning threshold value T , the branch is pruned away. The
choice for the pruning threshold is a delicate task: if it is too large, the tree after all
pruning operations may contain a huge number of branches. If the pruning thresh-
old T is too small, the final tree may contain no branches at all. Choosing the right
threshold value T requires many trial-and-errors and some intuition. At the end of
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the first step, the entire tree of all possible permutations is built. Thanks to pruning,
it contains a reasonably small number of branches. For each possible permutation
sequence σ (i), which corresponds to one leaf of the tree, the discrepancy of the first
84 elements of the sequence is below the threshold T .

At the beginning of the second step, we have a list of permutation sequences σ (i),
one sequence per leaf of the tree. For each sequence σ (i), the functions Ψ−b,σ ,Ψ

+
b,σ

and Ψb,σ are built according to Equations (2) to (4). Consequently, the terms Fn(x)
can be evaluated according to Equation (8). We sort the sequences σ (i) according to
the value of F2(x), calculated for the first 842 of each permutation sequence σ (i).

During the third step, we study more carefully the permutation sequences σ (i)

with the smallest values of F2(x). The behavior of Fn(x) is studied for n > 2; for
each n, the maxima of Fn(x) are determined. Finally, an induction hypothesis is
emitted, and the value of pn,qn,α84,σ84, etc. are calculated. A special program
checks the induction hypothesis (validation of the dominant intervals), as described
in Section 4.2.

6 Conclusions

In this contribution, we have shown two permutations in bases 60 and 84, which
improve the best known values of asymptotic star and extreme discrepancies of
one-dimensional sequences. Our numerical exploration, based on the methodology
described in Section 5, has shown that, in general, asymptotic terms of star and
extreme discrepancies decrease as the values of the base b become bigger. The de-
crease is not linear, and some particular bases, namely b = 60 and b = 84, allow
particularly low asymptotic terms of star and extreme discrepancies. Our current
methodology allows the exploration of integer bases b < 100. A challenging future
step would be developing a more powerful method of search for “good permuta-
tions” in larger bases, which could approach the theoretical lower bounds of star
and extreme discrepancies, predicted by Schmidt and Béjian.
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Réseau Québécois de Calcul de Haute Performance (RQCHP).
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11. Thomas, A.: Discrépance en dimension un. Ann. Fac. Sci. Toulouse, Série Math. 10(3), 369–

399 (1989)



Se
co

nd
 p

ro
of

s

Discrepancy of Hyperplane Nets and Cyclic Nets

Friedrich Pillichshammer and Gottlieb Pirsic

Abstract Digital nets are very important representatives in the family of low-
discrepancy point sets which are often used as underlying nodes for quasi-Monte
Carlo integration rules. Here we consider a special sub-class of digital nets known
as cyclic nets and, more general, hyperplane nets. We show the existence of such
digital nets of good quality with respect to star discrepancy in the classical as well
as weighted case and we present effective search algorithms based on a component-
by-component construction.

1 Introduction

For a finite point set P consisting ofN (not necessarily distinct) points x0, . . . ,xN−1
in the s-dimensional unit-cube [0,1)s the star discrepancy is defined by

D∗N(P)= sup
B

∣
∣∣∣
|{0≤ n < N : xn ∈ B}|

N
−λs(B)

∣
∣∣∣ (1)

where the supremum is extended over all subintervals B of [0,1)s of the form B =∏s
i=1[0,bi), 0 < bi ≤ 1 for all 1 ≤ i ≤ s. This is a quantitative measure for the

deviation of the empirical distribution of P from uniform distribution modulo one.
The star discrepancy is also intimately connected with the error of a quasi-Monte
Carlo (QMC) rule via the well-known Koksma-Hlawka inequality
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∣∣∣∣∣

∫

[0,1]s
f (x)dx− 1

N

∑

x∈P
f (x)

∣∣∣∣∣
≤D∗N(P)V (f ), (2)

where V (f ) denotes the variation of f in the sense of Hardy and Krause and P
consists of N points in [0,1)s . See [4, 8, 11] for further informations.

Apart from the above (classical) concept one often studies a “weighted ver-
sion” of the star discrepancy. This concept has been introduced by Sloan and
Woźniakowski [19] with the idea that different coordinates of integrands may have
different influence on the quality of approximation of an integral by a QMC rule.

Let D = {1, . . . , s} be the set of coordinate indices and let γ = (γi)i≥1 denote
a sequence of non-negative real numbers, the so-called “weights” associated to the
coordinate directions i = 1,2, . . .. To avoid a trivial case, we will always assume that
not all weights are 0. For ∅ �= u ⊆ D let γu =∏

i∈u γi be the weight associated to
the coordinate directions given by u, let |u| the cardinality of u, and for a vector z ∈
[0,1]s or a subset B ⊆ [0,1]s let z(u) or B(u) denote the projection of the vector or
the subset to the components given by u. Hence z(u) ∈ [0,1]|u| and B(u)⊆ [0,1]|u|.

For a point set P of N points x0, . . . ,xN−1 in [0,1)s and given weights γ , the
weighted star discrepancy is defined by

D∗N,γ (P)= sup
B

max
∅�=u⊆D

γu

∣
∣∣∣
|{0≤ n < N : xn(u) ∈ B(u)}|

N
−λ|u|(B(u))

∣
∣∣∣ ,

where the supremum is extended over all subintervals B of [0,1)s of the form B =∏s
i=1[0,bi), 0 < bi ≤ 1 for all 1≤ i ≤ s.
This is a generalization of the classical star discrepancy (1) which is recovered

if we choose γi = 1 for all i ≥ 1. Furthermore, the error bound (2) can also be
generalized by replacing the star discrepancy with the weighted star discrepancy
and the variation by a weighted version of the variation (see [19] for more details).

Good constructions of finite point sets with low star discrepancy are based on the
concept of (t,m,s)-nets in base q. A detailed theory of (t,m,s)-nets was developed
by Niederreiter [10] (see also [11, Chapter 4] and [14] for surveys of this theory).
We refer to [11] and [14] for the definition of (t,m,s)-nets. The crucial fact is that
(t,m,s)-nets in a base q provide sets of qm points in the s-dimensional unit cube
[0,1)s which are extremely well distributed if the quality parameter t is “small”.
Explicit constructions of (t,m,s)-nets are based on the digital construction scheme
which we recall in the following.

From now on let p be a prime and let q =pr , where r ∈N, denote a prime-power.
Let Fq be the finite field of q elements and let F

∗
q := Fq \ {0}, where 0 is the neutral

element with respect to addition. Let Zq = {0,1, . . . ,q−1} ⊆Z with ring operations
modulo q and let ϕ1 : Zq → Fq be a fixed bijection with ϕ1(0) = 0. We extend ϕ1
to a mapping ϕ : Zqm → F

m
q by setting

ϕ(k) := (ϕ1(κ0), . . . ,ϕ1(κm−1))
� (3)
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for k = κ0 + κ1q + ·· · + κm−1q
m−1 with κ0, . . . ,κm−1 ∈ Zq . Here x� means the

transpose of the vector x.

Definition 1 (digital (t,m,s)-nets). Let s ≥ 1 and m≥ 1 be integers. Let C1, . . . ,Cs

be m×m matrices over Fq . Now we construct qm points in [0,1)s : For 1 ≤ i ≤ s

and for k ∈ Zqm multiply the matrix Ci by the vector ϕ(k), i.e.,

Ciϕ(k)=: (yi,1(k), . . . ,yi,m(k))� ∈ F
m
q ,

and set

xk,i := ϕ−1
1 (yi,1(k))

q
+·· ·+ ϕ−1

1 (yi,m(k))

qm
.

If for some integer t with 0≤ t ≤m the point set consisting of the points

xk = (xk,1, . . . ,xk,s) for k ∈ Zqm,

is a (t,m,s)-net in base q, then it is called a digital (t,m,s)-net over Fq , or, in brief,
a digital net (over Fq ). The Ci are called its generating matrices.

Many constructions of digital nets are inspired by a close connection between
coding theory and the theory of digital nets (see, for example, Niederreiter [13] or
[15]). The construction considered here has been introduced by Niederreiter [13]
and it is an analogue to a special type of codes, namely to cyclic codes which are
well known in coding theory. Later this construction has been generalized by Pirsic,
Dick and Pillichshammer [18] to so-called hyperplane nets.

Definition 2 (hyperplane nets). Let integers m ≥ 1, s ≥ 2 and a prime-power q
be given. Let Fqm be a finite field with qm elements and fix an element α =
(α1, . . . ,αs) ∈ F

s
qm . Let F be the space of linear forms

F := {f (x1, . . . ,xs)= x1γ1+·· ·+xsγs : γ1, . . . ,γs ∈ Fqm} ⊆ Fqm [x1, . . . ,xs]
and consider the subset

Fα := {f ∈ F : f (α1, . . . ,αs)= 0}.
For each 1≤ i ≤ s choose an ordered basis Bi of Fqm over Fq and define the mapping
φ : F → F

ms
q by

f =
s∑

i=1

γixi ∈ F �→ (γ1,1, . . . ,γ1,m, . . . ,γs,1, . . . ,γs,m) ∈ F
ms
q ,

where (γi,1, . . . ,γi,m) is the coordinate vector of γi with respect to the chosen basis
Bi .

We denote by Cα the orthogonal subspace in F
ms
q of the image Nα := φ(Fα). Let

Cα = (C�1 · · ·C�s ) ∈ F
m×sm
q
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be a matrix whose row space is Cα . Then C1, . . . ,Cs ∈ F
m×m
q are the generating

matrices of a hyperplane net over Fq with respect to B1, . . . ,Bs and Cα is its overall
generating matrix. This hyperplane net will be denoted by Pα and we say Pα is
the hyperplane net associated to α. We shall from now on assume a fixed choice of
bases B1, . . . ,Bs and will therefore not explicitly mention them anymore.

Remark 1. In Definition 2 above, if α ∈ F
s
qm is of the special form α = α(s) :=

(1,α,α2, . . . ,αs−1) with some α ∈ Fqm , then we obtain a cyclic digital net as in-
troduced initially by Niederreiter [13]. This cyclic net will be denoted by Pα(s) and
we say Pα(s) is the cyclic net associated to α.

For a concise representation of the generator matrices C1, . . . ,Cs of a hyperplane
net in terms of α = (α1, . . . ,αs) we refer to [18]. We remark here that polynomial
lattice point sets can be considered as a (proper) sub-class of hyperplane nets. This
has been shown in [17].

In [16] it has been shown that for m large enough there always exists a vector
α ∈ F

s
qm such that the quality parameter t of the hyperplane net Pα satisfies a certain

upper bound. From this result it follows that for the star discrepancy of Pα we have
D∗qm(Pα)=O(m2s−2q−m).

In this paper we investigate the (weighted) star discrepancy of hyperplane nets.
We show by an averaging argument that there exist hyperplane nets and even cyclic
nets with “low” (weighted) star discrepancy. Thereby we improve the above men-
tioned bound from [16]. Furthermore, such point sets can be constructed with a
component-by-component algorithm which allows to investigate the asymptotic be-
havior as s goes to infinity. For the weighted star discrepancy, under certain condi-
tions on the weights, it turns out that our discrepancy bounds do not depend on the
dimension s. Such a behavior is known as strong tractability (see [19]). We remark
here that similar results are already known for polynomial lattice point sets but only
in prime bases q (see [1, 2]). However, we point out that our results are valid for the
much more general class of hyperplane nets. Beside this, here we consider arbitrary
prime-power bases q instead of prime bases only as done so far ([1, 2, 3]). For cyclic
nets we further show that they can be extended in the dimension s.

2 Prerequisites

We use the definitions of q = pr , Fq , Zq , ϕ1 and ϕ from Section 1. Moreover denote
by ψ1 the isomorphism of additive groups ψ1 : Fq → Z

r
p and define η := ψ1 ◦ϕ1.

For 1≤ i ≤ r denote by πi the projection πi : Zr
p→ Zp, πi(x1, . . . ,xr )= xi .

Let Fqm = Fq [ω], such that {1,ω, . . . ,ωm−1} forms a basis of Fqm over Fq . If we
have the representation of α ∈ Fqm as α =∑m−1

l=0 alω
l , where a0, . . . ,am−1 ∈ Fq ,

define
ψ(α) := (a0, . . . ,am−1) ∈ F

m
q .
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Furthermore, for k =∑m−1
l=0 κlq

l ∈ Zqm let ϕ′(k) :=∑m−1
l=0 ϕ1(κl)ω

l. Observe that
ϕ(k)= ψ(ϕ′(k)).

We have the following commutative diagrams:

For 1≤ i ≤ s we define the permutations τi :Zqm→Zqm by τi(k)=ϕ−1(Biϕ(k)),

where Bi = (ψ(bi,1), . . . ,ψ(bi,m)) ∈ F
m×m
q , and where the bi,l constitute the chosen

basis Bi .
From now on for s ∈ N and α = (α1, . . . ,αs) ∈ F

s
qm we define the set

Kα :=
⎧
⎨

⎩
k = (k1, . . . ,ks) ∈ Z

s
qm \ {0} :

s∑

j=1

αjϕ
′(τj (kj ))= 0

⎫
⎬

⎭
,

which is often referred to as the dual net of the digital net Pα .

Proposition 1. Let α ∈ F
s
qm . For the star discrepancy of the hyperplane net Pα we

have

D∗qm(Pα)≤ 1−
(

1− 1

qm

)s
+2Rq(α)≤ s

qm
+2Rq(α), (4)

where
Rq(α)=

∑

k∈Kα

rq(k),

where for k = (k1, . . . ,ks) ∈Z
s
qm we write rq(k)= rq(k1) · · ·rq(ks) and for k ∈Zqm ,

rq(k)=
{

1 if k = 0,
C

qr+1 if k = κ0+κ1q+·· ·+κrq
r , κr �= 0,

with C := 1+ max
1≤x<q

max
1≤y<q

∣∣∣
∑y−1

a=0

∏r
i=1 exp

(
2π
√−1 (πi◦η)(x)(πi◦η)(a)

p

)∣∣∣. (Note that

C = C(q)≤ q.)

This result follows from [5, Theorem 1] in combination with [18, Corollary 2.12].
For the weighted star discrepancy D∗N,γ of a point set P of N points in [0,1)s

we find from the definition (or see [3]) that

D∗N,γ (P)≤
∑

∅�=u⊆D
γuD

∗
N(P(u)),
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where P(u) denotes the projection of the point set P to the coordinates given by u.
If we consider the hyperplane net Pα , α ∈ F

s
qm , then (4) yields

D∗qm(Pα(u))≤ 1−
(

1− 1

qm

)|u|
+2Rq(αu)

for u �= ∅, where αu = (αj )j∈u ∈ F
|u|
qm . Hence for the weighted star discrepancy of

the hyperplane net Pα , α ∈ F
s
qm , we get

D∗qm,γ (Pα)≤ Γs,qm,γ +2R̃q,γ (α), (5)

where

Γs,qm,γ :=
∑

∅�=u⊆D
γu

(

1−
(

1− 1

qm

)|u|)
and R̃q,γ (α) :=

∑

∅�=u⊆D
γuRq(αu).

Remark 2. It was proven by Joe [7] that if the sequence of weights (γi)i≥1
satisfies

∑∞
i=1 γi < ∞, then, with Λ := ∑∞

i=1
γi

1+γi < ∞, we have Γs,qm,γ ≤
max(1,Λ)exp(

∑∞
i=1 γi)q

−m for all m,s ≥ 1.

In the following proposition we obtain a formula for R̃q,γ (α). The proof of this
result is nearly the same as that of [2, Proposition 3.2].

Proposition 2. We have

R̃q,γ (α)=
∑

k∈Kα

r̃q (k,γ ),

where for k= (k1, . . . ,ks) ∈Z
s
qm we write r̃q (k,γ )= r̃q (k1,γ1) · · · r̃q (ks,γs) and for

k ∈ Zqm ,

r̃q (k,γ )=
{

1+γ if k = 0,
γ rq(k) if k �= 0.

Proposition 2 shows that Rq and R̃q,γ only differ by the definitions of rq and
r̃q . For this reason we will provide the proofs of the forthcoming results only for
the unweighted case. The proofs for the weighted case apply accordingly. In the
Appendix (Proposition 3) it is shown how for α ∈ F

s
qm one can compute Rq(α) and

R̃q,γ (α) at a cost of O(sqm) operations.

3 The Results

First we determine the average value ofRq(α) respectively R̃q,γ (α) over all possible

α ∈ (F∗qm)s . We denote cq := C
q−1
q
≤ q−1 where C is as in Proposition 1.

Theorem 1. We have
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1

|F∗qm |s
∑

α∈(F∗
qm

)s

Rq(α)= 1

qm−1

((
1+mcq

)s−1− smcq
)

and

1

|F∗qm |s
∑

α∈(F∗
qm

)s

R̃q,γ (α)= 1

qm−1

∑

u⊆D
|u|≥2

∏

i∈u

(
γimcq

)∏

i �∈u

(1+γi) .

Proof. First observe that |F∗qm | = qm−1. We have

1

|F∗qm |s
∑

α∈(F∗
qm

)s

Rq(α) = 1

(qm−1)s
∑

α∈(F∗
qm

)s

∑

k∈Kα

rq(k)

= 1

(qm−1)s
∑

k∈Z
s
qm
\{0}

rq(k)
∑

α∈(F∗
qm

)s

k∈Kα

1,

where we substituted for Rq(α) and changed the order of summation. Note that the
τj ’s are permutations and that τj (k)= 0 if and only if k = 0.

If k ∈ Z
s
qm \ {0} is of the form k = (0, . . . ,0,ki,0, . . . ,0) with ki �= 0, then there

is no α ∈ (F∗qm)s such that α1ϕ
′(τ1(k1))+ ·· · + αsϕ

′(τs(ks)) = αiϕ
′(τi(ki)) = 0,

since Fqm is an integral domain. Otherwise, the number of α ∈ (F∗qm)s which satisfy

α1ϕ
′(τ1(k1))+ ·· · + αsϕ

′(τs(ks)) = 0 is exactly (qm− 1)s−1. Therefore we have
(note that rq(0)= 1)

1

|F∗qm |s
∑

α∈(F∗
qm

)s

Rq(α)= 1

qm−1

⎛

⎜
⎝

∑

k∈Z
s
qm
\{0}

rq(k)−
s∑

i=1

∑

ki∈Z
∗
qm

rq(ki)

⎞

⎟
⎠ .

Now the result follows from

qm−1∑

k=0

rq(k)= 1+mcq (6)

which is easily verified. ()
The following consequence of Theorem 1 gives an improvement of [16, Corol-

lary 2].

Corollary 1. Let 0 ≤ ε < 1. Then there are more than ε|F∗qm |s vectors α ∈ (F∗qm)s
such that

D∗qm(Pα)≤ s

qm
+ 2

(1− ε)(qm−1)

(
1+mcq

)s

respectively

D∗qm,γ (Pα) ≤ Γs,qm,γ + 2

(1− ε)(qm−1)

s∏

i=1

(
1+γi

(
1+mcq

))
.
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Proof. Let δ > 0, then we obtain from Theorem 1,

1

qm−1

(
1+mcq

)s ≥ 1

|F∗qm |s
∑

α∈(F∗
qm

)s

Rq(α)

>
δ

qm−1

(
1+mcq

)s 1

|F∗qm |s
∣∣∣∣

{
α ∈ (F∗qm)s : Rq(α) >

δ

qm−1

(
1+mcq

)s
}∣∣∣∣ .

Hence
∣
∣
∣
∣

{
α ∈ (F∗qm)s : Rq(α)≤ δ

qm−1

(
1+mcq

)s
}∣∣
∣
∣> |F∗qm |s

(
1− 1

δ

)
,

and the result follows from Proposition 1 by substituting δ = (1− ε)−1. ()
From the previous results it follows that there exists a sufficiently large number

of vectors α ∈ (F∗qm)s which yield hyperplane nets of good quality with respect to
(weighted) star discrepancy. As for polynomial lattices (see [1, 2]), such vectors can
be found by computer search using a component-by-component construction. We
state the algorithm for the star- and the weighted star discrepancy.

