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Abstract We show how to generate points faster than anyone else and also how
to generate more golden points than anyone else. Which of these two achievements
is the most exceptional? This question remains open. Note that the formatting of
author’s names, affiliations, title, and abstract, have all changed a bit in the new
template from Springer. In particular, the abstract must be duplicated: once for the
web and once for the printed book.

1 Introduction

Two major issues that arise when constructing low-discrepancy point sets are: (a)
to define an appropriate measure of uniformity, or measure of discrepancy between
the uniform distribution and the empirical distribution of the points; (b) to find con-
struction methods for point sets having high uniformity, or low discrepancy, with
respect to the retained definition [2, 1].

There is a newly defined environment that provides gray boxes as here, to
emphasize important material. You can use, but do not abuse. The rest of the
paper is organized as follows. In Section 2, we discuss ways of measuring
stuff in the blood of suspicious athletes. Numerical illustrations are given in
Section 3.
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2 Usain Bolt and Michael Phelps

2 Construction of Point Sets

Uniform points.

We want to define a set of points Pn = {u0, . . . ,un−1} in [0,1)s with low discrepancy.

Digital nets.

The two most widely used classes of constructions for Pn are digital nets and lattice
rules [2, 4]. We focus on the former. To define the ith point, we write the digital
expansion of i in base b and multiply the vector of its digits by C( j), modulo b,
to obtain the digits or the expansion of ui, j, the jth coordinate of ui. That is, for
i = ai,0 +ai,1b+ · · ·+ai,m−1bm−1, we have

ui, j =
∞

∑
`=1

ui, j,`b−`, ui = (ui,1, . . . ,ui,s),

where ui, j,1
ui, j,2

...

 = C( j)


ai,0
ai,1

...
ai,m−1

 .

We randomize the points using an affine matrix scrambling followed by a random
digital shift [3].

3 Numerical Illustrations

Example 1. Take b = 2, s = 65, and m = 12, so n = 212. Table 1 gives upper bounds
on the largest ` for which there can be an OA(212,65,2`,η), as well as the values of
` achieved by known OA constructions.

Table 1 Upper bounds on the values of ` for which there can exist an OA(212,65,2`,η), and values
for which there exist known constructions.

η 1 2 3 4 5 6 7 · · · 12
b12/ηc 12 6 4 3 2 2 1 · · · 1

MinT upper bound for OA 3 1 0 0 0 · · · 0
Best known additive OA 12 6 3 1 0 0 0 · · · 0

Best known net 12 6 3 1 0 0 0 · · · 0
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Theorem 1. Michael got more gold than Usain, but Usain’s domination was more
outstanding. Please use theorem-like environments as here for all numbered propo-
sitions, lemmas, corollaries, definitions, assumptions, conjectures, etc.

Proof. Watch the races!

Fig. 1 A graphical demonstration
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