Given a prime-power q, a sequence of ordered bases (Bi )i≥1 of Fqm over Fq (and a sequence
γ = (γi)i≥1 of weights).

1. Choose α1 = 1, the multiplicative unity element in Fqm .
2. For d > 1, assume we have already constructed α1, . . . ,αd−1. Then find αd ∈ F

∗
qm which mini-

mizes Rq(α1, . . . ,αd−1,αd) (or alternatively R̃q,γ (α1, . . . ,αd−1,αd) in the weighted case) as a
function of αd .

In the Appendix we show that Rq(α) and R̃q,γ (α) can be computed at a cost of
O(sqm) operations. Hence the cost of the algorithm is of O(s2q2m) operations.

In the following theorem we show that Algorithm 3 is guaranteed to find a good
vector α ∈ (F∗qm)s .
Theorem 2. Let q be prime-power, m≥ 1 and γ = (γi)i≥1 be a sequence of weights.
Suppose α = (α1, . . . ,αs) ∈ (F∗qm)s is constructed according to Algorithm 3 using

Rq (respectively R̃q,γ ). Then for all d = 1,2, . . . , s we have

D∗qm(P(α1,...,αd ))≤
d

qm
+ 2

qm−1

(
1+mcq

)d
,

respectively

D∗qm,γ (P(α1,...,αd )) ≤ Γd,qm,γ + 2

qm−1

d∏

i=1

(
1+γi

(
1+mcq

))
.
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Proof. By Proposition 1 it is enough to show that

Rq((α1, . . . ,αd))≤ 1

qm−1

(
1+mcq

)d for all d = 1, . . . , s. (7)

Since ϕ′(τ1(k)) = 0 if and only if k = 0 it follows that Rq(1) = 0 and (7) is true
for d = 1. Suppose now that for some 1 ≤ d < s we have already constructed α =
(α1, . . . ,αd) ∈ (F∗qm)d such that Rq(α)≤ 1

qm−1

(
1+mcq

)d
. Then we have

Rq((α,αd+1)) =
∑

(k,kd+1)∈K(α,αd+1)

d+1∏

i=1

rq(ki)

=
∑

k∈Kα

d∏

i=1

rq(ki)+ θ(αd+1)= Rq(α)+ θ(αd+1),

where

θ(αd+1)=
∑

kd+1∈Z
∗
qm

rq(kd+1)
∑

k∈Z
d
qm

(k,kd+1)∈K(α,αd+1)

d∏

i=1

rq(ki).

Since αd+1 is a minimizer of Rq((α, ·)) it follows that αd+1 is also a minimizer
of θ(·) and hence we obtain

θ(αd+1)≤ 1

qm−1

∑

z∈F
∗
qm

θ(z)

= 1

qm−1

∑

z∈F
∗
qm

∑

kd+1∈Z
∗
qm

rq(kd+1)
∑

k∈Z
d
qm

(k,kd+1)∈K(α,z)

d∏

i=1

rq(ki)

= 1

qm−1

∑

kd+1∈Z
∗
qm

rq(kd+1)
∑

k∈Z
d
qm

d∏

i=1

rq(ki)
∑

z∈F
∗
qm

(k,kd+1)∈K(α,z)

1.

The condition (k,kd+1) ∈K(α,z) is equivalent to the equation

zϕ′(τd+1(kd+1))=−(α1ϕ
′(τ1(k1))+·· ·+αdϕ

′(τd(kd)))

which has exactly one solution z ∈ F
∗
qm if α1ϕ

′(τ1(k1))+·· ·+αdϕ′(τd(kd)) �= 0 and
no solution if α1ϕ

′(τ1(k1))+·· ·+αdϕ
′(τd(kd))= 0. Therefore we obtain

θ(αd+1) ≤ 1

qm−1

∑

kd+1∈Z
∗
qm

rq(kd+1)
∑

k∈Z
d
qm

d∏

i=1

rq(ki)
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= 1

qm−1

(
1+mcq

)d ∑

kd+1∈Z
∗
qm

rq(kd+1).

Now we obtain

Rq((α,αd+1))= Rq(α)+ θ(αd+1)

≤ Rq(α)+ 1

qm−1

(
1+mcq

)d ∑

kd+1∈Z
∗
qm

rq(kd+1)

≤ 1

qm−1

(
1+mcq

)d ∑

kd+1∈Zqm

rq(kd+1)= 1

qm−1

(
1+mcq

)d+1

where we have used Eq. (6). Now (7) follows by induction on d . ()
Now we are interested in the behavior of the weighted star discrepancy of hyper-

plane nets as the dimension s goes to infinity (note that Algorithm 3 is extensible in
the dimension s). The following result follows from Theorem 2 and can be proved
in the same way as [3, Corollary 8].

Corollary 2. Let q be a prime-power, s ≥ 2, m ≥ 1 and γ = (γi)i≥1 be a sequence
of weights. If

∑∞
i=1 γi <∞, then for any δ > 0 there exists a c̃q,γ ,δ > 0, independent

of s and m, such that the weighted star discrepancy of the hyperplane net Pα where
α ∈ (F∗qm)s is constructed according to Algorithm 3 using R̃q,γ satisfies

D∗qm,γ (Pα)≤ c̃q,γ ,δ

qm(1−δ)
. (8)

Let N ∈N have q-adic expansion N = ν1q
m1+·· ·+νrqmr with digits 1≤ νi < q

for 1≤ i ≤ r . For each 1≤ i ≤ r construct a vector αi ∈F
s
qmi

according to Algorithm
3 and let PN,s be the superposition of νi copies of the hyperplane net Pαi for all
1≤ i ≤ r . Hence PN,s contains N elements in [0,1)s . We point out that for any N,s
the point set PN,s can be constructed explicitly. Using Corollary 2 and the same
arguments as used in the proof of [6, Theorem 3] we obtain the following result.

Corollary 3. Let N,s ∈ N and assume that
∑∞

i=1 γi <∞. Then for the weighted
star discrepancy of the point set PN,s ⊆ [0,1)s of cardinality N constructed above,
for any δ > 0 we have

D∗N,γ (PN,s)≤ Cq,δ,γ

N1−δ ,

where Cq,δ,γ > 0 is independent of s and N . Hence the weighted star discrepancy
of PN,s achieves a strong tractability bound (with ε-exponent equal to 1).

Obviously we can restrict the search space for α ∈ (F∗qm)s when we search for
cyclic nets only. The subsequent theorem, which improves the second part of [16,
Corollary 2], shows that there is a sufficiently large number of good α’s in F

∗
qm . The

cost of a full search for the best α ∈ F
∗
qm is of O(sq2m) operations.
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Theorem 3. Let q be a prime-power, s ≥ 2, m ≥ 1 and γ = (γi)i≥1 be a sequence
of weights. For 0≤ ε < 1 there are more than ε|F∗qm | elements α ∈ F

∗
qm such that

D∗qm(Pα(s) )≤
s

qm
+ 2(s−1)

(1− ε)(qm−1)

(
1+mcq

)s
,

respectively

D∗qm,γ (Pα(s) )≤ Γs,qm,γ + 2(s−1)

(1− ε)(qm−1)

s∏

i=1

(
1+γi

(
1+mcq

))
.

Proof. We have

1

qm−1

∑

α∈F
∗
qm

Rq(α
(s)) = 1

qm−1

∑

α∈F
∗
qm

∑

k∈K
α(s)

s∏

i=1

rq(ki)

= 1

qm−1

∑

k∈Z
s
qm
\{0}

s∏

i=1

rq(ki)
∑

α∈F
∗
qm

k∈K
α(s)

1.

We have k ∈ Kα(s) if and only if
∑s

j=1α
j−1ϕ′(τj (kj )) = 0. As the polynomial

∑s
j=1α

j−1ϕ′(τj (kj )) over the finite field Fqm of degree at most s− 1 has at most
s−1 zeros α ∈ F

∗
qm we obtain

1

qm−1

∑

α∈F
∗
qm

Rq(α
(s))≤ s−1

qm−1

∑

k∈Z
s
qm

s∏

i=1

rq(ki)= s−1

qm−1
(1+mcq)

s . (9)

For the rest of the proof one just has to follow the proof of Corollary 1. ()
There even exists an α such that Pα(s) is of low star discrepancy for arbitrary

dimensions s ≥ 1. One says that Pα(s) is extensible in the dimension s. In the special
case of polynomial lattices this was shown by Niederreiter [12, Theorem 9].

Corollary 4. Let q be a prime-power, m≥ 1, (Bi )i≥1 a sequence of ordered bases of
Fqm over Fq and γ = (γi)i≥1 be a sequence of weights. Then for c >

∑∞
s=1(s(log(s+

1))2)−1 there exists an element α ∈ F
∗
qm such that for all s ≥ 1 we have

D∗qm(Pα(s) )≤
s

qm
+ 2cs(s−1)(log(s+1))2

qm−1
(1+mcq)

s

respectively

D∗qm,γ (Pα(s) ) ≤ Γs,qm,γ + 2cs(s−1)(log(s+1))2

qm−1

s∏

i=1

(
1+γi

(
1+mcq

))
.

In fact, in both cases for arbitrary small ε > 0 we can get at least (1− ε)(qm− 1)
such elements α by choosing c > 0 large enough.
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Proof. The proof uses arguments from [12]. Let

Es :=
{

α ∈ F
∗
qm : Rq(α

(s)) >
cs(s−1)(log(s+1))2

qm−1
(1+mcq)

s

}

where the constant c > 0 is chosen such that c >
∑∞

s=1(s(log(s+ 1))2)−1. Using
(9) we obtain for any s ≥ 1,

(s−1)(1+mcq)
s ≥

∑

α∈F
∗
qm

Rq(α
(s))≥ |Es |cs(s−1)(log(s+1))2

qm−1
(1+mcq)

s

and hence |Es | ≤ qm−1
cs(log(s+1))2

. For E :=⋃
s≥1Es we hence obtain

|E| ≤
∞∑

s=1

|Es | ≤ qm−1

c

∞∑

s=1

1

s(log(s+1))2
< qm−1= |F∗qm |.

Especially, there exists an element α ∈ F
∗
qm \E and for this element we have

Rq(α
(s))≤ cs(s−1)(log(s+1))2

qm−1
(1+mcq)

s for all s ≥ 1.

Now the result follows from Proposition 1. ()

Appendix: Calculation of Rq and ˜Rq,γ

We will give an explicit form of the quantities Rq and R̃q,γ which can be computed
efficiently. For this computation we will employ Walsh functions which we briefly
recall in the following (notations are defined as in Section 2).

Definition 3 (Walsh functions). Let q = pr with a prime p and a positive integer r ,
let k ∈N0 with base q representation k = κ0+κ1q+·· ·+κm−1q

m−1 where κl ∈ Zq

and let x ∈ [0,1) with base q representation x = ξ1/q+ ξ2/q
2+·· · . Then the k-th

Walsh function over the finite field Fq with respect to the bijection ϕ1 is defined by

Fq ,ϕ1 walk(x) :=
m−1∏

l=0

r∏

i=1

exp

(
2π
√−1

(πi ◦η)(κl)(πi ◦η)(ξl)
p

)
.

For convenience we will in the rest of the paper omit the subscript and simply write
walk if there is no ambiguity.

Multivariate Walsh functions are defined by multiplication of the univariate com-
ponents, i.e., for x = (x1, . . . ,xs) ∈ [0,1)s , k = (k1, . . . ,ks) ∈ N

s
0 where s > 1, we

set
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walk(x)=
s∏

j=1

walkj (xj ).

Specifically we will need the following lemma that gives an important indicator
function.

Lemma 1. Let α ∈ F
s
qm and let Pα be the hyperplane net associated to α. Then for

any k ∈ Z
s
qm we have

1

qm

∑

x∈Pα

walk(x)=
{

1 if k ∈Kα ∪{0},
0 else.

For a proof of this result see [18, Corollary 2.12].

Proposition 3. Let α ∈ (F∗qm)s and let Pα be the associated hyperplane net. Then

for the quantities Rq(α) and R̃q,γ (α) we get the formulas

Rq(α)=−1+ 1

qm

∑

x∈Pα

s∏

i=1

(
1+C

(
q−1

q
m0(xi)−1

))
,

R̃q,γ (α)=−
s∏

i=1

(1+γi)+ 1

qm

∑

x∈Pα

s∏

i=1

(
1+γi+γiC

(
q−1

q
m0(xi)−1

))
,

with C as in the definition of rq in Proposition 1 and for x ∈ q−mZqm \{0}, m0(x) :=
max{l ≤m : x < q−(l−1)} = �− logq x	 and m0(0) :=m+q/(q−1). Hence Rq(α)

and R̃q,γ (α) can be computed at a cost of O(sqm) operations.

Proof. By definition we have

Rq(α)=
∑

k∈Kα

s∏

i=1

rq(ki).

Using Lemma 1 we can let the sum range over all k ∈ Z
s
qm . We get

1+Rq(α)=
∑

k∈Z
s
qm

1

qm

∑

x∈Pα

walk(x)
s∏

i=1

rq(ki)

= 1

qm

∑

x∈Pα

∑

k∈Z
s
qm

s∏

i=1

rq(ki)walki (xi)

= 1

qm

∑

x∈Pα

s∏

i=1

⎛

⎝1+
∑

k∈Zqm\{0}
rq(k)walk(xi)

⎞

⎠ . (10)

Since rq(k) depends only on the “digit length” of k we get for x ∈ [0,1), by [9,
Lemma 4] (note that it is enough to consider x ∈ q−mZqm only)
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∑

k∈Zqm\{0}
rq(k)walk(x) =

m∑

l=1

C

ql

ql−1∑

k=ql−1

walk(x)

=
m∑

l=1

C

ql
ql−1×

⎧
⎨

⎩

q−1 if x < q−l ,
−1 if q−l ≤ x < q−(l−1),

0 else,

= C

q

(
(q−1)

(
m0(x)−1

)−1
)
,

where for x ∈ q−mZqm the quantity m0(x) is defined in Proposition 3. Inserting the
formula into (10) gives the claimed result for Rq(α).

The derivation of the weighted case from the unweighted one can be carried out
as in [2]. ()
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functions over finite groups. Math. Balkanica (N.S.) 19: 349–366, 2005.

6. Hinrichs, A., Pillichshammer, F. and Schmid, W. Ch.: Tractability properties of the weighted
star discrepancy. J. Complexity 24: 134–143, 2008.

7. Joe, S.: Construction of good rank-1 lattice rules based on the weighted star discrepancy. In
Monte Carlo and quasi-Monte Carlo methods 2004, pages 181–196. Springer, Berlin, 2006.

8. Kuipers, L. and Niederreiter, H.: Uniform Distribution of Sequences. John Wiley, New York,
1974; reprint, Dover Publications, Mineola, NY, 2006.

9. Larcher, G. and Pirsic, G.: Base change problems for generalized Walsh series and multivariate
numerical integration. Pacific J. Math. 189: 75–105, 1999.

10. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104: 273–
337 1987.

11. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. No. 63 in
CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992.

12. Niederreiter, H.: The existence of good extensible polynomial lattice rules. Monatsh. Math.
139: 295–307, 2003.

13. Niederreiter, H.: Digital nets and coding theory. In Coding, Cryptography and Combinatorics,
pages 247–257. Birkhäuser, Basel, 2004.
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A PRNG Specialized in Double Precision
Floating Point Numbers Using an Affine
Transition

Mutsuo Saito and Makoto Matsumoto

Abstract We propose a pseudorandom number generator specialized to generate
double precision floating point numbers. It generates 52-bit pseudorandom patterns
supplemented by a constant most significant 12 bits (sign and exponent), so that
the concatenated 64 bits represents a floating point number obeying the IEEE 754
format. To keep the constant part, we adopt an affine transition function instead of
the usual F2-linear transition, and extend algorithms computing the period and the
dimensions of equidistribution to the affine case. The resulted generator generates
double precision floating point numbers faster than the Mersenne Twister, whoes
output numbers only have 32-bit precision.

1 Introduction

In [19], we proposed a fast version of the Mersenne twister (MT) of [14], that ex-
ploits the single instruction multiple data (SIMD) feature of some recent CPUs,
which processes 128 bits at a time [20]. This new pseudorandom number generator
(PRNG), named SFMT (which stands for SIMD-oriented fast Mersenne twister), is
faster than the original MT and also has better equidistribution. The proposal of [19]
also features a block generation procedure, which returns a large array of pseudo-
random numbers at each call.
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In this article, we propose PRNGs specialized in generating floating point num-
bers, which we call dSFMT (double precision floating point SFMT). It generates a
sequence of 64-bit patterns with constant 12 most significant bits (MSBs), so that
each of 64-bit patterns represents a double precision floating point numbers in a
fixed interval in the standard IEEE 754 format. Instead of the usual F2-linear tran-
sition function, we adopt an F2-affine transition function to keep the fixed constant
in the 64 bits (§4). We extended to the affine case some of the existing algorithms to
compute the period and distribution. As a result, we implemented this type of gener-
ators whose periods are multiples of 6 Mersenne primes from 2521−1 to 219937−1,
respectively. These generators are shown to be faster than MT, SFMT and WELL
generators, and have satisfactorily high dimensions of equidistribution (much higher
than MT, but lower than WELL, which attains the theoretical bounds).

2 Generating Floating Point Numbers

Usually, floating point pseudorandom numbers are obtained by converting integer
pseudorandom numbers. One may consider recursion in floating point numbers for
PRNG, but it may accumulate approximation errors. Since the rounding-off is not
standardized, the generated sequence often depends on CPUs. Consequently, usual
PRNGs generate integer random numbers by integer recursion, and converts them to
floating point numbers by multiplying by a constant. However, this method requires
a conversion from an integer to a floating point number, which consumes about 50%
of the CPU time in the generation, according to our experiments using the 64-bit MT
[15].

A faster conversion is given by bit operations fitting a standard floating point for-
mat. We recall the most widely-used standard, IEEE Standard for Binary Floating-
Point Arithmetic (ANSI/IEEE Std 754-2008) [6], which we shall refer as IEEE 754.
The standard was defined in 1985 and revised in 2008, and here we treat the 64-bit
binary format valid for both. The 64 bits are separated in to the sign bit (the most
significant bit, MSB), the exponent (the next 11 most significant bits, representing
an integer between 0 to 2047, denoted by e) and the remaining 52 bits (represent-
ing a real number in the interval [1,2). This 52-bit pattern xxx. . . is interpreted
as a binary floating number 1.xxx. . ., denoted by f ). When 0 < e < 2047, the 64
bits represents a floating point number ±f × 2e−1023 with the sign determined by
the sign bit. Thus, if the sign bit is 0 and e = 1023 (or equivalently the 12 MSBs
are 0x3ff in hexadecimal form), then the represented number is in [1,2). If the
52-bit fraction part is uniformly randomly chosen, then the represented number is
uniformly randomly distributed over [1,2) with 52-bit precision. In the C language,
this conversion of a 64-bit integer x is described as follows:

x = (x >> 12) | 0x3FF0000000000000ULL;
y = *((double *)&x);
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where the first line shifts x to the right by 12 bits and set the 12 MSBs to the
constant 0x3ff, and the second line regards the 64-bit pattern as an IEEE 754
format. This method is less portable than the conversion by multiplication, because
it depends on a particular format, but consumes only 5% to 10% of the CPU time
for the conversion, according to our experiments with the 64-bit MT. This method
goes back to at least 1997: Agner Fog used this method in his open source library
[4], and others seemed to have invented it independently, too.

A pseudorandom number r in [1,2) can be converted into [0,1) (respectively
(0,1]) by taking r−1 (respectively 2−r). In practice, it is often the case that random
numbers r in the range [1,2) can be used without converting into [0,1): for example,
the Box-Muller transformation converts two uniform random numbers s1, s2 in [0,1)
into two normally distributed numbers

√−2log(1− s1)sin(2πs2),
√−2log(1− s1)cos(2πs2).

If r1, r2 are two uniform random numbers in [1,2), then the conversion can be done
by √−2log(2− r1)sin(2πr2),

√−2log(2− r1)cos(2πr2).

3 LFSR with Lung

Our proposal is to use a linear recursion over F2 to generate a sequence of 64-bit
patterns with the 12 MSBs being 0x3ff as above, by a Linear Feedback Shift
Register (LFSR) with additional memory called the ‘lung.’ We identify the set of
bits {0, 1} with the two element field F2. This means that every arithmetic operation
is done modulo 2. A b-bit register or memory is identified with a horizontal vector
in F

b
2, and+ denotes the sum as vectors (i.e., bit-wise exclusive or). We consider an

array of b-bit integers of size N in computer memory as the vector space (Fb
2)
N .

An LFSR generates a sequence w0,w1, w2, ... of elements F
b
2 by a recursion

wi+N = g(wi , ...,wi+N−1), (i = 0,1,2, . . .)

where g is an F2-linear map (Fb
2)
N → F

b
2. In a naive implementation, this recur-

sion is computed by using an array W[0..N-1] of N words of b-bit size, by the
simultaneous substitutions

W[0]← W[1], W[1]← W[2], . . . ,W[N-2]← W[N-1],

W[N-1]← g(W[0], . . . ,W[N-1]).

The first N − 1 substitutions shift the content of the array, hence the name of
LFSR. Note that in the implementation we may use an indexing technique to avoid
computing these substitutions, see [7, P.28 Algorithm A]. Before starting the gener-
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ation, we need to set the (array) state to some initial values; this is the initialization.
Mersenne Twister [14] (MT) is an example of such an LFSR.

An LFSR with lung generates a sequence w0,w1, w2, ... of elements F
b
2 by a

recursion

wi = g(wi−N+1, ...,wi−1,ui−1), (1)

ui = h(wi−N+1, ...,wi−1,ui−1). (2)

where g and h are F2-linear maps (Fb
2)
N → F

b
2 and wi ,ui ∈ F

b
2. In the implementa-

tion, the wi’s are kept in an array W[0..N-1], and ui is (expected to be) kept in a
register of the CPU, which is called the lung. We denote the register by U. The first
line (1) renews the array W[0..N-1], and the second line (2) renews the register
(lung) U. The idea of LFSR with lung appeared in the talk of Hiroshi Haramoto the
MCM 2005 conference, and is also used in the WELL PRNG [17]. The lung real-
izes a short feedback loop, which improves some measures of randomness such as
higher dimensional equidistributions and the density of nonzero coefficients in the
characteristic polynomial.

4 Affinity Introduced by the Constant Part

Our idea is to design the functions g and h in the recursion (1) (2) for the LFSR
with lung, so that if the initial values w0, . . . ,wN−1 are set to have 0x3ff at their
12 MSBs, then the following wi have the same property, regardlessly of the value
of u0. According to our experiments, this method is 5% to 10% faster than the bit-
masking conversion explained in §2.

A new difficulty in this approach is that the state transition is far from being
maximal periodic. A linear state transition function is said to be maximal periodic,
if every non-zero state lies on the same orbit. The existence of the constant implies
that, if the initial state is chosen as above, then the 12 MSBs of each member of
the array of W[0..N-1] are constant in the orbit, and the transition can not be
maximal periodic. This makes it difficult to apply standard techniques to compute
the period and high-dimensional equidistribution property.

A natural solution to this problem is to redefine the state space by excluding
the constant part, and consider the transition function as an affine function. More
concretely, let w′i denote the lower 52-bit of wi . Since the upper 12 bits is a constant,
the recursion formula (1), (2) can be described by

w′i = g′(w′i−N+1, ...,w
′
i−1,ui−1), (3)

ui = h′(w′i−N+1, ...,w
′
i−1,ui−1). (4)

Here, it is easy to see that the linearity of g (resp. h) implies the affinity of g′ (resp.
h′). (Here affine means linear plus a constant.)
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Let bw denote the number of variable bits in each W[i] (52 in the above case),
and bu denote the number of bits in the lung U. This LFSR with lung (not linear but
affine) is considered as an automaton, with the state space S = F

bu+bw×(N−1)
2 . The

state transition function F : S→ S is given by

(w′0, . . . ,w′N−2,u0)

�→ (w′1, . . . ,w′N−2,g
′(w′0, . . . ,w′N−2,u0),h

′(w′0, . . . ,w′N−2,u0)).

As a bw-bit vector generator (i.e., removing the constant bits), the output function is

o : S→ F2
bw ; (w′0, . . . ,w′N−2,u0) �→ w′0.

Now, both F and o are not linear but affine. Namely, they have the form x �→
Ax+ c where x is a vector, A is an F2 matrix, and c is a constant vector. (If c = 0,
it is linear.)

5 Reduction from Affine to Linear: Fixed Points

Let f denote the linear part of F , namely, put c := F(0) and

F(x)= f (x)+ c (5)

with linear f : S→ S. If F has a fixed point F(z)= z, then F(x+ z)= f (x+ z)+
c= f (x)+z, and consequently Fn(x+z)= f n(x)+z. Thus, for the state transition
x0,x1,x2, . . . by F , its translation x0+ z,x1+ z, . . . by the constant z is obtained by
the linear state transition f , hence can be analyzed by the existing methods. Since
the period and the distribution property of the sequence is unchanged by a parallel
translation, computation of those for the affine F is reduced to those for the linear
f . If f has the maximal period, then the equidistribution property can be computed
as usual.

The equationF(z)= z is equivalent to (f −Id)(z)= c, where Id denotes the iden-
tity transformation on S. Thus, a fixed point exists if the characteristic polynomial
χf of f does not have 1 as a root, in particular if it is irreducible with degree ≥ 2.

6 Reducible Transition Function in Affine Case

Usually, to make sure that the period is maximal, we need to check the primitivity
of χf . This is often computationally difficult, since we need the integer factoriza-
tion of 2deg(χ(t))− 1, which is hard if the degree is high (say, > 10000). There are
two methods to avoid this: (1) to tune the size of the state space to be a Mersenne
exponent (i.e. a prime number p such that 2p−1 is also prime) where 2deg(χ(t))−1
is a prime, and (2) to use f such that χf has an irreducible factor of a Mersenne
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prime degree denoted by p. We here adopt the latter method, named reducible tran-
sition method (RTM) in [19]. This is advantageous over the former in the generation
speed, because of no need for discarding a part of the state array (as was required
in MT [14] and WELL [17]). Note that this idea appeared in somewhat different
purposes previously in [5, 1, 2].

We here recall RTM very briefly. Let f : S→ S be an F2-linear transition func-
tion, o : S→O be an F2-linear output function. Assume that a linear transition func-
tion f : S→ S has a decomposition S = Vp⊕Vr , f = fp⊕fr with fp : Vp→ Vp,
fr : Vr → Vr . In other words, f is the combined generator obtained from the two
generators (fp,Vp,op) and (fr ,Vr ,or ), in the sense of §2.3 of [10]. A linear output
function o : S→O is then the sum of the restrictions op : Vp→O and or : Vr→O.
The output of the combined generator is obtained by taking the xor of the outputs of
each generator. The period of the combined generator (f,S,o) is the least common
multiple of the periods of the two generators. Thus, once we know that (fp,Vp,op)
has a large period, then the combined generator has at least that period.

Our strategy is to fix a Mersenne prime p, to determine the size N of the
state array so that p ≤ dimS, and then search for parameters with a factorization
χf = φpφr , where φp is irreducible of degree p and φr has degree r with r < p.
Then, it is automatic to have a decomposition S = Vp ⊕ Vr into p-dimensional
and r-dimensional subspaces, so that the restriction fp (respectively fr ) of f to
Vp (respectively to Vr ) has the characteristic polynomial φp (respectively φr ).
Once we have such decomposition, then the component fp : Vp → Vp has the
Mersenne exponent dimension p, and hence an existing method searches for the
parameters that assure the period of 2p − 1. Then we can assure 2p − 1 as the
lower bound on the period of the combined generator, provided that the initial state
s = sp⊕ sr ∈ S = Vp⊕Vr has the non zero component sp �= 0.

In the case of affine transition F(x)= f (x)+ c, we assume that its linear part f
satisfies the above factorizing condition χf = φpφr . Let us decompose c = cp⊕ cr
and x = xp⊕xr along Vp⊕Vr , then

F(x)= f (x)+ c = (fp(xp)+ cp)⊕ (fr(xr)+ cr)=: Fp(xp)⊕Fr(xr). (6)

This implies that the affine generator (F,S,o) is obtained by combining two affine
generators (Fp,Vp,op) and (Fr ,Vr ,or ). Now fp is irreducible, and the fixed point
argument in §5 reduce the computation of the periods and the high-dimensional
equidistribution property for Fp to those for fp.

7 Period Certification

We explain how to choose parameters realizing the period 2p − 1, for a given
Mersenne exponent p. For the linear transition function, the method is described
in [19], which we briefly recall. Let N be the smallest length of the array such that
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the dimension of the state space S = F
bu+bw×(N−1)
2 is greater than or equal to p.

Thus, r := dimS−p < bw holds.
We randomly choose parameters for the recursion (3) and (4). Let F : S → S

be the corresponding affine transition function, and f : S → S be its linear part.
We compute the characteristic polynomial χf (t) by using Berlekamp-Massey algo-
rithm, and check whether it decomposes to

χf = φpφr

where φp is a primitive polynomial of degree p and φr is a polynomial of degree
r := dimS−p < bw. We assume r < p, which is natural in our context where p is
large, and also bw ≤ bu, since bw is the number of the non-constant part in a bu-bit
word. We continue the random search of parameters, until we obtain a primitive φp.

Once we found such a set of parameter, then we have S = Vp⊕Vr and the pro-
jector Pp : S→ Vp. To assure the period of a multiple of 2p−1 for the initial state
s ∈ S, it suffices to assure sp :=Pp(s) �= 0. In the implementation, to compute Pp(s)
is a time-consuming procedure in the initialization. Instead, we propose the follow-
ing method, named period certification vector (PCV) method, by which the period
is certified by looking at one word in the state.

Let VU denote the bu-dimensional vector space corresponding to the lung U in
(4). To certify the period for the initial state s ∈ S, it suffices to show that s /∈ Vr . Let
π : S→ VU be the projection obtained by extracting the lung from the state space
S. Since we assumed bu = dim(VU ) > r , the image π(Vr) is a proper subspace of
VU . Hence, there is a nonzero vector q in VU which is orthogonal to every vector
in π(Vr). We call such a vector PCV. For a given initial state s, if the inner product
π(s) ·q is nonzero, then π(s) /∈π(Vr) and hence s /∈Vr , and the period is certified. If
the inner product is zero, then we can make the inner product nonzero by reversing
one bit in π(s).

The period certification for affine case easily reduces to the linear case. Let zp ∈
Vp be a fixed point of Fp. For the initial state s ∈ S, it suffices to show that s−zp /∈
Vr to assure the period. This can be done by precomputing π(zp), and check that
(π(s)−π(zp)) ·q �= 0. In this method, only two constant bu-bit words π(zp) and q
need to be precomputed and stored, and at the initialization stage, only the last inner
product need to be computed.

8 Computation of the Dimension of Equidistribution

We briefly recall the definition of dimension of equidistribution (cf. [3, 8, 19]).

Definition 1. Let F : S→ S be an affine transition function over F2. Let v be an
integer, and o : S→ F

v
2 be a v-bit affine output function. The generator (S,F,o) is

said to be k-dimensionally equidistributed, if the map

S→ (Fv
2)
k, s �→ (o(s),o(F (s)),o(F 2(s)), . . . ,o(F k−1(s)))
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is surjective. The largest value of such k is called the dimension of equidistribution
(DE).

For a b-bit integer generator, its dimension of equidistribution at v-bit accuracy k(v)
is defined as the DE of the v-bit sequence, obtained by extracting the v MSBs from
each of the b-bit integers.

Let P = 2p−1 be the period of the generated sequence. Then, there is an upper
bound k(v) ≤ p/v�, and their gap d(v) is called the dimension defect at v of the
sequence, and their sum Δ over v = 1, . . . ,b is called the total dimension defect,
namely:

d(v) := p/v�− k(v) and Δ :=
b∑

v=1

d(v). (7)

We adopt RTM as in §6, and the dimensions of the equidistribution of the larger
component (Fp,Vp,op) gives the lower bound of these dimensions [9] [19]. Ac-
cordingly, we define k(v) and d(v) of RTM to be those for this larger component.
Let fp be the linear part of Fp. Since χfp is irreducible, there is a fixed point of Fp
as explained in §5. Thus, computation of k(v) for Fp is reduced to that for the linear
part fp, which was done in [19].

9 Implementation of dSFMT

As a result of the preceding discussion, we propose a generator using SIMD fea-
tures, an affine transition function to keep the MSBs constant, and reducible charac-
teristic polynomial. The generator is named dSFMT (double precision floating point
SIMD-oriented Fast Mersenne Twister).

Remark 1. In the homepage [18], we released “dSFMT” in 2007, but no correspond-
ing article exists. The generator proposed here is its improved version, by adopting
the lung and a more efficient recursion, and is referred to as dSFMT version 2 in the
homepage. In this manuscript, we call the former dSFMT-old, and the latter simply
dSFMT.

The dSFMT generator is an LFSR with lung, whose recursion formulas are (1)
and (2) with

h(w0, . . . ,wN−2,u0) = w0A+wM +u0B, (8)

g(w0, . . . ,wN−2,u0) = w0+h(w0, . . . ,wN−2,u0)C, (9)

where wi’s and u are 128-bit integers regarded as horizontal vectors in F
128
2 , and

A, B, C are linear transformations described below, computable by a few SIMD
operations. The number bw of variable bits is 128−12×2= 104, while bu = 128.
It generates two 52-bit precision floating point numbers at each step.

• wA := w
64
<< SL1
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This notation means that w is regarded as two 64-bit memories, and wA is the
result of the left-shift of each 64 bits by SL1 bits. There is such a SIMD operation
in the Pentium SSE2, and can be emulated in the PowerPC AltiVec SIMD. SL1
is a parameter with 12≤ SL1 < 64.

• uB := uperm(4, 3, 2, 1)
This notation means that u is regarded as four 32-bit memories and
uperm(4, 3, 2, 1) is the result of reversing the order of the 32-bit blocks in the
128 bits. The permutation can be done by one SIMD operation.

• uC := (u
64
>> 12)+ (u&MASK)

The notation u
64
>> 12 means that u is regarded as two 64-bit memories and each

right-shifted by 12 bit. The notation & means a 128-bit bitwise logical ‘AND’
with a 128-bit constant vector MASK, defined as the concatenation of two 64-bit
vectors with 0s in the 12 MSBs for both.

Fig. 1 Diagram of dSFMT.

Fig. 1 shows the recursion in a circuit-like diagram. Note that the recursion (8)
and (9) is linear, and the constant 0x3ff (in hexadecimal) of the IEEE 754 exponent
part does not appear. The recursion is carefully selected so that once the initial values
w0, . . . ,wN−2 have 0x3ff in their 12 MSBs, then these constant parts are preserved
through the recursion. This trick contributes to the generation speed, by avoiding
constant-setting.

Table 1 lists the parameters for dSFMTs with various sizes. Table 2 lists the
corresponding fixed points and PCVs, as discussed in §7.
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Table 1 Parameter sets. MEXP denotes the Mersenne exponents. The column MASK(HIGH)
shows the higher 64 bits of the constant mask, and the column MASK(LOW) shows the lower
64 bits in hexadecimal.

MEXP N M SL1 MASK(LOW) MASK(HIGH)

521 5 3 25 0x000fbfefff77efff 0x000ffeebfbdfbfdf
1279 13 9 19 0x000efff7ffddffee 0x000fbffffff77fff
2203 21 7 19 0x000fdffff5edbfff 0x000f77fffffffbfe
4253 41 19 19 0x0007b7fffef5feff 0x000ffdffeffefbfc

11213 108 37 19 0x000ffffffdf7fffd 0x000dfffffff6bfff
19937 192 117 19 0x000ffafffffffb3f 0x000ffdfffc90fffd

Table 2 Fixed points and PCVs. Two 64-bit integers (in hexadecimal) piled in one
place represent one 128-bit integer with higher (respectively lower) 64-bit being the
upper (respectively lower) piled integer. For example, the PCV in the first row is
0xccaa5880000000000000000000000001.

MEXP Fixed Point PCV

0xcfb393d661638469 0xccaa588000000000
521 0xc166867883ae2adb 0x0000000000000001

0xb66627623d1a31be 0x7049f2da382a6aeb
1279 0x04b6c51147b6109b 0xde4ca84a40000001

0xb14e907a39338485 0x8000000000000000
2203 0xf98f0735c637ef90 0x0000000000000001

0x80901b5fd7a11c65 0x1ad277be12000000
4253 0x5a63ff0e7cb0ba74 0x0000000000000001

0xd0ef7b7c75b06793 0x8234c51207c80000
11213 0x9c50ff4caae0a641 0x0000000000000001

0x90014964b32f4329 0x3d84e1ac0dc82880
19937 0x3b8d12ac548a7c7a 0x0000000000000001

10 Comparison of Speed

We compared generators MT19937, 64-bit MT19937, SFMT19937, dSFMT-
old19937 and dSFMT19937, with and without SIMD instructions. For MT and
SFMT, ‘mask’ means the conversion by bit operation described in §2 from 64-bit
integers, and ‘× const’ means the conversion by multiplying 2−64. Note that the
original MT and SFMT do not use ‘mask’ conversion.

We measured the speeds for five different CPUs: Pentium M 1.4GHz, Pentium
IV 3GHz, core 2 duo 1.83GHz (32-bit mode, using one core), AMD Athlon 64
3800+ (64-bit mode), and PowerPC G4 1.33GHz. In returning the random values,
we used two different methods. One is sequential generation, where one double
floating point random number is returned per call. The other is block generation,
where an array of random double floating point numbers is generated per call. We
used Intel C Compiler for intel CPUs (Pentium M, Pentium IV, core 2 duo) and
GNU C Compiler for others (AMD Athlon, Power PC G4).
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We measured the consumed CPU time in second, for generating 108 floating
point numbers in the range [0,1) to compare with other generators. In case of the
block generation, we generate 105 floating point numbers per call, and this is iter-
ated 103 times. For sequential generation, the same 108 floating point numbers are
generated, one per call. We used the inline declaration inline to avoid the func-
tion call. Implementations without SIMD are written in ISO/IEC 9899 : 1999(E)
C Programming Language, Second Edition (which we shall refer to as C99 in the
rest of this article), whereas those with SIMD use some standard SIMD extension
of C99 supported by the Intel C compiler and GNU C Compiler.

Table 3 summarizes the speed comparison using SIMD and Table 4 shows the
speed comparison without SIMD. The 64-bit MT is not listed in Table 3, because
we do not have the SIMD version. The first two lines list the CPU time (in seconds)
needed to generate 108 floating point numbers, for a Pentium-M CPU. The first line
lists the timings for the block-generation scheme, and the second line lists those
for the sequential generation scheme. The result is that dSFMT is the fastest for
all CPUs, all returning methods, using SIMD and without using SIMD. Table 5
shows the speed of other generators. Although dSFMT has 52-bit precision while
the others have only 32-bit precision, dSFMT’s sequential generation using standard
C (i.e. the slowest case) is faster than the other generators, except xorshift128 [13],
whose quality is reported to be questionable in [16].

Table 3 The CPU time (sec.) for 108 generations using SIMD.

dSFMT dSFMT-old MT SFMT SFMT
(new) (old) mask mask × const

Pentium M blk 0.626 0.867 1.526 0.928 2.636
1.4 Ghz seq 1.422 1.761 3.181 2.342 3.671
Pentium 4 blk 0.254 0.640 0.987 0.615 3.537
3 Ghz seq 0.692 1.148 3.339 3.040 3.746
core 2 duo blk 0.199 0.381 0.705 0.336 0.532
1.83GHz seq 0.380 0.457 1.817 1.317 2.161
Athlon 64 blk 0.362 0.637 1.117 0.623 1.278
2.4GHz seq 0.680 0.816 1.637 0.763 1.623
PowerPC G4 blk 0.887 1.151 2.175 1.657 8.897
1.33GHz seq 1.212 1.401 5.624 2.994 7.712

11 Dimension of Equidistribution

We calculated d(v)s for our generators, by using the method described in §8. Ta-
ble 6 lists the dimension defects d(v) of dSFMT, for Mersenne exponent (mexp) =
521,1279,2203,4253,11213,19937 and v = 1,2, . . . ,52. The d(v) for 1 ≤ v ≤ 22
are very small. The larger mexp seems to lead to the larger d(v) for v > 22. Still,
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Table 4 The CPU time (sec.) for 108 generations (without SIMD).

dSFMT dSFMTold MT 64 MT SFMT SFMT
(new) (old) mask mask mask × const

Pentium M blk 1.345 2.023 2.031 3.002 2.026 3.355
1.4 Ghz seq 2.004 2.386 2.579 3.308 2.835 3.910
Pentium 4 blk 1.079 1.128 1.432 2.515 1.929 3.762
3 Ghz seq 1.431 1.673 3.137 3.534 3.485 4.331
core 2 duo blk 0.899 1.382 1.359 2.404 1.883 1.418
1.83GHz seq 0.777 1.368 1.794 1.997 1.925 2.716
Athlon 64 blk 0.334 0.765 0.820 1.896 1.157 1.677
2.4GHz seq 0.567 0.970 1.046 2.134 1.129 2.023
PowerPC G4 blk 1.834 3.567 2.297 4.326 4.521 12.685
1.33GHz seq 1.960 2.865 4.090 5.489 5.464 9.110

Table 5 The CPU time (sec.) for 108 generations for other generators, where conversion to floating
point numbers uses constant multiplication.

WELL1024 WELL19937 MT19937 XORSHIFT128
Pentium M 2.076 2.876 2.028 1.233
Pentium 4 1.626 2.031 1.232 1.023
core 2 duo 1.165 1.913 1.032 0.653
Athlon 64 0.804 1.191 0.971 0.975
Power PC G4 2.947 7.524 3.082 2.267

the case mexp=19937 has total dimension defect Δ = 2608, which is smaller than
the defect of the 32-bit SFMT19937’ and the 32-bit MT19937, which are Δ= 4188
and Δ= 6750, respectively. Note that it is natural to guess that Δ increases at least
proportionally to the word size b, by its definition (7).

Remark 2. The number of non-zero terms in χf (t) is an index measuring the
amount of bit-mixing. The column “weight” in Table 7 shows these numbers:
dSFMT19937 has the ratio 9756/19992= 0.488 which is higher than those of MT
(135/19937=0.00677), WELL19937a (8585/19937 = 0.431) and WELL19937b
(9679/19937= 0.485).

The dSFMT generators passed the DIEHARD statistical tests [12]. They also
passed TestU01 [11] consisting of 144 different tests, except for LinearComp (fail
unconditionally) and MatrixRANK tests (fail if the size of dSFMT is smaller than
the matrix size). These tests measure the F2-linear dependency of the outputs, and
reject F2-linear generators, such as MT, SFMT and WELL.

We shall keep the latest version of the codes in the web page [18].
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Table 6 d(v) (1≤ v ≤ 52) of 52-bit fraction part of dSFMT.

521 1279 2203 4253 11213 19937 521 1279 2203 4253 11213 19937
d(1) 0 1 0 0 4 0 d(27) 0 0 1 1 33 4
d(2) 0 1 1 0 0 1 d(28) 0 6 7 28 33 10
d(3) 0 2 1 0 0 1 d(29) 1 5 7 23 28 67
d(4) 0 0 0 0 1 1 d(30) 3 3 15 18 80 126
d(5) 0 0 0 0 0 0 d(31) 2 6 13 15 68 107
d(6) 0 1 1 0 1 0 d(32) 4 4 10 10 58 88
d(7) 0 0 0 0 0 1 d(33) 6 12 25 43 120 220
d(8) 0 0 0 0 0 1 d(34) 6 12 23 44 114 202
d(9) 0 1 0 0 0 0 d(35) 5 11 21 40 105 185

d(10) 1 0 0 0 0 0 d(36) 5 10 20 37 96 169
d(11) 0 0 0 0 0 0 d(37) 5 9 18 33 88 155
d(12) 0 0 0 0 0 0 d(38) 4 8 16 30 80 141
d(13) 0 0 0 0 0 0 d(39) 4 7 15 28 72 128
d(14) 0 0 0 0 0 1 d(40) 4 6 14 25 65 115
d(15) 0 0 0 0 0 1 d(41) 3 6 12 22 58 103
d(16) 0 0 0 0 0 1 d(42) 3 5 11 20 51 91
d(17) 0 0 0 0 0 0 d(43) 3 4 10 17 45 80
d(18) 0 0 0 0 0 0 d(44) 2 4 9 15 39 70
d(19) 0 0 0 0 0 0 d(45) 2 3 7 13 34 60
d(20) 1 0 0 0 0 0 d(46) 2 2 6 11 28 50
d(21) 0 0 0 0 7 0 d(47) 2 2 5 9 23 41
d(22) 0 0 0 0 0 134 d(48) 1 1 4 7 18 32
d(23) 0 0 7 16 22 94 d(49) 1 1 3 5 13 23
d(24) 0 1 3 9 19 58 d(50) 1 0 3 4 9 15
d(25) 0 1 0 6 7 25 d(51) 1 0 2 2 4 7
d(26) 0 0 0 0 0 0 d(52) 1 0 1 0 0 0
total dimension defect Δ 73 135 291 531 1423 2608

Table 7 The number of non-zero terms in χf (t).

mexp 521 1279 2203 4253 11213 19937
degree of χf (t) 544 1376 2208 4288 11256 19992

weight 273 673 1076 2233 5684 9756
ratio 0.50 0.49 0.49 0.52 0.50 0.49
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On the Behavior of the Weighted Star
Discrepancy Bounds for Shifted Lattice Rules

Vasile Sinescu and Pierre L’Ecuyer

Abstract We examine the question of constructing shifted lattice rules of rank one
with an arbitrary number of points n, an arbitrary shift, and small weighted star
discrepancy. An upper bound on the weighted star discrepancy, that depends on the
lattice parameters and is easily computable, serves as a figure of merit. It is known
that there are lattice rules for which this upper bound converges as O(n−1+δ) for
any δ > 0, uniformly over the shift, and lattice rules that achieve this convergence
rate can be found by a component-by-component (CBC) construction. In this paper,
we examine practical aspects of these bounds and results, such as: What is the shape
of the probability distribution of the figure of merit for a random lattice with a given
n? Is the CBC construction doing much better than just picking the best out of a few
random lattices, or much better than using a randomized CBC construction that tries
only a small number of random values at each step? How does the figure of merit
really behave as a function of n for the best lattice, and on average for a random
lattice, say for n under a million? Do we observe a convergence rate near O(n−1)

in that range of values of n? Finally, is the figure of merit a tight bound on the true
discrepancy, or is there a large gap between the two?

1 Introduction and Background Results

We are concerned with the approximation of an integral over the d-dimensional unit
cube,

Id(f )=
∫

[0,1]d
f (u)du
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where f : [0,1)d → R, by a shifted lattice rule of rank one with generating vector
z ∈ Z

d and arbitrary shift Δ ∈ [0,1)d , i.e., by the average

Qn,d(f )= 1

n

n−1∑

k=0

f

({
kz
n
+Δ

})
,

where n is the number of points in the rule [14, 22]. That is, the approximation is
the average of the values of f over the set of quadrature points

Pn = {{kz/n+Δ}, 0≤ k ≤ n−1}. (1)

We assume that each coordinate of z is relatively prime to n. Thus, the set of ad-
missible generating vectors z is (Z′n)d where Z

′
n denotes the set of integers in

{1, . . . ,n− 1} that are relatively prime to n. This set has cardinality |Z′n| = ϕ(n),
where ϕ is Euler’s totient function. When n is prime, we have ϕ(n)= n−1. (In this
paper, | · | denotes the cardinality if the argument is a set and the absolute value if it
is a real number.)

It is well known that the integration error |Qn,d(f )− Id(f )| can be bounded in
different ways by the product of a discrepancy measure of the point set used in the
rule and the corresponding measure of variation V (f ) of the function f [5, 12, 14].
The discrepancy measure considered in this paper is the weighted star discrepancy,
an L∞-type discrepancy defined below. This measure (with weights) was also used
in [20], for example. The L∞-type discrepancies are of interest in particular because
their corresponding V (f ) is finite under weaker smoothness assumptions than the
other types of Lp discrepancies found in the literature.

For any x = (x1, . . . ,xd) ∈ [0,1)d and an arbitrary point set Pn, we define the
local star discrepancy at x by

disc(x,Pn) := |[0,x)∩Pn|
n

−
d∏

j=1

xj .

For any set of indices u ⊆ D := {1, . . . ,d}, let xu denote the vector in [0,1]|u| that
contains the components of x whose indices belong to u, and let (xu,1) ∈ [0,1]d be
the vector whose j -th component is xj if j ∈ u and 1 if j �∈ u. The weighted star
discrepancy of Pn is defined by

D∗γ (Pn) :=max
u⊆D

γ u sup
xu∈[0,1]|u|

|disc((xu,1),Pn)| , (2)

where γ u > 0 is the weight given to u, for each u ⊆ {1, . . . ,d}. The weight γ u

should reflect the importance of the component that corresponds to the subset u

of coordinates, in the ANOVA decomposition of f [12, 13, 17]. Then a weighted
variant of the Koksma-Hlawka inequality [14, 20] gives

∣
∣Qn,d(f )− Id(f )

∣∣≤D∗γ (Pn)×V (f ) (3)
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if V (f ) exists, where

V (f )=
∑

u⊆D
γ−1

u

∫

[0,1]|u|

∣∣∣∣
∂ |u|

∂xu

f ((xu,1))

∣∣∣∣ dxu

measures the variation of f . Note that this variation, and the worst-case error bound
(3), can be finite only for bounded integrands f .

Later in this paper we shall assume that the weights γ u have the following prod-
uct form, as was done in [4, 25] and several other places:

γ u =
∏

j∈u

γj , (4)

where γj > 0 is the weight associated with coordinate j . We also assume that γ1 ≥
γ2 ≥ ·· · ≥ γd . We say that a family of lattice rules indexed by n and with point sets
Pn has low-discrepancy if D∗γ (Pn)=O(n−1+δ) for any δ > 0.

The weight γj reflects the importance of coordinate j in the discrepancy mea-
sure. We should take it larger [smaller] if we believe that f depends more [less] on
the j th coordinate of u. For example, in situations where we have a low effective
dimension in the truncation sense [2, 12], the first few random numbers have much
more importance than the other ones for the realization of f (u) and the importance
decreases quickly with j . The weights should then decrease accordingly. In other ap-
plications where we have low effective dimension in the superposition sense [2, 12],
all coordinates of u have similar importance, but the importance of a subset u in the
ANOVA decomposition decreases quickly with the cardinality of u. By taking equal
weights γj = γ < 1, we assume implicitly that this decrease is geometric in |u|.

Given that no efficient algorithm is available for computing D∗γ (Pn), we will fol-
low the common practice of using an easily computable upper bound on D∗γ (Pn) as

a figure of merit. This upper bound D̄∗γ (Pn)will be written in terms of the generating
vector z and will be independent of the shift Δ.

Shifted lattice rules (often randomly shifted) for the approximation or estimation
of integrals over the unit cube have been used for a long time [3, 13, 22]. Shifted
lattice rules with low discrepancy have been constructed in [9, 10, 23, 24, 27], for
example, under the assumption that n was prime, but with a different definition
of discrepancy that required stronger smoothness assumptions on the integrands.
Moreover, in [10, 23, 27] the authors considered the average discrepancy over all
shifts, whereas in [24], the shift was optimized to minimize the discrepancy. In our
case, the bounds are valid for an arbitrary (worst-case) shift. Under the additional
condition that

∑∞
j=1 γj <∞ (the weights are summable), the O(n−1+δ) bound is

also independent of the dimension d (we have strong tractability).
Rank-1 lattice rules that achieve this convergence rate can be found by a greedy-

type component-by-component (CBC) construction. The CBC construction algo-
rithm has been used by several authors recently, including [7, 9, 20, 24]. It defines
the generating vector z coordinate by coordinate. At the sth step, for s = 2, . . . ,d , it
selects the sth coordinate of z as (one of) the integer(s) in Z

′
n for which the discrep-
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ancy bound D̄∗γ (Pn) is minimized for the corresponding s-dimensional point set Pn.
Once a coordinate is selected, it is never modified again. With this algorithm, one
computes the discrepancy (2) for at most |Z′n|d = ϕ(n)d generating vectors rather
than for all ϕ(n)d possibilities, which would take an excessive amount of time when
d is large.

When n is large, one could also think of sampling only a limited number of in-
tegers from Z

′
n and then picking the best one, at each step of the CBC algorithm,

instead of trying all ϕ(n) possibilities. This randomized CBC construction was al-
ready proposed in [26], where the authors also suggested to check if the retained
rule had a figure of merit at least as small as the (known) average over all ϕd(n)
possibilities. This method is much simpler and can be faster than standard CBC
when n is large. If it also provides a z whose figure of merit is practically as good
with high probability, then one might prefer it for its simplicity. Our empirical in-
vestigations indicate that this is indeed the case. They also indicate that we can do
almost as well with a very naive method that just generates, say, r generating vectors
z randomly and uniformly in (Z′n)d , and picking the best one. To get proper insight
on those issues, we approximate (empirically) the distribution function of the figure
of merit D̄∗γ (Pn) for a random z, and for a z constructed from the randomized CBC
construction, for given choices of r , n, d , and the weights.

We also examine the behavior of the figure of merit as a function of n, for the
best lattice, and on average for a random lattice, for “reasonable” values of n (un-
der a million). We see that unless d is very small or the weights γu converge very
quickly as a function of |u| (which is almost equivalent), the observed rate of de-
crease in that range of values of n is much slower than n−1. This type of reality
check for the behavior of the figure of merit is important from the practical view-
point. Similar illustrations of the behavior as a function of n have been given earlier
in [18, 19] for a bound on the classical (unweighted) star discrepancy for other
types of low-discrepancy point sets, namely those produced by the Halton, Sobol’,
and Niederreiter-Xing sequences.

Another important reality check, given the slow decrease of the bound in the
practical range of values of n, is to see how close is the bound from the true discrep-
ancy. We provide a partial answer by computing the true discrepancy for the cases
where we can (for d = 2 for all n, and for d = 3 with small n) and comparing it
with the bound. The gap turns out to be significant, and seems to increase with the
dimension. Our conclusion discusses the practical meaning of this fact.

2 Bounds on the Weighted Star Discrepancy

Proposition 1 below provides a conveniently computable bound on the discrepancy
(2) for any given z. This proposition puts together some known results to provide a
bound for a discrepancy with general weights and arbitrary shift of the lattice.

Proposition 1. For any n > 1, any z ∈ (Z′n)d , arbitrary weights γu, and point set Pn
defined in (1), we have
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D∗γ (Pn)≤ D̄∗γ (Pn) :=
∑

u⊆D
γ u

(
1− (1−1/n)|u|

)
+ 1

2
e2
n,d(z), (5)

where the sum on the right does not depend on z,

e2
n,d(z)=

∑

u⊆D
γ u

⎛

⎝1

n

n−1∑

k=0

∏

j∈u

⎛

⎝1+
∑′

−n/2<h≤n/2

e2π ihkzj /n

|h|

⎞

⎠−1

⎞

⎠ ,

and
∑′ denotes the sum over the nonzero integers h.

For the case of product weights of the form (4), we can also write

∑

u⊆D
γ u

(
1− (1−1/n)|u|

)
=

d∏

j=1

βj −
d∏

j=1

(βj −γj/n)=O(n−1) (6)

and

e2
n,d(z)=

1

n

n−1∑

k=0

d∏

j=1

⎛

⎝βj +γj
∑′

−n/2<h≤n/2

e2π ihkz/n

|h|

⎞

⎠−
d∏

j=1

βj , (7)

where βj = 1+γj .

Proof. The inequality (5) is obtained by applying Lemma 6 of [4] to bound the
maximum in (2) for each u, and then bounding the maximum over u by the sum
over u. Then it suffices to note that e2

n,d(z) is the same as
∑

u⊆D γ uR1(h,1,n,u),
where R1 is defined in Lemma 6 of [4]. We recognize that bounding the max by the
sum is likely to give a loose bound, but this is the standard approach used by other
authors [4, 7, 21]. The second part follows by identical arguments as in [7].

For the remainder of the paper, we assume that the weights have the product form
(4). Observe that the term (6) decays linearly with n for any choice of weights. It
does not depend on z, so it is just a constant part in the figure of merit D̄∗γ (Pn).
In fact, the bound in (5) depends essentially on the quantity e2

n,d(z). We will now
focus on this quantity. We compute it as explained in [21, page 657], via asymptotic
expansions from [8] and by storing the products during the construction.

The average of this quantity over all admissible generating vectors is

Mn,d,γ = 1

ϕd(n)

∑

z∈(Z′n)d
e2
n,d(z).

The corresponding average value of D̄∗γ (Pn) is

Γn,d,γ =
d∏

j=1

βj −
d∏

j=1

(βj −γj/n)+Mn,d,γ

2
.

If n is prime, we have the following explicit formula [7]:
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Mn,d,γ = 1

n

d∏

j=1

(βj +γjSn)+ n−1

n

d∏

j=1

(
βj −γj

Sn

n−1

)
−

d∏

j=1

βj , (8)

where Sn =∑′
−n/2<h≤n/2 1/|h|. For the general case where n can be composite,

we do not have an explicit formula for Mn,d,γ , but an upper bound is given in [21].
In any case, regardless of n (unless it is very small), Mn,d,γ is well approximated by
its dominant term

Mn,d,γ ≈ Tn,d,γ := 1

n

d∏

j=1

(βj +γjSn)=O(n−1+δ),

with an approximation error of O((log log(n+ 1))/n). In numerical experiments
with small values of n, in which the average was computed explicitly, it has been
observed that Tn,d,γ was actually always larger than Mn,d,γ . For the case where n
is prime, it is easy to prove that Tn,d,γ is always larger [7].

It is also known (see Lemma 3 in [4]) that Tn,d,γ =O(n−1+δ) for any δ > 0 when
d is fixed and n→∞, and uniformly over d when the weights γj are summable.
Then a simple argument that the best is at least as good as the average leads to the
following result (see also [4, Theorem 7]):

Proposition 2. For any n there is a generating vector z such that the weighted star
discrepancy of the corresponding shifted lattice rule satisfies

D∗γ (Pn)=O(n−1+δ)

for any δ > 0, where the implied constant depends on δ and the weights, but does not
depend on n and on the shift. If the weights are summable, then the implied constant
can also be taken independent of the dimension d .

3 The CBC Construction and Random Search Methods

The CBC algorithm constructs the generating vector z= (z1,z2, . . . ,zd) as follows.
We suppose that n≥ 2, and that d and the weights are fixed.

CBC construction algorithm:
Let z1 := 1;
For s = 2,3, . . . ,d , find zs ∈ Z

′
n that minimizes e2

n,s(z1,z2, . . . ,zs), defined
in (7), while z1, . . . ,zs−1 remain unchanged.

The following result, proved in [21, Theorem 2], combined with Proposition 1,
implies that the algorithm produces a generating vector z whose corresponding
weighted star discrepancy (2) has the same order of magnitude as the bound pro-
vided by Proposition 2.

Proposition 3. This CBC algorithm returns a vector z for which
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e2
n,d(z)≤

1

n

d∏

j=1

(
βj +αγj lnn

)=O(n−1+δ),

where α > 0 is an absolute constant.

This bound implies that for a fixed d , we have e2
n,d(z) = O(n−1+δ). And if the

weights are summable, then this holds uniformly in d . The costs for the CBC con-
struction algorithm using the fast implementation of [15, 16], is O(nd logn) com-
puting time and O(n) space for storage (see also [21] for further details). A more
straightforward implementation requires O(dn2) time. The fast CBC construction
is actually based on the fast Fourier transform, allowing to reduce the typical O(n2)

operations required by a matrix-vector multiplication to O(n logn). However, the
O(n logn) term has a larger hidden constant, which depends on the respective im-
plementations. We did not use the fast Fourier transform in our implementation;
it would have taken much more time to implement it than what we were ready to
spend, and our goal was not really to compare speeds.

The following randomized CBC construction algorithm is simpler to implement
and can reduce the computing cost by examining only a small number of integers
zs ∈ Z

′
n (chosen at random) at each step.

Randomized CBC construction algorithm (R-CBC):
Let z1 := 1;
For s = 2,3, . . . ,d ,

choose r integers zs at random in Z
′
n, and select the one that minimizes

e2
n,s(z1,z2, . . . ,zs), while z1, . . . ,zs−1 remain unchanged.

A similar algorithm was proposed in [26], with the additional feature that for any
given s, new integers zs are examined until e2

n,s(z1, . . . ,zs) is less than the average
Mn,d,γ . An even simpler (and more naive) algorithm is a uniform random search in
(Z′n)d , as follows (we can also stop only when e2

n,d(z)≤Mn,d,γ ):

Uniform random search algorithm:
Choose r vectors z at random in (Z′n)d , and select the one that minimizes

e2
n,d(z).

In the next section, we compare empirically the performance of these three algo-
rithms, in terms of the figures of merit of the returned vectors z. We know a priori
that the CBC construction should provide better figures of merit, but is the difference
really significant?

4 Empirical Assessments

Our aim in this section is to explore the behavior of the discrepancy bound (or fig-
ure of merit) D̄∗γ (Pn) defined in (5), empirically, from various angles, for n not
exceeding one million. We first examine its distribution function when z is drawn
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uniformly from (Z′n)d (so the figure of merit is a random variable). This distribution
function F is defined by F(x) = P[D̄∗γ (Pn) ≤ x]. We find that typically, this dis-
tribution is positively skewed, and the median is smaller than the mean Γn,d,γ , so
the probability qn,d,γ of a value smaller than the mean is more than 1/2 (often more
than 0.75). This implies that a vector z whose figure of merit is smaller than the
mean (and thus satisfies the bound in Proposition 2) is easy to find by uniform ran-
dom search. By applying this algorithm with r trials, the probability of finding such
a vector is 1− (1− qn,d,γ )

r . With qn,d,γ = 0.75, this probability is approximately
1−9.5×10−7 for r = 10, and 1−6.2×10−61 ≈ 1 for r = 100, for example. That
is, finding a z smaller than the mean is very easy, even with the most naive method.

To approximate the distribution function F and the density f of D̄∗γ (Pn) for a

random z, we generated a sample of r = 105 generating vectors z and computed the
empirical distribution function F̂ of the r realizations. We also computed a kernel
estimator f̂ of the corresponding density, using a Gaussian kernel, with the band-
width selected as suggested in [6, pages 308–309]. Note that these density estimates
inflate the tails (compare with the empirical distribution). This tail inflation can be
reduced by reducing the bandwidth, but then the curve becomes less smooth. Thus,
the empirical distribution seems to give a better idea of the distribution. The com-
putations and plots were made with SSJ [11]. We did this with various choices of n,
d , and the weights, and the shape of the empirical distribution (with proper scaling)
was very much the same in all cases.

Figure 1 (upper panel) gives an illustration with n= 32749 (a prime number), d =
10, and weights γj = 1/j2 for all j . Here the figure of merit obtained via the CBC
construction was 0.14996, while the best one among the 105 random z was 0.15048,
the median was 0.15247 (indicated by the leftmost vertical line), the empirical mean
was 0.15367, and theoretical mean Γn,d,γ is 0.15386 (the rightmost vertical line).
Here the probability qn,d,γ is slightly more than 0.75.

The lower panel of the same figure provides another illustration with n =
1048573, d = 5, and weights γj = 1/4 for all j . Here, we know a priori that the
weighted discrepancy cannot exceed 1/4. The CBC construction gave a figure of
merit of 0.01646, the best random vector had 0.01649, the median was 0.01668,
and both the empirical and theoretical means were 0.01683. The probability qn,d,γ
is again very close to 0.75.

Table 1 summarizes the figures of merit obtained for other values of n, d , and the
weights. The CBC algorithm usually returned a value slightly smaller than the best
values from the two randomized methods. However, in absolute terms, the values re-
turned by all three algorithms are typically very close to each other. The difference
between the corresponding error bounds can be deemed negligible. Moreover, those
best values are not much smaller than the median and the mean. We also observe
that unless the weights decrease very quickly with j or are all small, the discrep-
ancy bounds become larger than the trivial bound of γmax = maxj γj already in 5
dimensions, even for n = 1048573≈ 220. For γj = 1, d = 10 and n = 131071, the
best bound is approximately 4.15×108. Any discrepancy bound (or figure of merit)
larger than γmax is in fact totally useless, because the discrepancy itself is never
larger than supj γj ≤ 1.
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Fig. 1 Estimated distribution function F̂ (increasing curve) and density f̂ (other curve) of the
figure of merit D̄∗γ (Pn) defined in (5). Above: n = 32749, d = 10, and γj = 1/j2. Below: n =
1048573, d = 5, and γj = 1/4. The solid and dashed vertical lines indicate the mean and the
median, respectively.

We made some experiments to estimate the distribution function of the (random)
figure of merit returned by the randomized CBC algorithm. The minimal value was
usually slightly larger than that returned by the CBC algorithm, but on rare occasions
the R-CBC algorithm did a bit better. The latter can happen in situations where the
CBC path is not optimal and the randomized method finds a better one by chance.
As an illustration, for n = 32749, d = 10 and weights γj = 1/j2 (as in the upper
panel of Figure 1 and in row 6 of the table), the CBC construction gave a figure
of merit of 0.1499629, and the randomized CBC algorithm gave figures of merit
between 0.1500882 and 0.1504918 (from 1000 independent runs of the algorithm),
with a median of 0.1502565 and a mean of 0.1502607. Figure 2 shows the estimated
distribution function and density of the value returned by the R-CBC algorithm,
from the 1000 runs. The density is slightly asymmetric and is concentrated in a
narrow interval.

Figure 3 shows the best figure of merit obtained by the CBC construction, as a
function of n, in a log-log scale, for various choices of the weights and dimension.
These plots provide good insight on how the best bound behaves as a function of n in
general. We see that unless the dimension is very small (e.g., 2 or 3, as in the upper
panel) or the weights converge extremely fast (as in the bottom panel), the observed
convergence rate for n up to one million is much slower than O(1/n). That is, we
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Table 1 Values of the figure of merit obtained by the CBC algorithm (CBC), the randomized CBC
construction with r = 5 (R-CBC), and uniform random search with r = 105 (Best-R), for various
choices of weights, d, and n. The last three columns also provide the median and the mean of the
empirical distribution (Median and Mean), and the exact mean Γn,d,γ , for comparison.

γj d n CBC R-CBC Best-R Median Mean Γn,d,γ

1/j2 5 8009 0.0719 0.0729 0.0723 0.0759 0.0787 0.0792
32749 0.0292 0.0294 0.0293 0.0306 0.0317 0.0318

131071 0.0114 0.0115 0.0115 0.0119 0.0123 0.0123
1048573 0.0026 0.0026 0.0026 0.0027 0.0028 0.0028

" 10 8009 0.3125 0.3135 0.3137 0.3192 0.3223 0.3229
32749 0.1499 0.1500 0.1504 0.1524 0.1536 0.1538

131071 0.0689 0.0691 0.0691 0.0698 0.0702 0.0703
1048573 0.0198 0.0198 0.0199 0.0200 0.0201 0.0201

" 20 8009 0.7315 0.7347 0.7337 0.7400 0.7432 0.7439
32749 0.3934 0.3943 0.3943 0.3967 0.3980 0.3981

131071 0.2021 0.2025 0.2025 0.2033 0.2039 0.2039
1048573 0.0686 0.0686 0.0687 0.0688 0.0689 0.0689

1/j 3 8009 0.0733 0.0762 0.0735 0.0802 0.0874 0.0881
32749 0.0266 0.0270 0.0266 0.0290 0.0317 0.0319

131071 0.0093 0.0095 0.0093 0.0101 0.0111 0.0112
1048573 0.0018 0.0018 0.0018 0.0020 0.0022 0.0022

" 5 32749 1.1037 1.1078 1.1044 1.1179 1.1249 1.1252
131071 0.4728 0.4759 0.4732 0.4782 0.4811 0.4811

1048573 0.1206 0.1211 0.1207 0.1217 0.1222 0.1222

1 3 8009 0.4036 0.4206 0.4033 0.4349 0.4659 0.4682
32749 0.1480 0.1498 0.1476 0.1590 0.1712 0.1718

131071 0.0526 0.0536 0.0522 0.0562 0.0608 0.0610
1048573 0.0096 0.0107 0.0103 0.0111 0.0120 0.0120

1/4 3 8009 0.0081 0.0083 0.0081 0.0090 0.0100 0.0102
32749 0.0029 0.0029 0.0029 0.0032 0.0036 0.0036

131071 0.0010 0.0010 0.0010 0.0011 0.0012 0.0012

" 5 32749 0.1568 0.1583 0.1572 0.1601 0.1617 0.1618
131071 0.0660 0.0663 0.0662 0.0671 0.0678 0.0678

1048573 0.0165 0.0166 0.0165 0.0167 0.0168 0.0168

know that the slope of all the curves in the figure converges to −1, asymptotically,
when n→∞, but for the observed values of n, the curves have a concave shape and
the slope is often much less than −1. This behavior is typical and was observed in
our plots for several other parameters as well.

In the case of the fast-decaying weights γj = 1/2j (bottom panel), increasing
the dimension has eventually almost no visible effect: the upper curve appears a bit
thicker because it contains the curves for d = 10, 20, and 40, which almost overlap.
The reason is simple: the weights decrease so fast that the high-dimensional coordi-
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Fig. 2 Empirical distribution F̂ and density estimate f̂ of D̄∗γ (Pn) for the point set Pn returned

by the R-CBC algorithm with r = 5, when n = 32749, d = 10, and γj = 1/j2 (based on 1000
replicates). The vertical lines indicate the median (dashed) and the mean.

nates have a negligible contribution to the discrepancy. This effect also appears to a
lesser extent for γj = 1/j2 (middle panel).

In the upper panel, we also show the true value of the discrepancy D∗γ (Pn) for the
same point sets Pn, for γj = 1, for the cases where we have been able to compute it,
namely for d = 2 and for d = 3 with small n. For this, we implemented the algorithm
given in [1] (the required work increases as O(nd)). One can see that the upper
bound D̄∗γ (Pn) (the figure of merit) is much larger than the true discrepancyD∗γ (Pn),
and the gap seems to increase rapidly with the dimension d . As an illustration, when
d = 2 and n= 32749, the true discrepancy is 0.00014 and the bound is 0.00382. For
d = 3 and n = 8009, the true discrepancy is 0.0017, whereas the bound is 0.4036,
which is about 240 times larger! This gap is orders of magnitude larger than the
gain of the CBC algorithm over the two randomized methods (see Table 1), even
with small r .

Conclusion

We have provided a reality check on the practical meaning of known upper bounds
on the weighted star discrepancy, the convergence rate of these bounds for the best
rank-1 lattices, the distribution of the value of the bound for a random rank-1 lat-
tice, and the behavior of the CBC construction algorithm as well as randomized
algorithms based on these bounds. We saw that the best achievable value of the up-
per bound is typically not much smaller than the average value over all admissible
generating vectors, and that a value close to the minimum can easily be found by
a simple randomized algorithm and even by naive random search. Our experiments
confirm the popular belief that these discrepancy bounds are not always tight and
that they may converge rather slowly. Even though the best achievable value of the
bound decreases as O(n−1+δ) for any δ > 0 asymptotically, its rate of decrease is
typically slower than this asymptotic rate for reasonable values of n. For n less than
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Fig. 3 The best bound D̄∗γ (Pn) obtained with the CBC construction as a function of n, in a log-

log scale, in d dimensions, when γj = 1 for all j (upper panel), γj = 1/j2 (middle panel), and
γj = 1/2j (lower panel). In the upper panel, we also have the true weighted star discrepancy
D∗γ (Pn) (the thick lines) for the cases where we were able to compute it (for d = 2 and for d = 3
with small n). Selected slopes are shown for reference. All these functions have a slope of −1
asymptotically when n→∞.

a million (say), the bound turns out to be practically useless unless the dimension d
is very small or the weights converge very quickly. One implication might be that
other types of discrepancies, which can be computed exactly and converge faster
than the bounds considered here [5, 12], provide more appropriate figures of merit
from the practical viewpoint.
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Ergodic Estimations of Upscaled Coefficients for
Diffusion in Random Velocity Fields

Nicolae Suciu and Călin Vamoş

Abstract Upscaled coefficients for diffusion in ergodic velocity fields are derived
by summing up correlations of increments of the position process, or equivalently of
the Lagrangian velocity. Ergodic estimations of the correlations are obtained from
time averages over finite paths sampled on a single trajectory of the process and a
space average with respect to the initial positions of the paths. The first term in this
path decomposition of the diffusion coefficients corresponds to Markovian diffusive
behavior and is the only contribution for processes with independent increments.
The next terms describe memory effects on diffusion coefficients until they level off
to the value of the upscaled coefficients. Since the convergence with respect to the
path length is rather fast and no repeated Monte Carlo simulations are required, this
method speeds up the computation of the upscaled coefficients over methods based
on long-time limit and ensemble averages by four orders of magnitude.

1 Introduction

Direct Monte Carlo estimations of diffusion coefficients by averaging over ensem-
bles of realizations of the process and taking the large time limit often constitute a
numerical challenge in simulation studies. Owing to the ergodicity of the process,
the numerical burden can be reduced to a great extent.

For ergodic transport processes, the ensemble average of the observables can be
estimated by the arithmetic mean of the observables resulting from repeated simu-
lations of diffusion, done for the same realization of velocity field and for point-like
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sources with different locations uniformly distributed over large enough spatial do-
mains [8]. Even though promising results can be obtained in this way, this “ergodic
simulations method” depends on the quality of the numerically generated processes:
worse are the ergodic properties of the latter, greater is the number of simulations for
different initial positions required to achieve the desired accuracy. For instance, re-
sults of two-dimensional ergodic simulations of diffusion in random velocity fields
presented in [8], obtained by averaging over a moderate number of 121 initial po-
sitions, indicated the approach of ergodic estimates to the corresponding ensemble
averages but the accuracy of the upscaled diffusion coefficients was not yet satisfac-
tory. To increase the accuracy, more initial positions should be considered, which
would increase the computational costs and render the ergodic simulations less com-
petitive with respect to the direct Monte Carlo approach.

The “path decomposition method” proposed in Sect. 2 provides ergodic estimates
of diffusion coefficients by sums of correlations of increments on paths of increasing
but finite lengths on a single trajectory of the diffusion process. To increase the
accuracy, the path correlations are further averaged over a large number of paths.
In the case of diffusion in random velocity fields, the upscaled diffusion coefficients
can be explicitly written in terms of correlations of the Lagrangian velocity, sampled
on the same trajectory (Sect. 3). Summing up autoregressive processes of order 1,
diffusion processes with memory and exactly computable diffusion coefficients are
constructed and are used to test the path decomposition method (Sect. 4). Finally,
in Sect. 5, the new approach is applied to a problem of diffusion in random velocity
fields which occurs in modeling groundwater contamination. Some conclusions are
drawn in Sect. 6.

2 Path Decomposition of Diffusion Coefficients

Let X = {Xt, t ≥ 0} be a stochastic process of mean zero starting from X0 = 0. If
after a transient time X behaves as a normal diffusion, the diffusion coefficient is
related to the expectation E{X2

t } by the Einstein formula [1, 15]

D = lim
t−→∞

1

2t
E{X2

t }. (1)

Dividing a finite time interval [0, t] in S subintervals of equal length τ , t = Sτ ,
the position Xt and its square X2

t can be expressed in terms of random variables
δXs =Xsτ −X(s−1)τ ,

Xt =
S∑

s=1

δXs , X
2
t =

S∑

s=1

(δXs)
2+2

S−1∑

r=1

S−r∑

s=1

δXsδXs+r .

Defining the (time average) correlations
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ρ(r)= 1

S− r

S−r∑

s=1

δXsδXs+r

one obtains

X2
t = Sρ(0)+2

S−1∑

r=1

(S− r)ρ(r). (2)

The expectation of (2) is a discrete form of Taylor’s formula (see e.g. [3]). If X is an
ergodic process, the diffusion coefficient can be estimated as D = 1

2Sτ X
2
t , without

taking the expectation of X2
t . For some lattice gas systems and molecular dynam-

ics simulations the hydrodynamic long-time limit in (1) can be indeed replaced by
τ −→ 0 (fixed t) and expectations can be approximated by time averages [15]. The
space average of (2) over N different paths of length S sampled on a single trajec-
tory of the process X further improves the estimates. Replacing the correlations in
(2) by their space averages % = 1

N

∑N
n=1%n and using (1) one obtains the following

estimation of the diffusion coefficient for a given length S of the paths:

D = 1

2τ
ρ(0)+ 1

τ

S−1∑

r=1

(
1− r

S

)
ρ(r). (3)

For a Markovian diffusive behavior, as for instance random walk or Wiener pro-
cess, the diffusion coefficients is solely defined by the first term of (3). The corre-
lations ρ(r), with r > 0, describe the transient regime of diffusion processes with
memory. One expects that if the process takes place in a random environment, (3)
also estimates the up-scaled diffusion coefficient provided the environment has suit-
able ergodic properties.

3 Upscaled Coefficients for Diffusion in Random Fields

The advection-dispersion model for transport in heterogeneous media such as tur-
bulent atmosphere, plasmas, or aquifers [7] is a vector valued process described by
the Itô equation dY(t) = V(Y(t))dt + dW(t), where V is a realization of a ran-
dom velocity field and W a Wiener process of mean zero and variance 2D0 t . The
diagonal ll components of the upscaled diffusion coefficient are given by the long
time limit of D∗ll = 1

2t Σll , where Σll = 〈E{X2
l }〉 is the average over the ensemble

of velocity realizations of the expected squared displacement from the mean plume
center of mass, Xl = Yl−〈E{Yl}〉 [5]. If the Eulerian velocity field V is statistically
homogeneous and has suitable smoothness properties which ensure the existence
of pathwise unique solutions of the Itô equation, then the Lagrangian velocity field
V(Y) is also statistically homogeneous [6]. Under these conditions, from the Itô-
Euler scheme δXl,s = ul(Ys−1)τ + δWl,s , where ul = Vl −〈E{Vl}〉 is the velocity
fluctuation, one obtains

〈E{δXl,sδXl,s+r}〉 = δ
r,0 2D0τ + τ 2ρ

u,ll
(r),
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where
ρ
u,ll
(r)= 〈E{ul(Yl,s−1)lul(Yl,s−1+r )}〉.

If the Eulerian velocity field V has a finite correlation range then it is ergodic [14].
Assuming that the Lagrangian velocity field inherits the ergodicity property, one
expects that the velocity correlation above can be approximated by an average over
N paths of length S on a single trajectory of the process X(t),

ρ
u,ll
(r)= 1

N

N∑

n=1

1

S− r

S−r∑

s=1

ul(Yl,n+s−1)ul(Yl,n+s−1+r )

and from (3) one obtains

D∗ll =D0 +
τ

2
ρ
u,ll
(0)+ τ

S−1∑

r=1

(
1− r

S

)
ρ
u,ll
(r). (4)

In Sect. 5 below it is shown that the heuristic formula (4) yields quite good es-
timates of upscaled coefficients, which, in turn, supplies a numerical indication for
the ergodicity of the Lagrangian velocity field.

The path correlations decomposition (4) of the diffusion coefficients resembles
a discrete Green-Kubo formula [1] and has been used in [9] to calibrate parameters
for massive parallel simulations of transport in saturated aquifers [4, 5].

4 Exactly Computable Diffusion Coefficients

The trajectory of a diffusion process can be simulated numerically by summing up
realizations of a Gaussian white noise, Z = {Zn,n = 0,1,2, ...}, of mean zero and
constant variance σ 2

0 . This is a particular case of the more general algorithm for
autoregressive processes of order 1 (AR(1))

Xn = φXn−1+Zn. (5)

AR(1) processes are often used to generate synthetic time series with given sta-
tistical properties [10, 13]. For φ = 1, (5) defines a discrete time diffusion process,
for φ = 0 it reduces to the white noise, for 0<φ < 1 one obtains a correlated AR(1)
process, and for −1 < φ < 0 one obtains an anticorrelated AR(1) [12]. For |φ|< 1
the infinite AR(1) processes, {Xn,n= 0,±1,±2, ...}, are stationary and, as follows
from (5), their expectation is zero, E{Xn} = 0, and the variance and the autocovari-
ance are given by the relations

σ 2 = σ 2
0

1−φ
, γ (r)= E{XnXn+r} = σ 2φr . (6)
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Since in numerical simulations AR(1) processes always have a finite length, there
is a transient regime until the process reaches a stationary state. If the first term X1
in (5) is a realization of a random variable whose variance equals the variance σ 2

of the theoretical AR(1) of infinite length, then the transient regime is completely
eliminated and one obtains an AR(1) process of finite length with the variance and
autocovariance (6) of the infinite AR(1) process [12].

In the following we show that AR(1) processes can be used to generate diffusion
processes with memory. This can be achieved by replacing in the algorithm for the
generation of the discrete time diffusion processes the Gaussian noise by the AR(1)
noise {Xn} of mean zero and constant variance, defined by the relation (5) with
|φ|< 1. The process {Yn} starting from Y1 = 0 is then generated by

Yn = Yn−1+Xn =
n∑

s=1

Xs. (7)

From (7) it follows that E{Yn} = 0, and using (2) and the stationarity of the AR(1)
noise {Xn} one finds that the variance is given by a Taylor formula,

σ 2
Yn
= E{Y 2

n } = nσ 2+2
n−1∑

r=1

n−r∑

s=1

E{XsXs+r} = nσ 2+2
n−1∑

r=1

n−r∑

s=1

γ (r)

= nσ 2+2
n−1∑

r=1

(n− r)γ (r).

According to Einstein’s relation (1), the diffusion coefficient is

D = lim
n−→∞

σ 2
Yn

2nτ
= σ 2

2τ
+ 1

τ
lim

n−→∞

n−1∑

r=1

(1− r

n
)γ (r)= σ 2

2τ
+ 1

τ
lim

n−→∞

n−1∑

r=1

γ (r),

and can be effectively computed, for |φ|< 1, by using the explicit form of the auto-
covariance (6),

D = σ 2

2τ
+ σ 2

τ
lim

n−→∞φ
1−φn−1

1−φ
= σ 2

2τ
+ σ 2

τ

φ

1−φ
.

Denoting by D0 = σ 2/(2τ) the diffusion coefficient of the process generated by a
white noise of variance σ 2, the diffusion coefficient of the process generated by a
general AR(1) noise with |φ|< 1 takes the explicit form

D =D0

(
1+2

φ

1−φ

)
. (8)

Since the finite limit (8) exists, the process (7) generated by a AR(1) noise is a
diffusion process.

To test the path decomposition method against exact results given by (8), we
consider a variance σ 2 = 1 m2 and a time step τ = 0.5 s, so that the diffusion
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coefficient for the case φ = 0 takes on the value D0 = σ 2/(2τ) = 1 m2/s. Using
N = 50,000 paths with fixed length S = 100 we computed the correlations ρ(r)
entering the path decomposition (3) for diffusion processes generated by AR(1)
noises with different values of the parameter φ.

Figure 1 shows the progress of partial sums in (3), D(r), for increasing r . One
can see that the path decomposition (3) converges, after a transient regime, to the
exact coefficients (8), represented by straight lines in left panel of Figure 1. The
right panel Figure 1 shows that the super-diffusive transient regime is expanded as
φ tends to 1 when, according to (8), D tends to infinity.

The computation time, of about 4 seconds in all cases presented in Figure 1, is
still of the order of the CPU time required by direct estimations of diffusion coef-
ficients with the Einstein’s relation (2). However, the path decomposition method
demonstrates its advantages when applied to diffusion processes in random velocity
fields, as shown by the example presented in the next section.

Fig. 1 Diffusion coefficients for processes generated by AR(1) noises with φ = 0, 0.5, -0.9 (left),
and with φ = 0.9, 0.99, and 0.999 (right).

5 Estimated Upscaled Coefficients for Diffusion in Random
Velocity Fields

We consider a two dimensional process of diffusion in random velocity fields, used
to model a typical situation of contaminant transport in groundwater systems, con-
sisting of a superposition of a Wiener process with diffusion coefficient D0 = 0.01
m2/day and a random velocity field of mean U = 1 m/day, exponentially corre-
lated, with finite correlation range λ= 1 m and variance of the order of 0.01 m/day
[4, 5, 6]. The diffusion processes were simulated by simultaneously tracking 1010

computational particles in every velocity realization with the “global random walk”
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algorithm [11]. The simulations and the Monte Carlo estimations of the upscaled
diffusion coefficients are described in detail in [4].

Fig. 2 Longitudinal (left) and transverse (right) upscaled diffusion coefficients estimated by the
methods (3) and (4).

To estimate upscaled diffusion coefficients we considered a time step τ = 0.5
day and N = 2,000,000 paths of fixed length S = 400, on a single trajectory of the
process, which required a CPU time of about 65 minutes. Figure 2 shows the par-
tial sums in (3) and (4) as functions of dimensionless time Ut/λ. The longitudinal
direction is that of the mean velocity. The upscaled coefficients computed by the
method (4) are practically identical with those given by (3). This result supplies a
numerical indication that the Lagrangian velocity inherits the ergodic properties of
the Eulerian velocity field.

For comparison with the Monte Carlo estimations presented in [4, 6], we used a
reduced number of paths, N = 200,000, and we estimated mean values and standard
deviations of the upscaled coefficients by averaging over 100 independent estima-
tions (3) performed for different realizations of the velocity field. Figure 3 shows
that the path decomposition method yields estimations of the upscaled coefficients
close to the Monte Carlo results in the limits of one standard deviation.

The Monte Carlo convergence with the number of velocity realizations R of a
statistical estimate f can be assessed with an estimation error defined, for given
increment ΔR of the number of realizations, by

E(f (R))= |f (R+ΔR)−f (R)|. (9)

Figure 4 shows results on the convergence of the mean coefficients 〈D∗ll〉 esti-
mated by the Monte Carlo simulations presented in Figure 3. For longitudinal quan-
tities (l = 1) the errors (9) were computed at dimensionless times of 1 and 20 (where
the ensemble averages were most sensitive to R) while for transverse ones (l = 2)
the dimensionless times were 1 and 10. The number of realizations was gradually
increased by ΔR= 32 in both cases. For R ≥ 1000 realizations E falls under the de-
sired accuracy threshold of D0/2. The errors (9) for the path decomposition method



Se
co

nd
 p

ro
of

s

624 Nicolae Suciu and Călin Vamoş

(3), computed at the dimensionless time of 200 with an increment of the number
of realizations of ΔR = 5, are presented in Figure 5. The results show that the os-
cillations of both mean values 〈D∗ll〉 and standard deviations SD(D∗ll ), l = 1,2 are
already smaller than D0 for about 10 realizations.

Fig. 3 Longitudinal (left) and transverse (right) upscaled diffusion coefficients estimated by
method (3) and by Monte Carlo simulations. The thick full lines represent the arithmetic average
〈D∗ll〉 of 100 estimations (3) and the thin full lines represent 〈D∗ll〉±SD(D∗ll ).

Fig. 4 Convergence of the mean longitudinal (left) and transverse (right) upscaled diffusion coef-
ficients for the Monte Carlo simulations.

A single estimation (3) of the upscaled diffusion coefficients lasted about 6 min-
utes, so that the total computation time for the statistical estimations presented in
Figure 3 was of about 10 CPU hours. Thus the estimates with the decomposition
(3) were thousand times faster than those obtained with the Monte Carlo approach
(1024 realizations and about 12 CPU hours / realization, on the same computing
platform). Moreover, since quite good estimates of the upscaled coefficients can
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Fig. 5 Convergence of the mean and standard deviation of the longitudinal (left) and transverse
(right) upscaled diffusion coefficients estimated by the path decomposition method (3).

be obtained by using a single trajectory of the process (see Figure 3), the effective
speed up of the computations is of about four orders of magnitude.

6 Conclusions

The path decomposition method proposed in this paper avoids the cumbersome tasks
of taking the long time hydrodynamic limit and of averaging over large statistical
ensembles, like in usual Monte Carlo approaches. Instead, the diffusion coefficients
are computed as contributions of correlations of the process increments on paths of
finite lengths, sampled on a single trajectory.

The advantage of this method is obvious for processes with memory, consisting
of diffusion in random velocity fields. As compared with the Monte Carlo approach,
the speed up of the computations can be as large as four orders of magnitude. The
comparison presented in Figure 3 shows that the path decomposition method yields
fairly good estimations of the upscaled coefficients.

Since the method allows fast estimation of the diffusion coefficients, it can be
used to calibrate more complex simulations for large scale transport problems. A
promising field of applications is the Lagrangian approach for turbulent dispersion,
where the Lagrangian velocity samples are readily available as solutions of Itô-type
equations [2].

The decomposition of the upscaled diffusion coefficients in terms of velocity
correlations is another feature, which, as illustrated by the results presented in Fig-
ure 2, is useful in investigations on relationships between ergodic properties of the
Eulerian and Lagrangian velocity fields.

Acknowledgements The work presented in this paper was supported by the Deutsche
Forschungsgemeinschaft grant SU 415/1-2 and the Romanian Ministry of Education and Research
grant 2-CEx06-11-96.
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Green’s Functions by Monte Carlo

David White and Andrew Stuart

Abstract We describe a new numerical technique to estimate Green’s functions of
elliptic differential operators on bounded open sets. The algorithm utilizes SPDE
based function space sampling techniques in conjunction with Metropolis-Hastings
MCMC. The key idea is that neither the proposal nor the acceptance probability
require the evaluation of a Dirac measure. The method allows Green’s functions to
be estimated via ergodic averaging. Numerical examples in both 1D and 2D, with
second and fourth order elliptic PDE’s, are presented to validate this methodology.

1 Introduction

Green’s functions play a central role in many areas of mathematics and statistics:
they provide fundamental solutions used as the basic building block to construct
solutions of inhomogeneous PDEs; they act as the representers for reproducing ker-
nel Hilbert spaces; and the covariance function of a Gaussian random field may be
viewed as the Green’s function for the precision operator.

This article describes a new numerical technique to estimate Green’s func-
tions of elliptic differential operators on bounded open sets. The algorithm utilizes
SPDE based function space sampling techniques [3] in conjunction with Metropolis-
Hastings MCMC [7]. The key idea is that neither the proposal nor the acceptance
probability require the evaluation of a Dirac measure. The method estimates Green’s
functions via an ergodic average of sampled functions. The basic framework is that
probability measures defined on a Hilbert space [4] are sampled using techniques
designed specifically for this infinite dimensional setting.
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In Section 2 it is shown that a Gaussian measure on function space can be con-
structed with mean corresponding to the desired Green’s function. The algorithm
samples functions from this measure and the sample mean provides a good estimate
of the Green’s function of interest.

This idea is validated numerically by examples with known analytic solutions in
Section 3. Green’s functions of second and fourth order elliptic operators in both 1D
and 2D are presented in this section.

The concept presented here is independent of the particular methodology used for
sampling function space. Section 4 considers an alternative proposal for a function
space MCMC sampling method and demonstrates the algorithm in this context via
one of the numerical examples shown in Section 3.

2 Function Space Sampling and Algorithm Description

Sampling from a measure on function space is central to this algorithm. It is shown
below that if the measure and function space sampling algorithm are constructed
appropriately, then the ergodic average of suitably sampled functions converges to
a Green’s function of choice.

We begin by defining a probability measure π on a Hilbert space H with inner
product 〈·, ·〉. The measure π is constructed so that its mean is the desired Green’s
function on a bounded open set D⊂R

n. Throughout this article the measure, π , has
a Radon-Nikodym derivative with respect to a Gaussian measure π0:

dπ

dπ0
∝ exp(−Θ (x)) . (1)

We chose a mean zero Gaussian reference measure π0 = N (0,C) where C is a
trace class, self adjoint, positive definite operator on H so that π0 (H)= 1. For equa-
tion (1) we require that Θ :H→ R is π0-measurable and integrable. The definition
of π0 may be combined with equation (1) to write the following informal expression
for the target density as:

π (dx)∝ exp

(
−Θ (x)− 1

2

〈
x,C−1x

〉)
dx. (2)

This expression has no rigorous status because there is no infinite dimensional
equivalent of Lebesgue measure. However it conveys intuition about the measure
which may be useful to the reader.

The algorithmic ideas presented in this paper apply to sampling general measures
π of the form given by equation (1), in the case where π0 is Gaussian [3]. However
we now look at a particular choice of Θ arising in the application to the construction
of Green’s functions.

In order to obtain the Green’s function of some elliptic differential operator L
incorporating the boundary conditions through its domain, the covariance operator
of the reference Gaussian measure is selected to be C =−L−1. The function Hilbert
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space H = L2 (D) and Θ is chosen to be Θ (x)= 〈x,δs〉. Here δs is the Dirac delta
function centered at s ∈D.

By completing the square in equation (2) we deduce that π ∼ N
(
x̂,C

)
where

x̂ =−Cδs or

Lx̂ = δs . (3)

Then π is absolutely continuous with respect to π0 whenever x̂ ∈ Im
(
C 1

2

)
, by the

Feldman-Hajek Theorem [4].
The measure π is invariant for the SPDE:

dx

dt
= Lx− δs+

√
2
dw

dt
. (4)

Lemma 2.2 in [5] shows that this equation is well defined and ergodic.
Since equation (4) is invariant with respect to the target measure, π , the Green’s

function of interest may be obtained by time marching the SPDE and averaging the
sampled functions to estimate x̂. In practice, this requires direct evaluation of Dirac
delta functions, which introduces further complications.

This difficulty may be circumvented as follows. Instead of equation (4) consider:

dx

dt
= Lx+√2

dw

dt
. (5)

Lemma 2.2 in [5] shows that equation (5) is π0 invariant rather than π invariant.
However equation (5) does not involve a Dirac delta function. If we use proposals
based on discretising equation (5) then the Metropolis-Hastings accept/reject mech-
anism may be used to create a π invariant Markov chain.

Discretising the SPDE (5) using Crank-Nicolson gives equation:

y−x

Δt
= Lx+Ly

2
+
√

2

Δt
ξ (6)

where ξ represents a spatial white noise which is independent of the current state x.
Re-arranging we obtain the proposal y given a current function x:

(2−ΔtL)y = (2+ΔtL)x+√8Δtξ. (7)

The acceptance probability for the proposal y given x is α (x,y) where:

α (x,y) = exp(0∧R(x,y)) , (8a)

R(x,y) = Θ (x)−Θ (y)= x (s)−y (s) . (8b)

Notice that the acceptance probability only requires computation of the differ-
ence between the current and proposed functions at a single point. This is compu-
tationally inexpensive to evaluate and at no point in the algorithm do we need to
evaluate a delta function.
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This completes our explanation concerning the construction of the measure and
the sampling algorithm. A more detailed explanation of function space sampling
algorithms can be found in [3], for non-Gaussian measures, using SPDE which are
invariant for π given by (1) see [5] and [6].

3 Examples and Numerics

This section numerically validates the above algorithm via three examples. The ex-
amples have known analytic solutions derived by techniques described in [1], [2]
and [8].

Throughout this section we use the standard notation for Sobolev spaces Hs

of functions with s square integrable derivatives, possibly incorporating periodic(
Hs

per

)
or Dirichlet

(
Hs

0

)
boundary conditions.

Example 1. As a first example, we consider the elliptic differential operator L= d2

du2

with Dirichlet boundary conditions:

L = d2

du2
on (0,1) (9a)

with D(L) = {
x ∈H 1

0 (0,1)∩H 2 (0,1)
}
. (9b)

It may be shown theoretically that the Green’s function for L is:

G(u,s)=
{
s (u−1) ∀s ≤ u

u(s−1) ∀s > u.
(10)

Figure 1 shows a numerical estimate of the Green’s function (with s = 0.3) using
104 burn in steps and 105 actual steps of the MCMC method described in this article.
A spatial discretisation of Δu = 10−3 and time step of Δt = 1 were used here to
generate these estimates. The initial function and the last sampled function are also
displayed to demonstrate the stochastic origins of the estimate. The estimate appears
to be approximately piecewise linear with a minimum at u = 0.3. These observed
features are in agreement with the theory.

Example 2. The first example is generalised by introducing a second term into the
differential operator. Equations (11a) and (11b) show the operator, interval and
boundary conditions.

L = d2

du2
− k2 on (0,1) (11a)

D(L) = {
x ∈H 1

0 (0,1)∩H 2 (0,1)
}

(11b)

It may be shown theoretically that the Green’s function for L is:
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Fig. 1 Green’s Function of L= d2

du2 with s = 0.3.

G(u,s)=
⎧
⎨

⎩

e−k
2k

eks−ek(2−s)
ek−e−k

(
eku− e−ku

) ∀u≤ s

e−k
2k

eks−e−ks
ek−e−k

(
eku− ek(2−u)

) ∀u > s.

(12)

The algorithm was tested using this problem with Δu= 10−3, Δt = 10−2 with a
10% burn in period. The initial condition function was chosen to be identically zero
across [0,1].

Figure 2 shows both (a) the numerical estimates of the Green’s functions and (b)
the L2 normed error of these estimates for k = 10. (a) shows the Green’s function
estimate for 105 iterations and 108 iterations. The former has visible deviations from
the correct solution and the latter is visually identical to the true solution. (b) shows
the normed error of the algorithm’s estimates for 105, 106, 107 and 108 samples. It
is evident from these plots that the algorithm’s output does converge to the correct
solution.

Example 3. We now consider a two-dimensional Green’s function, arising from the
biharmonic operator. The objective here is to test the algorithm on a higher dimen-
sional problem. Define L by:

L = −%2 =−
(
∂2

∂u2
1

+ ∂2

∂u2
2

)2

on E = (0,�1)× (0,�2) , (13a)

D(L) =
{
x ∈H 4

per (E)

∣∣∣∣

∫

E

xdu= 0

}
. (13b)

The constraint shown in (13b) is required to uniquely define the Green’s function.
Without this, any constant may be added to a Green’s function of L to obtain another
valid Green’s function.

Equation (14) shows the Green’s function of this problem, calculated using
Fourier series expansions:



Se
co

nd
 p

ro
of

s

632 David White and Andrew Stuart

Fig. 2 Green’s Function of L= d2

du2 −100 with s = 0.8.

G
(
u,s

)=− 1

16π4�1�2

∑

(p,q)∈K

exp
(

2πip(u1−s1)
�1

)
exp

(
2πiq(u2−s2)

�2

)

(
p2

�2
1
+ q2

�2
2

)2
. (14)

Here K= Z
2\{(0,0)}.

An FFT based approach was used to calculate proposals on [0,1]2 using (7) and
the accept/reject step was based on the function value at s = ( 1

2 ,
1
2

)
. The discretisa-

tions and time steps used were Δu1 = Δu2 = 1
128 , Δt = 1 with 3.2× 106 MCMC

steps preceded by 105 burn in steps. The initial function was chosen to be identically
zero on D.

Figure 3 shows (a) the resulting Green’s function estimate and (b) the error es-
timate. It is clear from these plots that the algorithm functions correctly for this
problem.
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Fig. 3 Green’s Function of L=−%2 with s = (0.5,0.5).

4 Other Related Proposals

A requirement of the algorithm presented in this paper is the invariance of the mea-
sure π to the SPDE stated in equation (4). However, this SPDE is not the only SPDE
with this property. An alternative SPDE is (see [6], equation (2.14) and Theorem
3.6):

dx

dt
=−x+Cδs+

√
2C dw

dt
. (15)

As above, C is the covariance operator and δs is the Dirac delta measure with centre
at s.

The general definition of the square root of the self-adjoint operator C is, of
course, through diagonalization in an orthonormal basis, as for matrices. Note how-
ever that if ξ is spatial white noise then

√
Cξ is simply a draw from the measure π0;

this may sometimes be achieved without constructing
√
C explicitly, for example if

C is the covariance operator of Brownian bridge.
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Similarly the following SPDE is π0 invariant:

dx

dt
=−x+√2C dw

dt
. (16)

Similarly to the development in Section 2, this equation may be discretised and
used to generate proposals for a Metropolis-Hastings Markov chain. The Crank-
Nicolson discretisation gives:

y−x

Δt
=−x+y

2
+
√

2C
Δt

ξ (17)

which re-arranges into:

y = 2−Δt

2+Δt
x+

√
8ΔtC

2+Δt
ξ. (18)

The re-arrangement has a special form, the proposal, y, is a linear combination
of the current solution x and

√
Cξ where ξ is spatial white noise independent of x.

In particular,
√
Cξ may be drawn directly from π0. Also notice that:

(
2−Δt

2+Δt

)2

+ 8Δt

(2+Δt)2
= 1. (19)

This ensures that y is drawn from a measure which is absolutely continuous with
respect to the Gaussian reference measure π0. The acceptance probability for this
proposal is again that shown in equations (8a) and (8b), (Theorem 4.1 in [3]).

In one dimension, for the operator L given in Examples 1 and 2,
√
Cξ is Brow-

nian bridge measure and draws from it can be made from linear combinations of
Brownian motion.

The algorithm was tested using this problem with Δu = 10−3, Δt = 0.5 with a
10% burn in period. The initial condition function was chosen to be identically zero
across [0,1].

Figure 4 (a) shows estimates of the Green’s function problem described in Ex-
ample 2 and (b) shows the corresponding error norms produced using this alternate
proposal. It is clear from these plots that the algorithm converges for this new pro-
posal. This result is particularly interesting in view of the fact that the basic building
block is simulation of Brownian motions (and hence Brownian bridges) and no in-

version of L or L 1
2 was required to generate this estimate.

5 Conclusions and Further Work

In this article we have introduced a new Metropolis-Hastings based approach to cal-
culating Green’s functions of elliptic operators on bounded open sets. It was shown
that if the target measure is constructed on a function space in a particular way, the
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Fig. 4 Green’s Function of L = d2

du2 − 100 with s = 0.8 using the alternate SPDE proposal of
Section 4.

ergodic average of the sampled functions converges to the Green’s function of an
elliptic differential operator.

The method was validated via three numerical examples, for which the Green’s
function was known analytically.

In addition to the work presented in this article, it has been observed that this
algorithm is trivially parallelisable. Existing direct PDE based methods for calculat-
ing Green’s functions are serial by necessity. So this potential for parallelism places
a considerable advantage over existing methods. This work is on going and more
details will appear in [9].
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Tractability of Multivariate Integration
for Weighted Korobov Spaces:
My 15 Year Partnership with Ian Sloan

Henryk Woźniakowski

Abstract This paper is intended as a birthday present for Ian Sloan who celebrated
his 70th birthday during MCQMC’08 in Montreal. In the first paper with Ian we
studied multivariate integration for the unweighted Korobov spaces of smooth and
periodic functions equipped with L∞-type norms expressed in terms of Fourier co-
efficients. We proved that this problem is intractable and suffers from the curse
of dimensionality. To break intractability, weighted Korobov spaces are studied
in this paper. Product weights are mainly considered, and finite-order weights are
only briefly mentioned. Necessary and sufficient conditions for strong polynomial
tractability, polynomial tractability and weak tractability are presented. The neces-
sary and sufficient conditions coincide only for weak tractability, whereas there is
a gap between them for strong polynomial and polynomial tractability. In terms of
the exponent of strong polynomial tractability, the lower and upper bounds differ
at most by a factor of two. Nevertheless, these bounds prove that the exponent of
strong polynomial tractability depends on the decay of weights.

1 Introduction

There was a special session during MCQMC’08 in Montreal honoring Ian Sloan on
his 70th birthday. I was pleased to mention during this session that our partnership
with Ian started about 15 years ago. I met Ian for the first time during the Oberwol-
fach conference on multivariate integration in 1992. It was obvious from the very
beginning that multivariate integration is our favorite research subject, especially
the integration of d-variate functions with large d . I visited Ian in Sydney for the
first time in 1994, and we now often meet in various places all over the world. Ian
has visited me in Poland at least 5 times, and I have visited him in Australia even
more often.

Department of Computer Science, Columbia University, and Institute of Applied Mathematics,
University of Warsaw
e-mail: henryk@cs.columbia.edu

P. L’Ecuyer, A.B. Owen (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008,
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Our first paper [13] was published in 1997 and I will return to this paper later.
In 1998 we published the paper “When are quasi Monte Carlo algorithms efficient
for high dimensional integrals?”, see [14], where weighted spaces were introduced.
Weights monitor the importance of successive variables and groups of variables. We
wanted to explain why QMC algorithms are so efficient for many finance applica-
tions where functions of 360 or more variables are integrated. We proved that if the
weights decay sufficiently fast, then the worst case error of some QMC algorithms
does not depend on d or depends only polynomially on d . The idea of weighted
spaces has turned out to be quite rich. We are pleased that today many people are
studying multivariate integration as well as other multivariate problems defined over
weighted spaces.

So far, I have written with Ian 15 papers, some of them jointly with Josef Dick,
Frances Kuo, Erich Novak, Xiaoqun Wang and Grzegorz Wasilkowski. On behalf
of all collaborators, I wish to say that it has been a great honor (and a lot of fun) to
work with Ian. We all wish Ian many fruitful years to come, and we wish ourselves
the pleasure of writing many more papers with Ian.

The reader may notice that Ian and I have a nice average of published papers;
namely one paper a year. Since we are working on a few more papers, I hope to
maintain this average for many years to come. I would be pleased to celebrate Ian’s
80th, 90th and 100th birthday, repeating that our average is still one paper a year at
each celebration.

Let me now return to our first paper [13], where we studied multivariate approx-
imation for smooth periodic functions. This was done for an unweighted Korobov
space with an L∞-type norm expressed in terms of Fourier coefficients, where all
variables and groups of variables play the same role. We proved that this problem
is intractable. More precisely, we proved that it is necessary to compute at least 2d

function values if we want to have an error of ε with ε < 1. This means that the prob-
lem suffers from the curse of dimensionality. To break intractability and the curse
of dimensionality, we must shrink the original unweighted space by introducing de-
caying weights. The main challenge is to find necessary and sufficient conditions
on weights such that the curse of dimensionality is broken. As I mentioned before,
many weighted spaces have been analyzed for multivariate integration. Usually this
has been done for Hilbert spaces, but the weighted analogue of the Korobov space
from [13] has not yet been analyzed.

This is the subject of the present paper. The so-called product weights are mainly
considered, and finite-order weights are mentioned only at the end of the paper.
The main result of this paper is to provide necessary and sufficient conditions on
weights to guarantee polynomial or weak tractability. More precisely, let n(ε,d)
denote the minimal number of function values needed to find an algorithm using
these values with (worst case) error at most ε for the d-variate case. Polynomial
tractability means that n(ε,d) is bounded by a polynomial in ε−1 and d , whereas
strong polynomial tractability means that this polynomial is independent of d . The
exponent of strong polynomial tractability is the minimal (or the infimum of) b for
which n(ε,d) is bounded by a multiple of ε−b. Weak tractability means that n(ε,d)
does not depend exponentially on ε−1 and d .
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I now explain the proof technique of the paper. Multivariate integration for the
Korobov space with theL∞-type norm is not easier than its analogue for theL2-type
norm. The latter problem has been thoroughly studied and the lower bound results
for the L2 case are also lower bound results for the L∞ case. Since the weighted
Korobov space studied here is not a Hilbert space, the results on decomposable
kernels from [9] do not apply. We present another lower bound entirely in terms
of the product weights in Theorem 1. This theorem generalizes the result of [13]
to the weighted case. The upper error bounds are obtained by showing that lattice
rules may also be used in the L∞ case and their error is related to the error for the
L2 case with appropriately changed parameters. This allows us to present necessary
and sufficient conditions for strong polynomial tractability, polynomial tractability
and weak tractability. The necessary and sufficient conditions only match for weak
tractability. There is a gap between the necessary and sufficient conditions for strong
polynomial and polynomial tractability; this is probably because Theorem 1 is not
sharp.

One of the open problems for tractability of multivariate integration is the ques-
tion of whether the exponent of strong polynomial tractability depends on how
quickly the weights decay. It is known that if the weights decay sufficiently fast
then we can achieve nearly the same exponent as for the univariate case, and it is
conjectured that such a decay of the weights is also necessary. We partially prove
that this is the case by showing a lower bound on the exponent in terms of the decay
of the weights. This bound is unfortunately not sharp and may differ from the upper
bound by a factor of 2.

2 Weighted Korobov Spaces

Weighted Korobov spaces consist of periodic complex valued functions f defined
on the d-dimensional unit cube [0,1]d with a controlled decay of their Fourier co-
efficients. This decay depends on the weights and on the smoothness parameter.

More precisely, for h= [h1,h2, . . . ,hd ] ∈ Z
d with integers

hj ∈ Z := {. . . ,−1,0,1, . . . },

and for f ∈ L2([0,1]d), let f̂ (h) denote the Fourier coefficient of f ,

f̂ (h)=
∫

[0,1]d
f (x) exp(−2π ih ·x)dx,

with i = √−1, x = [x1,x2, . . . ,xd ] for xj ∈ [0,1], and the inner product h · x =
h1x1+h2x2+·· ·+hdxd . For d ∈ N := {1,2, . . . }, let

1= γd,0 ≥ γd,1 ≥ ·· · ≥ γd,d ≥ 0
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be a given sequence of weights. For any u ⊆ [d] := {1,2, . . . ,d}, denote γd,u =∏
j∈u γd,j . For h ∈ Z

d , define

u(h)= {j ∈ [d] | hj �= 0}.
Finally, by γ = {γd,j }d∈N,j∈[d] we denote a sequence of all weights. Such weights
are called product weights, see [10] for more details.

For a given smoothness parameter α, we consider two classes of Korobov spaces
equipped with the L2 and L∞-type norms. The Korobov space F2 = Fd,α,γ,2 is
defined for α > 1/2 by

F2 =
{
f | ‖f ‖2 :=

(∑

h∈Zd

|f̂ (h)|2
∏

j∈u(h) |hj |2α
γd,u(h)

)1/2

<∞
}
,

and the Korobov space F∞ = Fd,α,γ,∞ is defined for α > 1 by

F∞ =
{
f | ‖f ‖∞ := sup

h∈Zd

|f̂ (h)|
∏

j∈u(h) |hj |α√
γd,u(h)

<∞
}
.

If γd,u(h) = 0 then we assume that f̂ (h)= 0 and interpret 0/0 as 0. Functions from
F2 and F∞ are continuous. For large α, they are also sufficiently smooth.

More precisely, assume that f ∈ F2. For d = 1 and α = r ≥ 1 being an integer, f
is periodic, with absolutely continuous derivatives of order up to r−1 and with the
rth derivative belonging to L2([0,1]). Furthermore, we have

‖f ‖2 =
(∣∣∣∣

∫ 1

0
f (x)dx

∣∣∣∣

2

+ 1

(2π)2r γ1,1

∫ 1

0
|f (r)(x)|2 dx

)1/2

.

For d ≥ 1, the space Fd,r,γ,2 is a tensor product reproducing kernel Hilbert space

Fd,r,γ,2 = F1,r,γd,1,2⊗F1,r,γd,2,2⊗·· ·⊗F1,r,γd,d ,2.

Its reproducing kernel is

K(x,y)=
d∏

j=1

(

1+2γd,j

∞∑

h=1

cos(2π(xj −yj ))

h2α

)

for all x,y ∈ [0,1]d .

For h ∈ Z
d , define

eh(x)= exp(2π ih ·x) for all x ∈ [0,1]d . (1)

Then for f ∈ F2 we have

f (x)=
∑

h∈Zd

f̂ (h)eh(x). (2)

For β = [β1,β2, . . . ,βd ] with βj ∈ N0 := {0,1, . . . } and |β| :=∑d
j=1βj , we have
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(Dβf )(x)= ∂ |β|

∂β1x1 · · ·∂βd xd f (x)= (2π i)|β|
∑

h∈Zd

f̂ (h)eh(x)

d∏

j=1

h
βj
j ,

with the convention that 00 = 1. The last series is absolutely convergent if α−βj >

1/2 for all j ∈ [d]. Indeed, we have

|(Dβf )(x)|
(2π)|β|

≤
∑

h∈Zd

|f̂ (h)|∏j∈u(h) |hj |α√
γd,u(h)

√
γd,u(h)

∏

j∈u(h)

|hj |−(α−βj )

≤ ‖f ‖2

(∑

h∈Zd

γd,u(h)
∏

j∈u(h)

|hj |−2(α−βj )
)1/2

= ‖f ‖2

d∏

j=1

[
1+2γd,j ζ(2(α−βj ))

]1/2
<∞.

Here ζ(x)=∑∞
j=1 j

−x is the Riemann zeta function defined for x > 1. More about
the space Fd,α,γ,2 can be found in, e.g., Appendix A of [10].

Assume now that f ∈ F∞. Then the derivative Dβf exists if α−βj > 1 for all
j ∈ [d]. Indeed, we now have

|(Dβf )(x)|
(2π)|β|

≤
∑

h∈Zd

|f̂ (h)|∏j∈u(h) |hj |α√
γd,u(h)

√
γd,u(h)

∏

j∈u(h)

|hj |−(α−βj )

≤ ‖f ‖∞
∑

h∈Zd

√
γd,u(h)

∏

j∈u(h)

|hj |−(α−βj )

= ‖f ‖∞
d∏

j=1

[
1+2

√
γd,j ζ(α−βj )

]
<∞.

3 Multivariate Integration and Tractability

We consider multivariate integration defined for Fp with p ∈ {2,∞}. That is, we
want to approximate

Id(f )=
∫

[0,1]d
f (x)dx for all f ∈ Fp = Fd,α,γ,p.

We assume that we can compute function values at any point from [0,1]d , and ap-
proximate Id(f ) by algorithms An,d that use at most n function values, so that

An,d(f )= ϕn(f (t1),f (t2), . . . ,f (tn))

for some points tj and a scalar mapping ϕn. The points tj can be chosen adap-
tively, that is, tj can depend in an arbitrary way on the previously computed points
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t1, t2, . . . , tj−1 and values f (t1),f (t2), . . . ,f (tj−1), and also the mapping ϕn can be
arbitrary.

The error of the algorithm An,d is defined in the worst case setting as

e(An,d ,p)= sup
f∈Fp,‖f ‖p≤1

|Id(f )−An,d(f )|.

Let
e(n,d,p)= inf

An,d

e(An,d ,p)

denote the minimal worst case error that can be achieved by using n function values,
It turns out that the last infimum is attained for linear algorithms that use nonadaptive
choice of points tj . That is, it is enough to consider algorithms An,d of the form

An,d(f )=
n∑

j=1

ajf (tj )

for some complex numbers aj and points tj chosen independently of f . Then

e(n,d,p)= inf
aj ,tj

sup
f∈Fp,‖f ‖p≤1

∣∣∣∣Id(f )−
n∑

j=1

ajf (tj )

∣∣∣∣.

Optimality of linear algorithms was proved by Smolyak in his PhD thesis in 1965,
whereas optimality of non-adaption by Bakhvalov in 1971. Both results may be
found in [1], see also [10, 16].

Note that for n = 0, the only algorithms that are allowed are constant. In fact, it
is easy to see that the best constant is zero, and

e(0,d,p)= sup
‖f ‖p≤1

|f̂ (0)| = 1

for both p = 2 and p =∞. This means that multivariate integration for both F2 and
F∞ is properly normalized for all d .

We will be using relations between the spaces F2 and F∞. For p ∈ {2,∞}, let

Bp = Bd,α,γ,p := {f ∈ Fp | ‖f ‖Fp ≤ 1 }
be the unit ball of Fp. Since ‖f ‖2 ≥ ‖f ‖∞ for all f ∈ F2, we have

F2 ⊂ F∞ and B2 ⊂ B∞.

This implies that multivariate integration over F∞ is not easier than over F2, i.e.,

e(n,d,2)≤ e(n,d,∞) for all n ∈ N0 and d ∈ N.

In particular, all lower error estimates for F2 are true for F∞, and all upper bounds
for F∞ are also true for F2.



Se
co

nd
 p

ro
of

s

Tractability of Multivariate Integration 643

Let F unw
p denote the unweighted space for which γd,u = 1 for all u ⊆ [d]. The

unit ball of F unw
p will be denoted by B unw

p . Then for all weights γ we have

Bp ⊂ B unw
p .

This means that multivariate integration over the weighted Korobov spaces is no
harder than over the unweighted Korobov spaces; hence, weights can only help. For
the unweighted spaces, it can be derived from the results in [8] and [12] that

e(n,d,∞)=O(n−r ) for all r < α

with the factor in the O notation independent of n but dependent on d . Hence,
for large α the rate of convergence is excellent also for all weighted spaces Fp =
Fd,α,γ,p with p ∈ {2,∞}.

It is natural to ask how long we have to wait to enjoy this rate of convergence.
This leads us to tractability. For ε ∈ (0,1), let

n(ε,d,p)=min{n | e(n,d,p)≤ ε }
be the minimal number of function values needed to obtain an error at most ε.
Clearly,

n(ε,d,2)≤ n(ε,d,∞) for all ε ∈ (0,1) and d ∈ N. (3)

We now recall the notions of tractability, see [10] for general discussions, moti-
vation and history. We say that I = {Id} is weakly tractable iff

lim
ε−1+d→∞

ln n(ε,d,p)

ε−1+d
= 0,

and I is polynomially tractable iff there exist non-negative numbers C,a and b such
that

n(ε,d,p)≤ Cd a ε−b for all ε ∈ (0,1) and d ∈ N.

If a = 0 in the inequality above, then I is strongly polynomially tractable, and the
infimum of b satisfying the inequality above with a = 0 is called the exponent of
strong polynomial tractability and denoted by b str.

Tractability of multivariate integration for weighted spaces F2 has been studied
in [5, 6, 15] for product weights independent of d , i.e., γd,j = γj but this restriction
is not essential for the results of these papers. Tractability for the unweighted space
F unw∞ was studied in [13]. Tractability for weighted spaces F∞ has not yet been
studied and, as already mentioned, this is the subject of this paper.

We briefly recall the results for weighted spaces F2. Weak tractability for F2
holds iff

lim
d→∞

∑d
j=1 γd,j

d
= 0. (4)

This follows from the following argument. Weak tractability was studied in [3] for
reproducing kernel Hilbert spaces whose kernel has a decomposable component,
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see [9]. It was proved in [3] that (4) is a necessary and sufficient condition for weak
tractability. In [6] it was shown that multivariate integration overF2 is not easier than
integration for a specific subspace of a Sobolev space; said subspace is a reproducing
kernel Hilbert space whose kernel has a decomposable component. Therefore (4) is
also necessary for weak tractability over F2. Sufficiency of (4) follows from the
known estimate,

e(n,d,2)≤ n−1/2
d∏

j=1

(1+2γd,j ζ(2α))
1/2,

see [4]. This yields

n(ε,d,2)≤
⌈∏d

j=1(1+2γd,j ζ(2α))

ε2

⌉

.

Using the bounds ln(1+x)≤ x for x ≥ 0 and �x	 ≤ 2x for x ≥ 1, we conclude that

ln n(ε,d,2)≤ 2ζ(2α)
d∑

j=1

γd,j + 2 lnε−1 + ln 2.

Now it is clear why (4) implies weak tractability for F2.
It is proved in [6] that polynomial tractability for F2 holds iff

limsup
d→∞

∑d
j=1 γd,j

ln d
<∞, (5)

and strong polynomial tractability for F2 holds iff

limsup
d→∞

d∑

j=1

γd,j <∞. (6)

The paper [6] formally studied product weights that are independent of d , i.e., γd,j =
γj . However, the same proof techniques applies for product weights dependent on
d with the obvious changes.

Assume that (6) holds, so that we have strong polynomial tractability. We now
discuss the exponent b str of strong polynomial tractability. It was shown in [15] that
if for some β ∈ [1/(2α),1] we have

limsup
d→∞

d∑

j=1

γ
β
d,j <∞ (7)

then
b str ∈ [1/α,2β]. (8)
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The lower bound on b str is easy since for d = 1 we have e(n,1,2)=Θ(n−α) which
implies that b str ≥ 1/α. It is open whether (7) is also necessary, i.e, whether (8)
implies (7).

We now turn to the unweighted spaceF unw∞ . It was proved in [13] that e(n,d,∞)=
1 for all n= 0,1, . . . ,2d −1. This means that

n(ε,d,∞)≥ 2d for all ε ∈ (0,1) and d ∈ N,

and multivariate integration over F unw∞ suffers from the curse of dimensionality.
Therefore, it is interesting to study conditions on weights for which this curse is
vanquished and conditions on weights for which we have polynomial or strong poly-
nomial tractability.

From (3), we know that multivariate integration over F∞ is not easier than mul-
tivariate integration over F2. Therefore all necessary tractability conditions for F2
are also necessary tractability conditions for F∞.

4 Lower Bounds for F∞

We show a lower bound on e(n,d,∞). Consider the 2d weights γd,u =∏
j∈u γd,j

for all subsets u ⊆ [d], and recall that 1 = γd,∅ = 1 ≥ γd,1 ≥ γd,2 ≥ ·· · ≥ 0. For
j = 0,1, . . . ,2d − 1, let ηd,j denote the (j + 1)st largest weight in the sequence
{γd,u}. If two weights are equal then their ordering may be assigned arbitrarily.
Clearly, ηd,0 = 1, ηd,1 = γd,1 and ηd,2 = γd,2. If γd,3 ≥ γd,1γd,2 then ηd,3 = γd,3;
otherwise ηd,3 = γd,1γd,2. Finally, we have ηd,2d−1 =

∏d
j=1 γd,j . Observe that if

γd,j ≡ 1 then ηd,j = 1 for all j = 0,1, . . . ,2d −1.

Theorem 1.

e(n,d,∞) ∈ [ηd,n,1] for all n= 0,1, . . . ,2d −1.

Proof: We modify the proof from [13] to cover product weights. The idea of the
proof is to construct a function from the unit ball of F∞ that vanishes at all n points
used by an algorithm with the possibly maximal value of the integral.

Since e(n,d,∞) ≤ e(0,d,∞) = 1, we need to show that e(n,d,∞) ≥ ηd,n for
n < 2d . Take an arbitrary algorithm

An,d(f )= ϕn(f (t1),f (t2), . . . ,f (tn))

for some (perhaps non-linear) mapping ϕn and some (perhaps adaptively) chosen
points

tk = tk(t1, t2, . . . , tk−1,f (t1),f (t2), . . . ,f (tk−1)).

Take first f = 0 and obtain points tk = tk(t1, t2, . . . , tk−1,0,0, . . . ,0)with 0 occurring
k−1 times.
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Each ηd,j = γd,uj for some uj , where {u0,u1, . . . ,u2d−1} is an enumeration of the
2d subsets of [d]. For j ∈ [0,2d −1], define the vector hj = [hj,1,hj,2, . . . ,hj,d ] by
letting hj,k = 1 if k ∈ uj , and hj,k = 0 if k /∈ uj for k= 1,2, . . . ,d . Then hj ∈ {0,1}d
and u(hj )= uj . Therefore ηd,j = γd,u(hj ) and

ηd,n ≤ ηd,j = γd,u(hj ) for all j = 0,1, . . . ,n. (9)

We then choose a trigonometric polynomial of the form

θ(x)

n∑

j=0

aj e
2π ihj ·x

with a function θ to be specified later, and complex coefficients aj that are a non-
trivial solution of the homogeneous linear system

n∑

j=0

aj e
2π ihj ·tk = 0 for k = 1,2, . . . ,n.

Here, we need the assumption that n< 2d . Indeed, we have n+1≤ 2d unknowns aj
and n homogeneous linear equations; hence for n < 2d a non-zero solution exists.
The non-zero solution aj can be normalized and we choose the normalization such
that

max
j∈[0,n]

|aj | = aj∗ = 1,

for some j∗ ∈ [0,n]. We now define θ(x)= e−2π ihj∗ ·x . Our function f is given as

f (x) = c

n∑

j=0

aj e
2π i (hj−hj∗ )·x,

where c = ηd,n if the real part of ϕn(0,0, . . . ,0) is non-positive, and c = −ηd,n if
the real part of ϕn(0,0, . . . ,0) is positive.

We now show that f belongs to the unit ball of F∞ = Fd,α,γ,∞. Indeed, observe
that f is a trigonometric polynomial with

hj −hj∗ ∈ {−1,0,1}d for all j ∈ [0,n].
This implies that ∏

k∈u(hj−hj∗ )
|hj,k−hj∗,k|α = 1.

Since the hj are distinct vectors, we have |f̂ (hj −hj∗)| = |caj | ≤ ηd,n for all j ∈
[0,n], and f̂ (h)= 0 for all h /∈ {h1−hj∗ ,h2−hj∗ , . . . ,hn−hj∗}. Hence,

‖f ‖∞ = max
j∈[0,n]

|f̂ (hj −hj∗)|√
γd,u(hj−hj∗ )

≤ max
j∈[0,n]

ηd,n√
γd,u(hj−hj∗ )

.
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Observe that

u(hj −hj∗)= {k ∈ [d] | hj,k �= hj∗,k } =
{k ∈ [d] | (hj,k = 1 ∧ hj∗,k = 0) ∨ (hj,k = 0 ∧ hj∗,k = 1)}

and

u(hj −hj∗)⊆ {k ∈ [d] | hj,k = 1}∪ {k ∈ [d] | hj∗,k = 1} = u(hj )∪u(hj∗).

Therefore

γd,u(hj−hj∗ ) =
∏

k∈u(hj−hj∗ )
γd,j ≥

∏

k∈u(hj )

γd,j
∏

k∈u(hj∗ )
γd,j

= γd,u(hj ) γd,u(hj∗ ).

Using (9), we conclude that

√
γd,u(hj−hj∗ ) ≥ ηd,n for all j ∈ [0,n],

and therefore ‖f ‖∞ ≤ 1, as claimed.
Clearly, f (tk)= 0 for all k = 1,2, . . . ,n and therefore

An,d(f )= ϕn(0,0, . . . ,0).

Furthermore, Id(f )= f̂ (0)= caj∗ = c, and

|Id(f )−An,d(f )| = |c−ϕn(0,0, . . . ,0)| ≥ |c−@ϕn(0,0, . . . ,0)| ≥ |c|.
Hence, e(An,d ,∞)≥ ηd,n, which completes the proof.

When γd,j = 1 for j = 1,2, . . . ,d , Theorem 1 states that e(n,d,∞) = 1 for all
n < 2d , and coincides with the same result in [13]. Assume now that γd,j = 1 for
j = 1,2, . . . ,k < d . Then e(n,d,∞)= 1 for n< 2k−1, and n(ε,d,∞)≥ 2k . Hence,
if k ≥ cd for some positive c independent of d , we have the curse of dimensionality
and intractability of multivariate integration for F∞.

Remark 1. We believe that Theorem 1 is not sharp. First of all, note that we can
replace ηd,n in Theorem 1 by (ηd,nηd,n−1)

1/2 for n > 0. However, this is not im-
portant, which is why this is not included in Theorem 1. More importantly, for
n ∈ {1,2d −1}, it is easy to see that ηd,n can be replaced by η

1/2
d,n . We do not know

whether ηd,n can be replaced by cη
1/2
d,n for all n < 2d for some positive constant

c independent of d . If this is indeed the case, then the gap between necessary and
sufficient conditions on tractability would disappear.

The dependence on η
1/2
d,n can be proved for special weights that are not prod-

uct weights. Namely, this can be done for “almost” constant weights, γd,∅ = 1 and
γd,u= cd < 1 for all u �= ∅. The space F∞ is defined as before without assuming that
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γd,u =∏
j∈u γd,j . Then it is easy to apply the same proof as above with c = c

1/2
d ,

and prove that Theorem 1 indeed holds with e(n,d,∞) ∈ [η1/2
d,n,1] for all n < 2d .

So this is another indication that Theorem 1 may be not sharp.

To get tractability we must have decaying weights. For β > 0, note that

d∏

j=1

(
1+γ

β
d,j

)
=

∑

u⊆[d]
γ
β
d,u =

2d−1∑

n=0

γ
β
d,βn

≤
2d−1∑

n=0

eβ(n,d,∞).

Assume that we have polynomial tractability, so that

n(ε,d,∞)≤ Cd a ε−b

for some C ≥ 1 and a ≥ 0 and b > 0. In fact, it is easy to see that b > 1/α since
even for d = 1 we must have b≥ 1/α, as explained before. For d = 2, and ε tending
to zero, it is known that n(ε,2,2) is lower bounded by ε−1/α(ln ε−1)c for some
positive c. Since n(ε,d,2)≤ n(ε,d,∞), this means that b cannot be equal to 1/α.

The estimate on n(ε,d,∞) yields that e(�Cd aε−b	,d,∞)≤ ε for all ε ∈ (0,1).
Substituting n= �Cd aε−b	 ≤ 2Cd aε−b we have

e(n,d,∞)≤ (2C)1/b d a/b n−1/b.

Taking β > b, we conclude that

2d−1∑

n=0

eβ(n,d,∞)≤ (2C)β/b dβ a/bζ(β/b) <∞.

This implies that

limsup
d→∞

∏d
j=1(1+γ

β
d,j )

d β a/b
<∞.

If a > 0, this can happen iff

limsup
d→∞

∑d
j=1 γ

β
d,j

ln d
<∞,

and if a = 0 (strong polynomial tractability) this can happen iff

limsup
d→∞

d∑

j=1

γ
β
d,j <∞.

Define the exponent of the weight sequence γ = {γd,j } as

β(γ )= inf

{
β : limsup

d→∞

d∑

j=1

γ
β
d,j <∞

}
. (10)
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Then we have proved the following corollary.

Corollary 1.

• If multivariate integration is polynomially tractable for F∞, that is, n(ε,d,∞)≤
Cda ε−b with a > 0 and b > 1/α, then for all β > b we have

limsup
d→∞

∑d
j=1 γ

β
d,j

ln d
<∞.

• If multivariate integration is strongly polynomially tractable for F∞ with the
exponent of strong polynomial tractability b str then

max
(
α−1,β(γ )

)≤ b str.

5 Upper Bounds for F∞

We show an upper bound on n(ε,d,∞) by analyzing the worst case errors of lattice
rules,

An,d(f )= 1

n

n−1∑

j=0

f

({
j

n
z

})
.

Here, n is assumed to be prime and z ∈ {1,2, . . . ,n− 1}d is the generating vector
with integer components. The symbol {x} denotes the fractional part of each com-
ponent of the vector x.

Observe that for f = eh given by (1) we have

An,d(eh)= 1

n

n−1∑

j=0

[exp(2π ih · z/n)]j =
{

0 if h · z �= 0 mod n,

1 if h · z= 0 mod n.

Using (2) we conclude that

Id(f )−An,d(f )=
∑

h∈Zd

f̂ (h)
[
Id(eh)−An,d(eh)

]=
∑

h∈Zd\{0}: h·z=0modn

f̂ (h).

From this we obtain the worst case error for F2 and F∞,

e(An,d ,2) =
( ∑

h∈Zd\{0}: h·z=0 modn

γd,u(h)
∏

j∈u(h)

|hj |−2α
)1/2

,

e(An,d ,∞) =
∑

h∈Zd\{0}: h·z=0 modn

√
γd,u

∏

j∈u(h)

|hj |−α.

Using the more precise notation e(An,d ,p) = e(An,d ,Fd,α,γ,p) for p ∈ {2,∞} we
obtain for α > 1,
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e
(
An,d,Fd,α,γ,∞

)= e2 (An,d,Fd,α/2,
√
γ ,2
)
. (11)

Here, by
√
γ we mean the product weights generated by

√
γd,j .

This allows us to use upper bounds on the worst case of lattice rules for F2 from
[7] and obtain corresponding upper bounds for F∞. More precisely, from (11) and
Corollary 2 of [7] we know that we can find a generating vector z by the CBC
(component-by-component) algorithm such that

e(An,d ,Fd,α,γ,∞)≤ 21/λ n−1/λ
d∏

j=1

(
1+2γ λ/2

d,j ζ(αλ)
)1/λ

for all λ ∈ (1/α,1]. Furthermore, the cost of computing such a vector z is propor-
tional to nd ln n, see [11]. Let

n∗(ε,d)=
⎡

⎢
⎢
⎢

2ε−λ
d∏

j=1

(
1+2γ λ/2

d,j ζ(αλ)
)
⎤

⎥
⎥
⎥
.

Then if we take a minimal prime n ≥ n∗(ε,d) then e(An,d ,Fd,α,γ,∞) ≤ ε. It is
known that n≤ 2n∗(ε,d) and this proves the following theorem.

Theorem 2. For all ε ∈ (0,1) and d ∈ N we have

n(ε,d,∞)≤ 2 + 4ε−λ
d∏

j=1

(
1+2γ λ/2

d,j ζ(αλ)
)

for all λ ∈ (1/α,1].

6 Tractability

We now combine the lower and upper bounds of the previous sections to present
necessary and sufficient conditions on tractability for F∞.

Theorem 3.
Consider multivariate integration I = {Id} for the space F∞.

• If I is strongly polynomially tractable then

limsup
d→∞

d∑

j=1

γd,j <∞.

If

limsup
d→∞

d∑

j=1

γ
1/2
d,j <∞

then I is strongly polynomially tractable and its exponent b str satisfies

max
(
α−1,β(γ )

)≤ b str ≤max
(
α−1,2β(γ )

)
.
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Here β(γ ) is the exponent of the weight sequence γ = {γd,j } defined by (10).
• If I is polynomially tractable then

limsup
d→∞

∑d
j=1 γd,j

ln d
<∞.

If

A := 2ζ(α) limsup
d→∞

∑d
j=1 γ

1/2
d,j

ln d
<∞

then I is polynomially tractable and

n(ε,d,∞)≤ 2+4ε−1 d
2ζ(α)

∑d
j=1 γ

1/2
d,j / ln d ≤ Cδ ε

−1 d A+δ for all δ > 0.

• I is weakly tractable iff

lim
d→∞

∑d
j=1 γd,j

d
= 0.

Proof: Necessity of strong polynomial tractability follows from (6), and sufficiency
from Theorem 3 with λ= 1. The lower bound on b str follows from Corollary 2, and
the upper bound from Theorem 3 with λ/2 tending to β(γ ).

Necessity of polynomial tractability follows from (5), and sufficiency from The-
orem 3 with λ = 1. The estimate on n(ε,d,∞) easily follows from the bound in
Theorem 3 again with λ= 1.

We turn to weak tractability. Necessity follows from (4). We now show that

lim
d→∞

∑d
j=1 γd,j

d
= 0 =⇒ lim

d→∞

∑d
j=1 γ

λ
d,j

d
= 0 for all λ > 0.

Indeed for any δ ∈ (0,1), there exists d(δ) such that
∑d

j=1 γd,j ≤ δ d for all d ≥ d(δ).

Since the γd,j are non-increasing with j , it follows jγd,j ≤∑d
j=1 γd,j , and therefore

γd,j ≤ δ d/j for all j ∈ [d]. For j ≥√δ d we have δ d/j ≤√δ and

γ λ
d,j ≤ δλ/2 for all j ≥√δ d and d ≥ d(δ).

Since all γd,j ≤ 1, we have

d∑

j=1

γ λ
d,j =

�√δ d	−1∑

j=1

γ λ
d,j +

d∑

j=�√δ d	
γ λ
d,j ≤ δ1/2 d+ δλ/2(1− δ1/2)d

and ∑d
j=1 γ

λ
d,j

d
≤ δ1/2+ δλ/2 for all d ≥ d(δ).

Since δ can be arbitrarily small, the limit is zero, as claimed.
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Sufficiency of weak tractability now easily follows from Theorem 3 with λ= 1.
Indeed, limd→∞

∑d
j=1 γ

1/2
d,j /d = 0 implies that

lim
ε−1+d→∞

ln n(ε,d)

d
= 0,

as needed.

Remark 2. So far we dealt with product weights. We now briefly discuss finite-order
weights. They are defined as follows. Let γ = {γd,u}d∈N,u⊆[d] be a given sequence
of non-negative weights. Then γ is called finite-order weights iff there is an integer
ω such that

γd,u = 0 for all d and u with |u|> ω.

The smallest ω satisfying the property above is called the order of finite-order
weights, see [2]. For simplicity we also assume that γd,u ≤ 1.

The spaces F2 and F∞ are defined as before without assuming that γd,u =∏
j∈u γd,j .
Lattice rules for finite-order weights were studied in [2] for the space F2. For

prime n and the CBC algorithm, the result in [2] states that for any τ ∈ [1,α] there
exists a positive Cτ such that

e(An,d ,Fd,α/2,
√
γ )≤ Cτ d

ωτ/2 (n−1)τ/2 for all d ∈ N.

This and (11) yields

n(ε,d,∞)=O
(
ε−1/τ d ω

)
for τ ∈ [1,α), (12)

where the factor in the O notation depends only on τ and goes to infinity with
τ tending to α. This proves polynomial tractability for all finite-order weights of
order ω. For γd,u = 1 for all |u| ≤ ω, it is easy to modify the proof of Theorem 1
and show that

e(n,d,∞)= 1 for all n <

(
d

ω/2�
)
=Θ

(
dω/2�) .

Indeed, it is enough to take hj ∈ {0,1}d with at most ω/2� components equal
to 1. Then hj −h∗j ∈ {−1,0,1}d , as before, and hj −h∗j has at most 2ω/2� ≤ ω

components equal to 1. Therefore γd,u(hj−h∗j ) = 1, as needed. Hence, the upper
bound (12) is sharp with respect to d modulo roughly a factor 2 in the exponent of
d , and sharp with respect to ε−1 since τ can be arbitrarily close to α.
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14. I. H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high
dimensional integrals? J. Complexity 14, 1–33 (1998)
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e-mail: bastin@iro.umontreal.ca

Heiko Bauke
Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, Heidelberg, 69117,
Germany, e-mail: heiko.bauke@mpi-hd.mpg.de

P. L’Ecuyer, A.B. Owen (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008,
DOI 10.1007/978-3-642-04107-5, © Springer-Verlag Berlin Heidelberg 2010

655

mailto:christos@isye.gatech.edu
mailto:diego.amaya@hec.ca
mailto:ata@osmf.sscc.ru
mailto:yanbai@utstat.toronto.edu
mailto:z3177364@science.unsw.edu.au
mailto:serge_barbeau@hotmail.com
mailto:bastin@iro.umontreal.ca
mailto:heiko.bauke@mpi-hd.mpg.de
http://dx.doi.org/10.1007/978-3-642-04107-5


Se
co

nd
 p

ro
of

s

656 Conference Participants

Mylène Bédard
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Université de Montréal, Département de mathématiques et de statistique, C.P. 6128,
succ. Centre-ville, Montréal, QC, H3C 3J7, Canada,
e-mail: doray@dms.umontreal.ca

Randal Douc
CITI, Telecom sudParis, 9 rue Charles Fourier, Evry, 91000, France,
e-mail: randal.douc@it-sudparis.eu

Arnaud Doucet
University of British Columbia, Department of Computer Science, 2366 Main
Mall, Vancouver, BC, V6T 1Z4, Canada, e-mail: arnaud@cs.ubc.ca

Alain Dubus
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Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7,
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Université Paris 6, Case 188, 4, Place Jussieu, Paris, 75252, France,
e-mail: gilles.pages@upmc.fr

mailto:christian.nambeu@umontreal.ca
mailto:Peter.Neal@manchester.ac.uk
mailto:nied@math.nus.edu.sg
mailto:wniem@mat.uni.torun.pl
mailto:nisimura@sci.kj.yamagata-u.ac.jp
mailto:nben@iit.edu
mailto:dirk.nuyens@cs.kuleuven.be
mailto:oanada@yahoo.com
mailto:ostrom@iro.umontreal.ca
mailto:owen@stat.stanford.edu
mailto:ozbudak@metu.edu.tr
mailto:gilles.pages@upmc.fr


Se
co

nd
 p

ro
of

s

666 Conference Participants

Fabien Panloup
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Germany, e-mail: danrudolf@web.de

Piergiacomo Sabino
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